Sample records for interaction transcriptome analysis

  1. PIVOT: platform for interactive analysis and visualization of transcriptomics data.

    PubMed

    Zhu, Qin; Fisher, Stephen A; Dueck, Hannah; Middleton, Sarah; Khaladkar, Mugdha; Kim, Junhyong

    2018-01-05

    Many R packages have been developed for transcriptome analysis but their use often requires familiarity with R and integrating results of different packages requires scripts to wrangle the datatypes. Furthermore, exploratory data analyses often generate multiple derived datasets such as data subsets or data transformations, which can be difficult to track. Here we present PIVOT, an R-based platform that wraps open source transcriptome analysis packages with a uniform user interface and graphical data management that allows non-programmers to interactively explore transcriptomics data. PIVOT supports more than 40 popular open source packages for transcriptome analysis and provides an extensive set of tools for statistical data manipulations. A graph-based visual interface is used to represent the links between derived datasets, allowing easy tracking of data versions. PIVOT further supports automatic report generation, publication-quality plots, and program/data state saving, such that all analysis can be saved, shared and reproduced. PIVOT will allow researchers with broad background to easily access sophisticated transcriptome analysis tools and interactively explore transcriptome datasets.

  2. Transcriptome-Based Characterization of Interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in Lactose-Grown Chemostat Cocultures

    PubMed Central

    Mendes, Filipa; Sieuwerts, Sander; de Hulster, Erik; Almering, Marinka J. H.; Luttik, Marijke A. H.; Pronk, Jack T.; Smid, Eddy J.; Bron, Peter A.

    2013-01-01

    Mixed populations of Saccharomyces cerevisiae yeasts and lactic acid bacteria occur in many dairy, food, and beverage fermentations, but knowledge about their interactions is incomplete. In the present study, interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus, two microorganisms that co-occur in kefir fermentations, were studied during anaerobic growth on lactose. By combining physiological and transcriptome analysis of the two strains in the cocultures, five mechanisms of interaction were identified. (i) Lb. delbrueckii subsp. bulgaricus hydrolyzes lactose, which cannot be metabolized by S. cerevisiae, to galactose and glucose. Subsequently, galactose, which cannot be metabolized by Lb. delbrueckii subsp. bulgaricus, is excreted and provides a carbon source for yeast. (ii) In pure cultures, Lb. delbrueckii subsp. bulgaricus grows only in the presence of increased CO2 concentrations. In anaerobic mixed cultures, the yeast provides this CO2 via alcoholic fermentation. (iii) Analysis of amino acid consumption from the defined medium indicated that S. cerevisiae supplied alanine to the bacterium. (iv) A mild but significant low-iron response in the yeast transcriptome, identified by DNA microarray analysis, was consistent with the chelation of iron by the lactate produced by Lb. delbrueckii subsp. bulgaricus. (v) Transcriptome analysis of Lb. delbrueckii subsp. bulgaricus in mixed cultures showed an overrepresentation of transcripts involved in lipid metabolism, suggesting either a competition of the two microorganisms for fatty acids or a response to the ethanol produced by S. cerevisiae. This study demonstrates that chemostat-based transcriptome analysis is a powerful tool to investigate microbial interactions in mixed populations. PMID:23872557

  3. Transcriptome-based characterization of interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in lactose-grown chemostat cocultures.

    PubMed

    Mendes, Filipa; Sieuwerts, Sander; de Hulster, Erik; Almering, Marinka J H; Luttik, Marijke A H; Pronk, Jack T; Smid, Eddy J; Bron, Peter A; Daran-Lapujade, Pascale

    2013-10-01

    Mixed populations of Saccharomyces cerevisiae yeasts and lactic acid bacteria occur in many dairy, food, and beverage fermentations, but knowledge about their interactions is incomplete. In the present study, interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus, two microorganisms that co-occur in kefir fermentations, were studied during anaerobic growth on lactose. By combining physiological and transcriptome analysis of the two strains in the cocultures, five mechanisms of interaction were identified. (i) Lb. delbrueckii subsp. bulgaricus hydrolyzes lactose, which cannot be metabolized by S. cerevisiae, to galactose and glucose. Subsequently, galactose, which cannot be metabolized by Lb. delbrueckii subsp. bulgaricus, is excreted and provides a carbon source for yeast. (ii) In pure cultures, Lb. delbrueckii subsp. bulgaricus grows only in the presence of increased CO2 concentrations. In anaerobic mixed cultures, the yeast provides this CO2 via alcoholic fermentation. (iii) Analysis of amino acid consumption from the defined medium indicated that S. cerevisiae supplied alanine to the bacterium. (iv) A mild but significant low-iron response in the yeast transcriptome, identified by DNA microarray analysis, was consistent with the chelation of iron by the lactate produced by Lb. delbrueckii subsp. bulgaricus. (v) Transcriptome analysis of Lb. delbrueckii subsp. bulgaricus in mixed cultures showed an overrepresentation of transcripts involved in lipid metabolism, suggesting either a competition of the two microorganisms for fatty acids or a response to the ethanol produced by S. cerevisiae. This study demonstrates that chemostat-based transcriptome analysis is a powerful tool to investigate microbial interactions in mixed populations.

  4. Transcriptomic Studies of Malaria: a Paradigm for Investigation of Systemic Host-Pathogen Interactions

    PubMed Central

    2018-01-01

    SUMMARY Transcriptomics, the analysis of genome-wide RNA expression, is a common approach to investigate host and pathogen processes in infectious diseases. Technical and bioinformatic advances have permitted increasingly thorough analyses of the association of RNA expression with fundamental biology, immunity, pathogenesis, diagnosis, and prognosis. Transcriptomic approaches can now be used to realize a previously unattainable goal, the simultaneous study of RNA expression in host and pathogen, in order to better understand their interactions. This exciting prospect is not without challenges, especially as focus moves from interactions in vitro under tightly controlled conditions to tissue- and systems-level interactions in animal models and natural and experimental infections in humans. Here we review the contribution of transcriptomic studies to the understanding of malaria, a parasitic disease which has exerted a major influence on human evolution and continues to cause a huge global burden of disease. We consider malaria a paradigm for the transcriptomic assessment of systemic host-pathogen interactions in humans, because much of the direct host-pathogen interaction occurs within the blood, a readily sampled compartment of the body. We illustrate lessons learned from transcriptomic studies of malaria and how these lessons may guide studies of host-pathogen interactions in other infectious diseases. We propose that the potential of transcriptomic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in study design rather than as a consequence of technological constraints. Further advances will require the integration of transcriptomic data with analytical approaches from other scientific disciplines, including epidemiology and mathematical modeling. PMID:29695497

  5. Transcriptomic Studies of Malaria: a Paradigm for Investigation of Systemic Host-Pathogen Interactions.

    PubMed

    Lee, Hyun Jae; Georgiadou, Athina; Otto, Thomas D; Levin, Michael; Coin, Lachlan J; Conway, David J; Cunnington, Aubrey J

    2018-06-01

    Transcriptomics, the analysis of genome-wide RNA expression, is a common approach to investigate host and pathogen processes in infectious diseases. Technical and bioinformatic advances have permitted increasingly thorough analyses of the association of RNA expression with fundamental biology, immunity, pathogenesis, diagnosis, and prognosis. Transcriptomic approaches can now be used to realize a previously unattainable goal, the simultaneous study of RNA expression in host and pathogen, in order to better understand their interactions. This exciting prospect is not without challenges, especially as focus moves from interactions in vitro under tightly controlled conditions to tissue- and systems-level interactions in animal models and natural and experimental infections in humans. Here we review the contribution of transcriptomic studies to the understanding of malaria, a parasitic disease which has exerted a major influence on human evolution and continues to cause a huge global burden of disease. We consider malaria a paradigm for the transcriptomic assessment of systemic host-pathogen interactions in humans, because much of the direct host-pathogen interaction occurs within the blood, a readily sampled compartment of the body. We illustrate lessons learned from transcriptomic studies of malaria and how these lessons may guide studies of host-pathogen interactions in other infectious diseases. We propose that the potential of transcriptomic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in study design rather than as a consequence of technological constraints. Further advances will require the integration of transcriptomic data with analytical approaches from other scientific disciplines, including epidemiology and mathematical modeling. Copyright © 2018 Lee et al.

  6. Comparative analysis of microarray data in Arabidopsis transcriptome during compatible interactions with plant viruses

    USDA-ARS?s Scientific Manuscript database

    To analyze transcriptome response to virus infection, we have assembled currently available microarray data on changes in gene expression levels in compatible Arabidopsis-virus interactions. We used the mean r (Pearson’s correlation coefficient) for neighboring pairs to estimate pairwise local simil...

  7. Nuclear factor-kappaB bioluminescence imaging-guided transcriptomic analysis for the assessment of host-biomaterial interaction in vivo.

    PubMed

    Hsiang, Chien-Yun; Chen, Yueh-Sheng; Ho, Tin-Yun

    2009-06-01

    Establishment of a comprehensive platform for the assessment of host-biomaterial interaction in vivo is an important issue. Nuclear factor-kappaB (NF-kappaB) is an inducible transcription factor that is activated by numerous stimuli. Therefore, NF-kappaB-dependent luminescent signal in transgenic mice carrying the luciferase genes was used as the guide to monitor the biomaterials-affected organs, and transcriptomic analysis was further applied to evaluate the complex host responses in affected organs in this study. In vivo imaging showed that genipin-cross-linked gelatin conduit (GGC) implantation evoked the strong NF-kappaB activity at 6h in the implanted region, and transcriptomic analysis showed that the expressions of interleukin-6 (IL-6), IL-24, and IL-1 family were up-regulated. A strong luminescent signal was observed in spleen on 14 d, suggesting that GGC implantation might elicit the biological events in spleen. Transcriptomic analysis of spleen showed that 13 Kyoto Encyclopedia of Genes and Genomes pathways belonging to cell cycles, immune responses, and metabolism were significantly altered by GGC implants. Connectivity Map analysis suggested that the gene signatures of GGC were similar to those of compounds that affect lipid or glucose metabolism. GeneSetTest analysis further showed that host responses to GGC implants might be related to diseases states, especially the metabolic and cardiovascular diseases. In conclusion, our data provided a concept of molecular imaging-guided transcriptomic platform for the evaluation and the prediction of host-biomaterial interaction in vivo.

  8. VESPA: Software to Facilitate Genomic Annotation of Prokaryotic Organisms Through Integration of Proteomic and Transcriptomic Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Elena S.; McCue, Lee Ann; Rutledge, Alexandra C.

    2012-04-25

    Visual Exploration and Statistics to Promote Annotation (VESPA) is an interactive visual analysis software tool that facilitates the discovery of structural mis-annotations in prokaryotic genomes. VESPA integrates high-throughput peptide-centric proteomics data and oligo-centric or RNA-Seq transcriptomics data into a genomic context. The data may be interrogated via visual analysis across multiple levels of genomic resolution, linked searches, exports and interaction with BLAST to rapidly identify location of interest within the genome and evaluate potential mis-annotations.

  9. Transcriptomic immune response of Tenebrio molitor pupae to parasitization by Scleroderma guani.

    PubMed

    Zhu, Jia-Ying; Yang, Pu; Zhang, Zhong; Wu, Guo-Xing; Yang, Bin

    2013-01-01

    Host and parasitoid interaction is one of the most fascinating relationships of insects, which is currently receiving an increasing interest. Understanding the mechanisms evolved by the parasitoids to evade or suppress the host immune system is important for dissecting this interaction, while it was still poorly known. In order to gain insight into the immune response of Tenebrio molitor to parasitization by Scleroderma guani, the transcriptome of T. molitor pupae was sequenced with focus on immune-related gene, and the non-parasitized and parasitized T. molitor pupae were analyzed by digital gene expression (DGE) analysis with special emphasis on parasitoid-induced immune-related genes using Illumina sequencing. In a single run, 264,698 raw reads were obtained. De novo assembly generated 71,514 unigenes with mean length of 424 bp. Of those unigenes, 37,373 (52.26%) showed similarity to the known proteins in the NCBI nr database. Via analysis of the transcriptome data in depth, 430 unigenes related to immunity were identified. DGE analysis revealed that parasitization by S. guani had considerable impacts on the transcriptome profile of T. molitor pupae, as indicated by the significant up- or down-regulation of 3,431 parasitism-responsive transcripts. The expression of a total of 74 unigenes involved in immune response of T. molitor was significantly altered after parasitization. obtained T. molitor transcriptome, in addition to establishing a fundamental resource for further research on functional genomics, has allowed the discovery of a large group of immune genes that might provide a meaningful framework to better understand the immune response in this species and other beetles. The DGE profiling data provides comprehensive T. molitor immune gene expression information at the transcriptional level following parasitization, and sheds valuable light on the molecular understanding of the host-parasitoid interaction.

  10. Using phylogenetically-informed annotation (PIA) to search for light-interacting genes in transcriptomes from non-model organisms.

    PubMed

    Speiser, Daniel I; Pankey, M Sabrina; Zaharoff, Alexander K; Battelle, Barbara A; Bracken-Grissom, Heather D; Breinholt, Jesse W; Bybee, Seth M; Cronin, Thomas W; Garm, Anders; Lindgren, Annie R; Patel, Nipam H; Porter, Megan L; Protas, Meredith E; Rivera, Ajna S; Serb, Jeanne M; Zigler, Kirk S; Crandall, Keith A; Oakley, Todd H

    2014-11-19

    Tools for high throughput sequencing and de novo assembly make the analysis of transcriptomes (i.e. the suite of genes expressed in a tissue) feasible for almost any organism. Yet a challenge for biologists is that it can be difficult to assign identities to gene sequences, especially from non-model organisms. Phylogenetic analyses are one useful method for assigning identities to these sequences, but such methods tend to be time-consuming because of the need to re-calculate trees for every gene of interest and each time a new data set is analyzed. In response, we employed existing tools for phylogenetic analysis to produce a computationally efficient, tree-based approach for annotating transcriptomes or new genomes that we term Phylogenetically-Informed Annotation (PIA), which places uncharacterized genes into pre-calculated phylogenies of gene families. We generated maximum likelihood trees for 109 genes from a Light Interaction Toolkit (LIT), a collection of genes that underlie the function or development of light-interacting structures in metazoans. To do so, we searched protein sequences predicted from 29 fully-sequenced genomes and built trees using tools for phylogenetic analysis in the Osiris package of Galaxy (an open-source workflow management system). Next, to rapidly annotate transcriptomes from organisms that lack sequenced genomes, we repurposed a maximum likelihood-based Evolutionary Placement Algorithm (implemented in RAxML) to place sequences of potential LIT genes on to our pre-calculated gene trees. Finally, we implemented PIA in Galaxy and used it to search for LIT genes in 28 newly-sequenced transcriptomes from the light-interacting tissues of a range of cephalopod mollusks, arthropods, and cubozoan cnidarians. Our new trees for LIT genes are available on the Bitbucket public repository ( http://bitbucket.org/osiris_phylogenetics/pia/ ) and we demonstrate PIA on a publicly-accessible web server ( http://galaxy-dev.cnsi.ucsb.edu/pia/ ). Our new trees for LIT genes will be a valuable resource for researchers studying the evolution of eyes or other light-interacting structures. We also introduce PIA, a high throughput method for using phylogenetic relationships to identify LIT genes in transcriptomes from non-model organisms. With simple modifications, our methods may be used to search for different sets of genes or to annotate data sets from taxa outside of Metazoa.

  11. De-novo assembly and characterization of the transcriptome of Metschnikowia fructicola reveals differences in gene expression following interaction with Penicillium digitatum and grapefruit peel

    USDA-ARS?s Scientific Manuscript database

    The yeast, Metschnikowia fructicola, is an antagonist with biological control activity against postharvest diseases of several fruits. We performed a transcriptome analysis, using RNA-Seq technology, to examine the response of M. fructicola with citrus fruit and with the postharvest pathogen, Penic...

  12. The Transcriptome of Compatible and Incompatible Interactions of Potato (Solanum tuberosum) with Phytophthora infestans Revealed by DeepSAGE Analysis

    PubMed Central

    Gyetvai, Gabor; Sønderkær, Mads; Göbel, Ulrike; Basekow, Rico; Ballvora, Agim; Imhoff, Maren; Kersten, Birgit; Nielsen, Kåre-Lehman; Gebhardt, Christiane

    2012-01-01

    Late blight, caused by the oomycete Phytophthora infestans, is the most important disease of potato (Solanum tuberosum). Understanding the molecular basis of resistance and susceptibility to late blight is therefore highly relevant for developing resistant cultivars, either by marker-assissted selection or by transgenic approaches. Specific P. infestans races having the Avr1 effector gene trigger a hypersensitive resistance response in potato plants carrying the R1 resistance gene (incompatible interaction) and cause disease in plants lacking R1 (compatible interaction). The transcriptomes of the compatible and incompatible interaction were captured by DeepSAGE analysis of 44 biological samples comprising five genotypes, differing only by the presence or absence of the R1 transgene, three infection time points and three biological replicates. 30.859 unique 21 base pair sequence tags were obtained, one third of which did not match any known potato transcript sequence. Two third of the tags were expressed at low frequency (<10 tag counts/million). 20.470 unitags matched to approximately twelve thousand potato transcribed genes. Tag frequencies were compared between compatible and incompatible interactions over the infection time course and between compatible and incompatible genotypes. Transcriptional changes were more numerous in compatible than in incompatible interactions. In contrast to incompatible interactions, transcriptional changes in the compatible interaction were observed predominantly for multigene families encoding defense response genes and genes functional in photosynthesis and CO2 fixation. Numerous transcriptional differences were also observed between near isogenic genotypes prior to infection with P. infestans. Our DeepSAGE transcriptome analysis uncovered novel candidate genes for plant host pathogen interactions, examples of which are discussed with respect to possible function. PMID:22328937

  13. Hierarchical cortical transcriptome disorganization in autism.

    PubMed

    Lombardo, Michael V; Courchesne, Eric; Lewis, Nathan E; Pramparo, Tiziano

    2017-01-01

    Autism spectrum disorders (ASD) are etiologically heterogeneous and complex. Functional genomics work has begun to identify a diverse array of dysregulated transcriptomic programs (e.g., synaptic, immune, cell cycle, DNA damage, WNT signaling, cortical patterning and differentiation) potentially involved in ASD brain abnormalities during childhood and adulthood. However, it remains unclear whether such diverse dysregulated pathways are independent of each other or instead reflect coordinated hierarchical systems-level pathology. Two ASD cortical transcriptome datasets were re-analyzed using consensus weighted gene co-expression network analysis (WGCNA) to identify common co-expression modules across datasets. Linear mixed-effect models and Bayesian replication statistics were used to identify replicable differentially expressed modules. Eigengene network analysis was then utilized to identify between-group differences in how co-expression modules interact and cluster into hierarchical meta-modular organization. Protein-protein interaction analyses were also used to determine whether dysregulated co-expression modules show enhanced interactions. We find replicable evidence for 10 gene co-expression modules that are differentially expressed in ASD cortex. Rather than being independent non-interacting sources of pathology, these dysregulated co-expression modules work in synergy and physically interact at the protein level. These systems-level transcriptional signals are characterized by downregulation of synaptic processes coordinated with upregulation of immune/inflammation, response to other organism, catabolism, viral processes, translation, protein targeting and localization, cell proliferation, and vasculature development. Hierarchical organization of meta-modules (clusters of highly correlated modules) is also highly affected in ASD. These findings highlight that dysregulation of the ASD cortical transcriptome is characterized by the dysregulation of multiple coordinated transcriptional programs producing synergistic systems-level effects that cannot be fully appreciated by studying the individual component biological processes in isolation.

  14. Microbiome and ecotypic adaption of Holcus lanatus (L.) to extremes of its soil pH range, investigated through transcriptome sequencing.

    PubMed

    Young, Ellen; Carey, Manus; Meharg, Andrew A; Meharg, Caroline

    2018-03-20

    Plants can adapt to edaphic stress, such as nutrient deficiency, toxicity and biotic challenges, by controlled transcriptomic responses, including microbiome interactions. Traditionally studied in model plant species with controlled microbiota inoculation treatments, molecular plant-microbiome interactions can be functionally investigated via RNA-Seq. Complex, natural plant-microbiome studies are limited, typically focusing on microbial rRNA and omitting functional microbiome investigations, presenting a fundamental knowledge gap. Here, root and shoot meta-transcriptome analyses, in tandem with shoot elemental content and root staining, were employed to investigate transcriptome responses in the wild grass Holcus lanatus and its associated natural multi-species eukaryotic microbiome. A full factorial reciprocal soil transplant experiment was employed, using plant ecotypes from two widely contrasting natural habitats, acid bog and limestone quarry soil, to investigate naturally occurring, and ecologically meaningful, edaphically driven molecular plant-microbiome interactions. Arbuscular mycorrhizal (AM) and non-AM fungal colonization was detected in roots in both soils. Staining showed greater levels of non-AM fungi, and transcriptomics indicated a predominance of Ascomycota-annotated genes. Roots in acid bog soil were dominated by Phialocephala-annotated transcripts, a putative growth-promoting endophyte, potentially involved in N nutrition and ion homeostasis. Limestone roots in acid bog soil had greater expression of other Ascomycete genera and Oomycetes and lower expression of Phialocephala-annotated transcripts compared to acid ecotype roots, which corresponded with reduced induction of pathogen defense processes, particularly lignin biosynthesis in limestone ecotypes. Ascomycota dominated in shoots and limestone soil roots, but Phialocephala-annotated transcripts were insignificant, and no single Ascomycete genus dominated. Fusarium-annotated transcripts were the most common genus in shoots, with Colletotrichum and Rhizophagus (AM fungi) most numerous in limestone soil roots. The latter coincided with upregulation of plant genes involved in AM symbiosis initiation and AM-based P acquisition in an environment where P availability is low. Meta-transcriptome analyses provided novel insights into H. lanatus transcriptome responses, associated eukaryotic microbiota functions and taxonomic community composition. Significant edaphic and plant ecotype effects were identified, demonstrating that meta-transcriptome-based functional analysis is a powerful tool for the study of natural plant-microbiome interactions.

  15. Transcriptomic Immune Response of Tenebrio molitor Pupae to Parasitization by Scleroderma guani

    PubMed Central

    Zhu, Jia-Ying; Yang, Pu; Zhang, Zhong; Wu, Guo-Xing; Yang, Bin

    2013-01-01

    Background Host and parasitoid interaction is one of the most fascinating relationships of insects, which is currently receiving an increasing interest. Understanding the mechanisms evolved by the parasitoids to evade or suppress the host immune system is important for dissecting this interaction, while it was still poorly known. In order to gain insight into the immune response of Tenebrio molitor to parasitization by Scleroderma guani, the transcriptome of T. molitor pupae was sequenced with focus on immune-related gene, and the non-parasitized and parasitized T. molitor pupae were analyzed by digital gene expression (DGE) analysis with special emphasis on parasitoid-induced immune-related genes using Illumina sequencing. Methodology/Principal Findings In a single run, 264,698 raw reads were obtained. De novo assembly generated 71,514 unigenes with mean length of 424 bp. Of those unigenes, 37,373 (52.26%) showed similarity to the known proteins in the NCBI nr database. Via analysis of the transcriptome data in depth, 430 unigenes related to immunity were identified. DGE analysis revealed that parasitization by S. guani had considerable impacts on the transcriptome profile of T. molitor pupae, as indicated by the significant up- or down-regulation of 3,431 parasitism-responsive transcripts. The expression of a total of 74 unigenes involved in immune response of T. molitor was significantly altered after parasitization. Conclusions/Significance obtained T. molitor transcriptome, in addition to establishing a fundamental resource for further research on functional genomics, has allowed the discovery of a large group of immune genes that might provide a meaningful framework to better understand the immune response in this species and other beetles. The DGE profiling data provides comprehensive T. molitor immune gene expression information at the transcriptional level following parasitization, and sheds valuable light on the molecular understanding of the host-parasitoid interaction. PMID:23342153

  16. A Systems Biology Methodology Combining Transcriptome and Interactome Datasets to Assess the Implications of Cytokinin Signaling for Plant Immune Networks.

    PubMed

    Kunz, Meik; Dandekar, Thomas; Naseem, Muhammad

    2017-01-01

    Cytokinins (CKs) play an important role in plant growth and development. Also, several studies highlight the modulatory implications of CKs for plant-pathogen interaction. However, the underlying mechanisms of CK mediating immune networks in plants are still not fully understood. A detailed analysis of high-throughput transcriptome (RNA-Seq and microarrays) datasets under modulated conditions of plant CKs and its mergence with cellular interactome (large-scale protein-protein interaction data) has the potential to unlock the contribution of CKs to plant defense. Here, we specifically describe a detailed systems biology methodology pertinent to the acquisition and analysis of various omics datasets that delineate the role of plant CKs in impacting immune pathways in Arabidopsis.

  17. TranscriptomeBrowser 3.0: introducing a new compendium of molecular interactions and a new visualization tool for the study of gene regulatory networks.

    PubMed

    Lepoivre, Cyrille; Bergon, Aurélie; Lopez, Fabrice; Perumal, Narayanan B; Nguyen, Catherine; Imbert, Jean; Puthier, Denis

    2012-01-31

    Deciphering gene regulatory networks by in silico approaches is a crucial step in the study of the molecular perturbations that occur in diseases. The development of regulatory maps is a tedious process requiring the comprehensive integration of various evidences scattered over biological databases. Thus, the research community would greatly benefit from having a unified database storing known and predicted molecular interactions. Furthermore, given the intrinsic complexity of the data, the development of new tools offering integrated and meaningful visualizations of molecular interactions is necessary to help users drawing new hypotheses without being overwhelmed by the density of the subsequent graph. We extend the previously developed TranscriptomeBrowser database with a set of tables containing 1,594,978 human and mouse molecular interactions. The database includes: (i) predicted regulatory interactions (computed by scanning vertebrate alignments with a set of 1,213 position weight matrices), (ii) potential regulatory interactions inferred from systematic analysis of ChIP-seq experiments, (iii) regulatory interactions curated from the literature, (iv) predicted post-transcriptional regulation by micro-RNA, (v) protein kinase-substrate interactions and (vi) physical protein-protein interactions. In order to easily retrieve and efficiently analyze these interactions, we developed In-teractomeBrowser, a graph-based knowledge browser that comes as a plug-in for Transcriptome-Browser. The first objective of InteractomeBrowser is to provide a user-friendly tool to get new insight into any gene list by providing a context-specific display of putative regulatory and physical interactions. To achieve this, InteractomeBrowser relies on a "cell compartments-based layout" that makes use of a subset of the Gene Ontology to map gene products onto relevant cell compartments. This layout is particularly powerful for visual integration of heterogeneous biological information and is a productive avenue in generating new hypotheses. The second objective of InteractomeBrowser is to fill the gap between interaction databases and dynamic modeling. It is thus compatible with the network analysis software Cytoscape and with the Gene Interaction Network simulation software (GINsim). We provide examples underlying the benefits of this visualization tool for large gene set analysis related to thymocyte differentiation. The InteractomeBrowser plugin is a powerful tool to get quick access to a knowledge database that includes both predicted and validated molecular interactions. InteractomeBrowser is available through the TranscriptomeBrowser framework and can be found at: http://tagc.univ-mrs.fr/tbrowser/. Our database is updated on a regular basis.

  18. Transcriptomic Studies of the Effect of nod Gene-Inducing Molecules in Rhizobia: Different Weapons, One Purpose

    PubMed Central

    Jiménez-Guerrero, Irene; Acosta-Jurado, Sebastián; Navarro-Gómez, Pilar; López-Baena, Francisco Javier; Ollero, Francisco Javier

    2017-01-01

    Simultaneous quantification of transcripts of the whole bacterial genome allows the analysis of the global transcriptional response under changing conditions. RNA-seq and microarrays are the most used techniques to measure these transcriptomic changes, and both complement each other in transcriptome profiling. In this review, we exhaustively compiled the symbiosis-related transcriptomic reports (microarrays and RNA sequencing) carried out hitherto in rhizobia. This review is specially focused on transcriptomic changes that takes place when five rhizobial species, Bradyrhizobium japonicum (=diazoefficiens) USDA 110, Rhizobium leguminosarum biovar viciae 3841, Rhizobium tropici CIAT 899, Sinorhizobium (=Ensifer) meliloti 1021 and S. fredii HH103, recognize inducing flavonoids, plant-exuded phenolic compounds that activate the biosynthesis and export of Nod factors (NF) in all analysed rhizobia. Interestingly, our global transcriptomic comparison also indicates that each rhizobial species possesses its own arsenal of molecular weapons accompanying the set of NF in order to establish a successful interaction with host legumes. PMID:29267254

  19. Transcriptome Analysis of Fat Bodies from Two Brown Planthopper (Nilaparvata lugens) Populations with Different Virulence Levels in Rice

    PubMed Central

    Chen, Hongdan; Lai, Wenxiang; Fu, Qiang; Lou, Yonggen

    2014-01-01

    Background The brown planthopper (BPH), Nilaparvata lugens (Stål), one of the most serious rice insect pests in Asia, can quickly overcome rice resistance by evolving new virulent populations. The insect fat body plays essential roles in the life cycles of insects and in plant-insect interactions. However, whether differences in fat body transcriptomes exist between insect populations with different virulence levels and whether the transcriptomic differences are related to insect virulence remain largely unknown. Methodology/Principal Findings In this study, we performed transcriptome-wide analyses on the fat bodies of two BPH populations with different virulence levels in rice. The populations were derived from rice variety TN1 (TN1 population) and Mudgo (M population). In total, 33,776 and 32,332 unigenes from the fat bodies of TN1 and M populations, respectively, were generated using Illumina technology. Gene ontology annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology classifications indicated that genes related to metabolism and immunity were significantly active in the fat bodies. In addition, a total of 339 unigenes showed homology to genes of yeast-like symbionts (YLSs) from 12 genera and endosymbiotic bacteria Wolbachia. A comparative analysis of the two transcriptomes generated 7,860 differentially expressed genes. GO annotations and enrichment analysis of KEGG pathways indicated these differentially expressed transcripts might be involved in metabolism and immunity. Finally, 105 differentially expressed genes from YLSs and Wolbachia were identified, genes which might be associated with the formation of different virulent populations. Conclusions/Significance This study was the first to compare the fat-body transcriptomes of two BPH populations having different virulence traits and to find genes that may be related to this difference. Our findings provide a molecular resource for future investigations of fat bodies and will be useful in examining the interactions between the fat body and virulence variation in the BPH. PMID:24533099

  20. Transcriptome analysis of fat bodies from two brown planthopper (Nilaparvata lugens) populations with different virulence levels in rice.

    PubMed

    Yu, Haixin; Ji, Rui; Ye, Wenfeng; Chen, Hongdan; Lai, Wenxiang; Fu, Qiang; Lou, Yonggen

    2014-01-01

    The brown planthopper (BPH), Nilaparvata lugens (Stål), one of the most serious rice insect pests in Asia, can quickly overcome rice resistance by evolving new virulent populations. The insect fat body plays essential roles in the life cycles of insects and in plant-insect interactions. However, whether differences in fat body transcriptomes exist between insect populations with different virulence levels and whether the transcriptomic differences are related to insect virulence remain largely unknown. In this study, we performed transcriptome-wide analyses on the fat bodies of two BPH populations with different virulence levels in rice. The populations were derived from rice variety TN1 (TN1 population) and Mudgo (M population). In total, 33,776 and 32,332 unigenes from the fat bodies of TN1 and M populations, respectively, were generated using Illumina technology. Gene ontology annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology classifications indicated that genes related to metabolism and immunity were significantly active in the fat bodies. In addition, a total of 339 unigenes showed homology to genes of yeast-like symbionts (YLSs) from 12 genera and endosymbiotic bacteria Wolbachia. A comparative analysis of the two transcriptomes generated 7,860 differentially expressed genes. GO annotations and enrichment analysis of KEGG pathways indicated these differentially expressed transcripts might be involved in metabolism and immunity. Finally, 105 differentially expressed genes from YLSs and Wolbachia were identified, genes which might be associated with the formation of different virulent populations. This study was the first to compare the fat-body transcriptomes of two BPH populations having different virulence traits and to find genes that may be related to this difference. Our findings provide a molecular resource for future investigations of fat bodies and will be useful in examining the interactions between the fat body and virulence variation in the BPH.

  1. Metformin-Induced Changes of the Coding Transcriptome and Non-Coding RNAs in the Livers of Non-Alcoholic Fatty Liver Disease Mice.

    PubMed

    Guo, Jun; Zhou, Yuan; Cheng, Yafen; Fang, Weiwei; Hu, Gang; Wei, Jie; Lin, Yajun; Man, Yong; Guo, Lixin; Sun, Mingxiao; Cui, Qinghua; Li, Jian

    2018-01-01

    Recent studies have suggested that changes in non-coding mRNA play a key role in the progression of non-alcoholic fatty liver disease (NAFLD). Metformin is now recommended and effective for the treatment of NAFLD. We hope the current analyses of the non-coding mRNA transcriptome will provide a better presentation of the potential roles of mRNAs and long non-coding RNAs (lncRNAs) that underlie NAFLD and metformin intervention. The present study mainly analysed changes in the coding transcriptome and non-coding RNAs after the application of a five-week metformin intervention. Liver samples from three groups of mice were harvested for transcriptome profiling, which covered mRNA, lncRNA, microRNA (miRNA) and circular RNA (circRNA), using a microarray technique. A systematic alleviation of high-fat diet (HFD)-induced transcriptome alterations by metformin was observed. The metformin treatment largely reversed the correlations with diabetes-related pathways. Our analysis also suggested interaction networks between differentially expressed lncRNAs and known hepatic disease genes and interactions between circRNA and their disease-related miRNA partners. Eight HFD-responsive lncRNAs and three metformin-responsive lncRNAs were noted due to their widespread associations with disease genes. Moreover, seven miRNAs that interacted with multiple differentially expressed circRNAs were highlighted because they were likely to be associated with metabolic or liver diseases. The present study identified novel changes in the coding transcriptome and non-coding RNAs in the livers of NAFLD mice after metformin treatment that might shed light on the underlying mechanism by which metformin impedes the progression of NAFLD. © 2018 The Author(s). Published by S. Karger AG, Basel.

  2. Longitudinal analysis of the group A Streptococcus transcriptome in experimental pharyngitis in cynomolgus macaques.

    PubMed

    Virtaneva, Kimmo; Porcella, Stephen F; Graham, Morag R; Ireland, Robin M; Johnson, Claire A; Ricklefs, Stacy M; Babar, Imran; Parkins, Larye D; Romero, Romina A; Corn, G Judson; Gardner, Don J; Bailey, John R; Parnell, Michael J; Musser, James M

    2005-06-21

    Identification of the genetic events that contribute to host-pathogen interactions is important for understanding the natural history of infectious diseases and developing therapeutics. Transcriptome studies conducted on pathogens have been central to this goal in recent years. However, most of these investigations have focused on specific end points or disease phases, rather than analysis of the entire time course of infection. To gain a more complete understanding of how bacterial gene expression changes over time in a primate host, the transcriptome of group A Streptococcus (GAS) was analyzed during an 86-day infection protocol in 20 cynomolgus macaques with experimental pharyngitis. The study used 260 custom Affymetrix (Santa Clara, CA) chips, and data were confirmed by TaqMan analysis. Colonization, acute, and asymptomatic phases of disease were identified. Successful colonization and severe inflammation were significantly correlated with an early onset of superantigen gene expression. The differential expression of two-component regulators covR and spy0680 (M1_spy0874) was significantly associated with GAS colony-forming units, inflammation, and phases of disease. Prophage virulence gene expression and prophage induction occurred predominantly during high pathogen cell densities and acute inflammation. We discovered that temporal changes in the GAS transcriptome were integrally linked to the phase of clinical disease and host-defense response. Knowledge of the gene expression patterns characterizing each phase of pathogen-host interaction provides avenues for targeted investigation of proven and putative virulence factors and genes of unknown function and will assist vaccine research.

  3. Transcription Profiling Analysis of Mango–Fusarium mangiferae Interaction

    PubMed Central

    Liu, Feng; Wu, Jing-bo; Zhan, Ru-lin; Ou, Xiong-chang

    2016-01-01

    Malformation caused by Fusarium mangiferae is one of the most destructive mango diseases affecting the canopy and floral development, leading to dramatic reduction in fruit yield. To further understand the mechanism of interaction between mango and F. mangiferae, we monitored the transcriptome profiles of buds from susceptible mango plants, which were challenged with F. mangiferae. More than 99 million reads were deduced by RNA-sequencing and were assembled into 121,267 unigenes. Based on the sequence similarity searches, 61,706 unigenes were identified, of which 21,273 and 50,410 were assigned to gene ontology categories and clusters of orthologous groups, respectively, and 33,243 were mapped to 119 KEGG pathways. The differentially expressed genes of mango were detected, having 15,830, 26,061, and 20,146 DEGs respectively, after infection for 45, 75, and 120 days. The analysis of the comparative transcriptome suggests that basic defense mechanisms play important roles in disease resistance. The data also show the transcriptional responses of interactions between mango and the pathogen and more drastic changes in the host transcriptome in response to the pathogen. These results could be used to develop new methods to broaden the resistance of mango to malformation, including the over-expression of key mango genes. PMID:27683574

  4. Common Motifs in the Response of Cereal Primary Metabolism to Fungal Pathogens are not Based on Similar Transcriptional Reprogramming

    PubMed Central

    Voll, Lars Matthias; Horst, Robin Jonathan; Voitsik, Anna-Maria; Zajic, Doreen; Samans, Birgit; Pons-Kühnemann, Jörn; Doehlemann, Gunther; Münch, Steffen; Wahl, Ramon; Molitor, Alexandra; Hofmann, Jörg; Schmiedl, Alfred; Waller, Frank; Deising, Holger Bruno; Kahmann, Regine; Kämper, Jörg; Kogel, Karl-Heinz; Sonnewald, Uwe

    2011-01-01

    During compatible interactions with their host plants, biotrophic plant–pathogens subvert host metabolism to ensure the sustained provision of nutrient assimilates by the colonized host cells. To investigate, whether common motifs can be revealed in the response of primary carbon and nitrogen metabolism toward colonization with biotrophic fungi in cereal leaves, we have conducted a combined metabolome and transcriptome study of three quite divergent pathosystems, the barley powdery mildew fungus (Blumeria graminis f.sp. hordei), the corn smut fungus Ustilago maydis, and the maize anthracnose fungus Colletotrichum graminicola, the latter being a hemibiotroph that only exhibits an initial biotrophic phase during its establishment. Based on the analysis of 42 water-soluble metabolites, we were able to separate early biotrophic from late biotrophic interactions by hierarchical cluster analysis and principal component analysis, irrespective of the plant host. Interestingly, the corresponding transcriptome dataset could not discriminate between these stages of biotrophy, irrespective, of whether transcript data for genes of central metabolism or the entire transcriptome dataset was used. Strong differences in the transcriptional regulation of photosynthesis, glycolysis, the TCA cycle, lipid biosynthesis, and cell wall metabolism were observed between the pathosystems. However, increased contents of Gln, Asn, and glucose as well as diminished contents of PEP and 3-PGA were common to early post-penetration stages of all interactions. On the transcriptional level, genes of the TCA cycle, nucleotide energy metabolism and amino acid biosynthesis exhibited consistent trends among the compared biotrophic interactions, identifying the requirement for metabolic energy and the rearrangement of amino acid pools as common transcriptional motifs during early biotrophy. Both metabolome and transcript data were employed to generate models of leaf primary metabolism during early biotrophy for the three investigated interactions. PMID:22645534

  5. Relationships between drought, heat and air humidity responses revealed by transcriptome-metabolome co-analysis.

    PubMed

    Georgii, Elisabeth; Jin, Ming; Zhao, Jin; Kanawati, Basem; Schmitt-Kopplin, Philippe; Albert, Andreas; Winkler, J Barbro; Schäffner, Anton R

    2017-07-10

    Elevated temperature and reduced water availability are frequently linked abiotic stresses that may provoke distinct as well as interacting molecular responses. Based on non-targeted metabolomic and transcriptomic measurements from Arabidopsis rosettes, this study aims at a systematic elucidation of relevant components in different drought and heat scenarios as well as relationships between molecular players of stress response. In combined drought-heat stress, the majority of single stress responses are maintained. However, interaction effects between drought and heat can be discovered as well; these relate to protein folding, flavonoid biosynthesis and growth inhibition, which are enhanced, reduced or specifically induced in combined stress, respectively. Heat stress experiments with and without supplementation of air humidity for maintenance of vapor pressure deficit suggest that decreased relative air humidity due to elevated temperature is an important component of heat stress, specifically being responsible for hormone-related responses to water deprivation. Remarkably, this "dry air effect" is the primary trigger of the metabolomic response to heat. In contrast, the transcriptomic response has a substantial temperature component exceeding the dry air component and including up-regulation of many transcription factors and protein folding-related genes. Data level integration independent of prior knowledge on pathways and condition labels reveals shared drought and heat responses between transcriptome and metabolome, biomarker candidates and co-regulation between genes and metabolic compounds, suggesting novel players in abiotic stress response pathways. Drought and heat stress interact both at transcript and at metabolite response level. A comprehensive, non-targeted view of this interaction as well as non-interacting processes is important to be taken into account when improving tolerance to abiotic stresses in breeding programs. Transcriptome and metabolome may respond with different extent to individual stress components. Their contrasting behavior in response to temperature stress highlights that the protein folding machinery effectively shields the metabolism from stress. Disentangling the complex relationships between transcriptome and metabolome in response to stress is an enormous challenge. As demonstrated by case studies with supporting evidence from additional data, the large dataset provided in this study may assist in determining linked genetic and metabolic features as candidates for future mechanistic analyses.

  6. Concurrent Host-Pathogen Transcriptional Responses in a Clostridium perfringens Murine Myonecrosis Infection

    PubMed Central

    2018-01-01

    ABSTRACT To obtain an insight into host-pathogen interactions in clostridial myonecrosis, we carried out comparative transcriptome analysis of both the bacterium and the host in a murine Clostridium perfringens infection model, which is the first time that such an investigation has been conducted. Analysis of the host transcriptome from infected muscle tissues indicated that many genes were upregulated compared to the results seen with mock-infected mice. These genes were enriched for host defense pathways, including Toll-like receptor (TLR) and Nod-like receptor (NLR) signaling components. Real-time PCR confirmed that host TLR2 and NLRP3 inflammasome genes were induced in response to C. perfringens infection. Comparison of the transcriptome of C. perfringens cells from the infected tissues with that from broth cultures showed that host selective pressure induced a global change in C. perfringens gene expression. A total of 33% (923) of C. perfringens genes were differentially regulated, including 10 potential virulence genes that were upregulated relative to their expression in vitro. These genes encoded putative proteins that may be involved in the synthesis of cell wall-associated macromolecules, in adhesion to host cells, or in protection from host cationic antimicrobial peptides. This report presents the first successful expression profiling of coregulated transcriptomes of bacterial and host genes during a clostridial myonecrosis infection and provides new insights into disease pathogenesis and host-pathogen interactions. PMID:29588405

  7. Revealing gene regulation and association through biological networks

    USDA-ARS?s Scientific Manuscript database

    This review had first summarized traditional methods used by plant breeders for genetic improvement, such as QTL analysis and transcriptomic analysis. With accumulating data, we can draw a network that comprises all possible links between members of a community, including protein–protein interaction...

  8. Transcriptome of interstitial cells of Cajal reveals unique and selective gene signatures

    PubMed Central

    Park, Paul J.; Fuchs, Robert; Wei, Lai; Jorgensen, Brian G.; Redelman, Doug; Ward, Sean M.; Sanders, Kenton M.

    2017-01-01

    Transcriptome-scale data can reveal essential clues into understanding the underlying molecular mechanisms behind specific cellular functions and biological processes. Transcriptomics is a continually growing field of research utilized in biomarker discovery. The transcriptomic profile of interstitial cells of Cajal (ICC), which serve as slow-wave electrical pacemakers for gastrointestinal (GI) smooth muscle, has yet to be uncovered. Using copGFP-labeled ICC mice and flow cytometry, we isolated ICC populations from the murine small intestine and colon and obtained their transcriptomes. In analyzing the transcriptome, we identified a unique set of ICC-restricted markers including transcription factors, epigenetic enzymes/regulators, growth factors, receptors, protein kinases/phosphatases, and ion channels/transporters. This analysis provides new and unique insights into the cellular and biological functions of ICC in GI physiology. Additionally, we constructed an interactive ICC genome browser (http://med.unr.edu/physio/transcriptome) based on the UCSC genome database. To our knowledge, this is the first online resource that provides a comprehensive library of all known genetic transcripts expressed in primary ICC. Our genome browser offers a new perspective into the alternative expression of genes in ICC and provides a valuable reference for future functional studies. PMID:28426719

  9. Character trees from transcriptome data: Origin and individuation of morphological characters and the so-called "species signal".

    PubMed

    Musser, Jacob M; Wagner, Günter P

    2015-11-01

    We elaborate a framework for investigating the evolutionary history of morphological characters. We argue that morphological character trees generated by phylogenetic analysis of transcriptomes provide a useful tool for identifying causal gene expression differences underlying the development and evolution of morphological characters. They also enable rigorous testing of different models of morphological character evolution and origination, including the hypothesis that characters originate via divergence of repeated ancestral characters. Finally, morphological character trees provide evidence that character transcriptomes undergo concerted evolution. We argue that concerted evolution of transcriptomes can explain the so-called "species signal" found in several recent comparative transcriptome studies. The species signal is the phenomenon that transcriptomes cluster by species rather than character type, even though the characters are older than the respective species. We suggest the species signal is a natural consequence of concerted gene expression evolution resulting from mutations that alter gene regulatory network interactions shared by the characters under comparison. Thus, character trees generated from transcriptomes allow us to investigate the variational independence, or individuation, of morphological characters at the level of genetic programs. © 2015 Wiley Periodicals, Inc.

  10. VESPA: software to facilitate genomic annotation of prokaryotic organisms through integration of proteomic and transcriptomic data.

    PubMed

    Peterson, Elena S; McCue, Lee Ann; Schrimpe-Rutledge, Alexandra C; Jensen, Jeffrey L; Walker, Hyunjoo; Kobold, Markus A; Webb, Samantha R; Payne, Samuel H; Ansong, Charles; Adkins, Joshua N; Cannon, William R; Webb-Robertson, Bobbie-Jo M

    2012-04-05

    The procedural aspects of genome sequencing and assembly have become relatively inexpensive, yet the full, accurate structural annotation of these genomes remains a challenge. Next-generation sequencing transcriptomics (RNA-Seq), global microarrays, and tandem mass spectrometry (MS/MS)-based proteomics have demonstrated immense value to genome curators as individual sources of information, however, integrating these data types to validate and improve structural annotation remains a major challenge. Current visual and statistical analytic tools are focused on a single data type, or existing software tools are retrofitted to analyze new data forms. We present Visual Exploration and Statistics to Promote Annotation (VESPA) is a new interactive visual analysis software tool focused on assisting scientists with the annotation of prokaryotic genomes though the integration of proteomics and transcriptomics data with current genome location coordinates. VESPA is a desktop Java™ application that integrates high-throughput proteomics data (peptide-centric) and transcriptomics (probe or RNA-Seq) data into a genomic context, all of which can be visualized at three levels of genomic resolution. Data is interrogated via searches linked to the genome visualizations to find regions with high likelihood of mis-annotation. Search results are linked to exports for further validation outside of VESPA or potential coding-regions can be analyzed concurrently with the software through interaction with BLAST. VESPA is demonstrated on two use cases (Yersinia pestis Pestoides F and Synechococcus sp. PCC 7002) to demonstrate the rapid manner in which mis-annotations can be found and explored in VESPA using either proteomics data alone, or in combination with transcriptomic data. VESPA is an interactive visual analytics tool that integrates high-throughput data into a genomic context to facilitate the discovery of structural mis-annotations in prokaryotic genomes. Data is evaluated via visual analysis across multiple levels of genomic resolution, linked searches and interaction with existing bioinformatics tools. We highlight the novel functionality of VESPA and core programming requirements for visualization of these large heterogeneous datasets for a client-side application. The software is freely available at https://www.biopilot.org/docs/Software/Vespa.php.

  11. VESPA: software to facilitate genomic annotation of prokaryotic organisms through integration of proteomic and transcriptomic data

    PubMed Central

    2012-01-01

    Background The procedural aspects of genome sequencing and assembly have become relatively inexpensive, yet the full, accurate structural annotation of these genomes remains a challenge. Next-generation sequencing transcriptomics (RNA-Seq), global microarrays, and tandem mass spectrometry (MS/MS)-based proteomics have demonstrated immense value to genome curators as individual sources of information, however, integrating these data types to validate and improve structural annotation remains a major challenge. Current visual and statistical analytic tools are focused on a single data type, or existing software tools are retrofitted to analyze new data forms. We present Visual Exploration and Statistics to Promote Annotation (VESPA) is a new interactive visual analysis software tool focused on assisting scientists with the annotation of prokaryotic genomes though the integration of proteomics and transcriptomics data with current genome location coordinates. Results VESPA is a desktop Java™ application that integrates high-throughput proteomics data (peptide-centric) and transcriptomics (probe or RNA-Seq) data into a genomic context, all of which can be visualized at three levels of genomic resolution. Data is interrogated via searches linked to the genome visualizations to find regions with high likelihood of mis-annotation. Search results are linked to exports for further validation outside of VESPA or potential coding-regions can be analyzed concurrently with the software through interaction with BLAST. VESPA is demonstrated on two use cases (Yersinia pestis Pestoides F and Synechococcus sp. PCC 7002) to demonstrate the rapid manner in which mis-annotations can be found and explored in VESPA using either proteomics data alone, or in combination with transcriptomic data. Conclusions VESPA is an interactive visual analytics tool that integrates high-throughput data into a genomic context to facilitate the discovery of structural mis-annotations in prokaryotic genomes. Data is evaluated via visual analysis across multiple levels of genomic resolution, linked searches and interaction with existing bioinformatics tools. We highlight the novel functionality of VESPA and core programming requirements for visualization of these large heterogeneous datasets for a client-side application. The software is freely available at https://www.biopilot.org/docs/Software/Vespa.php. PMID:22480257

  12. An RNA-binding protein, Qki5, regulates embryonic neural stem cells through pre-mRNA processing in cell adhesion signaling.

    PubMed

    Hayakawa-Yano, Yoshika; Suyama, Satoshi; Nogami, Masahiro; Yugami, Masato; Koya, Ikuko; Furukawa, Takako; Zhou, Li; Abe, Manabu; Sakimura, Kenji; Takebayashi, Hirohide; Nakanishi, Atsushi; Okano, Hideyuki; Yano, Masato

    2017-09-15

    Cell type-specific transcriptomes are enabled by the action of multiple regulators, which are frequently expressed within restricted tissue regions. In the present study, we identify one such regulator, Quaking 5 (Qki5), as an RNA-binding protein (RNABP) that is expressed in early embryonic neural stem cells and subsequently down-regulated during neurogenesis. mRNA sequencing analysis in neural stem cell culture indicates that Qki proteins play supporting roles in the neural stem cell transcriptome and various forms of mRNA processing that may result from regionally restricted expression and subcellular localization. Also, our in utero electroporation gain-of-function study suggests that the nuclear-type Qki isoform Qki5 supports the neural stem cell state. We next performed in vivo transcriptome-wide protein-RNA interaction mapping to search for direct targets of Qki5 and elucidate how Qki5 regulates neural stem cell function. Combined with our transcriptome analysis, this mapping analysis yielded a bona fide map of Qki5-RNA interaction at single-nucleotide resolution, the identification of 892 Qki5 direct target genes, and an accurate Qki5-dependent alternative splicing rule in the developing brain. Last, our target gene list provides the first compelling evidence that Qki5 is associated with specific biological events; namely, cell-cell adhesion. This prediction was confirmed by histological analysis of mice in which Qki proteins were genetically ablated, which revealed disruption of the apical surface of the lateral wall in the developing brain. These data collectively indicate that Qki5 regulates communication between neural stem cells by mediating numerous RNA processing events and suggest new links between splicing regulation and neural stem cell states. © 2017 Hayakawa-Yano et al.; Published by Cold Spring Harbor Laboratory Press.

  13. Comparative analysis of pistil transcriptomes reveals conserved and novel genes expressed in dry, wet, and semidry stigmas.

    PubMed

    Allen, Alexandra M; Lexer, Christian; Hiscock, Simon J

    2010-11-01

    Fertilization in angiosperms depends on a complex cellular "courtship" between haploid pollen and diploid pistil. These pollen-pistil interactions are regulated by a diversity of molecules, many of which remain to be identified and characterized. Thus, it is unclear to what extent these processes are conserved among angiosperms, a fact confounded by limited sampling across taxa. Here, we report the analysis of pistil-expressed genes in Senecio squalidus (Asteraceae), a species from euasterid II, a major clade for which there are currently no data on pistil-expressed genes. Species from the Asteraceae characteristically have a "semidry stigma," intermediate between the "wet" and "dry" stigmas typical of the majority of angiosperms. Construction of pistil-enriched cDNA libraries for S. squalidus allowed us to address two hypotheses: (1) stigmas of S. squalidus will express genes common to wet and dry stigmas and genes specific to the semidry stigma characteristic of the Asteraceae; and (2) genes potentially essential for pistil function will be conserved between diverse angiosperm groups and therefore common to all currently available pistil transcriptome data sets, including S. squalidus. Our data support both these hypotheses. The S. squalidus pistil transcriptome contains novel genes and genes previously identified in pistils of species with dry stigmas and wet stigmas. Comparative analysis of the five pistil transcriptomes currently available (Oryza sativa, Crocus sativus, Arabidopsis thaliana, Nicotiana tabacum, and S. squalidus), representing four major angiosperm clades and the three stigma states, identified novel genes and conserved genes potentially regulating pollen-pistil interaction pathways common to monocots and eudicots.

  14. Transcriptomic analysis of flower development in tea (Camellia sinensis (L.)).

    PubMed

    Liu, Feng; Wang, Yu; Ding, Zhaotang; Zhao, Lei; Xiao, Jun; Wang, Linjun; Ding, Shibo

    2017-10-05

    Flowering is a critical and complicated process in plant development, involving interactions of numerous endogenous and environmental factors, but little is known about the complex network regulating flower development in tea plants. In this study, de novo transcriptome assembly and gene expression analysis using Illumina sequencing technology were performed. Transcriptomic analysis assembles gene-related information involved in reproductive growth of C. sinensis. Gene Ontology (GO) analysis of the annotated unigenes revealed that the majority of sequenced genes were associated with metabolic and cellular processes, cell and cell parts, catalytic activity and binding. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction were enriched among the DEGs. Furthermore, 207 flowering-associated unigenes were identified from our database. Some transcription factors, such as WRKY, ERF, bHLH, MYB and MADS-box were shown to be up-regulated in floral transition, which might play the role of progression of flowering. Furthermore, 14 genes were selected for confirmation of expression levels using quantitative real-time PCR (qRT-PCR). The comprehensive transcriptomic analysis presents fundamental information on the genes and pathways which are involved in flower development in C. sinensis. Our data also provided a useful database for further research of tea and other species of plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Integrated analysis of transcriptome and lipid profiling reveals the co-influences of inositol-choline and Snf1 in controlling lipid biosynthesis in yeast.

    PubMed

    Chumnanpuen, Pramote; Zhang, Jie; Nookaew, Intawat; Nielsen, Jens

    2012-07-01

    In the yeast Saccharomyces cerevisiae many genes involved in lipid biosynthesis are transcriptionally controlled by inositol-choline and the protein kinase Snf1. Here we undertook a global study on how inositol-choline and Snf1 interact in controlling lipid metabolism in yeast. Using both a reference strain (CEN.PK113-7D) and a snf1Δ strain cultured at different nutrient limitations (carbon and nitrogen), at a fixed specific growth rate of 0.1 h(-1), and at different inositol choline concentrations, we quantified the expression of genes involved in lipid biosynthesis and the fluxes towards the different lipid components. Through integrated analysis of the transcriptome, the lipid profiling and the fluxome, it was possible to obtain a high quality, large-scale dataset that could be used to identify correlations and associations between the different components. At the transcription level, Snf1 and inositol-choline interact either directly through the main phospholipid-involving transcription factors (i.e. Ino2, Ino4, and Opi1) or through other transcription factors e.g. Gis1, Mga2, and Hac1. However, there seems to be flux regulation at the enzyme levels of several lipid involving enzymes. The analysis showed the strength of using both transcriptome and lipid profiling analysis for mapping the co-influence of inositol-choline and Snf1 on phospholipid metabolism.

  16. Belowground neighbor perception in Arabidopsis thaliana studied by transcriptome analysis: roots of Hieracium pilosella cause biotic stress

    PubMed Central

    Schmid, Christoph; Bauer, Sibylle; Müller, Benedikt; Bartelheimer, Maik

    2013-01-01

    Root-root interactions are much more sophisticated than previously thought, yet the mechanisms of belowground neighbor perception remain largely obscure. Genome-wide transcriptome analyses allow detailed insight into plant reactions to environmental cues. A root interaction trial was set up to explore both morphological and whole genome transcriptional responses in roots of Arabidopsis thaliana in the presence or absence of an inferior competitor, Hieracium pilosella. Neighbor perception was indicated by Arabidopsis roots predominantly growing away from the neighbor (segregation), while solitary plants placed more roots toward the middle of the pot. Total biomass remained unaffected. Database comparisons in transcriptome analysis revealed considerable similarity between Arabidopsis root reactions to neighbors and reactions to pathogens. Detailed analyses of the functional category “biotic stress” using MapMan tools found the sub-category “pathogenesis-related proteins” highly significantly induced. A comparison to a study on intraspecific competition brought forward a core of genes consistently involved in reactions to neighbor roots. We conclude that beyond resource depletion roots perceive neighboring roots or their associated microorganisms by a relatively uniform mechanism that involves the strong induction of pathogenesis-related proteins. In an ecological context the findings reveal that belowground neighbor detection may occur independently of resource depletion, allowing for a time advantage for the root to prepare for potential interactions. PMID:23967000

  17. Transcriptomic analysis links gene expression to unilateral pollen-pistil reproductive barriers.

    PubMed

    Broz, Amanda K; Guerrero, Rafael F; Randle, April M; Baek, You Soon; Hahn, Matthew W; Bedinger, Patricia A

    2017-04-24

    Unilateral incompatibility (UI) is an asymmetric reproductive barrier that unidirectionally prevents gene flow between species and/or populations. UI is characterized by a compatible interaction between partners in one direction, but in the reciprocal cross fertilization fails, generally due to pollen tube rejection by the pistil. Although UI has long been observed in crosses between different species, the underlying molecular mechanisms are only beginning to be characterized. The wild tomato relative Solanum habrochaites provides a unique study system to investigate the molecular basis of this reproductive barrier, as populations within the species exhibit both interspecific and interpopulation UI. Here we utilized a transcriptomic approach to identify genes in both pollen and pistil tissues that may be key players in UI. We confirmed UI at the pollen-pistil level between a self-incompatible population and a self-compatible population of S. habrochaites. A comparison of gene expression between pollinated styles exhibiting the incompatibility response and unpollinated controls revealed only a small number of differentially expressed transcripts. Many more differences in transcript profiles were identified between UI-competent versus UI-compromised reproductive tissues. A number of intriguing candidate genes were highly differentially expressed, including a putative pollen arabinogalactan protein, a stylar Kunitz family protease inhibitor, and a stylar peptide hormone Rapid ALkalinization Factor. Our data also provide transcriptomic evidence that fundamental processes including reactive oxygen species (ROS) signaling are likely key in UI pollen-pistil interactions between both populations and species. Gene expression analysis of reproductive tissues allowed us to better understand the molecular basis of interpopulation incompatibility at the level of pollen-pistil interactions. Our transcriptomic analysis highlighted specific genes, including those in ROS signaling pathways that warrant further study in investigations of UI. To our knowledge, this is the first report to identify candidate genes involved in unilateral barriers between populations within a species.

  18. De-novo assembly and characterization of the transcriptome of Metschnikowia fructicola reveals differences in gene expression following interaction with Penicillium digitatum and grapefruit peel

    PubMed Central

    2013-01-01

    Background The yeast Metschnikowia fructicola is an antagonist with biological control activity against postharvest diseases of several fruits. We performed a transcriptome analysis, using RNA-Seq technology, to examine the response of M. fructicola with citrus fruit and with the postharvest pathogen, Penicillium digitatum. Results More than 26 million sequencing reads were assembled into 9,674 unigenes. Approximately 50% of the unigenes could be annotated based on homology matches in the NCBI database. Based on homology, sequences were annotated with a gene description, gene ontology (GO term), and clustered into functional groups. An analysis of differential expression when the yeast was interacting with the fruit vs. the pathogen revealed more than 250 genes with specific expression responses. In the antagonist-pathogen interaction, genes related to transmembrane, multidrug transport and to amino acid metabolism were induced. In the antagonist-fruit interaction, expression of genes involved in oxidative stress, iron homeostasis, zinc homeostasis, and lipid metabolism were induced. Patterns of gene expression in the two interactions were examined at the individual transcript level by quantitative real-time PCR analysis (RT-qPCR). Conclusion This study provides new insight into the biology of the tritrophic interactions that occur in a biocontrol system such as the use of the yeast, M. fructicola for the control of green mold on citrus caused by P. digitatum. PMID:23496978

  19. DHS Internship Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    House, Samantha

    2014-09-01

    This summer I worked on projects that involved RNA sequencing of pathogens after an infection of host cells. The goal of these projects was to continue developing pathogen enrichment strategies for transcriptomic analysis, and also to perform hostpathogen interaction studies.

  20. Genome scale transcriptomics of baculovirus-insect interactions.

    PubMed

    Nguyen, Quan; Nielsen, Lars K; Reid, Steven

    2013-11-12

    Baculovirus-insect cell technologies are applied in the production of complex proteins, veterinary and human vaccines, gene delivery vectors' and biopesticides. Better understanding of how baculoviruses and insect cells interact would facilitate baculovirus-based production. While complete genomic sequences are available for over 58 baculovirus species, little insect genomic information is known. The release of the Bombyx mori and Plutella xylostella genomes, the accumulation of EST sequences for several Lepidopteran species, and especially the availability of two genome-scale analysis tools, namely oligonucleotide microarrays and next generation sequencing (NGS), have facilitated expression studies to generate a rich picture of insect gene responses to baculovirus infections. This review presents current knowledge on the interaction dynamics of the baculovirus-insect system' which is relatively well studied in relation to nucleocapsid transportation, apoptosis, and heat shock responses, but is still poorly understood regarding responses involved in pro-survival pathways, DNA damage pathways, protein degradation, translation, signaling pathways, RNAi pathways, and importantly metabolic pathways for energy, nucleotide and amino acid production. We discuss how the two genome-scale transcriptomic tools can be applied for studying such pathways and suggest that proteomics and metabolomics can produce complementary findings to transcriptomic studies.

  1. Interactome analysis of longitudinal pharyngeal infection of cynomolgus macaques by group A Streptococcus.

    PubMed

    Shea, Patrick R; Virtaneva, Kimmo; Kupko, John J; Porcella, Stephen F; Barry, William T; Wright, Fred A; Kobayashi, Scott D; Carmody, Aaron; Ireland, Robin M; Sturdevant, Daniel E; Ricklefs, Stacy M; Babar, Imran; Johnson, Claire A; Graham, Morag R; Gardner, Donald J; Bailey, John R; Parnell, Michael J; Deleo, Frank R; Musser, James M

    2010-03-09

    Relatively little is understood about the dynamics of global host-pathogen transcriptome changes that occur during bacterial infection of mucosal surfaces. To test the hypothesis that group A Streptococcus (GAS) infection of the oropharynx provokes a distinct host transcriptome response, we performed genome-wide transcriptome analysis using a nonhuman primate model of experimental pharyngitis. We also identified host and pathogen biological processes and individual host and pathogen gene pairs with correlated patterns of expression, suggesting interaction. For this study, 509 host genes and seven biological pathways were differentially expressed throughout the entire 32-day infection cycle. GAS infection produced an initial widespread significant decrease in expression of many host genes, including those involved in cytokine production, vesicle formation, metabolism, and signal transduction. This repression lasted until day 4, at which time a large increase in expression of host genes was observed, including those involved in protein translation, antigen presentation, and GTP-mediated signaling. The interactome analysis identified 73 host and pathogen gene pairs with correlated expression levels. We discovered significant correlations between transcripts of GAS genes involved in hyaluronic capsule production and host endocytic vesicle formation, GAS GTPases and host fibrinolytic genes, and GAS response to interaction with neutrophils. We also identified a strong signal, suggesting interaction between host gammadelta T cells and genes in the GAS mevalonic acid synthesis pathway responsible for production of isopentenyl-pyrophosphate, a short-chain phospholipid that stimulates these T cells. Taken together, our results are unique in providing a comprehensive understanding of the host-pathogen interactome during mucosal infection by a bacterial pathogen.

  2. Transcriptome analysis of Pinus monticola primary needles by RNA-seq provides novel insight into host resistance to Cronartium ribicola

    PubMed Central

    2013-01-01

    Background Five-needle pines are important forest species that have been devastated by white pine blister rust (WPBR, caused by Cronartium ribicola) across North America. Currently little transcriptomic and genomic data are available to understand molecular interactions in the WPBR pathosystem. Results We report here RNA-seq analysis results using Illumina deep sequencing of primary needles of western white pine (Pinus monticola) infected with WPBR. De novo gene assembly was used to generate the first P. monticola consensus transcriptome, which contained 39,439 unique transcripts with an average length of 1,303 bp and a total length of 51.4 Mb. About 23,000 P. monticola unigenes produced orthologous hits in the Pinus gene index (PGI) database (BLASTn with E values < e-100) and 6,300 genes were expressed actively (at RPKM ≥ 10) in the healthy tissues. Comparison of transcriptomes from WPBR-susceptible and -resistant genotypes revealed a total of 979 differentially expressed genes (DEGs) with a significant fold change > 1.5 during P. monticola- C. ribicola interactions. Three hundred and ten DEGs were regulated similarly in both susceptible and resistant seedlings and 275 DEGs showed regulatory differences between susceptible and resistant seedlings post infection by C. ribicola. The DEGs up-regulated in resistant seedlings included a set of putative signal receptor genes encoding disease resistance protein homologs, calcineurin B-like (CBL)-interacting protein kinases (CIPK), F-box family proteins (FBP), and abscisic acid (ABA) receptor; transcriptional factor (TF) genes of multiple families; genes homologous to apoptosis-inducing factor (AIF), flowering locus T-like protein (FT), and subtilisin-like protease. DEGs up-regulated in resistant seedlings also included a wide diversity of down-stream genes (encoding enzymes involved in different metabolic pathways, pathogenesis-related -PR proteins of multiple families, and anti-microbial proteins). A large proportion of the down-regulated DEGs were related to photosystems, the metabolic pathways of carbon fixation and flavonoid biosynthesis. Conclusions The novel P. monticola transcriptome data provide a basis for future studies of genetic resistance in a non-model, coniferous species. Our global gene expression profiling presents a comprehensive view of transcriptomic regulation in the WPBR pathosystem and yields novel insights on molecular and biochemical mechanisms of disease resistance in conifers. PMID:24341615

  3. Interactome-transcriptome analysis discovers signatures complementary to GWAS Loci of Type 2 Diabetes

    PubMed Central

    Li, Jing-Woei; Lee, Heung-Man; Wang, Ying; Tong, Amy Hin-Yan; Yip, Kevin Y.; Tsui, Stephen Kwok-Wing; Lok, Si; Ozaki, Risa; Luk, Andrea O; Kong, Alice P. S.; So, Wing-Yee; Ma, Ronald C. W.; Chan, Juliana C. N.; Chan, Ting-Fung

    2016-01-01

    Protein interactions play significant roles in complex diseases. We analyzed peripheral blood mononuclear cells (PBMC) transcriptome using a multi-method strategy. We constructed a tissue-specific interactome (T2Di) and identified 420 molecular signatures associated with T2D-related comorbidity and symptoms, mainly implicated in inflammation, adipogenesis, protein phosphorylation and hormonal secretion. Apart from explaining the residual associations within the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) study, the T2Di signatures were enriched in pathogenic cell type-specific regulatory elements related to fetal development, immunity and expression quantitative trait loci (eQTL). The T2Di revealed a novel locus near a well-established GWAS loci AChE, in which SRRT interacts with JAZF1, a T2D-GWAS gene implicated in pancreatic function. The T2Di also included known anti-diabetic drug targets (e.g. PPARD, MAOB) and identified possible druggable targets (e.g. NCOR2, PDGFR). These T2Di signatures were validated by an independent computational method, and by expression data of pancreatic islet, muscle and liver with some of the signatures (CEBPB, SREBF1, MLST8, SRF, SRRT and SLC12A9) confirmed in PBMC from an independent cohort of 66 T2D and 66 control subjects. By combining prior knowledge and transcriptome analysis, we have constructed an interactome to explain the multi-layered regulatory pathways in T2D. PMID:27752041

  4. The metabolome and transcriptome of the interaction between Ustilago maydis and Fusarium verticillioides in vitro

    USDA-ARS?s Scientific Manuscript database

    The metabolome and transcriptome of the maize-infecting fungi Ustilago maydis and Fusarium verticillioides were analyzed as the two fungi interact. Both fungi were grown for seven days in liquid medium alone or together in order to study how this interaction changes their metabolomic and transcripto...

  5. Meta-Analysis of Placental Transcriptome Data Identifies a Novel Molecular Pathway Related to Preeclampsia.

    PubMed

    van Uitert, Miranda; Moerland, Perry D; Enquobahrie, Daniel A; Laivuori, Hannele; van der Post, Joris A M; Ris-Stalpers, Carrie; Afink, Gijs B

    2015-01-01

    Studies using the placental transcriptome to identify key molecules relevant for preeclampsia are hampered by a relatively small sample size. In addition, they use a variety of bioinformatics and statistical methods, making comparison of findings challenging. To generate a more robust preeclampsia gene expression signature, we performed a meta-analysis on the original data of 11 placenta RNA microarray experiments, representing 139 normotensive and 116 preeclamptic pregnancies. Microarray data were pre-processed and analyzed using standardized bioinformatics and statistical procedures and the effect sizes were combined using an inverse-variance random-effects model. Interactions between genes in the resulting gene expression signature were identified by pathway analysis (Ingenuity Pathway Analysis, Gene Set Enrichment Analysis, Graphite) and protein-protein associations (STRING). This approach has resulted in a comprehensive list of differentially expressed genes that led to a 388-gene meta-signature of preeclamptic placenta. Pathway analysis highlights the involvement of the previously identified hypoxia/HIF1A pathway in the establishment of the preeclamptic gene expression profile, while analysis of protein interaction networks indicates CREBBP/EP300 as a novel element central to the preeclamptic placental transcriptome. In addition, there is an apparent high incidence of preeclampsia in women carrying a child with a mutation in CREBBP/EP300 (Rubinstein-Taybi Syndrome). The 388-gene preeclampsia meta-signature offers a vital starting point for further studies into the relevance of these genes (in particular CREBBP/EP300) and their concomitant pathways as biomarkers or functional molecules in preeclampsia. This will result in a better understanding of the molecular basis of this disease and opens up the opportunity to develop rational therapies targeting the placental dysfunction causal to preeclampsia.

  6. Somatic polyploidy is associated with the upregulation of c-MYC interacting genes and EMT-like signature

    PubMed Central

    Vazquez-Martin, Alejandro; Anatskaya, Olga V.; Giuliani, Alessandro; Erenpreisa, Jekaterina; Huang, Sui; Salmina, Kristine; Inashkina, Inna; Huna, Anda; Nikolsky, Nikolai N.; Vinogradov, Alexander E.

    2016-01-01

    The dependence of cancer on overexpressed c-MYC and its predisposition for polyploidy represents a double puzzle. We address this conundrum by cross-species transcription analysis of c-MYC interacting genes in polyploid vs. diploid tissues and cells, including human vs. mouse heart, mouse vs. human liver and purified 4n vs. 2n mouse decidua cells. Gene-by-gene transcriptome comparison and principal component analysis indicated that c-MYC interactants are significantly overrepresented among ploidy-associated genes. Protein interaction networks and gene module analysis revealed that the most upregulated genes relate to growth, stress response, proliferation, stemness and unicellularity, as well as to the pathways of cancer supported by MAPK and RAS coordinated pathways. A surprising feature was the up-regulation of epithelial-mesenchymal transition (EMT) modules embodied by the N-cadherin pathway and EMT regulators from SNAIL and TWIST families. Metabolic pathway analysis also revealed the EMT-linked features, such as global proteome remodeling, oxidative stress, DNA repair and Warburg-like energy metabolism. Genes associated with apoptosis, immunity, energy demand and tumour suppression were mostly down-regulated. Noteworthy, despite the association between polyploidy and ample features of cancer, polyploidy does not trigger it. Possibly it occurs because normal polyploidy does not go that far in embryonalisation and linked genome destabilisation. In general, the analysis of polyploid transcriptome explained the evolutionary relation of c-MYC and polyploidy to cancer. PMID:27655693

  7. Comparative de novo transcriptome analysis of male and female Sea buckthorn.

    PubMed

    Bansal, Ankush; Salaria, Mehul; Sharma, Tashil; Stobdan, Tsering; Kant, Anil

    2018-02-01

    Sea buckthorn is a dioecious medicinal plant found at high altitude. The plant has both male and female reproductive organs in separate individuals. In this article, whole transcriptome de novo assemblies of male and female flower bud samples were carried out using Illumina NextSeq 500 platform to determine the role of the genes involved in sex determination. Moreover, genes with differential expression in male and female transcriptomes were identified to understand the underlying sex determination mechanism. The current study showed 63,904 and 62,272 coding sequences (CDS) in female and male transcriptome data sets, respectively. 16,831 common CDS were screened out from both transcriptomes, out of which 625 were upregulated and 491 were found to be downregulated. To understand the potential regulatory roles of differentially expressed genes in metabolic networks and biosynthetic pathways: KEGG mapping, gene ontology, and co-expression network analysis were performed. Comparison with Flowering Interactive Database (FLOR-ID) resulted in eight differentially expressed genes viz. CHD3-type chromatin-remodeling factor PICKLE ( PKL ), phytochrome-associated serine/threonine-protein phosphatase ( FYPP ), protein TOPLESS ( TPL ), sensitive to freezing 6 ( SFR6 ), lysine-specific histone demethylase 1 homolog 1 ( LDL1 ), pre-mRNA-processing-splicing factor 8A ( PRP8A ), sucrose synthase 4 ( SUS4 ), ubiquitin carboxyl-terminal hydrolase 12 ( UBP12 ), known to be broadly involved in flowering, photoperiodism, embryo development, and cold response pathways. Male and female flower bud transcriptome data of Sea buckthorn may provide comprehensive information at genomic level for the identification of genetic regulation involved in sex determination.

  8. 454 pyrosequencing based transcriptome analysis of Zygaena filipendulae with focus on genes involved in biosynthesis of cyanogenic glucosides.

    PubMed

    Zagrobelny, Mika; Scheibye-Alsing, Karsten; Jensen, Niels Bjerg; Møller, Birger Lindberg; Gorodkin, Jan; Bak, Søren

    2009-12-02

    An essential driving component in the co-evolution of plants and insects is the ability to produce and handle bioactive compounds. Plants produce bioactive natural products for defense, but some insects detoxify and/or sequester the compounds, opening up for new niches with fewer competitors. To study the molecular mechanism behind the co-adaption in plant-insect interactions, we have investigated the interactions between Lotus corniculatus and Zygaena filipendulae. They both contain cyanogenic glucosides which liberate toxic hydrogen cyanide upon breakdown. Moths belonging to the Zygaena family are the only insects known, able to carry out both de novo biosynthesis and sequestration of the same cyanogenic glucosides as those from their feed plants. The biosynthetic pathway for cyanogenic glucoside biosynthesis in Z. filipendulae proceeds using the same intermediates as in the well known pathway from plants, but none of the enzymes responsible have been identified. A genomics strategy founded on 454 pyrosequencing of the Z. filipendulae transcriptome was undertaken to identify some of these enzymes in Z. filipendulae. Comparisons of the Z. filipendulae transcriptome with the sequenced genomes of Bombyx mori, Drosophila melanogaster, Tribolium castaneum, Apis mellifera and Anopheles gambiae indicate a high coverage of the Z. filipendulae transcriptome. 11% of the Z. filipendulae transcriptome sequences were assigned to Gene Ontology categories. Candidate genes for enzymes functioning in the biosynthesis of cyanogenic glucosides (cytochrome P450 and family 1 glycosyltransferases) were identified based on sequence length, number of copies and presence/absence of close homologs in D. melanogaster, B. mori and the cyanogenic butterfly Heliconius. Examination of biased codon usage, GC content and selection on gene candidates support the notion of cyanogenesis as an "old" trait within Ditrysia, as well as its origins being convergent between plants and insects. Pyrosequencing is an attractive approach to gain access to genes in the biosynthesis of bio-active natural products from insects and other organisms, for which the genome sequence is not known. Based on analysis of the Z. filipendulae transcriptome, promising gene candidates for biosynthesis of cyanogenic glucosides was identified, and the suitability of Z. filipendulae as a model system for cyanogenesis in insects is evident.

  9. Transcriptomic analysis of Arabidopsis developing stems: a close-up on cell wall genes

    PubMed Central

    Minic, Zoran; Jamet, Elisabeth; San-Clemente, Hélène; Pelletier, Sandra; Renou, Jean-Pierre; Rihouey, Christophe; Okinyo, Denis PO; Proux, Caroline; Lerouge, Patrice; Jouanin, Lise

    2009-01-01

    Background Different strategies (genetics, biochemistry, and proteomics) can be used to study proteins involved in cell biogenesis. The availability of the complete sequences of several plant genomes allowed the development of transcriptomic studies. Although the expression patterns of some Arabidopsis thaliana genes involved in cell wall biogenesis were identified at different physiological stages, detailed microarray analysis of plant cell wall genes has not been performed on any plant tissues. Using transcriptomic and bioinformatic tools, we studied the regulation of cell wall genes in Arabidopsis stems, i.e. genes encoding proteins involved in cell wall biogenesis and genes encoding secreted proteins. Results Transcriptomic analyses of stems were performed at three different developmental stages, i.e., young stems, intermediate stage, and mature stems. Many genes involved in the synthesis of cell wall components such as polysaccharides and monolignols were identified. A total of 345 genes encoding predicted secreted proteins with moderate or high level of transcripts were analyzed in details. The encoded proteins were distributed into 8 classes, based on the presence of predicted functional domains. Proteins acting on carbohydrates and proteins of unknown function constituted the two most abundant classes. Other proteins were proteases, oxido-reductases, proteins with interacting domains, proteins involved in signalling, and structural proteins. Particularly high levels of expression were established for genes encoding pectin methylesterases, germin-like proteins, arabinogalactan proteins, fasciclin-like arabinogalactan proteins, and structural proteins. Finally, the results of this transcriptomic analyses were compared with those obtained through a cell wall proteomic analysis from the same material. Only a small proportion of genes identified by previous proteomic analyses were identified by transcriptomics. Conversely, only a few proteins encoded by genes having moderate or high level of transcripts were identified by proteomics. Conclusion Analysis of the genes predicted to encode cell wall proteins revealed that about 345 genes had moderate or high levels of transcripts. Among them, we identified many new genes possibly involved in cell wall biogenesis. The discrepancies observed between results of this transcriptomic study and a previous proteomic study on the same material revealed post-transcriptional mechanisms of regulation of expression of genes encoding cell wall proteins. PMID:19149885

  10. Listeriomics: an Interactive Web Platform for Systems Biology of Listeria

    PubMed Central

    Koutero, Mikael; Tchitchek, Nicolas; Cerutti, Franck; Lechat, Pierre; Maillet, Nicolas; Hoede, Claire; Chiapello, Hélène; Gaspin, Christine

    2017-01-01

    ABSTRACT As for many model organisms, the amount of Listeria omics data produced has recently increased exponentially. There are now >80 published complete Listeria genomes, around 350 different transcriptomic data sets, and 25 proteomic data sets available. The analysis of these data sets through a systems biology approach and the generation of tools for biologists to browse these various data are a challenge for bioinformaticians. We have developed a web-based platform, named Listeriomics, that integrates different tools for omics data analyses, i.e., (i) an interactive genome viewer to display gene expression arrays, tiling arrays, and sequencing data sets along with proteomics and genomics data sets; (ii) an expression and protein atlas that connects every gene, small RNA, antisense RNA, or protein with the most relevant omics data; (iii) a specific tool for exploring protein conservation through the Listeria phylogenomic tree; and (iv) a coexpression network tool for the discovery of potential new regulations. Our platform integrates all the complete Listeria species genomes, transcriptomes, and proteomes published to date. This website allows navigation among all these data sets with enriched metadata in a user-friendly format and can be used as a central database for systems biology analysis. IMPORTANCE In the last decades, Listeria has become a key model organism for the study of host-pathogen interactions, noncoding RNA regulation, and bacterial adaptation to stress. To study these mechanisms, several genomics, transcriptomics, and proteomics data sets have been produced. We have developed Listeriomics, an interactive web platform to browse and correlate these heterogeneous sources of information. Our website will allow listeriologists and microbiologists to decipher key regulation mechanism by using a systems biology approach. PMID:28317029

  11. GeNNet: an integrated platform for unifying scientific workflows and graph databases for transcriptome data analysis

    PubMed Central

    Gadelha, Luiz; Ribeiro-Alves, Marcelo; Porto, Fábio

    2017-01-01

    There are many steps in analyzing transcriptome data, from the acquisition of raw data to the selection of a subset of representative genes that explain a scientific hypothesis. The data produced can be represented as networks of interactions among genes and these may additionally be integrated with other biological databases, such as Protein-Protein Interactions, transcription factors and gene annotation. However, the results of these analyses remain fragmented, imposing difficulties, either for posterior inspection of results, or for meta-analysis by the incorporation of new related data. Integrating databases and tools into scientific workflows, orchestrating their execution, and managing the resulting data and its respective metadata are challenging tasks. Additionally, a great amount of effort is equally required to run in-silico experiments to structure and compose the information as needed for analysis. Different programs may need to be applied and different files are produced during the experiment cycle. In this context, the availability of a platform supporting experiment execution is paramount. We present GeNNet, an integrated transcriptome analysis platform that unifies scientific workflows with graph databases for selecting relevant genes according to the evaluated biological systems. It includes GeNNet-Wf, a scientific workflow that pre-loads biological data, pre-processes raw microarray data and conducts a series of analyses including normalization, differential expression inference, clusterization and gene set enrichment analysis. A user-friendly web interface, GeNNet-Web, allows for setting parameters, executing, and visualizing the results of GeNNet-Wf executions. To demonstrate the features of GeNNet, we performed case studies with data retrieved from GEO, particularly using a single-factor experiment in different analysis scenarios. As a result, we obtained differentially expressed genes for which biological functions were analyzed. The results are integrated into GeNNet-DB, a database about genes, clusters, experiments and their properties and relationships. The resulting graph database is explored with queries that demonstrate the expressiveness of this data model for reasoning about gene interaction networks. GeNNet is the first platform to integrate the analytical process of transcriptome data with graph databases. It provides a comprehensive set of tools that would otherwise be challenging for non-expert users to install and use. Developers can add new functionality to components of GeNNet. The derived data allows for testing previous hypotheses about an experiment and exploring new ones through the interactive graph database environment. It enables the analysis of different data on humans, rhesus, mice and rat coming from Affymetrix platforms. GeNNet is available as an open source platform at https://github.com/raquele/GeNNet and can be retrieved as a software container with the command docker pull quelopes/gennet. PMID:28695067

  12. GeNNet: an integrated platform for unifying scientific workflows and graph databases for transcriptome data analysis.

    PubMed

    Costa, Raquel L; Gadelha, Luiz; Ribeiro-Alves, Marcelo; Porto, Fábio

    2017-01-01

    There are many steps in analyzing transcriptome data, from the acquisition of raw data to the selection of a subset of representative genes that explain a scientific hypothesis. The data produced can be represented as networks of interactions among genes and these may additionally be integrated with other biological databases, such as Protein-Protein Interactions, transcription factors and gene annotation. However, the results of these analyses remain fragmented, imposing difficulties, either for posterior inspection of results, or for meta-analysis by the incorporation of new related data. Integrating databases and tools into scientific workflows, orchestrating their execution, and managing the resulting data and its respective metadata are challenging tasks. Additionally, a great amount of effort is equally required to run in-silico experiments to structure and compose the information as needed for analysis. Different programs may need to be applied and different files are produced during the experiment cycle. In this context, the availability of a platform supporting experiment execution is paramount. We present GeNNet, an integrated transcriptome analysis platform that unifies scientific workflows with graph databases for selecting relevant genes according to the evaluated biological systems. It includes GeNNet-Wf, a scientific workflow that pre-loads biological data, pre-processes raw microarray data and conducts a series of analyses including normalization, differential expression inference, clusterization and gene set enrichment analysis. A user-friendly web interface, GeNNet-Web, allows for setting parameters, executing, and visualizing the results of GeNNet-Wf executions. To demonstrate the features of GeNNet, we performed case studies with data retrieved from GEO, particularly using a single-factor experiment in different analysis scenarios. As a result, we obtained differentially expressed genes for which biological functions were analyzed. The results are integrated into GeNNet-DB, a database about genes, clusters, experiments and their properties and relationships. The resulting graph database is explored with queries that demonstrate the expressiveness of this data model for reasoning about gene interaction networks. GeNNet is the first platform to integrate the analytical process of transcriptome data with graph databases. It provides a comprehensive set of tools that would otherwise be challenging for non-expert users to install and use. Developers can add new functionality to components of GeNNet. The derived data allows for testing previous hypotheses about an experiment and exploring new ones through the interactive graph database environment. It enables the analysis of different data on humans, rhesus, mice and rat coming from Affymetrix platforms. GeNNet is available as an open source platform at https://github.com/raquele/GeNNet and can be retrieved as a software container with the command docker pull quelopes/gennet.

  13. Comparative Transcriptome Analysis of Salivary Glands of Two Populations of Rice Brown Planthopper, Nilaparvata lugens, That Differ in Virulence

    PubMed Central

    Chen, Hongdan; Ye, Wenfeng; Li, Shaohui; Lou, Yonggen

    2013-01-01

    Background The brown planthopper (BPH), Nilaparvata lugens (Stål), a destructive rice pest in Asia, can quickly overcome rice resistance by evolving new virulent populations. Herbivore saliva plays an important role in plant–herbivore interactions, including in plant defense and herbivore virulence. However, thus far little is known about BPH saliva at the molecular level, especially its role in virulence and BPH–rice interaction. Methodology/Principal Findings Using cDNA amplification in combination with Illumina short-read sequencing technology, we sequenced the salivary-gland transcriptomes of two BPH populations with different virulence; the populations were derived from rice variety TN1 (TN1 population) and Mudgo (M population). In total, 37,666 and 38,451 unigenes were generated from the salivary glands of these populations, respectively. When combined, a total of 43,312 unigenes were obtained, about 18 times more than the number of expressed sequence tags previously identified from these glands. Gene ontology annotations and KEGG orthology classifications indicated that genes related to metabolism, binding and transport were significantly active in the salivary glands. A total of 352 genes were predicted to encode secretory proteins, and some might play important roles in BPH feeding and BPH–rice interactions. Comparative analysis of the transcriptomes of the two populations revealed that the genes related to ‘metabolism,’ ‘digestion and absorption,’ and ‘salivary secretion’ might be associated with virulence. Moreover, 67 genes encoding putative secreted proteins were differentially expressed between the two populations, suggesting these genes may contribute to the change in virulence. Conclusions/Significance This study was the first to compare the salivary-gland transcriptomes of two BPH populations having different virulence traits and to find genes that may be related to this difference. Our data provide a rich molecular resource for future functional studies on salivary glands and will be useful for elucidating the molecular mechanisms underlying BPH feeding and virulence differences. PMID:24244529

  14. Comparative transcriptome analysis of salivary glands of two populations of rice brown planthopper, Nilaparvata lugens, that differ in virulence.

    PubMed

    Ji, Rui; Yu, Haixin; Fu, Qiang; Chen, Hongdan; Ye, Wenfeng; Li, Shaohui; Lou, Yonggen

    2013-01-01

    The brown planthopper (BPH), Nilaparvata lugens (Stål), a destructive rice pest in Asia, can quickly overcome rice resistance by evolving new virulent populations. Herbivore saliva plays an important role in plant-herbivore interactions, including in plant defense and herbivore virulence. However, thus far little is known about BPH saliva at the molecular level, especially its role in virulence and BPH-rice interaction. Using cDNA amplification in combination with Illumina short-read sequencing technology, we sequenced the salivary-gland transcriptomes of two BPH populations with different virulence; the populations were derived from rice variety TN1 (TN1 population) and Mudgo (M population). In total, 37,666 and 38,451 unigenes were generated from the salivary glands of these populations, respectively. When combined, a total of 43,312 unigenes were obtained, about 18 times more than the number of expressed sequence tags previously identified from these glands. Gene ontology annotations and KEGG orthology classifications indicated that genes related to metabolism, binding and transport were significantly active in the salivary glands. A total of 352 genes were predicted to encode secretory proteins, and some might play important roles in BPH feeding and BPH-rice interactions. Comparative analysis of the transcriptomes of the two populations revealed that the genes related to 'metabolism,' 'digestion and absorption,' and 'salivary secretion' might be associated with virulence. Moreover, 67 genes encoding putative secreted proteins were differentially expressed between the two populations, suggesting these genes may contribute to the change in virulence. This study was the first to compare the salivary-gland transcriptomes of two BPH populations having different virulence traits and to find genes that may be related to this difference. Our data provide a rich molecular resource for future functional studies on salivary glands and will be useful for elucidating the molecular mechanisms underlying BPH feeding and virulence differences.

  15. Transcriptome architecture across tissues in the pig

    PubMed Central

    Ferraz, André LJ; Ojeda, Ana; López-Béjar, Manel; Fernandes, Lana T; Castelló, Anna; Folch, Josep M; Pérez-Enciso, Miguel

    2008-01-01

    Background Artificial selection has resulted in animal breeds with extreme phenotypes. As an organism is made up of many different tissues and organs, each with its own genetic programme, it is pertinent to ask: How relevant is tissue in terms of total transcriptome variability? Which are the genes most distinctly expressed between tissues? Does breed or sex equally affect the transcriptome across tissues? Results In order to gain insight on these issues, we conducted microarray expression profiling of 16 different tissues from four animals of two extreme pig breeds, Large White and Iberian, two males and two females. Mixed model analysis and neighbor – joining trees showed that tissues with similar developmental origin clustered closer than those with different embryonic origins. Often a sound biological interpretation was possible for overrepresented gene ontology categories within differentially expressed genes between groups of tissues. For instance, an excess of nervous system or muscle development genes were found among tissues of ectoderm or mesoderm origins, respectively. Tissue accounted for ~11 times more variability than sex or breed. Nevertheless, we were able to confidently identify genes with differential expression across tissues between breeds (33 genes) and between sexes (19 genes). The genes primarily affected by sex were overall different than those affected by breed or tissue. Interaction with tissue can be important for differentially expressed genes between breeds but not so much for genes whose expression differ between sexes. Conclusion Embryonic development leaves an enduring footprint on the transcriptome. The interaction in gene × tissue for differentially expressed genes between breeds suggests that animal breeding has targeted differentially each tissue's transcriptome. PMID:18416811

  16. Single-cell mass cytometry and transcriptome profiling reveal the impact of graphene on human immune cells.

    PubMed

    Orecchioni, Marco; Bedognetti, Davide; Newman, Leon; Fuoco, Claudia; Spada, Filomena; Hendrickx, Wouter; Marincola, Francesco M; Sgarrella, Francesco; Rodrigues, Artur Filipe; Ménard-Moyon, Cécilia; Cesareni, Gianni; Kostarelos, Kostas; Bianco, Alberto; Delogu, Lucia G

    2017-10-24

    Understanding the biomolecular interactions between graphene and human immune cells is a prerequisite for its utilization as a diagnostic or therapeutic tool. To characterize the complex interactions between graphene and immune cells, we propose an integrative analytical pipeline encompassing the evaluation of molecular and cellular parameters. Herein, we use single-cell mass cytometry to dissect the effects of graphene oxide (GO) and GO functionalized with amino groups (GONH 2 ) on 15 immune cell populations, interrogating 30 markers at the single-cell level. Next, the integration of single-cell mass cytometry with genome-wide transcriptome analysis shows that the amine groups reduce the perturbations caused by GO on cell metabolism and increase biocompatibility. Moreover, GONH 2 polarizes T-cell and monocyte activation toward a T helper-1/M1 immune response. This study describes an innovative approach for the analysis of the effects of nanomaterials on distinct immune cells, laying the foundation for the incorporation of single-cell mass cytometry on the experimental pipeline.

  17. Simultaneous transcriptome analysis of Colletotrichum gloeosporioides and tomato fruit pathosystem reveals novel fungal pathogenicity and fruit defense strategies.

    PubMed

    Alkan, Noam; Friedlander, Gilgi; Ment, Dana; Prusky, Dov; Fluhr, Robert

    2015-01-01

    The fungus Colletotrichum gloeosporioides breaches the fruit cuticle but remains quiescent until fruit ripening signals a switch to necrotrophy, culminating in devastating anthracnose disease. There is a need to understand the distinct fungal arms strategy and the simultaneous fruit response. Transcriptome analysis of fungal-fruit interactions was carried out concurrently in the appressoria, quiescent and necrotrophic stages. Conidia germinating on unripe fruit cuticle showed stage-specific transcription that was accompanied by massive fruit defense responses. The subsequent quiescent stage showed the development of dendritic-like structures and swollen hyphae within the fruit epidermis. The quiescent fungal transcriptome was characterized by activation of chromatin remodeling genes and unsuspected environmental alkalization. Fruit response was portrayed by continued highly integrated massive up-regulation of defense genes. During cuticle infection of green or ripe fruit, fungi recapitulate the same developmental stages but with differing quiescent time spans. The necrotrophic stage showed a dramatic shift in fungal metabolism and up-regulation of pathogenicity factors. Fruit response to necrotrophy showed activation of the salicylic acid pathway, climaxing in cell death. Transcriptome analysis of C. gloeosporioides infection of fruit reveals its distinct stage-specific lifestyle and the concurrent changing fruit response, deepening our perception of the unfolding fungal-fruit arms and defenses race. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  18. TCW: Transcriptome Computational Workbench

    PubMed Central

    Soderlund, Carol; Nelson, William; Willer, Mark; Gang, David R.

    2013-01-01

    Background The analysis of transcriptome data involves many steps and various programs, along with organization of large amounts of data and results. Without a methodical approach for storage, analysis and query, the resulting ad hoc analysis can lead to human error, loss of data and results, inefficient use of time, and lack of verifiability, repeatability, and extensibility. Methodology The Transcriptome Computational Workbench (TCW) provides Java graphical interfaces for methodical analysis for both single and comparative transcriptome data without the use of a reference genome (e.g. for non-model organisms). The singleTCW interface steps the user through importing transcript sequences (e.g. Illumina) or assembling long sequences (e.g. Sanger, 454, transcripts), annotating the sequences, and performing differential expression analysis using published statistical programs in R. The data, metadata, and results are stored in a MySQL database. The multiTCW interface builds a comparison database by importing sequence and annotation from one or more single TCW databases, executes the ESTscan program to translate the sequences into proteins, and then incorporates one or more clusterings, where the clustering options are to execute the orthoMCL program, compute transitive closure, or import clusters. Both singleTCW and multiTCW allow extensive query and display of the results, where singleTCW displays the alignment of annotation hits to transcript sequences, and multiTCW displays multiple transcript alignments with MUSCLE or pairwise alignments. The query programs can be executed on the desktop for fastest analysis, or from the web for sharing the results. Conclusion It is now affordable to buy a multi-processor machine, and easy to install Java and MySQL. By simply downloading the TCW, the user can interactively analyze, query and view their data. The TCW allows in-depth data mining of the results, which can lead to a better understanding of the transcriptome. TCW is freely available from www.agcol.arizona.edu/software/tcw. PMID:23874959

  19. TCW: transcriptome computational workbench.

    PubMed

    Soderlund, Carol; Nelson, William; Willer, Mark; Gang, David R

    2013-01-01

    The analysis of transcriptome data involves many steps and various programs, along with organization of large amounts of data and results. Without a methodical approach for storage, analysis and query, the resulting ad hoc analysis can lead to human error, loss of data and results, inefficient use of time, and lack of verifiability, repeatability, and extensibility. The Transcriptome Computational Workbench (TCW) provides Java graphical interfaces for methodical analysis for both single and comparative transcriptome data without the use of a reference genome (e.g. for non-model organisms). The singleTCW interface steps the user through importing transcript sequences (e.g. Illumina) or assembling long sequences (e.g. Sanger, 454, transcripts), annotating the sequences, and performing differential expression analysis using published statistical programs in R. The data, metadata, and results are stored in a MySQL database. The multiTCW interface builds a comparison database by importing sequence and annotation from one or more single TCW databases, executes the ESTscan program to translate the sequences into proteins, and then incorporates one or more clusterings, where the clustering options are to execute the orthoMCL program, compute transitive closure, or import clusters. Both singleTCW and multiTCW allow extensive query and display of the results, where singleTCW displays the alignment of annotation hits to transcript sequences, and multiTCW displays multiple transcript alignments with MUSCLE or pairwise alignments. The query programs can be executed on the desktop for fastest analysis, or from the web for sharing the results. It is now affordable to buy a multi-processor machine, and easy to install Java and MySQL. By simply downloading the TCW, the user can interactively analyze, query and view their data. The TCW allows in-depth data mining of the results, which can lead to a better understanding of the transcriptome. TCW is freely available from www.agcol.arizona.edu/software/tcw.

  20. Comparative transcriptome analysis of stylar canal cells identifies novel candidate genes implicated in the self-incompatibility response of Citrus clementina

    PubMed Central

    2012-01-01

    Background Reproductive biology in citrus is still poorly understood. Although in recent years several efforts have been made to study pollen-pistil interaction and self-incompatibility, little information is available about the molecular mechanisms regulating these processes. Here we report the identification of candidate genes involved in pollen-pistil interaction and self-incompatibility in clementine (Citrus clementina Hort. ex Tan.). These genes have been identified comparing the transcriptomes of laser-microdissected stylar canal cells (SCC) isolated from two genotypes differing for self-incompatibility response ('Comune', a self-incompatible cultivar and 'Monreal', a self- compatible mutation of 'Comune'). Results The transcriptome profiling of SCC indicated that the differential regulation of few specific, mostly uncharacterized transcripts is associated with the breakdown of self-incompatibility in 'Monreal'. Among them, a novel F-box gene showed a drastic up-regulation both in laser microdissected stylar canal cells and in self-pollinated whole styles with stigmas of 'Comune' in concomitance with the arrest of pollen tube growth. Moreover, we identify a non-characterized gene family as closely associated to the self-incompatibility genetic program activated in 'Comune'. Three different aspartic-acid rich (Asp-rich) protein genes, located in tandem in the clementine genome, were over-represented in the transcriptome of 'Comune'. These genes are tightly linked to a DELLA gene, previously found to be up-regulated in the self-incompatible genotype during pollen-pistil interaction. Conclusion The highly specific transcriptome survey of the stylar canal cells identified novel genes which have not been previously associated with self-pollen rejection in citrus and in other plant species. Bioinformatic and transcriptional analyses suggested that the mutation leading to self-compatibility in 'Monreal' affected the expression of non-homologous genes located in a restricted genome region. Also, we hypothesize that the Asp-rich protein genes may act as Ca2+ "entrapping" proteins, potentially regulating Ca2+ homeostasis during self-pollen recognition. PMID:22333138

  1. Lathyrus sativus transcriptome resistance response to Ascochyta lathyri investigated by deepSuperSAGE analysis

    PubMed Central

    Almeida, Nuno F.; Krezdorn, Nicolas; Rotter, Björn; Winter, Peter; Rubiales, Diego; Vaz Patto, Maria C.

    2015-01-01

    Lathyrus sativus (grass pea) is a temperate grain legume crop with a great potential for expansion in dry areas or zones that are becoming more drought-prone. It is also recognized as a potential source of resistance to several important diseases in legumes, such as ascochyta blight. Nevertheless, the lack of detailed genomic and/or transcriptomic information hampers further exploitation of grass pea resistance-related genes in precision breeding. To elucidate the pathways differentially regulated during ascochyta-grass pea interaction and to identify resistance candidate genes, we compared the early response of the leaf gene expression profile of a resistant L. sativus genotype to Ascochyta lathyri infection with a non-inoculated control sample from the same genotype employing deepSuperSAGE. This analysis generated 14.387 UniTags of which 95.7% mapped to a reference grass pea/rust interaction transcriptome. From the total mapped UniTags, 738 were significantly differentially expressed between control and inoculated leaves. The results indicate that several gene classes acting in different phases of the plant/pathogen interaction are involved in the L. sativus response to A. lathyri infection. Most notably a clear up-regulation of defense-related genes involved in and/or regulated by the ethylene pathway was observed. There was also evidence of alterations in cell wall metabolism indicated by overexpression of cellulose synthase and lignin biosynthesis genes. This first genome-wide overview of the gene expression profile of the L. sativus response to ascochyta infection delivered a valuable set of candidate resistance genes for future use in precision breeding. PMID:25852725

  2. Discovery and Annotation of Plant Endogenous Target Mimicry Sequences from Public Transcriptome Libraries: A Case Study of Prunus persica.

    PubMed

    Karakülah, Gökhan

    2017-06-28

    Novel transcript discovery through RNA sequencing has substantially improved our understanding of the transcriptome dynamics of biological systems. Endogenous target mimicry (eTM) transcripts, a novel class of regulatory molecules, bind to their target microRNAs (miRNAs) by base pairing and block their biological activity. The objective of this study was to provide a computational analysis framework for the prediction of putative eTM sequences in plants, and as an example, to discover previously un-annotated eTMs in Prunus persica (peach) transcriptome. Therefore, two public peach transcriptome libraries downloaded from Sequence Read Archive (SRA) and a previously published set of long non-coding RNAs (lncRNAs) were investigated with multi-step analysis pipeline, and 44 putative eTMs were found. Additionally, an eTM-miRNA-mRNA regulatory network module associated with peach fruit organ development was built via integration of the miRNA target information and predicted eTM-miRNA interactions. My findings suggest that one of the most widely expressed miRNA families among diverse plant species, miR156, might be potentially sponged by seven putative eTMs. Besides, the study indicates eTMs potentially play roles in the regulation of development processes in peach fruit via targeting specific miRNAs. In conclusion, by following the step-by step instructions provided in this study, novel eTMs can be identified and annotated effectively in public plant transcriptome libraries.

  3. Deep sequencing-based transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus reveals insight into the immune-relevant genes in marine fish

    PubMed Central

    2010-01-01

    Background Systematic research on fish immunogenetics is indispensable in understanding the origin and evolution of immune systems. This has long been a challenging task because of the limited number of deep sequencing technologies and genome backgrounds of non-model fish available. The newly developed Solexa/Illumina RNA-seq and Digital gene expression (DGE) are high-throughput sequencing approaches and are powerful tools for genomic studies at the transcriptome level. This study reports the transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus using RNA-seq and DGE in an attempt to gain insights into the immunogenetics of marine fish. Results RNA-seq analysis generated 169,950 non-redundant consensus sequences, among which 48,987 functional transcripts with complete or various length encoding regions were identified. More than 52% of these transcripts are possibly involved in approximately 219 known metabolic or signalling pathways, while 2,673 transcripts were associated with immune-relevant genes. In addition, approximately 8% of the transcripts appeared to be fish-specific genes that have never been described before. DGE analysis revealed that the host transcriptome profile of Vibrio harveyi-challenged L. japonicus is considerably altered, as indicated by the significant up- or down-regulation of 1,224 strong infection-responsive transcripts. Results indicated an overall conservation of the components and transcriptome alterations underlying innate and adaptive immunity in fish and other vertebrate models. Analysis suggested the acquisition of numerous fish-specific immune system components during early vertebrate evolution. Conclusion This study provided a global survey of host defence gene activities against bacterial challenge in a non-model marine fish. Results can contribute to the in-depth study of candidate genes in marine fish immunity, and help improve current understanding of host-pathogen interactions and evolutionary history of immunogenetics from fish to mammals. PMID:20707909

  4. Acclimation of Antarctic Chlamydomonas to the sea-ice environment: a transcriptomic analysis.

    PubMed

    Liu, Chenlin; Wang, Xiuliang; Wang, Xingna; Sun, Chengjun

    2016-07-01

    The Antarctic green alga Chlamydomonas sp. ICE-L was isolated from sea ice. As a psychrophilic microalga, it can tolerate the environmental stress in the sea-ice brine, such as freezing temperature and high salinity. We performed a transcriptome analysis to identify freezing stress responding genes and explore the extreme environmental acclimation-related strategies. Here, we show that many genes in ICE-L transcriptome that encoding PUFA synthesis enzymes, molecular chaperon proteins, and cell membrane transport proteins have high similarity to the gens from Antarctic bacteria. These ICE-L genes are supposed to be acquired through horizontal gene transfer from its symbiotic microbes in the sea-ice brine. The presence of these genes in both sea-ice microalgae and bacteria indicated the biological processes they involved in are possibly contributing to ICE-L success in sea ice. In addition, the biological pathways were compared between ICE-L and its closely related sister species, Chlamydomonas reinhardtii and Volvox carteri. In ICE-L transcripome, many sequences homologous to the plant or bacteria proteins in the post-transcriptional, post-translational modification, and signal-transduction KEGG pathways, are absent in the nonpsychrophilic green algae. These complex structural components might imply enhanced stress adaptation capacity. At last, differential gene expression analysis at the transcriptome level of ICE-L indicated that genes that associated with post-translational modification, lipid metabolism, and nitrogen metabolism are responding to the freezing treatment. In conclusion, the transcriptome of Chlamydomonas sp. ICE-L is very useful for exploring the mutualistic interaction between microalgae and bacteria in sea ice; and discovering the specific genes and metabolism pathways responding to the freezing acclimation in psychrophilic microalgae.

  5. Analysis of the Salivary Gland Transcriptome of Frankliniella occidentalis

    PubMed Central

    Stafford-Banks, Candice A.; Rotenberg, Dorith; Johnson, Brian R.; Whitfield, Anna E.; Ullman, Diane E.

    2014-01-01

    Saliva is known to play a crucial role in insect feeding behavior and virus transmission. Currently, little is known about the salivary glands and saliva of thrips, despite the fact that Frankliniella occidentalis (Pergande) (the western flower thrips) is a serious pest due to its destructive feeding, wide host range, and transmission of tospoviruses. As a first step towards characterizing thrips salivary gland functions, we sequenced the transcriptome of the primary salivary glands of F. occidentalis using short read sequencing (Illumina) technology. A de novo-assembled transcriptome revealed 31,392 high quality contigs with an average size of 605 bp. A total of 12,166 contigs had significant BLASTx or tBLASTx hits (E≤1.0E−6) to known proteins, whereas a high percentage (61.24%) of contigs had no apparent protein or nucleotide hits. Comparison of the F. occidentalis salivary gland transcriptome (sialotranscriptome) against a published F. occidentalis full body transcriptome assembled from Roche-454 reads revealed several contigs with putative annotations associated with salivary gland functions. KEGG pathway analysis of the sialotranscriptome revealed that the majority (18 out of the top 20 predicted KEGG pathways) of the salivary gland contig sequences match proteins involved in metabolism. We identified several genes likely to be involved in detoxification and inhibition of plant defense responses including aldehyde dehydrogenase, metalloprotease, glucose oxidase, glucose dehydrogenase, and regucalcin. We also identified several genes that may play a role in the extra-oral digestion of plant structural tissues including β-glucosidase and pectin lyase; and the extra-oral digestion of sugars, including α-amylase, maltase, sucrase, and α-glucosidase. This is the first analysis of a sialotranscriptome for any Thysanopteran species and it provides a foundational tool to further our understanding of how thrips interact with their plant hosts and the viruses they transmit. PMID:24736614

  6. Analysis of the salivary gland transcriptome of Frankliniella occidentalis.

    PubMed

    Stafford-Banks, Candice A; Rotenberg, Dorith; Johnson, Brian R; Whitfield, Anna E; Ullman, Diane E

    2014-01-01

    Saliva is known to play a crucial role in insect feeding behavior and virus transmission. Currently, little is known about the salivary glands and saliva of thrips, despite the fact that Frankliniella occidentalis (Pergande) (the western flower thrips) is a serious pest due to its destructive feeding, wide host range, and transmission of tospoviruses. As a first step towards characterizing thrips salivary gland functions, we sequenced the transcriptome of the primary salivary glands of F. occidentalis using short read sequencing (Illumina) technology. A de novo-assembled transcriptome revealed 31,392 high quality contigs with an average size of 605 bp. A total of 12,166 contigs had significant BLASTx or tBLASTx hits (E≤1.0E-6) to known proteins, whereas a high percentage (61.24%) of contigs had no apparent protein or nucleotide hits. Comparison of the F. occidentalis salivary gland transcriptome (sialotranscriptome) against a published F. occidentalis full body transcriptome assembled from Roche-454 reads revealed several contigs with putative annotations associated with salivary gland functions. KEGG pathway analysis of the sialotranscriptome revealed that the majority (18 out of the top 20 predicted KEGG pathways) of the salivary gland contig sequences match proteins involved in metabolism. We identified several genes likely to be involved in detoxification and inhibition of plant defense responses including aldehyde dehydrogenase, metalloprotease, glucose oxidase, glucose dehydrogenase, and regucalcin. We also identified several genes that may play a role in the extra-oral digestion of plant structural tissues including β-glucosidase and pectin lyase; and the extra-oral digestion of sugars, including α-amylase, maltase, sucrase, and α-glucosidase. This is the first analysis of a sialotranscriptome for any Thysanopteran species and it provides a foundational tool to further our understanding of how thrips interact with their plant hosts and the viruses they transmit.

  7. Specific Transcriptome Changes Associated with Blood Pressure Reduction in Hypertensive Patients After Relaxation Response Training.

    PubMed

    Bhasin, Manoj K; Denninger, John W; Huffman, Jeff C; Joseph, Marie G; Niles, Halsey; Chad-Friedman, Emma; Goldman, Roberta; Buczynski-Kelley, Beverly; Mahoney, Barbara A; Fricchione, Gregory L; Dusek, Jeffery A; Benson, Herbert; Zusman, Randall M; Libermann, Towia A

    2018-05-01

    Mind-body practices that elicit the relaxation response (RR) have been demonstrated to reduce blood pressure (BP) in essential hypertension (HTN) and may be an adjunct to antihypertensive drug therapy. However, the molecular mechanisms by which the RR reduces BP remain undefined. Genomic determinants associated with responsiveness to an 8-week RR-based mind-body intervention for lowering HTN in 13 stage 1 hypertensive patients classified as BP responders and 11 as nonresponders were identified. Transcriptome analysis in peripheral blood mononuclear cells identified 1771 genes regulated by the RR in responders. Biological process- and pathway-based analysis of transcriptome data demonstrated enrichment in the following gene categories: immune regulatory pathways and metabolism (among downregulated genes); glucose metabolism, cardiovascular system development, and circadian rhythm (among upregulated genes). Further in silico estimation of cell abundance from the microarray data showed enrichment of the anti-inflammatory M2 subtype of macrophages in BP responders. Nuclear factor-κB, vascular endothelial growth factor, and insulin were critical molecules emerging from interactive network analysis. These findings provide the first insights into the molecular mechanisms that are associated with the beneficial effects of the RR on HTN.

  8. Specific Transcriptome Changes Associated with Blood Pressure Reduction in Hypertensive Patients After Relaxation Response Training

    PubMed Central

    Bhasin, Manoj K.; Denninger, John W.; Huffman, Jeff C.; Joseph, Marie G.; Niles, Halsey; Chad-Friedman, Emma; Goldman, Roberta; Buczynski-Kelley, Beverly; Mahoney, Barbara A.; Fricchione, Gregory L.; Dusek, Jeffery A.; Benson, Herbert; Zusman, Randall M.

    2018-01-01

    Abstract Objective: Mind–body practices that elicit the relaxation response (RR) have been demonstrated to reduce blood pressure (BP) in essential hypertension (HTN) and may be an adjunct to antihypertensive drug therapy. However, the molecular mechanisms by which the RR reduces BP remain undefined. Design: Genomic determinants associated with responsiveness to an 8-week RR-based mind–body intervention for lowering HTN in 13 stage 1 hypertensive patients classified as BP responders and 11 as nonresponders were identified. Results: Transcriptome analysis in peripheral blood mononuclear cells identified 1771 genes regulated by the RR in responders. Biological process- and pathway-based analysis of transcriptome data demonstrated enrichment in the following gene categories: immune regulatory pathways and metabolism (among downregulated genes); glucose metabolism, cardiovascular system development, and circadian rhythm (among upregulated genes). Further in silico estimation of cell abundance from the microarray data showed enrichment of the anti-inflammatory M2 subtype of macrophages in BP responders. Nuclear factor-κB, vascular endothelial growth factor, and insulin were critical molecules emerging from interactive network analysis. Conclusions: These findings provide the first insights into the molecular mechanisms that are associated with the beneficial effects of the RR on HTN. PMID:29616846

  9. Transcriptome analysis of resistant and susceptible tobacco (Nicotiana tabacum) in response to root-knot nematode Meloidogyne incognita infection.

    PubMed

    Xing, Xuexia; Li, Xiaohui; Zhang, Mingzhen; Wang, Yuan; Liu, Bingyang; Xi, Qiliang; Zhao, Ke; Wu, Yunjie; Yang, Tiezhao

    2017-01-22

    The root-knot nematode (RKN) Meloidogyne incognita reproduces on the roots of tobacco (Nicotiana tabacum), damaging crops, reducing crop yield, and causing economic losses annually. The development of resistant genotypes is an alternative strategy to effectively control these losses. However, the molecular mechanism responsible for host pathogenesis and defense responses in tobacco specifically against RKNs remain poorly understood. Here, root transcriptome analysis of resistant (Yuyan12) and susceptible (Changbohuang) tobacco varieties infected with RKNs was performed. Moreover, 2623 and 545 differentially expressed genes (DEGs) in RKN-infected roots were observed in Yuyan12 and Changbohuang, respectively, compared to those in non-infected roots, including 289 DEGs commonly expressed in the two genotypes. Among these DEGs, genes encoding cell wall modifying proteins, auxin-related proteins, the ROS scavenging system, and transcription factors involved in various biological and physiochemical processes were significantly expressed in both the resistant and susceptible genotypes. This work is thus the first report on the relationships in the RKN-tobacco interaction using transcriptome analysis, and the results provide important information on the mechanism of RKN resistance in tobacco. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Transcriptome analysis of Cronobacter sakazakii ATCC BAA-894 after interaction with human intestinal epithelial cell line HCT-8.

    PubMed

    Jing, Chun-e; Du, Xin-jun; Li, Ping; Wang, Shuo

    2016-01-01

    Cronobacter spp. are opportunistic pathogens that are responsible for infections including severe meningitis, septicemia, and necrotizing enterocolitis in neonates and infants. To date, questions still remain regarding the mechanisms of pathogenicity and virulence determinants for each bacterial strain. In this study, we established an in vitro model for Cronobacter sakazakii ATCC BAA-894 infection of HCT-8 human colorectal epithelial cells. The transcriptome profile of C. sakazakii ATCC BAA-894 after interaction with HCT-8 cells was determined using high-throughput whole-transcriptome sequencing (RNA sequencing (RNA-seq)). Gene expression profiles indicated that 139 genes were upregulated and 72 genes were downregulated in the adherent C. sakazakii ATCC BAA-894 strain on HCT-8 cells compared to the cultured bacteria in the cell-free medium. Expressions of some flagella genes and virulence factors involved in adherence were upregulated. High osmolarity and osmotic stress-associated genes were highly upregulated, as well as genes responsible for the synthesis of lipopolysaccharides and outer membrane proteins, iron acquisition systems, and glycerol and glycerophospholipid metabolism. In sum, our study provides further insight into the mechanisms underlying C. sakazakii pathogenesis in the human gastrointestinal tract.

  11. Comparative transcriptomics with self-organizing map reveals cryptic photosynthetic differences between two accessions of North American Lake cress.

    PubMed

    Nakayama, Hokuto; Sakamoto, Tomoaki; Okegawa, Yuki; Kaminoyama, Kaori; Fujie, Manabu; Ichihashi, Yasunori; Kurata, Tetsuya; Motohashi, Ken; Al-Shehbaz, Ihsan; Sinha, Neelima; Kimura, Seisuke

    2018-02-19

    Because natural variation in wild species is likely the result of local adaptation, it provides a valuable resource for understanding plant-environmental interactions. Rorippa aquatica (Brassicaceae) is a semi-aquatic North American plant with morphological differences between several accessions, but little information available on any physiological differences. Here, we surveyed the transcriptomes of two R. aquatica accessions and identified cryptic physiological differences between them. We first reconstructed a Rorippa phylogeny to confirm relationships between the accessions. We performed large-scale RNA-seq and de novo assembly; the resulting 87,754 unigenes were then annotated via comparisons to different databases. Between-accession physiological variation was identified with transcriptomes from both accessions. Transcriptome data were analyzed with principal component analysis and self-organizing map. Results of analyses suggested that photosynthetic capability differs between the accessions. Indeed, physiological experiments revealed between-accession variation in electron transport rate and the redox state of the plastoquinone pool. These results indicated that one accession may have adapted to differences in temperature or length of the growing season.

  12. Detailed transcriptome description of the neglected cestode Taenia multiceps.

    PubMed

    Wu, Xuhang; Fu, Yan; Yang, Deying; Zhang, Runhui; Zheng, Wanpeng; Nie, Huaming; Xie, Yue; Yan, Ning; Hao, Guiying; Gu, Xiaobin; Wang, Shuxian; Peng, Xuerong; Yang, Guangyou

    2012-01-01

    The larval stage of Taenia multiceps, a global cestode, encysts in the central nervous system (CNS) of sheep and other livestock. This frequently leads to their death and huge socioeconomic losses, especially in developing countries. This parasite can also cause zoonotic infections in humans, but has been largely neglected due to a lack of diagnostic techniques and studies. Recent developments in next-generation sequencing provide an opportunity to explore the transcriptome of T. multiceps. We obtained a total of 31,282 unigenes (mean length 920 bp) using Illumina paired-end sequencing technology and a new Trinity de novo assembler without a referenced genome. Individual transcription molecules were determined by sequence-based annotations and/or domain-based annotations against public databases (Nr, UniprotKB/Swiss-Prot, COG, KEGG, UniProtKB/TrEMBL, InterPro and Pfam). We identified 26,110 (83.47%) unigenes and inferred 20,896 (66.8%) coding sequences (CDS). Further comparative transcripts analysis with other cestodes (Taenia pisiformis, Taenia solium, Echincoccus granulosus and Echincoccus multilocularis) and intestinal parasites (Trichinella spiralis, Ancylostoma caninum and Ascaris suum) showed that 5,100 common genes were shared among three Taenia tapeworms, 261 conserved genes were detected among five Taeniidae cestodes, and 109 common genes were found in four zoonotic intestinal parasites. Some of the common genes were genes required for parasite survival, involved in parasite-host interactions. In addition, we amplified two full-length CDS of unigenes from the common genes using RT-PCR. This study provides an extensive transcriptome of the adult stage of T. multiceps, and demonstrates that comparative transcriptomic investigations deserve to be further studied. This transcriptome dataset forms a substantial public information platform to achieve a fundamental understanding of the biology of T. multiceps, and helps in the identification of drug targets and parasite-host interaction studies.

  13. Human-specific features of spatial gene expression and regulation in eight brain regions.

    PubMed

    Xu, Chuan; Li, Qian; Efimova, Olga; He, Liu; Tatsumoto, Shoji; Stepanova, Vita; Oishi, Takao; Udono, Toshifumi; Yamaguchi, Katsushi; Shigenobu, Shuji; Kakita, Akiyoshi; Nawa, Hiroyuki; Khaitovich, Philipp; Go, Yasuhiro

    2018-06-13

    Molecular maps of the human brain alone do not inform us of the features unique to humans. Yet, the identification of these features is important for understanding both the evolution and nature of human cognition. Here, we approached this question by analyzing gene expression and H3K27ac chromatin modification data collected in eight brain regions of humans, chimpanzees, gorillas, a gibbon and macaques. An analysis of spatial transcriptome trajectories across eight brain regions in four primate species revealed 1,851 genes showing human-specific transcriptome differences in one or multiple brain regions, in contrast to 240 chimpanzee-specific ones. More than half of these human-specific differences represented elevated expression of genes enriched in neuronal and astrocytic markers in the human hippocampus, while the rest were enriched in microglial markers and displayed human-specific expression in several frontal cortical regions and the cerebellum. An analysis of the predicted regulatory interactions driving these differences revealed the role of transcription factors in species-specific transcriptome changes, while epigenetic modifications were linked to spatial expression differences conserved across species. Published by Cold Spring Harbor Laboratory Press.

  14. Adipocyte Long-Noncoding RNA Transcriptome Analysis of Obese Mice Identified Lnc-Leptin, Which Regulates Leptin.

    PubMed

    Lo, Kinyui Alice; Huang, Shiqi; Walet, Arcinas Camille Esther; Zhang, Zhi-Chun; Leow, Melvin Khee-Shing; Liu, Meihui; Sun, Lei

    2018-06-01

    Obesity induces profound transcriptome changes in adipocytes, and recent evidence suggests that long-noncoding RNAs (lncRNAs) play key roles in this process. We performed a comprehensive transcriptome study by RNA sequencing in adipocytes isolated from interscapular brown, inguinal, and epididymal white adipose tissue in diet-induced obese mice. The analysis revealed a set of obesity-dysregulated lncRNAs, many of which exhibit dynamic changes in the fed versus fasted state, potentially serving as novel molecular markers of adipose energy status. Among the most prominent lncRNAs is Lnc-leptin , which is transcribed from an enhancer region upstream of leptin ( Lep ). Expression of Lnc-leptin is sensitive to insulin and closely correlates to Lep expression across diverse pathophysiological conditions. Functionally, induction of Lnc-leptin is essential for adipogenesis, and its presence is required for the maintenance of Lep expression in vitro and in vivo. Direct interaction was detected between DNA loci of Lnc-leptin and Lep in mature adipocytes, which diminished upon Lnc-leptin knockdown. Our study establishes Lnc-leptin as a new regulator of Lep . © 2018 by the American Diabetes Association.

  15. Comparative transcriptome profiling of chilling stress responsiveness in grafted watermelon seedlings.

    PubMed

    Xu, Jinhua; Zhang, Man; Liu, Guang; Yang, Xingping; Hou, Xilin

    2016-12-01

    Rootstock grafting may improve the resistance of watermelon plants to low temperatures. However, information regarding the molecular responses of rootstock grafted plants to chilling stress is limited. To elucidate the molecular mechanisms of chilling tolerance in grafted plants, the transcriptomic responses of grafted watermelon under chilling stress were analyzed using RNA-seq analysis. Sequencing data were used for digital gene expression (DGE) analysis to characterize the transcriptomic responses in grafted watermelon seedlings. A total of 702 differentially-expressed genes (DEGs) were found in rootstock grafted (RG) watermelon relative to self-grafted (SG) watermelon; among these genes, 522 genes were up-regulated and 180 were down-regulated. Additionally, 164 and 953 genes were found to specifically expressed in RG and SG seedlings under chilling stress, respectively. Functional annotations revealed that up-regulated DEGs are involved in protein processing, plant-pathogen interaction and the spliceosome, whereas down-regulated DEGs are associated with photosynthesis. Moreover, 13 DEGs were randomly selected for quantitative real time PCR (qRT-PCR) analysis. The expression profiles of these 13 DEGs were consistent with those detected by the DGE analysis, supporting the reliability of the DGE data. This work provides additional insight into the molecular basis of grafted watermelon responses to chilling stress. Copyright © 2016. Published by Elsevier Masson SAS.

  16. A Transcriptome Meta-Analysis Proposes Novel Biological Roles for the Antifungal Protein AnAFP in Aspergillus niger

    PubMed Central

    Schäpe, Paul; Müller-Hagen, Dirk; Ouedraogo, Jean-Paul; Heiderich, Caroline; Jedamzick, Johanna; van den Hondel, Cees A.; Ram, Arthur F.; Meyer, Vera

    2016-01-01

    Understanding the genetic, molecular and evolutionary basis of cysteine-stabilized antifungal proteins (AFPs) from fungi is important for understanding whether their function is mainly defensive or associated with fungal growth and development. In the current study, a transcriptome meta-analysis of the Aspergillus niger γ-core protein AnAFP was performed to explore co-expressed genes and pathways, based on independent expression profiling microarrays covering 155 distinct cultivation conditions. This analysis uncovered that anafp displays a highly coordinated temporal and spatial transcriptional profile which is concomitant with key nutritional and developmental processes. Its expression profile coincides with early starvation response and parallels with genes involved in nutrient mobilization and autophagy. Using fluorescence- and luciferase reporter strains we demonstrated that the anafp promoter is active in highly vacuolated compartments and foraging hyphal cells during carbon starvation with CreA and FlbA, but not BrlA, as most likely regulators of anafp. A co-expression network analysis supported by luciferase-based reporter assays uncovered that anafp expression is embedded in several cellular processes including allorecognition, osmotic and oxidative stress survival, development, secondary metabolism and autophagy, and predicted StuA and VelC as additional regulators. The transcriptomic resources available for A. niger provide unparalleled resources to investigate the function of proteins. Our work illustrates how transcriptomic meta-analyses can lead to hypotheses regarding protein function and predict a role for AnAFP during slow growth, allorecognition, asexual development and nutrient recycling of A. niger and propose that it interacts with the autophagic machinery to enable these processes. PMID:27835655

  17. A Transcriptome Meta-Analysis Proposes Novel Biological Roles for the Antifungal Protein AnAFP in Aspergillus niger.

    PubMed

    Paege, Norman; Jung, Sascha; Schäpe, Paul; Müller-Hagen, Dirk; Ouedraogo, Jean-Paul; Heiderich, Caroline; Jedamzick, Johanna; Nitsche, Benjamin M; van den Hondel, Cees A; Ram, Arthur F; Meyer, Vera

    2016-01-01

    Understanding the genetic, molecular and evolutionary basis of cysteine-stabilized antifungal proteins (AFPs) from fungi is important for understanding whether their function is mainly defensive or associated with fungal growth and development. In the current study, a transcriptome meta-analysis of the Aspergillus niger γ-core protein AnAFP was performed to explore co-expressed genes and pathways, based on independent expression profiling microarrays covering 155 distinct cultivation conditions. This analysis uncovered that anafp displays a highly coordinated temporal and spatial transcriptional profile which is concomitant with key nutritional and developmental processes. Its expression profile coincides with early starvation response and parallels with genes involved in nutrient mobilization and autophagy. Using fluorescence- and luciferase reporter strains we demonstrated that the anafp promoter is active in highly vacuolated compartments and foraging hyphal cells during carbon starvation with CreA and FlbA, but not BrlA, as most likely regulators of anafp. A co-expression network analysis supported by luciferase-based reporter assays uncovered that anafp expression is embedded in several cellular processes including allorecognition, osmotic and oxidative stress survival, development, secondary metabolism and autophagy, and predicted StuA and VelC as additional regulators. The transcriptomic resources available for A. niger provide unparalleled resources to investigate the function of proteins. Our work illustrates how transcriptomic meta-analyses can lead to hypotheses regarding protein function and predict a role for AnAFP during slow growth, allorecognition, asexual development and nutrient recycling of A. niger and propose that it interacts with the autophagic machinery to enable these processes.

  18. Association genetics and transcriptome analysis reveal a gibberellin-responsive pathway involved in regulating photosynthesis.

    PubMed

    Xie, Jianbo; Tian, Jiaxing; Du, Qingzhang; Chen, Jinhui; Li, Ying; Yang, Xiaohui; Li, Bailian; Zhang, Deqiang

    2016-05-01

    Gibberellins (GAs) regulate a wide range of important processes in plant growth and development, including photosynthesis. However, the mechanism by which GAs regulate photosynthesis remains to be understood. Here, we used multi-gene association to investigate the effect of genes in the GA-responsive pathway, as constructed by RNA sequencing, on photosynthesis, growth, and wood property traits, in a population of 435 Populus tomentosa By analyzing changes in the transcriptome following GA treatment, we identified many key photosynthetic genes, in agreement with the observed increase in measurements of photosynthesis. Regulatory motif enrichment analysis revealed that 37 differentially expressed genes related to photosynthesis shared two essential GA-related cis-regulatory elements, the GA response element and the pyrimidine box. Thus, we constructed a GA-responsive pathway consisting of 47 genes involved in regulating photosynthesis, including GID1, RGA, GID2, MYBGa, and 37 photosynthetic differentially expressed genes. Single nucleotide polymorphism (SNP)-based association analysis showed that 142 SNPs, representing 40 candidate genes in this pathway, were significantly associated with photosynthesis, growth, and wood property traits. Epistasis analysis uncovered interactions between 310 SNP-SNP pairs from 37 genes in this pathway, revealing possible genetic interactions. Moreover, a structural gene-gene matrix based on a time-course of transcript abundances provided a better understanding of the multi-gene pathway affecting photosynthesis. The results imply a functional role for these genes in mediating photosynthesis, growth, and wood properties, demonstrating the potential of combining transcriptome-based regulatory pathway construction and genetic association approaches to detect the complex genetic networks underlying quantitative traits. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Trinity | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    Trinity Cancer Transcriptome Analysis Toolkit (CTAT) including de novo transcriptome assembly with downstream support for expression analysis and focused analyses on cancer transcriptomes, incorporating mutation and fusion transcript discovery, and single cell analysis.

  20. Transcriptomic meta-analysis identifies gene expression characteristics in various samples of HIV-infected patients with nonprogressive disease.

    PubMed

    Zhang, Le-Le; Zhang, Zi-Ning; Wu, Xian; Jiang, Yong-Jun; Fu, Ya-Jing; Shang, Hong

    2017-09-12

    A small proportion of HIV-infected patients remain clinically and/or immunologically stable for years, including elite controllers (ECs) who have undetectable viremia (<50 copies/ml) and long-term nonprogressors (LTNPs) who maintain normal CD4 + T cell counts for prolonged periods (>10 years). However, the mechanism of nonprogression needs to be further resolved. In this study, a transcriptome meta-analysis was performed on nonprogressor and progressor microarray data to identify differential transcriptome pathways and potential biomarkers. Using the INMEX (integrative meta-analysis of expression data) program, we performed the meta-analysis to identify consistently differentially expressed genes (DEGs) in nonprogressors and further performed functional interpretation (gene ontology analysis and pathway analysis) of the DEGs identified in the meta-analysis. Five microarray datasets (81 cases and 98 controls in total), including whole blood, CD4 + and CD8 + T cells, were collected for meta-analysis. We determined that nonprogressors have reduced expression of important interferon-stimulated genes (ISGs), CD38, lymphocyte activation gene 3 (LAG-3) in whole blood, CD4 + and CD8 + T cells. Gene ontology (GO) analysis showed a significant enrichment in DEGs that function in the type I interferon signaling pathway. Upregulated pathways, including the PI3K-Akt signaling pathway in whole blood, cytokine-cytokine receptor interaction in CD4 + T cells and the MAPK signaling pathway in CD8 + T cells, were identified in nonprogressors compared with progressors. In each metabolic functional category, the number of downregulated DEGs was more than the upregulated DEGs, and almost all genes were downregulated DEGs in the oxidative phosphorylation (OXPHOS) and tricarboxylic acid (TCA) cycle in the three types of samples. Our transcriptomic meta-analysis provides a comprehensive evaluation of the gene expression profiles in major blood types of nonprogressors, providing new insights in the understanding of HIV pathogenesis and developing strategies to delay HIV disease progression.

  1. Dual Analysis of the Murine Cytomegalovirus and Host Cell Transcriptomes Reveal New Aspects of the Virus-Host Cell Interface

    PubMed Central

    Juranic Lisnic, Vanda; Babic Cac, Marina; Lisnic, Berislav; Trsan, Tihana; Mefferd, Adam; Das Mukhopadhyay, Chitrangada; Cook, Charles H.; Jonjic, Stipan; Trgovcich, Joanne

    2013-01-01

    Major gaps in our knowledge of pathogen genes and how these gene products interact with host gene products to cause disease represent a major obstacle to progress in vaccine and antiviral drug development for the herpesviruses. To begin to bridge these gaps, we conducted a dual analysis of Murine Cytomegalovirus (MCMV) and host cell transcriptomes during lytic infection. We analyzed the MCMV transcriptome during lytic infection using both classical cDNA cloning and sequencing of viral transcripts and next generation sequencing of transcripts (RNA-Seq). We also investigated the host transcriptome using RNA-Seq combined with differential gene expression analysis, biological pathway analysis, and gene ontology analysis. We identify numerous novel spliced and unspliced transcripts of MCMV. Unexpectedly, the most abundantly transcribed viral genes are of unknown function. We found that the most abundant viral transcript, recently identified as a noncoding RNA regulating cellular microRNAs, also codes for a novel protein. To our knowledge, this is the first viral transcript that functions both as a noncoding RNA and an mRNA. We also report that lytic infection elicits a profound cellular response in fibroblasts. Highly upregulated and induced host genes included those involved in inflammation and immunity, but also many unexpected transcription factors and host genes related to development and differentiation. Many top downregulated and repressed genes are associated with functions whose roles in infection are obscure, including host long intergenic noncoding RNAs, antisense RNAs or small nucleolar RNAs. Correspondingly, many differentially expressed genes cluster in biological pathways that may shed new light on cytomegalovirus pathogenesis. Together, these findings provide new insights into the molecular warfare at the virus-host interface and suggest new areas of research to advance the understanding and treatment of cytomegalovirus-associated diseases. PMID:24086132

  2. Transcriptional changes of rice in response to rice black-streaked dwarf virus.

    PubMed

    Ahmed, Mohamed M S; Ji, Wen; Wang, Muyue; Bian, Shiquan; Xu, Meng; Wang, Weiyun; Zhang, Jiangxiang; Xu, Zhihao; Yu, Meimei; Liu, Qiaoquan; Zhang, Changquan; Zhang, Honggen; Tang, Shuzhu; Gu, Minghong; Yu, Hengxiu

    2017-09-10

    Rice black-streaked dwarf virus (RBSDV), a member of the genus Fijivirus in the family Reoviridae, causes significant economic losses in rice production in China and many other Asian countries. Although a great deal of effort has been made to elucidate the interactions among the virus, insect vectors, host and environmental conditions, few RBSDV proteins involved in pathogenesis have been identified, and the biological basis of disease development in rice remains largely unknown. Transcriptomic information associated with the disease development in rice would be helpful to unravel the biological mechanism. To determine how the rice transcriptome changes in response to RBSDV infection, we carried out RNA-Seq to perform a genome-wide gene expression analysis of a susceptible rice cultivar KTWYJ3. The transcriptomes of RBSDV-infected samples were compared to those of RBSDV-free (healthy) at two time points (time points are represented by group I and II). The results derived from the differential expression analysis in RBSDV-infected libraries vs. healthy ones in group I revealed that 102 out of a total of 281 significant differentially expressed genes (DEGs) were up-regulated and 179 DEGs were down-regulated. Of the 2592 identified DEGs in group II, 1588 DEGs were up-regulated and 1004 DEGs were down-regulated. A total of 66 DEGs were commonly identified in both groups. Of these 66 DEGs, expression patterns for 36 DEGs were similar in both groups. Our analysis demonstrated that some genes related to disease defense and stress resistance were up-regulated while genes associated with chloroplast were down-regulated in response to RBSDV infection. In addition, some genes associated with plant-height were differentially expressed. This result indicates those genes might be involved in dwarf symptoms caused by RBSDV. Taken together, our results provide a genome-wide transcriptome analysis for rice plants in response to RBSDV infection which may contribute to the understanding of the regulatory mechanisms involved in rice-RBSDV interaction and the biological basis of rice black-streaked dwarf disease development in rice. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Gene expression in the tanoak-Phytophthora ramorum interaction

    Treesearch

    Katherine J. Hayden; Matteo Garbelotto; Hardeep Fai; Brian Knaus; Richard Cronn; Jessica W. Wright

    2012-01-01

    Disease processes are dynamic, involving a suite of gene expression changes in both the host and the pathogen, all within a single tissue. As such, they lend themselves well to transcriptomic analysis. Here we focus on a generalist invasive pathogen (Phytophthora ramorum) and its most susceptible California Floristic Province native host, tanoak (...

  4. MiSTIC, an integrated platform for the analysis of heterogeneity in large tumour transcriptome datasets

    PubMed Central

    Sargeant, Tobias; Laperrière, David; Ismail, Houssam; Boucher, Geneviève; Rozendaal, Marieke; Lavallée, Vincent-Philippe; Ashton-Beaucage, Dariel; Wilhelm, Brian; Hébert, Josée; Hilton, Douglas J.

    2017-01-01

    Abstract Genome-wide transcriptome profiling has enabled non-supervised classification of tumours, revealing different sub-groups characterized by specific gene expression features. However, the biological significance of these subtypes remains for the most part unclear. We describe herein an interactive platform, Minimum Spanning Trees Inferred Clustering (MiSTIC), that integrates the direct visualization and comparison of the gene correlation structure between datasets, the analysis of the molecular causes underlying co-variations in gene expression in cancer samples, and the clinical annotation of tumour sets defined by the combined expression of selected biomarkers. We have used MiSTIC to highlight the roles of specific transcription factors in breast cancer subtype specification, to compare the aspects of tumour heterogeneity targeted by different prognostic signatures, and to highlight biomarker interactions in AML. A version of MiSTIC preloaded with datasets described herein can be accessed through a public web server (http://mistic.iric.ca); in addition, the MiSTIC software package can be obtained (github.com/iric-soft/MiSTIC) for local use with personalized datasets. PMID:28472340

  5. Sexual dimorphic floral development in dioecious plants revealed by transcriptome, phytohormone, and DNA methylation analysis in Populus tomentosa.

    PubMed

    Song, Yuepeng; Ma, Kaifeng; Ci, Dong; Chen, Qingqing; Tian, Jiaxing; Zhang, Deqiang

    2013-12-01

    Dioecious plants have evolved sex-specific floral development mechanisms. However, the precise gene expression patterns in dioecious plant flower development remain unclear. Here, we used andromonoecious poplar, an exceptional model system, to eliminate the confounding effects of genetic background of dioecious plants. Comparative transcriptome and physiological analysis allowed us to characterize sex-specific development of female and male flowers. Transcriptome analysis identified genes significantly differentially expressed between the sexes, including genes related to floral development, phytohormone synthesis and metabolism, and DNA methylation. Correlation analysis revealed a significant correlation between phytohormone signaling and gene expression, identifying specific phytohormone-responsive genes and their cis-regulatory elements. Two genes related to DNA methylation, METHYLTRANSFERASE1 (MET1) and DECREASED DNA METHYLATION 1 (DDM1), which are located in the sex determination region of Chromosome XIX, have differential expression between female and male flowers. A time-course analysis revealed that MET1 and DDM1 expression may produce different DNA methylation levels in female and male flowers. Understanding the interactions of phytohormone signaling, DNA methylation and target gene expression should lead to a better understanding of sexual differences in floral development. Thus, this study identifies a set of candidate genes for further studies of poplar sexual dimorphism and relates sex-specific floral development to physiological and epigenetic changes.

  6. Transcriptome analysis of the rhizosphere bacterium Azospirillum brasilense reveals an extensive auxin response.

    PubMed

    Van Puyvelde, Sandra; Cloots, Lore; Engelen, Kristof; Das, Frederik; Marchal, Kathleen; Vanderleyden, Jos; Spaepen, Stijn

    2011-05-01

    The rhizosphere bacterium Azospirillum brasilense produces the auxin indole-3-acetic acid (IAA) through the indole-3-pyruvate pathway. As we previously demonstrated that transcription of the indole-3-pyruvate decarboxylase (ipdC) gene is positively regulated by IAA, produced by A. brasilense itself or added exogenously, we performed a microarray analysis to study the overall effects of IAA on the transcriptome of A. brasilense. The transcriptomes of A. brasilense wild-type and the ipdC knockout mutant, both cultured in the absence and presence of exogenously added IAA, were compared.Interfering with the IAA biosynthesis/homeostasis in A. brasilense through inactivation of the ipdC gene or IAA addition results in much broader transcriptional changes than anticipated. Based on the multitude of changes observed by comparing the different transcriptomes, we can conclude that IAA is a signaling molecule in A. brasilense. It appears that the bacterium, when exposed to IAA, adapts itself to the plant rhizosphere, by changing its arsenal of transport proteins and cell surface proteins. A striking example of adaptation to IAA exposure, as happens in the rhizosphere, is the upregulation of a type VI secretion system (T6SS) in the presence of IAA. The T6SS is described as specifically involved in bacterium-eukaryotic host interactions. Additionally, many transcription factors show an altered regulation as well, indicating that the regulatory machinery of the bacterium is changing.

  7. Understanding the immune system architecture and transcriptome responses to southern rice black-streaked dwarf virus in Sogatella furcifera.

    PubMed

    Wang, Lin; Tang, Nan; Gao, Xinlei; Guo, Dongyang; Chang, Zhaoxia; Fu, Yating; Akinyemi, Ibukun A; Wu, Qingfa

    2016-11-02

    Sogatella furcifera, the white-backed planthopper (WBPH), has become one of the most destructive pests in rice production owing to its plant sap-sucking behavior and efficient transmission of Southern rice black-streaked dwarf virus (SRBSDV) in a circulative, propagative and persistent manner. The dynamic and complex SRBSDV-WBPH-rice plant interaction is still poorly understood. In this study, based on a homology-based genome-wide analysis, 348 immune-related genes belonging to 28 families were identified in WBPH. A transcriptome analysis of non-viruliferous (NVF) and viruliferous groups with high viral titers (HVT) and median viral titers (MVT) revealed that feeding on SRBSDV-infected rice plants has a significant impact on gene expression, regardless of viral titers in insects. We identified 278 up-regulated and 406 down-regulated genes shared among the NVF, MVT, and HVT groups and detected significant down-regulation of primary metabolism-related genes and oxidoreductase. In viruliferous WBPH with viral titer-specific transcriptome changes, 1,906 and 1,467 genes exhibited strict monotonically increasing and decreasing expression, respectively. The RNAi pathway was the major antiviral response to increasing viral titers among diverse immune responses. These results clarify the responses of immune genes and the transcriptome of WBPH to SRBSDV and improve our knowledge of the functional relationship between pathogen, vector, and host.

  8. A combination of LongSAGE with Solexa sequencing is well suited to explore the depth and the complexity of transcriptome

    PubMed Central

    Hanriot, Lucie; Keime, Céline; Gay, Nadine; Faure, Claudine; Dossat, Carole; Wincker, Patrick; Scoté-Blachon, Céline; Peyron, Christelle; Gandrillon, Olivier

    2008-01-01

    Background "Open" transcriptome analysis methods allow to study gene expression without a priori knowledge of the transcript sequences. As of now, SAGE (Serial Analysis of Gene Expression), LongSAGE and MPSS (Massively Parallel Signature Sequencing) are the mostly used methods for "open" transcriptome analysis. Both LongSAGE and MPSS rely on the isolation of 21 pb tag sequences from each transcript. In contrast to LongSAGE, the high throughput sequencing method used in MPSS enables the rapid sequencing of very large libraries containing several millions of tags, allowing deep transcriptome analysis. However, a bias in the complexity of the transcriptome representation obtained by MPSS was recently uncovered. Results In order to make a deep analysis of mouse hypothalamus transcriptome avoiding the limitation introduced by MPSS, we combined LongSAGE with the Solexa sequencing technology and obtained a library of more than 11 millions of tags. We then compared it to a LongSAGE library of mouse hypothalamus sequenced with the Sanger method. Conclusion We found that Solexa sequencing technology combined with LongSAGE is perfectly suited for deep transcriptome analysis. In contrast to MPSS, it gives a complex representation of transcriptome as reliable as a LongSAGE library sequenced by the Sanger method. PMID:18796152

  9. PATRIC, the bacterial bioinformatics database and analysis resource.

    PubMed

    Wattam, Alice R; Abraham, David; Dalay, Oral; Disz, Terry L; Driscoll, Timothy; Gabbard, Joseph L; Gillespie, Joseph J; Gough, Roger; Hix, Deborah; Kenyon, Ronald; Machi, Dustin; Mao, Chunhong; Nordberg, Eric K; Olson, Robert; Overbeek, Ross; Pusch, Gordon D; Shukla, Maulik; Schulman, Julie; Stevens, Rick L; Sullivan, Daniel E; Vonstein, Veronika; Warren, Andrew; Will, Rebecca; Wilson, Meredith J C; Yoo, Hyun Seung; Zhang, Chengdong; Zhang, Yan; Sobral, Bruno W

    2014-01-01

    The Pathosystems Resource Integration Center (PATRIC) is the all-bacterial Bioinformatics Resource Center (BRC) (http://www.patricbrc.org). A joint effort by two of the original National Institute of Allergy and Infectious Diseases-funded BRCs, PATRIC provides researchers with an online resource that stores and integrates a variety of data types [e.g. genomics, transcriptomics, protein-protein interactions (PPIs), three-dimensional protein structures and sequence typing data] and associated metadata. Datatypes are summarized for individual genomes and across taxonomic levels. All genomes in PATRIC, currently more than 10,000, are consistently annotated using RAST, the Rapid Annotations using Subsystems Technology. Summaries of different data types are also provided for individual genes, where comparisons of different annotations are available, and also include available transcriptomic data. PATRIC provides a variety of ways for researchers to find data of interest and a private workspace where they can store both genomic and gene associations, and their own private data. Both private and public data can be analyzed together using a suite of tools to perform comparative genomic or transcriptomic analysis. PATRIC also includes integrated information related to disease and PPIs. All the data and integrated analysis and visualization tools are freely available. This manuscript describes updates to the PATRIC since its initial report in the 2007 NAR Database Issue.

  10. PATRIC, the bacterial bioinformatics database and analysis resource

    PubMed Central

    Wattam, Alice R.; Abraham, David; Dalay, Oral; Disz, Terry L.; Driscoll, Timothy; Gabbard, Joseph L.; Gillespie, Joseph J.; Gough, Roger; Hix, Deborah; Kenyon, Ronald; Machi, Dustin; Mao, Chunhong; Nordberg, Eric K.; Olson, Robert; Overbeek, Ross; Pusch, Gordon D.; Shukla, Maulik; Schulman, Julie; Stevens, Rick L.; Sullivan, Daniel E.; Vonstein, Veronika; Warren, Andrew; Will, Rebecca; Wilson, Meredith J.C.; Yoo, Hyun Seung; Zhang, Chengdong; Zhang, Yan; Sobral, Bruno W.

    2014-01-01

    The Pathosystems Resource Integration Center (PATRIC) is the all-bacterial Bioinformatics Resource Center (BRC) (http://www.patricbrc.org). A joint effort by two of the original National Institute of Allergy and Infectious Diseases-funded BRCs, PATRIC provides researchers with an online resource that stores and integrates a variety of data types [e.g. genomics, transcriptomics, protein–protein interactions (PPIs), three-dimensional protein structures and sequence typing data] and associated metadata. Datatypes are summarized for individual genomes and across taxonomic levels. All genomes in PATRIC, currently more than 10 000, are consistently annotated using RAST, the Rapid Annotations using Subsystems Technology. Summaries of different data types are also provided for individual genes, where comparisons of different annotations are available, and also include available transcriptomic data. PATRIC provides a variety of ways for researchers to find data of interest and a private workspace where they can store both genomic and gene associations, and their own private data. Both private and public data can be analyzed together using a suite of tools to perform comparative genomic or transcriptomic analysis. PATRIC also includes integrated information related to disease and PPIs. All the data and integrated analysis and visualization tools are freely available. This manuscript describes updates to the PATRIC since its initial report in the 2007 NAR Database Issue. PMID:24225323

  11. Transcriptomics-based analysis using RNA-Seq of the coconut (Cocos nucifera) leaf in response to yellow decline phytoplasma infection.

    PubMed

    Nejat, Naghmeh; Cahill, David M; Vadamalai, Ganesan; Ziemann, Mark; Rookes, James; Naderali, Neda

    2015-10-01

    Invasive phytoplasmas wreak havoc on coconut palms worldwide, leading to high loss of income, food insecurity and extreme poverty of farmers in producing countries. Phytoplasmas as strictly biotrophic insect-transmitted bacterial pathogens instigate distinct changes in developmental processes and defence responses of the infected plants and manipulate plants to their own advantage; however, little is known about the cellular and molecular mechanisms underlying host-phytoplasma interactions. Further, phytoplasma-mediated transcriptional alterations in coconut palm genes have not yet been identified. This study evaluated the whole transcriptome profiles of naturally infected leaves of Cocos nucifera ecotype Malayan Red Dwarf in response to yellow decline phytoplasma from group 16SrXIV, using RNA-Seq technique. Transcriptomics-based analysis reported here identified genes involved in coconut innate immunity. The number of down-regulated genes in response to phytoplasma infection exceeded the number of genes up-regulated. Of the 39,873 differentially expressed unigenes, 21,860 unigenes were suppressed and 18,013 were induced following infection. Comparative analysis revealed that genes associated with defence signalling against biotic stimuli were significantly overexpressed in phytoplasma-infected leaves versus healthy coconut leaves. Genes involving cell rescue and defence, cellular transport, oxidative stress, hormone stimulus and metabolism, photosynthesis reduction, transcription and biosynthesis of secondary metabolites were differentially represented. Our transcriptome analysis unveiled a core set of genes associated with defence of coconut in response to phytoplasma attack, although several novel defence response candidate genes with unknown function have also been identified. This study constitutes valuable sequence resource for uncovering the resistance genes and/or susceptibility genes which can be used as genetic tools in disease resistance breeding.

  12. Pediatric Sepsis Endotypes Among Adults With Sepsis.

    PubMed

    Wong, Hector R; Sweeney, Timothy E; Hart, Kimberly W; Khatri, Purvesh; Lindsell, Christopher J

    2017-12-01

    Recent transcriptomic studies describe two subgroups of adults with sepsis differentiated by a sepsis response signature. The implied biology and related clinical associations are comparable with recently reported pediatric sepsis endotypes, labeled "A" and "B." We classified adults with sepsis using the pediatric endotyping strategy and the sepsis response signature and determined how endotype assignment, sepsis response signature membership, and age interact with respect to mortality. Retrospective analysis of publically available transcriptomic data representing critically ill adults with sepsis from which the sepsis response signature groups were derived and validated. Multiple ICUs. Adults with sepsis. None. Transcriptomic data were conormalized into a single dataset yielding 549 unique cases with sepsis response signature assignments. Each subject was assigned to endotype A or B using the expression data for the 100 endotyping genes. There were 163 subjects (30%) assigned to endotype A and 386 to endotype B. There was a weak, positive correlation between endotype assignment and sepsis response signature membership. Mortality rates were similar between patients assigned endotype A and those assigned endotype B. A multivariable logistic regression model fit to endotype assignment, sepsis response signature membership, age, and the respective two-way interactions revealed that endotype A, sepsis response signature 1 membership, older age, and the interactions between them were associated with mortality. Subjects coassigned to endotype A, and sepsis response signature 1 had the highest mortality. Combining the pediatric endotyping strategy with sepsis response signature membership might provide complementary, age-dependent, biological, and prognostic information.

  13. RNA-Seq Analysis Using De Novo Transcriptome Assembly as a Reference for the Salmon Louse Caligus rogercresseyi

    PubMed Central

    Gallardo-Escárate, Cristian; Valenzuela-Muñoz, Valentina; Nuñez-Acuña, Gustavo

    2014-01-01

    Despite the economic and environmental impacts that sea lice infestations have on salmon farming worldwide, genomic data generated by high-throughput transcriptome sequencing for different developmental stages, sexes, and strains of sea lice is still limited or unknown. In this study, RNA-seq analysis was performed using de novo transcriptome assembly as a reference for evidenced transcriptional changes from six developmental stages of the salmon louse Caligus rogercresseyi. EST-datasets were generated from the nauplius I, nauplius II, copepodid and chalimus stages and from female and male adults using MiSeq Illumina sequencing. A total of 151,788,682 transcripts were yielded, which were assembled into 83,444 high quality contigs and subsequently annotated into roughly 24,000 genes based on known proteins. To identify differential transcription patterns among salmon louse stages, cluster analyses were performed using normalized gene expression values. Herein, four clusters were differentially expressed between nauplius I–II and copepodid stages (604 transcripts), five clusters between copepodid and chalimus stages (2,426 transcripts), and six clusters between female and male adults (2,478 transcripts). Gene ontology analysis revealed that the nauplius I–II, copepodid and chalimus stages are mainly annotated to aminoacid transfer/repair/breakdown, metabolism, molting cycle, and nervous system development. Additionally, genes showing differential transcription in female and male adults were highly related to cytoskeletal and contractile elements, reproduction, cell development, morphogenesis, and transcription-translation processes. The data presented in this study provides the most comprehensive transcriptome resource available for C. rogercresseyi, which should be used for future genomic studies linked to host-parasite interactions. PMID:24691066

  14. RNA-Seq analysis using de novo transcriptome assembly as a reference for the salmon louse Caligus rogercresseyi.

    PubMed

    Gallardo-Escárate, Cristian; Valenzuela-Muñoz, Valentina; Nuñez-Acuña, Gustavo

    2014-01-01

    Despite the economic and environmental impacts that sea lice infestations have on salmon farming worldwide, genomic data generated by high-throughput transcriptome sequencing for different developmental stages, sexes, and strains of sea lice is still limited or unknown. In this study, RNA-seq analysis was performed using de novo transcriptome assembly as a reference for evidenced transcriptional changes from six developmental stages of the salmon louse Caligus rogercresseyi. EST-datasets were generated from the nauplius I, nauplius II, copepodid and chalimus stages and from female and male adults using MiSeq Illumina sequencing. A total of 151,788,682 transcripts were yielded, which were assembled into 83,444 high quality contigs and subsequently annotated into roughly 24,000 genes based on known proteins. To identify differential transcription patterns among salmon louse stages, cluster analyses were performed using normalized gene expression values. Herein, four clusters were differentially expressed between nauplius I-II and copepodid stages (604 transcripts), five clusters between copepodid and chalimus stages (2,426 transcripts), and six clusters between female and male adults (2,478 transcripts). Gene ontology analysis revealed that the nauplius I-II, copepodid and chalimus stages are mainly annotated to aminoacid transfer/repair/breakdown, metabolism, molting cycle, and nervous system development. Additionally, genes showing differential transcription in female and male adults were highly related to cytoskeletal and contractile elements, reproduction, cell development, morphogenesis, and transcription-translation processes. The data presented in this study provides the most comprehensive transcriptome resource available for C. rogercresseyi, which should be used for future genomic studies linked to host-parasite interactions.

  15. Sequencing and de novo analysis of the hemocytes transcriptome in Litopenaeus vannamei response to white spot syndrome virus infection.

    PubMed

    Xue, Shuxia; Liu, Yichen; Zhang, Yichen; Sun, Yan; Geng, Xuyun; Sun, Jinsheng

    2013-01-01

    White spot syndrome virus (WSSV) is a causative pathogen found in most shrimp farming areas of the world and causes large economic losses to the shrimp aquaculture. The mechanism underlying the molecular pathogenesis of the highly virulent WSSV remains unknown. To better understand the virus-host interactions at the molecular level, the transcriptome profiles in hemocytes of unchallenged and WSSV-challenged shrimp (Litopenaeus vannamei) were compared using a short-read deep sequencing method (Illumina). RNA-seq analysis generated more than 25.81 million clean pair end (PE) reads, which were assembled into 52,073 unigenes (mean size = 520 bp). Based on sequence similarity searches, 23,568 (45.3%) genes were identified, among which 6,562 and 7,822 unigenes were assigned to gene ontology (GO) categories and clusters of orthologous groups (COG), respectively. Searches in the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) mapped 14,941 (63.4%) unigenes to 240 KEGG pathways. Among all the annotated unigenes, 1,179 were associated with immune-related genes. Digital gene expression (DGE) analysis revealed that the host transcriptome profile was slightly changed in the early infection (5 hours post injection) of the virus, while large transcriptional differences were identified in the late infection (48 hpi) of WSSV. The differentially expressed genes mainly involved in pattern recognition genes and some immune response factors. The results indicated that antiviral immune mechanisms were probably involved in the recognition of pathogen-associated molecular patterns. This study provided a global survey of host gene activities against virus infection in a non-model organism, pacific white shrimp. Results can contribute to the in-depth study of candidate genes in white shrimp, and help to improve the current understanding of host-pathogen interactions.

  16. Using next generation transcriptome sequencing to predict an ectomycorrhizal metablome.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, P. E.; Sreedasyam, A.; Trivedi, G

    Mycorrhizae, symbiotic interactions between soil fungi and tree roots, are ubiquitous in terrestrial ecosystems. The fungi contribute phosphorous, nitrogen and mobilized nutrients from organic matter in the soil and in return the fungus receives photosynthetically-derived carbohydrates. This union of plant and fungal metabolisms is the mycorrhizal metabolome. Understanding this symbiotic relationship at a molecular level provides important contributions to the understanding of forest ecosystems and global carbon cycling. We generated next generation short-read transcriptomic sequencing data from fully-formed ectomycorrhizae between Laccaria bicolor and aspen (Populus tremuloides) roots. The transcriptomic data was used to identify statistically significantly expressed gene models usingmore » a bootstrap-style approach, and these expressed genes were mapped to specific metabolic pathways. Integration of expressed genes that code for metabolic enzymes and the set of expressed membrane transporters generates a predictive model of the ectomycorrhizal metabolome. The generated model of mycorrhizal metabolome predicts that the specific compounds glycine, glutamate, and allantoin are synthesized by L. bicolor and that these compounds or their metabolites may be used for the benefit of aspen in exchange for the photosynthetically-derived sugars fructose and glucose. The analysis illustrates an approach to generate testable biological hypotheses to investigate the complex molecular interactions that drive ectomycorrhizal symbiosis. These models are consistent with experimental environmental data and provide insight into the molecular exchange processes for organisms in this complex ecosystem. The method used here for predicting metabolomic models of mycorrhizal systems from deep RNA sequencing data can be generalized and is broadly applicable to transcriptomic data derived from complex systems.« less

  17. Transcriptomic analysis of the red seaweed Laurencia dendroidea (Florideophyceae, Rhodophyta) and its microbiome.

    PubMed

    de Oliveira, Louisi Souza; Gregoracci, Gustavo Bueno; Silva, Genivaldo Gueiros Zacarias; Salgado, Leonardo Tavares; Filho, Gilberto Amado; Alves-Ferreira, Marcio; Pereira, Renato Crespo; Thompson, Fabiano L

    2012-09-17

    Seaweeds of the Laurencia genus have a broad geographic distribution and are largely recognized as important sources of secondary metabolites, mainly halogenated compounds exhibiting diverse potential pharmacological activities and relevant ecological role as anti-epibiosis. Host-microbe interaction is a driving force for co-evolution in the marine environment, but molecular studies of seaweed-associated microbial communities are still rare. Despite the large amount of research describing the chemical compositions of Laurencia species, the genetic knowledge regarding this genus is currently restricted to taxonomic markers and general genome features. In this work we analyze the transcriptomic profile of L. dendroidea J. Agardh, unveil the genes involved on the biosynthesis of terpenoid compounds in this seaweed and explore the interactions between this host and its associated microbiome. A total of 6 transcriptomes were obtained from specimens of L. dendroidea sampled in three different coastal locations of the Rio de Janeiro state. Functional annotations revealed predominantly basic cellular metabolic pathways. Bacteria was the dominant active group in the microbiome of L. dendroidea, standing out nitrogen fixing Cyanobacteria and aerobic heterotrophic Proteobacteria. The analysis of the relative contribution of each domain highlighted bacterial features related to glycolysis, lipid and polysaccharide breakdown, and also recognition of seaweed surface and establishment of biofilm. Eukaryotic transcripts, on the other hand, were associated with photosynthesis, synthesis of carbohydrate reserves, and defense mechanisms, including the biosynthesis of terpenoids through the mevalonate-independent pathway. This work describes the first transcriptomic profile of the red seaweed L. dendroidea, increasing the knowledge about ESTs from the Florideophyceae algal class. Our data suggest an important role for L. dendroidea in the primary production of the holobiont and the role of Bacteria as consumers of organic matter and possibly also as nitrogen source. Furthermore, this seaweed expressed sequences related to terpene biosynthesis, including the complete mevalonate-independent pathway, which offers new possibilities for biotechnological applications using secondary metabolites from L. dendroidea.

  18. Comparative Temporal Transcriptome Profiling of Wheat near Isogenic Line Carrying Lr57 under Compatible and Incompatible Interactions

    PubMed Central

    Yadav, Inderjit S.; Sharma, Amandeep; Kaur, Satinder; Nahar, Natasha; Bhardwaj, Subhash C.; Sharma, Tilak R.; Chhuneja, Parveen

    2016-01-01

    Leaf rust caused by Puccinia triticina (Pt) is one of the most important diseases of bread wheat globally. Recent advances in sequencing technologies have provided opportunities to analyse the complete transcriptomes of the host as well as pathogen for studying differential gene expression during infection. Pathogen induced differential gene expression was characterized in a near isogenic line carrying leaf rust resistance gene Lr57 and susceptible recipient genotype WL711. RNA samples were collected at five different time points 0, 12, 24, 48, and 72 h post inoculation (HPI) with Pt 77-5. A total of 3020 transcripts were differentially expressed with 1458 and 2692 transcripts in WL711 and WL711+Lr57, respectively. The highest number of differentially expressed transcripts was detected at 12 HPI. Functional categorization using Blast2GO classified the genes into biological processes, molecular function and cellular components. WL711+Lr57 showed much higher number of differentially expressed nucleotide binding and leucine rich repeat genes and expressed more protein kinases and pathogenesis related proteins such as chitinases, glucanases and other PR proteins as compared to susceptible genotype. Pathway annotation with KEGG categorized genes into 13 major classes with carbohydrate metabolism being the most prominent followed by amino acid, secondary metabolites, and nucleotide metabolism. Gene co-expression network analysis identified four and eight clusters of highly correlated genes in WL711 and WL711+Lr57, respectively. Comparative analysis of the differentially expressed transcripts led to the identification of some transcripts which were specifically expressed only in WL711+Lr57. It was apparent from the whole transcriptome sequencing that the resistance gene Lr57 directed the expression of different genes involved in building the resistance response in the host to combat invading pathogen. The RNAseq data and differentially expressed transcripts identified in present study is a genomic resource which can be used for further studying the host pathogen interaction for Lr57 and wheat transcriptome in general. PMID:28066494

  19. The aquatic animals' transcriptome resource for comparative functional analysis.

    PubMed

    Chou, Chih-Hung; Huang, Hsi-Yuan; Huang, Wei-Chih; Hsu, Sheng-Da; Hsiao, Chung-Der; Liu, Chia-Yu; Chen, Yu-Hung; Liu, Yu-Chen; Huang, Wei-Yun; Lee, Meng-Lin; Chen, Yi-Chang; Huang, Hsien-Da

    2018-05-09

    Aquatic animals have great economic and ecological importance. Among them, non-model organisms have been studied regarding eco-toxicity, stress biology, and environmental adaptation. Due to recent advances in next-generation sequencing techniques, large amounts of RNA-seq data for aquatic animals are publicly available. However, currently there is no comprehensive resource exist for the analysis, unification, and integration of these datasets. This study utilizes computational approaches to build a new resource of transcriptomic maps for aquatic animals. This aquatic animal transcriptome map database dbATM provides de novo assembly of transcriptome, gene annotation and comparative analysis of more than twenty aquatic organisms without draft genome. To improve the assembly quality, three computational tools (Trinity, Oases and SOAPdenovo-Trans) were employed to enhance individual transcriptome assembly, and CAP3 and CD-HIT-EST software were then used to merge these three assembled transcriptomes. In addition, functional annotation analysis provides valuable clues to gene characteristics, including full-length transcript coding regions, conserved domains, gene ontology and KEGG pathways. Furthermore, all aquatic animal genes are essential for comparative genomics tasks such as constructing homologous gene groups and blast databases and phylogenetic analysis. In conclusion, we establish a resource for non model organism aquatic animals, which is great economic and ecological importance and provide transcriptomic information including functional annotation and comparative transcriptome analysis. The database is now publically accessible through the URL http://dbATM.mbc.nctu.edu.tw/ .

  20. Transcriptomic Analysis of the Salivary Glands of an Invasive Whitefly

    PubMed Central

    Su, Yun-Lin; Li, Jun-Min; Li, Meng; Luan, Jun-Bo; Ye, Xiao-Dong; Wang, Xiao-Wei; Liu, Shu-Sheng

    2012-01-01

    Background Some species of the whitefly Bemisia tabaci complex cause tremendous losses to crops worldwide through feeding directly and virus transmission indirectly. The primary salivary glands of whiteflies are critical for their feeding and virus transmission. However, partly due to their tiny size, research on whitefly salivary glands is limited and our knowledge on these glands is scarce. Methodology/Principal Findings We sequenced the transcriptome of the primary salivary glands of the Mediterranean species of B. tabaci complex using an effective cDNA amplification method in combination with short read sequencing (Illumina). In a single run, we obtained 13,615 unigenes. The quantity of the unigenes obtained from the salivary glands of the whitefly is at least four folds of the salivary gland genes from other plant-sucking insects. To reveal the functions of the primary glands, sequence similarity search and comparisons with the whole transcriptome of the whitefly were performed. The results demonstrated that the genes related to metabolism and transport were significantly enriched in the primary salivary glands. Furthermore, we found that a number of highly expressed genes in the salivary glands might be involved in secretory protein processing, secretion and virus transmission. To identify potential proteins of whitefly saliva, the translated unigenes were put into secretory protein prediction. Finally, 295 genes were predicted to encode secretory proteins and some of them might play important roles in whitefly feeding. Conclusions/Significance: The combined method of cDNA amplification, Illumina sequencing and de novo assembly is suitable for transcriptomic analysis of tiny organs in insects. Through analysis of the transcriptome, genomic features of the primary salivary glands were dissected and biologically important proteins, especially secreted proteins, were predicted. Our findings provide substantial sequence information for the primary salivary glands of whiteflies and will be the basis for future studies on whitefly-plant interactions and virus transmission. PMID:22745728

  1. De Novo Transcriptomic Analysis of Peripheral Blood Lymphocytes from the Chinese Goose: Gene Discovery and Immune System Pathway Description

    PubMed Central

    Tariq, Mansoor; Chen, Rong; Yuan, Hongyu; Liu, Yanjie; Wu, Yanan; Wang, Junya; Xia, Chun

    2015-01-01

    Background The Chinese goose is one of the most economically important poultry birds and is a natural reservoir for many avian viruses. However, the nature and regulation of the innate and adaptive immune systems of this waterfowl species are not completely understood due to limited information on the goose genome. Recently, transcriptome sequencing technology was applied in the genomic studies focused on novel gene discovery. Thus, this study described the transcriptome of the goose peripheral blood lymphocytes to identify immunity relevant genes. Principal Findings De novo transcriptome assembly of the goose peripheral blood lymphocytes was sequenced by Illumina-Solexa technology. In total, 211,198 unigenes were assembled from the 69.36 million cleaned reads. The average length, N50 size and the maximum length of the assembled unigenes were 687 bp, 1,298 bp and 18,992 bp, respectively. A total of 36,854 unigenes showed similarity by BLAST search against the NCBI non-redundant (Nr) protein database. For functional classification, 163,161 unigenes were comprised of three Gene Ontology (Go) categories and 67 subcategories. A total of 15,334 unigenes were annotated into 25 eukaryotic orthologous groups (KOGs) categories. Kyoto Encyclopedia of Genes and Genomes (KEGG) database annotated 39,585 unigenes into six biological functional groups and 308 pathways. Among the 2,757 unigenes that participated in the 15 immune system KEGG pathways, 125 of the most important immune relevant genes were summarized and analyzed by STRING analysis to identify gene interactions and relationships. Moreover, 10 genes were confirmed by PCR and analyzed. Of these 125 unigenes, 109 unigenes, approximately 87%, were not previously identified in the goose. Conclusion This de novo transcriptome analysis could provide important Chinese goose sequence information and highlights the value of new gene discovery, pathways investigation and immune system gene identification, and comparison with other avian species as useful tools to understand the goose immune system. PMID:25816068

  2. Transcriptome analysis of Gossypium hirsutum flower buds infested by cotton boll weevil (Anthonomus grandis) larvae.

    PubMed

    Artico, Sinara; Ribeiro-Alves, Marcelo; Oliveira-Neto, Osmundo Brilhante; de Macedo, Leonardo Lima Pepino; Silveira, Sylvia; Grossi-de-Sa, Maria Fátima; Martinelli, Adriana Pinheiro; Alves-Ferreira, Marcio

    2014-10-04

    Cotton is a major fibre crop grown worldwide that suffers extensive damage from chewing insects, including the cotton boll weevil larvae (Anthonomus grandis). Transcriptome analysis was performed to understand the molecular interactions between Gossypium hirsutum L. and cotton boll weevil larvae. The Illumina HiSeq 2000 platform was used to sequence the transcriptome of cotton flower buds infested with boll weevil larvae. The analysis generated a total of 327,489,418 sequence reads that were aligned to the G. hirsutum reference transcriptome. The total number of expressed genes was over 21,697 per sample with an average length of 1,063 bp. The DEGseq analysis identified 443 differentially expressed genes (DEG) in cotton flower buds infected with boll weevil larvae. Among them, 402 (90.7%) were up-regulated, 41 (9.3%) were down-regulated and 432 (97.5%) were identified as orthologues of A. thaliana genes using Blastx. Mapman analysis of DEG indicated that many genes were involved in the biotic stress response spanning a range of functions, from a gene encoding a receptor-like kinase to genes involved in triggering defensive responses such as MAPK, transcription factors (WRKY and ERF) and signalling by ethylene (ET) and jasmonic acid (JA) hormones. Furthermore, the spatial expression pattern of 32 of the genes responsive to boll weevil larvae feeding was determined by "in situ" qPCR analysis from RNA isolated from two flower structures, the stamen and the carpel, by laser microdissection (LMD). A large number of cotton transcripts were significantly altered upon infestation by larvae. Among the changes in gene expression, we highlighted the transcription of receptors/sensors that recognise chitin or insect oral secretions; the altered regulation of transcripts encoding enzymes related to kinase cascades, transcription factors, Ca2+ influxes, and reactive oxygen species; and the modulation of transcripts encoding enzymes from phytohormone signalling pathways. These data will aid in the selection of target genes to genetically engineer cotton to control the cotton boll weevil.

  3. Transcriptome analysis of woodland strawberry (Fragaria vesca) response to the infection by Strawberry vein banding virus (SVBV).

    PubMed

    Chen, Jing; Zhang, Hanping; Feng, Mingfeng; Zuo, Dengpan; Hu, Yahui; Jiang, Tong

    2016-07-13

    Woodland strawberry (Fragaria vesca) infected with Strawberry vein banding virus (SVBV) exhibits chlorotic symptoms along the leaf veins. However, little is known about the molecular mechanism of strawberry disease caused by SVBV. We performed the next-generation sequencing (RNA-Seq) study to identify gene expression changes induced by SVBV in woodland strawberry using mock-inoculated plants as a control. Using RNA-Seq, we have identified 36,850 unigenes, of which 517 were differentially expressed in the virus-infected plants (DEGs). The unigenes were annotated and classified with Gene Ontology (GO), Clusters of Orthologous Group (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The KEGG pathway analysis of these genes suggested that strawberry disease caused by SVBV may affect multiple processes including pigment metabolism, photosynthesis and plant-pathogen interactions. Our research provides comprehensive transcriptome information regarding SVBV infection in strawberry.

  4. Convergence in probiotic Lactobacillus gut-adaptive responses in humans and mice.

    PubMed

    Marco, Maria L; de Vries, Maaike C; Wels, Michiel; Molenaar, Douwe; Mangell, Peter; Ahrne, Siv; de Vos, Willem M; Vaughan, Elaine E; Kleerebezem, Michiel

    2010-11-01

    Probiotic bacteria provide unique opportunities to study the global responses and molecular mechanisms underlying the effects of gut-associated microorganisms in the human digestive tract. In this study, we show by comparative transcriptome analysis using DNA microarrays that the established probiotic Lactobacillus plantarum 299v specifically adapts its metabolic capacity in the human intestine for carbohydrate acquisition and expression of exopolysaccharide and proteinaceous cell surface compounds. This report constitutes the first application of global gene expression profiling of a commensal microorganism in the human gut. A core L. plantarum transcriptome expressed in the mammalian intestine was also determined through comparisons of L. plantarum 299v activities in humans to those found for L. plantarum WCFS1 in germ-free mice. These results identify the niche-specific adaptations of a dietary microorganism to the intestinal ecosystem and provide novel targets for molecular analysis of microbial-host interactions which affect human health.

  5. Detailed Transcriptome Description of the Neglected Cestode Taenia multiceps

    PubMed Central

    Wu, Xuhang; Fu, Yan; Yang, Deying; Zhang, Runhui; Zheng, Wanpeng; Nie, Huaming; Xie, Yue; Yan, Ning; Hao, Guiying; Gu, Xiaobin; Wang, Shuxian; Peng, Xuerong; Yang, Guangyou

    2012-01-01

    Background The larval stage of Taenia multiceps, a global cestode, encysts in the central nervous system (CNS) of sheep and other livestock. This frequently leads to their death and huge socioeconomic losses, especially in developing countries. This parasite can also cause zoonotic infections in humans, but has been largely neglected due to a lack of diagnostic techniques and studies. Recent developments in next-generation sequencing provide an opportunity to explore the transcriptome of T. multiceps. Methodology/Principal Findings We obtained a total of 31,282 unigenes (mean length 920 bp) using Illumina paired-end sequencing technology and a new Trinity de novo assembler without a referenced genome. Individual transcription molecules were determined by sequence-based annotations and/or domain-based annotations against public databases (Nr, UniprotKB/Swiss-Prot, COG, KEGG, UniProtKB/TrEMBL, InterPro and Pfam). We identified 26,110 (83.47%) unigenes and inferred 20,896 (66.8%) coding sequences (CDS). Further comparative transcripts analysis with other cestodes (Taenia pisiformis, Taenia solium, Echincoccus granulosus and Echincoccus multilocularis) and intestinal parasites (Trichinella spiralis, Ancylostoma caninum and Ascaris suum) showed that 5,100 common genes were shared among three Taenia tapeworms, 261 conserved genes were detected among five Taeniidae cestodes, and 109 common genes were found in four zoonotic intestinal parasites. Some of the common genes were genes required for parasite survival, involved in parasite-host interactions. In addition, we amplified two full-length CDS of unigenes from the common genes using RT-PCR. Conclusions/Significance This study provides an extensive transcriptome of the adult stage of T. multiceps, and demonstrates that comparative transcriptomic investigations deserve to be further studied. This transcriptome dataset forms a substantial public information platform to achieve a fundamental understanding of the biology of T. multiceps, and helps in the identification of drug targets and parasite-host interaction studies. PMID:23049872

  6. Local Adaptation at the Transcriptome Level in Brown Trout: Evidence from Early Life History Temperature Genomic Reaction Norms

    PubMed Central

    Meier, Kristian; Hansen, Michael Møller; Normandeau, Eric; Mensberg, Karen-Lise D.; Frydenberg, Jane; Larsen, Peter Foged; Bekkevold, Dorte; Bernatchez, Louis

    2014-01-01

    Local adaptation and its underlying molecular basis has long been a key focus in evolutionary biology. There has recently been increased interest in the evolutionary role of plasticity and the molecular mechanisms underlying local adaptation. Using transcriptome analysis, we assessed differences in gene expression profiles for three brown trout (Salmo trutta) populations, one resident and two anadromous, experiencing different temperature regimes in the wild. The study was based on an F2 generation raised in a common garden setting. A previous study of the F1 generation revealed different reaction norms and significantly higher QST than FST among populations for two early life-history traits. In the present study we investigated if genomic reaction norm patterns were also present at the transcriptome level. Eggs from the three populations were incubated at two temperatures (5 and 8 degrees C) representing conditions encountered in the local environments. Global gene expression for fry at the stage of first feeding was analysed using a 32k cDNA microarray. The results revealed differences in gene expression between populations and temperatures and population × temperature interactions, the latter indicating locally adapted reaction norms. Moreover, the reaction norms paralleled those observed previously at early life-history traits. We identified 90 cDNA clones among the genes with an interaction effect that were differently expressed between the ecologically divergent populations. These included genes involved in immune- and stress response. We observed less plasticity in the resident as compared to the anadromous populations, possibly reflecting that the degree of environmental heterogeneity encountered by individuals throughout their life cycle will select for variable level of phenotypic plasticity at the transcriptome level. Our study demonstrates the usefulness of transcriptome approaches to identify genes with different temperature reaction norms. The responses observed suggest that populations may vary in their susceptibility to climate change. PMID:24454810

  7. MiSTIC, an integrated platform for the analysis of heterogeneity in large tumour transcriptome datasets.

    PubMed

    Lemieux, Sebastien; Sargeant, Tobias; Laperrière, David; Ismail, Houssam; Boucher, Geneviève; Rozendaal, Marieke; Lavallée, Vincent-Philippe; Ashton-Beaucage, Dariel; Wilhelm, Brian; Hébert, Josée; Hilton, Douglas J; Mader, Sylvie; Sauvageau, Guy

    2017-07-27

    Genome-wide transcriptome profiling has enabled non-supervised classification of tumours, revealing different sub-groups characterized by specific gene expression features. However, the biological significance of these subtypes remains for the most part unclear. We describe herein an interactive platform, Minimum Spanning Trees Inferred Clustering (MiSTIC), that integrates the direct visualization and comparison of the gene correlation structure between datasets, the analysis of the molecular causes underlying co-variations in gene expression in cancer samples, and the clinical annotation of tumour sets defined by the combined expression of selected biomarkers. We have used MiSTIC to highlight the roles of specific transcription factors in breast cancer subtype specification, to compare the aspects of tumour heterogeneity targeted by different prognostic signatures, and to highlight biomarker interactions in AML. A version of MiSTIC preloaded with datasets described herein can be accessed through a public web server (http://mistic.iric.ca); in addition, the MiSTIC software package can be obtained (github.com/iric-soft/MiSTIC) for local use with personalized datasets. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Transcriptome-Wide Analysis of Hepatitis B Virus-Mediated Changes to Normal Hepatocyte Gene Expression.

    PubMed

    Lamontagne, Jason; Mell, Joshua C; Bouchard, Michael J

    2016-02-01

    Globally, a chronic hepatitis B virus (HBV) infection remains the leading cause of primary liver cancer. The mechanisms leading to the development of HBV-associated liver cancer remain incompletely understood. In part, this is because studies have been limited by the lack of effective model systems that are both readily available and mimic the cellular environment of a normal hepatocyte. Additionally, many studies have focused on single, specific factors or pathways that may be affected by HBV, without addressing cell physiology as a whole. Here, we apply RNA-seq technology to investigate transcriptome-wide, HBV-mediated changes in gene expression to identify single factors and pathways as well as networks of genes and pathways that are affected in the context of HBV replication. Importantly, these studies were conducted in an ex vivo model of cultured primary hepatocytes, allowing for the transcriptomic characterization of this model system and an investigation of early HBV-mediated effects in a biologically relevant context. We analyzed differential gene expression within the context of time-mediated gene-expression changes and show that in the context of HBV replication a number of genes and cellular pathways are altered, including those associated with metabolism, cell cycle regulation, and lipid biosynthesis. Multiple analysis pipelines, as well as qRT-PCR and an independent, replicate RNA-seq analysis, were used to identify and confirm differentially expressed genes. HBV-mediated alterations to the transcriptome that we identified likely represent early changes to hepatocytes following an HBV infection, suggesting potential targets for early therapeutic intervention. Overall, these studies have produced a valuable resource that can be used to expand our understanding of the complex network of host-virus interactions and the impact of HBV-mediated changes to normal hepatocyte physiology on viral replication.

  9. Transcriptome analysis of duck liver and identification of differentially expressed transcripts in response to duck hepatitis A virus genotype C infection.

    PubMed

    Tang, Cheng; Lan, Daoliang; Zhang, Huanrong; Ma, Jing; Yue, Hua

    2013-01-01

    Duck is an economically important poultry and animal model for human viral hepatitis B. However, the molecular mechanisms underlying host-virus interaction remain unclear because of limited information on the duck genome. This study aims to characterize the duck normal liver transcriptome and to identify the differentially expressed transcripts at 24 h after duck hepatitis A virus genotype C (DHAV-C) infection using Illumina-Solexa sequencing. After removal of low-quality sequences and assembly, a total of 52,757 unigenes was obtained from the normal liver group. Further blast analysis showed that 18,918 unigenes successfully matched the known genes in the database. GO analysis revealed that 25,116 unigenes took part in 61 categories of biological processes, cellular components, and molecular functions. Among the 25 clusters of orthologous group categories (COG), the cluster for "General function prediction only" represented the largest group, followed by "Transcription" and "Replication, recombination, and repair." KEGG analysis showed that 17,628 unigenes were involved in 301 pathways. Through comparison of normal and infected transcriptome data, we identified 20 significantly differentially expressed unigenes, which were further confirmed by real-time polymerase chain reaction. Of the 20 unigenes, nine matched the known genes in the database, including three up-regulated genes (virus replicase polyprotein, LRRC3B, and PCK1) and six down-regulated genes (CRP, AICL-like 2, L1CAM, CYB26A1, CHAC1, and ADAM32). The remaining 11 novel unigenes that did not match any known genes in the database may provide a basis for the discovery of new transcripts associated with infection. This study provided a gene expression pattern for normal duck liver and for the previously unrecognized changes in gene transcription that are altered during DHAV-C infection. Our data revealed useful information for future studies on the duck genome and provided new insights into the molecular mechanism of host-DHAV-C interaction.

  10. Functional network analysis of genes differentially expressed during xylogenesis in soc1ful woody Arabidopsis plants.

    PubMed

    Davin, Nicolas; Edger, Patrick P; Hefer, Charles A; Mizrachi, Eshchar; Schuetz, Mathias; Smets, Erik; Myburg, Alexander A; Douglas, Carl J; Schranz, Michael E; Lens, Frederic

    2016-06-01

    Many plant genes are known to be involved in the development of cambium and wood, but how the expression and functional interaction of these genes determine the unique biology of wood remains largely unknown. We used the soc1ful loss of function mutant - the woodiest genotype known in the otherwise herbaceous model plant Arabidopsis - to investigate the expression and interactions of genes involved in secondary growth (wood formation). Detailed anatomical observations of the stem in combination with mRNA sequencing were used to assess transcriptome remodeling during xylogenesis in wild-type and woody soc1ful plants. To interpret the transcriptome changes, we constructed functional gene association networks of differentially expressed genes using the STRING database. This analysis revealed functionally enriched gene association hubs that are differentially expressed in herbaceous and woody tissues. In particular, we observed the differential expression of genes related to mechanical stress and jasmonate biosynthesis/signaling during wood formation in soc1ful plants that may be an effect of greater tension within woody tissues. Our results suggest that habit shifts from herbaceous to woody life forms observed in many angiosperm lineages could have evolved convergently by genetic changes that modulate the gene expression and interaction network, and thereby redeploy the conserved wood developmental program. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  11. Dual Identification and Analysis of Differentially Expressed Transcripts of Porcine PK-15 Cells and Toxoplasma gondii during in vitro Infection

    PubMed Central

    Zhou, Chun-Xue; Elsheikha, Hany M.; Zhou, Dong-Hui; Liu, Qing; Zhu, Xing-Quan; Suo, Xun

    2016-01-01

    Toxoplasma gondii is responsible for causing toxoplasmosis, one of the most prevalent zoonotic parasitoses worldwide. The mechanisms that mediate T. gondii infection of pigs (the most common source of human infection) and renal tissues are still unknown. To identify the critical alterations that take place in the transcriptome of both porcine kidney (PK-15) cells and T. gondii following infection, infected cell samples were collected at 1, 3, 6, 9, 12, 18, and 24 h post infection and RNA-Seq data were acquired using Illumina Deep Sequencing. Differential Expression of Genes (DEGs) analysis was performed to study the concomitant gene-specific temporal patterns of induction of mRNA expression of PK-15 cells and T. gondii. High sequence coverage enabled us to thoroughly characterize T. gondii transcriptome and identify the activated molecular pathways in host cells. More than 6G clean bases/sample, including >40 million clean reads were obtained. These were aligned to the reference genome of T. gondii and wild boar (Sus scrofa). DEGs involved in metabolic activities of T. gondii showed time-dependent down-regulation. However, DEGs involved in immune or disease related pathways of PK-15 cells peaked at 6 h PI, and were highly enriched as evidenced by KEGG analysis. Protein-protein interaction analysis revealed that TGME49_120110 (PCNA), TGME49_049180 (DHFR-TS), TGME49_055320, and TGME49_002300 (ITPase) are the four hub genes with most interactions with T. gondii at the onset of infection. These results reveal altered profiles of gene expressed by PK-15 cells and T. gondii during infection and provide the groundwork for future virulence studies to uncover the mechanisms of T. gondii interaction with porcine renal tissue by functional analysis of these DEGs. PMID:27242740

  12. PodNet, a protein-protein interaction network of the podocyte.

    PubMed

    Warsow, Gregor; Endlich, Nicole; Schordan, Eric; Schordan, Sandra; Chilukoti, Ravi K; Homuth, Georg; Moeller, Marcus J; Fuellen, Georg; Endlich, Karlhans

    2013-07-01

    Interactions between proteins crucially determine cellular structure and function. Differential analysis of the interactome may help elucidate molecular mechanisms during disease development; however, this analysis necessitates mapping of expression data on protein-protein interaction networks. These networks do not exist for the podocyte; therefore, we built PodNet, a literature-based mouse podocyte network in Cytoscape format. Using database protein-protein interactions, we expanded PodNet to XPodNet with enhanced connectivity. In order to test the performance of XPodNet in differential interactome analysis, we examined podocyte developmental differentiation and the effect of cell culture. Transcriptomes of podocytes in 10 different states were mapped on XPodNet and analyzed with the Cytoscape plugin ExprEssence, based on the law of mass action. Interactions between slit diaphragm proteins are most significantly upregulated during podocyte development and most significantly downregulated in culture. On the other hand, our analysis revealed that interactions lost during podocyte differentiation are not regained in culture, suggesting a loss rather than a reversal of differentiation for podocytes in culture. Thus, we have developed PodNet as a valuable tool for differential interactome analysis in podocytes, and we have identified established and unexplored regulated interactions in developing and cultured podocytes.

  13. A Bioinformatics Approach for Integrated Transcriptomic and Proteomic Comparative Analyses of Model and Non-sequenced Anopheline Vectors of Human Malaria Parasites*

    PubMed Central

    Mohien, Ceereena Ubaida; Colquhoun, David R.; Mathias, Derrick K.; Gibbons, John G.; Armistead, Jennifer S.; Rodriguez, Maria C.; Rodriguez, Mario Henry; Edwards, Nathan J.; Hartler, Jürgen; Thallinger, Gerhard G.; Graham, David R.; Martinez-Barnetche, Jesus; Rokas, Antonis; Dinglasan, Rhoel R.

    2013-01-01

    Malaria morbidity and mortality caused by both Plasmodium falciparum and Plasmodium vivax extend well beyond the African continent, and although P. vivax causes between 80 and 300 million severe cases each year, vivax transmission remains poorly understood. Plasmodium parasites are transmitted by Anopheles mosquitoes, and the critical site of interaction between parasite and host is at the mosquito's luminal midgut brush border. Although the genome of the “model” African P. falciparum vector, Anopheles gambiae, has been sequenced, evolutionary divergence limits its utility as a reference across anophelines, especially non-sequenced P. vivax vectors such as Anopheles albimanus. Clearly, technologies and platforms that bridge this substantial scientific gap are required in order to provide public health scientists with key transcriptomic and proteomic information that could spur the development of novel interventions to combat this disease. To our knowledge, no approaches have been published that address this issue. To bolster our understanding of P. vivax–An. albimanus midgut interactions, we developed an integrated bioinformatic-hybrid RNA-Seq-LC-MS/MS approach involving An. albimanus transcriptome (15,764 contigs) and luminal midgut subproteome (9,445 proteins) assembly, which, when used with our custom Diptera protein database (685,078 sequences), facilitated a comparative proteomic analysis of the midgut brush borders of two important malaria vectors, An. gambiae and An. albimanus. PMID:23082028

  14. A bioinformatics approach for integrated transcriptomic and proteomic comparative analyses of model and non-sequenced anopheline vectors of human malaria parasites.

    PubMed

    Ubaida Mohien, Ceereena; Colquhoun, David R; Mathias, Derrick K; Gibbons, John G; Armistead, Jennifer S; Rodriguez, Maria C; Rodriguez, Mario Henry; Edwards, Nathan J; Hartler, Jürgen; Thallinger, Gerhard G; Graham, David R; Martinez-Barnetche, Jesus; Rokas, Antonis; Dinglasan, Rhoel R

    2013-01-01

    Malaria morbidity and mortality caused by both Plasmodium falciparum and Plasmodium vivax extend well beyond the African continent, and although P. vivax causes between 80 and 300 million severe cases each year, vivax transmission remains poorly understood. Plasmodium parasites are transmitted by Anopheles mosquitoes, and the critical site of interaction between parasite and host is at the mosquito's luminal midgut brush border. Although the genome of the "model" African P. falciparum vector, Anopheles gambiae, has been sequenced, evolutionary divergence limits its utility as a reference across anophelines, especially non-sequenced P. vivax vectors such as Anopheles albimanus. Clearly, technologies and platforms that bridge this substantial scientific gap are required in order to provide public health scientists with key transcriptomic and proteomic information that could spur the development of novel interventions to combat this disease. To our knowledge, no approaches have been published that address this issue. To bolster our understanding of P. vivax-An. albimanus midgut interactions, we developed an integrated bioinformatic-hybrid RNA-Seq-LC-MS/MS approach involving An. albimanus transcriptome (15,764 contigs) and luminal midgut subproteome (9,445 proteins) assembly, which, when used with our custom Diptera protein database (685,078 sequences), facilitated a comparative proteomic analysis of the midgut brush borders of two important malaria vectors, An. gambiae and An. albimanus.

  15. The comprehensive liver transcriptome of two cattle breeds with different intramuscular fat content.

    PubMed

    Wang, Xi; Zhang, Yuanqing; Zhang, Xizhong; Wang, Dongcai; Jin, Guang; Li, Bo; Xu, Fang; Cheng, Jing; Zhang, Feng; Wu, Sujun; Rui, Su; He, Jiang; Zhang, Ronghua; Liu, Wenzhong

    2017-08-26

    Intramuscular fat (IMF) content is an important determinant factor of meat quality in cattle. There is significant difference in IMF content between Jinnan and Simmental cattle. Here, to identify candidate genes and networks associated with IMF deposition, we deeply explored the transcriptome architecture of liver in these two cattle breeds. We sequenced the liver transcriptome of five Jinnan and three Simmental cattle, yielding about 413.9 million sequencing reads. 124 differentially expressed genes (DEGs) were detected, of which 53 were up-regulated and 71 were down-regulated in Jinnan cattle. 1282 potentially novel genes were also identified. Gene ontology analysis revealed these DEGs (including CYP21A2, PC, ACACB, APOA1, and FADS2) were significantly enriched in lipid biosynthetic process, regulation of cholesterol esterification, reverse cholesterol transport, and regulation of lipoprotein lipase activity. Genes involved in pyruvate metabolism pathway were also significantly overrepresented. Moreover, we identified an interaction network which related to lipid metabolism, which might be contributed to the IMF deposition in cattle. We concluded that the DEGs involved in the regulation of lipid metabolism could play an important role in IMF deposition. Overall, we proposed a new panel of candidate genes and interaction networks that can be associated with IMF deposition and used as biomarkers in cattle breeding. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Insights into organ-specific pathogen defense responses in plants: RNA-seq analysis of potato tuber-Phytophthora infestans interactions.

    PubMed

    Gao, Liangliang; Tu, Zheng Jin; Millett, Benjamin P; Bradeen, James M

    2013-05-23

    The late blight pathogen Phytophthora infestans can attack both potato foliage and tubers. Although interaction transcriptome dynamics between potato foliage and various pathogens have been reported, no transcriptome study has focused specifically upon how potato tubers respond to pathogen infection. When inoculated with P. infestans, tubers of nontransformed 'Russet Burbank' (WT) potato develop late blight disease while those of transgenic 'Russet Burbank' line SP2211 (+RB), which expresses the potato late blight resistance gene RB (Rpi-blb1), do not. We compared transcriptome responses to P. infestans inoculation in tubers of these two lines. We demonstrated the practicality of RNA-seq to study tetraploid potato and present the first RNA-seq study of potato tuber diseases. A total of 483 million paired end Illumina RNA-seq reads were generated, representing the transcription of around 30,000 potato genes. Differentially expressed genes, gene groups and ontology bins that exhibited differences between the WT and +RB lines were identified. P. infestans transcripts, including those of known effectors, were also identified. Faster and stronger activation of defense related genes, gene groups and ontology bins correlate with successful tuber resistance against P. infestans. Our results suggest that the hypersensitive response is likely a general form of resistance against the hemibiotrophic P. infestans-even in potato tubers, organs that develop below ground.

  17. Insights into organ-specific pathogen defense responses in plants: RNA-seq analysis of potato tuber-Phytophthora infestans interactions

    PubMed Central

    2013-01-01

    Background The late blight pathogen Phytophthora infestans can attack both potato foliage and tubers. Although interaction transcriptome dynamics between potato foliage and various pathogens have been reported, no transcriptome study has focused specifically upon how potato tubers respond to pathogen infection. When inoculated with P. infestans, tubers of nontransformed ‘Russet Burbank’ (WT) potato develop late blight disease while those of transgenic ‘Russet Burbank’ line SP2211 (+RB), which expresses the potato late blight resistance gene RB (Rpi-blb1), do not. We compared transcriptome responses to P. infestans inoculation in tubers of these two lines. Results We demonstrated the practicality of RNA-seq to study tetraploid potato and present the first RNA-seq study of potato tuber diseases. A total of 483 million paired end Illumina RNA-seq reads were generated, representing the transcription of around 30,000 potato genes. Differentially expressed genes, gene groups and ontology bins that exhibited differences between the WT and +RB lines were identified. P. infestans transcripts, including those of known effectors, were also identified. Conclusion Faster and stronger activation of defense related genes, gene groups and ontology bins correlate with successful tuber resistance against P. infestans. Our results suggest that the hypersensitive response is likely a general form of resistance against the hemibiotrophic P. infestans—even in potato tubers, organs that develop below ground. PMID:23702331

  18. Dynamics in the tomato root transcriptome on infection with the potato cyst nematode Globodera rostochiensis.

    PubMed

    Swiecicka, Magdalena; Filipecki, Marcin; Lont, Dieuwertje; Van Vliet, Joke; Qin, Ling; Goverse, Aska; Bakker, Jaap; Helder, Johannes

    2009-07-01

    Plant parasitic nematodes infect roots and trigger the formation of specialized feeding sites by substantial reprogramming of the developmental process of root cells. In this article, we describe the dynamic changes in the tomato root transcriptome during early interactions with the potato cyst nematode Globodera rostochiensis. Using amplified fragment length polymorphism-based mRNA fingerprinting (cDNA-AFLP), we monitored 17 600 transcript-derived fragments (TDFs) in infected and uninfected tomato roots, 1-14 days after inoculation with nematode larvae. Six hundred and twenty-four TDFs (3.5%) showed significant differential expression on nematode infection. We employed GenEST, a computer program which links gene expression profiles generated by cDNA-AFLP and databases of cDNA sequences, to identify 135 tomato sequences. These sequences were grouped into eight functional categories based on the presence of genes involved in hormone regulation, plant pathogen defence response, cell cycle and cytoskeleton regulation, cell wall modification, cellular signalling, transcriptional regulation, primary metabolism and allocation. The presence of unclassified genes was also taken into consideration. This article describes the responsiveness of numerous tomato genes hitherto uncharacterized during infection with endoparasitic cyst nematodes. The analysis of transcriptome profiles allowed the sequential order of expression to be dissected for many groups of genes and the genes to be connected with the biological processes involved in compatible interactions between the plant and nematode.

  19. Transcriptome-Wide Changes in Chlamydomonas reinhardtii Gene Expression Regulated by Carbon Dioxide and the CO2-Concentrating Mechanism Regulator CIA5/CCM1[W][OA

    PubMed Central

    Fang, Wei; Si, Yaqing; Douglass, Stephen; Casero, David; Merchant, Sabeeha S.; Pellegrini, Matteo; Ladunga, Istvan; Liu, Peng; Spalding, Martin H.

    2012-01-01

    We used RNA sequencing to query the Chlamydomonas reinhardtii transcriptome for regulation by CO2 and by the transcription regulator CIA5 (CCM1). Both CO2 and CIA5 are known to play roles in acclimation to low CO2 and in induction of an essential CO2-concentrating mechanism (CCM), but less is known about their interaction and impact on the whole transcriptome. Our comparison of the transcriptome of a wild type versus a cia5 mutant strain under three different CO2 conditions, high CO2 (5%), low CO2 (0.03 to 0.05%), and very low CO2 (<0.02%), provided an entry into global changes in the gene expression patterns occurring in response to the interaction between CO2 and CIA5. We observed a massive impact of CIA5 and CO2 on the transcriptome, affecting almost 25% of all Chlamydomonas genes, and we discovered an array of gene clusters with distinctive expression patterns that provide insight into the regulatory interaction between CIA5 and CO2. Several individual clusters respond primarily to either CIA5 or CO2, providing access to genes regulated by one factor but decoupled from the other. Three distinct clusters clearly associated with CCM-related genes may represent a rich source of candidates for new CCM components, including a small cluster of genes encoding putative inorganic carbon transporters. PMID:22634760

  20. The Human Blood Metabolome-Transcriptome Interface

    PubMed Central

    Schramm, Katharina; Adamski, Jerzy; Gieger, Christian; Herder, Christian; Carstensen, Maren; Peters, Annette; Rathmann, Wolfgang; Roden, Michael; Strauch, Konstantin; Suhre, Karsten; Kastenmüller, Gabi; Prokisch, Holger; Theis, Fabian J.

    2015-01-01

    Biological systems consist of multiple organizational levels all densely interacting with each other to ensure function and flexibility of the system. Simultaneous analysis of cross-sectional multi-omics data from large population studies is a powerful tool to comprehensively characterize the underlying molecular mechanisms on a physiological scale. In this study, we systematically analyzed the relationship between fasting serum metabolomics and whole blood transcriptomics data from 712 individuals of the German KORA F4 cohort. Correlation-based analysis identified 1,109 significant associations between 522 transcripts and 114 metabolites summarized in an integrated network, the ‘human blood metabolome-transcriptome interface’ (BMTI). Bidirectional causality analysis using Mendelian randomization did not yield any statistically significant causal associations between transcripts and metabolites. A knowledge-based interpretation and integration with a genome-scale human metabolic reconstruction revealed systematic signatures of signaling, transport and metabolic processes, i.e. metabolic reactions mainly belonging to lipid, energy and amino acid metabolism. Moreover, the construction of a network based on functional categories illustrated the cross-talk between the biological layers at a pathway level. Using a transcription factor binding site enrichment analysis, this pathway cross-talk was further confirmed at a regulatory level. Finally, we demonstrated how the constructed networks can be used to gain novel insights into molecular mechanisms associated to intermediate clinical traits. Overall, our results demonstrate the utility of a multi-omics integrative approach to understand the molecular mechanisms underlying both normal physiology and disease. PMID:26086077

  1. mRNA-Seq and microarray development for the Grooved carpet shell clam, Ruditapes decussatus: a functional approach to unravel host -parasite interaction

    PubMed Central

    2013-01-01

    Background The Grooved Carpet shell clam Ruditapes decussatus is the autochthonous European clam and the most appreciated from a gastronomic and economic point of view. The production is in decline due to several factors such as Perkinsiosis and habitat invasion and competition by the introduced exotic species, the manila clam Ruditapes philippinarum. After we sequenced R. decussatus transcriptome we have designed an oligo microarray capable of contributing to provide some clues on molecular response of the clam to Perkinsiosis. Results A database consisting of 41,119 unique transcripts was constructed, of which 12,479 (30.3%) were annotated by similarity. An oligo-DNA microarray platform was then designed and applied to profile gene expression in R. decussatus heavily infected by Perkinsus olseni. Functional annotation of differentially expressed genes between those two conditionswas performed by gene set enrichment analysis. As expected, microarrays unveil genes related with stress/infectious agents such as hydrolases, proteases and others. The extensive role of innate immune system was also analyzed and effect of parasitosis upon expression of important molecules such as lectins reviewed. Conclusions This study represents a first attempt to characterize Ruditapes decussatus transcriptome, an important marine resource for the European aquaculture. The trancriptome sequencing and consequent annotation will increase the available tools and resources for this specie, introducing the possibility of high throughput experiments such as microarrays analysis. In this specific case microarray approach was used to unveil some important aspects of host-parasite interaction between the Carpet shell clam and Perkinsus, two non-model species, highlighting some genes associated with this interaction. Ample information was obtained to identify biological processes significantly enriched among differentially expressed genes in Perkinsus infected versus non-infected gills. An overview on the genes related with the immune system on R. decussatus transcriptome is also reported. PMID:24168212

  2. mRNA-Seq and microarray development for the Grooved Carpet shell clam, Ruditapes decussatus: a functional approach to unravel host-parasite interaction.

    PubMed

    Leite, Ricardo B; Milan, Massimo; Coppe, Alessandro; Bortoluzzi, Stefania; dos Anjos, António; Reinhardt, Richard; Saavedra, Carlos; Patarnello, Tomaso; Cancela, M Leonor; Bargelloni, Luca

    2013-10-29

    The Grooved Carpet shell clam Ruditapes decussatus is the autochthonous European clam and the most appreciated from a gastronomic and economic point of view. The production is in decline due to several factors such as Perkinsiosis and habitat invasion and competition by the introduced exotic species, the manila clam Ruditapes philippinarum. After we sequenced R. decussatus transcriptome we have designed an oligo microarray capable of contributing to provide some clues on molecular response of the clam to Perkinsiosis. A database consisting of 41,119 unique transcripts was constructed, of which 12,479 (30.3%) were annotated by similarity. An oligo-DNA microarray platform was then designed and applied to profile gene expression in R. decussatus heavily infected by Perkinsus olseni. Functional annotation of differentially expressed genes between those two conditionswas performed by gene set enrichment analysis. As expected, microarrays unveil genes related with stress/infectious agents such as hydrolases, proteases and others. The extensive role of innate immune system was also analyzed and effect of parasitosis upon expression of important molecules such as lectins reviewed. This study represents a first attempt to characterize Ruditapes decussatus transcriptome, an important marine resource for the European aquaculture. The trancriptome sequencing and consequent annotation will increase the available tools and resources for this specie, introducing the possibility of high throughput experiments such as microarrays analysis. In this specific case microarray approach was used to unveil some important aspects of host-parasite interaction between the Carpet shell clam and Perkinsus, two non-model species, highlighting some genes associated with this interaction. Ample information was obtained to identify biological processes significantly enriched among differentially expressed genes in Perkinsus infected versus non-infected gills. An overview on the genes related with the immune system on R. decussatus transcriptome is also reported.

  3. The low-abundance transcriptome reveals novel biomarkers, specific intracellular pathways and targetable genes associated with advanced gastric cancer.

    PubMed

    Bizama, Carolina; Benavente, Felipe; Salvatierra, Edgardo; Gutiérrez-Moraga, Ana; Espinoza, Jaime A; Fernández, Elmer A; Roa, Iván; Mazzolini, Guillermo; Sagredo, Eduardo A; Gidekel, Manuel; Podhajcer, Osvaldo L

    2014-02-15

    Studies on the low-abundance transcriptome are of paramount importance for identifying the intimate mechanisms of tumor progression that can lead to novel therapies. The aim of the present study was to identify novel markers and targetable genes and pathways in advanced human gastric cancer through analyses of the low-abundance transcriptome. The procedure involved an initial subtractive hybridization step, followed by global gene expression analysis using microarrays. We observed profound differences, both at the single gene and gene ontology levels, between the low-abundance transcriptome and the whole transcriptome. Analysis of the low-abundance transcriptome led to the identification and validation by tissue microarrays of novel biomarkers, such as LAMA3 and TTN; moreover, we identified cancer type-specific intracellular pathways and targetable genes, such as IRS2, IL17, IFNγ, VEGF-C, WISP1, FZD5 and CTBP1 that were not detectable by whole transcriptome analyses. We also demonstrated that knocking down the expression of CTBP1 sensitized gastric cancer cells to mainstay chemotherapeutic drugs. We conclude that the analysis of the low-abundance transcriptome provides useful insights into the molecular basis and treatment of cancer. © 2013 UICC.

  4. Transcriptome assembly and digital gene expression atlas of the rainbow trout

    USDA-ARS?s Scientific Manuscript database

    Background: Transcriptome analysis is a preferred method for gene discovery, marker development and gene expression profiling in non-model organisms. Previously, we sequenced a transcriptome reference using Sanger-based and 454-pyrosequencing, however, a transcriptome assembly is still incomplete an...

  5. Preliminary profiling of blood transcriptome in a rat model of hemorrhagic shock.

    PubMed

    Braga, D; Barcella, M; D'Avila, F; Lupoli, S; Tagliaferri, F; Santamaria, M H; DeLano, F A; Baselli, G; Schmid-Schönbein, G W; Kistler, E B; Aletti, F; Barlassina, C

    2017-08-01

    Hemorrhagic shock is a leading cause of morbidity and mortality worldwide. Significant blood loss may lead to decreased blood pressure and inadequate tissue perfusion with resultant organ failure and death, even after replacement of lost blood volume. One reason for this high acuity is that the fundamental mechanisms of shock are poorly understood. Proteomic and metabolomic approaches have been used to investigate the molecular events occurring in hemorrhagic shock but, to our knowledge, a systematic analysis of the transcriptomic profile is missing. Therefore, a pilot analysis using paired-end RNA sequencing was used to identify changes that occur in the blood transcriptome of rats subjected to hemorrhagic shock after blood reinfusion. Hemorrhagic shock was induced using a Wigger's shock model. The transcriptome of whole blood from shocked animals shows modulation of genes related to inflammation and immune response (Tlr13, Il1b, Ccl6, Lgals3), antioxidant functions (Mt2A, Mt1), tissue injury and repair pathways (Gpnmb, Trim72) and lipid mediators (Alox5ap, Ltb4r, Ptger2) compared with control animals. These findings are congruent with results obtained in hemorrhagic shock analysis by other authors using metabolomics and proteomics. The analysis of blood transcriptome may be a valuable tool to understand the biological changes occurring in hemorrhagic shock and a promising approach for the identification of novel biomarkers and therapeutic targets. Impact statement This study provides the first pilot analysis of the changes occurring in transcriptome expression of whole blood in hemorrhagic shock (HS) rats. We showed that the analysis of blood transcriptome is a useful approach to investigate pathways and functional alterations in this disease condition. This pilot study encourages the possible application of transcriptome analysis in the clinical setting, for the molecular profiling of whole blood in HS patients.

  6. Comparative transcriptomic analysis reveals that Ethylene/H2O2-mediated hypersensitive response and program cell death determine the compatible interaction of Sand pear and Alternaria Alternata

    USDA-ARS?s Scientific Manuscript database

    A major production restriction on sand pear (Pyrus pyrifolia) is black spot disease caused by the necrotrophic fungus Alternaria alternata. However, pear response mechanism to A. alternata is unknown at molecular level. Here, host responses of a resistant cultivar Cuiguan (CG) and a susceptible cult...

  7. CLIP-seq analysis of multi-mapped reads discovers novel functional RNA regulatory sites in the human transcriptome.

    PubMed

    Zhang, Zijun; Xing, Yi

    2017-09-19

    Crosslinking or RNA immunoprecipitation followed by sequencing (CLIP-seq or RIP-seq) allows transcriptome-wide discovery of RNA regulatory sites. As CLIP-seq/RIP-seq reads are short, existing computational tools focus on uniquely mapped reads, while reads mapped to multiple loci are discarded. We present CLAM (CLIP-seq Analysis of Multi-mapped reads). CLAM uses an expectation-maximization algorithm to assign multi-mapped reads and calls peaks combining uniquely and multi-mapped reads. To demonstrate the utility of CLAM, we applied it to a wide range of public CLIP-seq/RIP-seq datasets involving numerous splicing factors, microRNAs and m6A RNA methylation. CLAM recovered a large number of novel RNA regulatory sites inaccessible by uniquely mapped reads. The functional significance of these sites was demonstrated by consensus motif patterns and association with alternative splicing (splicing factors), transcript abundance (AGO2) and mRNA half-life (m6A). CLAM provides a useful tool to discover novel protein-RNA interactions and RNA modification sites from CLIP-seq and RIP-seq data, and reveals the significant contribution of repetitive elements to the RNA regulatory landscape of the human transcriptome. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. RNAseq versus genome-predicted transcriptomes: a large population of novel transcripts identified in an Illumina-454 Hydra transcriptome.

    PubMed

    Wenger, Yvan; Galliot, Brigitte

    2013-03-25

    Evolutionary studies benefit from deep sequencing technologies that generate genomic and transcriptomic sequences from a variety of organisms. Genome sequencing and RNAseq have complementary strengths. In this study, we present the assembly of the most complete Hydra transcriptome to date along with a comparative analysis of the specific features of RNAseq and genome-predicted transcriptomes currently available in the freshwater hydrozoan Hydra vulgaris. To produce an accurate and extensive Hydra transcriptome, we combined Illumina and 454 Titanium reads, giving the primacy to Illumina over 454 reads to correct homopolymer errors. This strategy yielded an RNAseq transcriptome that contains 48'909 unique sequences including splice variants, representing approximately 24'450 distinct genes. Comparative analysis to the available genome-predicted transcriptomes identified 10'597 novel Hydra transcripts that encode 529 evolutionarily-conserved proteins. The annotation of 170 human orthologs points to critical functions in protein biosynthesis, FGF and TOR signaling, vesicle transport, immunity, cell cycle regulation, cell death, mitochondrial metabolism, transcription and chromatin regulation. However, a majority of these novel transcripts encodes short ORFs, at least 767 of them corresponding to pseudogenes. This RNAseq transcriptome also lacks 11'270 predicted transcripts that correspond either to silent genes or to genes expressed below the detection level of this study. We established a simple and powerful strategy to combine Illumina and 454 reads and we produced, with genome assistance, an extensive and accurate Hydra transcriptome. The comparative analysis of the RNAseq transcriptome with genome-predicted transcriptomes lead to the identification of large populations of novel as well as missing transcripts that might reflect Hydra-specific evolutionary events.

  9. RNAseq versus genome-predicted transcriptomes: a large population of novel transcripts identified in an Illumina-454 Hydra transcriptome

    PubMed Central

    2013-01-01

    Background Evolutionary studies benefit from deep sequencing technologies that generate genomic and transcriptomic sequences from a variety of organisms. Genome sequencing and RNAseq have complementary strengths. In this study, we present the assembly of the most complete Hydra transcriptome to date along with a comparative analysis of the specific features of RNAseq and genome-predicted transcriptomes currently available in the freshwater hydrozoan Hydra vulgaris. Results To produce an accurate and extensive Hydra transcriptome, we combined Illumina and 454 Titanium reads, giving the primacy to Illumina over 454 reads to correct homopolymer errors. This strategy yielded an RNAseq transcriptome that contains 48’909 unique sequences including splice variants, representing approximately 24’450 distinct genes. Comparative analysis to the available genome-predicted transcriptomes identified 10’597 novel Hydra transcripts that encode 529 evolutionarily-conserved proteins. The annotation of 170 human orthologs points to critical functions in protein biosynthesis, FGF and TOR signaling, vesicle transport, immunity, cell cycle regulation, cell death, mitochondrial metabolism, transcription and chromatin regulation. However, a majority of these novel transcripts encodes short ORFs, at least 767 of them corresponding to pseudogenes. This RNAseq transcriptome also lacks 11’270 predicted transcripts that correspond either to silent genes or to genes expressed below the detection level of this study. Conclusions We established a simple and powerful strategy to combine Illumina and 454 reads and we produced, with genome assistance, an extensive and accurate Hydra transcriptome. The comparative analysis of the RNAseq transcriptome with genome-predicted transcriptomes lead to the identification of large populations of novel as well as missing transcripts that might reflect Hydra-specific evolutionary events. PMID:23530871

  10. Time-Course Transcriptome Analysis Reveals Resistance Genes of Panax ginseng Induced by Cylindrocarpon destructans Infection Using RNA-Seq.

    PubMed

    Gao, Yuan; He, Xiaoli; Wu, Bin; Long, Qiliang; Shao, Tianwei; Wang, Zi; Wei, Jianhe; Li, Yong; Ding, Wanlong

    2016-01-01

    Panax ginseng C. A. Meyer is a highly valued medicinal plant. Cylindrocarpon destructans is a destructive pathogen that causes root rot and significantly reduces the quality and yield of P. ginseng. However, an efficient method to control root rot remains unavailable because of insufficient understanding of the molecular mechanism underlying C. destructans-P. ginseng interaction. In this study, C. destructans-induced transcriptomes at different time points were investigated using RNA sequencing (RNA-Seq). De novo assembly produced 73,335 unigenes for the P. ginseng transcriptome after C. destructans infection, in which 3,839 unigenes were up-regulated. Notably, the abundance of the up-regulated unigenes sharply increased at 0.5 d postinoculation to provide effector-triggered immunity. In total, 24 of 26 randomly selected unigenes can be validated using quantitative reverse transcription (qRT)-PCR. Gene ontology enrichment analysis of these unigenes showed that "defense response to fungus", "defense response" and "response to stress" were enriched. In addition, differentially expressed transcription factors involved in the hormone signaling pathways after C. destructans infection were identified. Finally, differentially expressed unigenes involved in reactive oxygen species and ginsenoside biosynthetic pathway during C. destructans infection were indentified. To our knowledge, this study is the first to report on the dynamic transcriptome triggered by C. destructans. These results improve our understanding of disease resistance in P. ginseng and provide a useful resource for quick detection of induced markers in P. ginseng before the comprehensive outbreak of this disease caused by C. destructans.

  11. Effects of Changes in Food Supply at the Time of Sex Differentiation on the Gonadal Transcriptome of Juvenile Fish. Implications for Natural and Farmed Populations

    PubMed Central

    Díaz, Noelia; Ribas, Laia; Piferrer, Francesc

    2014-01-01

    Background Food supply is a major factor influencing growth rates in animals. This has important implications for both natural and farmed fish populations, since food restriction may difficult reproduction. However, a study on the effects of food supply on the development of juvenile gonads has never been transcriptionally described in fish. Methods and Findings This study investigated the consequences of growth on gonadal transcriptome of European sea bass in: 1) 4-month-old sexually undifferentiated fish, comparing the gonads of fish with the highest vs. the lowest growth, to explore a possible link between transcriptome and future sex, and 2) testis from 11-month-old juveniles where growth had been manipulated through changes in food supply. The four groups used were: i) sustained fast growth, ii) sustained slow growth, iii) accelerated growth, iv) decelerated growth. The transcriptome of undifferentiated gonads was not drastically affected by initial natural differences in growth. Further, changes in the expression of genes associated with protein turnover were seen, favoring catabolism in slow-growing fish and anabolism in fast-growing fish. Moreover, while fast-growing fish took energy from glucose, as deduced from the pathways affected and the analysis of protein-protein interactions examined, in slow-growing fish lipid metabolism and gluconeogenesis was favored. Interestingly, the highest transcriptomic differences were found when forcing initially fast-growing fish to decelerate their growth, while accelerating growth of initially slow-growing fish resulted in full transcriptomic convergence with sustained fast-growing fish. Conclusions Food availability during sex differentiation shapes the juvenile testis transcriptome, as evidenced by adaptations to different energy balances. Remarkably, this occurs in absence of major histological changes in the testis. Thus, fish are able to recover transcriptionally their testes if they are provided with enough food supply during sex differentiation; however, an initial fast growth does not represent any advantage in terms of transcriptional fitness if later food becomes scarce. PMID:25340342

  12. Effects of changes in food supply at the time of sex differentiation on the gonadal transcriptome of juvenile fish. Implications for natural and farmed populations.

    PubMed

    Díaz, Noelia; Ribas, Laia; Piferrer, Francesc

    2014-01-01

    Food supply is a major factor influencing growth rates in animals. This has important implications for both natural and farmed fish populations, since food restriction may difficult reproduction. However, a study on the effects of food supply on the development of juvenile gonads has never been transcriptionally described in fish. This study investigated the consequences of growth on gonadal transcriptome of European sea bass in: 1) 4-month-old sexually undifferentiated fish, comparing the gonads of fish with the highest vs. the lowest growth, to explore a possible link between transcriptome and future sex, and 2) testis from 11-month-old juveniles where growth had been manipulated through changes in food supply. The four groups used were: i) sustained fast growth, ii) sustained slow growth, iii) accelerated growth, iv) decelerated growth. The transcriptome of undifferentiated gonads was not drastically affected by initial natural differences in growth. Further, changes in the expression of genes associated with protein turnover were seen, favoring catabolism in slow-growing fish and anabolism in fast-growing fish. Moreover, while fast-growing fish took energy from glucose, as deduced from the pathways affected and the analysis of protein-protein interactions examined, in slow-growing fish lipid metabolism and gluconeogenesis was favored. Interestingly, the highest transcriptomic differences were found when forcing initially fast-growing fish to decelerate their growth, while accelerating growth of initially slow-growing fish resulted in full transcriptomic convergence with sustained fast-growing fish. Food availability during sex differentiation shapes the juvenile testis transcriptome, as evidenced by adaptations to different energy balances. Remarkably, this occurs in absence of major histological changes in the testis. Thus, fish are able to recover transcriptionally their testes if they are provided with enough food supply during sex differentiation; however, an initial fast growth does not represent any advantage in terms of transcriptional fitness if later food becomes scarce.

  13. Heterotroph Interactions Alter Prochlorococcus Transcriptome Dynamics during Extended Periods of Darkness

    PubMed Central

    Coe, Allison; Roggensack, Sara E.

    2018-01-01

    ABSTRACT Microbes evolve within complex ecological communities where biotic interactions impact both individual cells and the environment as a whole. Here we examine how cellular regulation in the marine cyanobacterium Prochlorococcus is influenced by a heterotrophic bacterium, Alteromonas macleodii, under different light conditions. We monitored the transcriptome of Prochlorococcus, grown either alone or in coculture, across a diel light:dark cycle and under the stress of extended darkness—a condition that cells would experience when mixed below the ocean’s euphotic zone. More Prochlorococcus transcripts exhibited 24-h periodic oscillations in coculture than in pure culture, both over the normal diel cycle and after the shift to extended darkness. This demonstrates that biotic interactions, and not just light, can affect timing mechanisms in Prochlorococcus, which lacks a self-sustaining circadian oscillator. The transcriptomes of replicate pure cultures of Prochlorococcus lost their synchrony within 5 h of extended darkness and reflected changes in stress responses and metabolic functions consistent with growth cessation. In contrast, when grown with Alteromonas, replicate Prochlorococcus transcriptomes tracked each other for at least 13 h in the dark and showed signs of continued biosynthetic and metabolic activity. The transcriptome patterns suggest that the heterotroph may be providing energy or essential biosynthetic substrates to Prochlorococcus in the form of organic compounds, sustaining this autotroph when it is deprived of solar energy. Our findings reveal conditions where mixotrophic metabolism may benefit marine cyanobacteria and highlight new impacts of community interactions on basic Prochlorococcus cellular processes. IMPORTANCE Prochlorococcus is the most abundant photosynthetic organism on the planet. These cells play a central role in the physiology of surrounding heterotrophs by supplying them with fixed organic carbon. It is becoming increasingly clear, however, that interactions with heterotrophs can affect autotrophs as well. Here we show that such interactions have a marked impact on the response of Prochlorococcus to the stress of extended periods of darkness, as reflected in transcriptional dynamics. These data suggest that diel transcriptional rhythms within Prochlorococcus, which are generally considered to be strictly under the control of light quantity, quality, and timing, can also be influenced by biotic interactions. Together, these findings provide new insights into the importance of microbial interactions on Prochlorococcus physiology and reveal conditions where heterotroph-derived compounds may support autotrophs—contrary to the canonical autotroph-to-heterotroph trophic paradigm. PMID:29854954

  14. Hepatic Transcriptome Responses in Mice (Mus musculus) Exposed to the Nafion Membrane and Its Combustion Products

    PubMed Central

    Feng, Mingbao; Qu, Ruijuan; Habteselassie, Mussie; Wu, Jun; Yang, Shaogui; Sun, Ping; Huang, Qingguo; Wang, Zunyao

    2015-01-01

    Nafion 117 membrane (N117), an important polymer electrolyte membrane (PEM), has been widely used for numerous chemical technologies. Despite its increasing production and use, the toxicity data for N117 and its combustion products remain lacking. Toxicity studies are necessary to avoid problems related to waste disposal in landfills and incineration that may arise. In this study, we investigated the histopathological alterations, oxidative stress biomarker responses, and transcriptome profiles in the liver of male mice exposed to N117 and its combustion products for 24 days. An ion-chromatography system and liquid chromatography system coupled to a hybrid quadrupole time-of-flight mass spectrometry were used to analyze the chemical compositions of these combustion products. The transcriptomics analysis identified several significantly altered molecular pathways, including the metabolism of xenobiotics, carbohydrates and lipids; signal transduction; cellular processes; immune system; and signaling molecules and interaction. These studies provide preliminary data for the potential toxicity of N117 and its combustion products on living organisms and may fill the information gaps in the toxicity databases for the currently used PEMs. PMID:26057616

  15. [Progress in porky genes and transcriptome and discussion of relative issues].

    PubMed

    Zhu, Meng-Jin; Liu, Bang; Li, Kui

    2005-01-01

    To date, research on molecular base of porky molecular development was mainly involved in muscle growth and meat quality. Some functional genes including Hal gene and RN gene and some QTLs controlling or associated with porky growth and quality were detected through candidate gene approach and genome-wide scanning. Genic transcriptome pertinent to porcine muscle and adipose also came into study. At the same time, these researches have befallen some shortcomings to some extent. Research from molecular quantitative genetics showed shortcomings that single gene was devilishly emphasized and co-expression pattern of multi-genes was ignored. Research applying transcriptome analysis tool also met two of limitations, one was the singleness of type of molecular experimental techniques, and another was that genes of muscle and adipose were artificially divided into unattached two parts. Thus, porky genes were explored by parallel genetics based on systemic views and techniques to specially reveal the interactional mechanism of porky genes respectively controlling muscle and adipose, which would be important issues of genes and genome researches on porky development in the near future.

  16. Decoding the Long Noncoding RNA During Cardiac Maturation: A Roadmap for Functional Discovery.

    PubMed

    Touma, Marlin; Kang, Xuedong; Zhao, Yan; Cass, Ashley A; Gao, Fuying; Biniwale, Reshma; Coppola, Giovanni; Xiao, Xinshu; Reemtsen, Brian; Wang, Yibin

    2016-10-01

    Cardiac maturation during perinatal transition of heart is critical for functional adaptation to hemodynamic load and nutrient environment. Perturbation in this process has major implications in congenital heart defects. Transcriptome programming during perinatal stages is an important information but incomplete in current literature, particularly, the expression profiles of the long noncoding RNAs (lncRNAs) are not fully elucidated. From comprehensive analysis of transcriptomes derived from neonatal mouse heart left and right ventricles, a total of 45 167 unique transcripts were identified, including 21 916 known and 2033 novel lncRNAs. Among these lncRNAs, 196 exhibited significant dynamic regulation along maturation process. By implementing parallel weighted gene co-expression network analysis of mRNA and lncRNA data sets, several lncRNA modules coordinately expressed in a developmental manner similar to protein coding genes, while few lncRNAs revealed chamber-specific patterns. Out of 2262 lncRNAs located within 50 kb of protein coding genes, 5% significantly correlate with the expression of their neighboring genes. The impact of Ppp1r1b-lncRNA on the corresponding partner gene Tcap was validated in cultured myoblasts. This concordant regulation was also conserved in human infantile hearts. Furthermore, the Ppp1r1b-lncRNA/Tcap expression ratio was identified as a molecular signature that differentiated congenital heart defect phenotypes. The study provides the first high-resolution landscape on neonatal cardiac lncRNAs and reveals their potential interaction with mRNA transcriptome during cardiac maturation. Ppp1r1b-lncRNA was identified as a regulator of Tcap expression, with dynamic interaction in postnatal cardiac development and congenital heart defects. © 2016 American Heart Association, Inc.

  17. Genomic identification of WRKY transcription factors in carrot (Daucus carota) and analysis of evolution and homologous groups for plants

    PubMed Central

    Li, Meng-Yao; Xu, Zhi-Sheng; Tian, Chang; Huang, Ying; Wang, Feng; Xiong, Ai-Sheng

    2016-01-01

    WRKY transcription factors belong to one of the largest transcription factor families. These factors possess functions in plant growth and development, signal transduction, and stress response. Here, we identified 95 DcWRKY genes in carrot based on the carrot genomic and transcriptomic data, and divided them into three groups. Phylogenetic analysis of WRKY proteins from carrot and Arabidopsis divided these proteins into seven subgroups. To elucidate the evolution and distribution of WRKY transcription factors in different species, we constructed a schematic of the phylogenetic tree and compared the WRKY family factors among 22 species, which including plants, slime mold and protozoan. An in-depth study was performed to clarify the homologous factor groups of nine divergent taxa in lower and higher plants. Based on the orthologous factors between carrot and Arabidopsis, 38 DcWRKY proteins were calculated to interact with other proteins in the carrot genome. Yeast two-hybrid assay showed that DcWRKY20 can interact with DcMAPK1 and DcMAPK4. The expression patterns of the selected DcWRKY genes based on transcriptome data and qRT-PCR suggested that those selected DcWRKY genes are involved in root development, biotic and abiotic stress response. This comprehensive analysis provides a basis for investigating the evolution and function of WRKY genes. PMID:26975939

  18. Genomic identification of WRKY transcription factors in carrot (Daucus carota) and analysis of evolution and homologous groups for plants.

    PubMed

    Li, Meng-Yao; Xu, Zhi-Sheng; Tian, Chang; Huang, Ying; Wang, Feng; Xiong, Ai-Sheng

    2016-03-15

    WRKY transcription factors belong to one of the largest transcription factor families. These factors possess functions in plant growth and development, signal transduction, and stress response. Here, we identified 95 DcWRKY genes in carrot based on the carrot genomic and transcriptomic data, and divided them into three groups. Phylogenetic analysis of WRKY proteins from carrot and Arabidopsis divided these proteins into seven subgroups. To elucidate the evolution and distribution of WRKY transcription factors in different species, we constructed a schematic of the phylogenetic tree and compared the WRKY family factors among 22 species, which including plants, slime mold and protozoan. An in-depth study was performed to clarify the homologous factor groups of nine divergent taxa in lower and higher plants. Based on the orthologous factors between carrot and Arabidopsis, 38 DcWRKY proteins were calculated to interact with other proteins in the carrot genome. Yeast two-hybrid assay showed that DcWRKY20 can interact with DcMAPK1 and DcMAPK4. The expression patterns of the selected DcWRKY genes based on transcriptome data and qRT-PCR suggested that those selected DcWRKY genes are involved in root development, biotic and abiotic stress response. This comprehensive analysis provides a basis for investigating the evolution and function of WRKY genes.

  19. Transcriptome Analysis of Flounder (Paralichthys olivaceus) Gill in Response to Lymphocystis Disease Virus (LCDV) Infection: Novel Insights into Fish Defense Mechanisms

    PubMed Central

    Wu, Ronghua; Sheng, Xiuzhen; Tang, Xiaoqian; Xing, Jing; Zhan, Wenbin

    2018-01-01

    Lymphocystis disease virus (LCDV) infection may induce a variety of host gene expression changes associated with disease development; however, our understanding of the molecular mechanisms underlying host-virus interactions is limited. In this study, RNA sequencing (RNA-seq) was employed to investigate differentially expressed genes (DEGs) in the gill of the flounder (Paralichthys olivaceus) at one week post LCDV infection. Transcriptome sequencing of the gill with and without LCDV infection was performed using the Illumina HiSeq 2500 platform. In total, RNA-seq analysis generated 193,225,170 clean reads aligned with 106,293 unigenes. Among them, 1812 genes were up-regulated and 1626 genes were down-regulated after LCDV infection. The DEGs related to cellular process and metabolism occupied the dominant position involved in the LCDV infection. A further function analysis demonstrated that the genes related to inflammation, the ubiquitin-proteasome pathway, cell proliferation, apoptosis, tumor formation, and anti-viral defense showed a differential expression. Several DEGs including β actin, toll-like receptors, cytokine-related genes, antiviral related genes, and apoptosis related genes were involved in LCDV entry and immune response. In addition, RNA-seq data was validated by quantitative real-time PCR. For the first time, the comprehensive gene expression study provided valuable insights into the host-pathogen interaction between flounder and LCDV. PMID:29304016

  20. Transcriptome Analysis of Flounder (Paralichthys olivaceus) Gill in Response to Lymphocystis Disease Virus (LCDV) Infection: Novel Insights into Fish Defense Mechanisms.

    PubMed

    Wu, Ronghua; Sheng, Xiuzhen; Tang, Xiaoqian; Xing, Jing; Zhan, Wenbin

    2018-01-05

    Lymphocystis disease virus (LCDV) infection may induce a variety of host gene expression changes associated with disease development; however, our understanding of the molecular mechanisms underlying host-virus interactions is limited. In this study, RNA sequencing (RNA-seq) was employed to investigate differentially expressed genes (DEGs) in the gill of the flounder ( Paralichthys olivaceus ) at one week post LCDV infection. Transcriptome sequencing of the gill with and without LCDV infection was performed using the Illumina HiSeq 2500 platform. In total, RNA-seq analysis generated 193,225,170 clean reads aligned with 106,293 unigenes. Among them, 1812 genes were up-regulated and 1626 genes were down-regulated after LCDV infection. The DEGs related to cellular process and metabolism occupied the dominant position involved in the LCDV infection. A further function analysis demonstrated that the genes related to inflammation, the ubiquitin-proteasome pathway, cell proliferation, apoptosis, tumor formation, and anti-viral defense showed a differential expression. Several DEGs including β actin , toll-like receptors, cytokine-related genes, antiviral related genes, and apoptosis related genes were involved in LCDV entry and immune response. In addition, RNA-seq data was validated by quantitative real-time PCR. For the first time, the comprehensive gene expression study provided valuable insights into the host-pathogen interaction between flounder and LCDV.

  1. Transcriptomic Analysis of Paulownia Infected by Paulownia Witches'-Broom Phytoplasma

    PubMed Central

    Zhu, Shui-Fang; Lin, Cai-Li; Tian, Guo-Zhong; Xu, Xia; Zhao, Wen-Jun

    2013-01-01

    Phytoplasmas are plant pathogenic bacteria that have no cell wall and are responsible for major crop losses throughout the world. Phytoplasma-infected plants show a variety of symptoms and the mechanisms they use to physiologically alter the host plants are of considerable interest, but poorly understood. In this study we undertook a detailed analysis of Paulownia infected by Paulownia witches’-broom (PaWB) Phytoplasma using high-throughput mRNA sequencing (RNA-Seq) and digital gene expression (DGE). RNA-Seq analysis identified 74,831 unigenes, which were subsequently used as reference sequences for DGE analysis of diseased and healthy Paulownia in field grown and tissue cultured plants. Our study revealed that dramatic changes occurred in the gene expression profile of Paulownia after PaWB Phytoplasma infection. Genes encoding key enzymes in cytokinin biosynthesis, such as isopentenyl diphosphate isomerase and isopentenyltransferase, were significantly induced in the infected Paulownia. Genes involved in cell wall biosynthesis and degradation were largely up-regulated and genes related to photosynthesis were down-regulated after PaWB Phytoplasma infection. Our systematic analysis provides comprehensive transcriptomic data about plants infected by Phytoplasma. This information will help further our understanding of the detailed interaction mechanisms between plants and Phytoplasma. PMID:24130859

  2. Cell Division in genus Corynebacterium: protein-protein interaction and molecular docking of SepF and FtsZ in the understanding of cytokinesis in pathogenic species.

    PubMed

    Oliveira, Alberto F; Folador, Edson L; Gomide, Anne C P; Goes-Neto, Aristóteles; Azevedo, Vasco A C; Wattam, Alice R

    2018-02-15

    The genus Corynebacterium includes species of great importance in medical, veterinary and biotechnological fields. The genus-specific families (PLfams) from PATRIC have been used to observe conserved proteins associated to all species. Our results showed a large number of conserved proteins that are associated with the cellular division process. Was not observe in our results other proteins like FtsA and ZapA that interact with FtsZ. Our findings point that SepF overlaps the function of this proteins explored by molecular docking, protein-protein interaction and sequence analysis. Transcriptomic analysis showed that these two (Sepf and FtsZ) proteins can be expressed in different conditions together. The work presents novelties on molecules participating in the cell division event, from the interaction of FtsZ and SepF, as new therapeutic targets.

  3. Poplar trees reconfigure the transcriptome and metabolome in response to drought in a genotype- and time-of-day-dependent manner.

    PubMed

    Hamanishi, Erin T; Barchet, Genoa L H; Dauwe, Rebecca; Mansfield, Shawn D; Campbell, Malcolm M

    2015-04-21

    Drought has a major impact on tree growth and survival. Understanding tree responses to this stress can have important application in both conservation of forest health, and in production forestry. Trees of the genus Populus provide an excellent opportunity to explore the mechanistic underpinnings of forest tree drought responses, given the growing molecular resources that are available for this taxon. Here, foliar tissue of six water-deficit stressed P. balsamifera genotypes was analysed for variation in the metabolome in response to drought and time of day by using an untargeted metabolite profiling technique, gas chromatography/mass-spectrometry (GC/MS). Significant variation in the metabolome was observed in response the imposition of water-deficit stress. Notably, organic acid intermediates such as succinic and malic acid had lower concentrations in leaves exposed to drought, whereas galactinol and raffinose were found in increased concentrations. A number of metabolites with significant difference in accumulation under water-deficit conditions exhibited intraspecific variation in metabolite accumulation. Large magnitude fold-change accumulation was observed in three of the six genotypes. In order to understand the interaction between the transcriptome and metabolome, an integrated analysis of the drought-responsive transcriptome and the metabolome was performed. One P. balsamifera genotype, AP-1006, demonstrated a lack of congruence between the magnitude of the drought transcriptome response and the magnitude of the metabolome response. More specifically, metabolite profiles in AP-1006 demonstrated the smallest changes in response to water-deficit conditions. Pathway analysis of the transcriptome and metabolome revealed specific genotypic responses with respect to primary sugar accumulation, citric acid metabolism, and raffinose family oligosaccharide biosynthesis. The intraspecific variation in the molecular strategies that underpin the responses to drought among genotypes may have an important role in the maintenance of forest health and productivity.

  4. The Rhizoctonia solani AG1-IB (isolate 7/3/14) transcriptome during interaction with the host plant lettuce (Lactuca sativa L.).

    PubMed

    Verwaaijen, Bart; Wibberg, Daniel; Kröber, Magdalena; Winkler, Anika; Zrenner, Rita; Bednarz, Hanna; Niehaus, Karsten; Grosch, Rita; Pühler, Alfred; Schlüter, Andreas

    2017-01-01

    The necrotrophic pathogen Rhizoctonia solani is one of the most economically important soil-borne pathogens of crop plants. Isolates of R. solani AG1-IB are the major pathogens responsible for bottom-rot of lettuce (Lactuca sativa L.) and are also responsible for diseases in other plant species. Currently, there is lack of information regarding the molecular responses in R. solani during the pathogenic interaction between the necrotrophic soil-borne pathogen and its host plant. The genome of R. solani AG1-IB (isolate 7/3/14) was recently established to obtain insights into its putative pathogenicity determinants. In this study, the transcriptional activity of R. solani AG1-IB was followed during the course of its pathogenic interaction with the host plant lettuce under controlled conditions. Based on visual observations, three distinct pathogen-host interaction zones on lettuce leaves were defined which covered different phases of disease progression on tissue inoculated with the AG1-IB (isolate 7/3/14). The zones were defined as: Zone 1-symptomless, Zone 2-light brown discoloration, and Zone 3-dark brown, necrotic lesions. Differences in R. solani hyphae structure in these three zones were investigated by microscopic observation. Transcriptional activity within these three interaction zones was used to represent the course of R. solani disease progression applying high-throughput RNA sequencing (RNA-Seq) analysis of samples collected from each Zone. The resulting three transcriptome data sets were analyzed for their highest expressed genes and for differentially transcribed genes between the respective interaction zones. Among the highest expressed genes was a group of not previously described genes which were transcribed exclusively during early stages of interaction, in Zones 1 and 2. Previously described importance of up-regulation in R. solani agglutinin genes during disease progression could be further confirmed; here, the corresponding genes exhibited extremely high transcription levels. Most differentially higher expressed transcripts were found within Zone 2. In Zone 3, the zone with the strongest degree of interaction, gene transcripts indicative of apoptotic activity were highly abundant. The transcriptome data presented in this work support previous models of the disease and interaction cycle of R. solani and lettuce and may influence effective techniques for control of this pathogen.

  5. Transcriptator: An Automated Computational Pipeline to Annotate Assembled Reads and Identify Non Coding RNA.

    PubMed

    Tripathi, Kumar Parijat; Evangelista, Daniela; Zuccaro, Antonio; Guarracino, Mario Rosario

    2015-01-01

    RNA-seq is a new tool to measure RNA transcript counts, using high-throughput sequencing at an extraordinary accuracy. It provides quantitative means to explore the transcriptome of an organism of interest. However, interpreting this extremely large data into biological knowledge is a problem, and biologist-friendly tools are lacking. In our lab, we developed Transcriptator, a web application based on a computational Python pipeline with a user-friendly Java interface. This pipeline uses the web services available for BLAST (Basis Local Search Alignment Tool), QuickGO and DAVID (Database for Annotation, Visualization and Integrated Discovery) tools. It offers a report on statistical analysis of functional and Gene Ontology (GO) annotation's enrichment. It helps users to identify enriched biological themes, particularly GO terms, pathways, domains, gene/proteins features and protein-protein interactions related informations. It clusters the transcripts based on functional annotations and generates a tabular report for functional and gene ontology annotations for each submitted transcript to the web server. The implementation of QuickGo web-services in our pipeline enable the users to carry out GO-Slim analysis, whereas the integration of PORTRAIT (Prediction of transcriptomic non coding RNA (ncRNA) by ab initio methods) helps to identify the non coding RNAs and their regulatory role in transcriptome. In summary, Transcriptator is a useful software for both NGS and array data. It helps the users to characterize the de-novo assembled reads, obtained from NGS experiments for non-referenced organisms, while it also performs the functional enrichment analysis of differentially expressed transcripts/genes for both RNA-seq and micro-array experiments. It generates easy to read tables and interactive charts for better understanding of the data. The pipeline is modular in nature, and provides an opportunity to add new plugins in the future. Web application is freely available at: http://www-labgtp.na.icar.cnr.it/Transcriptator.

  6. The prediction of a pathogenesis-related secretome of Puccinia helianthi through high-throughput transcriptome analysis.

    PubMed

    Jing, Lan; Guo, Dandan; Hu, Wenjie; Niu, Xiaofan

    2017-03-11

    Many plant pathogen secretory proteins are known to be elicitors or pathogenic factors,which play an important role in the host-pathogen interaction process. Bioinformatics approaches make possible the large scale prediction and analysis of secretory proteins from the Puccinia helianthi transcriptome. The internet-based software SignalP v4.1, TargetP v1.01, Big-PI predictor, TMHMM v2.0 and ProtComp v9.0 were utilized to predict the signal peptides and the signal peptide-dependent secreted proteins among the 35,286 ORFs of the P. helianthi transcriptome. 908 ORFs (accounting for 2.6% of the total proteins) were identified as putative secretory proteins containing signal peptides. The length of the majority of proteins ranged from 51 to 300 amino acids (aa), while the signal peptides were from 18 to 20 aa long. Signal peptidase I (SpI) cleavage sites were found in 463 of these putative secretory signal peptides. 55 proteins contained the lipoprotein signal peptide recognition site of signal peptidase II (SpII). Out of 908 secretory proteins, 581 (63.8%) have functions related to signal recognition and transduction, metabolism, transport and catabolism. Additionally, 143 putative secretory proteins were categorized into 27 functional groups based on Gene Ontology terms, including 14 groups in biological process, seven in cellular component, and six in molecular function. Gene ontology analysis of the secretory proteins revealed an enrichment of hydrolase activity. Pathway associations were established for 82 (9.0%) secretory proteins. A number of cell wall degrading enzymes and three homologous proteins specific to Phytophthora sojae effectors were also identified, which may be involved in the pathogenicity of the sunflower rust pathogen. This investigation proposes a new approach for identifying elicitors and pathogenic factors. The eventual identification and characterization of 908 extracellularly secreted proteins will advance our understanding of the molecular mechanisms of interactions between sunflower and rust pathogen and will enhance our ability to intervene in disease states.

  7. Single cell dual adherent-suspension co-culture micro-environment for studying tumor-stromal interactions with functionally selected cancer stem-like cells.

    PubMed

    Chen, Yu-Chih; Zhang, Zhixiong; Fouladdel, Shamileh; Deol, Yadwinder; Ingram, Patrick N; McDermott, Sean P; Azizi, Ebrahim; Wicha, Max S; Yoon, Euisik

    2016-08-07

    Considerable evidence suggests that cancer stem-like cells (CSCs) are critical in tumor pathogenesis, but their rarity and transience has led to much controversy about their exact nature. Although CSCs can be functionally identified using dish-based tumorsphere assays, it is difficult to handle and monitor single cells in dish-based approaches; single cell-based microfluidic approaches offer better control and reliable single cell derived sphere formation. However, like normal stem cells, CSCs are heavily regulated by their microenvironment, requiring tumor-stromal interactions for tumorigenic and proliferative behaviors. To enable single cell derived tumorsphere formation within a stromal microenvironment, we present a dual adherent/suspension co-culture device, which combines a suspension environment for single-cell tumorsphere assays and an adherent environment for co-culturing stromal cells in close proximity by selectively patterning polyHEMA in indented microwells. By minimizing dead volume and improving cell capture efficiency, the presented platform allows for the use of small numbers of cells (<100 cells). As a proof of concept, we co-cultured single T47D (breast cancer) cells and primary cancer associated fibroblasts (CAF) on-chip for 14 days to monitor sphere formation and growth. Compared to mono-culture, co-cultured T47D have higher tumorigenic potential (sphere formation rate) and proliferation rates (larger sphere size). Furthermore, 96-multiplexed single-cell transcriptome analyses were performed to compare the gene expression of co-cultured and mono-cultured T47D cells. Phenotypic changes observed in co-culture correlated with expression changes in genes associated with proliferation, apoptotic suppression, tumorigenicity and even epithelial-to-mesechymal transition. Combining the presented platform with single cell transcriptome analysis, we successfully identified functional CSCs and investigated the phenotypic and transcriptome effects induced by tumor-stromal interactions.

  8. Transcriptome comparison and gene coexpression network analysis provide a systems view of citrus response to ‘Candidatus Liberibacter asiaticus’ infection

    PubMed Central

    2013-01-01

    Background Huanglongbing (HLB) is arguably the most destructive disease for the citrus industry. HLB is caused by infection of the bacterium, Candidatus Liberibacter spp. Several citrus GeneChip studies have revealed thousands of genes that are up- or down-regulated by infection with Ca. Liberibacter asiaticus. However, whether and how these host genes act to protect against HLB remains poorly understood. Results As a first step towards a mechanistic view of citrus in response to the HLB bacterial infection, we performed a comparative transcriptome analysis and found that a total of 21 Probesets are commonly up-regulated by the HLB bacterial infection. In addition, a number of genes are likely regulated specifically at early, late or very late stages of the infection. Furthermore, using Pearson correlation coefficient-based gene coexpression analysis, we constructed a citrus HLB response network consisting of 3,507 Probesets and 56,287 interactions. Genes involved in carbohydrate and nitrogen metabolic processes, transport, defense, signaling and hormone response were overrepresented in the HLB response network and the subnetworks for these processes were constructed. Analysis of the defense and hormone response subnetworks indicates that hormone response is interconnected with defense response. In addition, mapping the commonly up-regulated HLB responsive genes into the HLB response network resulted in a core subnetwork where transport plays a key role in the citrus response to the HLB bacterial infection. Moreover, analysis of a phloem protein subnetwork indicates a role for this protein and zinc transporters or zinc-binding proteins in the citrus HLB defense response. Conclusion Through integrating transcriptome comparison and gene coexpression network analysis, we have provided for the first time a systems view of citrus in response to the Ca. Liberibacter spp. infection causing HLB. PMID:23324561

  9. The transcriptomic and evolutionary signature of social interactions regulating honey bee caste development.

    USDA-ARS?s Scientific Manuscript database

    The caste fate of developing female honey bee larvae is strictly socially regulated by adult nurse workers. As a result of this social regulation, nurse-expressed genes as well as larval-expressed genes may affect caste expression and evolution. We used a novel transcriptomic approach to identify ge...

  10. A genome resource to address mechanisms of developmental programming: determination of the fetal sheep heart transcriptome.

    PubMed

    Cox, Laura A; Glenn, Jeremy P; Spradling, Kimberly D; Nijland, Mark J; Garcia, Roy; Nathanielsz, Peter W; Ford, Stephen P

    2012-06-15

    The pregnant sheep has provided seminal insights into reproduction related to animal and human development (ovarian function, fertility, implantation, fetal growth, parturition and lactation). Fetal sheep physiology has been extensively studied since 1950, contributing significantly to the basis for our understanding of many aspects of fetal development and behaviour that remain in use in clinical practice today. Understanding mechanisms requires the combination of systems approaches uniquely available in fetal sheep with the power of genomic studies. Absence of the full range of sheep genomic resources has limited the full realization of the power of this model, impeding progress in emerging areas of pregnancy biology such as developmental programming. We have examined the expressed fetal sheep heart transcriptome using high-throughput sequencing technologies. In so doing we identified 36,737 novel transcripts and describe genes, gene variants and pathways relevant to fundamental developmental mechanisms. Genes with the highest expression levels and with novel exons in the fetal heart transcriptome are known to play central roles in muscle development. We show that high-throughput sequencing methods can generate extensive transcriptome information in the absence of an assembled and annotated genome for that species. The gene sequence data obtained provide a unique genomic resource for sheep specific genetic technology development and, combined with the polymorphism data, augment annotation and assembly of the sheep genome. In addition, identification and pathway analysis of novel fetal sheep heart transcriptome splice variants is a first step towards revealing mechanisms of genetic variation and gene environment interactions during fetal heart development.

  11. A genome resource to address mechanisms of developmental programming: determination of the fetal sheep heart transcriptome

    PubMed Central

    Cox, Laura A; Glenn, Jeremy P; Spradling, Kimberly D; Nijland, Mark J; Garcia, Roy; Nathanielsz, Peter W; Ford, Stephen P

    2012-01-01

    The pregnant sheep has provided seminal insights into reproduction related to animal and human development (ovarian function, fertility, implantation, fetal growth, parturition and lactation). Fetal sheep physiology has been extensively studied since 1950, contributing significantly to the basis for our understanding of many aspects of fetal development and behaviour that remain in use in clinical practice today. Understanding mechanisms requires the combination of systems approaches uniquely available in fetal sheep with the power of genomic studies. Absence of the full range of sheep genomic resources has limited the full realization of the power of this model, impeding progress in emerging areas of pregnancy biology such as developmental programming. We have examined the expressed fetal sheep heart transcriptome using high-throughput sequencing technologies. In so doing we identified 36,737 novel transcripts and describe genes, gene variants and pathways relevant to fundamental developmental mechanisms. Genes with the highest expression levels and with novel exons in the fetal heart transcriptome are known to play central roles in muscle development. We show that high-throughput sequencing methods can generate extensive transcriptome information in the absence of an assembled and annotated genome for that species. The gene sequence data obtained provide a unique genomic resource for sheep specific genetic technology development and, combined with the polymorphism data, augment annotation and assembly of the sheep genome. In addition, identification and pathway analysis of novel fetal sheep heart transcriptome splice variants is a first step towards revealing mechanisms of genetic variation and gene environment interactions during fetal heart development. PMID:22508961

  12. Transcriptome, antioxidant enzyme activity and histopathology analysis of hepatopancreas from the white shrimp Litopenaeus vannamei fed with aflatoxin B1(AFB1).

    PubMed

    Zhao, Wei; Wang, Lei; Liu, Mei; Jiang, Keyong; Wang, Mengqiang; Yang, Guang; Qi, Cancan; Wang, Baojie

    2017-09-01

    Aflatoxin produced by Aspergillus flavus or Aspergillus parasiticus fungi during grain and feed processing and storage. Aflatoxins cause severe health problems reducing the yield and profitability of shrimp cultures. We sought to understand the interaction between shrimp immunity and aflatoxin B1 (AFB1), analyzing transcriptome expression, antioxidant enzyme activity, and histological features of the hepatopancreas of shrimp fed with AFB1. From over 4 million high-quality reads, de novo unigene assembly produced 103,644 fully annotated genes. A total of 1024 genes were differentially expressed in shrimp fed with AFB1, being involved in functions, such as peroxidase metabolism, signal transduction, transcriptional control, apoptosis, proteolysis, endocytosis, and cell adhesion and cell junction. Upon AFB1 challenge, there were severe histological alterations in shrimp hepatopancreas. AFB1 challenge increased the activity of several antioxidant enzymes. Our data contribute to improve the current understanding of host-AFB1 interaction, providing an abundant source for identification of novel genes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Predicted Arabidopsis Interactome Resource and Gene Set Linkage Analysis: A Transcriptomic Analysis Resource.

    PubMed

    Yao, Heng; Wang, Xiaoxuan; Chen, Pengcheng; Hai, Ling; Jin, Kang; Yao, Lixia; Mao, Chuanzao; Chen, Xin

    2018-05-01

    An advanced functional understanding of omics data is important for elucidating the design logic of physiological processes in plants and effectively controlling desired traits in plants. We present the latest versions of the Predicted Arabidopsis Interactome Resource (PAIR) and of the gene set linkage analysis (GSLA) tool, which enable the interpretation of an observed transcriptomic change (differentially expressed genes [DEGs]) in Arabidopsis ( Arabidopsis thaliana ) with respect to its functional impact for biological processes. PAIR version 5.0 integrates functional association data between genes in multiple forms and infers 335,301 putative functional interactions. GSLA relies on this high-confidence inferred functional association network to expand our perception of the functional impacts of an observed transcriptomic change. GSLA then interprets the biological significance of the observed DEGs using established biological concepts (annotation terms), describing not only the DEGs themselves but also their potential functional impacts. This unique analytical capability can help researchers gain deeper insights into their experimental results and highlight prospective directions for further investigation. We demonstrate the utility of GSLA with two case studies in which GSLA uncovered how molecular events may have caused physiological changes through their collective functional influence on biological processes. Furthermore, we showed that typical annotation-enrichment tools were unable to produce similar insights to PAIR/GSLA. The PAIR version 5.0-inferred interactome and GSLA Web tool both can be accessed at http://public.synergylab.cn/pair/. © 2018 American Society of Plant Biologists. All Rights Reserved.

  14. Genome-wide comparative transcriptome analysis of CMS-D2 and its maintainer and restorer lines in upland cotton.

    PubMed

    Wu, Jianyong; Zhang, Meng; Zhang, Bingbing; Zhang, Xuexian; Guo, Liping; Qi, Tingxiang; Wang, Hailin; Zhang, Jinfa; Xing, Chaozhu

    2017-06-08

    Cytoplasmic male sterility (CMS) conferred by the cytoplasm from Gossypium harknessii (D2) is an important system for hybrid seed production in Upland cotton (G. hirsutum). The male sterility of CMS-D2 (i.e., A line) can be restored to fertility by a restorer (i.e., R line) carrying the restorer gene Rf1 transferred from the D2 nuclear genome. However, the molecular mechanisms of CMS-D2 and its restoration are poorly understood. In this study, a genome-wide comparative transcriptome analysis was performed to identify differentially expressed genes (DEGs) in flower buds among the isogenic fertile R line and sterile A line derived from a backcross population (BC 8 F 1 ) and the recurrent parent, i.e., the maintainer (B line). A total of 1464 DEGs were identified among the three isogenic lines, and the Rf1-carrying Chr_D05 and its homeologous Chr_A05 had more DEGs than other chromosomes. The results of GO and KEGG enrichment analysis showed differences in circadian rhythm between the fertile and sterile lines. Eleven DEGs were selected for validation using qRT-PCR, confirming the accuracy of the RNA-seq results. Through genome-wide comparative transcriptome analysis, the differential expression profiles of CMS-D2 and its maintainer and restorer lines in Upland cotton were identified. Our results provide an important foundation for further studies into the molecular mechanisms of the interactions between the restorer gene Rf1 and the CMS-D2 cytoplasm.

  15. Comparative analysis of chrysanthemum transcriptome in response to three RNA viruses: Cucumber mosaic virus, Tomato spotted wilt virus and Potato virus X.

    PubMed

    Choi, Hoseong; Jo, Yeonhwa; Lian, Sen; Jo, Kyoung-Min; Chu, Hyosub; Yoon, Ju-Yeon; Choi, Seung-Kook; Kim, Kook-Hyung; Cho, Won Kyong

    2015-06-01

    The chrysanthemum is one of popular flowers in the world and a host for several viruses. So far, molecular interaction studies between the chrysanthemum and viruses are limited. In this study, we carried out a transcriptome analysis of chrysanthemum in response to three different viruses including Cucumber mosaic virus (CMV), Tomato spotted wilt virus (TSWV) and Potato virus X (PVX). A chrysanthemum 135K microarray derived from expressed sequence tags was successfully applied for the expression profiles of the chrysanthemum at early stage of virus infection. Finally, we identified a total of 125, 70 and 124 differentially expressed genes (DEGs) for CMV, TSWV and PVX, respectively. Many DEGs were virus specific; however, 33 DEGs were commonly regulated by three viruses. Gene ontology (GO) enrichment analysis identified a total of 132 GO terms, and of them, six GO terms related stress response and MCM complex were commonly identified for three viruses. Several genes functioning in stress response such as chitin response and ethylene mediated signaling pathway were up-regulated indicating their involvement in establishment of host immune system. In particular, TSWV infection significantly down-regulated genes related to DNA metabolic process including DNA replication, chromatin organization, histone modification and cytokinesis, and they are mostly targeted to nucleosome and MCM complex. Taken together, our comparative transcriptome analysis revealed several genes related to hormone mediated viral stress response and DNA modification. The identified chrysanthemums genes could be good candidates for further functional study associated with resistant to various plant viruses.

  16. A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates.

    PubMed

    Plouhinec, Jean-Louis; Medina-Ruiz, Sofía; Borday, Caroline; Bernard, Elsa; Vert, Jean-Philippe; Eisen, Michael B; Harland, Richard M; Monsoro-Burq, Anne H

    2017-10-01

    During vertebrate neurulation, the embryonic ectoderm is patterned into lineage progenitors for neural plate, neural crest, placodes and epidermis. Here, we use Xenopus laevis embryos to analyze the spatial and temporal transcriptome of distinct ectodermal domains in the course of neurulation, during the establishment of cell lineages. In order to define the transcriptome of small groups of cells from a single germ layer and to retain spatial information, dorsal and ventral ectoderm was subdivided along the anterior-posterior and medial-lateral axes by microdissections. Principal component analysis on the transcriptomes of these ectoderm fragments primarily identifies embryonic axes and temporal dynamics. This provides a genetic code to define positional information of any ectoderm sample along the anterior-posterior and dorsal-ventral axes directly from its transcriptome. In parallel, we use nonnegative matrix factorization to predict enhanced gene expression maps onto early and mid-neurula embryos, and specific signatures for each ectoderm area. The clustering of spatial and temporal datasets allowed detection of multiple biologically relevant groups (e.g., Wnt signaling, neural crest development, sensory placode specification, ciliogenesis, germ layer specification). We provide an interactive network interface, EctoMap, for exploring synexpression relationships among genes expressed in the neurula, and suggest several strategies to use this comprehensive dataset to address questions in developmental biology as well as stem cell or cancer research.

  17. Transcriptome changes associated with Tomato spotted wilt virus infection in various life stages of its thrips vector, Frankliniella fusca (Hinds).

    PubMed

    Shrestha, Anita; Champagne, Donald E; Culbreath, Albert K; Rotenberg, Dorith; Whitfield, Anna E; Srinivasan, Rajagopalbabu

    2017-08-01

    Persistent propagative viruses maintain intricate interactions with their arthropod vectors. In this study, we investigated the transcriptome-level responses associated with a persistent propagative phytovirus infection in various life stages of its vector using an Illumina HiSeq sequencing platform. The pathosystem components included a Tospovirus, Tomato spotted wilt virus (TSWV), its insect vector, Frankliniella fusca (Hinds), and a plant host, Arachis hypogaea (L.). We assembled (de novo) reads from three developmental stage groups of virus-exposed and non-virus-exposed F. fusca into one transcriptome consisting of 72 366 contigs and identified 1161 differentially expressed (DE) contigs. The number of DE contigs was greatest in adults (female) (562) when compared with larvae (first and second instars) (395) and pupae (pre- and pupae) (204). Upregulated contigs in virus-exposed thrips had blastx annotations associated with intracellular transport and virus replication. Upregulated contigs were also assigned blastx annotations associated with immune responses, including apoptosis and phagocytosis. In virus-exposed larvae, Blast2GO analysis identified functional groups, such as multicellular development with downregulated contigs, while reproduction, embryo development and growth were identified with upregulated contigs in virus-exposed adults. This study provides insights into differences in transcriptome-level responses modulated by TSWV in various life stages of an important vector, F. fusca.

  18. A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates

    PubMed Central

    Borday, Caroline; Bernard, Elsa; Vert, Jean-Philippe; Eisen, Michael B.; Harland, Richard M.

    2017-01-01

    During vertebrate neurulation, the embryonic ectoderm is patterned into lineage progenitors for neural plate, neural crest, placodes and epidermis. Here, we use Xenopus laevis embryos to analyze the spatial and temporal transcriptome of distinct ectodermal domains in the course of neurulation, during the establishment of cell lineages. In order to define the transcriptome of small groups of cells from a single germ layer and to retain spatial information, dorsal and ventral ectoderm was subdivided along the anterior-posterior and medial-lateral axes by microdissections. Principal component analysis on the transcriptomes of these ectoderm fragments primarily identifies embryonic axes and temporal dynamics. This provides a genetic code to define positional information of any ectoderm sample along the anterior-posterior and dorsal-ventral axes directly from its transcriptome. In parallel, we use nonnegative matrix factorization to predict enhanced gene expression maps onto early and mid-neurula embryos, and specific signatures for each ectoderm area. The clustering of spatial and temporal datasets allowed detection of multiple biologically relevant groups (e.g., Wnt signaling, neural crest development, sensory placode specification, ciliogenesis, germ layer specification). We provide an interactive network interface, EctoMap, for exploring synexpression relationships among genes expressed in the neurula, and suggest several strategies to use this comprehensive dataset to address questions in developmental biology as well as stem cell or cancer research. PMID:29049289

  19. Transcriptome analysis reveals the same 17 S-locus F-box genes in two haplotypes of the self-incompatibility locus of Petunia inflata.

    PubMed

    Williams, Justin S; Der, Joshua P; dePamphilis, Claude W; Kao, Teh-Hui

    2014-07-01

    Petunia possesses self-incompatibility, by which pistils reject self-pollen but accept non-self-pollen for fertilization. Self-/non-self-recognition between pollen and pistil is regulated by the pistil-specific S-RNase gene and by multiple pollen-specific S-locus F-box (SLF) genes. To date, 10 SLF genes have been identified by various methods, and seven have been shown to be involved in pollen specificity. For a given S-haplotype, each SLF interacts with a subset of its non-self S-RNases, and an as yet unknown number of SLFs are thought to collectively mediate ubiquitination and degradation of all non-self S-RNases to allow cross-compatible pollination. To identify a complete suite of SLF genes of P. inflata, we used a de novo RNA-seq approach to analyze the pollen transcriptomes of S2-haplotype and S3-haplotype, as well as the leaf transcriptome of the S3S3 genotype. We searched for genes that fit several criteria established from the properties of the known SLF genes and identified the same seven new SLF genes in S2-haplotype and S3-haplotype, suggesting that a total of 17 SLF genes constitute pollen specificity in each S-haplotype. This finding lays the foundation for understanding how multiple SLF genes evolved and the biochemical basis for differential interactions between SLF proteins and S-RNases. © 2014 American Society of Plant Biologists. All rights reserved.

  20. Preliminary profiling of blood transcriptome in a rat model of hemorrhagic shock

    PubMed Central

    Braga, D; Barcella, M; D’Avila, F; Lupoli, S; Tagliaferri, F; Santamaria, MH; DeLano, FA; Baselli, G; Schmid-Schönbein, GW; Kistler, EB; Aletti, F

    2017-01-01

    Hemorrhagic shock is a leading cause of morbidity and mortality worldwide. Significant blood loss may lead to decreased blood pressure and inadequate tissue perfusion with resultant organ failure and death, even after replacement of lost blood volume. One reason for this high acuity is that the fundamental mechanisms of shock are poorly understood. Proteomic and metabolomic approaches have been used to investigate the molecular events occurring in hemorrhagic shock but, to our knowledge, a systematic analysis of the transcriptomic profile is missing. Therefore, a pilot analysis using paired-end RNA sequencing was used to identify changes that occur in the blood transcriptome of rats subjected to hemorrhagic shock after blood reinfusion. Hemorrhagic shock was induced using a Wigger’s shock model. The transcriptome of whole blood from shocked animals shows modulation of genes related to inflammation and immune response (Tlr13, Il1b, Ccl6, Lgals3), antioxidant functions (Mt2A, Mt1), tissue injury and repair pathways (Gpnmb, Trim72) and lipid mediators (Alox5ap, Ltb4r, Ptger2) compared with control animals. These findings are congruent with results obtained in hemorrhagic shock analysis by other authors using metabolomics and proteomics. The analysis of blood transcriptome may be a valuable tool to understand the biological changes occurring in hemorrhagic shock and a promising approach for the identification of novel biomarkers and therapeutic targets. Impact statement This study provides the first pilot analysis of the changes occurring in transcriptome expression of whole blood in hemorrhagic shock (HS) rats. We showed that the analysis of blood transcriptome is a useful approach to investigate pathways and functional alterations in this disease condition. This pilot study encourages the possible application of transcriptome analysis in the clinical setting, for the molecular profiling of whole blood in HS patients. PMID:28661205

  1. N-of-1-pathways MixEnrich: advancing precision medicine via single-subject analysis in discovering dynamic changes of transcriptomes.

    PubMed

    Li, Qike; Schissler, A Grant; Gardeux, Vincent; Achour, Ikbel; Kenost, Colleen; Berghout, Joanne; Li, Haiquan; Zhang, Hao Helen; Lussier, Yves A

    2017-05-24

    Transcriptome analytic tools are commonly used across patient cohorts to develop drugs and predict clinical outcomes. However, as precision medicine pursues more accurate and individualized treatment decisions, these methods are not designed to address single-patient transcriptome analyses. We previously developed and validated the N-of-1-pathways framework using two methods, Wilcoxon and Mahalanobis Distance (MD), for personal transcriptome analysis derived from a pair of samples of a single patient. Although, both methods uncover concordantly dysregulated pathways, they are not designed to detect dysregulated pathways with up- and down-regulated genes (bidirectional dysregulation) that are ubiquitous in biological systems. We developed N-of-1-pathways MixEnrich, a mixture model followed by a gene set enrichment test, to uncover bidirectional and concordantly dysregulated pathways one patient at a time. We assess its accuracy in a comprehensive simulation study and in a RNA-Seq data analysis of head and neck squamous cell carcinomas (HNSCCs). In presence of bidirectionally dysregulated genes in the pathway or in presence of high background noise, MixEnrich substantially outperforms previous single-subject transcriptome analysis methods, both in the simulation study and the HNSCCs data analysis (ROC Curves; higher true positive rates; lower false positive rates). Bidirectional and concordant dysregulated pathways uncovered by MixEnrich in each patient largely overlapped with the quasi-gold standard compared to other single-subject and cohort-based transcriptome analyses. The greater performance of MixEnrich presents an advantage over previous methods to meet the promise of providing accurate personal transcriptome analysis to support precision medicine at point of care.

  2. Hha has a defined regulatory role that is not dependent upon H-NS or StpA

    PubMed Central

    Solórzano, Carla; Srikumar, Shabarinath; Canals, Rocío; Juárez, Antonio; Paytubi, Sonia; Madrid, Cristina

    2015-01-01

    The Hha family of proteins is involved in the regulation of gene expression in enterobacteria by forming complexes with H-NS-like proteins. Whereas several amino acid residues of both proteins participate in the interaction, some of them play a key role. Residue D48 of Hha protein is essential for the interaction with H-NS, thus the D48N substitution in Hha protein abrogates H-NS/Hha interaction. Despite being a paralog of H-NS protein, StpA interacts with HhaD48N with higher affinity than with the wild type Hha protein. To analyze whether Hha is capable of acting independently of H-NS and StpA, we conducted transcriptomic analysis on the hha and stpA deletion strains and the hhaD48N substitution strain of Salmonella Typhimurium using a custom microarray. The results obtained allowed the identification of 120 genes regulated by Hha in an H-NS/StpA-independent manner, 38% of which are horizontally acquired genes. A significant number of the identified genes are involved in functions related to cell motility, iron uptake, and pathogenicity. Thus, motility assays, siderophore detection and intra-macrophage replication assays were performed to confirm the transcriptomic data. Our findings point out the importance of Hha protein as an independent regulator in S. Typhimurium, highlighting a regulatory role on virulence. PMID:26284052

  3. The Prediction of Key Cytoskeleton Components Involved in Glomerular Diseases Based on a Protein-Protein Interaction Network.

    PubMed

    Ding, Fangrui; Tan, Aidi; Ju, Wenjun; Li, Xuejuan; Li, Shao; Ding, Jie

    2016-01-01

    Maintenance of the physiological morphologies of different types of cells and tissues is essential for the normal functioning of each system in the human body. Dynamic variations in cell and tissue morphologies depend on accurate adjustments of the cytoskeletal system. The cytoskeletal system in the glomerulus plays a key role in the normal process of kidney filtration. To enhance the understanding of the possible roles of the cytoskeleton in glomerular diseases, we constructed the Glomerular Cytoskeleton Network (GCNet), which shows the protein-protein interaction network in the glomerulus, and identified several possible key cytoskeletal components involved in glomerular diseases. In this study, genes/proteins annotated to the cytoskeleton were detected by Gene Ontology analysis, and glomerulus-enriched genes were selected from nine available glomerular expression datasets. Then, the GCNet was generated by combining these two sets of information. To predict the possible key cytoskeleton components in glomerular diseases, we then examined the common regulation of the genes in GCNet in the context of five glomerular diseases based on their transcriptomic data. As a result, twenty-one cytoskeleton components as potential candidate were highlighted for consistently down- or up-regulating in all five glomerular diseases. And then, these candidates were examined in relation to existing known glomerular diseases and genes to determine their possible functions and interactions. In addition, the mRNA levels of these candidates were also validated in a puromycin aminonucleoside(PAN) induced rat nephropathy model and were also matched with existing Diabetic Nephropathy (DN) transcriptomic data. As a result, there are 15 of 21 candidates in PAN induced nephropathy model were consistent with our predication and also 12 of 21 candidates were matched with differentially expressed genes in the DN transcriptomic data. By providing a novel interaction network and prediction, GCNet contributes to improving the understanding of normal glomerular function and will be useful for detecting target cytoskeleton molecules of interest that may be involved in glomerular diseases in future studies.

  4. The Prediction of Key Cytoskeleton Components Involved in Glomerular Diseases Based on a Protein-Protein Interaction Network

    PubMed Central

    Ju, Wenjun; Li, Xuejuan; Li, Shao; Ding, Jie

    2016-01-01

    Maintenance of the physiological morphologies of different types of cells and tissues is essential for the normal functioning of each system in the human body. Dynamic variations in cell and tissue morphologies depend on accurate adjustments of the cytoskeletal system. The cytoskeletal system in the glomerulus plays a key role in the normal process of kidney filtration. To enhance the understanding of the possible roles of the cytoskeleton in glomerular diseases, we constructed the Glomerular Cytoskeleton Network (GCNet), which shows the protein-protein interaction network in the glomerulus, and identified several possible key cytoskeletal components involved in glomerular diseases. In this study, genes/proteins annotated to the cytoskeleton were detected by Gene Ontology analysis, and glomerulus-enriched genes were selected from nine available glomerular expression datasets. Then, the GCNet was generated by combining these two sets of information. To predict the possible key cytoskeleton components in glomerular diseases, we then examined the common regulation of the genes in GCNet in the context of five glomerular diseases based on their transcriptomic data. As a result, twenty-one cytoskeleton components as potential candidate were highlighted for consistently down- or up-regulating in all five glomerular diseases. And then, these candidates were examined in relation to existing known glomerular diseases and genes to determine their possible functions and interactions. In addition, the mRNA levels of these candidates were also validated in a puromycin aminonucleoside(PAN) induced rat nephropathy model and were also matched with existing Diabetic Nephropathy (DN) transcriptomic data. As a result, there are 15 of 21 candidates in PAN induced nephropathy model were consistent with our predication and also 12 of 21 candidates were matched with differentially expressed genes in the DN transcriptomic data. By providing a novel interaction network and prediction, GCNet contributes to improving the understanding of normal glomerular function and will be useful for detecting target cytoskeleton molecules of interest that may be involved in glomerular diseases in future studies. PMID:27227331

  5. The Transcriptome Analysis and Comparison Explorer--T-ACE: a platform-independent, graphical tool to process large RNAseq datasets of non-model organisms.

    PubMed

    Philipp, E E R; Kraemer, L; Mountfort, D; Schilhabel, M; Schreiber, S; Rosenstiel, P

    2012-03-15

    Next generation sequencing (NGS) technologies allow a rapid and cost-effective compilation of large RNA sequence datasets in model and non-model organisms. However, the storage and analysis of transcriptome information from different NGS platforms is still a significant bottleneck, leading to a delay in data dissemination and subsequent biological understanding. Especially database interfaces with transcriptome analysis modules going beyond mere read counts are missing. Here, we present the Transcriptome Analysis and Comparison Explorer (T-ACE), a tool designed for the organization and analysis of large sequence datasets, and especially suited for transcriptome projects of non-model organisms with little or no a priori sequence information. T-ACE offers a TCL-based interface, which accesses a PostgreSQL database via a php-script. Within T-ACE, information belonging to single sequences or contigs, such as annotation or read coverage, is linked to the respective sequence and immediately accessible. Sequences and assigned information can be searched via keyword- or BLAST-search. Additionally, T-ACE provides within and between transcriptome analysis modules on the level of expression, GO terms, KEGG pathways and protein domains. Results are visualized and can be easily exported for external analysis. We developed T-ACE for laboratory environments, which have only a limited amount of bioinformatics support, and for collaborative projects in which different partners work on the same dataset from different locations or platforms (Windows/Linux/MacOS). For laboratories with some experience in bioinformatics and programming, the low complexity of the database structure and open-source code provides a framework that can be customized according to the different needs of the user and transcriptome project.

  6. Integrated Analysis of Transcriptomic and Proteomic Data

    PubMed Central

    Haider, Saad; Pal, Ranadip

    2013-01-01

    Until recently, understanding the regulatory behavior of cells has been pursued through independent analysis of the transcriptome or the proteome. Based on the central dogma, it was generally assumed that there exist a direct correspondence between mRNA transcripts and generated protein expressions. However, recent studies have shown that the correlation between mRNA and Protein expressions can be low due to various factors such as different half lives and post transcription machinery. Thus, a joint analysis of the transcriptomic and proteomic data can provide useful insights that may not be deciphered from individual analysis of mRNA or protein expressions. This article reviews the existing major approaches for joint analysis of transcriptomic and proteomic data. We categorize the different approaches into eight main categories based on the initial algorithm and final analysis goal. We further present analogies with other domains and discuss the existing research problems in this area. PMID:24082820

  7. Exploring pathway interactions in insulin resistant mouse liver

    PubMed Central

    2011-01-01

    Background Complex phenotypes such as insulin resistance involve different biological pathways that may interact and influence each other. Interpretation of related experimental data would be facilitated by identifying relevant pathway interactions in the context of the dataset. Results We developed an analysis approach to study interactions between pathways by integrating gene and protein interaction networks, biological pathway information and high-throughput data. This approach was applied to a transcriptomics dataset to investigate pathway interactions in insulin resistant mouse liver in response to a glucose challenge. We identified regulated pathway interactions at different time points following the glucose challenge and also studied the underlying protein interactions to find possible mechanisms and key proteins involved in pathway cross-talk. A large number of pathway interactions were found for the comparison between the two diet groups at t = 0. The initial response to the glucose challenge (t = 0.6) was typed by an acute stress response and pathway interactions showed large overlap between the two diet groups, while the pathway interaction networks for the late response were more dissimilar. Conclusions Studying pathway interactions provides a new perspective on the data that complements established pathway analysis methods such as enrichment analysis. This study provided new insights in how interactions between pathways may be affected by insulin resistance. In addition, the analysis approach described here can be generally applied to different types of high-throughput data and will therefore be useful for analysis of other complex datasets as well. PMID:21843341

  8. De Novo assembly of expressed transcripts and global transcriptomic analysis from seedlings of the paper mulberry (Broussonetia kazinoki x Broussonetia papyifera).

    PubMed

    Xianjun, Peng; Linhong, Teng; Xiaoman, Wang; Yucheng, Wang; Shihua, Shen

    2014-01-01

    The paper mulberry is one of the multifunctional tree species in agroforestry systems and is also commonly utilized in traditional medicine in China and other Asian countries. However, little is known about its molecular genetics, which hinders research on and exploitation of this valuable resource. To discern the correlation between gene expression and the essential properties of the paper mulberry, we performed a transcriptomics analysis, assembling a total of 37,725 unigenes from 54,638,676 reads generated by RNA-seq. Among these, 22,692 unigenes showed greater than 60% similarity with genes from other species. The lengths of 13,566 annotated unigenes were longer than 1,000 bp. Functional clustering analysis with COG (Cluster of Orthologous Groups) revealed that 17,184 unigenes are primarily involved in transcription, translation, signal transduction, carbohydrate metabolism, secondary metabolism, and energy metabolism. GO (Gene Ontology) annotation suggests enrichment of genes encoding antioxidant activity, transporter activity, biosynthesis, metabolism and stress response, with a total of 30,659 unigenes falling in these categories. KEGG (Kyoto Encyclopedia of Genes and Genomes) metabolic pathway analysis showed that 7,199 unigenes are associated with 119 metabolic pathways. In addition to the basic metabolism, these genes are enriched for plant pathogen interaction, flavonoid metabolism and other secondary metabolic processes. Furthermore, differences in the transcriptomes of leaf, stem and root tissues were analyzed and 7,233 specifically expressed unigenes were identified. This global expression analysis provided novel insights about the molecular mechanisms of the biosynthesis of flavonoid, lignin and cellulose, as well as on the response to biotic and abiotic stresses including the remediation of contaminated soil by the paper mulberry.

  9. expVIP: a Customizable RNA-seq Data Analysis and Visualization Platform1[OPEN

    PubMed Central

    2016-01-01

    The majority of transcriptome sequencing (RNA-seq) expression studies in plants remain underutilized and inaccessible due to the use of disparate transcriptome references and the lack of skills and resources to analyze and visualize these data. We have developed expVIP, an expression visualization and integration platform, which allows easy analysis of RNA-seq data combined with an intuitive and interactive interface. Users can analyze public and user-specified data sets with minimal bioinformatics knowledge using the expVIP virtual machine. This generates a custom Web browser to visualize, sort, and filter the RNA-seq data and provides outputs for differential gene expression analysis. We demonstrate expVIP’s suitability for polyploid crops and evaluate its performance across a range of biologically relevant scenarios. To exemplify its use in crop research, we developed a flexible wheat (Triticum aestivum) expression browser (www.wheat-expression.com) that can be expanded with user-generated data in a local virtual machine environment. The open-access expVIP platform will facilitate the analysis of gene expression data from a wide variety of species by enabling the easy integration, visualization, and comparison of RNA-seq data across experiments. PMID:26869702

  10. A Three-Way Transcriptomic Interaction Study of a Biocontrol Agent (Clonostachys rosea), a Fungal Pathogen (Helminthosporium solani), and a Potato Host (Solanum tuberosum).

    PubMed

    Lysøe, Erik; Dees, Merete W; Brurberg, May Bente

    2017-08-01

    Helminthosporium solani causes silver scurf, which affects the quality of potato. The biocontrol agent Clonostachys rosea greatly limited the severity of silver scurf symptoms and amount of H. solani genomic DNA in laboratory experiments. Transcriptomic analysis during interaction showed that H. solani gene expression was highly reduced when coinoculated with the biocontrol agent C. rosea, whereas gene expression of C. rosea was clearly boosted as a response to the pathogen. The most notable upregulated C. rosea genes were those encoding proteins involved in cellular response to oxidative stress, proteases, G-protein signaling, and the methyltransferase LaeA. The most notable potato response to both fungi was downregulation of defense-related genes and mitogen-activated protein kinase kinase kinases. At a later stage, this shifted, and most potato defense genes were turned on, especially those involved in terpenoid biosynthesis when H. solani was present. Some biocontrol-activated defense-related genes in potato were upregulated during early interaction with C. rosea alone that were not triggered by H. solani alone. Our results indicate that the reductions of silver scurf using C. rosea are probably due to a combination of mechanisms, including mycoparasitism, biocontrol-activated stimulation of plant defense mechanisms, microbial competition for nutrients, space, and antibiosis.

  11. De novo Transcriptome Analysis of Rhizoctonia solani AG1 IA Strain Early Invasion in Zoysia japonica Root.

    PubMed

    Zhu, Chen; Ai, Lin; Wang, Li; Yin, Pingping; Liu, Chenglan; Li, Shanshan; Zeng, Huiming

    2016-01-01

    Zoysia japonica brown spot was caused by necrotrophic fungus Rhizoctonia solani invasion, which led to severe financial loss in city lawn and golf ground maintenance. However, little was known about the molecular mechanism of R. solani pathogenicity in Z. japonica. In this study we examined early stage interaction between R. solani AG1 IA strain and Z. japonica cultivar "Zenith" root by cell ultra-structure analysis, pathogenesis-related proteins assay and transcriptome analysis to explore molecular clues for AG1 IA strain pathogenicity in Z. japonica. No obvious cell structure damage was found in infected roots and most pathogenesis-related protein activities showedg a downward trend especially in 36 h post inoculation, which exhibits AG1 IA strain stealthy invasion characteristic. According to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database classification, most DEGs in infected "Zenith" roots dynamically changed especially in three aspects, signal transduction, gene translation, and protein synthesis. Total 3422 unigenes of "Zenith" root were predicted into 14 kinds of resistance (R) gene class. Potential fungal resistance related unigenes of "Zenith" root were involved in ligin biosynthesis, phytoalexin synthesis, oxidative burst, wax biosynthesis, while two down-regulated unigenes encoding leucine-rich repeat receptor protein kinase and subtilisin-like protease might be important for host-derived signal perception to AG1 IA strain invasion. According to Pathogen Host Interaction (PHI) database annotation, 1508 unigenes of AG1 IA strain were predicted and classified into 37 known pathogen species, in addition, unigenes encoding virulence, signaling, host stress tolerance, and potential effector were also predicted. This research uncovered transcriptional profiling during the early phase interaction between R. solani AG1 IA strain and Z. japonica, and will greatly help identify key pathogenicity of AG1 IA strain.

  12. The Proteomic Response of Arabidopsis thaliana to Cadmium Sulfide Quantum Dots, and Its Correlation with the Transcriptomic Response

    PubMed Central

    Marmiroli, Marta; Imperiale, Davide; Pagano, Luca; Villani, Marco; Zappettini, Andrea; Marmiroli, Nelson

    2015-01-01

    A fuller understanding of the interaction between plants and engineered nanomaterials is of topical relevance because the latter are beginning to find applications in agriculture and the food industry. There is a growing need to establish objective safety criteria for their use. The recognition of two independent Arabidopsis thaliana mutants displaying a greater level of tolerance than the wild type plant to exposure to cadmium sulfide quantum dots (CdS QDs) has offered the opportunity to characterize the tolerance response at the physiological, transcriptomic, and proteomic levels. Here, a proteomics-based comparison confirmed the conclusions drawn from an earlier transcriptomic analysis that the two mutants responded to CdS QD exposure differently both to the wild type and to each other. Just over half of the proteomic changes mirrored documented changes at the level of gene transcription, but a substantial number of transcript/gene product pairs were altered in the opposite direction. An interpretation of the discrepancies is given, along with some considerations regarding the use and significance of -omics when monitoring the potential toxicity of ENMs for health and environment. PMID:26732871

  13. Analysis of the Citrullus colocynthis Transcriptome during Water Deficit Stress

    PubMed Central

    Wang, Zhuoyu; Hu, Hongtao; Goertzen, Leslie R.; McElroy, J. Scott; Dane, Fenny

    2014-01-01

    Citrullus colocynthis is a very drought tolerant species, closely related to watermelon (C. lanatus var. lanatus), an economically important cucurbit crop. Drought is a threat to plant growth and development, and the discovery of drought inducible genes with various functions is of great importance. We used high throughput mRNA Illumina sequencing technology and bioinformatic strategies to analyze the C. colocynthis leaf transcriptome under drought treatment. Leaf samples at four different time points (0, 24, 36, or 48 hours of withholding water) were used for RNA extraction and Illumina sequencing. qRT-PCR of several drought responsive genes was performed to confirm the accuracy of RNA sequencing. Leaf transcriptome analysis provided the first glimpse of the drought responsive transcriptome of this unique cucurbit species. A total of 5038 full-length cDNAs were detected, with 2545 genes showing significant changes during drought stress. Principle component analysis indicated that drought was the major contributing factor regulating transcriptome changes. Up regulation of many transcription factors, stress signaling factors, detoxification genes, and genes involved in phytohormone signaling and citrulline metabolism occurred under the water deficit conditions. The C. colocynthis transcriptome data highlight the activation of a large set of drought related genes in this species, thus providing a valuable resource for future functional analysis of candidate genes in defense of drought stress. PMID:25118696

  14. Cancer Transcriptome Dataset Analysis: Comparing Methods of Pathway and Gene Regulatory Network-Based Cluster Identification.

    PubMed

    Nam, Seungyoon

    2017-04-01

    Cancer transcriptome analysis is one of the leading areas of Big Data science, biomarker, and pharmaceutical discovery, not to forget personalized medicine. Yet, cancer transcriptomics and postgenomic medicine require innovation in bioinformatics as well as comparison of the performance of available algorithms. In this data analytics context, the value of network generation and algorithms has been widely underscored for addressing the salient questions in cancer pathogenesis. Analysis of cancer trancriptome often results in complicated networks where identification of network modularity remains critical, for example, in delineating the "druggable" molecular targets. Network clustering is useful, but depends on the network topology in and of itself. Notably, the performance of different network-generating tools for network cluster (NC) identification has been little investigated to date. Hence, using gastric cancer (GC) transcriptomic datasets, we compared two algorithms for generating pathway versus gene regulatory network-based NCs, showing that the pathway-based approach better agrees with a reference set of cancer-functional contexts. Finally, by applying pathway-based NC identification to GC transcriptome datasets, we describe cancer NCs that associate with candidate therapeutic targets and biomarkers in GC. These observations collectively inform future research on cancer transcriptomics, drug discovery, and rational development of new analysis tools for optimal harnessing of omics data.

  15. Transcriptomic analysis of Petunia hybrida in response to salt stress using high throughput RNA sequencing.

    PubMed

    Villarino, Gonzalo H; Bombarely, Aureliano; Giovannoni, James J; Scanlon, Michael J; Mattson, Neil S

    2014-01-01

    Salinity and drought stress are the primary cause of crop losses worldwide. In sodic saline soils sodium chloride (NaCl) disrupts normal plant growth and development. The complex interactions of plant systems with abiotic stress have made RNA sequencing a more holistic and appealing approach to study transcriptome level responses in a single cell and/or tissue. In this work, we determined the Petunia transcriptome response to NaCl stress by sequencing leaf samples and assembling 196 million Illumina reads with Trinity software. Using our reference transcriptome we identified more than 7,000 genes that were differentially expressed within 24 h of acute NaCl stress. The proposed transcriptome can also be used as an excellent tool for biological and bioinformatics in the absence of an available Petunia genome and it is available at the SOL Genomics Network (SGN) http://solgenomics.net. Genes related to regulation of reactive oxygen species, transport, and signal transductions as well as novel and undescribed transcripts were among those differentially expressed in response to salt stress. The candidate genes identified in this study can be applied as markers for breeding or to genetically engineer plants to enhance salt tolerance. Gene Ontology analyses indicated that most of the NaCl damage happened at 24 h inducing genotoxicity, affecting transport and organelles due to the high concentration of Na+ ions. Finally, we report a modification to the library preparation protocol whereby cDNA samples were bar-coded with non-HPLC purified primers, without affecting the quality and quantity of the RNA-seq data. The methodological improvement presented here could substantially reduce the cost of sample preparation for future high-throughput RNA sequencing experiments.

  16. Host plant driven transcriptome plasticity in the salivary glands of the cabbage looper (Trichoplusia ni)

    PubMed Central

    Galbraith, David A.; Grozinger, Christina M.; Felton, Gary W.

    2017-01-01

    Generalist herbivores feed on a wide array of plants and need to adapt to varying host qualities and defenses. One of the first insect derived secretions to come in contact with the plant is the saliva. Insect saliva is potentially involved in both the pre-digestion of the host plant as well as induction/suppression of plant defenses, yet how the salivary glands respond to changes in host plant at the transcriptional level is largely unknown. The objective of this study was to determine how the labial salivary gland transcriptome varies according to the host plant on which the insect is feeding. In order to determine this, cabbage looper (Trichoplusia ni) larvae were reared on cabbage, tomato, and pinto bean artificial diet. Labial glands were dissected from fifth instar larvae and used to extract RNA for RNASeq analysis. Assembly of the resulting sequencing reads resulted in a transcriptome library for T. ni salivary glands consisting of 14,037 expressed genes. Feeding on different host plant diets resulted in substantial remodeling of the gland transcriptomes, with 4,501 transcripts significantly differentially expressed across the three treatment groups. Gene expression profiles were most similar between cabbage and artificial diet, which corresponded to the two diets on which larvae perform best. Expression of several transcripts involved in detoxification processes were differentially expressed, and transcripts involved in the spliceosome pathway were significantly downregulated in tomato-reared larvae. Overall, this study demonstrates that the transcriptomes of the salivary glands of the cabbage looper are strongly responsive to diet. It also provides a foundation for future functional studies that can help us understand the role of saliva of chewing insects in plant-herbivore interactions. PMID:28792546

  17. Transcriptome-Derived Tetranucleotide Microsatellites and Their Associated Genes from the Giant Panda (Ailuropoda melanoleuca).

    PubMed

    Song, Xuhao; Shen, Fujun; Huang, Jie; Huang, Yan; Du, Lianming; Wang, Chengdong; Fan, Zhenxin; Hou, Rong; Yue, Bisong; Zhang, Xiuyue

    2016-09-01

    Recently, an increasing number of microsatellites or simple sequence repeats (SSRs) have been found and characterized from transcriptomes. Such SSRs can be employed as putative functional markers to easily tag corresponding genes, which play an important role in biomedical studies and genetic analysis. However, the transcriptome-derived SSRs for giant panda (Ailuropoda melanoleuca) are not yet available. In this work, we identified and characterized 20 tetranucleotide microsatellite loci from a transcript database generated from the blood of giant panda. Furthermore, we assigned their predicted transcriptome locations: 16 loci were assigned to untranslated regions (UTRs) and 4 loci were assigned to coding regions (CDSs). Gene identities of 14 transcripts contained corresponding microsatellites were determined, which provide useful information to study the potential contribution of SSRs to gene regulation in giant panda. The polymorphic information content (PIC) values ranged from 0.293 to 0.789 with an average of 0.603 for the 16 UTRs-derived SSRs. Interestingly, 4 CDS-derived microsatellites developed in our study were also polymorphic, and the instability of these 4 CDS-derived SSRs was further validated by re-genotyping and sequencing. The genes containing these 4 CDS-derived SSRs were embedded with various types of repeat motifs. The interaction of all the length-changing SSRs might provide a way against coding region frameshift caused by microsatellite instability. We hope these newly gene-associated biomarkers will pave the way for genetic and biomedical studies for giant panda in the future. In sum, this set of transcriptome-derived markers complements the genetic resources available for giant panda. © The American Genetic Association. 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Transcriptomic Analysis of Petunia hybrida in Response to Salt Stress Using High Throughput RNA Sequencing

    PubMed Central

    Villarino, Gonzalo H.; Bombarely, Aureliano; Giovannoni, James J.; Scanlon, Michael J.; Mattson, Neil S.

    2014-01-01

    Salinity and drought stress are the primary cause of crop losses worldwide. In sodic saline soils sodium chloride (NaCl) disrupts normal plant growth and development. The complex interactions of plant systems with abiotic stress have made RNA sequencing a more holistic and appealing approach to study transcriptome level responses in a single cell and/or tissue. In this work, we determined the Petunia transcriptome response to NaCl stress by sequencing leaf samples and assembling 196 million Illumina reads with Trinity software. Using our reference transcriptome we identified more than 7,000 genes that were differentially expressed within 24 h of acute NaCl stress. The proposed transcriptome can also be used as an excellent tool for biological and bioinformatics in the absence of an available Petunia genome and it is available at the SOL Genomics Network (SGN) http://solgenomics.net. Genes related to regulation of reactive oxygen species, transport, and signal transductions as well as novel and undescribed transcripts were among those differentially expressed in response to salt stress. The candidate genes identified in this study can be applied as markers for breeding or to genetically engineer plants to enhance salt tolerance. Gene Ontology analyses indicated that most of the NaCl damage happened at 24 h inducing genotoxicity, affecting transport and organelles due to the high concentration of Na+ ions. Finally, we report a modification to the library preparation protocol whereby cDNA samples were bar-coded with non-HPLC purified primers, without affecting the quality and quantity of the RNA-seq data. The methodological improvement presented here could substantially reduce the cost of sample preparation for future high-throughput RNA sequencing experiments. PMID:24722556

  19. Interactions between water activity and temperature on the Aspergillus flavus transcriptome and aflatoxin B1 production

    USDA-ARS?s Scientific Manuscript database

    The objectives of this study were to examine the effects of Aspergillus flavus colonization of maize kernels under different water activity (aw; 0.99 and 0.91) and temperature (30 and 37°C) conditions on (a) aflatoxin B1 (AFB1) production and (b) impacts on the transcriptome using RNAseq. This study...

  20. Transcriptomic Impacts of Rumen Epithelium Induced by Butyrate Infusion in Dairy Cattle in Dry Period

    PubMed Central

    Baldwin, Ransom L; Li, Robert W; Jia, Yankai; Li, Cong-Jun

    2018-01-01

    The purpose of this study was to evaluate the effects of butyrate infusion on rumen epithelial transcriptome. Next-generation sequencing (NGS) and bioinformatics are used to accelerate our understanding of regulation in rumen epithelial transcriptome of cattle in the dry period induced by butyrate infusion at the level of the whole transcriptome. Butyrate, as an essential element of nutrients, is a histone deacetylase (HDAC) inhibitor that can alter histone acetylation and methylation, and plays a prominent role in regulating genomic activities influencing rumen nutrition utilization and function. Ruminal infusion of butyrate was following 0-hour sampling (baseline controls) and continued for 168 hours at a rate of 5.0 L/day of a 2.5 M solution as a continuous infusion. Following the 168-hour infusion, the infusion was stopped, and cows were maintained on the basal lactation ration for an additional 168 hours for sampling. Rumen epithelial samples were serially collected via biopsy through rumen fistulae at 0-, 24-, 72-, and 168-hour (D1, D3, D7) and 168-hour post-infusion (D14). In comparison with pre-infusion at 0 hours, a total of 3513 genes were identified to be impacted in the rumen epithelium by butyrate infusion at least once at different sampling time points at a stringent cutoff of false discovery rate (FDR) < 0.01. The maximal effect of butyrate was observed at day 7. Among these impacted genes, 117 genes were responsive consistently from day 1 to day 14, and another 42 genes were lasting through day 7. Temporal effects induced by butyrate infusion indicate that the transcriptomic alterations are very dynamic. Gene ontology (GO) enrichment analysis revealed that in the early stage of rumen butyrate infusion (on day 1 and day 3 of butyrate infusion), the transcriptomic effects in the rumen epithelium were involved with mitotic cell cycle process, cell cycle process, and regulation of cell cycle. Bioinformatic analysis of cellular functions, canonical pathways, and upstream regulator of impacted genes underlie the potential mechanisms of butyrate-induced gene expression regulation in rumen epithelium. The introduction of transcriptomic and bioinformatic technologies to study nutrigenomics in the farm animal presented a new prospect to study multiple levels of biological information to better apprehend the whole animal response to nutrition, physiological state, and their interactions. The nutrigenomics approach may eventually lead to more precise management of utilization of feed resources in a more effective approach. PMID:29785087

  1. Transcriptome Analysis of the Melon-Fusarium oxysporum f. sp. melonis Race 1.2 Pathosystem in Susceptible and Resistant Plants

    PubMed Central

    Silvia Sebastiani, M.; Bagnaresi, Paolo; Sestili, Sara; Biselli, Chiara; Zechini, Antonella; Orrù, Luigi; Cattivelli, Luigi; Ficcadenti, Nadia

    2017-01-01

    Fusarium oxysporum f. sp. melonis Snyd. & Hans race 1.2 (FOM1.2) is the most virulent and yield-limiting pathogen of melon (Cucumis melo L.) worldwide. Current information suggest that the resistance to race 1.2 is controlled by multiple recessive genes and strongly affected by the environment. RNA-Seq analysis was used to identify candidate resistance genes and to dissect the early molecular processes deployed during melon-FOM1.2 interaction in the resistant doubled haploid line NAD and in the susceptible genotype Charentais-T (CHT) at 24 and 48 h post-inoculation (hpi). The transcriptome analysis of the NAD-FOM1.2 interaction identified 2,461 and 821 differentially expressed genes (DEGs) at 24 hpi and at 48 hpi, respectively, while in susceptible combination CHT-FOM1.2, 882 and 2,237 DEGs were recovered at 24 hpi and at 48 hpi, respectively. The overall expression profile suggests a prompt activation of the defense responses in NAD due to its basal defense-related machinery that allows an early pathogen recognition. Gene Ontology (GO) enrichment analyses revealed a total of 57 GO terms shared by both genotypes and consistent with response to fungal infection. GO classes named “chitinase activity,” “cellulase activity,” “defense response, incompatible interaction,” “auxin polar transport” emerged as major factors of resistance to FOM1.2. The data indicated that NAD reacts to FOM1.2 with a fine regulation of Ca2+-mediated signaling pathways, cell wall reorganization, and hormone crosstalk (jasmonate and ethylene, auxin and abscissic acid). Several unannotated transcripts were recovered providing a basis for a further exploration of the melon resistance genes. DEGs belonging to the FOM1.2 genome were also detected in planta as a resource for the identification of potential pathogenicity factors. This work provides a broader view of the dynamic changes of the melon transcriptome triggered by FOM1.2 and highlights that the resistance response of NAD is mainly signaled by jasmonic acid and ethylene pathways mediated by ABA and auxin. The role of candidate plant and fungal responsive genes involved in the resistance is discussed. PMID:28367157

  2. Characterization and comparative analyses of transcriptomes for in vivo and in vitro produced peri-implantation conceptuses and endometria from sheep

    PubMed Central

    WEI, Xia; XIAOLING, Zhang; KAI, Miao; RUI, Wang; JING, Xu; MIN, Guo; ZHONGHONG, Wu; JIANHUI, Tian; XINYU, Zhang; LEI, An

    2016-01-01

    An increasing number of reports indicate that in vitro fertilization (IVF) is highly associated with long‑term side effects on embryonic and postnatal development, and can sometimes result in embryonic implant failure. While high‑throughput gene expression analysis has been used to explore the mechanisms underlying IVF-induced side effects on embryonic development, little is known about the effects of IVF on conceptus–endometrial interactions during the peri-implantation period. Using sheep as a model, we performed a comparative transcriptome analysis between in vivo (IVO; in vivo fertilized followed by further development in the uterus) and in vitro produced (IVP; IVF with further culture in the incubator) conceptuses, and the caruncular and intercaruncular areas of the ovine endometrium. We identified several genes that were differentially expressed between the IVO and IVP groups on day 17, when adhesion between the trophoblast and the uterine luminal epithelium begins in sheep. By performing Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, we found that, in the conceptus, differentially expressed genes (DEGs) were associated mainly with functions relating to cell binding and the cell cycle. In the endometrial caruncular area, DEGs were involved in cell adhesion/migration and apoptosis, and in the intercaruncular area, they were significantly enriched in pathways of signal transduction and transport. Thus, these DEGs are potential candidates for further exploring the mechanism underlying IVF/IVP-induced embryonic implant failure that occurs due to a loss of interaction between the conceptus and endometrium during the peri-implantation period. PMID:26946921

  3. Quantitative RNA-seq analysis of the Campylobacter jejuni transcriptome

    PubMed Central

    Chaudhuri, Roy R.; Yu, Lu; Kanji, Alpa; Perkins, Timothy T.; Gardner, Paul P.; Choudhary, Jyoti; Maskell, Duncan J.

    2011-01-01

    Campylobacter jejuni is the most common bacterial cause of foodborne disease in the developed world. Its general physiology and biochemistry, as well as the mechanisms enabling it to colonize and cause disease in various hosts, are not well understood, and new approaches are required to understand its basic biology. High-throughput sequencing technologies provide unprecedented opportunities for functional genomic research. Recent studies have shown that direct Illumina sequencing of cDNA (RNA-seq) is a useful technique for the quantitative and qualitative examination of transcriptomes. In this study we report RNA-seq analyses of the transcriptomes of C. jejuni (NCTC11168) and its rpoN mutant. This has allowed the identification of hitherto unknown transcriptional units, and further defines the regulon that is dependent on rpoN for expression. The analysis of the NCTC11168 transcriptome was supplemented by additional proteomic analysis using liquid chromatography-MS. The transcriptomic and proteomic datasets represent an important resource for the Campylobacter research community. PMID:21816880

  4. Mechanisms of CCl4-induced liver fibrosis with combined transcriptomic and proteomic analysis.

    PubMed

    Dong, Shu; Chen, Qi-Long; Song, Ya-Nan; Sun, Yang; Wei, Bin; Li, Xiao-Yan; Hu, Yi-Yang; Liu, Ping; Su, Shi-Bing

    2016-01-01

    The classic toxicity of carbon tetrachloride (CCl4) is to induce liver lesion and liver fibrosis. Liver fibrosis is a consequence of chronic liver lesion, which can progress into liver cirrhosis even hepatocarcinoma. However, the toxicological mechanisms of CCl4-induced liver fibrosis remain not fully understood. We combined transcriptomic and proteomic analysis and biological network technology, predicted toxicological targets and regulatory networks of CCl4 in liver fibrosis. Wistar rats were treated with CCl4 for 9 weeks. Histopathological changes, hydroxyproline (Hyp) contents, serum ALT and AST in the CCl4-treated group were significantly higher than that of CCl4-untreated group. CCl4-treated and -untreated liver tissues were examined by microarray and iTRAQ. The results showed that 3535 genes (fold change ≥ 1.5, P < 0.05) and 1412 proteins (fold change ≥ 1.2, P < 0.05) were differentially expressed. Moreover, the integrative analysis of transcriptomics and proteomics data showed 523 overlapped proteins, enriched in 182 GO terms including oxidation reduction, response to oxidative stress, inflammatory response, extracellular matrix organization, etc. Furthermore, KEGG pathway analysis showed that 36 pathways including retinol metabolism, PPAR signaling pathway, glycolysis/gluconeogenesis, arachidonic acid metabolism, metabolism of xenobiotics by cytochrome P450 and drug metabolism. Network of protein-protein interaction (PPI) and key function with their related targets were performed and the degree of network was calculated with Cytoscape. The expression of key targets such as CYP4A3, ALDH2 and ALDH7A1 decreased after CCl4 treatment. Therefore, the toxicological mechanisms of CCl4-induced liver fibrosis may be related with multi biological process, pathway and targets which may provide potential protection reaction mechanism for CCl4 detoxication in the liver.

  5. Analysis of Transcriptomic Dose Response Data in the ...

    EPA Pesticide Factsheets

    Slide presentation at the HESI-HEALTH Canada-McGill Workshop on Transcriptomic Dose Response Data in the Context of Chemical Risk Assessment Slide presentation at the HESI-HEALTH Canada-McGill Workshop on Transcriptomic Dose Response Data in the Context of Chemical Risk Assessment

  6. Developmental Transcriptome for a Facultatively Eusocial Bee, Megalopta genalis

    PubMed Central

    Jones, Beryl M.; Wcislo, William T.; Robinson, Gene E.

    2015-01-01

    Transcriptomes provide excellent foundational resources for mechanistic and evolutionary analyses of complex traits. We present a developmental transcriptome for the facultatively eusocial bee Megalopta genalis, which represents a potential transition point in the evolution of eusociality. A de novo transcriptome assembly of Megalopta genalis was generated using paired-end Illumina sequencing and the Trinity assembler. Males and females of all life stages were aligned to this transcriptome for analysis of gene expression profiles throughout development. Gene Ontology analysis indicates that stage-specific genes are involved in ion transport, cell–cell signaling, and metabolism. A number of distinct biological processes are upregulated in each life stage, and transitions between life stages involve shifts in dominant functional processes, including shifts from transcriptional regulation in embryos to metabolism in larvae, and increased lipid metabolism in adults. We expect that this transcriptome will provide a useful resource for future analyses to better understand the molecular basis of the evolution of eusociality and, more generally, phenotypic plasticity. PMID:26276382

  7. Developmental Transcriptome for a Facultatively Eusocial Bee, Megalopta genalis.

    PubMed

    Jones, Beryl M; Wcislo, William T; Robinson, Gene E

    2015-08-14

    Transcriptomes provide excellent foundational resources for mechanistic and evolutionary analyses of complex traits. We present a developmental transcriptome for the facultatively eusocial bee Megalopta genalis, which represents a potential transition point in the evolution of eusociality. A de novo transcriptome assembly of Megalopta genalis was generated using paired-end Illumina sequencing and the Trinity assembler. Males and females of all life stages were aligned to this transcriptome for analysis of gene expression profiles throughout development. Gene Ontology analysis indicates that stage-specific genes are involved in ion transport, cell-cell signaling, and metabolism. A number of distinct biological processes are upregulated in each life stage, and transitions between life stages involve shifts in dominant functional processes, including shifts from transcriptional regulation in embryos to metabolism in larvae, and increased lipid metabolism in adults. We expect that this transcriptome will provide a useful resource for future analyses to better understand the molecular basis of the evolution of eusociality and, more generally, phenotypic plasticity. Copyright © 2015 Jones et al.

  8. A survey of the sorghum transcriptome using single-molecule long reads

    DOE PAGES

    Abdel-Ghany, Salah E.; Hamilton, Michael; Jacobi, Jennifer L.; ...

    2016-06-24

    Alternative splicing and alternative polyadenylation (APA) of pre-mRNAs greatly contribute to transcriptome diversity, coding capacity of a genome and gene regulatory mechanisms in eukaryotes. Second-generation sequencing technologies have been extensively used to analyse transcriptomes. However, a major limitation of short-read data is that it is difficult to accurately predict full-length splice isoforms. Here we sequenced the sorghum transcriptome using Pacific Biosciences single-molecule real-time long-read isoform sequencing and developed a pipeline called TAPIS (Transcriptome Analysis Pipeline for Isoform Sequencing) to identify full-length splice isoforms and APA sites. Our analysis reveals transcriptome-wide full-length isoforms at an unprecedented scale with over 11,000 novelmore » splice isoforms. Additionally, we uncover APA ofB11,000 expressed genes and more than 2,100 novel genes. Lastly, these results greatly enhance sorghum gene annotations and aid in studying gene regulation in this important bioenergy crop. The TAPIS pipeline will serve as a useful tool to analyse Iso-Seq data from any organism.« less

  9. A survey of the sorghum transcriptome using single-molecule long reads

    PubMed Central

    Abdel-Ghany, Salah E.; Hamilton, Michael; Jacobi, Jennifer L.; Ngam, Peter; Devitt, Nicholas; Schilkey, Faye; Ben-Hur, Asa; Reddy, Anireddy S. N.

    2016-01-01

    Alternative splicing and alternative polyadenylation (APA) of pre-mRNAs greatly contribute to transcriptome diversity, coding capacity of a genome and gene regulatory mechanisms in eukaryotes. Second-generation sequencing technologies have been extensively used to analyse transcriptomes. However, a major limitation of short-read data is that it is difficult to accurately predict full-length splice isoforms. Here we sequenced the sorghum transcriptome using Pacific Biosciences single-molecule real-time long-read isoform sequencing and developed a pipeline called TAPIS (Transcriptome Analysis Pipeline for Isoform Sequencing) to identify full-length splice isoforms and APA sites. Our analysis reveals transcriptome-wide full-length isoforms at an unprecedented scale with over 11,000 novel splice isoforms. Additionally, we uncover APA of ∼11,000 expressed genes and more than 2,100 novel genes. These results greatly enhance sorghum gene annotations and aid in studying gene regulation in this important bioenergy crop. The TAPIS pipeline will serve as a useful tool to analyse Iso-Seq data from any organism. PMID:27339290

  10. Transcriptome In Vivo Analysis (TIVA) of spatially defined single cells in intact live mouse and human brain tissue

    PubMed Central

    Lovatt, Ditte; Ruble, Brittani K.; Lee, Jaehee; Dueck, Hannah; Kim, Tae Kyung; Fisher, Stephen; Francis, Chantal; Spaethling, Jennifer M.; Wolf, John A.; Grady, M. Sean; Ulyanova, Alexandra V.; Yeldell, Sean B.; Griepenburg, Julianne C.; Buckley, Peter T.; Kim, Junhyong; Sul, Jai-Yoon; Dmochowski, Ivan J.; Eberwine, James

    2014-01-01

    Transcriptome profiling is an indispensable tool in advancing the understanding of single cell biology, but depends upon methods capable of isolating mRNA at the spatial resolution of a single cell. Current capture methods lack sufficient spatial resolution to isolate mRNA from individual in vivo resident cells without damaging adjacent tissue. Because of this limitation, it has been difficult to assess the influence of the microenvironment on the transcriptome of individual neurons. Here, we engineered a Transcriptome In Vivo Analysis (TIVA)-tag, which upon photoactivation enables mRNA capture from single cells in live tissue. Using the TIVA-tag in combination with RNA-seq to analyze transcriptome variance among single dispersed cells and in vivo resident mouse and human neurons, we show that the tissue microenvironment shapes the transcriptomic landscape of individual cells. The TIVA methodology provides the first noninvasive approach for capturing mRNA from single cells in their natural microenvironment. PMID:24412976

  11. A house finch (Haemorhous mexicanus) spleen transcriptome reveals intra- and interspecific patterns of gene expression, alternative splicing and genetic diversity in passerines.

    PubMed

    Zhang, Qu; Hill, Geoffrey E; Edwards, Scott V; Backström, Niclas

    2014-04-24

    With its plumage color dimorphism and unique history in North America, including a recent population expansion and an epizootic of Mycoplasma gallisepticum (MG), the house finch (Haemorhous mexicanus) is a model species for studying sexual selection, plumage coloration and host-parasite interactions. As part of our ongoing efforts to make available genomic resources for this species, here we report a transcriptome assembly derived from genes expressed in spleen. We characterize transcriptomes from two populations with different histories of demography and disease exposure: a recently founded population in the eastern US that has been exposed to MG for over a decade and a native population from the western range that has never been exposed to MG. We utilize this resource to quantify conservation in gene expression in passerine birds over approximately 50 MY by comparing splenic expression profiles for 9,646 house finch transcripts and those from zebra finch and find that less than half of all genes expressed in spleen in either species are expressed in both species. Comparative gene annotations from several vertebrate species suggest that the house finch transcriptomes contain ~15 genes not yet found in previously sequenced vertebrate genomes. The house finch transcriptomes harbour ~85,000 SNPs, ~20,000 of which are non-synonymous. Although not yet validated by biological or technical replication, we identify a set of genes exhibiting differences between populations in gene expression (n = 182; 2% of all transcripts), allele frequencies (76 FST ouliers) and alternative splicing as well as genes with several fixed non-synonymous substitutions; this set includes genes with functions related to double-strand break repair and immune response. The two house finch spleen transcriptome profiles will add to the increasing data on genome and transcriptome sequence information from natural populations. Differences in splenic expression between house finch and zebra finch imply either significant evolutionary turnover of splenic expression patterns or different physiological states of the individuals examined. The transcriptome resource will enhance the potential to annotate an eventual house finch genome, and the set of gene-based high-quality SNPs will help clarify the genetic underpinnings of host-pathogen interactions and sexual selection.

  12. Transcriptome responses to temperature, water availability and photoperiod are conserved among mature trees of two divergent Douglas-fir provenances from a coastal and an interior habitat.

    PubMed

    Hess, Moritz; Wildhagen, Henning; Junker, Laura Verena; Ensminger, Ingo

    2016-08-26

    Local adaptation and phenotypic plasticity are important components of plant responses to variations in environmental conditions. While local adaptation has been widely studied in trees, little is known about plasticity of gene expression in adult trees in response to ever changing environmental conditions in natural habitats. Here we investigate plasticity of gene expression in needle tissue between two Douglas-fir provenances represented by 25 adult trees using deep RNA sequencing (RNA-Seq). Using linear mixed models we investigated the effect of temperature, soil water availability and photoperiod on the abundance of 59189 detected transcripts. Expression of more than 80 % of all identified transcripts revealed a response to variations in environmental conditions in the field. GO term overrepresentation analysis revealed gene expression responses to temperature, soil water availability and photoperiod that are highly conserved among many plant taxa. However, expression differences between the two Douglas-fir provenances were rather small compared to the expression differences observed between individual trees. Although the effect of environment on global transcript expression was high, the observed genotype by environment (GxE) interaction of gene expression was surprisingly low, since only 21 of all detected transcripts showed a GxE interaction. The majority of the transcriptome responses in plant leaf tissue is driven by variations in environmental conditions. The small variation between individuals and populations suggests strong conservation of this response within Douglas-fir. Therefore we conclude that plastic transcriptome responses to variations in environmental conditions are only weakly affected by local adaptation in Douglas-fir.

  13. PARRoT- a homology-based strategy to quantify and compare RNA-sequencing from non-model organisms.

    PubMed

    Gan, Ruei-Chi; Chen, Ting-Wen; Wu, Timothy H; Huang, Po-Jung; Lee, Chi-Ching; Yeh, Yuan-Ming; Chiu, Cheng-Hsun; Huang, Hsien-Da; Tang, Petrus

    2016-12-22

    Next-generation sequencing promises the de novo genomic and transcriptomic analysis of samples of interests. However, there are only a few organisms having reference genomic sequences and even fewer having well-defined or curated annotations. For transcriptome studies focusing on organisms lacking proper reference genomes, the common strategy is de novo assembly followed by functional annotation. However, things become even more complicated when multiple transcriptomes are compared. Here, we propose a new analysis strategy and quantification methods for quantifying expression level which not only generate a virtual reference from sequencing data, but also provide comparisons between transcriptomes. First, all reads from the transcriptome datasets are pooled together for de novo assembly. The assembled contigs are searched against NCBI NR databases to find potential homolog sequences. Based on the searched result, a set of virtual transcripts are generated and served as a reference transcriptome. By using the same reference, normalized quantification values including RC (read counts), eRPKM (estimated RPKM) and eTPM (estimated TPM) can be obtained that are comparable across transcriptome datasets. In order to demonstrate the feasibility of our strategy, we implement it in the web service PARRoT. PARRoT stands for Pipeline for Analyzing RNA Reads of Transcriptomes. It analyzes gene expression profiles for two transcriptome sequencing datasets. For better understanding of the biological meaning from the comparison among transcriptomes, PARRoT further provides linkage between these virtual transcripts and their potential function through showing best hits in SwissProt, NR database, assigning GO terms. Our demo datasets showed that PARRoT can analyze two paired-end transcriptomic datasets of approximately 100 million reads within just three hours. In this study, we proposed and implemented a strategy to analyze transcriptomes from non-reference organisms which offers the opportunity to quantify and compare transcriptome profiles through a homolog based virtual transcriptome reference. By using the homolog based reference, our strategy effectively avoids the problems that may cause from inconsistencies among transcriptomes. This strategy will shed lights on the field of comparative genomics for non-model organism. We have implemented PARRoT as a web service which is freely available at http://parrot.cgu.edu.tw .

  14. Comprehensive analysis of tobacco pollen transcriptome unveils common pathways in polar cell expansion and underlying heterochronic shift during spermatogenesis

    PubMed Central

    2012-01-01

    Background Many flowering plants produce bicellular pollen. The two cells of the pollen grain are destined for separate fates in the male gametophyte, which provides a unique opportunity to study genetic interactions that govern guided single-cell polar expansion of the growing pollen tube and the coordinated control of germ cell division and sperm cell fate specification. We applied the Agilent 44 K tobacco gene chip to conduct the first transcriptomic analysis of the tobacco male gametophyte. In addition, we performed a comparative study of the Arabidopsis root-hair trichoblast transcriptome to evaluate genetic factors and common pathways involved in polarized cell-tip expansion. Results Progression of pollen grains from freshly dehisced anthers to pollen tubes 4 h after germination is accompanied with > 5,161 (14.9%) gametophyte-specific expressed probes active in at least one of the developmental stages. In contrast, > 18,821 (54.4%) probes were preferentially expressed in the sporophyte. Our comparative approach identified a subset of 104 pollen tube-expressed genes that overlap with root-hair trichoblasts. Reverse genetic analysis of selected candidates demonstrated that Cu/Zn superoxide dismutase 1 (CSD1), a WD-40 containing protein (BP130384), and Replication factor C1 (NtRFC1) are among the central regulators of pollen-tube tip growth. Extension of our analysis beyond the second haploid mitosis enabled identification of an opposing-dynamic accumulation of core regulators of cell proliferation and cell fate determinants in accordance with the progression of the germ cell cycle. Conclusions The current study provides a foundation to isolate conserved regulators of cell tip expansion and those that are unique for pollen tube growth to the female gametophyte. A transcriptomic data set is presented as a benchmark for future functional studies using developing pollen as a model. Our results demonstrated previously unknown functions of certain genes in pollen-tube tip growth. In addition, we highlighted the molecular dynamics of core cell-cycle regulators in the male gametophyte and postulated the first genetic model to account for the differential timing of spermatogenesis among angiosperms and its coordination with female gametogenesis. PMID:22340370

  15. Multivariate inference of pathway activity in host immunity and response to therapeutics

    PubMed Central

    Goel, Gautam; Conway, Kara L.; Jaeger, Martin; Netea, Mihai G.; Xavier, Ramnik J.

    2014-01-01

    Developing a quantitative view of how biological pathways are regulated in response to environmental factors is central for understanding of disease phenotypes. We present a computational framework, named Multivariate Inference of Pathway Activity (MIPA), which quantifies degree of activity induced in a biological pathway by computing five distinct measures from transcriptomic profiles of its member genes. Statistical significance of inferred activity is examined using multiple independent self-contained tests followed by a competitive analysis. The method incorporates a new algorithm to identify a subset of genes that may regulate the extent of activity induced in a pathway. We present an in-depth evaluation of specificity, robustness, and reproducibility of our method. We benchmarked MIPA's false positive rate at less than 1%. Using transcriptomic profiles representing distinct physiological and disease states, we illustrate applicability of our method in (i) identifying gene–gene interactions in autophagy-dependent response to Salmonella infection, (ii) uncovering gene–environment interactions in host response to bacterial and viral pathogens and (iii) identifying driver genes and processes that contribute to wound healing and response to anti-TNFα therapy. We provide relevant experimental validation that corroborates the accuracy and advantage of our method. PMID:25147207

  16. Unsupervised Network Analysis of the Plastic Supraoptic Nucleus Transcriptome Predicts Caprin2 Regulatory Interactions.

    PubMed

    Loh, Su-Yi; Jahans-Price, Thomas; Greenwood, Michael P; Greenwood, Mingkwan; Hoe, See-Ziau; Konopacka, Agnieszka; Campbell, Colin; Murphy, David; Hindmarch, Charles C T

    2017-01-01

    The supraoptic nucleus (SON) is a group of neurons in the hypothalamus responsible for the synthesis and secretion of the peptide hormones vasopressin and oxytocin. Following physiological cues, such as dehydration, salt-loading and lactation, the SON undergoes a function related plasticity that we have previously described in the rat at the transcriptome level. Using the unsupervised graphical lasso (Glasso) algorithm, we reconstructed a putative network from 500 plastic SON genes in which genes are the nodes and the edges are the inferred interactions. The most active nodal gene identified within the network was Caprin2 . Caprin2 encodes an RNA-binding protein that we have previously shown to be vital for the functioning of osmoregulatory neuroendocrine neurons in the SON of the rat hypothalamus. To test the validity of the Glasso network, we either overexpressed or knocked down Caprin2 transcripts in differentiated rat pheochromocytoma PC12 cells and showed that these manipulations had significant opposite effects on the levels of putative target mRNAs. These studies suggest that the predicative power of the Glasso algorithm within an in vivo system is accurate, and identifies biological targets that may be important to the functional plasticity of the SON.

  17. Effects of the total replacement of fish-based diet with plant-based diet on the hepatic transcriptome of two European sea bass (Dicentrarchus labrax) half-sibfamilies showing different growth rates with the plant-based diet

    PubMed Central

    2011-01-01

    Background Efforts towards utilisation of diets without fish meal (FM) or fish oil (FO) in finfish aquaculture have been being made for more than two decades. Metabolic responses to substitution of fishery products have been shown to impact growth performance and immune system of fish as well as their subsequent nutritional value, particularly in marine fish species, which exhibit low capacity for biosynthesis of long-chain poly-unsaturated fatty acids (LC-PUFA). The main objective of the present study was to analyse the effects of a plant-based diet on the hepatic transcriptome of European sea bass (Dicentrarchus labrax). Results We report the first results obtained using a transcriptomic approach on the liver of two half-sibfamilies of the European sea bass that exhibit similar growth rates when fed a fish-based diet (FD), but significantly different growth rates when fed an all-plant diet (VD). Overall gene expression was analysed using oligo DNA microarrays (GPL9663). Statistical analysis identified 582 unique annotated genes differentially expressed between groups of fish fed the two diets, 199 genes regulated by genetic factors, and 72 genes that exhibited diet-family interactions. The expression of several genes involved in the LC-PUFA and cholesterol biosynthetic pathways was found to be up-regulated in fish fed VD, suggesting a stimulation of the lipogenic pathways. No significant diet-family interaction for the regulation of LC-PUFA biosynthesis pathways could be detected by microarray analysis. This result was in agreement with LC-PUFA profiles, which were found to be similar in the flesh of the two half-sibfamilies. In addition, the combination of our transcriptomic data with an analysis of plasmatic immune parameters revealed a stimulation of complement activity associated with an immunodeficiency in the fish fed VD, and different inflammatory status between the two half-sibfamilies. Biological processes related to protein catabolism, amino acid transaminations, RNA splicing and blood coagulation were also found to be regulated by diet, while the expression of genes involved in protein and ATP synthesis differed between the half-sibfamilies. Conclusions Overall, the combined gene expression, compositional and biochemical studies demonstrated a large panel of metabolic and physiological effects induced by total substitution of both FM and FO in the diets of European sea bass and revealed physiological characteristics associated with the two half-sibfamilies. PMID:22017880

  18. Transcriptome reveals the overexpression of a kallikrein gene cluster (KLK1/3/7/8/12) in the Tibetans with high altitude-associated polycythemia.

    PubMed

    Li, Kang; Gesang, Luobu; Dan, Zeng; Gusang, Lamu

    2017-02-01

    High altitude-associated polycythemia (HAPC) is a very common disease. However, it the disease is still unmanageable and the related molecular mechanisms remain largely unclear. In the present study, we aimed to explore the molecular mechanisms responsible for the development of HAPC using transcriptome analysis. Transcriptome analysis was conducted in 3 pairs of gastric mucosa tissues from patients with HAPC and healthy residents at a similar altitude. Endoscopy and histopathological analyses were used to examine the injury to gastric tissues. Molecular remodeling was performed for the interaction between different KLK members and cholesterol. HAPC was found to lead to morphological changes and pathological damage to the gastric mucosa of patients. A total of 10,304 differentially expressed genes (DEGs) were identified. Among these genes, 4,941 DEGs were upregulated, while 5,363 DEGs were downregulated in the patients with HAPC (fold change ≥2, P<0.01 and FDR <0.01). In particular, the kallikrein gene cluster (KLK1/3/7/8/12) was upregulated >17-fold. All the members had high-score binding cholesterol, particularly for the polymers of KLK7. The kallikrein gene cluster (KLK1/3/7/8/12) is on chromosome 19q13.3-13.4. The elevated levels of KLK1, KLK3, KLK7, KLK8 and KLK12 may be closely associated with the hypertension, inflammation, obesity and other gastric injuries associated with polycythemia. The interaction of KLKs and cholesterol maybe play an important role in the development of hypertension. The findings of the present study revealed that HAPC induces gastric injury by upregulating the kallikrein gene cluster (KLK1/3/7/8/12), which can bind cholesterol and result in kallikrein hypertension. These findings provide some basic information for understanding the molecular mechanisms responsible for HAPC and HAPC-related diseases.

  19. Insights into transcriptomes of Big and Low sagebrush

    Treesearch

    Mark D. Huynh; Justin T. Page; Bryce A. Richardson; Joshua A. Udall

    2015-01-01

    We report the sequencing and assembly of three transcriptomes from Big (Artemisia tridentatassp. wyomingensis and A. tridentatassp. tridentata) and Low (A. arbuscula ssp. arbuscula) sagebrush. The sequence reads are available in the Sequence Read Archive of NCBI. We demonstrate the utilities of these transcriptomes for gene discovery and phylogenomic analysis. An...

  20. Decoding genes with coexpression networks and metabolomics - 'majority report by precogs'.

    PubMed

    Saito, Kazuki; Hirai, Masami Y; Yonekura-Sakakibara, Keiko

    2008-01-01

    Following the sequencing of whole genomes of model plants, high-throughput decoding of gene function is a major challenge in modern plant biology. In view of remarkable technical advances in transcriptomics and metabolomics, integrated analysis of these 'omics' by data-mining informatics is an excellent tool for prediction and identification of gene function, particularly for genes involved in complicated metabolic pathways. The availability of Arabidopsis public transcriptome datasets containing data of >1000 microarrays reinforces the potential for prediction of gene function by transcriptome coexpression analysis. Here, we review the strategy of combining transcriptome and metabolome as a powerful technology for studying the functional genomics of model plants and also crop and medicinal plants.

  1. Combining animal personalities with transcriptomics resolves individual variation within a wild-type zebrafish population and identifies underpinning molecular differences in brain function.

    PubMed

    Rey, S; Boltana, S; Vargas, R; Roher, N; Mackenzie, S

    2013-12-01

    Resolving phenotype variation within a population in response to environmental perturbation is central to understanding biological adaptation. Relating meaningful adaptive changes at the level of the transcriptome requires the identification of processes that have a functional significance for the individual. This remains a major objective towards understanding the complex interactions between environmental demand and an individual's capacity to respond to such demands. The interpretation of such interactions and the significance of biological variation between individuals from the same or different populations remain a difficult and under-addressed question. Here, we provide evidence that variation in gene expression between individuals in a zebrafish population can be partially resolved by a priori screening for animal personality and accounts for >9% of observed variation in the brain transcriptome. Proactive and reactive individuals within a wild-type population exhibit consistent behavioural responses over time and context that relates to underlying differences in regulated gene networks and predicted protein-protein interactions. These differences can be mapped to distinct regions of the brain and provide a foundation towards understanding the coordination of underpinning adaptive molecular events within populations. © 2013 John Wiley & Sons Ltd.

  2. Systematic transcriptome-wide analysis of mRNA-miRNA interactions reveals the involvement of miR-142-5p and its target (FOXO3) in skeletal muscle growth in chickens.

    PubMed

    Li, Zhenhui; Abdalla, Bahareldin Ali; Zheng, Ming; He, Xiaomei; Cai, Bolin; Han, Peigong; Ouyang, Hongjia; Chen, Biao; Nie, Qinghua; Zhang, Xiquan

    2018-02-01

    The goal of this study was to perform a systematic transcriptome-wide analysis of mRNA-miRNA interactions and to identify candidates involved in the interplay between miRNAs and mRNAs that regulate chicken muscle growth. We used our previously published mRNA (GSE72424) and miRNA (GSE62971) deep sequencing data from two-tailed samples [i.e., the highest (h) and lowest (l) body weights] of Recessive White Rock (WRR) and Xinghua (XH) chickens to conduct integrative analyses of the miRNA-mRNA interactions involved in chicken skeletal muscle growth. A total of 162, 15, 173, and 27 miRNA-mRNA pairs with negatively correlated expression patterns were identified in miRNA-mRNA networks constructed on the basis of the WRR h vs. XH h , WRR h vs. WRR l , WRR l vs. XH l , and XH h vs. XH l comparisons, respectively. Ingenuity Pathway Analysis revealed that gene networks identified for the WRR h vs. XH h contrast were associated with developmental disorders. Importantly, the WRR h vs. XH h contrast miRNA-mRNA network was enriched in IGF-1 signaling pathway genes, including FOXO3. A dual-luciferase reporter assay showed that FOXO3 was a target of miR-142-5p. Furthermore, miR-142-5p overexpression significantly decreased FOXO3 mRNA levels and promoted the expression of growth-related genes. These data demonstrated that miR-142-5p targets FOXO3 and promotes growth-related gene expression and regulates skeletal muscle growth in chicken. Comprehensive analysis facilitated the identification of miRNAs and target genes that might contribute to the regulation of skeletal muscle development. Our results provide new clues for understanding the molecular basis of chicken growth.

  3. Phenotypical and molecular responses of Arabidopsis thaliana roots as a result of inoculation with the auxin-producing bacterium Azospirillum brasilense.

    PubMed

    Spaepen, Stijn; Bossuyt, Stijn; Engelen, Kristof; Marchal, Kathleen; Vanderleyden, Jos

    2014-02-01

    The auxin-producing bacterium Azospirillum brasilense Sp245 can promote the growth of several plant species. The model plant Arabidopsis thaliana was chosen as host plant to gain an insight into the molecular mechanisms that govern this interaction. The determination of differential gene expression in Arabidopsis roots after inoculation with either A. brasilense wild-type or an auxin biosynthesis mutant was achieved by microarray analysis. Arabidopsis thaliana inoculation with A. brasilense wild-type increases the number of lateral roots and root hairs, and elevates the internal auxin concentration in the plant. The A. thaliana root transcriptome undergoes extensive changes on A. brasilense inoculation, and the effects are more pronounced at later time points. The wild-type bacterial strain induces changes in hormone- and defense-related genes, as well as in plant cell wall-related genes. The A. brasilense mutant, however, does not elicit these transcriptional changes to the same extent. There are qualitative and quantitative differences between A. thaliana responses to the wild-type A. brasilense strain and the auxin biosynthesis mutant strain, based on both phenotypic and transcriptomic data. This illustrates the major role played by auxin in the Azospirillum-Arabidopsis interaction, and possibly also in other bacterium-plant interactions. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  4. Acute Hepatopancreatic Necrosis Disease (AHPND) related microRNAs in Litopenaeus vannamei infected with AHPND-causing strain of Vibrio parahemolyticus.

    PubMed

    Zheng, Zhihong; Aweya, Jude Juventus; Wang, Fan; Yao, Defu; Lun, Jingsheng; Li, Shengkang; Ma, Hongyu; Zhang, Yueling

    2018-05-08

    Acute hepatopancreatic necrosis disease (AHPND) has emerged as a major debilitating disease that causes massive shrimp death resulting in substantial economic losses in shrimp aquaculture. Given that several diseases and infections have been associated with microRNAs (miRNAs), we conducted a comparative transcriptomic analysis using the AHPND (VA) and non-AHPND (VN) strains of Vibrio parahemolyticus to identify miRNAs potentially involved in AHPND pathogenesis in Litopenaeus vannamei. A total of 83 miRNAs (47 upregulated and 36 downregulated) were significantly differentially expressed between the VA and VN challenged groups, while 222 target genes of these miRNAs were predicted. Functional enrichment analysis revealed that the miRNAs target genes were involved in multiple biological processes including metabolic pathways, amoebiasis, Vibrio cholerae infection etc. Finally, interaction network and qPCR (Real-time Quantitative PCR) analysis of 12 potential key AHPND-related miRNAs and their predicted target genes, revealed their possible involvement in modulating several immune-related processes in the pathogenesis of AHPND. We have shown using comparative transcriptomic analysis, miRNAs and their target genes that are responsive to AHPND V. parahemolyticus infection in shrimp, therefore suggesting their possible role in defense response to AHPND V. parahemolyticus infection.

  5. Transcriptome analysis in non-model species: a new method for the analysis of heterologous hybridization on microarrays

    PubMed Central

    2010-01-01

    Background Recent developments in high-throughput methods of analyzing transcriptomic profiles are promising for many areas of biology, including ecophysiology. However, although commercial microarrays are available for most common laboratory models, transcriptome analysis in non-traditional model species still remains a challenge. Indeed, the signal resulting from heterologous hybridization is low and difficult to interpret because of the weak complementarity between probe and target sequences, especially when no microarray dedicated to a genetically close species is available. Results We show here that transcriptome analysis in a species genetically distant from laboratory models is made possible by using MAXRS, a new method of analyzing heterologous hybridization on microarrays. This method takes advantage of the design of several commercial microarrays, with different probes targeting the same transcript. To illustrate and test this method, we analyzed the transcriptome of king penguin pectoralis muscle hybridized to Affymetrix chicken microarrays, two organisms separated by an evolutionary distance of approximately 100 million years. The differential gene expression observed between different physiological situations computed by MAXRS was confirmed by real-time PCR on 10 genes out of 11 tested. Conclusions MAXRS appears to be an appropriate method for gene expression analysis under heterologous hybridization conditions. PMID:20509979

  6. Global Transcriptome Analysis of Aedes aegypti Mosquitoes in Response to Zika Virus Infection.

    PubMed

    Etebari, Kayvan; Hegde, Shivanand; Saldaña, Miguel A; Widen, Steven G; Wood, Thomas G; Asgari, Sassan; Hughes, Grant L

    2017-01-01

    Zika virus (ZIKV) of the Flaviviridae family is a recently emerged mosquito-borne virus that has been implicated in the surge of the number of microcephaly instances in South America. The recent rapid spread of the virus led to its declaration as a global health emergency by the World Health Organization. The virus is transmitted mainly by the mosquito Aedes aegypti , which is also the vector of dengue virus; however, little is known about the interactions of the virus with the mosquito vector. In this study, we investigated the transcriptome profiles of whole A. aegypti mosquitoes in response to ZIKV infection at 2, 7, and 14 days postinfection using transcriptome sequencing. Results showed changes in the abundance of a large number of transcripts at each time point following infection, with 18 transcripts commonly changed among the three time points. Gene ontology analysis revealed that most of the altered genes are involved in metabolic processes, cellular processes, and proteolysis. In addition, 486 long intergenic noncoding RNAs that were altered upon ZIKV infection were identified. Further, we found changes of a number of potential mRNA target genes correlating with those of altered host microRNAs. The outcomes provide a basic understanding of A. aegypti responses to ZIKV and help to determine host factors involved in replication or mosquito host antiviral response against the virus. IMPORTANCE Vector-borne viruses pose great risks to human health. Zika virus has recently emerged as a global threat, rapidly expanding its distribution. Understanding the interactions of the virus with mosquito vectors at the molecular level is vital for devising new approaches in inhibiting virus transmission. In this study, we embarked on analyzing the transcriptional response of Aedes aegypti mosquitoes to Zika virus infection. Results showed large changes in both coding and long noncoding RNAs. Analysis of these genes showed similarities with other flaviviruses, including dengue virus, which is transmitted by the same mosquito vector. The outcomes provide a global picture of changes in the mosquito vector in response to Zika virus infection.

  7. Transcriptome analysis of adipose tissues from two fat-tailed sheep breeds reveals key genes involved in fat deposition.

    PubMed

    Li, Baojun; Qiao, Liying; An, Lixia; Wang, Weiwei; Liu, Jianhua; Ren, Youshe; Pan, Yangyang; Jing, Jiongjie; Liu, Wenzhong

    2018-05-08

    The level of fat deposition in carcass is a crucial factor influencing meat quality. Guangling Large-Tailed (GLT) and Small-Tailed Han (STH) sheep are important local Chinese fat-tailed breeds that show distinct patterns of fat depots. To gain a better understanding of fat deposition, transcriptome profiles were determined by RNA-sequencing of perirenal, subcutaneous, and tail fat tissues from both the sheep breeds. The common highly expressed genes (co-genes) in all the six tissues, and the genes that were differentially expressed (DE genes) between these two breeds in the corresponding tissues were analyzed. Approximately 47 million clean reads were obtained for each sample, and a total of 17,267 genes were annotated. Of the 47 highly expressed co-genes, FABP4, ADIPOQ, FABP5, and CD36 were the four most highly transcribed genes among all the known genes related to adipose deposition. FHC, FHC-pseudogene, and ZC3H10 were also highly expressed genes and could, thus, have roles in fat deposition. A total of 2091, 4233, and 4131 DE genes were identified in the perirenal, subcutaneous, and tail fat tissues between the GLT and STH breeds, respectively. Gene Ontology (GO) analysis showed that some DE genes were associated with adipose metabolism. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that PPAR signaling pathway and ECM-receptor interaction were specifically enriched. Four genes, namely LOC101102230, PLTP, C1QTNF7, and OLR1 were up-regulated and two genes, SCD and UCP-1, were down-regulated in all the tested tissues of STH. Among the genes involved in ECM-receptor interaction, the genes encoding collagens, laminins, and integrins were quite different depending on the depots or the breeds. In STH, genes such as LAMB3, RELN, TNXB, and ITGA8, were identified to be up regulated and LAMB4 was observed to be down regulated. This study unravels the complex transcriptome profiles in sheep fat tissues, highlighting the candidate genes involved in fat deposition. Further studies are needed to investigate the roles of the candidate genes in fat deposition and in determining the meat quality of sheep.

  8. Global Transcriptome Analysis of Aedes aegypti Mosquitoes in Response to Zika Virus Infection

    PubMed Central

    Etebari, Kayvan; Hegde, Shivanand; Saldaña, Miguel A.; Widen, Steven G.; Wood, Thomas G.

    2017-01-01

    ABSTRACT Zika virus (ZIKV) of the Flaviviridae family is a recently emerged mosquito-borne virus that has been implicated in the surge of the number of microcephaly instances in South America. The recent rapid spread of the virus led to its declaration as a global health emergency by the World Health Organization. The virus is transmitted mainly by the mosquito Aedes aegypti, which is also the vector of dengue virus; however, little is known about the interactions of the virus with the mosquito vector. In this study, we investigated the transcriptome profiles of whole A. aegypti mosquitoes in response to ZIKV infection at 2, 7, and 14 days postinfection using transcriptome sequencing. Results showed changes in the abundance of a large number of transcripts at each time point following infection, with 18 transcripts commonly changed among the three time points. Gene ontology analysis revealed that most of the altered genes are involved in metabolic processes, cellular processes, and proteolysis. In addition, 486 long intergenic noncoding RNAs that were altered upon ZIKV infection were identified. Further, we found changes of a number of potential mRNA target genes correlating with those of altered host microRNAs. The outcomes provide a basic understanding of A. aegypti responses to ZIKV and help to determine host factors involved in replication or mosquito host antiviral response against the virus. IMPORTANCE Vector-borne viruses pose great risks to human health. Zika virus has recently emerged as a global threat, rapidly expanding its distribution. Understanding the interactions of the virus with mosquito vectors at the molecular level is vital for devising new approaches in inhibiting virus transmission. In this study, we embarked on analyzing the transcriptional response of Aedes aegypti mosquitoes to Zika virus infection. Results showed large changes in both coding and long noncoding RNAs. Analysis of these genes showed similarities with other flaviviruses, including dengue virus, which is transmitted by the same mosquito vector. The outcomes provide a global picture of changes in the mosquito vector in response to Zika virus infection. PMID:29202041

  9. Single-cell analysis of the transcriptome and its application in the characterization of stem cells and early embryos.

    PubMed

    Liu, Na; Liu, Lin; Pan, Xinghua

    2014-07-01

    Cellular heterogeneity within a cell population is a common phenomenon in multicellular organisms, tissues, cultured cells, and even FACS-sorted subpopulations. Important information may be masked if the cells are studied as a mass. Transcriptome profiling is a parameter that has been intensively studied, and relatively easier to address than protein composition. To understand the basis and importance of heterogeneity and stochastic aspects of the cell function and its mechanisms, it is essential to examine transcriptomes of a panel of single cells. High-throughput technologies, starting from microarrays and now RNA-seq, provide a full view of the expression of transcriptomes but are limited by the amount of RNA for analysis. Recently, several new approaches for amplification and sequencing the transcriptome of single cells or a limited low number of cells have been developed and applied. In this review, we summarize these major strategies, such as PCR-based methods, IVT-based methods, phi29-DNA polymerase-based methods, and several other methods, including their principles, characteristics, advantages, and limitations, with representative applications in cancer stem cells, early development, and embryonic stem cells. The prospects for development of future technology and application of transcriptome analysis in a single cell are also discussed.

  10. Sociogenomics of self vs. non-self cooperation during development of Dictyostelium discoideum.

    PubMed

    Li, Si I; Buttery, Neil J; Thompson, Christopher R L; Purugganan, Michael D

    2014-07-21

    Dictyostelium discoideum, a microbial model for social evolution, is known to distinguish self from non-self and show genotype-dependent behavior during chimeric development. Aside from a small number of cell-cell recognition genes, however, little is known about the genetic basis of self/non-self recognition in this species. Based on the key hypothesis that there should be differential expression of genes if D. discoideum cells were interacting with non-clone mates, we performed transcriptomic profiling study in this species during clonal vs. chimeric development. The transcriptomic profiles of D. discoideum cells in clones vs. different chimeras were compared at five different developmental stages using a customized microarray. Effects of chimerism on global transcriptional patterns associated with social interactions were observed. We find 1,759 genes significantly different between chimera and clone, 1,144 genes associated significant strain differences, and 6,586 genes developmentally regulated over time. Principal component analysis showed a small amount of the transcriptional variance to chimerism-related factors (Chimerism: 0.18%, Chimerism × Timepoint: 0.03%). There are 162 genes specifically regulated under chimeric development, with continuous small differences between chimera vs. clone over development. Almost 60% of chimera-associated differential genes were differentially expressed at the 4 h aggregate stage, which corresponds to the initial transition of D. discoideum from solitary life to a multicellular phase. A relatively small proportion of over-all variation in gene expression is explained by differences between chimeric and clonal development. The relatively small modifications in gene expression associated with chimerism is compatible with the high level of cooperation observed among different strains of D. discoideum; cells of distinct genetic backgrounds will co-aggregate indiscriminately and co-develop into fruiting bodies. Chimeric development may involve re-programming of the transcriptome through small modifications of the developmental genetic network, which may also indicate that response to social interaction involves many genes with individually small transcriptional effect.

  11. Transcriptome Analysis of Barbarea vulgaris Infested with Diamondback Moth (Plutella xylostella) Larvae

    PubMed Central

    Shen, Di; Wang, Haiping; Wu, Qingjun; Lu, Peng; Qiu, Yang; Song, Jiangping; Zhang, Youjun; Li, Xixiang

    2013-01-01

    Background The diamondback moth (DBM, Plutella xylostella) is a crucifer-specific pest that causes significant crop losses worldwide. Barbarea vulgaris (Brassicaceae) can resist DBM and other herbivorous insects by producing feeding-deterrent triterpenoid saponins. Plant breeders have long aimed to transfer this insect resistance to other crops. However, a lack of knowledge on the biosynthetic pathways and regulatory networks of these insecticidal saponins has hindered their practical application. A pyrosequencing-based transcriptome analysis of B. vulgaris during DBM larval feeding was performed to identify genes and gene networks responsible for saponin biosynthesis and its regulation at the genome level. Principal Findings Approximately 1.22, 1.19, 1.16, 1.23, 1.16, 1.20, and 2.39 giga base pairs of clean nucleotides were generated from B. vulgaris transcriptomes sampled 1, 4, 8, 12, 24, and 48 h after onset of P. xylostella feeding and from non-inoculated controls, respectively. De novo assembly using all data of the seven transcriptomes generated 39,531 unigenes. A total of 37,780 (95.57%) unigenes were annotated, 14,399 of which were assigned to one or more gene ontology terms and 19,620 of which were assigned to 126 known pathways. Expression profiles revealed 2,016–4,685 up-regulated and 557–5188 down-regulated transcripts. Secondary metabolic pathways, such as those of terpenoids, glucosinolates, and phenylpropanoids, and its related regulators were elevated. Candidate genes for the triterpene saponin pathway were found in the transcriptome. Orthological analysis of the transcriptome with four other crucifer transcriptomes identified 592 B. vulgaris-specific gene families with a P-value cutoff of 1e−5. Conclusion This study presents the first comprehensive transcriptome analysis of B. vulgaris subjected to a series of DBM feedings. The biosynthetic and regulatory pathways of triterpenoid saponins and other DBM deterrent metabolites in this plant were classified. The results of this study will provide useful data for future investigations on pest-resistance phytochemistry and plant breeding. PMID:23696897

  12. Transcriptome difference and potential crosstalk between liver and mammary tissue in mid-lactation primiparous dairy cows.

    PubMed

    Bu, Dengpan; Bionaz, Massimo; Wang, Mengzhi; Nan, Xuemei; Ma, Lu; Wang, Jiaqi

    2017-01-01

    Liver and mammary gland are among the most important organs during lactation in dairy cows. With the purpose of understanding both the different and the complementary roles and the crosstalk of those two organs during lactation, a transcriptome analysis was performed on liver and mammary tissues of 10 primiparous dairy cows in mid-lactation. The analysis was performed using a 4×44K Bovine Agilent microarray chip. The transcriptome difference between the two tissues was analyzed using SAS JMP Genomics using ANOVA with a false discovery rate correction (FDR). The analysis uncovered >9,000 genes differentially expressed (DEG) between the two tissues with a FDR<0.001. The functional analysis of the DEG uncovered a larger metabolic (especially related to lipid) and inflammatory response capacity in liver compared with mammary tissue while the mammary tissue had a larger protein synthesis and secretion, proliferation/differentiation, signaling, and innate immune system capacity compared with the liver. A plethora of endogenous compounds, cytokines, and transcription factors were estimated to control the DEG between the two tissues. Compared with mammary tissue, the liver transcriptome appeared to be under control of a large array of ligand-dependent nuclear receptors and, among endogenous chemical, fatty acids and bacteria-derived compounds. Compared with liver, the transcriptome of the mammary tissue was potentially under control of a large number of growth factors and miRNA. The in silico crosstalk analysis between the two tissues revealed an overall large communication with a reciprocal control of lipid metabolism, innate immune system adaptation, and proliferation/differentiation. In summary the transcriptome analysis confirmed prior known differences between liver and mammary tissue, especially considering the indication of a larger metabolic activity in liver compared with the mammary tissue and the larger protein synthesis, communication, and proliferative capacity in mammary tissue compared with the liver. Relatively novel is the indication by the data that the transcriptome of the liver is highly regulated by dietary and bacteria-related compounds while the mammary transcriptome is more under control of hormones, growth factors, and miRNA. A large crosstalk between the two tissues with a reciprocal control of metabolism and innate immune-adaptation was indicated by the network analysis that allowed uncovering previously unknown crosstalk between liver and mammary tissue for several signaling molecules.

  13. Transcriptome difference and potential crosstalk between liver and mammary tissue in mid-lactation primiparous dairy cows

    PubMed Central

    Bu, Dengpan; Bionaz, Massimo; Wang, Mengzhi; Nan, Xuemei; Ma, Lu; Wang, Jiaqi

    2017-01-01

    Liver and mammary gland are among the most important organs during lactation in dairy cows. With the purpose of understanding both the different and the complementary roles and the crosstalk of those two organs during lactation, a transcriptome analysis was performed on liver and mammary tissues of 10 primiparous dairy cows in mid-lactation. The analysis was performed using a 4×44K Bovine Agilent microarray chip. The transcriptome difference between the two tissues was analyzed using SAS JMP Genomics using ANOVA with a false discovery rate correction (FDR). The analysis uncovered >9,000 genes differentially expressed (DEG) between the two tissues with a FDR<0.001. The functional analysis of the DEG uncovered a larger metabolic (especially related to lipid) and inflammatory response capacity in liver compared with mammary tissue while the mammary tissue had a larger protein synthesis and secretion, proliferation/differentiation, signaling, and innate immune system capacity compared with the liver. A plethora of endogenous compounds, cytokines, and transcription factors were estimated to control the DEG between the two tissues. Compared with mammary tissue, the liver transcriptome appeared to be under control of a large array of ligand-dependent nuclear receptors and, among endogenous chemical, fatty acids and bacteria-derived compounds. Compared with liver, the transcriptome of the mammary tissue was potentially under control of a large number of growth factors and miRNA. The in silico crosstalk analysis between the two tissues revealed an overall large communication with a reciprocal control of lipid metabolism, innate immune system adaptation, and proliferation/differentiation. In summary the transcriptome analysis confirmed prior known differences between liver and mammary tissue, especially considering the indication of a larger metabolic activity in liver compared with the mammary tissue and the larger protein synthesis, communication, and proliferative capacity in mammary tissue compared with the liver. Relatively novel is the indication by the data that the transcriptome of the liver is highly regulated by dietary and bacteria-related compounds while the mammary transcriptome is more under control of hormones, growth factors, and miRNA. A large crosstalk between the two tissues with a reciprocal control of metabolism and innate immune-adaptation was indicated by the network analysis that allowed uncovering previously unknown crosstalk between liver and mammary tissue for several signaling molecules. PMID:28291785

  14. Coccidian Merozoite Transcriptome Analysis From Eimeria Maxima In Comparison To Eimeria Tenella And Eimeria Acervulina

    USDA-ARS?s Scientific Manuscript database

    Using the Eimeria spp. population that infect chickens as a model for coccidian biology, we aimed to survey the transcriptome of E. maxima and contrast it to the two other Eimeria spp. for which transcriptome data are available, E. tenella and E. acervulina. Examining specifically the asexual intra...

  15. Transcriptome profiling analysis of cultivar-specific apple fruit ripening and texture attributes

    USDA-ARS?s Scientific Manuscript database

    Molecular events regulating cultivar-specific apple fruit ripening and sensory quality are largely unknown. Such knowledge is essential for genomic-assisted apple breeding and postharvest quality management. In this study, transcriptome profile analysis, scanning electron microscopic examination an...

  16. Characterizing differential gene expression in polyploid grasses lacking a reference transcriptome

    USDA-ARS?s Scientific Manuscript database

    Basal transcriptome characterization and differential gene expression in response to varying conditions are often addressed through next generation sequencing (NGS) and data analysis techniques. While these strategies are commonly used, there are countless tools, pipelines, data analysis methods an...

  17. RAID: a comprehensive resource for human RNA-associated (RNA–RNA/RNA–protein) interaction

    PubMed Central

    Zhang, Xiaomeng; Wu, Deng; Chen, Liqun; Li, Xiang; Yang, Jinxurong; Fan, Dandan; Dong, Tingting; Liu, Mingyue; Tan, Puwen; Xu, Jintian; Yi, Ying; Wang, Yuting; Zou, Hua; Hu, Yongfei; Fan, Kaili; Kang, Juanjuan; Huang, Yan; Miao, Zhengqiang; Bi, Miaoman; Jin, Nana; Li, Kongning; Li, Xia; Xu, Jianzhen; Wang, Dong

    2014-01-01

    Transcriptomic analyses have revealed an unexpected complexity in the eukaryote transcriptome, which includes not only protein-coding transcripts but also an expanding catalog of noncoding RNAs (ncRNAs). Diverse coding and noncoding RNAs (ncRNAs) perform functions through interaction with each other in various cellular processes. In this project, we have developed RAID (http://www.rna-society.org/raid), an RNA-associated (RNA–RNA/RNA–protein) interaction database. RAID intends to provide the scientific community with all-in-one resources for efficient browsing and extraction of the RNA-associated interactions in human. This version of RAID contains more than 6100 RNA-associated interactions obtained by manually reviewing more than 2100 published papers, including 4493 RNA–RNA interactions and 1619 RNA–protein interactions. Each entry contains detailed information on an RNA-associated interaction, including RAID ID, RNA/protein symbol, RNA/protein categories, validated method, expressing tissue, literature references (Pubmed IDs), and detailed functional description. Users can query, browse, analyze, and manipulate RNA-associated (RNA–RNA/RNA–protein) interaction. RAID provides a comprehensive resource of human RNA-associated (RNA–RNA/RNA–protein) interaction network. Furthermore, this resource will help in uncovering the generic organizing principles of cellular function network. PMID:24803509

  18. RNA-Seq Reveals Enhanced Sugar Metabolism in Streptococcus mutans Co-cultured with Candida albicans within Mixed-Species Biofilms

    PubMed Central

    He, Jinzhi; Kim, Dongyeop; Zhou, Xuedong; Ahn, Sang-Joon; Burne, Robert A.; Richards, Vincent P.; Koo, Hyun

    2017-01-01

    Early childhood caries (ECC), which can lead to rampant tooth-decay that is painful and costly to treat, is one of the most prevalent infectious diseases affecting children worldwide. Previous studies support that interactions between Streptococcus mutans and Candida albicans are associated with the pathogenesis of ECC. The presence of Candida enhances S. mutans growth, fitness and accumulation within biofilms in vitro, although the molecular basis for these behaviors is undefined. Using an established co-cultivation biofilm model and RNA-Seq, we investigated how C. albicans influences the transcriptome of S. mutans. The presence of C. albicans dramatically altered gene expression in S. mutans in the dual-species biofilm, resulting in 393 genes differentially expressed, compared to mono-species biofilms of S. mutans. By Gene Ontology analysis, the majority of up-regulated genes were related to carbohydrate transport and metabolic/catabolic processes. KEGG pathway impact analysis showed elevated pyruvate and galactose metabolism, suggesting that co-cultivation with C. albicans influences carbohydrate utilization by S. mutans. Analysis of metabolites confirmed the increases in carbohydrate metabolism, with elevated amounts of formate in the culture medium of co-cultured biofilms. Moreover, co-cultivation with C. albicans altered transcription of S. mutans signal transduction (comC and ciaRH) genes associated with fitness and virulence. Interestingly, the expression of genes for mutacins (bacteriocins) and CRISPR were down-regulated. Collectively, the data provide a comprehensive insight into S. mutans transcriptomic changes induced by C. albicans, and offer novel insights into how bacterial–fungal interactions may enhance the severity of dental caries. PMID:28642749

  19. Interactions between the colonic transcriptome, metabolome, and microbiome in mouse models of obesity-induced intestinal cancer.

    PubMed

    Pfalzer, Anna C; Kamanu, Frederick K; Parnell, Laurence D; Tai, Albert K; Liu, Zhenhua; Mason, Joel B; Crott, Jimmy W

    2016-08-01

    Obesity is a significant risk factor for colorectal cancer (CRC); however, the relative contribution of high-fat (HF) consumption and excess adiposity remains unclear. It is becoming apparent that obesity perturbs both the intestinal microbiome and metabolome, and each has the potential to induce protumorigenic changes in the epithelial transcriptome. The physiological consequences and the degree to which these different biologic systems interact remain poorly defined. To understand the mechanisms by which obesity drives colonic tumorigenesis, we profiled the colonic epithelial transcriptome of HF-fed and genetically obese (DbDb) mice with a genetic predisposition to intestinal tumorigenesis (Apc(1638N)); 266 and 584 genes were differentially expressed in the colonic mucosa of HF and DbDb mice, respectively. These genes mapped to pathways involved in immune function, and cellular proliferation and cancer. Furthermore, Akt was central within the networks of interacting genes identified in both gene sets. Regression analyses of coexpressed genes with the abundance of bacterial taxa identified three taxa, previously correlated with tumor burden, to be significantly correlated with a gene module enriched for Akt-related genes. Similarly, regression of coexpressed genes with metabolites found that adenosine, which was negatively associated with inflammatory markers and tumor burden, was also correlated with a gene module enriched with Akt regulators. Our findings provide evidence that HF consumption and excess adiposity result in changes in the colonic transcriptome that, although distinct, both appear to converge on Akt signaling. Such changes could be mediated by alterations in the colonic microbiome and metabolome.

  20. Dual Transcriptome Profiling of Leishmania-Infected Human Macrophages Reveals Distinct Reprogramming Signatures

    PubMed Central

    Fernandes, Maria Cecilia; Dillon, Laura A. L.; Belew, Ashton Trey; Bravo, Hector Corrada; Mosser, David M.

    2016-01-01

    ABSTRACT Macrophages are mononuclear phagocytes that constitute a first line of defense against pathogens. While lethal to many microbes, they are the primary host cells of Leishmania spp. parasites, the obligate intracellular pathogens that cause leishmaniasis. We conducted transcriptomic profiling of two Leishmania species and the human macrophage over the course of intracellular infection by using high-throughput RNA sequencing to characterize the global gene expression changes and reprogramming events that underlie the interactions between the pathogen and its host. A systematic exclusion of the generic effects of large-particle phagocytosis revealed a vigorous, parasite-specific response of the human macrophage early in the infection that was greatly tempered at later time points. An analogous temporal expression pattern was observed with the parasite, suggesting that much of the reprogramming that occurs as parasites transform into intracellular forms generally stabilizes shortly after entry. Following that, the parasite establishes an intracellular niche within macrophages, with minimal communication between the parasite and the host cell later during the infection. No significant difference was observed between parasite species transcriptomes or in the transcriptional response of macrophages infected with each species. Our comparative analysis of gene expression changes that occur as mouse and human macrophages are infected by Leishmania spp. points toward a general signature of the Leishmania-macrophage infectome. PMID:27165796

  1. Comparative genomics reveals conservative evolution of the xylem transcriptome in vascular plants.

    PubMed

    Li, Xinguo; Wu, Harry X; Southerton, Simon G

    2010-06-21

    Wood is a valuable natural resource and a major carbon sink. Wood formation is an important developmental process in vascular plants which played a crucial role in plant evolution. Although genes involved in xylem formation have been investigated, the molecular mechanisms of xylem evolution are not well understood. We use comparative genomics to examine evolution of the xylem transcriptome to gain insights into xylem evolution. The xylem transcriptome is highly conserved in conifers, but considerably divergent in angiosperms. The functional domains of genes in the xylem transcriptome are moderately to highly conserved in vascular plants, suggesting the existence of a common ancestral xylem transcriptome. Compared to the total transcriptome derived from a range of tissues, the xylem transcriptome is relatively conserved in vascular plants. Of the xylem transcriptome, cell wall genes, ancestral xylem genes, known proteins and transcription factors are relatively more conserved in vascular plants. A total of 527 putative xylem orthologs were identified, which are unevenly distributed across the Arabidopsis chromosomes with eight hot spots observed. Phylogenetic analysis revealed that evolution of the xylem transcriptome has paralleled plant evolution. We also identified 274 conifer-specific xylem unigenes, all of which are of unknown function. These xylem orthologs and conifer-specific unigenes are likely to have played a crucial role in xylem evolution. Conifers have highly conserved xylem transcriptomes, while angiosperm xylem transcriptomes are relatively diversified. Vascular plants share a common ancestral xylem transcriptome. The xylem transcriptomes of vascular plants are more conserved than the total transcriptomes. Evolution of the xylem transcriptome has largely followed the trend of plant evolution.

  2. Comparative genomics reveals conservative evolution of the xylem transcriptome in vascular plants

    PubMed Central

    2010-01-01

    Background Wood is a valuable natural resource and a major carbon sink. Wood formation is an important developmental process in vascular plants which played a crucial role in plant evolution. Although genes involved in xylem formation have been investigated, the molecular mechanisms of xylem evolution are not well understood. We use comparative genomics to examine evolution of the xylem transcriptome to gain insights into xylem evolution. Results The xylem transcriptome is highly conserved in conifers, but considerably divergent in angiosperms. The functional domains of genes in the xylem transcriptome are moderately to highly conserved in vascular plants, suggesting the existence of a common ancestral xylem transcriptome. Compared to the total transcriptome derived from a range of tissues, the xylem transcriptome is relatively conserved in vascular plants. Of the xylem transcriptome, cell wall genes, ancestral xylem genes, known proteins and transcription factors are relatively more conserved in vascular plants. A total of 527 putative xylem orthologs were identified, which are unevenly distributed across the Arabidopsis chromosomes with eight hot spots observed. Phylogenetic analysis revealed that evolution of the xylem transcriptome has paralleled plant evolution. We also identified 274 conifer-specific xylem unigenes, all of which are of unknown function. These xylem orthologs and conifer-specific unigenes are likely to have played a crucial role in xylem evolution. Conclusions Conifers have highly conserved xylem transcriptomes, while angiosperm xylem transcriptomes are relatively diversified. Vascular plants share a common ancestral xylem transcriptome. The xylem transcriptomes of vascular plants are more conserved than the total transcriptomes. Evolution of the xylem transcriptome has largely followed the trend of plant evolution. PMID:20565927

  3. Comparative transcriptomics of early dipteran development

    PubMed Central

    2013-01-01

    Background Modern sequencing technologies have massively increased the amount of data available for comparative genomics. Whole-transcriptome shotgun sequencing (RNA-seq) provides a powerful basis for comparative studies. In particular, this approach holds great promise for emerging model species in fields such as evolutionary developmental biology (evo-devo). Results We have sequenced early embryonic transcriptomes of two non-drosophilid dipteran species: the moth midge Clogmia albipunctata, and the scuttle fly Megaselia abdita. Our analysis includes a third, published, transcriptome for the hoverfly Episyrphus balteatus. These emerging models for comparative developmental studies close an important phylogenetic gap between Drosophila melanogaster and other insect model systems. In this paper, we provide a comparative analysis of early embryonic transcriptomes across species, and use our data for a phylogenomic re-evaluation of dipteran phylogenetic relationships. Conclusions We show how comparative transcriptomics can be used to create useful resources for evo-devo, and to investigate phylogenetic relationships. Our results demonstrate that de novo assembly of short (Illumina) reads yields high-quality, high-coverage transcriptomic data sets. We use these data to investigate deep dipteran phylogenetic relationships. Our results, based on a concatenation of 160 orthologous genes, provide support for the traditional view of Clogmia being the sister group of Brachycera (Megaselia, Episyrphus, Drosophila), rather than that of Culicomorpha (which includes mosquitoes and blackflies). PMID:23432914

  4. BLIND ordering of large-scale transcriptomic developmental timecourses.

    PubMed

    Anavy, Leon; Levin, Michal; Khair, Sally; Nakanishi, Nagayasu; Fernandez-Valverde, Selene L; Degnan, Bernard M; Yanai, Itai

    2014-03-01

    RNA-Seq enables the efficient transcriptome sequencing of many samples from small amounts of material, but the analysis of these data remains challenging. In particular, in developmental studies, RNA-Seq is challenged by the morphological staging of samples, such as embryos, since these often lack clear markers at any particular stage. In such cases, the automatic identification of the stage of a sample would enable previously infeasible experimental designs. Here we present the 'basic linear index determination of transcriptomes' (BLIND) method for ordering samples comprising different developmental stages. The method is an implementation of a traveling salesman algorithm to order the transcriptomes according to their inter-relationships as defined by principal components analysis. To establish the direction of the ordered samples, we show that an appropriate indicator is the entropy of transcriptomic gene expression levels, which increases over developmental time. Using BLIND, we correctly recover the annotated order of previously published embryonic transcriptomic timecourses for frog, mosquito, fly and zebrafish. We further demonstrate the efficacy of BLIND by collecting 59 embryos of the sponge Amphimedon queenslandica and ordering their transcriptomes according to developmental stage. BLIND is thus useful in establishing the temporal order of samples within large datasets and is of particular relevance to the study of organisms with asynchronous development and when morphological staging is difficult.

  5. Transcriptome Analysis at the Single-Cell Level Using SMART Technology.

    PubMed

    Fish, Rachel N; Bostick, Magnolia; Lehman, Alisa; Farmer, Andrew

    2016-10-10

    RNA sequencing (RNA-seq) is a powerful method for analyzing cell state, with minimal bias, and has broad applications within the biological sciences. However, transcriptome analysis of seemingly homogenous cell populations may in fact overlook significant heterogeneity that can be uncovered at the single-cell level. The ultra-low amount of RNA contained in a single cell requires extraordinarily sensitive and reproducible transcriptome analysis methods. As next-generation sequencing (NGS) technologies mature, transcriptome profiling by RNA-seq is increasingly being used to decipher the molecular signature of individual cells. This unit describes an ultra-sensitive and reproducible protocol to generate cDNA and sequencing libraries directly from single cells or RNA inputs ranging from 10 pg to 10 ng. Important considerations for working with minute RNA inputs are given. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  6. Transcriptomic Analysis of Vulvovaginal Candidiasis Identifies a Role for the NLRP3 Inflammasome

    PubMed Central

    Shetty, Amol C.; Yano, Junko; Fidel, Paul L.; Noverr, Mairi C.

    2015-01-01

    ABSTRACT Treatment of vulvovaginal candidiasis (VVC), caused most frequently by Candida albicans, represents a significant unmet clinical need. C. albicans, as both a commensal and a pathogenic organism, has a complex and poorly understood interaction with the vaginal environment. Understanding the complex nature of this relationship is necessary for the development of desperately needed therapies to treat symptomatic infection. Using transcriptome sequencing (RNA-seq), we characterized the early murine vaginal and fungal transcriptomes of the organism during VVC. Network analysis of host genes that were differentially expressed between infected and naive mice predicted the activation or repression of several signaling pathways that have not been previously associated with VVC, including NLRP3 inflammasome activation. Intravaginal challenge of Nlrp3−/− mice with C. albicans demonstrated severely reduced levels of polymorphonuclear leukocytes (PMNs), alarmins, and inflammatory cytokines, including interleukin-1β (IL-1β) (the hallmarks of VVC immunopathogenesis) in vaginal lavage fluid. Intravaginal administration of wild-type (WT) mice with glyburide, a potent inhibitor of the NLRP3 inflammasome, reduced PMN infiltration and IL-1β to levels comparable to those observed in Nlrp3−/− mice. Furthermore, RNA-seq analysis of C. albicans genes indicated robust expression of hypha-associated secreted aspartyl proteinases 4, 5, and 6 (SAP4–6), which are known inflammasome activators. Despite colonization similar to that of the WT strain, ΔSAP4–6 triple and ΔSAP5 single mutants induced significantly less PMN influx and IL-1β during intravaginal challenge. Our findings demonstrate a novel role for the inflammasome in the immunopathogenesis of VVC and implicate the hypha-associated SAPs as major C. albicans virulence determinants during vulvovaginal candidiasis. PMID:25900651

  7. Transcriptome analysis of hexaploid hulless oat in response to salinity stress

    PubMed Central

    Wu, Bin; Hu, Yani; Huo, Pengjie; Zhang, Qian; Chen, Xin; Zhang, Zongwen

    2017-01-01

    Background Oat is a cereal crop of global importance used for food, feed, and forage. Understanding salinity stress tolerance mechanisms in plants is an important step towards generating crop varieties that can cope with environmental stresses. To date, little is known about the salt tolerance of oat at the molecular level. To better understand the molecular mechanisms underlying salt tolerance in oat, we investigated the transcriptomes of control and salt-treated oat using RNA-Seq. Results Using Illumina HiSeq 4000 platform, we generated 72,291,032 and 356,891,432 reads from non-stressed control and salt-stressed oat, respectively. Assembly of 64 Gb raw sequence data yielded 128,414 putative unique transcripts with an average length of 1,189 bp. Analysis of the assembled unigenes from the salt stressed and control libraries indicated that about 65,000 unigenes were differentially expressed at different stages. Functional annotation showed that ABC transporters, plant hormone signal transduction, plant-pathogen interactions, starch and sucrose metabolism, arginine and proline metabolism, and other secondary metabolite pathways were enriched under salt stress. Based on the RPKM values of assembled unigenes, 24 differentially expressed genes under salt stress were selected for quantitative RT-PCR validation, which successfully confirmed the results of RNA-Seq. Furthermore, we identified 18,039 simple sequence repeats, which may help further elucidate salt tolerance mechanisms in oat. Conclusions Our global survey of transcriptome profiles of oat plants in response to salt stress provides useful insights into the molecular mechanisms underlying salt tolerance in this crop. These findings also represent a rich resource for further analysis of salt tolerance and for breeding oat with improved salt tolerance through the use of salt-related genes. PMID:28192458

  8. A machine learning approach for the identification of key markers involved in brain development from single-cell transcriptomic data.

    PubMed

    Hu, Yongli; Hase, Takeshi; Li, Hui Peng; Prabhakar, Shyam; Kitano, Hiroaki; Ng, See Kiong; Ghosh, Samik; Wee, Lawrence Jin Kiat

    2016-12-22

    The ability to sequence the transcriptomes of single cells using single-cell RNA-seq sequencing technologies presents a shift in the scientific paradigm where scientists, now, are able to concurrently investigate the complex biology of a heterogeneous population of cells, one at a time. However, till date, there has not been a suitable computational methodology for the analysis of such intricate deluge of data, in particular techniques which will aid the identification of the unique transcriptomic profiles difference between the different cellular subtypes. In this paper, we describe the novel methodology for the analysis of single-cell RNA-seq data, obtained from neocortical cells and neural progenitor cells, using machine learning algorithms (Support Vector machine (SVM) and Random Forest (RF)). Thirty-eight key transcripts were identified, using the SVM-based recursive feature elimination (SVM-RFE) method of feature selection, to best differentiate developing neocortical cells from neural progenitor cells in the SVM and RF classifiers built. Also, these genes possessed a higher discriminative power (enhanced prediction accuracy) as compared commonly used statistical techniques or geneset-based approaches. Further downstream network reconstruction analysis was carried out to unravel hidden general regulatory networks where novel interactions could be further validated in web-lab experimentation and be useful candidates to be targeted for the treatment of neuronal developmental diseases. This novel approach reported for is able to identify transcripts, with reported neuronal involvement, which optimally differentiate neocortical cells and neural progenitor cells. It is believed to be extensible and applicable to other single-cell RNA-seq expression profiles like that of the study of the cancer progression and treatment within a highly heterogeneous tumour.

  9. The Anopheles gambiae transcriptome - a turning point for malaria control.

    PubMed

    Domingos, A; Pinheiro-Silva, R; Couto, J; do Rosário, V; de la Fuente, J

    2017-04-01

    Mosquitoes are important vectors of several pathogens and thereby contribute to the spread of diseases, with social, economic and public health impacts. Amongst the approximately 450 species of Anopheles, about 60 are recognized as vectors of human malaria, the most important parasitic disease. In Africa, Anopheles gambiae is the main malaria vector mosquito. Current malaria control strategies are largely focused on drugs and vector control measures such as insecticides and bed-nets. Improvement of current, and the development of new, mosquito-targeted malaria control methods rely on a better understanding of mosquito vector biology. An organism's transcriptome is a reflection of its physiological state and transcriptomic analyses of different conditions that are relevant to mosquito vector competence can therefore yield important information. Transcriptomic analyses have contributed significant information on processes such as blood-feeding parasite-vector interaction, insecticide resistance, and tissue- and stage-specific gene regulation, thereby facilitating the path towards the development of new malaria control methods. Here, we discuss the main applications of transcriptomic analyses in An. gambiae that have led to a better understanding of mosquito vector competence. © 2017 The Royal Entomological Society.

  10. Spatial transcriptomics: paving the way for tissue-level systems biology.

    PubMed

    Moor, Andreas E; Itzkovitz, Shalev

    2017-08-01

    The tissues in our bodies are complex systems composed of diverse cell types that often interact in highly structured repeating anatomical units. External gradients of morphogens, directional blood flow, as well as the secretion and absorption of materials by cells generate distinct microenvironments at different tissue coordinates. Such spatial heterogeneity enables optimized function through division of labor among cells. Unraveling the design principles that govern this spatial division of labor requires techniques to quantify the entire transcriptomes of cells while accounting for their spatial coordinates. In this review we describe how recent advances in spatial transcriptomics open the way for tissue-level systems biology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Divergently expressed gene identification and interaction prediction of long noncoding RNA and mRNA involved in duck reproduction.

    PubMed

    Ren, Jindong; Du, Xue; Zeng, Tao; Chen, Li; Shen, Junda; Lu, Lizhi; Hu, Jianhong

    2017-10-01

    Long noncoding RNAs (lncRNAs) and divergently expressed genes exist widely in different tissues of mammals and birds, in which they are involved in various biological processes. However, there is limited information on their role in the regulation of normal biological processes during differentiation, development, and reproduction in birds. In this study, whole transcriptome strand-specific RNA sequencing of the ovary from young ducks (60days), first-laying ducks (160days), and old ducks, i.e., ducks that stopped laying eggs (490days) was performed. The lncRNAs and mRNAs from these ducks were systematically analyzed and identified by duck genome sequencing in the three study groups. The transcriptome from the duck ovary comprised 15,011 protein-coding genes and 2905 lncRNAs; all the lncRNAs were identified as novel long noncoding transcripts. The comparison of transcriptome data from different study groups identified 2240 divergent transcription genes and 135 divergently expressed lncRNAs, which differed among the groups; most of them were significantly downregulated with age. Among the divergent genes, 38 genes were related to the reproductive process and 6 genes were upregulated. Further prediction analysis revealed that 52 lncRNAs were closely correlated with divergent reproductive mRNAs. More importantly, 6 remarkable lncRNAs were correlated significantly with the conversion of the ovary in different phases. Our results aid in the understanding of the divergent transcriptome of duck ovary in different phases and the underlying mechanisms that drive the specificity of protein-coding genes and lncRNAs in duck ovary. Copyright © 2017. Published by Elsevier B.V.

  12. Transcriptomic analysis of persistent infection with foot-and-mouth disease virus in cattle suggests impairment of cell-mediated immunity in the nasopharynx

    USDA-ARS?s Scientific Manuscript database

    In order to investigate the mechanisms of persistent foot-and-mouth disease virus (FMDV) infection in cattle, transcriptome alterations associated with the FMDV carrier state were characterized using a bovine whole-transcriptome microarray. Eighteen cattle (8 vaccinated with a recombinant FMDV A vac...

  13. New approach for the study of mite reproduction: the first transcriptome analysis of a mite, Phytoseiulus persimilis (Acari: Phytoseiidae)

    USDA-ARS?s Scientific Manuscript database

    Many species of mites and ticks are of agricultural and medical importance. Much can be learned from the study of transcriptomes of acarines which can generate DNA-sequence information of potential target genes for the control of acarine pests. High throughput transcriptome sequencing can also yie...

  14. Rewiring of the inferred protein interactome during blood development studied with the tool PPICompare.

    PubMed

    Will, Thorsten; Helms, Volkhard

    2017-04-04

    Differential analysis of cellular conditions is a key approach towards understanding the consequences and driving causes behind biological processes such as developmental transitions or diseases. The progress of whole-genome expression profiling enabled to conveniently capture the state of a cell's transcriptome and to detect the characteristic features that distinguish cells in specific conditions. In contrast, mapping the physical protein interactome for many samples is experimentally infeasible at the moment. For the understanding of the whole system, however, it is equally important how the interactions of proteins are rewired between cellular states. To overcome this deficiency, we recently showed how condition-specific protein interaction networks that even consider alternative splicing can be inferred from transcript expression data. Here, we present the differential network analysis tool PPICompare that was specifically designed for isoform-sensitive protein interaction networks. Besides detecting significant rewiring events between the interactomes of grouped samples, PPICompare infers which alterations to the transcriptome caused each rewiring event and what is the minimal set of alterations necessary to explain all between-group changes. When applied to the development of blood cells, we verified that a reasonable amount of rewiring events were reported by the tool and found that differential gene expression was the major determinant of cellular adjustments to the interactome. Alternative splicing events were consistently necessary in each developmental step to explain all significant alterations and were especially important for rewiring in the context of transcriptional control. Applying PPICompare enabled us to investigate the dynamics of the human protein interactome during developmental transitions. A platform-independent implementation of the tool PPICompare is available at https://sourceforge.net/projects/ppicompare/ .

  15. Analysis of the Nicotiana tabacum Stigma/Style Transcriptome Reveals Gene Expression Differences between Wet and Dry Stigma Species1[W][OA

    PubMed Central

    Quiapim, Andréa C.; Brito, Michael S.; Bernardes, Luciano A.S.; daSilva, Idalete; Malavazi, Iran; DePaoli, Henrique C.; Molfetta-Machado, Jeanne B.; Giuliatti, Silvana; Goldman, Gustavo H.; Goldman, Maria Helena S.

    2009-01-01

    The success of plant reproduction depends on pollen-pistil interactions occurring at the stigma/style. These interactions vary depending on the stigma type: wet or dry. Tobacco (Nicotiana tabacum) represents a model of wet stigma, and its stigmas/styles express genes to accomplish the appropriate functions. For a large-scale study of gene expression during tobacco pistil development and preparation for pollination, we generated 11,216 high-quality expressed sequence tags (ESTs) from stigmas/styles and created the TOBEST database. These ESTs were assembled in 6,177 clusters, from which 52.1% are pistil transcripts/genes of unknown function. The 21 clusters with the highest number of ESTs (putative higher expression levels) correspond to genes associated with defense mechanisms or pollen-pistil interactions. The database analysis unraveled tobacco sequences homologous to the Arabidopsis (Arabidopsis thaliana) genes involved in specifying pistil identity or determining normal pistil morphology and function. Additionally, 782 independent clusters were examined by macroarray, revealing 46 stigma/style preferentially expressed genes. Real-time reverse transcription-polymerase chain reaction experiments validated the pistil-preferential expression for nine out of 10 genes tested. A search for these 46 genes in the Arabidopsis pistil data sets demonstrated that only 11 sequences, with putative equivalent molecular functions, are expressed in this dry stigma species. The reverse search for the Arabidopsis pistil genes in the TOBEST exposed a partial overlap between these dry and wet stigma transcriptomes. The TOBEST represents the most extensive survey of gene expression in the stigmas/styles of wet stigma plants, and our results indicate that wet and dry stigmas/styles express common as well as distinct genes in preparation for the pollination process. PMID:19052150

  16. Comparative Transcriptome Analyses between a Spontaneous Late-Ripening Sweet Orange Mutant and Its Wild Type Suggest the Functions of ABA, Sucrose and JA during Citrus Fruit Ripening

    PubMed Central

    Zhang, Ya-Jian; Wang, Xing-Jian; Wu, Ju-Xun; Chen, Shan-Yan; Chen, Hong; Chai, Li-Jun; Yi, Hua-Lin

    2014-01-01

    A spontaneous late-ripening mutant of ‘Jincheng’ (C. sinensis L. Osbeck) sweet orange exhibited a delay of fruit pigmentation and harvesting. In this work, we studied the processes of orange fruit ripening through the comparative analysis between the Jincheng mutant and its wild type. This study revealed that the fruit quality began to differ on 166th days after anthesis. At this stage, fruits were subjected to transcriptome analysis by RNA sequencing. 13,412 differentially expressed unigenes (DEGs) were found. Of these unigenes, 75.8% were down-regulated in the wild type, suggesting that the transcription level of wild type was lower than that of the mutant during this stage. These DEGs were mainly clustered into five pathways: metabolic pathways, plant-pathogen interaction, spliceosome, biosynthesis of plant hormones and biosynthesis of phenylpropanoids. Therefore, the expression profiles of the genes that are involved in abscisic acid, sucrose, and jasmonic acid metabolism and signal transduction pathways were analyzed during the six fruit ripening stages. The results revealed the regulation mechanism of sweet orange fruit ripening metabolism in the following four aspects: First, the more mature orange fruits were, the lower the transcription levels were. Second, the expression level of PME boosted with the maturity of the citrus fruit. Therefore, the expression level of PME might represent the degree of the orange fruit ripeness. Third, the interaction of PP2C, PYR/PYL, and SnRK2 was peculiar to the orange fruit ripening process. Fourth, abscisic acid, sucrose, and jasmonic acid all took part in orange fruit ripening process and might interact with each other. These findings provide an insight into the intricate process of sweet orange fruit ripening. PMID:25551568

  17. De novo transcriptome sequencing and analysis of the cereal cyst nematode, Heterodera avenae.

    PubMed

    Kumar, Mukesh; Gantasala, Nagavara Prasad; Roychowdhury, Tanmoy; Thakur, Prasoon Kumar; Banakar, Prakash; Shukla, Rohit N; Jones, Michael G K; Rao, Uma

    2014-01-01

    The cereal cyst nematode (CCN, Heterodera avenae) is a major pest of wheat (Triticum spp) that reduces crop yields in many countries. Cyst nematodes are obligate sedentary endoparasites that reproduce by amphimixis. Here, we report the first transcriptome analysis of two stages of H. avenae. After sequencing extracted RNA from pre parasitic infective juvenile and adult stages of the life cycle, 131 million Illumina high quality paired end reads were obtained which generated 27,765 contigs with N50 of 1,028 base pairs, of which 10,452 were annotated. Comparative analyses were undertaken to evaluate H. avenae sequences with those of other plant, animal and free living nematodes to identify differences in expressed genes. There were 4,431 transcripts common to H. avenae and the free living nematode Caenorhabditis elegans, and 9,462 in common with more closely related potato cyst nematode, Globodera pallida. Annotation of H. avenae carbohydrate active enzymes (CAZy) revealed fewer glycoside hydrolases (GHs) but more glycosyl transferases (GTs) and carbohydrate esterases (CEs) when compared to M. incognita. 1,280 transcripts were found to have secretory signature, presence of signal peptide and absence of transmembrane. In a comparison of genes expressed in the pre-parasitic juvenile and feeding female stages, expression levels of 30 genes with high RPKM (reads per base per kilo million) value, were analysed by qRT-PCR which confirmed the observed differences in their levels of expression levels. In addition, we have also developed a user-friendly resource, Heterodera transcriptome database (HATdb) for public access of the data generated in this study. The new data provided on the transcriptome of H. avenae adds to the genetic resources available to study plant parasitic nematodes and provides an opportunity to seek new effectors that are specifically involved in the H. avenae-cereal host interaction.

  18. De Novo Transcriptome Sequencing and Analysis of the Cereal Cyst Nematode, Heterodera avenae

    PubMed Central

    Kumar, Mukesh; Gantasala, Nagavara Prasad; Roychowdhury, Tanmoy; Thakur, Prasoon Kumar; Banakar, Prakash; Shukla, Rohit N.; Jones, Michael G. K.; Rao, Uma

    2014-01-01

    The cereal cyst nematode (CCN, Heterodera avenae) is a major pest of wheat (Triticum spp) that reduces crop yields in many countries. Cyst nematodes are obligate sedentary endoparasites that reproduce by amphimixis. Here, we report the first transcriptome analysis of two stages of H. avenae. After sequencing extracted RNA from pre parasitic infective juvenile and adult stages of the life cycle, 131 million Illumina high quality paired end reads were obtained which generated 27,765 contigs with N50 of 1,028 base pairs, of which 10,452 were annotated. Comparative analyses were undertaken to evaluate H. avenae sequences with those of other plant, animal and free living nematodes to identify differences in expressed genes. There were 4,431 transcripts common to H. avenae and the free living nematode Caenorhabditis elegans, and 9,462 in common with more closely related potato cyst nematode, Globodera pallida. Annotation of H. avenae carbohydrate active enzymes (CAZy) revealed fewer glycoside hydrolases (GHs) but more glycosyl transferases (GTs) and carbohydrate esterases (CEs) when compared to M. incognita. 1,280 transcripts were found to have secretory signature, presence of signal peptide and absence of transmembrane. In a comparison of genes expressed in the pre-parasitic juvenile and feeding female stages, expression levels of 30 genes with high RPKM (reads per base per kilo million) value, were analysed by qRT-PCR which confirmed the observed differences in their levels of expression levels. In addition, we have also developed a user-friendly resource, Heterodera transcriptome database (HATdb) for public access of the data generated in this study. The new data provided on the transcriptome of H. avenae adds to the genetic resources available to study plant parasitic nematodes and provides an opportunity to seek new effectors that are specifically involved in the H. avenae-cereal host interaction. PMID:24802510

  19. Deep sequencing-based transcriptome analysis of Plutella xylostella larvae parasitized by Diadegma semiclausum

    PubMed Central

    2011-01-01

    Background Parasitoid insects manipulate their hosts' physiology by injecting various factors into their host upon parasitization. Transcriptomic approaches provide a powerful approach to study insect host-parasitoid interactions at the molecular level. In order to investigate the effects of parasitization by an ichneumonid wasp (Diadegma semiclausum) on the host (Plutella xylostella), the larval transcriptome profile was analyzed using a short-read deep sequencing method (Illumina). Symbiotic polydnaviruses (PDVs) associated with ichneumonid parasitoids, known as ichnoviruses, play significant roles in host immune suppression and developmental regulation. In the current study, D. semiclausum ichnovirus (DsIV) genes expressed in P. xylostella were identified and their sequences compared with other reported PDVs. Five of these genes encode proteins of unknown identity, that have not previously been reported. Results De novo assembly of cDNA sequence data generated 172,660 contigs between 100 and 10000 bp in length; with 35% of > 200 bp in length. Parasitization had significant impacts on expression levels of 928 identified insect host transcripts. Gene ontology data illustrated that the majority of the differentially expressed genes are involved in binding, catalytic activity, and metabolic and cellular processes. In addition, the results show that transcription levels of antimicrobial peptides, such as gloverin, cecropin E and lysozyme, were up-regulated after parasitism. Expression of ichnovirus genes were detected in parasitized larvae with 19 unique sequences identified from five PDV gene families including vankyrin, viral innexin, repeat elements, a cysteine-rich motif, and polar residue rich protein. Vankyrin 1 and repeat element 1 genes showed the highest transcription levels among the DsIV genes. Conclusion This study provides detailed information on differential expression of P. xylostella larval genes following parasitization, DsIV genes expressed in the host and also improves our current understanding of this host-parasitoid interaction. PMID:21906285

  20. Network and biosignature analysis for the integration of transcriptomic and metabolomic data to characterize leaf senescence process in sunflower.

    PubMed

    Moschen, Sebastián; Higgins, Janet; Di Rienzo, Julio A; Heinz, Ruth A; Paniego, Norma; Fernandez, Paula

    2016-06-06

    In recent years, high throughput technologies have led to an increase of datasets from omics disciplines allowing the understanding of the complex regulatory networks associated with biological processes. Leaf senescence is a complex mechanism controlled by multiple genetic and environmental variables, which has a strong impact on crop yield. Transcription factors (TFs) are key proteins in the regulation of gene expression, regulating different signaling pathways; their function is crucial for triggering and/or regulating different aspects of the leaf senescence process. The study of TF interactions and their integration with metabolic profiles under different developmental conditions, especially for a non-model organism such as sunflower, will open new insights into the details of gene regulation of leaf senescence. Weighted Gene Correlation Network Analysis (WGCNA) and BioSignature Discoverer (BioSD, Gnosis Data Analysis, Heraklion, Greece) were used to integrate transcriptomic and metabolomic data. WGCNA allowed the detection of 10 metabolites and 13 TFs whereas BioSD allowed the detection of 1 metabolite and 6 TFs as potential biomarkers. The comparative analysis demonstrated that three transcription factors were detected through both methodologies, highlighting them as potentially robust biomarkers associated with leaf senescence in sunflower. The complementary use of network and BioSignature Discoverer analysis of transcriptomic and metabolomic data provided a useful tool for identifying candidate genes and metabolites which may have a role during the triggering and development of the leaf senescence process. The WGCNA tool allowed us to design and test a hypothetical network in order to infer relationships across selected transcription factor and metabolite candidate biomarkers involved in leaf senescence, whereas BioSignature Discoverer selected transcripts and metabolites which discriminate between different ages of sunflower plants. The methodology presented here would help to elucidate and predict novel networks and potential biomarkers of leaf senescence in sunflower.

  1. Transcriptome Analysis of Portunus trituberculatus in Response to Salinity Stress Provides Insights into the Molecular Basis of Osmoregulation

    PubMed Central

    Lv, Jianjian; Liu, Ping; Wang, Yu; Gao, Baoquan; Chen, Ping; Li, Jian

    2013-01-01

    Background The swimming crab, Portunus trituberculatus, which is naturally distributed in the coastal waters of Asia-Pacific countries, is an important farmed species in China. Salinity is one of the most important abiotic factors that influence not only the distribution and abundance of crustaceans, it is also an important factor for artificial propagation of the crab. To better understand the interaction between salinity stress and osmoregulation, we performed a transcriptome analysis in the gills of Portunus trituberculatus challenged with salinity stress, using the Illumina Deep Sequencing technology. Results We obtained 27,696,835, 28,268,353 and 33,901,271 qualified Illumina read pairs from low salinity challenged (LC), non-challenged (NC), and high salinity challenged (HC) Portunus trituberculatus cDNA libraries, respectively. The overall de novo assembly of cDNA sequence data generated 94,511 unigenes, with an average length of 644 bp. Comparative genomic analysis revealed that 1,705 genes differentially expressed in salinity stress compared to the controls, including 615 and 1,516 unigenes in NC vs LC and NC vs HC respectively. GO functional enrichment analysis results showed some differentially expressed genes were involved in crucial processes related to osmoregulation, such as ion transport processes, amino acid metabolism and synthesis processes, proteolysis process and chitin metabolic process. Conclusion This work represents the first report of the utilization of the next generation sequencing techniques for transcriptome analysis in Portunus trituberculatus and provides valuable information on salinity adaptation mechanism. Results reveal a substantial number of genes modified by salinity stress and a few important salinity acclimation pathways, which will serve as an invaluable resource for revealing the molecular basis of osmoregulation in Portunus trituberculatus. In addition, the most comprehensive sequences of transcripts reported in this study provide a rich source for identification of novel genes in the crab. PMID:24312639

  2. Transcriptomic dissection of Bradyrhizobium sp. strain ORS285 in symbiosis with Aeschynomene spp. inducing different bacteroid morphotypes with contrasted symbiotic efficiency.

    PubMed

    Lamouche, Florian; Gully, Djamel; Chaumeret, Anaïs; Nouwen, Nico; Verly, Camille; Pierre, Olivier; Sciallano, Coline; Fardoux, Joël; Jeudy, Christian; Szücs, Attila; Mondy, Samuel; Salon, Christophe; Nagy, István; Kereszt, Attila; Dessaux, Yves; Giraud, Eric; Mergaert, Peter; Alunni, Benoit

    2018-06-19

    To circumvent the paucity of nitrogen sources in the soil legume plants establish a symbiotic interaction with nitrogen-fixing soil bacteria called rhizobia. During symbiosis, the plants form root organs called nodules, where bacteria are housed intracellularly and become active nitrogen fixers known as bacteroids. Depending on their host plant, bacteroids can adopt different morphotypes, being either unmodified (U), elongated (E) or spherical (S). E- and S-type bacteroids undergo a terminal differentiation leading to irreversible morphological changes and DNA endoreduplication. Previous studies suggest that differentiated bacteroids display an increased symbiotic efficiency (E>U and S>U). In this study, we used a combination of Aeschynomene species inducing E- or S-type bacteroids in symbiosis with Bradyrhizobium sp. ORS285 to show that S-type bacteroids present a better symbiotic efficiency than E-type bacteroids. We performed a transcriptomic analysis on E- and S-type bacteroids formed by Aeschynomene afraspera and Aeschynomene indica nodules and identified the bacterial functions activated in bacteroids and specific to each bacteroid type. Extending the expression analysis in E- and S-type bacteroids in other Aeschynomene species by qRT-PCR on selected genes from the transcriptome analysis narrowed down the set of bacteroid morphotype-specific genes. Functional analysis of a selected subset of 31 bacteroid-induced or morphotype-specific genes revealed no symbiotic phenotypes in the mutants. This highlights the robustness of the symbiotic program but could also indicate that the bacterial response to the plant environment is partially anticipatory or even maladaptive. Our analysis confirms the correlation between differentiation and efficiency of the bacteroids and provides a framework for the identification of bacterial functions that affect the efficiency of bacteroids. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. RNA-Seq Atlas of Glycine max: a guide to the soybean transcriptome

    USDA-ARS?s Scientific Manuscript database

    A first analysis of the Glycine max (L.) Merr. (soybean) transcriptome using next generation sequencing technology and RNA-Sequencing (RNA-Seq) is presented. This analysis will provide an important resource for understanding transcription and gene co-regulatory networks in soybean, the most economic...

  4. A house finch (Haemorhous mexicanus) spleen transcriptome reveals intra- and interspecific patterns of gene expression, alternative splicing and genetic diversity in passerines

    PubMed Central

    2014-01-01

    Background With its plumage color dimorphism and unique history in North America, including a recent population expansion and an epizootic of Mycoplasma gallisepticum (MG), the house finch (Haemorhous mexicanus) is a model species for studying sexual selection, plumage coloration and host-parasite interactions. As part of our ongoing efforts to make available genomic resources for this species, here we report a transcriptome assembly derived from genes expressed in spleen. Results We characterize transcriptomes from two populations with different histories of demography and disease exposure: a recently founded population in the eastern US that has been exposed to MG for over a decade and a native population from the western range that has never been exposed to MG. We utilize this resource to quantify conservation in gene expression in passerine birds over approximately 50 MY by comparing splenic expression profiles for 9,646 house finch transcripts and those from zebra finch and find that less than half of all genes expressed in spleen in either species are expressed in both species. Comparative gene annotations from several vertebrate species suggest that the house finch transcriptomes contain ~15 genes not yet found in previously sequenced vertebrate genomes. The house finch transcriptomes harbour ~85,000 SNPs, ~20,000 of which are non-synonymous. Although not yet validated by biological or technical replication, we identify a set of genes exhibiting differences between populations in gene expression (n = 182; 2% of all transcripts), allele frequencies (76 FST ouliers) and alternative splicing as well as genes with several fixed non-synonymous substitutions; this set includes genes with functions related to double-strand break repair and immune response. Conclusions The two house finch spleen transcriptome profiles will add to the increasing data on genome and transcriptome sequence information from natural populations. Differences in splenic expression between house finch and zebra finch imply either significant evolutionary turnover of splenic expression patterns or different physiological states of the individuals examined. The transcriptome resource will enhance the potential to annotate an eventual house finch genome, and the set of gene-based high-quality SNPs will help clarify the genetic underpinnings of host-pathogen interactions and sexual selection. PMID:24758272

  5. The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program.

    PubMed

    Fasoli, Marianna; Dal Santo, Silvia; Zenoni, Sara; Tornielli, Giovanni Battista; Farina, Lorenzo; Zamboni, Anita; Porceddu, Andrea; Venturini, Luca; Bicego, Manuele; Murino, Vittorio; Ferrarini, Alberto; Delledonne, Massimo; Pezzotti, Mario

    2012-09-01

    We developed a genome-wide transcriptomic atlas of grapevine (Vitis vinifera) based on 54 samples representing green and woody tissues and organs at different developmental stages as well as specialized tissues such as pollen and senescent leaves. Together, these samples expressed ∼91% of the predicted grapevine genes. Pollen and senescent leaves had unique transcriptomes reflecting their specialized functions and physiological status. However, microarray and RNA-seq analysis grouped all the other samples into two major classes based on maturity rather than organ identity, namely, the vegetative/green and mature/woody categories. This division represents a fundamental transcriptomic reprogramming during the maturation process and was highlighted by three statistical approaches identifying the transcriptional relationships among samples (correlation analysis), putative biomarkers (O2PLS-DA approach), and sets of strongly and consistently expressed genes that define groups (topics) of similar samples (biclustering analysis). Gene coexpression analysis indicated that the mature/woody developmental program results from the reiterative coactivation of pathways that are largely inactive in vegetative/green tissues, often involving the coregulation of clusters of neighboring genes and global regulation based on codon preference. This global transcriptomic reprogramming during maturation has not been observed in herbaceous annual species and may be a defining characteristic of perennial woody plants.

  6. Elucidating and mining the Tulipa and Lilium transcriptomes.

    PubMed

    Moreno-Pachon, Natalia M; Leeggangers, Hendrika A C F; Nijveen, Harm; Severing, Edouard; Hilhorst, Henk; Immink, Richard G H

    2016-10-01

    Genome sequencing remains a challenge for species with large and complex genomes containing extensive repetitive sequences, of which the bulbous and monocotyledonous plants tulip and lily are examples. In such a case, sequencing of only the active part of the genome, represented by the transcriptome, is a good alternative to obtain information about gene content. In this study we aimed to generate a high quality transcriptome of tulip and lily and to make this data available as an open-access resource via a user-friendly web-based interface. The Illumina HiSeq 2000 platform was applied and the transcribed RNA was sequenced from a collection of different lily and tulip tissues, respectively. In order to obtain good transcriptome coverage and to facilitate effective data mining, assembly was done using different filtering parameters for clearing out contamination and noise of the RNAseq datasets. This analysis revealed limitations of commonly applied methods and parameter settings used in de novo transcriptome assembly. The final created transcriptomes are publicly available via a user friendly Transcriptome browser ( http://www.bioinformatics.nl/bulbs/db/species/index ). The usefulness of this resource has been exemplified by a search for all potential transcription factors in lily and tulip, with special focus on the TCP transcription factor family. This analysis and other quality parameters point out the quality of the transcriptomes, which can serve as a basis for further genomics studies in lily, tulip, and bulbous plants in general.

  7. In-Depth Transcriptome Sequencing of Mexican Lime Trees Infected with Candidatus Phytoplasma aurantifolia.

    PubMed

    Mardi, Mohsen; Karimi Farsad, Laleh; Gharechahi, Javad; Salekdeh, Ghasem Hosseini

    2015-01-01

    Witches' broom disease of acid lime greatly affects the production of Mexican lime in Iran. It is caused by a phytoplasma (Candidatus Phytoplasma aurantifolia). However, the molecular mechanisms that underlie phytoplasma pathogenicity and the mode of interactions with host plants are largely unknown. Here, high-throughput transcriptome sequencing was conducted to explore gene expression signatures associated with phytoplasma infection in Mexican lime trees. We assembled 78,185 unique transcript sequences (unigenes) with an average length of 530 nt. Of these, 41,805 (53.4%) were annotated against the NCBI non-redundant (nr) protein database using a BLASTx search (e-value ≤ 1e-5). When the abundances of unigenes in healthy and infected plants were compared, 2,805 transcripts showed significant differences (false discovery rate ≤ 0.001 and log2 ratio ≥ 1.5). These differentially expressed genes (DEGs) were significantly enriched in 43 KEGG metabolic and regulatory pathways. The up-regulated DEGs were mainly categorized into pathways with possible implication in plant-pathogen interaction, including cell wall biogenesis and degradation, sucrose metabolism, secondary metabolism, hormone biosynthesis and signalling, amino acid and lipid metabolism, while down-regulated DEGs were predominantly enriched in ubiquitin proteolysis and oxidative phosphorylation pathways. Our analysis provides novel insight into the molecular pathways that are deregulated during the host-pathogen interaction in Mexican lime trees infected by phytoplasma. The findings can be valuable for unravelling the molecular mechanisms of plant-phytoplasma interactions and can pave the way for engineering lime trees with resistance to witches' broom disease.

  8. Comparative analysis of transcriptome in two wheat genotypes with contrasting levels of drought tolerance

    USDA-ARS?s Scientific Manuscript database

    Drought tolerance is a complex trait that is governed by multiple genes. To identify the potential candidate genes, comparative analysis of drought stress-responsive transcriptome between drought-tolerant (Triticum aestivum Cv. C306) and drought-sensitive (Triticum aestivum Cv. WL711) genotypes was ...

  9. Comparative transcriptome analysis during early fruit development between three seedy citrus genotypes and their seedless mutants

    USDA-ARS?s Scientific Manuscript database

    Identification of genes with differential transcript abundance (GDTA) in seedless mutants may enhance understanding of seedless citrus development. Transcriptome analysis was conducted at three time points during early fruit development (Phase 1) of three seedy citrus genotypes: Fallglo [Bower citru...

  10. Optimized approach for Ion Proton RNA sequencing reveals details of RNA splicing and editing features of the transcriptome.

    PubMed

    Brown, Roger B; Madrid, Nathaniel J; Suzuki, Hideaki; Ness, Scott A

    2017-01-01

    RNA-sequencing (RNA-seq) has become the standard method for unbiased analysis of gene expression but also provides access to more complex transcriptome features, including alternative RNA splicing, RNA editing, and even detection of fusion transcripts formed through chromosomal translocations. However, differences in library methods can adversely affect the ability to recover these different types of transcriptome data. For example, some methods have bias for one end of transcripts or rely on low-efficiency steps that limit the complexity of the resulting library, making detection of rare transcripts less likely. We tested several commonly used methods of RNA-seq library preparation and found vast differences in the detection of advanced transcriptome features, such as alternatively spliced isoforms and RNA editing sites. By comparing several different protocols available for the Ion Proton sequencer and by utilizing detailed bioinformatics analysis tools, we were able to develop an optimized random primer based RNA-seq technique that is reliable at uncovering rare transcript isoforms and RNA editing features, as well as fusion reads from oncogenic chromosome rearrangements. The combination of optimized libraries and rapid Ion Proton sequencing provides a powerful platform for the transcriptome analysis of research and clinical samples.

  11. Assessment of pleiotropic transcriptome perturbations in Arabidopsis engineered for indirect insect defence.

    PubMed

    Houshyani, Benyamin; van der Krol, Alexander R; Bino, Raoul J; Bouwmeester, Harro J

    2014-06-19

    Molecular characterization is an essential step of risk/safety assessment of genetically modified (GM) crops. Holistic approaches for molecular characterization using omics platforms can be used to confirm the intended impact of the genetic engineering, but can also reveal the unintended changes at the omics level as a first assessment of potential risks. The potential of omics platforms for risk assessment of GM crops has rarely been used for this purpose because of the lack of a consensus reference and statistical methods to judge the significance or importance of the pleiotropic changes in GM plants. Here we propose a meta data analysis approach to the analysis of GM plants, by measuring the transcriptome distance to untransformed wild-types. In the statistical analysis of the transcriptome distance between GM and wild-type plants, values are compared with naturally occurring transcriptome distances in non-GM counterparts obtained from a database. Using this approach we show that the pleiotropic effect of genes involved in indirect insect defence traits is substantially equivalent to the variation in gene expression occurring naturally in Arabidopsis. Transcriptome distance is a useful screening method to obtain insight in the pleiotropic effects of genetic modification.

  12. Identification, characterization and expression analysis of lineage-specific genes within sweet orange (Citrus sinensis).

    PubMed

    Xu, Yuantao; Wu, Guizhi; Hao, Baohai; Chen, Lingling; Deng, Xiuxin; Xu, Qiang

    2015-11-23

    With the availability of rapidly increasing number of genome and transcriptome sequences, lineage-specific genes (LSGs) can be identified and characterized. Like other conserved functional genes, LSGs play important roles in biological evolution and functions. Two set of citrus LSGs, 296 citrus-specific genes (CSGs) and 1039 orphan genes specific to sweet orange, were identified by comparative analysis between the sweet orange genome sequences and 41 genomes and 273 transcriptomes. With the two sets of genes, gene structure and gene expression pattern were investigated. On average, both the CSGs and orphan genes have fewer exons, shorter gene length and higher GC content when compared with those evolutionarily conserved genes (ECs). Expression profiling indicated that most of the LSGs expressed in various tissues of sweet orange and some of them exhibited distinct temporal and spatial expression patterns. Particularly, the orphan genes were preferentially expressed in callus, which is an important pluripotent tissue of citrus. Besides, part of the CSGs and orphan genes expressed responsive to abiotic stress, indicating their potential functions during interaction with environment. This study identified and characterized two sets of LSGs in citrus, dissected their sequence features and expression patterns, and provided valuable clues for future functional analysis of the LSGs in sweet orange.

  13. Full Transcriptome Analysis of Early Dorsoventral Patterning in Zebrafish

    PubMed Central

    Horváth, Balázs; Molnár, János; Nagy, István; Tóth, Gábor; Wilson, Stephen W.; Varga, Máté

    2013-01-01

    Understanding the molecular interactions that lead to the establishment of the major body axes during embryogenesis is one of the main goals of developmental biology. Although the past two decades have revolutionized our knowledge about the genetic basis of these patterning processes, the list of genes involved in axis formation is unlikely to be complete. In order to identify new genes involved in the establishment of the dorsoventral (DV) axis during early stages of zebrafish embryonic development, we employed next generation sequencing for full transcriptome analysis of normal embryos and embryos lacking overt DV pattern. A combination of different statistical approaches yielded 41 differentially expressed candidate genes and we confirmed by in situ hybridization the early dorsal expression of 32 genes that are transcribed shortly after the onset of zygotic transcription. Although promoter analysis of the validated genes suggests no general enrichment for the binding sites of early acting transcription factors, most of these genes carry “bivalent” epigenetic histone modifications at the time when zygotic transcription is initiated, suggesting a “poised” transcriptional status. Our results reveal some new candidates of the dorsal gene regulatory network and suggest that a plurality of the earliest upregulated genes on the dorsal side have a role in the modulation of the canonical Wnt pathway. PMID:23922899

  14. Transcriptional Regulation of Fruit Ripening by Tomato FRUITFULL Homologs and Associated MADS Box Proteins[W

    PubMed Central

    Fujisawa, Masaki; Shima, Yoko; Nakagawa, Hiroyuki; Kitagawa, Mamiko; Kimbara, Junji; Nakano, Toshitsugu; Kasumi, Takafumi; Ito, Yasuhiro

    2014-01-01

    The tomato (Solanum lycopersicum) MADS box FRUITFULL homologs FUL1 and FUL2 act as key ripening regulators and interact with the master regulator MADS box protein RIPENING INHIBITOR (RIN). Here, we report the large-scale identification of direct targets of FUL1 and FUL2 by transcriptome analysis of FUL1/FUL2 suppressed fruits and chromatin immunoprecipitation coupled with microarray analysis (ChIP-chip) targeting tomato gene promoters. The ChIP-chip and transcriptome analysis identified FUL1/FUL2 target genes that contain at least one genomic region bound by FUL1 or FUL2 (regions that occur mainly in their promoters) and exhibit FUL1/FUL2-dependent expression during ripening. These analyses identified 860 direct FUL1 targets and 878 direct FUL2 targets; this set of genes includes both direct targets of RIN and nontargets of RIN. Functional classification of the FUL1/FUL2 targets revealed that these FUL homologs function in many biological processes via the regulation of ripening-related gene expression, both in cooperation with and independent of RIN. Our in vitro assay showed that the FUL homologs, RIN, and tomato AGAMOUS-LIKE1 form DNA binding complexes, suggesting that tetramer complexes of these MADS box proteins are mainly responsible for the regulation of ripening. PMID:24415769

  15. RAS oncogene-mediated deregulation of the transcriptome: from molecular signature to function.

    PubMed

    Schäfer, Reinhold; Sers, Christine

    2011-01-01

    Transcriptome analysis of cancer cells has developed into a standard procedure to elucidate multiple features of the malignant process and to link gene expression to clinical properties. Gene expression profiling based on microarrays provides essentially correlative information and needs to be transferred to the functional level in order to understand the activity and contribution of individual genes or sets of genes as elements of the gene signature. To date, there exist significant gaps in the functional understanding of gene expression profiles. Moreover, the processes that drive the profound transcriptional alterations that characterize cancer cells remain mainly elusive. We have used pathway-restricted gene expression profiles derived from RAS oncogene-transformed cells and from RAS-expressing cancer cells to identify regulators downstream of the MAPK pathway.We describe the role of epigenetic regulation exemplified by the control of several immune genes in generic cell lines and colorectal cancer cells, particularly the functional interaction between signaling and DNA methylation. Moreover, we assess the role of the architectural transcription factor high mobility AT-hook 2 (HMGA2) as a regulator of the RAS-responsive transcriptome in ovarian epithelial cells. Finally, we describe an integrated approach combining pathway interference in colorectal cancer cells, gene expression profiling and computational analysis of regulatory elements of deregulated target genes. This strategy resulted in the identification of Y-box binding protein 1 (YBX1) as a regulator of MAPK-dependent proliferation and gene expression. The implications for a therapeutic application of HMGA2 gene silencing and the role of YBX1 as a prognostic factor are discussed.

  16. Transcriptome analysis of Vibrio parahaemolyticus in type III secretion system 1 inducing conditions

    PubMed Central

    Nydam, Seth D.; Shah, Devendra H.; Call, Douglas R.

    2014-01-01

    Vibrio parahaemolyticus is an emerging bacterial pathogen capable of causing inflammatory gastroenteritis, wound infections, and septicemia. As a food-borne illness, infection is most frequently associated with the consumption of raw or undercooked seafood, particularly shellfish. It is the primary cause of Vibrio-associated food-borne illness in the United States and the leading cause of food-borne illness in Japan. The larger of its two chromosomes harbors a set of genes encoding type III section system 1 (T3SS1), a virulence factor present in all V. parahaemolyticus strains that is similar to the Yersinia ysc T3SS. T3SS1 translocates effector proteins into eukaryotic cells where they induce changes to cellular physiology and modulate host-pathogen interactions. T3SS1 is also responsible for cytotoxicity toward several different cultured cell lines as well as mortality in a mouse model. Herein we used RNA-seq to obtain global transcriptome patterns of V. parahaemolyticus under conditions that either induce [growth in Dulbecco's Modified Eagle Medium (DMEM) media, in trans expression of transcriptional regulator exsA] or repress T3SS1 expression (growth in LB-S media, in trans exsD expression) and during infection of HeLa cells over time. Comparative transcriptomic analysis demonstrated notable differences in the expression patterns under inducing conditions and was also used to generate an expression profile of V. parahaemolyticus during infection of HeLa cells. In addition, we identified several new genes that are associated with T3SS1 expression and may warrant further study. PMID:24478989

  17. Transcriptome display during tilapia sex determination and differentiation as revealed by RNA-Seq analysis.

    PubMed

    Tao, Wenjing; Chen, Jinlin; Tan, Dejie; Yang, Jing; Sun, Lina; Wei, Jing; Conte, Matthew A; Kocher, Thomas D; Wang, Deshou

    2018-05-15

    The factors determining sex in teleosts are diverse. Great efforts have been made to characterize the underlying genetic network in various species. However, only seven master sex-determining genes have been identified in teleosts. While the function of a few genes involved in sex determination and differentiation has been studied, we are far from fully understanding how genes interact to coordinate in this process. To enable systematic insights into fish sexual differentiation, we generated a dynamic co-expression network from tilapia gonadal transcriptomes at 5, 20, 30, 40, 90, and 180 dah (days after hatching), plus 45 and 90 dat (days after treatment) and linked gene expression profiles to both development and sexual differentiation. Transcriptomic profiles of female and male gonads at 5 and 20 dah exhibited high similarities except for a small number of genes that were involved in sex determination, while drastic changes were observed from 90 to 180 dah, with a group of differently expressed genes which were involved in gonadal differentiation and gametogenesis. Weighted gene correlation network analysis identified changes in the expression of Borealin, Gtsf1, tesk1, Zar1, Cdn15, and Rpl that were correlated with the expression of genes previously known to be involved in sex differentiation, such as Foxl2, Cyp19a1a, Gsdf, Dmrt1, and Amh. Global gonadal gene expression kinetics during sex determination and differentiation have been extensively profiled in tilapia. These findings provide insights into the genetic framework underlying sex determination and sexual differentiation, and expand our current understanding of developmental pathways during teleost sex determination.

  18. Transcriptome analysis of zebrafish embryos exposed to deltamethrin.

    PubMed

    Chueh, Tsung-Cheng; Hsu, Li-Sung; Kao, Chin-Ming; Hsu, Tung-Wei; Liao, Hung-Yu; Wang, Kuan-Yi; Chen, Ssu Ching

    2017-05-01

    Deltamethrin (DTM), a type II pyrethroid, is one of the most commonly used insecticides. The increased use of pyrethroid leads to potential adverse effects, particularly in sensitive populations such as children and pregnant women. None of the related studies was focused on the transcriptome responses in zebrafish embryos after treatment with DTM; therefore, RNA-seq, a high-throughput method, was performed to analyze the global expression of differential expressed genes (DEGs) in zebrafish embryos treated with DTM (40 and 80 μg/L) from fertilization to 48 h postfertilization (hpf) as compared with that in the control group (without DTM treatment). Two cDNA libraries were generated from treated embryos and one cDNA library from nontreated embryos, respectively. Over 92% of reads mapped to the reference in these three libraries. It was observed that many differential genes were expressed in comparison with embryos before and after DTM. The 20 most differentially expressed upregulated or downregulated genes were majorly involved in the signaling transduction. Validation of selected nine genes expression using qRT-PCR confirmed RNA-seq results. The transcriptome sequences were further subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, showing G-protein-coupled receptor signaling pathway and neuroactive ligand-receptor interaction, respectively, were most enriched. The data from this study contributed to a better understanding of the potential consequences of fish exposed to DTM, to an evaluation of the potential threat of DTM to fish populations in aquatic environments. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1548-1557, 2017. © 2016 Wiley Periodicals, Inc.

  19. Comparative Leaves Transcriptome Analysis Emphasizing on Accumulation of Anthocyanins in Brassica: Molecular Regulation and Potential Interaction with Photosynthesis

    PubMed Central

    Mushtaq, Muhammad A.; Pan, Qi; Chen, Daozong; Zhang, Qinghua; Ge, Xianhong; Li, Zaiyun

    2016-01-01

    The purple leaf pigmentation mainly associated with anthocyanins accumulation is common in Brassica but the mechanisms of its production and its potential physiological functions are poorly understood. Here, we performed the phenotypic, cytological, physiological, and comparative leaves transcriptome analyses of 11 different varieties belonging to five Brassica species with purple or green leaves. We observed that the anthocyanin was accumulated in most of vegetative tissues in all species and also in reproduction organs of B. carinata. Anthocyanin accumulated in different part of purple leaves including adaxial and abaxial epidermal cells as well as palisade and spongy mesophyll cells. Leave transcriptome analysis showed that almost all late biosynthetic genes (LBGs) of anthocyanin, especially Dihydroflavonol 4-Reductase (DFR), Anthocyanidin Synthase (ANS) and Transparent Testa 19 (TT19), were highly up-regulated in all purple leaves. However, only one of transcript factors in anthocyanin biosynthesis pathway, Transparent Testa 8 (TT8), was up regulated along with those genes in all purple leaves, indicating its pivotal role for anthocyanin production in Brassica. Interestingly, with the up-regulation of genes for anthocyanin synthesis, Cytosolic 6-phosphogluconolactonase (PLG5) which involved in the oxidative pentose-phosphate pathway was up-regulated in all purple leaves and three genes FTSH PROTEASE 8 (FTS8), GLYCOLATE OXIDASE 1 (GOX1), and GLUTAMINE SYNTHETASE 1;4 (GLN1;4) related to degradation of photo-damaged proteins in photosystem II and light respiration were down-regulated. These results highlighted the potential physiological functions of anthocyanin accumulation related to photosynthesis which might be of great worth in future. PMID:27047501

  20. Polymicrobial periodontal pathogens transcriptomes in calvarial bone and soft tissue

    PubMed Central

    Bakthavatchalu, Vasudevan; Meka, Archana; Mans, Jeffrey J.; Sathishkumar, Sabapathi; Lopez, M. Cecilia; Bhattacharyya, Indraneel; Boyce, Brendan F.; Baker, Henry V.; Lamont, Richard J.; Ebersole, Jeffrey L.; Kesavalu, L.

    2011-01-01

    Summary Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia are consistently associated with adult periodontitis. This study sought to document the host transcriptome to a P. gingivalis, T. denticola, and T. forsythia challenge as a polymicrobial infection using a murine calvarial model of acute inflammation and bone resorption. Mice were infected with P. gingivalis, T. denticola, and T. forsythia over the calvaria, after which the soft tissues and calvarial bones were excised. A Murine GeneChip® array analysis of transcript profiles showed that 6997 genes were differentially expressed in calvarial bones (P < 0.05) and 1544 genes were differentially transcribed in the inflamed tissues after the polymicrobial infection. Of these genes, 4476 and 1035 genes in the infected bone and tissues were differentially expressed by upregulation. Biological pathways significantly impacted by the polymicrobial infection in calvarial bone included leukocyte transendothelial migration (LTM), cell adhesion molecules, adherens junction, major histocompatibility complex antigen, extracellular matrix-receptor interaction (ECM), and antigen processing and presentation resulting in inflammatory/cytokine/chemokine transcripts stimulation in bone and soft tissue. Intense inflammation and increased activated osteoclasts was observed in calvarias compared to sham-infected controls. Quantitative real-time RT-PCR analysis confirmed mRNA level of selected genes corresponded with the microarray expression. The polymicrobial infection regulated several LTM and extracellular membrane (ECM) pathway genes in a manner distinct from monoinfection with P. gingivalis, T. denticola, or T. forsythia. To our knowledge, this is the first definition of the polymicrobial induced transcriptome in calvarial bone and soft tissue in response to periodontal pathogens. PMID:21896157

  1. Transcriptomic and proteomic analyses of a pale-green durum wheat mutant shows variations in photosystem components and metabolic deficiencies under drought stress

    PubMed Central

    2014-01-01

    Background Leaf pigment content is an important trait involved in environmental interactions. In order to determine its impact on drought tolerance in wheat, we characterized a pale-green durum wheat mutant (Triticum turgidum L. var. durum) under contrasting water availability conditions. Results The pale-green mutant was investigated by comparing pigment content and gene/protein expression profiles to wild-type plants at anthesis. Under well-watered (control) conditions the mutant had lower levels of chlorophylls and carotenoids, but higher levels of xanthophyll de-epoxidation compared to wild-type. Transcriptomic analysis under control conditions showed that defense genes (encoding e.g. pathogenesis-related proteins, peroxidases and chitinases) were upregulated in the mutant, suggesting the presence of mild oxidative stress that was compensated without altering the net rate of photosynthesis. Transcriptomic analysis under terminal water stress conditions, revealed the modulation of antioxidant enzymes, photosystem components, and enzymes representing carbohydrate metabolism and the tricarboxylic acid cycle, indicating that the mutant was exposed to greater oxidative stress than the wild-type plants, but had a limited capacity to respond. We also compared the two genotypes under irrigated and rain-fed field conditions over three years, finding that the greater oxidative stress and corresponding molecular changes in the pale-green mutant were associated to a yield reduction. Conclusions This study provides insight on the effect of pigment content in the molecular response to drought. Identified genes differentially expressed under terminal water stress may be valuable for further studies addressing drought resistance in wheat. PMID:24521234

  2. Transcriptome profiling of Galaxea fascicularis and its endosymbiont Symbiodinium reveals chronic eutrophication tolerance pathways and metabolic mutualism between partners

    PubMed Central

    Lin, Zhenyue; Chen, Mingliang; Dong, Xu; Zheng, Xinqing; Huang, Haining; Xu, Xun; Chen, Jianming

    2017-01-01

    In the South China Sea, coastal eutrophication in the Beibu Gulf has seriously threatened reef habitats by subjecting corals to chronic physiological stress. To determine how coral holobionts may tolerate such conditions, we examined the transcriptomes of healthy colonies of the galaxy coral Galaxea fascicularis and its endosymbiont Symbiodinium from two reef sites experiencing pristine or eutrophied nutrient regimes. We identified 236 and 205 genes that were differentially expressed in eutrophied hosts and symbionts, respectively. Both gene sets included pathways related to stress responses and metabolic interactions. An analysis of genes originating from each partner revealed striking metabolic integration with respect to vitamins, cofactors, amino acids, fatty acids, and secondary metabolite biosynthesis. The expression levels of these genes supported the existence of a continuum of mutualism in this coral-algal symbiosis. Additionally, large sets of transcription factors, cell signal transduction molecules, biomineralization components, and galaxin-related proteins were expanded in G. fascicularis relative to other coral species. PMID:28181581

  3. C-RAF function at the genome-wide transcriptome level: A systematic view.

    PubMed

    Huang, Ying; Zhang, Xin-Yu; An, Su; Yang, Yang; Liu, Ying; Hao, Qian; Guo, Xiao-Xi; Xu, Tian-Rui

    2018-05-20

    C-RAF was the first member of the RAF kinase family to be discovered. Since its discovery, C-RAF has been found to regulate many fundamental cell processes, such as cell proliferation, cell death, and metabolism. However, the majority of these functions are achieved through interactions with different proteins; the genes regulated by C-RAF in its active or inactive state remain unclear. In the work, we used RNA-seq analysis to study the global transcriptomes of C-RAF bearing or C-RAF knockout cells in quiescent or EGF activated states. We identified 3353 genes that are promoted or suppressed by C-RAF. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that these genes are involved in drug addiction, cardiomyopathy, autoimmunity, and regulation of cell metabolism. Our results provide a panoramic view of C-RAF function, including known and novel functions, and have revealed potential targets for elucidating the role of C-RAF. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Transcriptome Analysis Reveals Candidate Genes involved in Blister Blight defense in Tea (Camellia sinensis (L) Kuntze)

    PubMed Central

    Jayaswall, Kuldip; Mahajan, Pallavi; Singh, Gagandeep; Parmar, Rajni; Seth, Romit; Raina, Aparnashree; Swarnkar, Mohit Kumar; Singh, Anil Kumar; Shankar, Ravi; Sharma, Ram Kumar

    2016-01-01

    To unravel the molecular mechanism of defense against blister blight (BB) disease caused by an obligate biotrophic fungus, Exobasidium vexans, transcriptome of BB interaction with resistance and susceptible tea genotypes was analysed through RNA-seq using Illumina GAIIx at four different stages during ~20-day disease cycle. Approximately 69 million high quality reads were assembled de novo, yielding 37,790 unique transcripts with more than 55% being functionally annotated. Differentially expressed, 149 defense related transcripts/genes, namely defense related enzymes, resistance genes, multidrug resistant transporters, transcription factors, retrotransposons, metacaspases and chaperons were observed in RG, suggesting their role in defending against BB. Being present in the major hub, putative master regulators among these candidates were identified from predetermined protein-protein interaction network of Arabidopsis thaliana. Further, confirmation of abundant expression of well-known RPM1, RPS2 and RPP13 in quantitative Real Time PCR indicates salicylic acid and jasmonic acid, possibly induce synthesis of antimicrobial compounds, required to overcome the virulence of E. vexans. Compendiously, the current study provides a comprehensive gene expression and insights into the molecular mechanism of tea defense against BB to serve as a resource for unravelling the possible regulatory mechanism of immunity against various biotic stresses in tea and other crops. PMID:27465480

  5. Transcriptome Analysis Reveals Candidate Genes involved in Blister Blight defense in Tea (Camellia sinensis (L) Kuntze)

    NASA Astrophysics Data System (ADS)

    Jayaswall, Kuldip; Mahajan, Pallavi; Singh, Gagandeep; Parmar, Rajni; Seth, Romit; Raina, Aparnashree; Swarnkar, Mohit Kumar; Singh, Anil Kumar; Shankar, Ravi; Sharma, Ram Kumar

    2016-07-01

    To unravel the molecular mechanism of defense against blister blight (BB) disease caused by an obligate biotrophic fungus, Exobasidium vexans, transcriptome of BB interaction with resistance and susceptible tea genotypes was analysed through RNA-seq using Illumina GAIIx at four different stages during ~20-day disease cycle. Approximately 69 million high quality reads were assembled de novo, yielding 37,790 unique transcripts with more than 55% being functionally annotated. Differentially expressed, 149 defense related transcripts/genes, namely defense related enzymes, resistance genes, multidrug resistant transporters, transcription factors, retrotransposons, metacaspases and chaperons were observed in RG, suggesting their role in defending against BB. Being present in the major hub, putative master regulators among these candidates were identified from predetermined protein-protein interaction network of Arabidopsis thaliana. Further, confirmation of abundant expression of well-known RPM1, RPS2 and RPP13 in quantitative Real Time PCR indicates salicylic acid and jasmonic acid, possibly induce synthesis of antimicrobial compounds, required to overcome the virulence of E. vexans. Compendiously, the current study provides a comprehensive gene expression and insights into the molecular mechanism of tea defense against BB to serve as a resource for unravelling the possible regulatory mechanism of immunity against various biotic stresses in tea and other crops.

  6. Unsupervised Network Analysis of the Plastic Supraoptic Nucleus Transcriptome Predicts Caprin2 Regulatory Interactions

    PubMed Central

    Jahans-Price, Thomas; Greenwood, Michael P.; Greenwood, Mingkwan; Hoe, See-Ziau; Konopacka, Agnieszka

    2017-01-01

    Abstract The supraoptic nucleus (SON) is a group of neurons in the hypothalamus responsible for the synthesis and secretion of the peptide hormones vasopressin and oxytocin. Following physiological cues, such as dehydration, salt-loading and lactation, the SON undergoes a function related plasticity that we have previously described in the rat at the transcriptome level. Using the unsupervised graphical lasso (Glasso) algorithm, we reconstructed a putative network from 500 plastic SON genes in which genes are the nodes and the edges are the inferred interactions. The most active nodal gene identified within the network was Caprin2. Caprin2 encodes an RNA-binding protein that we have previously shown to be vital for the functioning of osmoregulatory neuroendocrine neurons in the SON of the rat hypothalamus. To test the validity of the Glasso network, we either overexpressed or knocked down Caprin2 transcripts in differentiated rat pheochromocytoma PC12 cells and showed that these manipulations had significant opposite effects on the levels of putative target mRNAs. These studies suggest that the predicative power of the Glasso algorithm within an in vivo system is accurate, and identifies biological targets that may be important to the functional plasticity of the SON. PMID:29279858

  7. Molecular characterization of firefly nuptial gifts: a multi-omics approach sheds light on postcopulatory sexual selection.

    PubMed

    Al-Wathiqui, Nooria; Fallon, Timothy R; South, Adam; Weng, Jing-Ke; Lewis, Sara M

    2016-12-22

    Postcopulatory sexual selection is recognized as a key driver of reproductive trait evolution, including the machinery required to produce endogenous nuptial gifts. Despite the importance of such gifts, the molecular composition of the non-gametic components of male ejaculates and their interactions with female reproductive tracts remain poorly understood. During mating, male Photinus fireflies transfer to females a spermatophore gift manufactured by multiple reproductive glands. Here we combined transcriptomics of both male and female reproductive glands with proteomics and metabolomics to better understand the synthesis, composition and fate of the spermatophore in the common Eastern firefly, Photinus pyralis. Our transcriptome of male glands revealed up-regulation of proteases that may enhance male fertilization success and activate female immune response. Using bottom-up proteomics we identified 208 functionally annotated proteins that males transfer to the female in their spermatophore. Targeted metabolomic analysis also provided the first evidence that Photinus nuptial gifts contain lucibufagin, a firefly defensive toxin. The reproductive tracts of female fireflies showed increased gene expression for several proteases that may be involved in egg production. This study offers new insights into the molecular composition of male spermatophores, and extends our understanding of how nuptial gifts may mediate postcopulatory interactions between the sexes.

  8. Toxoplasma Modulates Signature Pathways of Human Epilepsy, Neurodegeneration & Cancer.

    PubMed

    Ngô, Huân M; Zhou, Ying; Lorenzi, Hernan; Wang, Kai; Kim, Taek-Kyun; Zhou, Yong; El Bissati, Kamal; Mui, Ernest; Fraczek, Laura; Rajagopala, Seesandra V; Roberts, Craig W; Henriquez, Fiona L; Montpetit, Alexandre; Blackwell, Jenefer M; Jamieson, Sarra E; Wheeler, Kelsey; Begeman, Ian J; Naranjo-Galvis, Carlos; Alliey-Rodriguez, Ney; Davis, Roderick G; Soroceanu, Liliana; Cobbs, Charles; Steindler, Dennis A; Boyer, Kenneth; Noble, A Gwendolyn; Swisher, Charles N; Heydemann, Peter T; Rabiah, Peter; Withers, Shawn; Soteropoulos, Patricia; Hood, Leroy; McLeod, Rima

    2017-09-13

    One third of humans are infected lifelong with the brain-dwelling, protozoan parasite, Toxoplasma gondii. Approximately fifteen million of these have congenital toxoplasmosis. Although neurobehavioral disease is associated with seropositivity, causality is unproven. To better understand what this parasite does to human brains, we performed a comprehensive systems analysis of the infected brain: We identified susceptibility genes for congenital toxoplasmosis in our cohort of infected humans and found these genes are expressed in human brain. Transcriptomic and quantitative proteomic analyses of infected human, primary, neuronal stem and monocytic cells revealed effects on neurodevelopment and plasticity in neural, immune, and endocrine networks. These findings were supported by identification of protein and miRNA biomarkers in sera of ill children reflecting brain damage and T. gondii infection. These data were deconvoluted using three systems biology approaches: "Orbital-deconvolution" elucidated upstream, regulatory pathways interconnecting human susceptibility genes, biomarkers, proteomes, and transcriptomes. "Cluster-deconvolution" revealed visual protein-protein interaction clusters involved in processes affecting brain functions and circuitry, including lipid metabolism, leukocyte migration and olfaction. Finally, "disease-deconvolution" identified associations between the parasite-brain interactions and epilepsy, movement disorders, Alzheimer's disease, and cancer. This "reconstruction-deconvolution" logic provides templates of progenitor cells' potentiating effects, and components affecting human brain parasitism and diseases.

  9. Site-specific programming of the host epithelial transcriptome by the gut microbiota.

    PubMed

    Sommer, Felix; Nookaew, Intawat; Sommer, Nina; Fogelstrand, Per; Bäckhed, Fredrik

    2015-03-28

    The intestinal epithelium separates us from the microbiota but also interacts with it and thus affects host immune status and physiology. Previous studies investigated microbiota-induced responses in the gut using intact tissues or unfractionated epithelial cells, thereby limiting conclusions about regional differences in the epithelium. Here, we sought to investigate microbiota-induced transcriptional responses in specific fractions of intestinal epithelial cells. To this end, we used microarray analysis of laser capture microdissection (LCM)-harvested ileal and colonic tip and crypt epithelial fractions from germ-free and conventionally raised mice and from mice during the time course of colonization. We found that about 10% of the host's transcriptome was microbially regulated, mainly including genes annotated with functions in immunity, cell proliferation, and metabolism. The microbial impact on host gene expression was highly site specific, as epithelial responses to the microbiota differed between cell fractions. Specific transcriptional regulators were enriched in each fraction. In general, the gut microbiota induced a more rapid response in the colon than in the ileum. Our study indicates that the microbiota engage different regulatory networks to alter host gene expression in a particular niche. Understanding host-microbiota interactions on a cellular level may facilitate signaling pathways that contribute to health and disease and thus provide new therapeutic strategies.

  10. Effects of temperature on transcriptome and cuticular hydrocarbon expression in ecologically differentiated populations of desert Drosophila.

    PubMed

    Etges, William J; de Oliveira, Cássia C; Rajpurohit, Subhash; Gibbs, Allen G

    2017-01-01

    We assessed the effects of temperature differences on gene expression using whole-transcriptome microarrays and cuticular hydrocarbon variation in populations of cactophilic Drosophila mojavensis . Four populations from Baja California and mainland Mexico and Arizona were each reared on two different host cacti, reared to sexual maturity on laboratory media, and adults were exposed for 12 hr to 15, 25, or 35°C. Temperature differences influenced the expression of 3,294 genes, while population differences and host plants affected >2,400 each in adult flies. Enriched, functionally related groups of genes whose expression changed at high temperatures included heat response genes, as well as genes affecting chromatin structure. Gene expression differences between mainland and peninsular populations included genes involved in metabolism of secondary compounds, mitochondrial activity, and tRNA synthases. Flies reared on the ancestral host plant, pitaya agria cactus, showed upregulation of genes involved in metabolism, while flies reared on organ pipe cactus had higher expression of DNA repair and chromatin remodeling genes. Population × environment (G × E) interactions had widespread effects on the transcriptome where population × temperature interactions affected the expression of >5,000 orthologs, and there were >4,000 orthologs that showed temperature × host plant interactions. Adults exposed to 35°C had lower amounts of most cuticular hydrocarbons than those exposed to 15 or 25°C, including abundant unsaturated alkadienes. For insects adapted to different host plants and climatic regimes, our results suggest that temperature shifts associated with climate change have large and significant effects on transcriptomes of genetically differentiated natural populations.

  11. RAID: a comprehensive resource for human RNA-associated (RNA-RNA/RNA-protein) interaction.

    PubMed

    Zhang, Xiaomeng; Wu, Deng; Chen, Liqun; Li, Xiang; Yang, Jinxurong; Fan, Dandan; Dong, Tingting; Liu, Mingyue; Tan, Puwen; Xu, Jintian; Yi, Ying; Wang, Yuting; Zou, Hua; Hu, Yongfei; Fan, Kaili; Kang, Juanjuan; Huang, Yan; Miao, Zhengqiang; Bi, Miaoman; Jin, Nana; Li, Kongning; Li, Xia; Xu, Jianzhen; Wang, Dong

    2014-07-01

    Transcriptomic analyses have revealed an unexpected complexity in the eukaryote transcriptome, which includes not only protein-coding transcripts but also an expanding catalog of noncoding RNAs (ncRNAs). Diverse coding and noncoding RNAs (ncRNAs) perform functions through interaction with each other in various cellular processes. In this project, we have developed RAID (http://www.rna-society.org/raid), an RNA-associated (RNA-RNA/RNA-protein) interaction database. RAID intends to provide the scientific community with all-in-one resources for efficient browsing and extraction of the RNA-associated interactions in human. This version of RAID contains more than 6100 RNA-associated interactions obtained by manually reviewing more than 2100 published papers, including 4493 RNA-RNA interactions and 1619 RNA-protein interactions. Each entry contains detailed information on an RNA-associated interaction, including RAID ID, RNA/protein symbol, RNA/protein categories, validated method, expressing tissue, literature references (Pubmed IDs), and detailed functional description. Users can query, browse, analyze, and manipulate RNA-associated (RNA-RNA/RNA-protein) interaction. RAID provides a comprehensive resource of human RNA-associated (RNA-RNA/RNA-protein) interaction network. Furthermore, this resource will help in uncovering the generic organizing principles of cellular function network. © 2014 Zhang et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  12. De novo transcriptome analyses of host-fungal interactions in oil palm (Elaeis guineensis Jacq.).

    PubMed

    Ho, Chai-Ling; Tan, Yung-Chie; Yeoh, Keat-Ai; Ghazali, Ahmad-Kamal; Yee, Wai-Yan; Hoh, Chee-Choong

    2016-01-19

    Basal stem rot (BSR) is a fungal disease in oil palm (Elaeis guineensis Jacq.) which is caused by hemibiotrophic white rot fungi belonging to the Ganoderma genus. Molecular responses of oil palm to these pathogens are not well known although this information is crucial to strategize effective measures to eradicate BSR. In order to elucidate the molecular interactions between oil palm and G. boninense and its biocontrol fungus Trichoderma harzianum, we compared the root transcriptomes of untreated oil palm seedlings with those inoculated with G. boninense and T. harzianum, respectively. Differential gene expression analyses revealed that jasmonate (JA) and salicylate (SA) may act in an antagonistic manner in affecting the hormone biosynthesis, signaling, and downstream defense responses in G. boninense-treated oil palm roots. In addition, G. boninense may compete with the host to control disease symptom through the transcriptional regulation of ethylene (ET) biosynthesis, reactive oxygen species (ROS) production and scavenging. The strengthening of host cell walls and production of pathogenesis-related proteins as well as antifungal secondary metabolites in host plants, are among the important defense mechanisms deployed by oil palm against G. boninense. Meanwhile, endophytic T. harzianum was shown to improve the of nutrition status and nutrient transportation in host plants. The findings of this analysis have enhanced our understanding on the molecular interactions of G. boninense and oil palm, and also the biocontrol mechanisms involving T. harzianum, thus contributing to future formulations of better strategies for prevention and treatment of BSR.

  13. A systems biology approach toward understanding seed composition in soybean.

    PubMed

    Li, Ling; Hur, Manhoi; Lee, Joon-Yong; Zhou, Wenxu; Song, Zhihong; Ransom, Nick; Demirkale, Cumhur Yusuf; Nettleton, Dan; Westgate, Mark; Arendsee, Zebulun; Iyer, Vidya; Shanks, Jackie; Nikolau, Basil; Wurtele, Eve Syrkin

    2015-01-01

    The molecular, biochemical, and genetic mechanisms that regulate the complex metabolic network of soybean seed development determine the ultimate balance of protein, lipid, and carbohydrate stored in the mature seed. Many of the genes and metabolites that participate in seed metabolism are unknown or poorly defined; even more remains to be understood about the regulation of their metabolic networks. A global omics analysis can provide insights into the regulation of seed metabolism, even without a priori assumptions about the structure of these networks. With the future goal of predictive biology in mind, we have combined metabolomics, transcriptomics, and metabolic flux technologies to reveal the global developmental and metabolic networks that determine the structure and composition of the mature soybean seed. We have coupled this global approach with interactive bioinformatics and statistical analyses to gain insights into the biochemical programs that determine soybean seed composition. For this purpose, we used Plant/Eukaryotic and Microbial Metabolomics Systems Resource (PMR, http://www.metnetdb.org/pmr, a platform that incorporates metabolomics data to develop hypotheses concerning the organization and regulation of metabolic networks, and MetNet systems biology tools http://www.metnetdb.org for plant omics data, a framework to enable interactive visualization of metabolic and regulatory networks. This combination of high-throughput experimental data and bioinformatics analyses has revealed sets of specific genes, genetic perturbations and mechanisms, and metabolic changes that are associated with the developmental variation in soybean seed composition. Researchers can explore these metabolomics and transcriptomics data interactively at PMR.

  14. Integrated analysis of miRNAs and transcriptomes in Aedes albopictus midgut reveals the differential expression profiles of immune-related genes during dengue virus serotype-2 infection.

    PubMed

    Liu, Yan-Xia; Li, Fen-Xiang; Liu, Zhuan-Zhuan; Jia, Zhi-Rong; Zhou, Yan-He; Zhang, Hao; Yan, Hui; Zhou, Xian-Qiang; Chen, Xiao-Guang

    2016-06-01

    Mosquito microRNAs (miRNAs) are involved in host-virus interaction, and have been reported to be altered by dengue virus (DENV) infection in Aedes albopictus (Diptera: Culicidae). However, little is known about the molecular mechanisms of Aedes albopictus midgut-the first organ to interact with DENV-involved in its resistance to DENV. Here we used high-throughput sequencing to characterize miRNA and messenger RNA (mRNA) expression patterns in Aedes albopictus midgut in response to dengue virus serotype 2. A total of three miRNAs and 777 mRNAs were identified to be differentially expressed upon DENV infection. For the mRNAs, we identified 198 immune-related genes and 31 of them were differentially expressed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses also showed that the differentially expressed immune-related genes were involved in immune response. Then the differential expression patterns of six immune-related genes and three miRNAs were confirmed by real-time reverse transcription polymerase chain reaction. Furthermore, seven known miRNA-mRNA interaction pairs were identified by aligning our two datasets. These analyses of miRNA and mRNA transcriptomes provide valuable information for uncovering the DENV response genes and provide a basis for future study of the resistance mechanisms in Aedes albopictus midgut. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  15. Transcriptome landscape of Synechococcus elongatus PCC 7942 for nitrogen starvation responses using RNA-seq

    PubMed Central

    Choi, Sun Young; Park, Byeonghyeok; Choi, In-Geol; Sim, Sang Jun; Lee, Sun-Mi; Um, Youngsoon; Woo, Han Min

    2016-01-01

    The development of high-throughput technology using RNA-seq has allowed understanding of cellular mechanisms and regulations of bacterial transcription. In addition, transcriptome analysis with RNA-seq has been used to accelerate strain improvement through systems metabolic engineering. Synechococcus elongatus PCC 7942, a photosynthetic bacterium, has remarkable potential for biochemical and biofuel production due to photoautotrophic cell growth and direct CO2 conversion. Here, we performed a transcriptome analysis of S. elongatus PCC 7942 using RNA-seq to understand the changes of cellular metabolism and regulation for nitrogen starvation responses. As a result, differentially expressed genes (DEGs) were identified and functionally categorized. With mapping onto metabolic pathways, we probed transcriptional perturbation and regulation of carbon and nitrogen metabolisms relating to nitrogen starvation responses. Experimental evidence such as chlorophyll a and phycobilisome content and the measurement of CO2 uptake rate validated the transcriptome analysis. The analysis suggests that S. elongatus PCC 7942 reacts to nitrogen starvation by not only rearranging the cellular transport capacity involved in carbon and nitrogen assimilation pathways but also by reducing protein synthesis and photosynthesis activities. PMID:27488818

  16. Environmental Interactions and Epistasis Are Revealed in the Proteomic Responses to Complex Stimuli

    PubMed Central

    Samir, Parimal; Rahul; Slaughter, James C.; Link, Andrew J.

    2015-01-01

    Ultimately, the genotype of a cell and its interaction with the environment determine the cell’s biochemical state. While the cell’s response to a single stimulus has been studied extensively, a conceptual framework to model the effect of multiple environmental stimuli applied concurrently is not as well developed. In this study, we developed the concepts of environmental interactions and epistasis to explain the responses of the S. cerevisiae proteome to simultaneous environmental stimuli. We hypothesize that, as an abstraction, environmental stimuli can be treated as analogous to genetic elements. This would allow modeling of the effects of multiple stimuli using the concepts and tools developed for studying gene interactions. Mirroring gene interactions, our results show that environmental interactions play a critical role in determining the state of the proteome. We show that individual and complex environmental stimuli behave similarly to genetic elements in regulating the cellular responses to stimuli, including the phenomena of dominance and suppression. Interestingly, we observed that the effect of a stimulus on a protein is dominant over other stimuli if the response to the stimulus involves the protein. Using publicly available transcriptomic data, we find that environmental interactions and epistasis regulate transcriptomic responses as well. PMID:26247773

  17. Transcriptomics of cortical gray matter thickness decline during normal aging

    PubMed Central

    Kochunov, P; Charlesworth, J; Winkler, A; Hong, LE; Nichols, T; Curran, JE; Sprooten, E; Jahanshad, N; Thompson, PM; Johnson, MP; Kent, JW; Landman, BA; Mitchell, B; Cole, SA; Dyer, TD; Moses, EK; Goring, HHH; Almasy, L; Duggirala, R; Olvera, RL; Glahn, DC; Blangero, J

    2013-01-01

    Introduction We performed a whole-transcriptome correlation analysis, followed by the pathway enrichment and testing of innate immune response pathways analyses to evaluate the hypothesis that transcriptional activity can predict cortical gray matter thickness (GMT) variability during normal cerebral aging Methods Transcriptome and GMT data were availabe for 379 individuals (age range=28–85) community-dwelling members of large extended Mexican-American families. Collection of transcriptome data preceded that of neuroimaging data by 17 years. Genome-wide gene transcriptome data consisted of 20,413 heritable lymphocytes-based transcripts. GMT measurements were performed from high-resolution (isotropic 800µm) T1-weighted MRI. Transcriptome-wide and pathway enrichment analysis was used to classify genes correlated with GMT. Transcripts for sixty genes from seven innate immune pathways were tested as specific predictors of GMT variability. Results Transcripts for eight genes (IGFBP3, LRRN3, CRIP2, SCD, IDS, TCF4, GATA3, HN1) passed the transcriptome-wide significance threshold. Four orthogonal factors extracted from this set predicted 31.9% of the variability in the whole-brain and between 23.4 and 35% of regional GMT measurements. Pathway enrichment analysis identified six functional categories including cellular proliferation, aggregation, differentiation, viral infection, and metabolism. The integrin signaling pathway was significantly (p<10−6) enriched with GMT. Finally, three innate immune pathways (complement signaling, toll-receptors and scavenger and immunoglobulins) were significantly associated with GMT. Conclusion Expression activity for the genes that regulate cellular proliferation, adhesion, differentiation and inflammation can explain a significant proportion of individual variability in cortical GMT. Our findings suggest that normal cerebral aging is the product of a progressive decline in regenerative capacity and increased neuroinflammation. PMID:23707588

  18. Transcriptomics of cortical gray matter thickness decline during normal aging.

    PubMed

    Kochunov, P; Charlesworth, J; Winkler, A; Hong, L E; Nichols, T E; Curran, J E; Sprooten, E; Jahanshad, N; Thompson, P M; Johnson, M P; Kent, J W; Landman, B A; Mitchell, B; Cole, S A; Dyer, T D; Moses, E K; Goring, H H H; Almasy, L; Duggirala, R; Olvera, R L; Glahn, D C; Blangero, J

    2013-11-15

    We performed a whole-transcriptome correlation analysis, followed by the pathway enrichment and testing of innate immune response pathway analyses to evaluate the hypothesis that transcriptional activity can predict cortical gray matter thickness (GMT) variability during normal cerebral aging. Transcriptome and GMT data were available for 379 individuals (age range=28-85) community-dwelling members of large extended Mexican American families. Collection of transcriptome data preceded that of neuroimaging data by 17 years. Genome-wide gene transcriptome data consisted of 20,413 heritable lymphocytes-based transcripts. GMT measurements were performed from high-resolution (isotropic 800 μm) T1-weighted MRI. Transcriptome-wide and pathway enrichment analysis was used to classify genes correlated with GMT. Transcripts for sixty genes from seven innate immune pathways were tested as specific predictors of GMT variability. Transcripts for eight genes (IGFBP3, LRRN3, CRIP2, SCD, IDS, TCF4, GATA3, and HN1) passed the transcriptome-wide significance threshold. Four orthogonal factors extracted from this set predicted 31.9% of the variability in the whole-brain and between 23.4 and 35% of regional GMT measurements. Pathway enrichment analysis identified six functional categories including cellular proliferation, aggregation, differentiation, viral infection, and metabolism. The integrin signaling pathway was significantly (p<10(-6)) enriched with GMT. Finally, three innate immune pathways (complement signaling, toll-receptors and scavenger and immunoglobulins) were significantly associated with GMT. Expression activity for the genes that regulate cellular proliferation, adhesion, differentiation and inflammation can explain a significant proportion of individual variability in cortical GMT. Our findings suggest that normal cerebral aging is the product of a progressive decline in regenerative capacity and increased neuroinflammation. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Transcriptome Analysis of Early Responsive Genes in Rice during Magnaporthe oryzae Infection.

    PubMed

    Wang, Yiming; Kwon, Soon Jae; Wu, Jingni; Choi, Jaeyoung; Lee, Yong-Hwan; Agrawal, Ganesh Kumar; Tamogami, Shigeru; Rakwal, Randeep; Park, Sang-Ryeol; Kim, Beom-Gi; Jung, Ki-Hong; Kang, Kyu Young; Kim, Sang Gon; Kim, Sun Tae

    2014-12-01

    Rice blast disease caused by Magnaporthe oryzae is one of the most serious diseases of cultivated rice (Oryza sativa L.) in most rice-growing regions of the world. In order to investigate early response genes in rice, we utilized the transcriptome analysis approach using a 300 K tilling microarray to rice leaves infected with compatible and incompatible M. oryzae strains. Prior to the microarray experiment, total RNA was validated by measuring the differential expression of rice defense-related marker genes (chitinase 2, barwin, PBZ1, and PR-10) by RT-PCR, and phytoalexins (sakuranetin and momilactone A) with HPLC. Microarray analysis revealed that 231 genes were up-regulated (>2 fold change, p < 0.05) in the incompatible interaction compared to the compatible one. Highly expressed genes were functionally characterized into metabolic processes and oxidation-reduction categories. The oxidative stress response was induced in both early and later infection stages. Biotic stress overview from MapMan analysis revealed that the phytohormone ethylene as well as signaling molecules jasmonic acid and salicylic acid is important for defense gene regulation. WRKY and Myb transcription factors were also involved in signal transduction processes. Additionally, receptor-like kinases were more likely associated with the defense response, and their expression patterns were validated by RT-PCR. Our results suggest that candidate genes, including receptor-like protein kinases, may play a key role in disease resistance against M. oryzae attack.

  20. Genetic signatures of adaptation revealed from transcriptome sequencing of Arctic and red foxes.

    PubMed

    Kumar, Vikas; Kutschera, Verena E; Nilsson, Maria A; Janke, Axel

    2015-08-07

    The genus Vulpes (true foxes) comprises numerous species that inhabit a wide range of habitats and climatic conditions, including one species, the Arctic fox (Vulpes lagopus) which is adapted to the arctic region. A close relative to the Arctic fox, the red fox (Vulpes vulpes), occurs in subarctic to subtropical habitats. To study the genetic basis of their adaptations to different environments, transcriptome sequences from two Arctic foxes and one red fox individual were generated and analyzed for signatures of positive selection. In addition, the data allowed for a phylogenetic analysis and divergence time estimate between the two fox species. The de novo assembly of reads resulted in more than 160,000 contigs/transcripts per individual. Approximately 17,000 homologous genes were identified using human and the non-redundant databases. Positive selection analyses revealed several genes involved in various metabolic and molecular processes such as energy metabolism, cardiac gene regulation, apoptosis and blood coagulation to be under positive selection in foxes. Branch site tests identified four genes to be under positive selection in the Arctic fox transcriptome, two of which are fat metabolism genes. In the red fox transcriptome eight genes are under positive selection, including molecular process genes, notably genes involved in ATP metabolism. Analysis of the three transcriptomes and five Sanger re-sequenced genes in additional individuals identified a lower genetic variability within Arctic foxes compared to red foxes, which is consistent with distribution range differences and demographic responses to past climatic fluctuations. A phylogenomic analysis estimated that the Arctic and red fox lineages diverged about three million years ago. Transcriptome data are an economic way to generate genomic resources for evolutionary studies. Despite not representing an entire genome, this transcriptome analysis identified numerous genes that are relevant to arctic adaptation in foxes. Similar to polar bears, fat metabolism seems to play a central role in adaptation of Arctic foxes to the cold climate, as has been identified in the polar bear, another arctic specialist.

  1. DOGMA: domain-based transcriptome and proteome quality assessment.

    PubMed

    Dohmen, Elias; Kremer, Lukas P M; Bornberg-Bauer, Erich; Kemena, Carsten

    2016-09-01

    Genome studies have become cheaper and easier than ever before, due to the decreased costs of high-throughput sequencing and the free availability of analysis software. However, the quality of genome or transcriptome assemblies can vary a lot. Therefore, quality assessment of assemblies and annotations are crucial aspects of genome analysis pipelines. We developed DOGMA, a program for fast and easy quality assessment of transcriptome and proteome data based on conserved protein domains. DOGMA measures the completeness of a given transcriptome or proteome and provides information about domain content for further analysis. DOGMA provides a very fast way to do quality assessment within seconds. DOGMA is implemented in Python and published under GNU GPL v.3 license. The source code is available on https://ebbgit.uni-muenster.de/domainWorld/DOGMA/ CONTACTS: e.dohmen@wwu.de or c.kemena@wwu.de Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Dual Transcriptomic Profiling of Host and Microbiota during Health and Disease in Pediatric Asthma.

    PubMed

    Pérez-Losada, Marcos; Castro-Nallar, Eduardo; Bendall, Matthew L; Freishtat, Robert J; Crandall, Keith A

    2015-01-01

    High-throughput sequencing (HTS) analysis of microbial communities from the respiratory airways has heavily relied on the 16S rRNA gene. Given the intrinsic limitations of this approach, airway microbiome research has focused on assessing bacterial composition during health and disease, and its variation in relation to clinical and environmental factors, or other microbiomes. Consequently, very little effort has been dedicated to describing the functional characteristics of the airway microbiota and even less to explore the microbe-host interactions. Here we present a simultaneous assessment of microbiome and host functional diversity and host-microbe interactions from the same RNA-seq experiment, while accounting for variation in clinical metadata. Transcriptomic (host) and metatranscriptomic (microbiota) sequences from the nasal epithelium of 8 asthmatics and 6 healthy controls were separated in silico and mapped to available human and NCBI-NR protein reference databases. Human genes differentially expressed in asthmatics and controls were then used to infer upstream regulators involved in immune and inflammatory responses. Concomitantly, microbial genes were mapped to metabolic databases (COG, SEED, and KEGG) to infer microbial functions differentially expressed in asthmatics and controls. Finally, multivariate analysis was applied to find associations between microbiome characteristics and host upstream regulators while accounting for clinical variation. Our study showed significant differences in the metabolism of microbiomes from asthmatic and non-asthmatic children for up to 25% of the functional properties tested. Enrichment analysis of 499 differentially expressed host genes for inflammatory and immune responses revealed 43 upstream regulators differentially activated in asthma. Microbial adhesion (virulence) and Proteobacteria abundance were significantly associated with variation in the expression of the upstream regulator IL1A; suggesting that microbiome characteristics modulate host inflammatory and immune systems during asthma.

  3. Transcriptome analysis of resistant soybean roots infected by Meloidogyne javanica

    PubMed Central

    de Sá, Maria Eugênia Lisei; Conceição Lopes, Marcus José; de Araújo Campos, Magnólia; Paiva, Luciano Vilela; dos Santos, Regina Maria Amorim; Beneventi, Magda Aparecida; Firmino, Alexandre Augusto Pereira; de Sá, Maria Fátima Grossi

    2012-01-01

    Soybean is an important crop for Brazilian agribusiness. However, many factors can limit its production, especially root-knot nematode infection. Studies on the mechanisms employed by the resistant soybean genotypes to prevent infection by these nematodes are of great interest for breeders. For these reasons, the aim of this work is to characterize the transcriptome of soybean line PI 595099-Meloidogyne javanica interaction through expression analysis. Two cDNA libraries were obtained using a pool of RNA from PI 595099 uninfected and M. javanica (J2) infected roots, collected at 6, 12, 24, 48, 96, 144 and 192 h after inoculation. Around 800 ESTs (Expressed Sequence Tags) were sequenced and clustered into 195 clusters. In silico subtraction analysis identified eleven differentially expressed genes encoding putative proteins sharing amino acid sequence similarities by using BlastX: metallothionein, SLAH4 (SLAC1 Homologue 4), SLAH1 (SLAC1 Homologue 1), zinc-finger proteins, AN1-type proteins, auxin-repressed proteins, thioredoxin and nuclear transport factor 2 (NTF-2). Other genes were also found exclusively in nematode stressed soybean roots, such as NAC domain-containing proteins, MADS-box proteins, SOC1 (suppressor of overexpression of constans 1) proteins, thioredoxin-like protein 4-Coumarate-CoA ligase and the transcription factor (TF) MYBZ2. Among the genes identified in non-stressed roots only were Ser/Thr protein kinases, wound-induced basic protein, ethylene-responsive family protein, metallothionein-like protein cysteine proteinase inhibitor (cystatin) and Putative Kunitz trypsin protease inhibitor. An understanding of the roles of these differentially expressed genes will provide insights into the resistance mechanisms and candidate genes involved in soybean-M. javanica interaction and contribute to more effective control of this pathogen. PMID:22802712

  4. Transcriptome analysis of Pacific white shrimp (Litopenaeus vannamei) hepatopancreas in response to Taura syndrome Virus (TSV) experimental infection.

    PubMed

    Zeng, Digang; Chen, Xiuli; Xie, Daxiang; Zhao, Yongzhen; Yang, Chunling; Li, Yongmei; Ma, Ning; Peng, Min; Yang, Qiong; Liao, Zhenping; Wang, Hui; Chen, Xiaohan

    2013-01-01

    The Pacific white shrimp, Litopenaeus vannamei, is a worldwide cultured crustacean species with important commercial value. Over the last two decades, Taura syndrome virus (TSV) has seriously threatened the shrimp aquaculture industry in the Western Hemisphere. To better understand the interaction between shrimp immune and TSV, we performed a transcriptome analysis in the hepatopancreas of L. vannamei challenged with TSV, using the 454 pyrosequencing (Roche) technology. We obtained 126919 and 102181 high-quality reads from TSV-infected and non-infected (control) L. vannamei cDNA libraries, respectively. The overall de novo assembly of cDNA sequence data generated 15004 unigenes, with an average length of 507 bp. Based on BLASTX search (E-value <10-5) against NR, Swissprot, GO, COG and KEGG databases, 10425 unigenes (69.50% of all unigenes) were annotated with gene descriptions, gene ontology terms, or metabolic pathways. In addition, we identified 770 microsatellites and designed 497 sets of primers. Comparative genomic analysis revealed that 1311 genes differentially expressed in the infected shrimp compared to the controls, including 559 up- and 752 down- regulated genes. Among the differentially expressed genes, several are involved in various animal immune functions, such as antiviral, antimicrobial, proteases, protease inhibitors, signal transduction, transcriptional control, cell death and cell adhesion. This study provides valuable information on shrimp gene activities against TSV infection. Results can contribute to the in-depth study of candidate genes in shrimp immunity, and improves our current understanding of this host-virus interaction. In addition, the large amount of transcripts reported in this study provide a rich source for identification of novel genes in shrimp.

  5. Transcriptome of the Caribbean stony coral Porites astreoides from three developmental stages.

    PubMed

    Mansour, Tamer A; Rosenthal, Joshua J C; Brown, C Titus; Roberson, Loretta M

    2016-08-02

    Porites astreoides is a ubiquitous species of coral on modern Caribbean reefs that is resistant to increasing temperatures, overfishing, and other anthropogenic impacts that have threatened most other coral species. We assembled and annotated a transcriptome from this coral using Illumina sequences from three different developmental stages collected over several years: free-swimming larvae, newly settled larvae, and adults (>10 cm in diameter). This resource will aid understanding of coral calcification, larval settlement, and host-symbiont interactions. A de novo transcriptome for the P. astreoides holobiont (coral plus algal symbiont) was assembled using 594 Mbp of raw Illumina sequencing data generated from five age-specific cDNA libraries. The new transcriptome consists of 867 255 transcript elements with an average length of 685 bases. The isolated P. astreoides assembly consists of 129 718 transcript elements with an average length of 811 bases, and the isolated Symbiodinium sp. assembly had 186 177 transcript elements with an average length of 1105 bases. This contribution to coral transcriptome data provides a valuable resource for researchers studying the ontogeny of gene expression patterns within both the coral and its dinoflagellate symbiont.

  6. The duck genome and transcriptome provide insight into an avian influenza virus reservoir species

    PubMed Central

    Chen, Hualan; Zhang, Yong; Qian, Wubin; Kim, Heebal; Gan, Shangquan; Zhao, Yiqiang; Li, Jianwen; Yi, Kang; Feng, Huapeng; Zhu, Pengyang; Li, Bo; Liu, Qiuyue; Fairley, Suan; Magor, Katharine E; Du, Zhenlin; Hu, Xiaoxiang; Goodman, Laurie; Tafer, Hakim; Vignal, Alain; Lee, Taeheon; Kim, Kyu-Won; Sheng, Zheya; An, Yang; Searle, Steve; Herrero, Javier; Groenen, Martien A M; Crooijmans, Richard P M A; Faraut, Thomas; Cai, Qingle; Webster, Robert G; Aldridge, Jerry R; Warren, Wesley C; Bartschat, Sebastian; Kehr, Stephanie; Marz, Manja; Stadler, Peter F; Smith, Jacqueline; Kraus, Robert H S; Zhao, Yaofeng; Ren, Liming; Fei, Jing; Morisson, Mireille; Kaiser, Pete; Griffin, Darren K; Rao, Man; Pitel, Frederique; Wang, Jun; Li, Ning

    2014-01-01

    The duck (Anas platyrhynchos) is one of the principal natural hosts of influenza A viruses. We present the duck genome sequence and perform deep transcriptome analyses to investigate immune-related genes. Our data indicate that the duck possesses a contractive immune gene repertoire, as in chicken and zebra finch, and this repertoire has been shaped through lineage-specific duplications. We identify genes that are responsive to influenza A viruses using the lung transcriptomes of control ducks and ones that were infected with either a highly pathogenic (A/duck/Hubei/49/05) or a weakly pathogenic (A/goose/Hubei/65/05) H5N1 virus. Further, we show how the duck’s defense mechanisms against influenza infection have been optimized through the diversification of its β-defensin and butyrophilin-like repertoires. These analyses, in combination with the genomic and transcriptomic data, provide a resource for characterizing the interaction between host and influenza viruses. PMID:23749191

  7. Necklace: combining reference and assembled transcriptomes for more comprehensive RNA-Seq analysis.

    PubMed

    Davidson, Nadia M; Oshlack, Alicia

    2018-05-01

    RNA sequencing (RNA-seq) analyses can benefit from performing a genome-guided and de novo assembly, in particular for species where the reference genome or the annotation is incomplete. However, tools for integrating an assembled transcriptome with reference annotation are lacking. Necklace is a software pipeline that runs genome-guided and de novo assembly and combines the resulting transcriptomes with reference genome annotations. Necklace constructs a compact but comprehensive superTranscriptome out of the assembled and reference data. Reads are subsequently aligned and counted in preparation for differential expression testing. Necklace allows a comprehensive transcriptome to be built from a combination of assembled and annotated transcripts, which results in a more comprehensive transcriptome for the majority of organisms. In addition RNA-seq data are mapped back to this newly created superTranscript reference to enable differential expression testing with standard methods.

  8. Transcriptome Profiles of the Protoscoleces of Echinococcus granulosus Reveal that Excretory-Secretory Products Are Essential to Metabolic Adaptation

    PubMed Central

    Pan, Wei; Shen, Yujuan; Han, Xiuming; Wang, Ying; Liu, Hua; Jiang, Yanyan; Zhang, Yumei; Wang, Yanjuan; Xu, Yuxin; Cao, Jianping

    2014-01-01

    Background Cystic hydatid disease (CHD) is caused by the larval stages of the cestode and affects humans and domestic animals worldwide. Protoscoleces (PSCs) are one component of the larval stages that can interact with both definitive and intermediate hosts. Previous genomic and transcriptomic data have provided an overall snapshot of the genomics of the growth and development of this parasite. However, our understanding of how PSCs subvert the immune response of hosts and maintains metabolic adaptation remains unclear. In this study, we used Roche 454 sequencing technology and in silico secretome analysis to explore the transcriptome profiles of the PSCs from E. granulosus and elucidate the potential functions of the excretory-secretory proteins (ESPs) released by the parasite. Methodology/Principal Findings A large number of nonredundant sequences as unigenes were generated (26,514), of which 22,910 (86.4%) were mapped to the newly published E. granulosus genome and 17,705 (66.8%) were distributed within the coding sequence (CDS) regions. Of the 2,280 ESPs predicted from the transcriptome, 138 ESPs were inferred to be involved in the metabolism of carbohydrates, while 124 ESPs were inferred to be involved in the metabolism of protein. Eleven ESPs were identified as intracellular enzymes that regulate glycolysis/gluconeogenesis (GL/GN) pathways, while a further 44 antigenic proteins, 25 molecular chaperones and four proteases were highly represented. Many proteins were also found to be significantly enriched in development-related signaling pathways, such as the TGF-β receptor pathways and insulin pathways. Conclusions/Significance This study provides valuable information on the metabolic adaptation of parasites to their hosts that can be used to aid the development of novel intervention targets for hydatid treatment and control. PMID:25500817

  9. Cell-type- and tissue-specific transcriptomes of the white spruce (Picea glauca) bark unmask fine-scale spatial patterns of constitutive and induced conifer defense.

    PubMed

    Celedon, Jose M; Yuen, Macaire M S; Chiang, Angela; Henderson, Hannah; Reid, Karen E; Bohlmann, Jörg

    2017-11-01

    Plant defenses often involve specialized cells and tissues. In conifers, specialized cells of the bark are important for defense against insects and pathogens. Using laser microdissection, we characterized the transcriptomes of cortical resin duct cells, phenolic cells and phloem of white spruce (Picea glauca) bark under constitutive and methyl jasmonate (MeJa)-induced conditions, and we compared these transcriptomes with the transcriptome of the bark tissue complex. Overall, ~3700 bark transcripts were differentially expressed in response to MeJa. Approximately 25% of transcripts were expressed in only one cell type, revealing cell specialization at the transcriptome level. MeJa caused cell-type-specific transcriptome responses and changed the overall patterns of cell-type-specific transcript accumulation. Comparison of transcriptomes of the conifer bark tissue complex and specialized cells resolved a masking effect inherent to transcriptome analysis of complex tissues, and showed the actual cell-type-specific transcriptome signatures. Characterization of cell-type-specific transcriptomes is critical to reveal the dynamic patterns of spatial and temporal display of constitutive and induced defense systems in a complex plant tissue or organ. This was demonstrated with the improved resolution of spatially restricted expression of sets of genes of secondary metabolism in the specialized cell types. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  10. Transcriptome analysis and gene expression profiling of abortive and developing ovules during fruit development in hazelnut.

    PubMed

    Cheng, Yunqing; Liu, Jianfeng; Zhang, Huidi; Wang, Ju; Zhao, Yixin; Geng, Wanting

    2015-01-01

    A high ratio of blank fruit in hazelnut (Corylus heterophylla Fisch) is a very common phenomenon that causes serious yield losses in northeast China. The development of blank fruit in the Corylus genus is known to be associated with embryo abortion. However, little is known about the molecular mechanisms responsible for embryo abortion during the nut development stage. Genomic information for C. heterophylla Fisch is not available; therefore, data related to transcriptome and gene expression profiling of developing and abortive ovules are needed. In this study, de novo transcriptome sequencing and RNA-seq analysis were conducted using short-read sequencing technology (Illumina HiSeq 2000). The results of the transcriptome assembly analysis revealed genetic information that was associated with the fruit development stage. Two digital gene expression libraries were constructed, one for a full (normally developing) ovule and one for an empty (abortive) ovule. Transcriptome sequencing and assembly results revealed 55,353 unigenes, including 18,751 clusters and 36,602 singletons. These results were annotated using the public databases NR, NT, Swiss-Prot, KEGG, COG, and GO. Using digital gene expression profiling, gene expression differences in developing and abortive ovules were identified. A total of 1,637 and 715 unigenes were significantly upregulated and downregulated, respectively, in abortive ovules, compared with developing ovules. Quantitative real-time polymerase chain reaction analysis was used in order to verify the differential expression of some genes. The transcriptome and digital gene expression profiling data of normally developing and abortive ovules in hazelnut provide exhaustive information that will improve our understanding of the molecular mechanisms of abortive ovule formation in hazelnut.

  11. Transcriptome Network Analysis Reveals Aging-Related Mitochondrial and Proteasomal Dysfunction and Immune Activation in Human Thyroid

    PubMed Central

    Cho, Byuri Angela; Yoo, Seong-Keun; Song, Young Shin; Kim, Su-jin; Lee, Kyu Eun; Shong, Minho

    2018-01-01

    Background: Elucidating aging-related transcriptomic changes in human organs is necessary to understand the aging physiology and mechanisms, but little is known regarding the thyroid gland. We investigated aging-related transcriptomic alterations in the human thyroid gland and characterized the related molecular functions. Methods: Publicly available RNA sequencing data of 322 thyroid tissue samples from the Genotype-Tissue Expression project were analyzed. In addition, our own 64 RNA sequencing data of normal thyroid tissue samples were used as a validation set. To comprehensively evaluate the associations between aging and transcriptomic changes, we performed a weighted gene coexpression network analysis and pathway enrichment analysis. The thyroid differentiation score was then used for further analysis, defining the correlations between thyroid differentiation and aging. Results: The most significant aging-related transcriptomic change in thyroid was the downregulation of genes related to the mitochondrial and proteasomal functions (p = 3 × 10−6). Moreover, genes that are associated with immune processes were significantly upregulated with age (p = 3 × 10−4), and all of them overlapped with the upregulated genes in the thyroid glands affected by lymphocytic thyroiditis. Furthermore, these aging-related changes were not significantly different according to sex, but in terms of the thyroid differentiation, females were more susceptible to aging-related changes (p for trend = 0.03). Conclusions: Aging-related transcriptomic changes in the thyroid gland were associated with mitochondrial and proteasomal dysfunction, loss of differentiation, and activation of autoimmune processes. Our results provide clues to better understanding the age-related decline in thyroid function and higher susceptibility to autoimmune thyroid disease. PMID:29652618

  12. Impact of Transcriptomics on Our Understanding of Pulmonary Fibrosis

    PubMed Central

    Vukmirovic, Milica; Kaminski, Naftali

    2018-01-01

    Idiopathic pulmonary fibrosis (IPF) is a lethal fibrotic lung disease characterized by aberrant remodeling of the lung parenchyma with extensive changes to the phenotypes of all lung resident cells. The introduction of transcriptomics, genome scale profiling of thousands of RNA transcripts, caused a significant inversion in IPF research. Instead of generating hypotheses based on animal models of disease, or biological plausibility, with limited validation in humans, investigators were able to generate hypotheses based on unbiased molecular analysis of human samples and then use animal models of disease to test their hypotheses. In this review, we describe the insights made from transcriptomic analysis of human IPF samples. We describe how transcriptomic studies led to identification of novel genes and pathways involved in the human IPF lung such as: matrix metalloproteinases, WNT pathway, epithelial genes, role of microRNAs among others, as well as conceptual insights such as the involvement of developmental pathways and deep shifts in epithelial and fibroblast phenotypes. The impact of lung and transcriptomic studies on disease classification, endotype discovery, and reproducible biomarkers is also described in detail. Despite these impressive achievements, the impact of transcriptomic studies has been limited because they analyzed bulk tissue and did not address the cellular and spatial heterogeneity of the IPF lung. We discuss new emerging technologies and applications, such as single-cell RNAseq and microenvironment analysis that may address cellular and spatial heterogeneity. We end by making the point that most current tissue collections and resources are not amenable to analysis using the novel technologies. To take advantage of the new opportunities, we need new efforts of sample collections, this time focused on access to all the microenvironments and cells in the IPF lung. PMID:29670881

  13. Comparative transcriptomics and proteomics analysis of citrus fruit, to improve understanding of the effect of low temperature on maintaining fruit quality during lengthy post-harvest storage

    PubMed Central

    Yun, Ze; Jin, Shuai; Ding, Yuduan; Wang, Zhuang; Gao, Huijun; Pan, Zhiyong; Xu, Juan; Cheng, Yunjiang; Deng, Xiuxin

    2012-01-01

    Fruit quality is a very complex trait that is affected by both genetic and non-genetic factors. Generally, low temperature (LT) is used to delay fruit senescence and maintain fruit quality during post-harvest storage but the molecular mechanisms involved are poorly understood. Hirado Buntan Pummelo (HBP; Citrus grandis × C. paradis) fruit were chosen to explore the mechanisms that maintain citrus fruit quality during lengthy LT storage using transcriptome and proteome studies based on digital gene expression (DGE) profiling and two-dimensional gel electrophoresis (2-DE), respectively. Results showed that LT up-regulated stress-responsive genes, arrested signal transduction, and inhibited primary metabolism, secondary metabolism and the transportation of metabolites. Calcineurin B-like protein (CBL)–CBL-interacting protein kinase complexes might be involved in the signal transduction of LT stress, and fruit quality is likely to be regulated by sugar-mediated auxin and abscisic acid (ABA) signalling. Furthermore, ABA was specific to the regulation of citrus fruit senescence and was not involved in the LT stress response. In addition, the accumulation of limonin, nomilin, methanol, and aldehyde, together with the up-regulated heat shock proteins, COR15, and cold response-related genes, provided a comprehensive proteomics and transcriptomics view on the coordination of fruit LT stress responses. PMID:22323274

  14. The Transcriptome Analysis of Strongyloides stercoralis L3i Larvae Reveals Targets for Intervention in a Neglected Disease

    PubMed Central

    Marcilla, Antonio; Garg, Gagan; Bernal, Dolores; Ranganathan, Shoba; Forment, Javier; Ortiz, Javier; Muñoz-Antolí, Carla; Dominguez, M. Victoria; Pedrola, Laia; Martinez-Blanch, Juan; Sotillo, Javier; Trelis, Maria; Toledo, Rafael; Esteban, J. Guillermo

    2012-01-01

    Background Strongyloidiasis is one of the most neglected diseases distributed worldwide with endemic areas in developed countries, where chronic infections are life threatening. Despite its impact, very little is known about the molecular biology of the parasite involved and its interplay with its hosts. Next generation sequencing technologies now provide unique opportunities to rapidly address these questions. Principal Findings Here we present the first transcriptome of the third larval stage of S. stercoralis using 454 sequencing coupled with semi-automated bioinformatic analyses. 253,266 raw sequence reads were assembled into 11,250 contiguous sequences, most of which were novel. 8037 putative proteins were characterized based on homology, gene ontology and/or biochemical pathways. Comparison of the transcriptome of S. strongyloides with those of other nematodes, including S. ratti, revealed similarities in transcription of molecules inferred to have key roles in parasite-host interactions. Enzymatic proteins, like kinases and proteases, were abundant. 1213 putative excretory/secretory proteins were compiled using a new pipeline which included non-classical secretory proteins. Potential drug targets were also identified. Conclusions Overall, the present dataset should provide a solid foundation for future fundamental genomic, proteomic and metabolomic explorations of S. stercoralis, as well as a basis for applied outcomes, such as the development of novel methods of intervention against this neglected parasite. PMID:22389732

  15. Genotype-specific physiological and transcriptomic responses to drought stress in Setaria italica (an emerging model for Panicoideae grasses).

    PubMed

    Tang, Sha; Li, Lin; Wang, Yongqiang; Chen, Qiannan; Zhang, Wenying; Jia, Guanqing; Zhi, Hui; Zhao, Baohua; Diao, Xianmin

    2017-08-30

    Understanding drought-tolerance mechanisms and identifying genetic dominance are important for crop improvement. Setaria italica, which is extremely drought-tolerant, has been regarded as a model plant for studying stress biology. Moreover, different genotypes of S. italica have evolved various drought-tolerance/avoidance mechanisms that should be elucidated. Physiological and transcriptomic comparisons between drought-tolerant S. italica cultivar 'Yugu1' and drought-sensitive 'An04' were conducted. 'An04' had higher yields and more efficient photosystem activities than 'Yugu1' under well-watered conditions, and this was accompanied by positive brassinosteroid regulatory actions. However, 'An04's growth advantage was severely repressed by drought, while 'Yugu1' maintained normal growth under a water deficiency. High-throughput sequencing suggested that the S. italica transcriptome was severely remodelled by genotype × environment interactions. Expression profiles of genes related to phytohormone metabolism and signalling, transcription factors, detoxification, and other stress-related proteins were characterised, revealing genotype-dependent and -independent drought responses in different S. italica genotypes. Combining our data with drought-tolerance-related QTLs, we identified 20 candidate genes that contributed to germination and early seedling' drought tolerance in S. italica. Our analysis provides a comprehensive picture of how different S. italica genotypes respond to drought, and may be used for the genetic improvement of drought tolerance in Poaceae crops.

  16. Genome-Wide Interaction Analysis of Air Pollution Exposure and Childhood Asthma with Functional Follow-up.

    PubMed

    Gref, Anna; Merid, Simon K; Gruzieva, Olena; Ballereau, Stéphane; Becker, Allan; Bellander, Tom; Bergström, Anna; Bossé, Yohan; Bottai, Matteo; Chan-Yeung, Moira; Fuertes, Elaine; Ierodiakonou, Despo; Jiang, Ruiwei; Joly, Stéphane; Jones, Meaghan; Kobor, Michael S; Korek, Michal; Kozyrskyj, Anita L; Kumar, Ashish; Lemonnier, Nathanaël; MacIntyre, Elaina; Ménard, Camille; Nickle, David; Obeidat, Ma'en; Pellet, Johann; Standl, Marie; Sääf, Annika; Söderhäll, Cilla; Tiesler, Carla M T; van den Berge, Maarten; Vonk, Judith M; Vora, Hita; Xu, Cheng-Jian; Antó, Josep M; Auffray, Charles; Brauer, Michael; Bousquet, Jean; Brunekreef, Bert; Gauderman, W James; Heinrich, Joachim; Kere, Juha; Koppelman, Gerard H; Postma, Dirkje; Carlsten, Christopher; Pershagen, Göran; Melén, Erik

    2017-05-15

    The evidence supporting an association between traffic-related air pollution exposure and incident childhood asthma is inconsistent and may depend on genetic factors. To identify gene-environment interaction effects on childhood asthma using genome-wide single-nucleotide polymorphism (SNP) data and air pollution exposure. Identified loci were further analyzed at epigenetic and transcriptomic levels. We used land use regression models to estimate individual air pollution exposure (represented by outdoor NO 2 levels) at the birth address and performed a genome-wide interaction study for doctors' diagnoses of asthma up to 8 years in three European birth cohorts (n = 1,534) with look-up for interaction in two separate North American cohorts, CHS (Children's Health Study) and CAPPS/SAGE (Canadian Asthma Primary Prevention Study/Study of Asthma, Genetics and Environment) (n = 1,602 and 186 subjects, respectively). We assessed expression quantitative trait locus effects in human lung specimens and blood, as well as associations among air pollution exposure, methylation, and transcriptomic patterns. In the European cohorts, 186 SNPs had an interaction P < 1 × 10 -4 and a look-up evaluation of these disclosed 8 SNPs in 4 loci, with an interaction P < 0.05 in the large CHS study, but not in CAPPS/SAGE. Three SNPs within adenylate cyclase 2 (ADCY2) showed the same direction of the interaction effect and were found to influence ADCY2 gene expression in peripheral blood (P = 4.50 × 10 -4 ). One other SNP with P < 0.05 for interaction in CHS, rs686237, strongly influenced UDP-Gal:betaGlcNAc β-1,4-galactosyltransferase, polypeptide 5 (B4GALT5) expression in lung tissue (P = 1.18 × 10 -17 ). Air pollution exposure was associated with differential discs, large homolog 2 (DLG2) methylation and expression. Our results indicated that gene-environment interactions are important for asthma development and provided supportive evidence for interaction with air pollution for ADCY2, B4GALT5, and DLG2.

  17. Genome-Wide Interaction Analysis of Air Pollution Exposure and Childhood Asthma with Functional Follow-up

    PubMed Central

    Gref, Anna; Merid, Simon K.; Gruzieva, Olena; Ballereau, Stéphane; Becker, Allan; Bellander, Tom; Bergström, Anna; Bottai, Matteo; Chan-Yeung, Moira; Fuertes, Elaine; Ierodiakonou, Despo; Jiang, Ruiwei; Joly, Stéphane; Jones, Meaghan; Kobor, Michael S.; Korek, Michal; Kozyrskyj, Anita L.; Kumar, Ashish; Lemonnier, Nathanaël; MacIntyre, Elaina; Ménard, Camille; Nickle, David; Obeidat, Ma'en; Pellet, Johann; Standl, Marie; Sääf, Annika; Söderhäll, Cilla; Tiesler, Carla M. T.; van den Berge, Maarten; Vonk, Judith M.; Vora, Hita; Xu, Cheng-Jian; Antó, Josep M.; Auffray, Charles; Brauer, Michael; Bousquet, Jean; Brunekreef, Bert; Gauderman, W. James; Heinrich, Joachim; Kere, Juha; Koppelman, Gerard H.; Postma, Dirkje; Carlsten, Christopher; Pershagen, Göran

    2017-01-01

    Rationale: The evidence supporting an association between traffic-related air pollution exposure and incident childhood asthma is inconsistent and may depend on genetic factors. Objectives: To identify gene–environment interaction effects on childhood asthma using genome-wide single-nucleotide polymorphism (SNP) data and air pollution exposure. Identified loci were further analyzed at epigenetic and transcriptomic levels. Methods: We used land use regression models to estimate individual air pollution exposure (represented by outdoor NO2 levels) at the birth address and performed a genome-wide interaction study for doctors’ diagnoses of asthma up to 8 years in three European birth cohorts (n = 1,534) with look-up for interaction in two separate North American cohorts, CHS (Children’s Health Study) and CAPPS/SAGE (Canadian Asthma Primary Prevention Study/Study of Asthma, Genetics and Environment) (n = 1,602 and 186 subjects, respectively). We assessed expression quantitative trait locus effects in human lung specimens and blood, as well as associations among air pollution exposure, methylation, and transcriptomic patterns. Measurements and Main Results: In the European cohorts, 186 SNPs had an interaction P < 1 × 10−4 and a look-up evaluation of these disclosed 8 SNPs in 4 loci, with an interaction P < 0.05 in the large CHS study, but not in CAPPS/SAGE. Three SNPs within adenylate cyclase 2 (ADCY2) showed the same direction of the interaction effect and were found to influence ADCY2 gene expression in peripheral blood (P = 4.50 × 10−4). One other SNP with P < 0.05 for interaction in CHS, rs686237, strongly influenced UDP-Gal:betaGlcNAc β-1,4-galactosyltransferase, polypeptide 5 (B4GALT5) expression in lung tissue (P = 1.18 × 10−17). Air pollution exposure was associated with differential discs, large homolog 2 (DLG2) methylation and expression. Conclusions: Our results indicated that gene–environment interactions are important for asthma development and provided supportive evidence for interaction with air pollution for ADCY2, B4GALT5, and DLG2. PMID:27901618

  18. Epigenetic transgenerational inheritance of somatic transcriptomes and epigenetic control regions

    PubMed Central

    2012-01-01

    Background Environmentally induced epigenetic transgenerational inheritance of adult onset disease involves a variety of phenotypic changes, suggesting a general alteration in genome activity. Results Investigation of different tissue transcriptomes in male and female F3 generation vinclozolin versus control lineage rats demonstrated all tissues examined had transgenerational transcriptomes. The microarrays from 11 different tissues were compared with a gene bionetwork analysis. Although each tissue transgenerational transcriptome was unique, common cellular pathways and processes were identified between the tissues. A cluster analysis identified gene modules with coordinated gene expression and each had unique gene networks regulating tissue-specific gene expression and function. A large number of statistically significant over-represented clusters of genes were identified in the genome for both males and females. These gene clusters ranged from 2-5 megabases in size, and a number of them corresponded to the epimutations previously identified in sperm that transmit the epigenetic transgenerational inheritance of disease phenotypes. Conclusions Combined observations demonstrate that all tissues derived from the epigenetically altered germ line develop transgenerational transcriptomes unique to the tissue, but common epigenetic control regions in the genome may coordinately regulate these tissue-specific transcriptomes. This systems biology approach provides insight into the molecular mechanisms involved in the epigenetic transgenerational inheritance of a variety of adult onset disease phenotypes. PMID:23034163

  19. ATGC transcriptomics: a web-based application to integrate, explore and analyze de novo transcriptomic data.

    PubMed

    Gonzalez, Sergio; Clavijo, Bernardo; Rivarola, Máximo; Moreno, Patricio; Fernandez, Paula; Dopazo, Joaquín; Paniego, Norma

    2017-02-22

    In the last years, applications based on massively parallelized RNA sequencing (RNA-seq) have become valuable approaches for studying non-model species, e.g., without a fully sequenced genome. RNA-seq is a useful tool for detecting novel transcripts and genetic variations and for evaluating differential gene expression by digital measurements. The large and complex datasets resulting from functional genomic experiments represent a challenge in data processing, management, and analysis. This problem is especially significant for small research groups working with non-model species. We developed a web-based application, called ATGC transcriptomics, with a flexible and adaptable interface that allows users to work with new generation sequencing (NGS) transcriptomic analysis results using an ontology-driven database. This new application simplifies data exploration, visualization, and integration for a better comprehension of the results. ATGC transcriptomics provides access to non-expert computer users and small research groups to a scalable storage option and simple data integration, including database administration and management. The software is freely available under the terms of GNU public license at http://atgcinta.sourceforge.net .

  20. Global Transcriptome Analysis of Staphylococcus aureus Response to Hydrogen Peroxide†

    PubMed Central

    Chang, Wook; Small, David A.; Toghrol, Freshteh; Bentley, William E.

    2006-01-01

    Staphylococcus aureus responds with protective strategies against phagocyte-derived reactive oxidants to infect humans. Herein, we report the transcriptome analysis of the cellular response of S. aureus to hydrogen peroxide-induced oxidative stress. The data indicate that the oxidative response includes the induction of genes involved in virulence, DNA repair, and notably, anaerobic metabolism. PMID:16452450

  1. PaintOmics 3: a web resource for the pathway analysis and visualization of multi-omics data.

    PubMed

    Hernández-de-Diego, Rafael; Tarazona, Sonia; Martínez-Mira, Carlos; Balzano-Nogueira, Leandro; Furió-Tarí, Pedro; Pappas, Georgios J; Conesa, Ana

    2018-05-25

    The increasing availability of multi-omic platforms poses new challenges to data analysis. Joint visualization of multi-omics data is instrumental in better understanding interconnections across molecular layers and in fully utilizing the multi-omic resources available to make biological discoveries. We present here PaintOmics 3, a web-based resource for the integrated visualization of multiple omic data types onto KEGG pathway diagrams. PaintOmics 3 combines server-end capabilities for data analysis with the potential of modern web resources for data visualization, providing researchers with a powerful framework for interactive exploration of their multi-omics information. Unlike other visualization tools, PaintOmics 3 covers a comprehensive pathway analysis workflow, including automatic feature name/identifier conversion, multi-layered feature matching, pathway enrichment, network analysis, interactive heatmaps, trend charts, and more. It accepts a wide variety of omic types, including transcriptomics, proteomics and metabolomics, as well as region-based approaches such as ATAC-seq or ChIP-seq data. The tool is freely available at www.paintomics.org.

  2. Transcriptomes of Eight Arabidopsis thaliana Accessions Reveal Core Conserved, Genotype- and Organ-Specific Responses to Flooding Stress1[OPEN

    PubMed Central

    van Veen, Hans; Vashisht, Divya; Akman, Melis; Girke, Thomas; Mustroph, Angelika; Reinen, Emilie; Kooiker, Maarten; van Tienderen, Peter; Voesenek, Laurentius A.C.J.

    2016-01-01

    Climate change has increased the frequency and severity of flooding events, with significant negative impact on agricultural productivity. These events often submerge plant aerial organs and roots, limiting growth and survival due to a severe reduction in light reactions and gas exchange necessary for photosynthesis and respiration, respectively. To distinguish molecular responses to the compound stress imposed by submergence, we investigated transcriptomic adjustments to darkness in air and under submerged conditions using eight Arabidopsis (Arabidopsis thaliana) accessions differing significantly in sensitivity to submergence. Evaluation of root and rosette transcriptomes revealed an early transcriptional and posttranscriptional response signature that was conserved primarily across genotypes, although flooding susceptibility-associated and genotype-specific responses also were uncovered. Posttranscriptional regulation encompassed darkness- and submergence-induced alternative splicing of transcripts from pathways involved in the alternative mobilization of energy reserves. The organ-specific transcriptome adjustments reflected the distinct physiological status of roots and shoots. Root-specific transcriptome changes included marked up-regulation of chloroplast-encoded photosynthesis and redox-related genes, whereas those of the rosette were related to the regulation of development and growth processes. We identified a novel set of tolerance genes, recognized mainly by quantitative differences. These included a transcriptome signature of more pronounced gluconeogenesis in tolerant accessions, a response that included stress-induced alternative splicing. This study provides organ-specific molecular resolution of genetic variation in submergence responses involving interactions between darkness and low-oxygen constraints of flooding stress and demonstrates that early transcriptome plasticity, including alternative splicing, is associated with the ability to cope with a compound environmental stress. PMID:27208254

  3. Transcriptomic Analysis of Phenotypic Changes in Birch (Betula platyphylla) Autotetraploids

    PubMed Central

    Mu, Huai-Zhi; Liu, Zi-Jia; Lin, Lin; Li, Hui-Yu; Jiang, Jing; Liu, Gui-Feng

    2012-01-01

    Plant breeders have focused much attention on polyploid trees because of their importance to forestry. To evaluate the impact of intraspecies genome duplication on the transcriptome, a series of Betula platyphylla autotetraploids and diploids were generated from four full-sib families. The phenotypes and transcriptomes of these autotetraploid individuals were compared with those of diploid trees. Autotetraploids were generally superior in breast-height diameter, volume, leaf, fruit and stoma and were generally inferior in height compared to diploids. Transcriptome data revealed numerous changes in gene expression attributable to autotetraploidization, which resulted in the upregulation of 7052 unigenes and the downregulation of 3658 unigenes. Pathway analysis revealed that the biosynthesis and signal transduction of indoleacetate (IAA) and ethylene were altered after genome duplication, which may have contributed to phenotypic changes. These results shed light on variations in birch autotetraploidization and help identify important genes for the genetic engineering of birch trees. PMID:23202935

  4. De novo Assembly and Analysis of the Chilean Pencil Catfish Trichomycterus areolatus Transcriptome

    PubMed Central

    Schulze, Thomas T.; Ali, Jonathan M.; Bartlett, Maggie L.; McFarland, Madalyn M.; Clement, Emalie J.; Won, Harim I.; Sanford, Austin G.; Monzingo, Elyssa B.; Martens, Matthew C.; Hemsley, Ryan M.; Kumar, Sidharta; Gouin, Nicolas; Kolok, Alan S.; Davis, Paul H.

    2016-01-01

    Trichomycterus areolatus is an endemic species of pencil catfish that inhabits the riffles and rapids of many freshwater ecosystems of Chile. Despite its unique adaptation to Chile's high gradient watersheds and therefore potential application in the investigation of ecosystem integrity and environmental contamination, relatively little is known regarding the molecular biology of this environmental sentinel. Here, we detail the assembly of the Trichomycterus areolatus transcriptome, a molecular resource for the study of this organism and its molecular response to the environment. RNA-Seq reads were obtained by next-generation sequencing with an Illumina® platform and processed using PRINSEQ. The transcriptome assembly was performed using TRINITY assembler. Transcriptome validation was performed by functional characterization with KOG, KEGG, and GO analyses. Additionally, differential expression analysis highlights sex-specific expression patterns, and a list of endocrine and oxidative stress related transcripts are included. PMID:27672404

  5. Transcriptome analysis by strand-specific sequencing of complementary DNA

    PubMed Central

    Parkhomchuk, Dmitri; Borodina, Tatiana; Amstislavskiy, Vyacheslav; Banaru, Maria; Hallen, Linda; Krobitsch, Sylvia; Lehrach, Hans; Soldatov, Alexey

    2009-01-01

    High-throughput complementary DNA sequencing (RNA-Seq) is a powerful tool for whole-transcriptome analysis, supplying information about a transcript's expression level and structure. However, it is difficult to determine the polarity of transcripts, and therefore identify which strand is transcribed. Here, we present a simple cDNA sequencing protocol that preserves information about a transcript's direction. Using Saccharomyces cerevisiae and mouse brain transcriptomes as models, we demonstrate that knowing the transcript's orientation allows more accurate determination of the structure and expression of genes. It also helps to identify new genes and enables studying promoter-associated and antisense transcription. The transcriptional landscapes we obtained are available online. PMID:19620212

  6. Transcriptome analysis by strand-specific sequencing of complementary DNA.

    PubMed

    Parkhomchuk, Dmitri; Borodina, Tatiana; Amstislavskiy, Vyacheslav; Banaru, Maria; Hallen, Linda; Krobitsch, Sylvia; Lehrach, Hans; Soldatov, Alexey

    2009-10-01

    High-throughput complementary DNA sequencing (RNA-Seq) is a powerful tool for whole-transcriptome analysis, supplying information about a transcript's expression level and structure. However, it is difficult to determine the polarity of transcripts, and therefore identify which strand is transcribed. Here, we present a simple cDNA sequencing protocol that preserves information about a transcript's direction. Using Saccharomyces cerevisiae and mouse brain transcriptomes as models, we demonstrate that knowing the transcript's orientation allows more accurate determination of the structure and expression of genes. It also helps to identify new genes and enables studying promoter-associated and antisense transcription. The transcriptional landscapes we obtained are available online.

  7. Pyrosequencing the Bemisia tabaci Transcriptome Reveals a Highly Diverse Bacterial Community and a Robust System for Insecticide Resistance

    PubMed Central

    Wu, Qing-jun; Wang, Shao-li; Yang, Xin; Yang, Ni-na; Li, Ru-mei; Jiao, Xiao-guo; Pan, Hui-peng; Liu, Bai-ming; Su, Qi; Xu, Bao-yun; Hu, Song-nian; Zhou, Xu-guo; Zhang, You-jun

    2012-01-01

    Background Bemisia tabaci (Gennadius) is a phloem-feeding insect poised to become one of the major insect pests in open field and greenhouse production systems throughout the world. The high level of resistance to insecticides is a main factor that hinders continued use of insecticides for suppression of B. tabaci. Despite its prevalence, little is known about B. tabaci at the genome level. To fill this gap, an invasive B. tabaci B biotype was subjected to pyrosequencing-based transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes. Methodology and Principal Findings Using Roche 454 pyrosequencing, 857,205 reads containing approximately 340 megabases were obtained from the B. tabaci transcriptome. De novo assembly generated 178,669 unigenes including 30,980 from insects, 17,881 from bacteria, and 129,808 from the nohit. A total of 50,835 (28.45%) unigenes showed similarity to the non-redundant database in GenBank with a cut-off E-value of 10–5. Among them, 40,611 unigenes were assigned to one or more GO terms and 6,917 unigenes were assigned to 288 known pathways. De novo metatranscriptome analysis revealed highly diverse bacterial symbionts in B. tabaci, and demonstrated the host-symbiont cooperation in amino acid production. In-depth transcriptome analysis indentified putative molecular markers, and genes potentially involved in insecticide resistance and nutrient digestion. The utility of this transcriptome was validated by a thiamethoxam resistance study, in which annotated cytochrome P450 genes were significantly overexpressed in the resistant B. tabaci in comparison to its susceptible counterparts. Conclusions This transcriptome/metatranscriptome analysis sheds light on the molecular understanding of symbiosis and insecticide resistance in an agriculturally important phloem-feeding insect pest, and lays the foundation for future functional genomics research of the B. tabaci complex. Moreover, current pyrosequencing effort greatly enriched the existing whitefly EST database, and makes RNAseq a viable option for future genomic analysis. PMID:22558125

  8. Comprehensive evaluation of AmpliSeq transcriptome, a novel targeted whole transcriptome RNA sequencing methodology for global gene expression analysis.

    PubMed

    Li, Wenli; Turner, Amy; Aggarwal, Praful; Matter, Andrea; Storvick, Erin; Arnett, Donna K; Broeckel, Ulrich

    2015-12-16

    Whole transcriptome sequencing (RNA-seq) represents a powerful approach for whole transcriptome gene expression analysis. However, RNA-seq carries a few limitations, e.g., the requirement of a significant amount of input RNA and complications led by non-specific mapping of short reads. The Ion AmpliSeq Transcriptome Human Gene Expression Kit (AmpliSeq) was recently introduced by Life Technologies as a whole-transcriptome, targeted gene quantification kit to overcome these limitations of RNA-seq. To assess the performance of this new methodology, we performed a comprehensive comparison of AmpliSeq with RNA-seq using two well-established next-generation sequencing platforms (Illumina HiSeq and Ion Torrent Proton). We analyzed standard reference RNA samples and RNA samples obtained from human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs). Using published data from two standard RNA reference samples, we observed a strong concordance of log2 fold change for all genes when comparing AmpliSeq to Illumina HiSeq (Pearson's r = 0.92) and Ion Torrent Proton (Pearson's r = 0.92). We used ROC, Matthew's correlation coefficient and RMSD to determine the overall performance characteristics. All three statistical methods demonstrate AmpliSeq as a highly accurate method for differential gene expression analysis. Additionally, for genes with high abundance, AmpliSeq outperforms the two RNA-seq methods. When analyzing four closely related hiPSC-CM lines, we show that both AmpliSeq and RNA-seq capture similar global gene expression patterns consistent with known sources of variations. Our study indicates that AmpliSeq excels in the limiting areas of RNA-seq for gene expression quantification analysis. Thus, AmpliSeq stands as a very sensitive and cost-effective approach for very large scale gene expression analysis and mRNA marker screening with high accuracy.

  9. CONVERGENT TRANSCRIPTOMICS AND PROTEOMICS OF ENVIRONMENTAL ENRICHMENT AND COCAINE IDENTIFIES NOVEL THERAPEUTIC STRATEGIES FOR ADDICTION

    PubMed Central

    ZHANG, YAFANG; CROFTON, ELIZABETH J.; FAN, XIUZHEN; LI, DINGGE; KONG, FANPING; SINHA, MALA; LUXON, BRUCE A.; SPRATT, HEIDI M.; LICHTI, CHERYL F.; GREEN, THOMAS A.

    2016-01-01

    Transcriptomic and proteomic approaches have separately proven effective at identifying novel mechanisms affecting addiction-related behavior; however, it is difficult to prioritize the many promising leads from each approach. A convergent secondary analysis of proteomic and transcriptomic results can glean additional information to help prioritize promising leads. The current study is a secondary analysis of the convergence of recently published separate transcriptomic and proteomic analyses of nucleus accumbens (NAc) tissue from rats subjected to environmental enrichment vs. isolation and cocaine self-administration vs. saline. Multiple bioinformatics approaches (e.g. Gene Ontology (GO) analysis, Ingenuity Pathway Analysis (IPA), and Gene Set Enrichment Analysis (GSEA)) were used to interrogate these rich data sets. Although there was little correspondence between mRNA vs. protein at the individual target level, good correspondence was found at the level of gene/protein sets, particularly for the environmental enrichment manipulation. These data identify gene sets where there is a positive relationship between changes in mRNA and protein (e.g. glycolysis, ATP synthesis, translation elongation factor activity, etc.) and gene sets where there is an inverse relationship (e.g. ribosomes, Rho GTPase signaling, protein ubiquitination, etc.). Overall environmental enrichment produced better correspondence than cocaine self-administration. The individual targets contributing to mRNA and protein effects were largely not overlapping. As a whole, these results confirm that robust transcriptomic and proteomic data sets can provide similar results at the gene/protein set level even when there is little correspondence at the individual target level and little overlap in the targets contributing to the effects. PMID:27717806

  10. Microfluidic single-cell whole-transcriptome sequencing.

    PubMed

    Streets, Aaron M; Zhang, Xiannian; Cao, Chen; Pang, Yuhong; Wu, Xinglong; Xiong, Liang; Yang, Lu; Fu, Yusi; Zhao, Liang; Tang, Fuchou; Huang, Yanyi

    2014-05-13

    Single-cell whole-transcriptome analysis is a powerful tool for quantifying gene expression heterogeneity in populations of cells. Many techniques have, thus, been recently developed to perform transcriptome sequencing (RNA-Seq) on individual cells. To probe subtle biological variation between samples with limiting amounts of RNA, more precise and sensitive methods are still required. We adapted a previously developed strategy for single-cell RNA-Seq that has shown promise for superior sensitivity and implemented the chemistry in a microfluidic platform for single-cell whole-transcriptome analysis. In this approach, single cells are captured and lysed in a microfluidic device, where mRNAs with poly(A) tails are reverse-transcribed into cDNA. Double-stranded cDNA is then collected and sequenced using a next generation sequencing platform. We prepared 94 libraries consisting of single mouse embryonic cells and technical replicates of extracted RNA and thoroughly characterized the performance of this technology. Microfluidic implementation increased mRNA detection sensitivity as well as improved measurement precision compared with tube-based protocols. With 0.2 M reads per cell, we were able to reconstruct a majority of the bulk transcriptome with 10 single cells. We also quantified variation between and within different types of mouse embryonic cells and found that enhanced measurement precision, detection sensitivity, and experimental throughput aided the distinction between biological variability and technical noise. With this work, we validated the advantages of an early approach to single-cell RNA-Seq and showed that the benefits of combining microfluidic technology with high-throughput sequencing will be valuable for large-scale efforts in single-cell transcriptome analysis.

  11. Genome-Scale Transcriptome Analysis in Response to Nitric Oxide in Birch Cells: Implications of the Triterpene Biosynthetic Pathway

    PubMed Central

    Zeng, Fansuo; Sun, Fengkun; Li, Leilei; Liu, Kun; Zhan, Yaguang

    2014-01-01

    Evidence supporting nitric oxide (NO) as a mediator of plant biochemistry continues to grow, but its functions at the molecular level remains poorly understood and, in some cases, controversial. To study the role of NO at the transcriptional level in Betula platyphylla cells, we conducted a genome-scale transcriptome analysis of these cells. The transcriptome of untreated birch cells and those treated by sodium nitroprusside (SNP) were analyzed using the Solexa sequencing. Data were collected by sequencing cDNA libraries of birch cells, which had a long period to adapt to the suspension culture conditions before SNP-treated cells and untreated cells were sampled. Among the 34,100 UniGenes detected, BLASTX search revealed that 20,631 genes showed significant (E-values≤10−5) sequence similarity with proteins from the NR-database. Numerous expressed sequence tags (i.e., 1374) were identified as differentially expressed between the 12 h SNP-treated cells and control cells samples: 403 up-regulated and 971 down-regulated. From this, we specifically examined a core set of NO-related transcripts. The altered expression levels of several transcripts, as determined by transcriptome analysis, was confirmed by qRT-PCR. The results of transcriptome analysis, gene expression quantification, the content of triterpenoid and activities of defensive enzymes elucidated NO has a significant effect on many processes including triterpenoid production, carbohydrate metabolism and cell wall biosynthesis. PMID:25551661

  12. Mining SNPs in extracellular vesicular transcriptome of Trypanosoma cruzi: a step closer to early diagnosis of neglected Chagas disease.

    PubMed

    Gaur, Pallavi; Chaturvedi, Anoop

    2016-01-01

    One of the newest and strongest members of intercellular communicators, the Extracellular vesicles (EVs) and their enclosed RNAs; Extracellular RNAs (exRNAs) have been acknowledged as putative biomarkers and therapeutic targets for various diseases. Although a very deep insight has not been possible into the physiology of these vesicles, they are believed to be involved in cell-to-cell communication and host-pathogen interactions. EVs might be significantly helpful in discovering biomarkers for possible target identification as well as prognostics, diagnostics and developing vaccines. In recent studies, highly bioactive EVs have drawn attention of parasitologists for being able to communicate between different cells and having likeliness of reflecting both source and target environments. Next-generation sequencing (NGS) has eased the way to have a deeper insight into these vesicles and their roles in various diseases. This article arises from bioinformatics-based analysis and predictive data mining of transcriptomic (RNA-Seq) data of EVs, derived from different life stages of Trypanosoma cruzi ; a causing agent of neglected Chagas disease. Variants (Single Nucleotide Polymorphisms (SNPs)) were mined from Extracellular vesicular transcriptomic data and functionally analyzed using different bioinformatics based approaches. Functional analysis showed the association of these variants with various important factors like Trans-Sialidase (TS), Alpha Tubulin, P-Type H+-ATPase, etc. which, in turn, are associated with disease in different ways. Some of the 'candidate SNPs' were found to be stage-specific, which strengthens the probability of finding stage-specific biomarkers. These results may lead to a better understanding of Chagas disease, and improved knowledge may provide further development of the biomarkers for prognosis, diagnosis and drug development for treating Chagas disease.

  13. Construction, De-Novo Assembly and Analysis of Transcriptome for Identification of Reproduction-Related Genes and Pathways from Rohu, Labeo rohita (Hamilton)

    PubMed Central

    Sahu, Dinesh Kumar; Panda, Soumya Prasad; Meher, Prem Kumar; Das, Paramananda; Routray, Padmanav; Sundaray, Jitendra Kumar; Jayasankar, Pallipuram; Nandi, Samiran

    2015-01-01

    Rohu is a leading candidate species for freshwater aquaculture in South-East Asia. Unlike common carp the monsoon breeding habit of rohu restricts its seed production beyond season indicating strong genetic control over spawning. Genetic information is limited in this regard. The problem is exacerbated by the lack of genomic-resources. We identified 182 reproduction-related genes previously by Sanger-sequencing which were less to address the issue of seasonal spawning behaviour of this important carp. Therefore, the present work was taken up to generate transcriptome profile by mRNAseq. 16GB, 72bp paired end (PE) data was generated from the pooled-RNA of twelve-tissues from pre-spawning rohu using IlluminaGA-II-platform. There were 64.97 million high-quality reads producing 62,283 contigs and 88,612 numbers of transcripts using velvet and oases programs, respectively. Gene ontology annotation identified 940 reproduction-related genes consisting of 184 mainly associated with reproduction, 223 related to hormone-activity and receptor-binding, 178 receptor-activity and 355 embryonic-development related-proteins. The important reproduction-relevant pathways found in KEGG analysis were GnRH-signaling, oocyte-meiosis, steroid-biosynthesis, steroid-hormone biosynthesis, progesterone-mediated oocyte-maturation, retinol-metabolism, neuroactive-ligand-receptor interaction, neurotrophin-signaling and photo-transduction. Twenty nine simple sequence repeat containing sequences were also found out of which 12 repeat loci were polymorphic with mean expected-&-observed heterozygosity of 0.471 and 0.983 respectively. Quantitative RT-PCR analyses of 13-known and 6-unknown transcripts revealed differences in expression level between preparatory and post-spawning phase. These transcriptomic sequences have significantly increased the genetic-&-genomic resources for reproduction-research in Labeo rohita. PMID:26148098

  14. Transcriptome analysis of Kuruma shrimp (Marsupenaeus japonicus) hepatopancreas in response to white spot syndrome virus (WSSV) under experimental infection.

    PubMed

    Zhong, Shengping; Mao, Yong; Wang, Jun; Liu, Min; Zhang, Man; Su, Yongquan

    2017-11-01

    Kuruma shrimp (Marsupenaeus japonicus) is one of the most valuable crustacean species in capture fisheries and mariculture in the Indo-West Pacific. White spot syndrome virus (WSSV) is a highly virulent pathogen which has seriously threatened Kuruma shrimp aquaculture sector. However, little information is available in relation to underlying mechanisms of host-virus interaction in Kuruma shrimp. In this study, we performed a transcriptome analysis from the hepatopancreas of Kuruma shrimp challenged by WSSV, using Illumina-based RNA-Seq. A total of 39,084,942 pair end (PE) reads, including 19,566,190 reads from WSSV-infected group and 19,518,752 reads from non-infected (control) group, were obtained and assembled into 33,215 unigenes with an average length of 503.7 bp and N50 of 601 bp. Approximately 17,000 unigenes were predicted and classified based on homology search, gene ontology, clusters of orthologous groups of proteins, and biological pathway mapping. Differentially expressed genes (DEGs), including 2150 up-regulated and 1931 down-regulated, were found. Among those, 805 DEGs were identified and categorized into 14 groups based on their possible functions. Many genes associated with JAK-STAT signaling pathways, Integrin-mediated signal transduction, Ras signaling pathways, apoptosis and phagocytosis were positively modified after WSSV challenge. The proteolytic cascades including Complement-like activation and Hemolymph coagulations likely participated in antiviral immune response. The transcriptome data from hepatopancreas of Kuruma shrimp under WSSV challenge provided comprehensive information for identifying novel immune related genes in this valuable crustacean species despite the absence of the genome database of crustaceans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Comparative Life Cycle Transcriptomics Revises Leishmania mexicana Genome Annotation and Links a Chromosome Duplication with Parasitism of Vertebrates

    PubMed Central

    Fiebig, Michael; Kelly, Steven; Gluenz, Eva

    2015-01-01

    Leishmania spp. are protozoan parasites that have two principal life cycle stages: the motile promastigote forms that live in the alimentary tract of the sandfly and the amastigote forms, which are adapted to survive and replicate in the harsh conditions of the phagolysosome of mammalian macrophages. Here, we used Illumina sequencing of poly-A selected RNA to characterise and compare the transcriptomes of L. mexicana promastigotes, axenic amastigotes and intracellular amastigotes. These data allowed the production of the first transcriptome evidence-based annotation of gene models for this species, including genome-wide mapping of trans-splice sites and poly-A addition sites. The revised genome annotation encompassed 9,169 protein-coding genes including 936 novel genes as well as modifications to previously existing gene models. Comparative analysis of gene expression across promastigote and amastigote forms revealed that 3,832 genes are differentially expressed between promastigotes and intracellular amastigotes. A large proportion of genes that were downregulated during differentiation to amastigotes were associated with the function of the motile flagellum. In contrast, those genes that were upregulated included cell surface proteins, transporters, peptidases and many uncharacterized genes, including 293 of the 936 novel genes. Genome-wide distribution analysis of the differentially expressed genes revealed that the tetraploid chromosome 30 is highly enriched for genes that were upregulated in amastigotes, providing the first evidence of a link between this whole chromosome duplication event and adaptation to the vertebrate host in this group. Peptide evidence for 42 proteins encoded by novel transcripts supports the idea of an as yet uncharacterised set of small proteins in Leishmania spp. with possible implications for host-pathogen interactions. PMID:26452044

  16. TRAM (Transcriptome Mapper): database-driven creation and analysis of transcriptome maps from multiple sources

    PubMed Central

    2011-01-01

    Background Several tools have been developed to perform global gene expression profile data analysis, to search for specific chromosomal regions whose features meet defined criteria as well as to study neighbouring gene expression. However, most of these tools are tailored for a specific use in a particular context (e.g. they are species-specific, or limited to a particular data format) and they typically accept only gene lists as input. Results TRAM (Transcriptome Mapper) is a new general tool that allows the simple generation and analysis of quantitative transcriptome maps, starting from any source listing gene expression values for a given gene set (e.g. expression microarrays), implemented as a relational database. It includes a parser able to assign univocal and updated gene symbols to gene identifiers from different data sources. Moreover, TRAM is able to perform intra-sample and inter-sample data normalization, including an original variant of quantile normalization (scaled quantile), useful to normalize data from platforms with highly different numbers of investigated genes. When in 'Map' mode, the software generates a quantitative representation of the transcriptome of a sample (or of a pool of samples) and identifies if segments of defined lengths are over/under-expressed compared to the desired threshold. When in 'Cluster' mode, the software searches for a set of over/under-expressed consecutive genes. Statistical significance for all results is calculated with respect to genes localized on the same chromosome or to all genome genes. Transcriptome maps, showing differential expression between two sample groups, relative to two different biological conditions, may be easily generated. We present the results of a biological model test, based on a meta-analysis comparison between a sample pool of human CD34+ hematopoietic progenitor cells and a sample pool of megakaryocytic cells. Biologically relevant chromosomal segments and gene clusters with differential expression during the differentiation toward megakaryocyte were identified. Conclusions TRAM is designed to create, and statistically analyze, quantitative transcriptome maps, based on gene expression data from multiple sources. The release includes FileMaker Pro database management runtime application and it is freely available at http://apollo11.isto.unibo.it/software/, along with preconfigured implementations for mapping of human, mouse and zebrafish transcriptomes. PMID:21333005

  17. Comparative transcriptome analysis by RNAseq of necrotic enteritis Clostridium perfringens during in vivo colonization and in vitro conditions.

    PubMed

    Parreira, Valeria R; Russell, Kay; Athanasiadou, Spiridoula; Prescott, John F

    2016-08-12

    Necrotic enteritis (NE) caused by netB-positive type A Clostridium perfringens is an important bacterial disease of poultry. Through its complex regulatory system, C. perfringens orchestrates the expression of a collection of toxins and extracellular enzymes that are crucial for the development of the disease; environmental conditions play an important role in their regulation. In this study, and for the first time, global transcriptomic analysis was performed on ligated intestinal loops in chickens colonized with a netB-positive C. perfringens strain, as well as the same strain propagated in vitro under various nutritional and environmental conditions. Analysis of the respective pathogen transcriptomes revealed up to 673 genes that were significantly expressed in vivo. Gene expression profiles in vivo were most similar to those of C. perfringens grown in nutritionally-deprived conditions. Taken together, our results suggest a bacterial transcriptome responses to the early stages of adaptation, and colonization of, the chicken intestine. Our work also reveals how netB-positive C. perfringens reacts to different environmental conditions including those in the chicken intestine.

  18. Comparative transcriptome analysis of unripe and mid-ripe fruit of Mangifera indica (var. “Dashehari”) unravels ripening associated genes

    PubMed Central

    Srivastava, Smriti; Singh, Rajesh K.; Pathak, Garima; Goel, Ridhi; Asif, Mehar Hasan; Sane, Aniruddha P.; Sane, Vidhu A.

    2016-01-01

    Ripening in mango is under a complex control of ethylene. In an effort to understand the complex spatio-temporal control of ripening we have made use of a popular N. Indian variety “Dashehari” This variety ripens from the stone inside towards the peel outside and forms jelly in the pulp in ripe fruits. Through a combination of 454 and Illumina sequencing, a transcriptomic analysis of gene expression from unripe and midripe stages have been performed in triplicates. Overall 74,312 unique transcripts with ≥1 FPKM were obtained. The transcripts related to 127 pathways were identified in “Dashehari” mango transcriptome by the KEGG analysis. These pathways ranged from detoxification, ethylene biosynthesis, carbon metabolism and aromatic amino acid degradation. The transcriptome study reveals differences not only in expression of softening associated genes but also those that govern ethylene biosynthesis and other nutritional characteristics. This study could help to develop ripening related markers for selective breeding to reduce the problems of excess jelly formation during softening in the “Dashehari” variety. PMID:27586495

  19. RNA-Seq Meta-analysis identifies genes in skeletal muscle associated with gain and intake across a multi-season study of crossbred beef steers.

    PubMed

    Keel, Brittney N; Zarek, Christina M; Keele, John W; Kuehn, Larry A; Snelling, Warren M; Oliver, William T; Freetly, Harvey C; Lindholm-Perry, Amanda K

    2018-06-04

    Feed intake and body weight gain are economically important inputs and outputs of beef production systems. The purpose of this study was to discover differentially expressed genes that will be robust for feed intake and gain across a large segment of the cattle industry. Transcriptomic studies often suffer from issues with reproducibility and cross-validation. One way to improve reproducibility is by integrating multiple datasets via meta-analysis. RNA sequencing (RNA-Seq) was performed on longissimus dorsi muscle from 80 steers (5 cohorts, each with 16 animals) selected from the outside fringe of a bivariate gain and feed intake distribution to understand the genes and pathways involved in feed efficiency. In each cohort, 16 steers were selected from one of four gain and feed intake phenotypes (n = 4 per phenotype) in a 2 × 2 factorial arrangement with gain and feed intake as main effect variables. Each cohort was analyzed as a single experiment using a generalized linear model and results from the 5 cohort analyses were combined in a meta-analysis to identify differentially expressed genes (DEG) across the cohorts. A total of 51 genes were differentially expressed for the main effect of gain, 109 genes for the intake main effect, and 11 genes for the gain x intake interaction (P corrected  < 0.05). A jackknife sensitivity analysis showed that, in general, the meta-analysis produced robust DEGs for the two main effects and their interaction. Pathways identified from over-represented genes included mitochondrial energy production and oxidative stress pathways for the main effect of gain due to DEG including GPD1, NDUFA6, UQCRQ, ACTC1, and MGST3. For intake, metabolic pathways including amino acid biosynthesis and degradation were identified, and for the interaction analysis the pathways identified included GADD45, pyridoxal 5'phosphate salvage, and caveolar mediated endocytosis signaling. Variation among DEG identified by cohort suggests that environment and breed may play large roles in the expression of genes associated with feed efficiency in the muscle of beef cattle. Meta-analyses of transcriptome data from groups of animals over multiple cohorts may be necessary to elucidate the genetics contributing these types of biological phenotypes.

  20. Brownian model of transcriptome evolution and phylogenetic network visualization between tissues.

    PubMed

    Gu, Xun; Ruan, Hang; Su, Zhixi; Zou, Yangyun

    2017-09-01

    While phylogenetic analysis of transcriptomes of the same tissue is usually congruent with the species tree, the controversy emerges when multiple tissues are included, that is, whether species from the same tissue are clustered together, or different tissues from the same species are clustered together. Recent studies have suggested that phylogenetic network approach may shed some lights on our understanding of multi-tissue transcriptome evolution; yet the underlying evolutionary mechanism remains unclear. In this paper we develop a Brownian-based model of transcriptome evolution under the phylogenetic network that can statistically distinguish between the patterns of species-clustering and tissue-clustering. Our model can be used as a null hypothesis (neutral transcriptome evolution) for testing any correlation in tissue evolution, can be applied to cancer transcriptome evolution to study whether two tumors of an individual appeared independently or via metastasis, and can be useful to detect convergent evolution at the transcriptional level. Copyright © 2017. Published by Elsevier Inc.

  1. The response of Isidorella newcombi to copper exposure: Using an integrated biological framework to interpret transcriptomic responses from RNA-seq analysis.

    PubMed

    Ubrihien, Rodney P; Ezaz, Tariq; Taylor, Anne M; Stevens, Mark M; Krikowa, Frank; Foster, Simon; Maher, William A

    2017-04-01

    This study describes the transcriptomic response of the Australian endemic freshwater gastropod Isidorella newcombi exposed to 80±1μg/L of copper for 3days. Analysis of copper tissue concentration, lysosomal membrane destabilisation and RNA-seq were conducted. Copper tissue concentrations confirmed that copper was bioaccumulated by the snails. Increased lysosomal membrane destabilisation in the copper-exposed snails indicated that the snails were stressed as a result of the exposure. Both copper tissue concentrations and lysosomal destabilisation were significantly greater in snails exposed to copper. In order to interpret the RNA-seq data from an ecotoxicological perspective an integrated biological response model was developed that grouped transcriptomic responses into those associated with copper transport and storage, survival mechanisms and cell death. A conceptual model of expected transcriptomic changes resulting from the copper exposure was developed as a basis to assess transcriptomic responses. Transcriptomic changes were evident at all the three levels of the integrated biological response model. Despite lacking statistical significance, increased expression of the gene encoding copper transporting ATPase provided an indication of increased internal transport of copper. Increased expression of genes associated with endocytosis are associated with increased transport of copper to the lysosome for storage in a detoxified form. Survival mechanisms included metabolic depression and processes associated with cellular repair and recycling. There was transcriptomic evidence of increased cell death by apoptosis in the copper-exposed organisms. Increased apoptosis is supported by the increase in lysosomal membrane destabilisation in the copper-exposed snails. Transcriptomic changes relating to apoptosis, phagocytosis, protein degradation and the lysosome were evident and these processes can be linked to the degradation of post-apoptotic debris. The study identified contaminant specific transcriptomic markers as well as markers of general stress. From an ecotoxicological perspective, the use of a framework to group transcriptomic responses into those associated with copper transport, survival and cell death assisted with the complex process of interpretation of RNA-seq data. The broad adoption of such a framework in ecotoxicology studies would assist in comparison between studies and the identification of reliable transcriptomic markers of contaminant exposure and response. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. RNA-seq Transcriptome Analysis of Panax japonicus, and Its Comparison with Other Panax Species to Identify Potential Genes Involved in the Saponins Biosynthesis

    PubMed Central

    Rai, Amit; Yamazaki, Mami; Takahashi, Hiroki; Nakamura, Michimi; Kojoma, Mareshige; Suzuki, Hideyuki; Saito, Kazuki

    2016-01-01

    The Panax genus has been a source of natural medicine, benefitting human health over the ages, among which the Panax japonicus represents an important species. Our understanding of several key pathways and enzymes involved in the biosynthesis of ginsenosides, a pharmacologically active class of metabolites and a major chemical constituents of the rhizome extracts from the Panax species, are limited. Limited genomic information, and lack of studies on comparative transcriptomics across the Panax species have restricted our understanding of the biosynthetic mechanisms of these and many other important classes of phytochemicals. Herein, we describe Illumina based RNA sequencing analysis to characterize the transcriptome and expression profiles of genes expressed in the five tissues of P. japonicus, and its comparison with other Panax species. RNA sequencing and de novo transcriptome assembly for P. japonicus resulted in a total of 135,235 unigenes with 78,794 (58.24%) unigenes being annotated using NCBI-nr database. Transcriptome profiling, and gene ontology enrichment analysis for five tissues of P. japonicus showed that although overall processes were evenly conserved across all tissues. However, each tissue was characterized by several unique unigenes with the leaves showing the most unique unigenes among the tissues studied. A comparative analysis of the P. japonicus transcriptome assembly with publically available transcripts from other Panax species, namely, P. ginseng, P. notoginseng, and P. quinquefolius also displayed high sequence similarity across all Panax species, with P. japonicus showing highest similarity with P. ginseng. Annotation of P. japonicus transcriptome resulted in the identification of putative genes encoding all enzymes from the triterpene backbone biosynthetic pathways, and identified 24 and 48 unigenes annotated as cytochrome P450 (CYP) and glycosyltransferases (GT), respectively. These CYPs and GTs annotated unigenes were conserved across all Panax species and co-expressed with other the transcripts involved in the triterpenoid backbone biosynthesis pathways. Unigenes identified in this study represent strong candidates for being involved in the triterpenoid saponins biosynthesis, and can serve as a basis for future validation studies. PMID:27148308

  3. The intracellular domain of teneurin-1 induces the activity of microphthalmia-associated transcription factor (MITF) by binding to transcriptional repressor HINT1.

    PubMed

    Schöler, Jonas; Ferralli, Jacqueline; Thiry, Stéphane; Chiquet-Ehrismann, Ruth

    2015-03-27

    Teneurins are large type II transmembrane proteins that are necessary for the normal development of the CNS. Although many studies highlight the significance of teneurins, especially during development, there is only limited information known about the molecular mechanisms of function. Previous studies have shown that the N-terminal intracellular domain (ICD) of teneurins can be cleaved at the membrane and subsequently translocates to the nucleus, where it can influence gene transcription. Because teneurin ICDs do not contain any intrinsic DNA binding sequences, interaction partners are required to affect transcription. Here, we identified histidine triad nucleotide binding protein 1 (HINT1) as a human teneurin-1 ICD interaction partner in a yeast two-hybrid screen. This interaction was confirmed in human cells, where HINT1 is known to inhibit the transcription of target genes by directly binding to transcription factors at the promoter. In a whole transcriptome analysis of BS149 glioblastoma cells overexpressing the teneurin-1 ICD, several microphthalmia-associated transcription factor (MITF) target genes were found to be up-regulated. Directly comparing the transcriptomes of MITF versus TEN1-ICD-overexpressing BS149 cells revealed 42 co-regulated genes, including glycoprotein non-metastatic b (GPNMB). Using real-time quantitative PCR to detect endogenous GPNMB expression upon overexpression of MITF and HINT1 as well as promoter reporter assays using GPNMB promoter constructs, we could demonstrate that the teneurin-1 ICD binds HINT1, thus switching on MITF-dependent transcription of GPNMB. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity

    PubMed Central

    Henegar, Corneliu; Tordjman, Joan; Achard, Vincent; Lacasa, Danièle; Cremer, Isabelle; Guerre-Millo, Michèle; Poitou, Christine; Basdevant, Arnaud; Stich, Vladimir; Viguerie, Nathalie; Langin, Dominique; Bedossa, Pierre; Zucker, Jean-Daniel; Clement, Karine

    2008-01-01

    Background Investigations performed in mice and humans have acknowledged obesity as a low-grade inflammatory disease. Several molecular mechanisms have been convincingly shown to be involved in activating inflammatory processes and altering cell composition in white adipose tissue (WAT). However, the overall importance of these alterations, and their long-term impact on the metabolic functions of the WAT and on its morphology, remain unclear. Results Here, we analyzed the transcriptomic signature of the subcutaneous WAT in obese human subjects, in stable weight conditions and after weight loss following bariatric surgery. An original integrative functional genomics approach was applied to quantify relations between relevant structural and functional themes annotating differentially expressed genes in order to construct a comprehensive map of transcriptional interactions defining the obese WAT. These analyses highlighted a significant up-regulation of genes and biological themes related to extracellular matrix (ECM) constituents, including members of the integrin family, and suggested that these elements could play a major mediating role in a chain of interactions that connect local inflammatory phenomena to the alteration of WAT metabolic functions in obese subjects. Tissue and cellular investigations, driven by the analysis of transcriptional interactions, revealed an increased amount of interstitial fibrosis in obese WAT, associated with an infiltration of different types of inflammatory cells, and suggest that phenotypic alterations of human pre-adipocytes, induced by a pro-inflammatory environment, may lead to an excessive synthesis of ECM components. Conclusion This study opens new perspectives in understanding the biology of human WAT and its pathologic changes indicative of tissue deterioration associated with the development of obesity. PMID:18208606

  5. Pas de deux: An Intricate Dance of Anther Smut and Its Host.

    PubMed

    San Toh, Su; Chen, Zehua; Rouchka, Eric C; Schultz, David J; Cuomo, Christina A; Perlin, Michael H

    2018-02-02

    The successful interaction between pathogen/parasite and host requires a delicate balance between fitness of the former and survival of the latter. To optimize fitness a parasite/pathogen must effectively create an environment conducive to reproductive success, while simultaneously avoiding or minimizing detrimental host defense response. The association between Microbotryum lychnidis-dioicae and its host Silene latifolia serves as an excellent model to examine such interactions. This fungus is part of a species complex that infects species of the Caryophyllaceae, replacing pollen with the fungal spores. In the current study, transcriptome analyses of the fungus and its host were conducted during discrete stages of bud development so as to identify changes in fungal gene expression that lead to spore development and to identify changes associated with infection in the host plant. In contrast to early biotrophic phase stages of infection for the fungus, the latter stages involve tissue necrosis and in the case of infected female flowers, further changes in the developmental program in which the ovary aborts and a pseudoanther is produced. Transcriptome analysis via Illumina RNA sequencing revealed enrichment of fungal genes encoding small secreted proteins, with hallmarks of effectors and genes found to be relatively unique to the Microbotryum species complex. Host gene expression analyses also identified interesting sets of genes up-regulated, including those involving stress response, host defense response, and several agamous-like MADS-box genes (AGL61 and AGL80), predicted to interact and be involved in male gametophyte development. Copyright © 2018 Toh et al.

  6. Analysis of the transcriptome of adult Dictyocaulus filaria and comparison with Dictyocaulus viviparus, with a focus on molecules involved in host-parasite interactions✰

    PubMed Central

    Mangiola, Stefano; Young, Neil D.; Sternberg, Paul W.; Strube, Christina; Korhonen, Pasi K.; Mitreva, Makedonka; Scheerlinck, Jean-Pierre; Hofmann, Andreas; Jex, Aaron R.; Gasser, Robin B.

    2014-01-01

    Parasitic nematodes cause diseases of major economic importance in animals. Key representatives are species of Dictyocaulus (= lungworms), which cause bronchitis (= dictyocaulosis, commonly known as “husk”) and have a major adverse impact on the health of livestock. In spite of their economic importance, very little is known about the immunomolecular biology of these parasites. Here, we conducted a comprehensive investigation of the adult transcriptome of Dictyocaulus filaria of small ruminants and compared it with that of Dictyocaulus viviparus of bovids. We then identified a subset of highly transcribed molecules inferred to be linked to host-parasite interactions, including cathepsin B peptidases, fatty-acid and/or retinol-binding proteins, β-galactoside-binding galectins, secreted protein 6 precursors, macrophage migration inhibitory factors, glutathione peroxidases, a transthyretin-like protein and a type 2-like cystatin. We then studied homologs of D. filaria type 2-like cystatin encoded in D. viviparus and 24 other nematodes representing seven distinct taxonomic orders, with a particular focus on their proposed role in immunomodulation and/or metabolism. Taken together, the present study provides new insights into nematode-host interactions. The findings lay the foundation for future experimental studies and could have implications for designing new interventions against lungworms and other parasitic nematodes. The future characterization of the genomes of Dictyocaulus spp. should underpin these endeavors. PMID:24487001

  7. Analysis of the tomato leaf transcriptome during successive hemibiotrophic stages of a compatible interaction with the oomycete pathogen Phytophthora infestans.

    PubMed

    Zuluaga, Andrea P; Vega-Arreguín, Julio C; Fei, Zhangjun; Matas, Antonio J; Patev, Sean; Fry, William E; Rose, Jocelyn K C

    2016-01-01

    The infection of plants by hemibiotrophic pathogens involves a complex and highly regulated transition from an initial biotrophic, asymptomatic stage to a later necrotrophic state, characterized by cell death. Little is known about how this transition is regulated, and there are conflicting views regarding the significance of the plant hormones jasmonic acid (JA) and salicylic acid (SA) in the different phases of infection. To provide a broad view of the hemibiotrophic infection process from the plant perspective, we surveyed the transcriptome of tomato (Solanum lycopersicum) during a compatible interaction with the hemibiotrophic oomycete Phytophthora infestans during three infection stages: biotrophic, the transition from biotrophy to necrotrophy, and the necrotrophic phase. Nearly 10 000 genes corresponding to proteins in approximately 400 biochemical pathways showed differential transcript abundance during the three infection stages, revealing a major reorganization of plant metabolism, including major changes in source-sink relations, as well as secondary metabolites. In addition, more than 100 putative resistance genes and pattern recognition receptor genes were induced, and both JA and SA levels and associated signalling pathways showed dynamic changes during the infection time course. The biotrophic phase was characterized by the induction of many defence systems, which were either insufficient, evaded or suppressed by the pathogen. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  8. DNAJC17 is localized in nuclear speckles and interacts with splicing machinery components.

    PubMed

    Pascarella, A; Ferrandino, G; Credendino, S C; Moccia, C; D'Angelo, F; Miranda, B; D'Ambrosio, C; Bielli, P; Spadaro, O; Ceccarelli, M; Scaloni, A; Sette, C; De Felice, M; De Vita, G; Amendola, E

    2018-05-17

    DNAJC17 is a heat shock protein (HSP40) family member, identified in mouse as susceptibility gene for congenital hypothyroidism. DNAJC17 knockout mouse embryos die prior to implantation. In humans, germline homozygous mutations in DNAJC17 have been found in syndromic retinal dystrophy patients, while heterozygous mutations represent candidate pathogenic events for myeloproliferative disorders. Despite widespread expression and involvement in human diseases, DNAJC17 function is still poorly understood. Herein, we have investigated its function through high-throughput transcriptomic and proteomic approaches. DNAJC17-depleted cells transcriptome highlighted genes involved in general functional categories, mainly related to gene expression. Conversely, DNAJC17 interactome can be classified in very specific functional networks, with the most enriched one including proteins involved in splicing. Furthermore, several splicing-related interactors, were independently validated by co-immunoprecipitation and in vivo co-localization. Accordingly, co-localization of DNAJC17 with SC35, a marker of nuclear speckles, further supported its interaction with spliceosomal components. Lastly, DNAJC17 up-regulation enhanced splicing efficiency of minigene reporter in live cells, while its knockdown induced perturbations of splicing efficiency at whole genome level, as demonstrated by specific analysis of RNAseq data. In conclusion, our study strongly suggests a role of DNAJC17 in splicing-related processes and provides support to its recognized essential function in early development.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sardi, Maria; Rovinskiy, Nikolay; Zhang, Yaoping

    We report a major obstacle to sustainable lignocellulosic biofuel production is microbe inhibition by the combinatorial stresses in pretreated plant hydrolysate. Chemical biomass pretreatment releases a suite of toxins that interact with other stressors, including high osmolarity and temperature, which together can have poorly understood synergistic effects on cells. Improving tolerance in industrial strains has been hindered, in part because the mechanisms of tolerance reported in the literature often fail to recapitulate in other strain backgrounds. Here, we explored and then exploited variations in stress tolerance, toxin-induced transcriptomic responses, and fitness effects of gene overexpression in different Saccharomyces cerevisiae (yeast)more » strains to identify genes and processes linked to tolerance of hydrolysate stressors. Using six different S. cerevisiae strains that together maximized phenotypic and genetic diversity, first we explored transcriptomic differences between resistant and sensitive strains to identify common and strain-specific responses. This comparative analysis implicated primary cellular targets of hydrolysate toxins, secondary effects of defective defense strategies, and mechanisms of tolerance. Dissecting the responses to individual hydrolysate components across strains pointed to synergistic interactions between osmolarity, pH, hydrolysate toxins, and nutrient composition. By characterizing the effects of high-copy gene overexpression in three different strains, we revealed the breadth of the background-specific effects of gene fitness contributions in synthetic hydrolysate. Lastly, our approach identified new genes for engineering improved stress tolerance in diverse strains while illuminating the effects of genetic background on molecular mechanisms.« less

  10. The First Chameleon Transcriptome: Comparative Genomic Analysis of the OXPHOS System Reveals Loss of COX8 in Iguanian Lizards

    PubMed Central

    Bar-Yaacov, Dan; Bouskila, Amos; Mishmar, Dan

    2013-01-01

    Recently, we found dramatic mitochondrial DNA divergence of Israeli Chamaeleo chamaeleon populations into two geographically distinct groups. We aimed to examine whether the same pattern of divergence could be found in nuclear genes. However, no genomic resource is available for any chameleon species. Here we present the first chameleon transcriptome, obtained using deep sequencing (SOLiD). Our analysis identified 164,000 sequence contigs of which 19,000 yielded unique BlastX hits. To test the efficacy of our sequencing effort, we examined whether the chameleon and other available reptilian transcriptomes harbored complete sets of genes comprising known biochemical pathways, focusing on the nDNA-encoded oxidative phosphorylation (OXPHOS) genes as a model. As a reference for the screen, we used the human 86 (including isoforms) known structural nDNA-encoded OXPHOS subunits. Analysis of 34 publicly available vertebrate transcriptomes revealed orthologs for most human OXPHOS genes. However, OXPHOS subunit COX8 (Cytochrome C oxidase subunit 8), including all its known isoforms, was consistently absent in transcriptomes of iguanian lizards, implying loss of this subunit during the radiation of this suborder. The lack of COX8 in the suborder Iguania is intriguing, since it is important for cellular respiration and ATP production. Our sequencing effort added a new resource for comparative genomic studies, and shed new light on the evolutionary dynamics of the OXPHOS system. PMID:24009133

  11. The first Chameleon transcriptome: comparative genomic analysis of the OXPHOS system reveals loss of COX8 in Iguanian lizards.

    PubMed

    Bar-Yaacov, Dan; Bouskila, Amos; Mishmar, Dan

    2013-01-01

    Recently, we found dramatic mitochondrial DNA divergence of Israeli Chamaeleo chamaeleon populations into two geographically distinct groups. We aimed to examine whether the same pattern of divergence could be found in nuclear genes. However, no genomic resource is available for any chameleon species. Here we present the first chameleon transcriptome, obtained using deep sequencing (SOLiD). Our analysis identified 164,000 sequence contigs of which 19,000 yielded unique BlastX hits. To test the efficacy of our sequencing effort, we examined whether the chameleon and other available reptilian transcriptomes harbored complete sets of genes comprising known biochemical pathways, focusing on the nDNA-encoded oxidative phosphorylation (OXPHOS) genes as a model. As a reference for the screen, we used the human 86 (including isoforms) known structural nDNA-encoded OXPHOS subunits. Analysis of 34 publicly available vertebrate transcriptomes revealed orthologs for most human OXPHOS genes. However, OXPHOS subunit COX8 (Cytochrome C oxidase subunit 8), including all its known isoforms, was consistently absent in transcriptomes of iguanian lizards, implying loss of this subunit during the radiation of this suborder. The lack of COX8 in the suborder Iguania is intriguing, since it is important for cellular respiration and ATP production. Our sequencing effort added a new resource for comparative genomic studies, and shed new light on the evolutionary dynamics of the OXPHOS system.

  12. Aging-like Changes in the Transcriptome of Irradiated Microglia

    PubMed Central

    Li, Matthew D.; Burns, Terry C.; Kumar, Sunny; Morgan, Alexander A.; Sloan, Steven A.; Palmer, Theo D.

    2014-01-01

    Whole brain irradiation remains important in the management of brain tumors. Although necessary for improving survival outcomes, cranial irradiation also results in cognitive decline in long-term survivors. A chronic inflammatory state characterized by microglial activation has been implicated in radiation-induced brain injury. We here provide the first comprehensive transcriptional profile of irradiated microglia. Fluorescence-activated cell sorting (FACS) was used to isolate CD11b+ microglia from the hippocampi of C57BL/6 and Balb/c mice 1 month after 10Gy cranial irradiation. Affymetrix gene expression profiles were evaluated using linear modeling, rank product analyses. One month after irradiation, a conserved irradiation signature across strains was identified, comprising 448 and 85 differentially up- and down-regulated genes, respectively. Gene set enrichment analysis (GSEA) demonstrated enrichment for inflammation, including M1 macrophage-associated genes, but also an unexpected enrichment for extracellular matrix and blood coagulation-related gene sets, in contrast previously described microglial states. Weighted gene co-expression network analysis (WGCNA) confirmed these findings and further revealed alterations in mitochondrial function. The RNA-seq transcriptome of microglia 24h post-radiation proved similar to the 1-month transcriptome, but additionally featured alterations in apoptotic and lysosomal gene expression. Re-analysis of published aging mouse microglia transcriptome data demonstrated striking similarity to the 1 month irradiated microglia transcriptome, suggesting that shared mechanisms may underlie aging and chronic irradiation-induced cognitive decline. PMID:25690519

  13. Arabidopsis Gene Family Profiler (aGFP)--user-oriented transcriptomic database with easy-to-use graphic interface.

    PubMed

    Dupl'áková, Nikoleta; Renák, David; Hovanec, Patrik; Honysová, Barbora; Twell, David; Honys, David

    2007-07-23

    Microarray technologies now belong to the standard functional genomics toolbox and have undergone massive development leading to increased genome coverage, accuracy and reliability. The number of experiments exploiting microarray technology has markedly increased in recent years. In parallel with the rapid accumulation of transcriptomic data, on-line analysis tools are being introduced to simplify their use. Global statistical data analysis methods contribute to the development of overall concepts about gene expression patterns and to query and compose working hypotheses. More recently, these applications are being supplemented with more specialized products offering visualization and specific data mining tools. We present a curated gene family-oriented gene expression database, Arabidopsis Gene Family Profiler (aGFP; http://agfp.ueb.cas.cz), which gives the user access to a large collection of normalised Affymetrix ATH1 microarray datasets. The database currently contains NASC Array and AtGenExpress transcriptomic datasets for various tissues at different developmental stages of wild type plants gathered from nearly 350 gene chips. The Arabidopsis GFP database has been designed as an easy-to-use tool for users needing an easily accessible resource for expression data of single genes, pre-defined gene families or custom gene sets, with the further possibility of keyword search. Arabidopsis Gene Family Profiler presents a user-friendly web interface using both graphic and text output. Data are stored at the MySQL server and individual queries are created in PHP script. The most distinguishable features of Arabidopsis Gene Family Profiler database are: 1) the presentation of normalized datasets (Affymetrix MAS algorithm and calculation of model-based gene-expression values based on the Perfect Match-only model); 2) the choice between two different normalization algorithms (Affymetrix MAS4 or MAS5 algorithms); 3) an intuitive interface; 4) an interactive "virtual plant" visualizing the spatial and developmental expression profiles of both gene families and individual genes. Arabidopsis GFP gives users the possibility to analyze current Arabidopsis developmental transcriptomic data starting with simple global queries that can be expanded and further refined to visualize comparative and highly selective gene expression profiles.

  14. Use of prior knowledge for the analysis of high-throughput transcriptomics and metabolomics data

    PubMed Central

    2014-01-01

    Background High-throughput omics technologies have enabled the measurement of many genes or metabolites simultaneously. The resulting high dimensional experimental data poses significant challenges to transcriptomics and metabolomics data analysis methods, which may lead to spurious instead of biologically relevant results. One strategy to improve the results is the incorporation of prior biological knowledge in the analysis. This strategy is used to reduce the solution space and/or to focus the analysis on biological meaningful regions. In this article, we review a selection of these methods used in transcriptomics and metabolomics. We combine the reviewed methods in three groups based on the underlying mathematical model: exploratory methods, supervised methods and estimation of the covariance matrix. We discuss which prior knowledge has been used, how it is incorporated and how it modifies the mathematical properties of the underlying methods. PMID:25033193

  15. Use of homologous and heterologous gene expression profiling tools to characterize transcription dynamics during apple fruit maturation and ripening.

    PubMed

    Costa, Fabrizio; Alba, Rob; Schouten, Henk; Soglio, Valeria; Gianfranceschi, Luca; Serra, Sara; Musacchi, Stefano; Sansavini, Silviero; Costa, Guglielmo; Fei, Zhangjun; Giovannoni, James

    2010-10-25

    Fruit development, maturation and ripening consists of a complex series of biochemical and physiological changes that in climacteric fruits, including apple and tomato, are coordinated by the gaseous hormone ethylene. These changes lead to final fruit quality and understanding of the functional machinery underlying these processes is of both biological and practical importance. To date many reports have been made on the analysis of gene expression in apple. In this study we focused our investigation on the role of ethylene during apple maturation, specifically comparing transcriptomics of normal ripening with changes resulting from application of the hormone receptor competitor 1-methylcyclopropene. To gain insight into the molecular process regulating ripening in apple, and to compare to tomato (model species for ripening studies), we utilized both homologous and heterologous (tomato) microarray to profile transcriptome dynamics of genes involved in fruit development and ripening, emphasizing those which are ethylene regulated.The use of both types of microarrays facilitated transcriptome comparison between apple and tomato (for the later using data previously published and available at the TED: tomato expression database) and highlighted genes conserved during ripening of both species, which in turn represent a foundation for further comparative genomic studies. The cross-species analysis had the secondary aim of examining the efficiency of heterologous (specifically tomato) microarray hybridization for candidate gene identification as related to the ripening process. The resulting transcriptomics data revealed coordinated gene expression during fruit ripening of a subset of ripening-related and ethylene responsive genes, further facilitating the analysis of ethylene response during fruit maturation and ripening. Our combined strategy based on microarray hybridization enabled transcriptome characterization during normal climacteric apple ripening, as well as definition of ethylene-dependent transcriptome changes. Comparison with tomato fruit maturation and ethylene responsive transcriptome activity facilitated identification of putative conserved orthologous ripening-related genes, which serve as an initial set of candidates for assessing conservation of gene activity across genomes of fruit bearing plant species.

  16. Whole-transcriptome, high-throughput RNA sequence analysis of the bovine macrophage response to Mycobacterium bovis infection in vitro.

    PubMed

    Nalpas, Nicolas C; Park, Stephen D E; Magee, David A; Taraktsoglou, Maria; Browne, John A; Conlon, Kevin M; Rue-Albrecht, Kévin; Killick, Kate E; Hokamp, Karsten; Lohan, Amanda J; Loftus, Brendan J; Gormley, Eamonn; Gordon, Stephen V; MacHugh, David E

    2013-04-08

    Mycobacterium bovis, the causative agent of bovine tuberculosis, is an intracellular pathogen that can persist inside host macrophages during infection via a diverse range of mechanisms that subvert the host immune response. In the current study, we have analysed and compared the transcriptomes of M. bovis-infected monocyte-derived macrophages (MDM) purified from six Holstein-Friesian females with the transcriptomes of non-infected control MDM from the same animals over a 24 h period using strand-specific RNA sequencing (RNA-seq). In addition, we compare gene expression profiles generated using RNA-seq with those previously generated by us using the high-density Affymetrix® GeneChip® Bovine Genome Array platform from the same MDM-extracted RNA. A mean of 7.2 million reads from each MDM sample mapped uniquely and unambiguously to single Bos taurus reference genome locations. Analysis of these mapped reads showed 2,584 genes (1,392 upregulated; 1,192 downregulated) and 757 putative natural antisense transcripts (558 upregulated; 119 downregulated) that were differentially expressed based on sense and antisense strand data, respectively (adjusted P-value ≤ 0.05). Of the differentially expressed genes, 694 were common to both the sense and antisense data sets, with the direction of expression (i.e. up- or downregulation) positively correlated for 693 genes and negatively correlated for the remaining gene. Gene ontology analysis of the differentially expressed genes revealed an enrichment of immune, apoptotic and cell signalling genes. Notably, the number of differentially expressed genes identified from RNA-seq sense strand analysis was greater than the number of differentially expressed genes detected from microarray analysis (2,584 genes versus 2,015 genes). Furthermore, our data reveal a greater dynamic range in the detection and quantification of gene transcripts for RNA-seq compared to microarray technology. This study highlights the value of RNA-seq in identifying novel immunomodulatory mechanisms that underlie host-mycobacterial pathogen interactions during infection, including possible complex post-transcriptional regulation of host gene expression involving antisense RNA.

  17. Microarray-Based Gene Expression Analysis for Veterinary Pathologists: A Review.

    PubMed

    Raddatz, Barbara B; Spitzbarth, Ingo; Matheis, Katja A; Kalkuhl, Arno; Deschl, Ulrich; Baumgärtner, Wolfgang; Ulrich, Reiner

    2017-09-01

    High-throughput, genome-wide transcriptome analysis is now commonly used in all fields of life science research and is on the cusp of medical and veterinary diagnostic application. Transcriptomic methods such as microarrays and next-generation sequencing generate enormous amounts of data. The pathogenetic expertise acquired from understanding of general pathology provides veterinary pathologists with a profound background, which is essential in translating transcriptomic data into meaningful biological knowledge, thereby leading to a better understanding of underlying disease mechanisms. The scientific literature concerning high-throughput data-mining techniques usually addresses mathematicians or computer scientists as the target audience. In contrast, the present review provides the reader with a clear and systematic basis from a veterinary pathologist's perspective. Therefore, the aims are (1) to introduce the reader to the necessary methodological background; (2) to introduce the sequential steps commonly performed in a microarray analysis including quality control, annotation, normalization, selection of differentially expressed genes, clustering, gene ontology and pathway analysis, analysis of manually selected genes, and biomarker discovery; and (3) to provide references to publically available and user-friendly software suites. In summary, the data analysis methods presented within this review will enable veterinary pathologists to analyze high-throughput transcriptome data obtained from their own experiments, supplemental data that accompany scientific publications, or public repositories in order to obtain a more in-depth insight into underlying disease mechanisms.

  18. De novo assembling and primary analysis of genome and transcriptome of gray whale Eschrichtius robustus.

    PubMed

    Moskalev, Alexey А; Kudryavtseva, Anna V; Graphodatsky, Alexander S; Beklemisheva, Violetta R; Serdyukova, Natalya A; Krutovsky, Konstantin V; Sharov, Vadim V; Kulakovskiy, Ivan V; Lando, Andrey S; Kasianov, Artem S; Kuzmin, Dmitry A; Putintseva, Yuliya A; Feranchuk, Sergey I; Shaposhnikov, Mikhail V; Fraifeld, Vadim E; Toren, Dmitri; Snezhkina, Anastasia V; Sitnik, Vasily V

    2017-12-28

    Gray whale, Eschrichtius robustus (E. robustus), is a single member of the family Eschrichtiidae, which is considered to be the most primitive in the class Cetacea. Gray whale is often described as a "living fossil". It is adapted to extreme marine conditions and has a high life expectancy (77 years). The assembly of a gray whale genome and transcriptome will allow to carry out further studies of whale evolution, longevity, and resistance to extreme environment. In this work, we report the first de novo assembly and primary analysis of the E. robustus genome and transcriptome based on kidney and liver samples. The presented draft genome assembly is complete by 55% in terms of a total genome length, but only by 24% in terms of the BUSCO complete gene groups, although 10,895 genes were identified. Transcriptome annotation and comparison with other whale species revealed robust expression of DNA repair and hypoxia-response genes, which is expected for whales. This preliminary study of the gray whale genome and transcriptome provides new data to better understand the whale evolution and the mechanisms of their adaptation to the hypoxic conditions.

  19. Tentacle Transcriptome and Venom Proteome of the Pacific Sea Nettle, Chrysaora fuscescens (Cnidaria: Scyphozoa).

    PubMed

    Ponce, Dalia; Brinkman, Diane L; Potriquet, Jeremy; Mulvenna, Jason

    2016-04-05

    Jellyfish venoms are rich sources of toxins designed to capture prey or deter predators, but they can also elicit harmful effects in humans. In this study, an integrated transcriptomic and proteomic approach was used to identify putative toxins and their potential role in the venom of the scyphozoan jellyfish Chrysaora fuscescens. A de novo tentacle transcriptome, containing more than 23,000 contigs, was constructed and used in proteomic analysis of C. fuscescens venom to identify potential toxins. From a total of 163 proteins identified in the venom proteome, 27 were classified as putative toxins and grouped into six protein families: proteinases, venom allergens, C-type lectins, pore-forming toxins, glycoside hydrolases and enzyme inhibitors. Other putative toxins identified in the transcriptome, but not the proteome, included additional proteinases as well as lipases and deoxyribonucleases. Sequence analysis also revealed the presence of ShKT domains in two putative venom proteins from the proteome and an additional 15 from the transcriptome, suggesting potential ion channel blockade or modulatory activities. Comparison of these potential toxins to those from other cnidarians provided insight into their possible roles in C. fuscescens venom and an overview of the diversity of potential toxin families in cnidarian venoms.

  20. Re-analysis of RNA-seq transcriptome data reveals new aspects of gene activity in Arabidopsis root hairs

    PubMed Central

    Li, Wenfeng; Lan, Ping

    2015-01-01

    Root hairs, tubular-shaped outgrowths from root epidermal cells, play important roles in the acquisition of nutrients and water, interaction with microbe, and in plant anchorage. As a specialized cell type, root hairs, especially in Arabidopsis, provide a pragmatic research system for various aspects of studies. Here, we re-analyzed the RNA-seq transcriptome profile of Arabidopsis root hair cells by Tophat software and used Cufflinks program to mine the differentially expressed genes. Results showed that ERD14, RIN4, AT5G64401 were among the most abundant genes in the root hair cells; while ATGSTU2, AT5G54940, AT4G30530 were highly expressed in non-root hair tissues. In total, 5409 genes, with a fold change greater than two-fold (FDR adjusted P < 0.05), showed differential expression between root hair cells and non-root hair tissues. Of which, 61 were expressed only in root hair cells. One hundred and thirty-six out of 5409 genes have been reported to be “core” root epidermal genes, which could be grouped into nine clusters according to expression patterns. Gene ontology (GO) analysis of the 5409 genes showed that processes of “response to salt stress,” “ribosome biogenesis,” “protein phosphorylation,” and “response to water deprivation” were enriched. Whereas only process of “intracellular signal transduction” was enriched in the subset of 61 genes expressed only in the root hair cells. One hundred and twenty-one unannotated transcripts were identified and 14 of which were shown to be differentially expressed between root hair cells and non-root hair tissues, with transcripts XLOC_000763, XLOC_031361, and XLOC_005665 being highly expressed in the root hair cells. The comprehensive transcriptomic analysis provides new information on root hair gene activity and sets the stage for follow-up experiments to certify the biological functions of the newly identified genes and novel transcripts in root hair cell morphogenesis. PMID:26106402

  1. RNA-seq analysis of early enteromyxosis in turbot (Scophthalmus maximus): new insights into parasite invasion and immune evasion strategies.

    PubMed

    Ronza, Paolo; Robledo, Diego; Bermúdez, Roberto; Losada, Ana Paula; Pardo, Belén G; Sitjà-Bobadilla, Ariadna; Quiroga, María Isabel; Martínez, Paulino

    2016-07-01

    Enteromyxum scophthalmi, an intestinal myxozoan parasite, is the causative agent of a threatening disease for turbot (Scophthalmus maximus, L.) aquaculture. The colonisation of the digestive tract by this parasite leads to a cachectic syndrome associated with high morbidity and mortality rates. This myxosporidiosis has a long pre-patent period and the first detectable clinical and histopathological changes are subtle. The pathogenic mechanisms acting in the early stages of infection are still far from being fully understood. Further information on the host-parasite interaction is needed to assist in finding efficient preventive and therapeutic measures. Here, a RNA-seq-based transcriptome analysis of head kidney, spleen and pyloric caeca from experimentally-infected and control turbot was performed. Only infected fish with early signs of infection, determined by histopathology and immunohistochemical detection of E. scophthalmi, were selected. The RNA-seq analysis revealed, as expected, less intense transcriptomic changes than those previously found during later stages of the disease. Several genes involved in IFN-related pathways were up-regulated in the three organs, suggesting that the IFN-mediated immune response plays a main role in this phase of the disease. Interestingly, an opposite expression pattern had been found in a previous study on severely infected turbot. In addition, possible strategies for immune system evasion were suggested by the down-regulation of different genes encoding complement components and acute phase proteins. At the site of infection (pyloric caeca), modulation of genes related to different structural proteins was detected and the expression profile indicated the inhibition of cell proliferation and differentiation. These transcriptomic changes provide indications regarding the mechanisms of parasite attachment to and invasion of the host. The current results contribute to a better knowledge of the events that characterise the early stages of turbot enteromyxosis and provide valuable information to identify molecular markers for early detection and control of this important parasitosis. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  2. SuperSAGE analysis of the Nicotiana attenuata transcriptome after fatty acid-amino acid elicitation (FAC): identification of early mediators of insect responses

    PubMed Central

    2010-01-01

    Background Plants trigger and tailor defense responses after perception of the oral secretions (OS) of attacking specialist lepidopteran larvae. Fatty acid-amino acid conjugates (FACs) in the OS of the Manduca sexta larvae are necessary and sufficient to elicit the herbivory-specific responses in Nicotiana attenuata, an annual wild tobacco species. How FACs are perceived and activate signal transduction mechanisms is unknown. Results We used SuperSAGE combined with 454 sequencing to quantify the early transcriptional changes elicited by the FAC N-linolenoyl-glutamic acid (18:3-Glu) and virus induced gene silencing (VIGS) to examine the function of candidate genes in the M. sexta-N. attenuata interaction. The analysis targeted mRNAs encoding regulatory components: rare transcripts with very rapid FAC-elicited kinetics (increases within 60 and declines within 120 min). From 12,744 unique Tag sequences identified (UniTags), 430 and 117 were significantly up- and down-regulated ≥ 2.5-fold, respectively, after 18:3-Glu elicitation compared to wounding. Based on gene ontology classification, more than 25% of the annotated UniTags corresponded to putative regulatory components, including 30 transcriptional regulators and 22 protein kinases. Quantitative PCR analysis was used to analyze the FAC-dependent regulation of a subset of 27 of these UniTags and for most of them a rapid and transient induction was confirmed. Six FAC-regulated genes were functionally characterized by VIGS and two, a putative lipid phosphate phosphatase (LPP) and a protein of unknown function, were identified as important mediators of the M. sexta-N. attenuata interaction. Conclusions The analysis of the early changes in the transcriptome of N. attenuata after FAC elicitation using SuperSAGE/454 has identified regulatory genes involved in insect-specific mediated responses in plants. Moreover, it has provided a foundation for the identification of additional novel regulators associated with this process. PMID:20398280

  3. SuperSAGE analysis of the Nicotiana attenuata transcriptome after fatty acid-amino acid elicitation (FAC): identification of early mediators of insect responses.

    PubMed

    Gilardoni, Paola A; Schuck, Stefan; Jüngling, Ruth; Rotter, Björn; Baldwin, Ian T; Bonaventure, Gustavo

    2010-04-14

    Plants trigger and tailor defense responses after perception of the oral secretions (OS) of attacking specialist lepidopteran larvae. Fatty acid-amino acid conjugates (FACs) in the OS of the Manduca sexta larvae are necessary and sufficient to elicit the herbivory-specific responses in Nicotiana attenuata, an annual wild tobacco species. How FACs are perceived and activate signal transduction mechanisms is unknown. We used SuperSAGE combined with 454 sequencing to quantify the early transcriptional changes elicited by the FAC N-linolenoyl-glutamic acid (18:3-Glu) and virus induced gene silencing (VIGS) to examine the function of candidate genes in the M. sexta-N. attenuata interaction. The analysis targeted mRNAs encoding regulatory components: rare transcripts with very rapid FAC-elicited kinetics (increases within 60 and declines within 120 min). From 12,744 unique Tag sequences identified (UniTags), 430 and 117 were significantly up- and down-regulated >or= 2.5-fold, respectively, after 18:3-Glu elicitation compared to wounding. Based on gene ontology classification, more than 25% of the annotated UniTags corresponded to putative regulatory components, including 30 transcriptional regulators and 22 protein kinases. Quantitative PCR analysis was used to analyze the FAC-dependent regulation of a subset of 27 of these UniTags and for most of them a rapid and transient induction was confirmed. Six FAC-regulated genes were functionally characterized by VIGS and two, a putative lipid phosphate phosphatase (LPP) and a protein of unknown function, were identified as important mediators of the M. sexta-N. attenuata interaction. The analysis of the early changes in the transcriptome of N. attenuata after FAC elicitation using SuperSAGE/454 has identified regulatory genes involved in insect-specific mediated responses in plants. Moreover, it has provided a foundation for the identification of additional novel regulators associated with this process.

  4. Transcriptome assembly, profiling and differential gene expression analysis of the halophyte Suaeda fruticosa provides insights into salt tolerance.

    PubMed

    Diray-Arce, Joann; Clement, Mark; Gul, Bilquees; Khan, M Ajmal; Nielsen, Brent L

    2015-05-06

    Improvement of crop production is needed to feed the growing world population as the amount and quality of agricultural land decreases and soil salinity increases. This has stimulated research on salt tolerance in plants. Most crops tolerate a limited amount of salt to survive and produce biomass, while halophytes (salt-tolerant plants) have the ability to grow with saline water utilizing specific biochemical mechanisms. However, little is known about the genes involved in salt tolerance. We have characterized the transcriptome of Suaeda fruticosa, a halophyte that has the ability to sequester salts in its leaves. Suaeda fruticosa is an annual shrub in the family Chenopodiaceae found in coastal and inland regions of Pakistan and Mediterranean shores. This plant is an obligate halophyte that grows optimally from 200-400 mM NaCl and can grow at up to 1000 mM NaCl. High throughput sequencing technology was performed to provide understanding of genes involved in the salt tolerance mechanism. De novo assembly of the transcriptome and analysis has allowed identification of differentially expressed and unique genes present in this non-conventional crop. Twelve sequencing libraries prepared from control (0 mM NaCl treated) and optimum (300 mM NaCl treated) plants were sequenced using Illumina Hiseq 2000 to investigate differential gene expression between shoots and roots of Suaeda fruticosa. The transcriptome was assembled de novo using Velvet and Oases k-45 and clustered using CDHIT-EST. There are 54,526 unigenes; among these 475 genes are downregulated and 44 are upregulated when samples from plants grown under optimal salt are compared with those grown without salt. BLAST analysis identified the differentially expressed genes, which were categorized in gene ontology terms and their pathways. This work has identified potential genes involved in salt tolerance in Suaeda fruticosa, and has provided an outline of tools to use for de novo transcriptome analysis. The assemblies that were used provide coverage of a considerable proportion of the transcriptome, which allows analysis of differential gene expression and identification of genes that may be involved in salt tolerance. The transcriptome may serve as a reference sequence for study of other succulent halophytes.

  5. Transcriptome Analysis of Lactococcus lactis in Coculture with Saccharomyces cerevisiae▿

    PubMed Central

    Maligoy, Mathieu; Mercade, Myriam; Cocaign-Bousquet, Muriel; Loubiere, Pascal

    2008-01-01

    The study of microbial interactions in mixed cultures remains an important conceptual and methodological challenge for which transcriptome analysis could prove to be the essential method for improving our understanding. However, the use of whole-genome DNA chips is often restricted to the pure culture of the species for which the chips were designed. In this study, massive cross-hybridization was observed between the foreign cDNA and the specific Lactococcus lactis DNA chip. A very simple method is proposed to considerably decrease this nonspecific hybridization, consisting of adding the microbial partner's DNA. A correlation was established between the resulting cross-hybridization and the phylogenetic distance between the microbial partners. The response of L. lactis to the presence of Saccharomyces cerevisiae was analyzed during the exponential growth phase in fermentors under defined growth conditions. Although no differences between growth kinetics were observed for the pure and the mixed cultures of L. lactis, the mRNA levels of 158 genes were significantly modified. More particularly, a strong reorientation of pyrimidine metabolism was observed when L. lactis was grown in mixed cultures. These changes in transcript abundance were demonstrated to be regulated by the ethanol produced by the yeast and were confirmed by an independent method (quantitative reverse transcription-PCR). PMID:17993564

  6. Transcriptomic configuration of mouse brain induced by adolescent exposure to 3,4-methylenedioxymethamphetamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eun, Jung Woo; Kwack, Seung Jun; Noh, Ji Heon

    The amphetamine derivative ({+-})-3,4-methylenedioxymethamphetamine (MDMA or ecstasy) is a synthetic amphetamine analogue used recreationally to obtain an enhanced affiliative emotional response. MDMA is a potent monoaminergic neurotoxin with the potential to damage brain serotonin and/or dopamine neurons. As the majority of MDMA users are young adults, the risk that users may expose the fetus to MDMA is a concern. However, the majority of studies on MDMA have investigated the effects on adult animals. Here, we investigated whether long-term exposure to MDMA, especially in adolescence, could induce comprehensive transcriptional changes in mouse brain. Transcriptomic analysis of mouse brain regions demonstrated significantmore » gene expression changes in the cerebral cortex. Supervised analysis identified 1028 genes that were chronically dysregulated by long-term exposure to MDMA in adolescent mice. Functional categories most represented by this MDMA characteristic signature are intracellular molecular signaling pathways of neurotoxicity, such as, the MAPK signaling pathway, the Wnt signaling pathway, neuroactive ligand-receptor interaction, long-term potentiation, and the long-term depression signaling pathway. Although these resultant large-scale molecular changes remain to be studied associated with functional brain damage caused by MDMA, our observations delineate the possible neurotoxic effects of MDMA on brain function, and have therapeutic implications concerning neuro-pathological conditions associated with MDMA abuse.« less

  7. De novo transcriptome assembly and analysis of differential gene expression following peptidoglycan (PGN) challenge in Antheraea pernyi.

    PubMed

    Liu, Yu; Xin, Zhao-Zhe; Zhang, Dai-Zhen; Zhu, Xiao-Yu; Wang, Ying; Chen, Li; Tang, Bo-Ping; Zhou, Chun-Lin; Chai, Xin-Yue; Tian, Ji-Wu; Liu, Qiu-Ning

    2018-06-01

    Antheraea pernyi is not only an important economic insect, it is increasingly employed as a model organism due to a variety of advantages, including ease of rearing and experimental manipulation compared with other Lepidoptera. Peptidoglycan (PGN) is a major component of the bacterial cell wall, and interactions between PGN and A. pernyi cause a series of physiological changes in the insect. In the present study, we constructed cDNA libraries from a A. pernyi PGN-infected group and a control group stimulated with phosphate-buffered saline (PBS). The transcriptome was de novo assembled using the Trinity platform, and 1698 differentially expressed genes (DEGs) were identified, comprising 894 up-regulated and 804 down-regulated genes. To further investigate immune-related DEGs, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were performed. GO analysis identified major immune-related GO terms and KEGG enrichment indicated gene responses to three pathways related to the insect immune system. Several homologous genes related to the immune response of the A. pernyi fat body post-PGN infection were identified and categorised. Taken together, the results provide insight into the complex molecular mechanisms of the responses to bacterial infection at the transcriptional level. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Analysis, annotation, and profiling of the oat seed transcriptome

    USDA-ARS?s Scientific Manuscript database

    Novel high-throughput next generation sequencing (NGS) technologies are providing opportunities to explore genomes and transcriptomes in a cost-effective manner. To construct a gene expression atlas of developing oat (Avena sativa) seeds, two software packages specifically designed for RNA-seq (Trin...

  9. A comprehensive analysis of the human placenta transcriptome

    USDA-ARS?s Scientific Manuscript database

    As the conduit for nutrients and growth signals, the placenta is critical to establishing an environment sufficient for fetal growth and development. To better understand the mechanisms regulating placental development and gene expression, we characterized the transcriptome of term placenta from 20 ...

  10. A Canonical Correlation Analysis of AIDS Restriction Genes and Metabolic Pathways Identifies Purine Metabolism as a Key Cooperator.

    PubMed

    Ye, Hanhui; Yuan, Jinjin; Wang, Zhengwu; Huang, Aiqiong; Liu, Xiaolong; Han, Xiao; Chen, Yahong

    2016-01-01

    Human immunodeficiency virus causes a severe disease in humans, referred to as immune deficiency syndrome. Studies on the interaction between host genetic factors and the virus have revealed dozens of genes that impact diverse processes in the AIDS disease. To resolve more genetic factors related to AIDS, a canonical correlation analysis was used to determine the correlation between AIDS restriction and metabolic pathway gene expression. The results show that HIV-1 postentry cellular viral cofactors from AIDS restriction genes are coexpressed in human transcriptome microarray datasets. Further, the purine metabolism pathway comprises novel host factors that are coexpressed with AIDS restriction genes. Using a canonical correlation analysis for expression is a reliable approach to exploring the mechanism underlying AIDS.

  11. Dynamic Modeling of GAIT System Reveals Transcriptome Expansion and Translational Trickle Control Device

    PubMed Central

    Yao, Peng; Potdar, Alka A.; Arif, Abul; Ray, Partho Sarothi; Mukhopadhyay, Rupak; Willard, Belinda; Xu, Yichi; Yan, Jun; Saidel, Gerald M.; Fox, Paul L.

    2012-01-01

    SUMMARY Post-transcriptional regulatory mechanisms superimpose “fine-tuning” control upon “on-off” switches characteristic of gene transcription. We have exploited computational modeling with experimental validation to resolve an anomalous relationship between mRNA expression and protein synthesis. Differential GAIT (Gamma-interferon Activated Inhibitor of Translation) complex activation repressed VEGF-A synthesis to a low, constant rate despite high, variable VEGFA mRNA expression. Dynamic model simulations indicated the presence of an unidentified, inhibitory GAIT element-interacting factor. We discovered a truncated form of glutamyl-prolyl tRNA synthetase (EPRS), the GAIT constituent that binds the 3’-UTR GAIT element in target transcripts. The truncated protein, EPRSN1, prevents binding of functional GAIT complex. EPRSN1 mRNA is generated by a remarkable polyadenylation-directed conversion of a Tyr codon in the EPRS coding sequence to a stop codon (PAY*). By low-level protection of GAIT element-bearing transcripts, EPRSN1 imposes a robust “translational trickle” of target protein expression. Genome-wide analysis shows PAY* generates multiple truncated transcripts thereby contributing to transcriptome expansion. PMID:22386318

  12. Protein Discovery: Combined Transcriptomic and Proteomic Analyses of Venom from the Endoparasitoid Cotesia chilonis (Hymenoptera: Braconidae)

    PubMed Central

    Teng, Zi-Wen; Xiong, Shi-Jiao; Xu, Gang; Gan, Shi-Yu; Chen, Xuan; Stanley, David; Yan, Zhi-Chao; Ye, Gong-Yin; Fang, Qi

    2017-01-01

    Many species of endoparasitoid wasps provide biological control services in agroecosystems. Although there is a great deal of information on the ecology and physiology of host/parasitoid interactions, relatively little is known about the protein composition of venom and how specific venom proteins influence physiological systems within host insects. This is a crucial gap in our knowledge because venom proteins act in modulating host physiology in ways that favor parasitoid development. Here, we identified 37 possible venom proteins from the polydnavirus-carrying endoparasitoid Cotesia chilonis by combining transcriptomic and proteomic analyses. The most abundant proteins were hydrolases, such as proteases, peptidases, esterases, glycosyl hydrolase, and endonucleases. Some components are classical parasitoid venom proteins with known functions, including extracellular superoxide dismutase 3, serine protease inhibitor and calreticulin. The venom contains novel proteins, not recorded from any other parasitoid species, including tolloid-like proteins, chitooligosaccharidolytic β-N-acetylglucosaminidase, FK506-binding protein 14, corticotropin-releasing factor-binding protein and vascular endothelial growth factor receptor 2. These new data generate hypotheses and provide a platform for functional analysis of venom components. PMID:28417942

  13. Transcriptome profiles link environmental variation and physiological response of Mytilus californianus between Pacific tides

    PubMed Central

    Place, Sean P.; Menge, Bruce A.; Hofmann, Gretchen E.

    2011-01-01

    Summary The marine intertidal zone is characterized by large variation in temperature, pH, dissolved oxygen and the supply of nutrients and food on seasonal and daily time scales. These oceanic fluctuations drive of ecological processes such as recruitment, competition and consumer-prey interactions largely via physiological mehcanisms. Thus, to understand coastal ecosystem dynamics and responses to climate change, it is crucial to understand these mechanisms. Here we utilize transcriptome analysis of the physiological response of the mussel Mytilus californianus at different spatial scales to gain insight into these mechanisms. We used mussels inhabiting different vertical locations within Strawberry Hill on Cape Perpetua, OR and Boiler Bay on Cape Foulweather, OR to study inter- and intra-site variation of gene expression. The results highlight two distinct gene expression signatures related to the cycling of metabolic activity and perturbations to cellular homeostasis. Intermediate spatial scales show a strong influence of oceanographic differences in food and stress environments between sites separated by ~65 km. Together, these new insights into environmental control of gene expression may allow understanding of important physiological drivers within and across populations. PMID:22563136

  14. Transcriptomic Analysis of the Innate Antiviral Immune Response in Porcine Intestinal Epithelial Cells: Influence of Immunobiotic Lactobacilli

    PubMed Central

    Albarracin, Leonardo; Kobayashi, Hisakazu; Iida, Hikaru; Sato, Nana; Nochi, Tomonori; Aso, Hisashi; Salva, Susana; Alvarez, Susana; Kitazawa, Haruki; Villena, Julio

    2017-01-01

    Lactobacillus rhamnosus CRL1505 and Lactobacillus plantarum CRL1506 are immunobiotic strains able to increase protection against viral intestinal infections as demonstrated in animal models and humans. To gain insight into the host–immunobiotic interaction, the transcriptomic response of porcine intestinal epithelial (PIE) cells to the challenge with viral molecular associated pattern poly(I:C) and the changes in the transcriptomic profile induced by the immunobiotics strains CRL1505 and CRL1506 were investigated in this work. By using microarray technology and reverse transcription PCR, we obtained a global overview of the immune genes involved in the innate antiviral immune response in PIE cells. Stimulation of PIE cells with poly(I:C) significantly increased the expression of IFN-α and IFN-β, several interferon-stimulated genes, cytokines, chemokines, adhesion molecules, and genes involved in prostaglandin biosynthesis. It was also determined that lactobacilli differently modulated immune gene expression in poly(I:C)-challenged PIE cells. Most notable changes were found in antiviral factors (IFN-α, IFN-β, NPLR3, OAS1, OASL, MX2, and RNASEL) and cytokines/chemokines (IL-1β, IL-6, CCL4, CCL5, and CXCL10) that were significantly increased in lactobacilli-treated PIE cells. Immunobiotics reduced the expression of IL-15 and RAE1 genes that mediate poly(I:C) inflammatory damage. In addition, lactobacilli treatments increased the expression PLA2G4A, PTGES, and PTGS2 that are involved in prostaglandin E2 biosynthesis. L. rhamnosus CRL1505 and L. plantarum CRL1506 showed quantitative and qualitative differences in their capacities to modulate the innate antiviral immune response in PIE cells, which would explain the higher capacity of the CRL1505 strain when compared to CRL1506 to protect against viral infection and inflammatory damage in vivo. These results provided valuable information for the deeper understanding of the host–immunobiotic interaction and their effect on antiviral immunity. The comprehensive transcriptomic analyses successfully identified a group of genes (IFN-β, RIG1, RNASEL, MX2, A20, IL27, CXCL5, CCL4, PTGES, and PTGER4), which can be used as prospective biomarkers for the screening of new antiviral immunobiotics in PIE cells and for the development of novel functional food and feeds, which may help to prevent viral infections. PMID:28210256

  15. Transcriptomic Analysis of the Innate Antiviral Immune Response in Porcine Intestinal Epithelial Cells: Influence of Immunobiotic Lactobacilli.

    PubMed

    Albarracin, Leonardo; Kobayashi, Hisakazu; Iida, Hikaru; Sato, Nana; Nochi, Tomonori; Aso, Hisashi; Salva, Susana; Alvarez, Susana; Kitazawa, Haruki; Villena, Julio

    2017-01-01

    Lactobacillus rhamnosus CRL1505 and Lactobacillus plantarum CRL1506 are immunobiotic strains able to increase protection against viral intestinal infections as demonstrated in animal models and humans. To gain insight into the host-immunobiotic interaction, the transcriptomic response of porcine intestinal epithelial (PIE) cells to the challenge with viral molecular associated pattern poly(I:C) and the changes in the transcriptomic profile induced by the immunobiotics strains CRL1505 and CRL1506 were investigated in this work. By using microarray technology and reverse transcription PCR, we obtained a global overview of the immune genes involved in the innate antiviral immune response in PIE cells. Stimulation of PIE cells with poly(I:C) significantly increased the expression of IFN- α and IFN- β, several interferon-stimulated genes, cytokines, chemokines, adhesion molecules, and genes involved in prostaglandin biosynthesis. It was also determined that lactobacilli differently modulated immune gene expression in poly(I:C)-challenged PIE cells. Most notable changes were found in antiviral factors ( IFN- α, IFN- β, NPLR3, OAS1, OASL, MX2 , and RNASEL ) and cytokines/chemokines ( IL-1 β, IL-6, CCL4, CCL5 , and CXCL10 ) that were significantly increased in lactobacilli-treated PIE cells. Immunobiotics reduced the expression of IL-15 and RAE1 genes that mediate poly(I:C) inflammatory damage. In addition, lactobacilli treatments increased the expression PLA2G4A, PTGES , and PTGS2 that are involved in prostaglandin E2 biosynthesis . L. rhamnosus CRL1505 and L. plantarum CRL1506 showed quantitative and qualitative differences in their capacities to modulate the innate antiviral immune response in PIE cells, which would explain the higher capacity of the CRL1505 strain when compared to CRL1506 to protect against viral infection and inflammatory damage in vivo . These results provided valuable information for the deeper understanding of the host-immunobiotic interaction and their effect on antiviral immunity. The comprehensive transcriptomic analyses successfully identified a group of genes ( IFN- β, RIG1, RNASEL, MX2, A20, IL27, CXCL5, CCL4, PTGES , and PTGER4 ), which can be used as prospective biomarkers for the screening of new antiviral immunobiotics in PIE cells and for the development of novel functional food and feeds, which may help to prevent viral infections.

  16. Genome-wide transcriptome and expression profile analysis of Phalaenopsis during explant browning.

    PubMed

    Xu, Chuanjun; Zeng, Biyu; Huang, Junmei; Huang, Wen; Liu, Yumei

    2015-01-01

    Explant browning presents a major problem for in vitro culture, and can lead to the death of the explant and failure of regeneration. Considerable work has examined the physiological mechanisms underlying Phalaenopsis leaf explant browning, but the molecular mechanisms of browning remain elusive. In this study, we used whole genome RNA sequencing to examine Phalaenopsis leaf explant browning at genome-wide level. We first used Illumina high-throughput technology to sequence the transcriptome of Phalaenopsis and then performed de novo transcriptome assembly. We assembled 79,434,350 clean reads into 31,708 isogenes and generated 26,565 annotated unigenes. We assigned Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains to each transcript. Using the transcriptome data as a reference, we next analyzed the differential gene expression of explants cultured for 0, 3, and 6 d, respectively. We then identified differentially expressed genes (DEGs) before and after Phalaenopsis explant browning. We also performed GO, KEGG functional enrichment and Pfam analysis of all DEGs. Finally, we selected 11 genes for quantitative real-time PCR (qPCR) analysis to confirm the expression profile analysis. Here, we report the first comprehensive analysis of transcriptome and expression profiles during Phalaenopsis explant browning. Our results suggest that Phalaenopsis explant browning may be due in part to gene expression changes that affect the secondary metabolism, such as: phenylpropanoid pathway and flavonoid biosynthesis. Genes involved in photosynthesis and ATPase activity have been found to be changed at transcription level; these changes may perturb energy metabolism and thus lead to the decay of plant cells and tissues. This study provides comprehensive gene expression data for Phalaenopsis browning. Our data constitute an important resource for further functional studies to prevent explant browning.

  17. Genome-Wide Transcriptome and Expression Profile Analysis of Phalaenopsis during Explant Browning

    PubMed Central

    Xu, Chuanjun; Zeng, Biyu; Huang, Junmei; Huang, Wen; Liu, Yumei

    2015-01-01

    Background Explant browning presents a major problem for in vitro culture, and can lead to the death of the explant and failure of regeneration. Considerable work has examined the physiological mechanisms underlying Phalaenopsis leaf explant browning, but the molecular mechanisms of browning remain elusive. In this study, we used whole genome RNA sequencing to examine Phalaenopsis leaf explant browning at genome-wide level. Methodology/Principal Findings We first used Illumina high-throughput technology to sequence the transcriptome of Phalaenopsis and then performed de novo transcriptome assembly. We assembled 79,434,350 clean reads into 31,708 isogenes and generated 26,565 annotated unigenes. We assigned Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains to each transcript. Using the transcriptome data as a reference, we next analyzed the differential gene expression of explants cultured for 0, 3, and 6 d, respectively. We then identified differentially expressed genes (DEGs) before and after Phalaenopsis explant browning. We also performed GO, KEGG functional enrichment and Pfam analysis of all DEGs. Finally, we selected 11 genes for quantitative real-time PCR (qPCR) analysis to confirm the expression profile analysis. Conclusions/Significance Here, we report the first comprehensive analysis of transcriptome and expression profiles during Phalaenopsis explant browning. Our results suggest that Phalaenopsis explant browning may be due in part to gene expression changes that affect the secondary metabolism, such as: phenylpropanoid pathway and flavonoid biosynthesis. Genes involved in photosynthesis and ATPase activity have been found to be changed at transcription level; these changes may perturb energy metabolism and thus lead to the decay of plant cells and tissues. This study provides comprehensive gene expression data for Phalaenopsis browning. Our data constitute an important resource for further functional studies to prevent explant browning. PMID:25874455

  18. De novo Transcriptome Assembly of a Chinese Locoweed (Oxytropis ochrocephala) Species Provides Insights into Genes Associated with Drought, Salinity, and Cold Tolerance

    PubMed Central

    He, Wei; Zhuang, Huihui; Fu, Yanping; Guo, Linwei; Guo, Bin; Guo, Lizhu; Zhang, Xiuhong; Wei, Yahui

    2015-01-01

    Background: Locoweeds (toxic Oxytropis and Astraglus species), containing the toxic agent swainsonine, pose serious threats to animal husbandry on grasslands in both China and the US. Some locoweeds have evolved adaptations in order to resist various stress conditions such as drought, salt and cold. As a result they replace other plants in their communities and become an ecological problem. Currently very limited genetic information of locoweeds is available and this hinders our understanding in the molecular basis of their environmental plasticity, and the interaction between locoweeds and their symbiotic swainsonine producing endophytes. Next-generation sequencing provides a means of obtaining transcriptomic sequences in a timely manner, which is particularly useful for non-model plants. In this study, we performed transcriptome sequencing of Oxytropis ochrocephala plants followed by a de nove assembly. Our primary aim was to provide an enriched pool of genetic sequences of an Oxytropis sp. for further locoweed research. Results: Transcriptomes of four different O. ochrocephala samples, from control (CK) plants, and those that had experienced either drought (20% PEG), salt (150 mM NaCl) or cold (4°C) stress were sequenced using an Illumina Hiseq 2000 platform. From 232,209,506 clean reads 23,220,950,600 (~23 G nucleotides), 182,430 transcripts and 88,942 unigenes were retrieved, with an N50 value of 1237. Differential expression analysis revealed putative genes encoding heat shock proteins (HSPs) and late embryogenesis abundant (LEA) proteins, enzymes in secondary metabolite and plant hormone biosyntheses, and transcription factors which are involved in stress tolerance in O. ochrocephala. In order to validate our sequencing results, we further analyzed the expression profiles of nine genes by quantitative real-time PCR. Finally, we discuss the possible mechanism of O. ochrocephala's adaptations to stress environment. Conclusion: Our transcriptome sequencing data present useful genetic information of a locoweed species. This genetic information will underpin further research in elucidating the environmental acclimation mechanism in locoweeds and the endophyte-plant association. PMID:26697040

  19. De novo transcriptomic analysis and development of EST-SSR markers in the Siberian tiger (Panthera tigris altaica).

    PubMed

    Lu, Taofeng; Sun, Yujiao; Ma, Qin; Zhu, Minghao; Liu, Dan; Ma, Jianzhang; Ma, Yuehui; Chen, Hongyan; Guan, Weijun

    2016-12-01

    The Siberian tiger, Panthera tigris altaica, is an endangered species, and much more work is needed to protect this species, which is still vulnerable to extinction. Conservation efforts may be supported by the genetic assessment of wild populations, for which highly specific microsatellite markers are required. However, only a limited amount of genetic sequence data is available for this species. To identify the genes involved in the lung transcriptome and to develop additional simple sequence repeat (SSR) markers for the Siberian tiger, we used high-throughput RNA-Seq to characterize the Siberian tiger transcriptome in lung tissue (designated 'PTA-lung') and a pooled tissue sample (designated 'PTA'). Approximately 47.5 % (33,187/69,836) of the lung transcriptome was annotated in four public databases (Nr, Swiss-Prot, KEGG, and COG). The annotated genes formed a potential pool for gene identification in the tiger. An analysis of the genes differentially expressed in the PTA lung, and PTA samples revealed that the tiger may have suffered a series of diseases before death. In total, 1062 non-redundant SSRs were identified in the Siberian tiger transcriptome. Forty-three primer pairs were randomly selected for amplification reactions, and 26 of the 43 pairs were also used to evaluate the levels of genetic polymorphism. Fourteen primer pairs (32.56 %) amplified products that were polymorphic in size in P. tigris altaica. In conclusion, the transcriptome sequences will provide a valuable genomic resource for genetic research, and these new SSR markers comprise a reasonable number of loci for the genetic analysis of wild and captive populations of P. tigris altaica.

  20. Global transcriptome analysis of the C57BL/6J mouse testis by SAGE: evidence for nonrandom gene order.

    PubMed

    Divina, Petr; Vlcek, Cestmír; Strnad, Petr; Paces, Václav; Forejt, Jirí

    2005-03-05

    We generated the gene expression profile of the total testis from the adult C57BL/6J male mice using serial analysis of gene expression (SAGE). Two high-quality SAGE libraries containing a total of 76 854 tags were constructed. An extensive bioinformatic analysis and comparison of SAGE transcriptomes of the total testis, testicular somatic cells and other mouse tissues was performed and the theory of male-biased gene accumulation on the X chromosome was tested. We sorted out 829 genes predominantly expressed from the germinal part and 944 genes from the somatic part of the testis. The genes preferentially and specifically expressed in total testis and testicular somatic cells were identified by comparing the testis SAGE transcriptomes to the available transcriptomes of seven non-testis tissues. We uncovered chromosomal clusters of adjacent genes with preferential expression in total testis and testicular somatic cells by a genome-wide search and found that the clusters encompassed a significantly higher number of genes than expected by chance. We observed a significant 3.2-fold enrichment of the proportion of X-linked genes specific for testicular somatic cells, while the proportions of X-linked genes specific for total testis and for other tissues were comparable. In contrast to the tissue-specific genes, an under-representation of X-linked genes in the total testis transcriptome but not in the transcriptomes of testicular somatic cells and other tissues was detected. Our results provide new evidence in favor of the theory of male-biased genes accumulation on the X chromosome in testicular somatic cells and indicate the opposite action of the meiotic X-inactivation in testicular germ cells.

  1. Global transcriptome analysis of the C57BL/6J mouse testis by SAGE: evidence for nonrandom gene order

    PubMed Central

    Divina, Petr; Vlček, Čestmír; Strnad, Petr; Pačes, Václav; Forejt, Jiří

    2005-01-01

    Background We generated the gene expression profile of the total testis from the adult C57BL/6J male mice using serial analysis of gene expression (SAGE). Two high-quality SAGE libraries containing a total of 76 854 tags were constructed. An extensive bioinformatic analysis and comparison of SAGE transcriptomes of the total testis, testicular somatic cells and other mouse tissues was performed and the theory of male-biased gene accumulation on the X chromosome was tested. Results We sorted out 829 genes predominantly expressed from the germinal part and 944 genes from the somatic part of the testis. The genes preferentially and specifically expressed in total testis and testicular somatic cells were identified by comparing the testis SAGE transcriptomes to the available transcriptomes of seven non-testis tissues. We uncovered chromosomal clusters of adjacent genes with preferential expression in total testis and testicular somatic cells by a genome-wide search and found that the clusters encompassed a significantly higher number of genes than expected by chance. We observed a significant 3.2-fold enrichment of the proportion of X-linked genes specific for testicular somatic cells, while the proportions of X-linked genes specific for total testis and for other tissues were comparable. In contrast to the tissue-specific genes, an under-representation of X-linked genes in the total testis transcriptome but not in the transcriptomes of testicular somatic cells and other tissues was detected. Conclusion Our results provide new evidence in favor of the theory of male-biased genes accumulation on the X chromosome in testicular somatic cells and indicate the opposite action of the meiotic X-inactivation in testicular germ cells. PMID:15748293

  2. Selenium supplementation prevents metabolic and transcriptomic responses to cadmium in mouse lung.

    PubMed

    Hu, Xin; Chandler, Joshua D; Fernandes, Jolyn; Orr, Michael L; Hao, Li; Uppal, Karan; Neujahr, David C; Jones, Dean P; Go, Young-Mi

    2018-04-12

    The protective effect of selenium (Se) on cadmium (Cd) toxicity is well documented, but underlying mechanisms are unclear. Male mice fed standard diet were given Cd (CdCl 2 , 18 μmol/L) in drinking water with or without Se (Na 2 SeO 4, 20 μmol/L) for 16 weeks. Lungs were analyzed for Cd concentration, transcriptomics and metabolomics. Data were analyzed with biostatistics, bioinformatics, pathway enrichment analysis, and combined transcriptome-metabolome-wide association study. Mice treated with Cd had higher lung Cd content (1.7 ± 0.4 pmol/mg protein) than control mice (0.8 ± 0.3 pmol/mg protein) or mice treated with Cd and Se (0.4 ± 0.1 pmol/mg protein). Gene set enrichment analysis of transcriptomics data showed that Se prevented Cd effects on inflammatory and myogenesis genes and diminished Cd effects on several other pathways. Similarly, Se prevented Cd-disrupted metabolic pathways in amino acid metabolism and urea cycle. Integrated transcriptome and metabolome network analysis showed that Cd treatment had a network structure with fewer gene-metabolite clusters compared to control. Centrality measurements showed that Se counteracted changes in a group of Cd-responsive genes including Zdhhc11, (protein-cysteine S-palmitoyltransferase), Ighg1 (immunoglobulin heavy constant gamma-1) and associated changes in metabolite concentrations. Co-administration of Se with Cd prevented Cd increase in lung and prevented Cd-associated pathway and network responses of the transcriptome and metabolome. Se protection against Cd toxicity in lung involves complex systems responses. Environmental Cd stimulates proinflammatory and profibrotic signaling. The present results indicate that dietary or supplemental Se could be useful to mitigate Cd toxicity. Published by Elsevier B.V.

  3. Determining the optimal number of independent components for reproducible transcriptomic data analysis.

    PubMed

    Kairov, Ulykbek; Cantini, Laura; Greco, Alessandro; Molkenov, Askhat; Czerwinska, Urszula; Barillot, Emmanuel; Zinovyev, Andrei

    2017-09-11

    Independent Component Analysis (ICA) is a method that models gene expression data as an action of a set of statistically independent hidden factors. The output of ICA depends on a fundamental parameter: the number of components (factors) to compute. The optimal choice of this parameter, related to determining the effective data dimension, remains an open question in the application of blind source separation techniques to transcriptomic data. Here we address the question of optimizing the number of statistically independent components in the analysis of transcriptomic data for reproducibility of the components in multiple runs of ICA (within the same or within varying effective dimensions) and in multiple independent datasets. To this end, we introduce ranking of independent components based on their stability in multiple ICA computation runs and define a distinguished number of components (Most Stable Transcriptome Dimension, MSTD) corresponding to the point of the qualitative change of the stability profile. Based on a large body of data, we demonstrate that a sufficient number of dimensions is required for biological interpretability of the ICA decomposition and that the most stable components with ranks below MSTD have more chances to be reproduced in independent studies compared to the less stable ones. At the same time, we show that a transcriptomics dataset can be reduced to a relatively high number of dimensions without losing the interpretability of ICA, even though higher dimensions give rise to components driven by small gene sets. We suggest a protocol of ICA application to transcriptomics data with a possibility of prioritizing components with respect to their reproducibility that strengthens the biological interpretation. Computing too few components (much less than MSTD) is not optimal for interpretability of the results. The components ranked within MSTD range have more chances to be reproduced in independent studies.

  4. Transcriptomic and histological responses of African rice (Oryza glaberrima) to Meloidogyne graminicola provide new insights into root-knot nematode resistance in monocots

    PubMed Central

    Petitot, Anne-Sophie; Kyndt, Tina; Haidar, Rana; Dereeper, Alexis; Collin, Myriam; de Almeida Engler, Janice; Gheysen, Godelieve

    2017-01-01

    Abstract Background and Aims The root-knot nematode Meloidogyne graminicola is responsible for production losses in rice (Oryza sativa) in Asia and Latin America. The accession TOG5681 of African rice, O. glaberrima, presents improved resistance to several biotic and abiotic factors, including nematodes. The aim of this study was to assess the cytological and molecular mechanisms underlying nematode resistance in this accession. Methods Penetration and development in M. graminicola in TOG5681 and the susceptible O. sativa genotype ‘Nipponbare’ were compared by microscopic observation of infected roots and histological analysis of galls. In parallel, host molecular responses to M. graminicola were assessed by root transcriptome profiling at 2, 4 and 8 d post-infection (dpi). Specific treatments with hormone inhibitors were conducted in TOG5681 to assess the impact of the jasmonic acid and salicylic acid pathways on nematode penetration and reproduction. Key Results Penetration and development of M. graminicola juveniles were reduced in the resistant TOG5681 in comparison with the susceptible accession, with degeneration of giant cells observed in the resistant genotype from 15 dpi onwards. Transcriptome changes were observed as early as 2 dpi, with genes predicted to be involved in defence responses, phenylpropanoid and hormone pathways strongly induced in TOG5681, in contrast to ‘Nipponbare’. No specific hormonal pathway could be identified as the major determinant of resistance in the rice-nematode incompatible interaction. Candidate genes proposed as involved in resistance to M. graminicola in TOG5681 were identified based on their expression pattern and quantitative trait locus (QTL) position, including chalcone synthase, isoflavone reductase, phenylalanine ammonia lyase, WRKY62 transcription factor, thionin, stripe rust resistance protein, thaumatins and ATPase3. Conclusions This study provides a novel set of candidate genes for O. glaberrima resistance to nematodes and highlights the rice-M. graminicola pathosystem as a model to study plant-nematode incompatible interactions. PMID:28334204

  5. A remarkable synergistic effect at the transcriptomic level in peach fruits doubly infected by prunus necrotic ringspot virus and peach latent mosaic viroid.

    PubMed

    Herranz, Mari Carmen; Niehl, Annette; Rosales, Marlene; Fiore, Nicola; Zamorano, Alan; Granell, Antonio; Pallas, Vicente

    2013-05-28

    Microarray profiling is a powerful technique to investigate expression changes of large amounts of genes in response to specific environmental conditions. The majority of the studies investigating gene expression changes in virus-infected plants are limited to interactions between a virus and a model host plant, which usually is Arabidopsis thaliana or Nicotiana benthamiana. In the present work, we performed microarray profiling to explore changes in the expression profile of field-grown Prunus persica (peach) originating from Chile upon single and double infection with Prunus necrotic ringspot virus (PNRSV) and Peach latent mosaic viroid (PLMVd), worldwide natural pathogens of peach trees. Upon single PLMVd or PNRSV infection, the number of statistically significant gene expression changes was relatively low. By contrast, doubly-infected fruits presented a high number of differentially regulated genes. Among these, down-regulated genes were prevalent. Functional categorization of the gene expression changes upon double PLMVd and PNRSV infection revealed protein modification and degradation as the functional category with the highest percentage of repressed genes whereas induced genes encoded mainly proteins related to phosphate, C-compound and carbohydrate metabolism and also protein modification. Overrepresentation analysis upon double infection with PLMVd and PNRSV revealed specific functional categories over- and underrepresented among the repressed genes indicating active counter-defense mechanisms of the pathogens during infection. Our results identify a novel synergistic effect of PLMVd and PNRSV on the transcriptome of peach fruits. We demonstrate that mixed infections, which occur frequently in field conditions, result in a more complex transcriptional response than that observed in single infections. Thus, our data demonstrate for the first time that the simultaneous infection of a viroid and a plant virus synergistically affect the host transcriptome in infected peach fruits. These field studies can help to fully understand plant-pathogen interactions and to develop appropriate crop protection strategies.

  6. A remarkable synergistic effect at the transcriptomic level in peach fruits doubly infected by prunus necrotic ringspot virus and peach latent mosaic viroid

    PubMed Central

    2013-01-01

    Background Microarray profiling is a powerful technique to investigate expression changes of large amounts of genes in response to specific environmental conditions. The majority of the studies investigating gene expression changes in virus-infected plants are limited to interactions between a virus and a model host plant, which usually is Arabidopsis thaliana or Nicotiana benthamiana. In the present work, we performed microarray profiling to explore changes in the expression profile of field-grown Prunus persica (peach) originating from Chile upon single and double infection with Prunus necrotic ringspot virus (PNRSV) and Peach latent mosaic viroid (PLMVd), worldwide natural pathogens of peach trees. Results Upon single PLMVd or PNRSV infection, the number of statistically significant gene expression changes was relatively low. By contrast, doubly-infected fruits presented a high number of differentially regulated genes. Among these, down-regulated genes were prevalent. Functional categorization of the gene expression changes upon double PLMVd and PNRSV infection revealed protein modification and degradation as the functional category with the highest percentage of repressed genes whereas induced genes encoded mainly proteins related to phosphate, C-compound and carbohydrate metabolism and also protein modification. Overrepresentation analysis upon double infection with PLMVd and PNRSV revealed specific functional categories over- and underrepresented among the repressed genes indicating active counter-defense mechanisms of the pathogens during infection. Conclusions Our results identify a novel synergistic effect of PLMVd and PNRSV on the transcriptome of peach fruits. We demonstrate that mixed infections, which occur frequently in field conditions, result in a more complex transcriptional response than that observed in single infections. Thus, our data demonstrate for the first time that the simultaneous infection of a viroid and a plant virus synergistically affect the host transcriptome in infected peach fruits. These field studies can help to fully understand plant-pathogen interactions and to develop appropriate crop protection strategies. PMID:23710752

  7. The exposome concept in a human nutrigenomics study: evaluating the impact of exposure to a complex mixture of phytochemicals using transcriptomics signatures.

    PubMed

    van Breda, Simone G J; Wilms, Lonneke C; Gaj, Stan; Jennen, Danyel G J; Briedé, Jacob J; Kleinjans, Jos C S; de Kok, Theo M C M

    2015-11-01

    The application of transcriptome analyses in molecular epidemiology studies has become a promising tool in order to evaluate the impact of environmental exposures. These analyses have a great value in establishing the exposome, the totality of human exposures, both by identifying the chemical nature of the exposures and the induced molecular responses. Transcriptomic signatures can be regarded as biomarker of exposure as well as markers of effect which reflect the interaction between individual genetic background and exposure levels. However, the biological interpretation of modulated gene expression profiles is a challenging task and translating affected molecular pathways into risk assessment, for instance in terms of cancer promoting or disease preventing responses, is a far from standardised process. Here, we describe the in-depth analyses of the gene expression responses in a human dietary intervention in which the interaction between genotype and exposure to a blueberry-apple juice containing a complex mixture of phytochemicals is investigated. We also describe how data on differences in genetic background combined with different effect markers can provide a better understanding of gene-environment interactions. Pathway analyses of differentially expressed genes in combination with gene were used to identify complex but strong changes in several biological processes like immune response, cell adhesion, lipid metabolism and apoptosis. These observed changes may lead to upgraded growth control, induced immunity, reduced platelet aggregation and activation, diminished production of reactive oxidative species by platelets, blood glucose homeostasis, regulation of blood lipid levels and increased apoptosis. Our findings demonstrate that applying transcriptomics to well-controlled human dietary intervention studies can provide insight into mechanistic pathways involved in disease prevention by dietary factors. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Analysis of insecticide resistance-related genes of the Carmine spider mite Tetranychus cinnabarinus based on a de novo assembled transcriptome.

    PubMed

    Xu, Zhifeng; Zhu, Wenyi; Liu, Yanchao; Liu, Xing; Chen, Qiushuang; Peng, Miao; Wang, Xiangzun; Shen, Guangmao; He, Lin

    2014-01-01

    The carmine spider mite (CSM), Tetranychus cinnabarinus, is an important pest mite in agriculture, because it can develop insecticide resistance easily. To gain valuable gene information and molecular basis for the future insecticide resistance study of CSM, the first transcriptome analysis of CSM was conducted. A total of 45,016 contigs and 25,519 unigenes were generated from the de novo transcriptome assembly, and 15,167 unigenes were annotated via BLAST querying against current databases, including nr, SwissProt, the Clusters of Orthologous Groups (COGs), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). Aligning the transcript to Tetranychus urticae genome, the 19255 (75.45%) of the transcripts had significant (e-value <10-5) matches to T. urticae DNA genome, 19111 sequences matched to T. urticae proteome with an average protein length coverage of 42.55%. Core Eukaryotic Genes Mapping Approach (CEGMA) analysis identified 435 core eukaryotic genes (CEGs) in the CSM dataset corresponding to 95% coverage. Ten gene categories that relate to insecticide resistance in arthropod were generated from CSM transcriptome, including 53 P450-, 22 GSTs-, 23 CarEs-, 1 AChE-, 7 GluCls-, 9 nAChRs-, 8 GABA receptor-, 1 sodium channel-, 6 ATPase- and 12 Cyt b genes. We developed significant molecular resources for T. cinnabarinus putatively involved in insecticide resistance. The transcriptome assembly analysis will significantly facilitate our study on the mechanism of adapting environmental stress (including insecticide) in CSM at the molecular level, and will be very important for developing new control strategies against this pest mite.

  9. De Novo Transcriptome Assembly and Characterization of Lithospermum officinale to Discover Putative Genes Involved in Specialized Metabolites Biosynthesis.

    PubMed

    Rai, Amit; Nakaya, Taiki; Shimizu, Yohei; Rai, Megha; Nakamura, Michimi; Suzuki, Hideyuki; Saito, Kazuki; Yamazaki, Mami

    2018-05-29

    Lithospermum officinale is a valuable source of bioactive metabolites with medicinal and industrial values. However, little is known about genes involved in the biosynthesis of these metabolites, primarily due to the lack of genome or transcriptome resources. This study presents the first effort to establish and characterize de novo transcriptome assembly resource for L. officinale and expression analysis for three of its tissues, namely leaf, stem, and root. Using over 4Gbps of RNA-sequencing datasets, we obtained de novo transcriptome assembly of L. officinale , consisting of 77,047 unigenes with assembly N50 value as 1524 bps. Based on transcriptome annotation and functional classification, 52,766 unigenes were assigned with putative genes functions, gene ontology terms, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. KEGG pathway and gene ontology enrichment analysis using highly expressed unigenes across three tissues and targeted metabolome analysis showed active secondary metabolic processes enriched specifically in the root of L. officinale . Using co-expression analysis, we also identified 20 and 48 unigenes representing different enzymes of lithospermic/chlorogenic acid and shikonin biosynthesis pathways, respectively. We further identified 15 candidate unigenes annotated as cytochrome P450 with the highest expression in the root of L. officinale as novel genes with a role in key biochemical reactions toward shikonin biosynthesis. Thus, through this study, we not only generated a high-quality genomic resource for L. officinale but also propose candidate genes to be involved in shikonin biosynthesis pathways for further functional characterization. Georg Thieme Verlag KG Stuttgart · New York.

  10. Perigone Lobe Transcriptome Analysis Provides Insights into Rafflesia cantleyi Flower Development.

    PubMed

    Lee, Xin-Wei; Mat-Isa, Mohd-Noor; Mohd-Elias, Nur-Atiqah; Aizat-Juhari, Mohd Afiq; Goh, Hoe-Han; Dear, Paul H; Chow, Keng-See; Haji Adam, Jumaat; Mohamed, Rahmah; Firdaus-Raih, Mohd; Wan, Kiew-Lian

    2016-01-01

    Rafflesia is a biologically enigmatic species that is very rare in occurrence and possesses an extraordinary morphology. This parasitic plant produces a gigantic flower up to one metre in diameter with no leaves, stem or roots. However, little is known about the floral biology of this species especially at the molecular level. In an effort to address this issue, we have generated and characterised the transcriptome of the Rafflesia cantleyi flower, and performed a comparison with the transcriptome of its floral bud to predict genes that are expressed and regulated during flower development. Approximately 40 million sequencing reads were generated and assembled de novo into 18,053 transcripts with an average length of 641 bp. Of these, more than 79% of the transcripts had significant matches to annotated sequences in the public protein database. A total of 11,756 and 7,891 transcripts were assigned to Gene Ontology categories and clusters of orthologous groups respectively. In addition, 6,019 transcripts could be mapped to 129 pathways in Kyoto Encyclopaedia of Genes and Genomes Pathway database. Digital abundance analysis identified 52 transcripts with very high expression in the flower transcriptome of R. cantleyi. Subsequently, analysis of differential expression between developing flower and the floral bud revealed a set of 105 transcripts with potential role in flower development. Our work presents a deep transcriptome resource analysis for the developing flower of R. cantleyi. Genes potentially involved in the growth and development of the R. cantleyi flower were identified and provide insights into biological processes that occur during flower development.

  11. A Snapshot of a Coral “Holobiont”: A Transcriptome Assembly of the Scleractinian Coral, Porites, Captures a Wide Variety of Genes from Both the Host and Symbiotic Zooxanthellae

    PubMed Central

    Shinzato, Chuya; Inoue, Mayuri; Kusakabe, Makoto

    2014-01-01

    Massive scleractinian corals of the genus Porites are important reef builders in the Indo-Pacific, and they are more resistant to thermal stress than other stony corals, such as the genus Acropora. Because coral health and survival largely depend on the interaction between a coral host and its symbionts, it is important to understand the molecular interactions of an entire “coral holobiont”. We simultaneously sequenced transcriptomes of Porites australiensis and its symbionts using the Illumina Hiseq2000 platform. We obtained 14.3 Gbp of sequencing data and assembled it into 74,997 contigs (average: 1,263 bp, N50 size: 2,037 bp). We successfully distinguished contigs originating from the host (Porites) and the symbiont (Symbiodinium) by aligning nucleotide sequences with the decoded Acropora digitifera and Symbiodinium minutum genomes. In contrast to previous coral transcriptome studies, at least 35% of the sequences were found to have originated from the symbionts, indicating that it is possible to analyze both host and symbiont transcriptomes simultaneously. Conserved protein domain and KEGG analyses showed that the dataset contains broad gene repertoires of both Porites and Symbiodinium. Effective utilization of sequence reads revealed that the polymorphism rate in P. australiensis is 1.0% and identified the major symbiotic Symbiodinium as Type C15. Analyses of amino acid biosynthetic pathways suggested that this Porites holobiont is probably able to synthesize most of the common amino acids and that Symbiodinium is potentially able to provide essential amino acids to its host. We believe this to be the first molecular evidence of complementarity in amino acid metabolism between coral hosts and their symbionts. We successfully assembled genes originating from both the host coral and the symbiotic Symbiodinium to create a snapshot of the coral holobiont transcriptome. This dataset will facilitate a deeper understanding of molecular mechanisms of coral symbioses and stress responses. PMID:24454815

  12. A snapshot of a coral "holobiont": a transcriptome assembly of the scleractinian coral, porites, captures a wide variety of genes from both the host and symbiotic zooxanthellae.

    PubMed

    Shinzato, Chuya; Inoue, Mayuri; Kusakabe, Makoto

    2014-01-01

    Massive scleractinian corals of the genus Porites are important reef builders in the Indo-Pacific, and they are more resistant to thermal stress than other stony corals, such as the genus Acropora. Because coral health and survival largely depend on the interaction between a coral host and its symbionts, it is important to understand the molecular interactions of an entire "coral holobiont". We simultaneously sequenced transcriptomes of Porites australiensis and its symbionts using the Illumina Hiseq2000 platform. We obtained 14.3 Gbp of sequencing data and assembled it into 74,997 contigs (average: 1,263 bp, N50 size: 2,037 bp). We successfully distinguished contigs originating from the host (Porites) and the symbiont (Symbiodinium) by aligning nucleotide sequences with the decoded Acropora digitifera and Symbiodinium minutum genomes. In contrast to previous coral transcriptome studies, at least 35% of the sequences were found to have originated from the symbionts, indicating that it is possible to analyze both host and symbiont transcriptomes simultaneously. Conserved protein domain and KEGG analyses showed that the dataset contains broad gene repertoires of both Porites and Symbiodinium. Effective utilization of sequence reads revealed that the polymorphism rate in P. australiensis is 1.0% and identified the major symbiotic Symbiodinium as Type C15. Analyses of amino acid biosynthetic pathways suggested that this Porites holobiont is probably able to synthesize most of the common amino acids and that Symbiodinium is potentially able to provide essential amino acids to its host. We believe this to be the first molecular evidence of complementarity in amino acid metabolism between coral hosts and their symbionts. We successfully assembled genes originating from both the host coral and the symbiotic Symbiodinium to create a snapshot of the coral holobiont transcriptome. This dataset will facilitate a deeper understanding of molecular mechanisms of coral symbioses and stress responses.

  13. Gene expression profiling of immunomagnetically separated cells directly from stabilized whole blood for multicenter clinical trials

    PubMed Central

    2014-01-01

    Background Clinically useful biomarkers for patient stratification and monitoring of disease progression and drug response are in big demand in drug development and for addressing potential safety concerns. Many diseases influence the frequency and phenotype of cells found in the peripheral blood and the transcriptome of blood cells. Changes in cell type composition influence whole blood gene expression analysis results and thus the discovery of true transcript level changes remains a challenge. We propose a robust and reproducible procedure, which includes whole transcriptome gene expression profiling of major subsets of immune cell cells directly sorted from whole blood. Methods Target cells were enriched using magnetic microbeads and an autoMACS® Pro Separator (Miltenyi Biotec). Flow cytometric analysis for purity was performed before and after magnetic cell sorting. Total RNA was hybridized on HGU133 Plus 2.0 expression microarrays (Affymetrix, USA). CEL files signal intensity values were condensed using RMA and a custom CDF file (EntrezGene-based). Results Positive selection by use of MACS® Technology coupled to transcriptomics was assessed for eight different peripheral blood cell types, CD14+ monocytes, CD3+, CD4+, or CD8+ T cells, CD15+ granulocytes, CD19+ B cells, CD56+ NK cells, and CD45+ pan leukocytes. RNA quality from enriched cells was above a RIN of eight. GeneChip analysis confirmed cell type specific transcriptome profiles. Storing whole blood collected in an EDTA Vacutainer® tube at 4°C followed by MACS does not activate sorted cells. Gene expression analysis supports cell enrichment measurements by MACS. Conclusions The proposed workflow generates reproducible cell-type specific transcriptome data which can be translated to clinical settings and used to identify clinically relevant gene expression biomarkers from whole blood samples. This procedure enables the integration of transcriptomics of relevant immune cell subsets sorted directly from whole blood in clinical trial protocols. PMID:25984272

  14. The transcriptome of Spodoptera exigua larvae exposed to different types of microbes.

    PubMed

    Pascual, Laura; Jakubowska, Agata K; Blanca, Jose M; Cañizares, Joaquin; Ferré, Juan; Gloeckner, Gernot; Vogel, Heiko; Herrero, Salvador

    2012-08-01

    We have obtained and characterized the transcriptome of Spodoptera exigua larvae with special emphasis on pathogen-induced genes. In order to obtain a highly representative transcriptome, we have pooled RNA from diverse insect colonies, conditions and tissues. Sequenced cDNA included samples from 3 geographically different colonies. Enrichment of RNA from pathogen-related genes was accomplished by exposing larvae to different pathogenic and non-pathogenic microbial agents such as the bacteria Bacillus thuringiensis, Micrococcus luteus, and Escherichia coli, the yeast Saccharomyces cerevisiae, and the S. exigua nucleopolyhedrovirus (SeMNPV). In addition, to avoid the loss of tissue-specific genes we included cDNA from the midgut, fat body, hemocytes and integument derived from pathogen exposed insects. RNA obtained from the different types of samples was pooled, normalized and sequenced. Analysis of the sequences obtained using the Roche 454 FLX and Sanger methods has allowed the generation of the largest public set of ESTs from S. exigua, including a large group of immune genes, and the identification of an important number of SSR (simple sequence repeats) and SNVs (single nucleotide variants: SNPs and INDELs) with potential use as genetic markers. Moreover, data mining has allowed the discovery of novel RNA viruses with potential influence in the insect population dynamics and the larval interactions with the microbial pesticides that are currently in use for the biological control of this pest. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Transcriptome profiling reveals regulatory mechanisms underlying Corolla Senescence in Petunia

    USDA-ARS?s Scientific Manuscript database

    Genetic regulatory mechanisms that govern petal natural senescence in petunia is complicated and unclear. To identify key genes and pathways that regulate the process, we initiated a transcriptome analysis in petunia petals at four developmental time points, including petal opening without anthesis ...

  16. Placental transcriptome co-expression analysis reveals conserved regulatory program across gestation

    USDA-ARS?s Scientific Manuscript database

    Mammalian development in utero is absolutely dependent on proper placental development, which is ultimately regulated by the placental genome. The regulation of the placental genome can be directly studied by exploring the underlying organization of the placental transcriptome through a systematic a...

  17. De novo Assembly of the Burying Beetle Nicrophorus orbicollis (Coleoptera: Silphidae) Transcriptome Across Developmental Stages with Identification of Key Immune Transcripts

    PubMed Central

    Won, Harim I.; Schulze, Thomas T.; Clement, Emalie J.; Watson, Gabrielle F.; Watson, Sean M.; Warner, Rosalie C.; Ramler, Elizabeth A. M.; Witte, Elias J.; Schoenbeck, Mark A.; Rauter, Claudia M.; Davis, Paul H.

    2018-01-01

    Burying beetles (Nicrophorus spp.) are among the relatively few insects that provide parental care while not belonging to the eusocial insects such as ants or bees. This behavior incurs energy costs as evidenced by immune deficits and shorter life-spans in reproducing beetles. In the absence of an assembled transcriptome, relatively little is known concerning the molecular biology of these beetles. This work details the assembly and analysis of the Nicrophorus orbicollis transcriptome at multiple developmental stages. RNA-Seq reads were obtained by next-generation sequencing and the transcriptome was assembled using the Trinity assembler. Validation of the assembly was performed by functional characterization using Gene Ontology (GO), Eukaryotic Orthologous Groups (KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Differential expression analysis highlights developmental stage-specific expression patterns, and immunity-related transcripts are discussed. The data presented provides a valuable molecular resource to aid further investigation into immunocompetence throughout this organism's sexual development. PMID:29707046

  18. Transcriptional profiling of CD31(+) cells isolated from murine embryonic stem cells.

    PubMed

    Mariappan, Devi; Winkler, Johannes; Chen, Shuhua; Schulz, Herbert; Hescheler, Jürgen; Sachinidis, Agapios

    2009-02-01

    Identification of genes involved in endothelial differentiation is of great interest for the understanding of the cellular and molecular mechanisms involved in the development of new blood vessels. Mouse embryonic stem (mES) cells serve as a potential source of endothelial cells for transcriptomic analysis. We isolated endothelial cells from 8-days old embryoid bodies by immuno-magnetic separation using platelet endothelial cell adhesion molecule-1 (also known as CD31) expressed on both early and mature endothelial cells. CD31(+) cells exhibit endothelial-like behavior by being able to incorporate DiI-labeled acetylated low-density lipoprotein as well as form tubular structures on matrigel. Quantitative and semi-quantitative PCR analysis further demonstrated the increased expression of endothelial transcripts. To ascertain the specific transcriptomic identity of the CD31(+) cells, large-scale microarray analysis was carried out. Comparative bioinformatic analysis reveals an enrichment of the gene ontology categories angiogenesis, blood vessel morphogenesis, vasculogenesis and blood coagulation in the CD31(+) cell population. Based on the transcriptomic signatures of the CD31(+) cells, we conclude that this ES cell-derived population contains endothelial-like cells expressing a mesodermal marker BMP2 and possess an angiogenic potential. The transcriptomic characterization of CD31(+) cells enables an in vitro functional genomic model to identify genes required for angiogenesis.

  19. Gene Expression Profiling of Acute Lymphoblastic Leukemia in Children with Very Early Relapse.

    PubMed

    Núñez-Enríquez, Juan Carlos; Bárcenas-López, Diego Alberto; Hidalgo-Miranda, Alfredo; Jiménez-Hernández, Elva; Bekker-Méndez, Vilma Carolina; Flores-Lujano, Janet; Solis-Labastida, Karina Anastacia; Martínez-Morales, Gabriela Bibiana; Sánchez-Muñoz, Fausto; Espinoza-Hernández, Laura Eugenia; Velázquez-Aviña, Martha Margarita; Merino-Pasaye, Laura Elizabeth; García Velázquez, Alejandra Jimena; Pérez-Saldívar, María Luisa; Mojica-Espinoza, Raúl; Ramírez-Bello, Julián; Jiménez-Morales, Silvia; Mejía-Aranguré, Juan Manuel

    2016-11-01

    Acute lymphoblastic leukemia (ALL) is the most common childhood cancer worldwide. Mexican patients have high mortality rates, low frequency of good prognosis biomarkers (i.e., ETV6-RUNX1) and a high proportion is classified at the time of diagnosis with a high risk to relapse according to clinical features. In addition, very early relapses are more frequently observed than in other populations. The aim of the study was to identify new potential biomarkers associated with very early relapse in Mexican ALL children through transcriptome analysis. Microarray gene expression profiling on bone marrow samples of 54 pediatric ALL patients, collected at time of diagnosis and/or at relapse, was performed. Eleven patients presented relapse within the first 18 months after diagnosis. Affymetrix Human Transcriptome Array 2.0 (HTA 2.0) was used to perform gene expression analysis. Annotation and functional enrichment analyses were carried out using Gene Ontology, KEGG pathway analysis and Ingenuity Pathway Analysis tools. BLVRB, ZCCHC7, PAX5, EBF1, TMOD1 and BLNK were differentially expressed (fold-change >2.0 and p value <0.01) between relapsed and non-relapsed patients. Functional analysis of abnormally expressed genes revealed their important role in cellular processes related to the development of hematological diseases, cancer, cell death and survival and in cell-to-cell signaling interaction. Our data support previous findings showing the relevance of PAX5, EBF1 and ZCCHC7 as potential biomarkers to identify a subgroup of ALL children in high risk to relapse. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.

  20. De novo transcriptome assembly and RNA-Seq expression analysis in blood from beluga whales of Bristol Bay, AK.

    PubMed

    Morey, Jeanine S; Burek Huntington, Kathy A; Campbell, Michelle; Clauss, Tonya M; Goertz, Caroline E; Hobbs, Roderick C; Lunardi, Denise; Moors, Amanda J; Neely, Marion G; Schwacke, Lori H; Van Dolah, Frances M

    2017-10-01

    Assessing the health of marine mammal sentinel species is crucial to understanding the impacts of environmental perturbations on marine ecosystems and human health. In Arctic regions, beluga whales, Delphinapterus leucas, are upper level predators that may serve as a sentinel species, potentially forecasting impacts on human health. While gene expression profiling from blood transcriptomes has widely been used to assess health status and environmental exposures in human and veterinary medicine, its use in wildlife has been limited due to the lack of available genomes and baseline data. To this end we constructed the first beluga whale blood transcriptome de novo from samples collected during annual health assessments of the healthy Bristol Bay, AK stock during 2012-2014 to establish baseline information on the content and variation of the beluga whale blood transcriptome. The Trinity transcriptome assembly from beluga was comprised of 91,325 transcripts that represented a wide array of cellular functions and processes and was extremely similar in content to the blood transcriptome of another cetacean, the bottlenose dolphin. Expression of hemoglobin transcripts was much lower in beluga (25.6% of TPM, transcripts per million) than has been observed in many other mammals. A T12A amino acid substitution in the HBB sequence of beluga whales, but not bottlenose dolphins, was identified and may play a role in low temperature adaptation. The beluga blood transcriptome was extremely stable between sex and year, with no apparent clustering of samples by principle components analysis and <4% of genes differentially expressed (EBseq, FDR<0.05). While the impacts of season, sexual maturity, disease, and geography on the beluga blood transcriptome must be established, the presence of transcripts involved in stress, detoxification, and immune functions indicate that blood gene expression analyses may provide information on health status and exposure. This study provides a wealth of transcriptomic data on beluga whales and provides a sizeable pool of preliminary data for comparison with other studies in beluga whale. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. De novo transcriptome of Ischnura elegans provides insights into sensory biology, colour and vision genes.

    PubMed

    Chauhan, Pallavi; Hansson, Bengt; Kraaijeveld, Ken; de Knijff, Peter; Svensson, Erik I; Wellenreuther, Maren

    2014-09-22

    There is growing interest in odonates (damselflies and dragonflies) as model organisms in ecology and evolutionary biology but the development of genomic resources has been slow. So far only one draft genome (Ladona fulva) and one transcriptome assembly (Enallagma hageni) have been published. Odonates have some of the most advanced visual systems among insects and several species are colour polymorphic, and genomic and transcriptomic data would allow studying the genomic architecture of these interesting traits and make detailed comparative studies between related species possible. Here, we present a comprehensive de novo transcriptome assembly for the blue-tailed damselfly Ischnura elegans (Odonata: Coenagrionidae) built from short-read RNA-seq data. The transcriptome analysis in this paper provides a first step towards identifying genes and pathways underlying the visual and colour systems in this insect group. Illumina RNA sequencing performed on tissues from the head, thorax and abdomen generated 428,744,100 paired-ends reads amounting to 110 Gb of sequence data, which was assembled de novo with Trinity. A transcriptome was produced after filtering and quality checking yielding a final set of 60,232 high quality transcripts for analysis. CEGMA software identified 247 out of 248 ultra-conserved core proteins as 'complete' in the transcriptome assembly, yielding a completeness of 99.6%. BLASTX and InterProScan annotated 55% of the assembled transcripts and showed that the three tissue types differed both qualitatively and quantitatively in I. elegans. Differential expression identified 8,625 transcripts to be differentially expressed in head, thorax and abdomen. Targeted analyses of vision and colour functional pathways identified the presence of four different opsin types and three pigmentation pathways. We also identified transcripts involved in temperature sensitivity, thermoregulation and olfaction. All these traits and their associated transcripts are of considerable ecological and evolutionary interest for this and other insect orders. Our work presents a comprehensive transcriptome resource for the ancient insect order Odonata and provides insight into their biology and physiology. The transcriptomic resource can provide a foundation for future investigations into this diverse group, including the evolution of colour, vision, olfaction and thermal adaptation.

  2. Transcriptome analysis of the whitefly, Bemisia tabaci MEAM1 during feeding on tomato infected with the crinivirus, Tomato chlorosis virus, identifies a temporal shift in gene expression and differential regulation of novel orphan genes.

    PubMed

    Kaur, Navneet; Chen, Wenbo; Zheng, Yi; Hasegawa, Daniel K; Ling, Kai-Shu; Fei, Zhangjun; Wintermantel, William M

    2017-05-11

    Whiteflies threaten agricultural crop production worldwide, are polyphagous in nature, and transmit hundreds of plant viruses. Little is known how whitefly gene expression is altered due to feeding on plants infected with a semipersistently transmitted virus. Tomato chlorosis virus (ToCV; genus Crinivirus, family Closteroviridae) is transmitted by the whitefly (Bemisia tabaci) in a semipersistent manner and infects several globally important agricultural and ornamental crops, including tomato. To determine changes in global gene regulation in whiteflies after feeding on tomato plants infected with a crinivirus (ToCV), comparative transcriptomic analysis was performed using RNA-Seq on whitefly (Bemisia tabaci MEAM1) populations after 24, 48, and 72 h acquisition access periods on either ToCV-infected or uninfected tomatoes. Significant differences in gene expression were detected between whiteflies fed on ToCV-infected tomato and those fed on uninfected tomato among the three feeding time periods: 447 up-regulated and 542 down-regulated at 24 h, 4 up-regulated and 7 down-regulated at 48 h, and 50 up-regulated and 160 down-regulated at 72 h. Analysis revealed differential regulation of genes associated with metabolic pathways, signal transduction, transport and catabolism, receptors, glucose transporters, α-glucosidases, and the uric acid pathway in whiteflies fed on ToCV-infected tomatoes, as well as an abundance of differentially regulated novel orphan genes. Results demonstrate for the first time, a specific and temporally regulated response by the whitefly to feeding on a host plant infected with a semipersistently transmitted virus, and advance the understanding of the whitefly vector-virus interactions that facilitate virus transmission. Whitefly transmission of semipersistent viruses is believed to require specific interactions between the virus and its vector that allow binding of virus particles to factors within whitefly mouthparts. Results provide a broader understanding of the potential mechanism of crinivirus transmission by whitefly, aid in discerning genes or loci in whitefly that influence virus interactions or transmission, and subsequently facilitate development of novel, genetics-based control methods against whitefly and whitefly-transmitted viruses.

  3. The large-scale investigation of gene expression in Leymus chinensis stigmas provides a valuable resource for understanding the mechanisms of poaceae self-incompatibility.

    PubMed

    Zhou, Qingyuan; Jia, Junting; Huang, Xing; Yan, Xueqing; Cheng, Liqin; Chen, Shuangyan; Li, Xiaoxia; Peng, Xianjun; Liu, Gongshe

    2014-05-26

    Many Poaceae species show a gametophytic self-incompatibility (GSI) system, which is controlled by at least two independent and multiallelic loci, S and Z. Until currently, the gene products for S and Z were unknown. Grass SI plant stigmas discriminate between pollen grains that land on its surface and support compatible pollen tube growth and penetration into the stigma, whereas recognizing incompatible pollen and thus inhibiting pollination behaviors. Leymus chinensis (Trin.) Tzvel. (sheepgrass) is a Poaceae SI species. A comprehensive analysis of sheepgrass stigma transcriptome may provide valuable information for understanding the mechanism of pollen-stigma interactions and grass SI. The transcript abundance profiles of mature stigmas, mature ovaries and leaves were examined using high-throughput next generation sequencing technology. A comparative transcriptomic analysis of these tissues identified 1,025 specifically or preferentially expressed genes in sheepgrass stigmas. These genes contained a significant proportion of genes predicted to function in cell-cell communication and signal transduction. We identified 111 putative transcription factors (TFs) genes and the most abundant groups were MYB, C2H2, C3H, FAR1, MADS. Comparative analysis of the sheepgrass, rice and Arabidopsis stigma-specific or preferential datasets showed broad similarities and some differences in the proportion of genes in the Gene Ontology (GO) functional categories. Potential SI candidate genes identified in other grasses were also detected in the sheepgrass stigma-specific or preferential dataset. Quantitative real-time PCR experiments validated the expression pattern of stigma preferential genes including homologous grass SI candidate genes. This study represents the first large-scale investigation of gene expression in the stigmas of an SI grass species. We uncovered many notable genes that are potentially involved in pollen-stigma interactions and SI mechanisms, including genes encoding receptor-like protein kinases (RLK), CBL (calcineurin B-like proteins) interacting protein kinases, calcium-dependent protein kinase, expansins, pectinesterase, peroxidases and various transcription factors. The availability of a pool of stigma-specific or preferential genes for L. chinensis offers an opportunity to elucidate the mechanisms of SI in Poaceae.

  4. Deep sequencing reveals cell-type-specific patterns of single-cell transcriptome variation.

    PubMed

    Dueck, Hannah; Khaladkar, Mugdha; Kim, Tae Kyung; Spaethling, Jennifer M; Francis, Chantal; Suresh, Sangita; Fisher, Stephen A; Seale, Patrick; Beck, Sheryl G; Bartfai, Tamas; Kuhn, Bernhard; Eberwine, James; Kim, Junhyong

    2015-06-09

    Differentiation of metazoan cells requires execution of different gene expression programs but recent single-cell transcriptome profiling has revealed considerable variation within cells of seeming identical phenotype. This brings into question the relationship between transcriptome states and cell phenotypes. Additionally, single-cell transcriptomics presents unique analysis challenges that need to be addressed to answer this question. We present high quality deep read-depth single-cell RNA sequencing for 91 cells from five mouse tissues and 18 cells from two rat tissues, along with 30 control samples of bulk RNA diluted to single-cell levels. We find that transcriptomes differ globally across tissues with regard to the number of genes expressed, the average expression patterns, and within-cell-type variation patterns. We develop methods to filter genes for reliable quantification and to calibrate biological variation. All cell types include genes with high variability in expression, in a tissue-specific manner. We also find evidence that single-cell variability of neuronal genes in mice is correlated with that in rats consistent with the hypothesis that levels of variation may be conserved. Single-cell RNA-sequencing data provide a unique view of transcriptome function; however, careful analysis is required in order to use single-cell RNA-sequencing measurements for this purpose. Technical variation must be considered in single-cell RNA-sequencing studies of expression variation. For a subset of genes, biological variability within each cell type appears to be regulated in order to perform dynamic functions, rather than solely molecular noise.

  5. Transcriptional pathway and de novo network-based approaches to effects-based monitoring in the Great Lakes

    EPA Science Inventory

    Transcriptomics provides unique solutions for understanding the impact of complex mixtures and their components on aquatic systems. Here we describe the application of transcriptomics analysis of in situ fathead minnow exposures for assessing biological impacts of wastewater trea...

  6. Transcriptome and gene expression analysis in cold-acclimated guayule (Parthenium argentatum)rubber-producing tissue

    USDA-ARS?s Scientific Manuscript database

    Natural rubber biosynthesis in guayule (Parthenium argentatum) is associated with moderately cold night temperatures. To begin to dissect the molecular events triggered by cold temperatures that govern rubber synthesis induction in guayule, the transcriptome of bark tissue, where rubber is produced...

  7. Next-generation sequencing (NGS) transcriptomes reveal association of multiple genes and pathways contributing to secondary metabolites accumulation in tuberous roots of Aconitum heterophyllum Wall.

    PubMed

    Pal, Tarun; Malhotra, Nikhil; Chanumolu, Sree Krishna; Chauhan, Rajinder Singh

    2015-07-01

    The transcriptomes of Aconitum heterophyllum were assembled and characterized for the first time to decipher molecular components contributing to biosynthesis and accumulation of metabolites in tuberous roots. Aconitum heterophyllum Wall., popularly known as Atis, is a high-value medicinal herb of North-Western Himalayas. No information exists as of today on genetic factors contributing to the biosynthesis of secondary metabolites accumulating in tuberous roots, thereby, limiting genetic interventions towards genetic improvement of A. heterophyllum. Illumina paired-end sequencing followed by de novo assembly yielded 75,548 transcripts for root transcriptome and 39,100 transcripts for shoot transcriptome with minimum length of 200 bp. Biological role analysis of root versus shoot transcriptomes assigned 27,596 and 16,604 root transcripts; 12,340 and 9398 shoot transcripts into gene ontology and clusters of orthologous group, respectively. KEGG pathway mapping assigned 37 and 31 transcripts onto starch-sucrose metabolism while 329 and 341 KEGG orthologies associated with transcripts were found to be involved in biosynthesis of various secondary metabolites for root and shoot transcriptomes, respectively. In silico expression profiling of the mevalonate/2-C-methyl-D-erythritol 4-phosphate (non-mevalonate) pathway genes for aconites biosynthesis revealed 4 genes HMGR (3-hydroxy-3-methylglutaryl-CoA reductase), MVK (mevalonate kinase), MVDD (mevalonate diphosphate decarboxylase) and HDS (1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase) with higher expression in root transcriptome compared to shoot transcriptome suggesting their key role in biosynthesis of aconite alkaloids. Five genes, GMPase (geranyl diphosphate mannose pyrophosphorylase), SHAGGY, RBX1 (RING-box protein 1), SRF receptor kinases and β-amylase, implicated in tuberous root formation in other plant species showed higher levels of expression in tuberous roots compared to shoots. A total of 15,487 transcription factors belonging to bHLH, MYB, bZIP families and 399 ABC transporters which regulate biosynthesis and accumulation of bioactive compounds were identified in root and shoot transcriptomes. The expression of 5 ABC transporters involved in tuberous root development was validated by quantitative PCR analysis. Network connectivity diagrams were drawn for starch-sucrose metabolism and isoquinoline alkaloid biosynthesis associated with tuberous root growth and secondary metabolism, respectively, in root transcriptome of A. heterophyllum. The current endeavor will be of practical importance in planning a suitable genetic intervention strategy for the improvement of A. heterophyllum.

  8. Profiling the venom gland transcriptomes of Costa Rican snakes by 454 pyrosequencing

    PubMed Central

    2011-01-01

    Background A long term research goal of venomics, of applied importance for improving current antivenom therapy, but also for drug discovery, is to understand the pharmacological potential of venoms. Individually or combined, proteomic and transcriptomic studies have demonstrated their feasibility to explore in depth the molecular diversity of venoms. In the absence of genome sequence, transcriptomes represent also valuable searchable databases for proteomic projects. Results The venom gland transcriptomes of 8 Costa Rican taxa from 5 genera (Crotalus, Bothrops, Atropoides, Cerrophidion, and Bothriechis) of pitvipers were investigated using high-throughput 454 pyrosequencing. 100,394 out of 330,010 masked reads produced significant hits in the available databases. 5.165,220 nucleotides (8.27%) were masked by RepeatMasker, the vast majority of which corresponding to class I (retroelements) and class II (DNA transposons) mobile elements. BLAST hits included 79,991 matches to entries of the taxonomic suborder Serpentes, of which 62,433 displayed similarity to documented venom proteins. Strong discrepancies between the transcriptome-computed and the proteome-gathered toxin compositions were obvious at first sight. Although the reasons underlaying this discrepancy are elusive, since no clear trend within or between species is apparent, the data indicate that individual mRNA species may be translationally controlled in a species-dependent manner. The minimum number of genes from each toxin family transcribed into the venom gland transcriptome of each species was calculated from multiple alignments of reads matched to a full-length reference sequence of each toxin family. Reads encoding ORF regions of Kazal-type inhibitor-like proteins were uniquely found in Bothriechis schlegelii and B. lateralis transcriptomes, suggesting a genus-specific recruitment event during the early-Middle Miocene. A transcriptome-based cladogram supports the large divergence between A. mexicanus and A. picadoi, and a closer kinship between A. mexicanus and C. godmani. Conclusions Our comparative next-generation sequencing (NGS) analysis reveals taxon-specific trends governing the formulation of the venom arsenal. Knowledge of the venom proteome provides hints on the translation efficiency of toxin-coding transcripts, contributing thereby to a more accurate interpretation of the transcriptome. The application of NGS to the analysis of snake venom transcriptomes, may represent the tool for opening the door to systems venomics. PMID:21605378

  9. Comparative Toxicogenomic Responses to the Flame Retardant mITP in Developing Zebrafish.

    PubMed

    Haggard, Derik E; Das, Siba R; Tanguay, Robert L

    2017-02-20

    Monosubstituted isopropylated triaryl phosphate (mITP) is a major component of Firemaster 550, an additive flame retardant mixture commonly used in polyurethane foams. Developmental toxicity studies in zebrafish established mITP as the most toxic component of FM 550, which causes pericardial edema and heart looping failure. Mechanistic studies showed that mITP is an aryl hydrocarbon receptor (AhR) ligand; however, the cardiotoxic effects of mITP were independent of the AhR. We performed comparative whole genome transcriptomics in wild-type and ahr2 hu3335 zebrafish, which lack functional ahr2, to identify transcriptional signatures causally involved in the mechanism of mITP-induced cardiotoxicity. Regardless of ahr2 status, mITP exposure resulted in decreased expression of transcripts related to the synthesis of all-trans-retinoic acid and a host of Hox genes. Clustered gene ontology enrichment analysis showed unique enrichment in biological processes related to xenobiotic metabolism and response to external stimuli in wild-type samples. Transcript enrichments overlapping both genotypes involved the retinoid metabolic process and sensory/visual perception biological processes. Examination of the gene-gene interaction network of the differentially expressed transcripts in both genetic backgrounds demonstrated a strong AhR interaction network specific to wild-type samples, with overlapping genes regulated by retinoic acid receptors (RARs). A transcriptome analysis of control ahr2-null zebrafish identified potential cross-talk among AhR, Nrf2, and Hif1α. Collectively, we confirmed that mITP is an AhR ligand and present evidence in support of our hypothesis that mITP's developmental cardiotoxic effects are mediated by inhibition at the RAR level.

  10. A large-scale full-length cDNA analysis to explore the budding yeast transcriptome

    PubMed Central

    Miura, Fumihito; Kawaguchi, Noriko; Sese, Jun; Toyoda, Atsushi; Hattori, Masahira; Morishita, Shinichi; Ito, Takashi

    2006-01-01

    We performed a large-scale cDNA analysis to explore the transcriptome of the budding yeast Saccharomyces cerevisiae. We sequenced two cDNA libraries, one from the cells exponentially growing in a minimal medium and the other from meiotic cells. Both libraries were generated by using a vector-capping method that allows the accurate mapping of transcription start sites (TSSs). Consequently, we identified 11,575 TSSs associated with 3,638 annotated genomic features, including 3,599 ORFs, to suggest that most yeast genes have two or more TSSs. In addition, we identified 45 previously undescribed introns, including those affecting current ORF annotations and those spliced alternatively. Furthermore, the analysis revealed 667 transcription units in the intergenic regions and transcripts derived from antisense strands of 367 known features. We also found that 348 ORFs carry TSSs in their 3′-halves to generate sense transcripts starting from inside the ORFs. These results indicate that the budding yeast transcriptome is considerably more complex than previously thought, and it shares many recently revealed characteristics with the transcriptomes of mammals and other higher eukaryotes. Thus, the genome-wide active transcription that generates novel classes of transcripts appears to be an intrinsic feature of the eukaryotic cells. The budding yeast will serve as a versatile model for the studies on these aspects of transcriptome, and the full-length cDNA clones can function as an invaluable resource in such studies. PMID:17101987

  11. Genome-wide transcriptome study in wheat identified candidate genes related to processing quality, majority of them showing interaction (quality x development) and having temporal and spatial distributions.

    PubMed

    Singh, Anuradha; Mantri, Shrikant; Sharma, Monica; Chaudhury, Ashok; Tuli, Rakesh; Roy, Joy

    2014-01-16

    The cultivated bread wheat (Triticum aestivum L.) possesses unique flour quality, which can be processed into many end-use food products such as bread, pasta, chapatti (unleavened flat bread), biscuit, etc. The present wheat varieties require improvement in processing quality to meet the increasing demand of better quality food products. However, processing quality is very complex and controlled by many genes, which have not been completely explored. To identify the candidate genes whose expressions changed due to variation in processing quality and interaction (quality x development), genome-wide transcriptome studies were performed in two sets of diverse Indian wheat varieties differing for chapatti quality. It is also important to understand the temporal and spatial distributions of their expressions for designing tissue and growth specific functional genomics experiments. Gene-specific two-way ANOVA analysis of expression of about 55 K transcripts in two diverse sets of Indian wheat varieties for chapatti quality at three seed developmental stages identified 236 differentially expressed probe sets (10-fold). Out of 236, 110 probe sets were identified for chapatti quality. Many processing quality related key genes such as glutenin and gliadins, puroindolines, grain softness protein, alpha and beta amylases, proteases, were identified, and many other candidate genes related to cellular and molecular functions were also identified. The ANOVA analysis revealed that the expression of 56 of 110 probe sets was involved in interaction (quality x development). Majority of the probe sets showed differential expression at early stage of seed development i.e. temporal expression. Meta-analysis revealed that the majority of the genes expressed in one or a few growth stages indicating spatial distribution of their expressions. The differential expressions of a few candidate genes such as pre-alpha/beta-gliadin and gamma gliadin were validated by RT-PCR. Therefore, this study identified several quality related key genes including many other genes, their interactions (quality x development) and temporal and spatial distributions. The candidate genes identified for processing quality and information on temporal and spatial distributions of their expressions would be useful for designing wheat improvement programs for processing quality either by changing their expression or development of single nucleotide polymorphisms (SNPs) markers.

  12. Genome-wide transcriptome study in wheat identified candidate genes related to processing quality, majority of them showing interaction (quality x development) and having temporal and spatial distributions

    PubMed Central

    2014-01-01

    Background The cultivated bread wheat (Triticum aestivum L.) possesses unique flour quality, which can be processed into many end-use food products such as bread, pasta, chapatti (unleavened flat bread), biscuit, etc. The present wheat varieties require improvement in processing quality to meet the increasing demand of better quality food products. However, processing quality is very complex and controlled by many genes, which have not been completely explored. To identify the candidate genes whose expressions changed due to variation in processing quality and interaction (quality x development), genome-wide transcriptome studies were performed in two sets of diverse Indian wheat varieties differing for chapatti quality. It is also important to understand the temporal and spatial distributions of their expressions for designing tissue and growth specific functional genomics experiments. Results Gene-specific two-way ANOVA analysis of expression of about 55 K transcripts in two diverse sets of Indian wheat varieties for chapatti quality at three seed developmental stages identified 236 differentially expressed probe sets (10-fold). Out of 236, 110 probe sets were identified for chapatti quality. Many processing quality related key genes such as glutenin and gliadins, puroindolines, grain softness protein, alpha and beta amylases, proteases, were identified, and many other candidate genes related to cellular and molecular functions were also identified. The ANOVA analysis revealed that the expression of 56 of 110 probe sets was involved in interaction (quality x development). Majority of the probe sets showed differential expression at early stage of seed development i.e. temporal expression. Meta-analysis revealed that the majority of the genes expressed in one or a few growth stages indicating spatial distribution of their expressions. The differential expressions of a few candidate genes such as pre-alpha/beta-gliadin and gamma gliadin were validated by RT-PCR. Therefore, this study identified several quality related key genes including many other genes, their interactions (quality x development) and temporal and spatial distributions. Conclusions The candidate genes identified for processing quality and information on temporal and spatial distributions of their expressions would be useful for designing wheat improvement programs for processing quality either by changing their expression or development of single nucleotide polymorphisms (SNPs) markers. PMID:24433256

  13. Tentacle Transcriptome and Venom Proteome of the Pacific Sea Nettle, Chrysaora fuscescens (Cnidaria: Scyphozoa)

    PubMed Central

    Ponce, Dalia; Brinkman, Diane L.; Potriquet, Jeremy; Mulvenna, Jason

    2016-01-01

    Jellyfish venoms are rich sources of toxins designed to capture prey or deter predators, but they can also elicit harmful effects in humans. In this study, an integrated transcriptomic and proteomic approach was used to identify putative toxins and their potential role in the venom of the scyphozoan jellyfish Chrysaora fuscescens. A de novo tentacle transcriptome, containing more than 23,000 contigs, was constructed and used in proteomic analysis of C. fuscescens venom to identify potential toxins. From a total of 163 proteins identified in the venom proteome, 27 were classified as putative toxins and grouped into six protein families: proteinases, venom allergens, C-type lectins, pore-forming toxins, glycoside hydrolases and enzyme inhibitors. Other putative toxins identified in the transcriptome, but not the proteome, included additional proteinases as well as lipases and deoxyribonucleases. Sequence analysis also revealed the presence of ShKT domains in two putative venom proteins from the proteome and an additional 15 from the transcriptome, suggesting potential ion channel blockade or modulatory activities. Comparison of these potential toxins to those from other cnidarians provided insight into their possible roles in C. fuscescens venom and an overview of the diversity of potential toxin families in cnidarian venoms. PMID:27058558

  14. Comparative transcriptome analysis of soybean response to bean pyralid larvae.

    PubMed

    Zeng, Weiying; Sun, Zudong; Cai, Zhaoyan; Chen, Huaizhu; Lai, Zhenguang; Yang, Shouzhen; Tang, Xiangmin

    2017-11-13

    Soybean is one of most important oilseed crop worldwide, however, its production is often limited by many insect pests. Bean pyralid is one of the major soybean leaf-feeding insects in China. To explore the defense mechanisms of soybean resistance to bean pyralid, the comparative transcriptome sequencing was completed between the leaves infested with bean pyralid larvae and no worm of soybean (Gantai-2-2 and Wan82-178) on the Illumina HiSeq™ 2000 platform. In total, we identified 1744 differentially expressed genes (DEGs) in the leaves of Gantai-2-2 (1064) and Wan82-178 (680) fed by bean pyralid for 48 h, compared to 0 h. Interestingly, 315 DEGs were shared by Gantai-2-2 and Wan82-178, while 749 and 365 DEGs specifically identified in Gantai-2-2 and Wan82-178, respectively. When comparing Gantai-2-2 with Wan82-178, 605 DEGs were identified at 0 h feeding, and 468 DEGs were identified at 48 h feeding. Gene Ontology (GO) annotation analysis revealed that the DEGs were mainly involved in the metabolic process, single-organism process, cellular process, responses to stimulus, catalytic activities and binding. Pathway analysis showed that most of the DEGs were associated with the plant-pathogen interaction, phenylpropanoid biosynthesis, phenylalanine metabolism, flavonoid biosynthesis, peroxisome, plant hormone signal transduction, terpenoid backbone biosynthesis, and so on. Finally, we used qRT-PCR to validate the expression patterns of several genes and the results showed an excellent agreement with deep sequencing. According to the comparative transcriptome analysis results and related literature reports, we concluded that the response to bean pyralid feeding might be related to the disturbed functions and metabolism pathways of some key DEGs, such as DEGs involved in the ROS removal system, plant hormone metabolism, intracellular signal transduction pathways, secondary metabolism, transcription factors, biotic and abiotic stresses. We speculated that these genes may have played an important role in synthesizing substances to resist insect attacks in soybean. Our results provide a valuable resource of soybean defense genes that will benefit other studies in this field.

  15. Natural Variation in Fish Transcriptomes: Comparative Analysis of the Fathead Minnow (Pimephales promelas) and Zebrafish (Danio rerio)

    EPA Science Inventory

    Fathead minnow and zebrafish are among the most intensively studied fish species in environmental toxicogenomics. To aid the assessment and interpretation of subtle transcriptomic effects from treatment conditions of interest, there needs to be a better characterization and unde...

  16. Comparative transcriptome analysis in Sclerotinia sclerotiorum and S. trifoliorum by 454 Titanium RNA sequencing

    USDA-ARS?s Scientific Manuscript database

    Sclerotinia sclerotiorum and S. trifoliorum are two closely related devastating plant pathogens. Extensive research has been conducted on S. sclerotiorum and its genome sequences are available. To take advantages of the genomic information of S. sclerotiorum, we compared the transcriptome of S. tr...

  17. Transcriptome analysis of Pseudomonas syringae identifies new genes, ncRNAs, and antisense activity

    USDA-ARS?s Scientific Manuscript database

    To fully understand how bacteria respond to their environment, it is essential to assess genome-wide transcriptional activity. New high throughput sequencing technologies make it possible to query the transcriptome of an organism in an efficient unbiased manner. We applied a strand-specific method t...

  18. Performance of Arma chinensis reared on an artificial diet formulated using transcriptomic methods

    USDA-ARS?s Scientific Manuscript database

    An artificial diet formulated for continuous rearing of the predator Arma chinensis was inferior to natural prey when evaluated using life history parameters. A transcriptome analysis identified differentially expressed genes in diet-fed and prey-fed A. chinensis that were suggestive of molecular me...

  19. Comparative transcriptome analysis of Aspergillus flavus isolates under different oxidative stresses and culture media

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus and aflatoxin contamination in the field are known to be influenced by numerous stress factors, particularly drought and heat stress. However, the purpose of aflatoxin production is unknown. Here, we report transcriptome analyses comprised of 282.6 Gb of sequencing data describing...

  20. Additional annotation of the pig transcriptome using integrated Iso-seq and Illumina RNA-seq analysis

    USDA-ARS?s Scientific Manuscript database

    Alternative splicing is a well-known phenomenon that dramatically increases eukaryotic transcriptome diversity. The extent of mRNA isoform diversity among porcine tissues was assessed using Pacific Biosciences single-molecule long-read isoform sequencing (Iso-Seq) and Illumina short read sequencing ...

  1. Identification and characterization of large DNA deletions affecting oil quality traits in soybean seeds through transcriptome sequencing analysis

    USDA-ARS?s Scientific Manuscript database

    Understanding the molecular and genetic mechanisms underlying variation in seed composition and contents among different genotypes is important for soybean oil quality improvement. We designed a bioinformatics approach to compare seed transcriptomes of 9 soybean genotypes varying in oil composition ...

  2. Mapping Argonaute and conventional RNA-binding protein interactions with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis

    PubMed Central

    Moore, Michael; Zhang, Chaolin; Gantman, Emily Conn; Mele, Aldo; Darnell, Jennifer C.; Darnell, Robert B.

    2014-01-01

    Summary Identifying sites where RNA binding proteins (RNABPs) interact with target RNAs opens the door to understanding the vast complexity of RNA regulation. UV-crosslinking and immunoprecipitation (CLIP) is a transformative technology in which RNAs purified from in vivo cross-linked RNA-protein complexes are sequenced to reveal footprints of RNABP:RNA contacts. CLIP combined with high throughput sequencing (HITS-CLIP) is a generalizable strategy to produce transcriptome-wide RNA binding maps with higher accuracy and resolution than standard RNA immunoprecipitation (RIP) profiling or purely computational approaches. Applying CLIP to Argonaute proteins has expanded the utility of this approach to mapping binding sites for microRNAs and other small regulatory RNAs. Finally, recent advances in data analysis take advantage of crosslinked-induced mutation sites (CIMS) to refine RNA-binding maps to single-nucleotide resolution. Once IP conditions are established, HITS-CLIP takes approximately eight days to prepare RNA for sequencing. Established pipelines for data analysis, including for CIMS, take 3-4 days. PMID:24407355

  3. Transcriptomics in cancer diagnostics: developments in technology, clinical research and commercialization.

    PubMed

    Sager, Monica; Yeat, Nai Chien; Pajaro-Van der Stadt, Stefan; Lin, Charlotte; Ren, Qiuyin; Lin, Jimmy

    2015-01-01

    Transcriptomic technologies are evolving to diagnose cancer earlier and more accurately to provide greater predictive and prognostic utility to oncologists and patients. Digital techniques such as RNA sequencing are replacing still-imaging techniques to provide more detailed analysis of the transcriptome and aberrant expression that causes oncogenesis, while companion diagnostics are developing to determine the likely effectiveness of targeted treatments. This article examines recent advancements in molecular profiling research and technology as applied to cancer diagnosis, clinical applications and predictions for the future of personalized medicine in oncology.

  4. Single prokaryotic cell isolation and total transcript amplification protocol for transcriptomic analysis.

    PubMed

    Kang, Yun; McMillan, Ian; Norris, Michael H; Hoang, Tung T

    2015-07-01

    Until recently, transcriptome analyses of single cells have been confined to eukaryotes. The information obtained from single-cell transcripts can provide detailed insight into spatiotemporal gene expression, and it could be even more valuable if expanded to prokaryotic cells. Transcriptome analysis of single prokaryotic cells is a recently developed and powerful tool. Here we describe a procedure that allows amplification of the total transcript of a single prokaryotic cell for in-depth analysis. This is performed by using a laser-capture microdissection instrument for single-cell isolation, followed by reverse transcription via Moloney murine leukemia virus, degradation of chromosomal DNA with McrBC and DpnI restriction enzymes, single-stranded cDNA (ss-cDNA) ligation using T4 polynucleotide kinase and CircLigase, and polymerization of ss-cDNA to double-stranded cDNA (ds-cDNA) by Φ29 polymerase. This procedure takes ∼5 d, and sufficient amounts of ds-cDNA can be obtained from single-cell RNA template for further microarray analysis.

  5. Cell type-specific responses to salinity - the epidermal bladder cell transcriptome of Mesembryanthemum crystallinum.

    PubMed

    Oh, Dong-Ha; Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar; Lee, Sang-Yeol; Bohnert, Hans J; Dassanayake, Maheshi

    2015-08-01

    Mesembryanthemum crystallinum (ice plant) exhibits extreme tolerance to salt. Epidermal bladder cells (EBCs), developing on the surface of aerial tissues and specialized in sodium sequestration and other protective functions, are critical for the plant's stress adaptation. We present the first transcriptome analysis of EBCs isolated from intact plants, to investigate cell type-specific responses during plant salt adaptation. We developed a de novo assembled, nonredundant EBC reference transcriptome. Using RNAseq, we compared the expression patterns of the EBC-specific transcriptome between control and salt-treated plants. The EBC reference transcriptome consists of 37 341 transcript-contigs, of which 7% showed significantly different expression between salt-treated and control samples. We identified significant changes in ion transport, metabolism related to energy generation and osmolyte accumulation, stress signalling, and organelle functions, as well as a number of lineage-specific genes of unknown function, in response to salt treatment. The salinity-induced EBC transcriptome includes active transcript clusters, refuting the view of EBCs as passive storage compartments in the whole-plant stress response. EBC transcriptomes, differing from those of whole plants or leaf tissue, exemplify the importance of cell type-specific resolution in understanding stress adaptive mechanisms. No claim to original US government works. New Phytologist © 2015 New Phytologist Trust.

  6. Transcriptome analysis of Brassica napus pod using RNA-Seq and identification of lipid-related candidate genes.

    PubMed

    Xu, Hai-Ming; Kong, Xiang-Dong; Chen, Fei; Huang, Ji-Xiang; Lou, Xiang-Yang; Zhao, Jian-Yi

    2015-10-24

    Brassica napus is an important oilseed crop. Dissection of the genetic architecture underlying oil-related biological processes will greatly facilitates the genetic improvement of rapeseed. The differential gene expression during pod development offers a snapshot on the genes responsible for oil accumulation in. To identify candidate genes in the linkage peaks reported previously, we used RNA sequencing (RNA-Seq) technology to analyze the pod transcriptomes of German cultivar Sollux and Chinese inbred line Gaoyou. The RNA samples were collected for RNA-Seq at 5-7, 15-17 and 25-27 days after flowering (DAF). Bioinformatics analysis was performed to investigate differentially expressed genes (DEGs). Gene annotation analysis was integrated with QTL mapping and Brassica napus pod transcriptome profiling to detect potential candidate genes in oilseed. Four hundred sixty five and two thousand, one hundred fourteen candidate DEGs were identified, respectively, between two varieties at the same stages and across different periods of each variety. Then, 33 DEGs between Sollux and Gaoyou were identified as the candidate genes affecting seed oil content by combining those DEGs with the quantitative trait locus (QTL) mapping results, of which, one was found to be homologous to Arabidopsis thaliana lipid-related genes. Intervarietal DEGs of lipid pathways in QTL regions represent important candidate genes for oil-related traits. Integrated analysis of transcriptome profiling, QTL mapping and comparative genomics with other relative species leads to efficient identification of most plausible functional genes underlying oil-content related characters, offering valuable resources for bettering breeding program of Brassica napus. This study provided a comprehensive overview on the pod transcriptomes of two varieties with different oil-contents at the three developmental stages.

  7. Androgen-responsive non-coding small RNAs extend the potential of HCG stimulation to act as a bioassay of androgen sufficiency.

    PubMed

    Rodie, M E; Mudaliar, M A V; Herzyk, P; McMillan, M; Boroujerdi, M; Chudleigh, S; Tobias, E S; Ahmed, S F

    2017-10-01

    It is unclear whether a short-term change in circulating androgens is associated with changes in the transcriptome of the peripheral blood mononuclear cells (PBMC). To explore the effect of hCG stimulation on the PBMC transcriptome, 12 boys with a median age (range) of 0.7 years (0.3, 11.2) who received intramuscular hCG 1500u on 3 consecutive days as part of their investigations underwent transcriptomic array analysis on RNA extracted from peripheral blood mononuclear cells before and after hCG stimulation. Median pre- and post-hCG testosterone for the overall group was 0.7 nmol/L (<0.5, 6) and 7.9 nmol/L (<0.5, 31.5), respectively. Of the 12 boys, 3 (25%) did not respond to hCG stimulation with a pre and post median serum testosterone of <0.5 nmol/L and <0.5 nmol/L, respectively. When corrected for gene expression changes in the non-responders to exclude hCG effects, all 9 of the hCG responders consistently demonstrated a 20% or greater increase in the expression of piR-37153 and piR-39248 , non-coding PIWI-interacting RNAs (piRNAs). In addition, of the 9 responders, 8, 6 and 4 demonstrated a 30, 40 and 50% rise, respectively, in a total of 2 further piRNAs. In addition, 3 of the responders showed a 50% or greater rise in the expression of another small RNA, SNORD5 . On comparing fold-change in serum testosterone with fold-change in the above transcripts, a positive correlation was detected for SNORD5 ( P  = 0.01). The identification of a dynamic and androgen-responsive PBMC transcriptome extends the potential value of the hCG test for the assessment of androgen sufficiency. © 2017 The authors.

  8. Complementary transcriptome and proteome profiling in cabbage buds of a recessive male sterile mutant provides new insights into male reproductive development.

    PubMed

    Ji, Jialei; Yang, Limei; Fang, Zhiyuan; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao; Liu, Yumei; Li, Zhansheng

    2018-05-15

    Plant male reproductive development is a very complex biological process that involves multiple metabolic pathways. To reveal novel insights into male reproductive development, we conducted an integrated profiling of gene activity in the developing buds of a cabbage recessive genetic male sterile mutant. Using RNA-Seq and label-free quantitative proteomics, 2881 transcripts and 1245 protein species were identified with significant differential abundance between the male sterile line 83121A and its isogenic maintainer line 83121B. Analyses of function annotations and correlations between transcriptome and proteome and protein interaction networks were also conducted, which suggested that the male sterility involves a complex regulatory pattern. Moreover, several key biological processes, such as fatty acid metabolism, tapetosome biosynthesis, amino acid metabolism and protein synthesis and degradation were identified as being of relevance to male reproductive development. A large number of protein species involved in sporopollenin synthesis, amino acid synthesis, ribosome assembly, protein processing in endoplasmic reticulum and lipid transfer were observed to be significantly down-accumulated in 83121A buds, indicating their potential roles in the regulation of cabbage microspore abortion. In summary, the conjoint analysis of the transcriptome and proteome provided a global picture regarding the molecular dynamics in male sterile buds of 83121A. Male sterile mutants are excellent materials for the study of plant male reproductive development. This study revealed the molecular dynamics of recessive male sterility in cabbage at the transcriptome and proteome levels, which deepens our understanding of the metabolic pathways involved in male development. Moreover, the male sterility-related genes identified in this study could provide a reference for the artificial regulation of cabbage fertility by using genetic engineering technology, which may result in potential applications in agriculture such as production of hybrid seeds using male sterility. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Physiological and Transcriptome Responses to Combinations of Elevated CO2 and Magnesium in Arabidopsis thaliana

    PubMed Central

    Niu, Yaofang; Ahammed, Golam Jalal; Tang, Caixian; Guo, Longbiao; Yu, Jingquan

    2016-01-01

    The unprecedented rise in atmospheric CO2 concentration and injudicious fertilization or heterogeneous distribution of Mg in the soil warrant further research to understand the synergistic and holistic mechanisms involved in the plant growth regulation. This study investigated the influence of elevated CO2 (800 μL L−1) on physiological and transcriptomic profiles in Arabidopsis cultured in hydroponic media treated with 1 μM (low), 1000 μM (normal) and 10000 μM (high) Mg2+. Following 7-d treatment, elevated CO2 increased the shoot growth and chlorophyll content under both low and normal Mg supply, whereas root growth was improved exclusively under normal Mg nutrition. Notably, the effect of elevated CO2 on mineral homeostasis in both shoots and roots was less than that of Mg supply. Irrespective of CO2 treatment, high Mg increased number of young leaf but decreased root growth and absorption of P, K, Ca, Fe and Mn whereas low Mg increased the concentration of P, K, Ca and Fe in leaves. Transcriptomics results showed that elevated CO2 decreased the expression of genes related to cell redox homeostasis, cadmium response, and lipid localization, but enhanced signal transduction, protein phosphorylation, NBS-LRR disease resistance proteins and subsequently programmed cell death in low-Mg shoots. By comparison, elevated CO2 enhanced the response of lipid localization (mainly LTP transfer protein/protease inhibitor), endomembrane system, heme binding and cell wall modification in high-Mg roots. Some of these transcriptomic results are substantially in accordance with our physiological and/or biochemical analysis. The present findings broaden our current understanding on the interactive effect of elevated CO2 and Mg levels in the Arabidopsis, which may help to design the novel metabolic engineering strategies to cope with Mg deficiency/excess in crops under elevated CO2. PMID:26881808

  10. Effects of crude oil exposure and elevated temperature on the liver transcriptome of polar cod (Boreogadus saida).

    PubMed

    Andersen, Øivind; Frantzen, Marianne; Rosland, Marte; Timmerhaus, Gerrit; Skugor, Adrijana; Krasnov, Aleksei

    2015-08-01

    Petroleum-related activities in the Arctic have raised concerns about the adverse effects of potential oil spill on the environment and living organisms. Polar cod plays a key role in the Arctic marine ecosystem and is an important species for monitoring oil pollution in this region. We examined potential interactions of oil pollution and global warming by analysing liver transcriptome changes in polar cod exposed to crude oil at elevated temperature. Adult males and females were kept at high (11°C) or normal (4°C) temperature for 5 days before exposure to mechanically dispersed crude oil for 2 days followed by recovery in clean sea water for 11 days at the two temperatures. Genome-wide microarray analysis of liver samples revealed numerous differentially expressed genes induced by uptake of oil as confirmed by increased levels of bile polycyclic aromatic hydrocarbon (PAH) metabolites. The hepatic response included genes playing important roles in xenobiotic detoxification and closely related biochemical processes, but also of importance for protein stress response, cell repair and immunity. Though magnitude of transcriptome responses was similar at both temperatures, the upregulated expression of cyp1a1 and several chaperone genes was much stronger at 11°C. Most gene expression changes returned to basal levels after recovery. The microarray results were validated by qPCR measurement of eleven selected genes representing both known and novel biomarkers to assess exposure to anthropogenic threats on polar cod. Strong upregulation of the gene encoding fibroblast growth factor 7 is proposed to protect the liver of polar fish with aglomerular kidneys from the toxic effect of accumulated biliary compounds. The highly altered liver transcriptome patterns after acute oil exposure and recovery suggests rapid responses in polar cod to oil pollutants and the ability to cope with toxicity in relatively short time. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Use of homologous and heterologous gene expression profiling tools to characterize transcription dynamics during apple fruit maturation and ripening

    PubMed Central

    2010-01-01

    Background Fruit development, maturation and ripening consists of a complex series of biochemical and physiological changes that in climacteric fruits, including apple and tomato, are coordinated by the gaseous hormone ethylene. These changes lead to final fruit quality and understanding of the functional machinery underlying these processes is of both biological and practical importance. To date many reports have been made on the analysis of gene expression in apple. In this study we focused our investigation on the role of ethylene during apple maturation, specifically comparing transcriptomics of normal ripening with changes resulting from application of the hormone receptor competitor 1-Methylcyclopropene. Results To gain insight into the molecular process regulating ripening in apple, and to compare to tomato (model species for ripening studies), we utilized both homologous and heterologous (tomato) microarray to profile transcriptome dynamics of genes involved in fruit development and ripening, emphasizing those which are ethylene regulated. The use of both types of microarrays facilitated transcriptome comparison between apple and tomato (for the later using data previously published and available at the TED: tomato expression database) and highlighted genes conserved during ripening of both species, which in turn represent a foundation for further comparative genomic studies. The cross-species analysis had the secondary aim of examining the efficiency of heterologous (specifically tomato) microarray hybridization for candidate gene identification as related to the ripening process. The resulting transcriptomics data revealed coordinated gene expression during fruit ripening of a subset of ripening-related and ethylene responsive genes, further facilitating the analysis of ethylene response during fruit maturation and ripening. Conclusion Our combined strategy based on microarray hybridization enabled transcriptome characterization during normal climacteric apple ripening, as well as definition of ethylene-dependent transcriptome changes. Comparison with tomato fruit maturation and ethylene responsive transcriptome activity facilitated identification of putative conserved orthologous ripening-related genes, which serve as an initial set of candidates for assessing conservation of gene activity across genomes of fruit bearing plant species. PMID:20973957

  12. Complete Genome Sequence of Sporisorium scitamineum and Biotrophic Interaction Transcriptome with Sugarcane

    PubMed Central

    Benevenuto, Juliana; Peters, Leila P.; Carvalho, Giselle; Palhares, Alessandra; Quecine, Maria C.; Nunes, Filipe R. S.; Kmit, Maria C. P.; Wai, Alvan; Hausner, Georg; Aitken, Karen S.; Berkman, Paul J.; Fraser, James A.; Moolhuijzen, Paula M.; Coutinho, Luiz L.; Creste, Silvana; Vieira, Maria L. C.; Kitajima, João P.; Monteiro-Vitorello, Claudia B.

    2015-01-01

    Sporisorium scitamineum is a biotrophic fungus responsible for the sugarcane smut, a worldwide spread disease. This study provides the complete sequence of individual chromosomes of S. scitamineum from telomere to telomere achieved by a combination of PacBio long reads and Illumina short reads sequence data, as well as a draft sequence of a second fungal strain. Comparative analysis to previous available sequences of another strain detected few polymorphisms among the three genomes. The novel complete sequence described herein allowed us to identify and annotate extended subtelomeric regions, repetitive elements and the mitochondrial DNA sequence. The genome comprises 19,979,571 bases, 6,677 genes encoding proteins, 111 tRNAs and 3 assembled copies of rDNA, out of our estimated number of copies as 130. Chromosomal reorganizations were detected when comparing to sequences of S. reilianum, the closest smut relative, potentially influenced by repeats of transposable elements. Repetitive elements may have also directed the linkage of the two mating-type loci. The fungal transcriptome profiling from in vitro and from interaction with sugarcane at two time points (early infection and whip emergence) revealed that 13.5% of the genes were differentially expressed in planta and particular to each developmental stage. Among them are plant cell wall degrading enzymes, proteases, lipases, chitin modification and lignin degradation enzymes, sugar transporters and transcriptional factors. The fungus also modulates transcription of genes related to surviving against reactive oxygen species and other toxic metabolites produced by the plant. Previously described effectors in smut/plant interactions were detected but some new candidates are proposed. Ten genomic islands harboring some of the candidate genes unique to S. scitamineum were expressed only in planta. RNAseq data was also used to reassure gene predictions. PMID:26065709

  13. High throughput transcriptome analysis of coffee reveals prehaustorial resistance in response to Hemileia vastatrix infection.

    PubMed

    Florez, Juan Carlos; Mofatto, Luciana Souto; do Livramento Freitas-Lopes, Rejane; Ferreira, Sávio Siqueira; Zambolim, Eunize Maciel; Carazzolle, Marcelo Falsarella; Zambolim, Laércio; Caixeta, Eveline Teixeira

    2017-12-01

    We provide a transcriptional profile of coffee rust interaction and identified putative up regulated resistant genes Coffee rust disease, caused by the fungus Hemileia vastatrix, is one of the major diseases in coffee throughout the world. The use of resistant cultivars is considered to be the most effective control strategy for this disease. To identify candidate genes related to different mechanism defense in coffee, we present a time-course comparative gene expression profile of Caturra (susceptible) and Híbrido de Timor (HdT, resistant) in response to H. vastatrix race XXXIII infection. The main objectives were to obtain a global overview of transcriptome in both interaction, compatible and incompatible, and, specially, analyze up-regulated HdT specific genes with inducible resistant and defense signaling pathways. Using both Coffea canephora as a reference genome and de novo assembly, we obtained 43,159 transcripts. At early infection events (12 and 24 h after infection), HdT responded to the attack of H. vastatrix with a larger number of up-regulated genes than Caturra, which was related to prehaustorial resistance. The genes found in HdT at early hours were involved in receptor-like kinases, response ion fluxes, production of reactive oxygen species, protein phosphorylation, ethylene biosynthesis and callose deposition. We selected 13 up-regulated HdT-exclusive genes to validate by real-time qPCR, which most of them confirmed their higher expression in HdT than in Caturra at early stage of infection. These genes have the potential to assist the development of new coffee rust control strategies. Collectively, our results provide understanding of expression profiles in coffee-H. vastatrix interaction over a time course in susceptible and resistant coffee plants.

  14. Asian Citrus Psyllid Expression Profiles Suggest Candidatus Liberibacter Asiaticus-Mediated Alteration of Adult Nutrition and Metabolism, and of Nymphal Development and Immunity

    PubMed Central

    He, Ruifeng; Nelson, William; Yin, Guohua; Cicero, Joseph M.; Willer, Mark; Kim, Ryan; Kramer, Robin; May, Greg A.; Crow, John A.; Soderlund, Carol A.; Gang, David R.; Brown, Judith K.

    2015-01-01

    The Asian citrus psyllid (ACP) Diaphorina citri Kuwayama (Hemiptera: Psyllidae) is the insect vector of the fastidious bacterium Candidatus Liberibacter asiaticus (CLas), the causal agent of citrus greening disease, or Huanglongbing (HLB). The widespread invasiveness of the psyllid vector and HLB in citrus trees worldwide has underscored the need for non-traditional approaches to manage the disease. One tenable solution is through the deployment of RNA interference technology to silence protein-protein interactions essential for ACP-mediated CLas invasion and transmission. To identify psyllid interactor-bacterial effector combinations associated with psyllid-CLas interactions, cDNA libraries were constructed from CLas-infected and CLas-free ACP adults and nymphs, and analyzed for differential expression. Library assemblies comprised 24,039,255 reads and yielded 45,976 consensus contigs. They were annotated (UniProt), classified using Gene Ontology, and subjected to in silico expression analyses using the Transcriptome Computational Workbench (TCW) (http://www.sohomoptera.org/ACPPoP/). Functional-biological pathway interpretations were carried out using the Kyoto Encyclopedia of Genes and Genomes databases. Differentially expressed contigs in adults and/or nymphs represented genes and/or metabolic/pathogenesis pathways involved in adhesion, biofilm formation, development-related, immunity, nutrition, stress, and virulence. Notably, contigs involved in gene silencing and transposon-related responses were documented in a psyllid for the first time. This is the first comparative transcriptomic analysis of ACP adults and nymphs infected and uninfected with CLas. The results provide key initial insights into host-parasite interactions involving CLas effectors that contribute to invasion-virulence, and to host nutritional exploitation and immune-related responses that appear to be essential for successful ACP-mediated circulative, propagative CLas transmission. PMID:26091106

  15. Transcription profile analysis of Lycopersicum esculentum leaves, unravels volatile emissions and gene expression under salinity stress.

    PubMed

    Zhang, Jihong; Zeng, Li; Chen, Shaoyang; Sun, Helong; Ma, Shuang

    2018-05-01

    Salinity stress can impede development and plant growth adversely. However, there is very little molecular information on NaCl resistance and volatile emissions in Lycopersicum esculentum. In order to investigate the effects of salt stress on the release of volatile compounds, we quantified and compared transcriptome changes by RNA-Seq analysis and volatile constituents with gas chromatography/mass spectrometry (GC/MS) coupled with solid-phase microextraction (SPME) after exposure to continuous salt stress. Chemical analysis by GC-MS analysis revealed that NaCl stress had changed species and quantity of volatile compounds released. In this research, 21,578 unigenes that represented 44,714 assembled unique transcripts were separated from tomato leaves exposed to NaCl stress based on de novo transcriptome assembly. The total number of differentially expressed genes was 7210 after exposure to NaCl, including 6200 down-regulated and 1208 up-regulated genes. Among these differentially expressed genes (DEGs), there were eighteen differentially expressed genes associated with volatile biosynthesis. Of the unigenes, 3454 were mapped to 131 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, mainly those are involved in RNA transport, plant-pathogen interactions, and plant hormone signal transduction. qRT-PCR analysis showed that NaCl exposure affected the expression profiles of the biosynthesis genes for eight volatile compounds (IPI, GPS, and TPS, etc.), which corresponded well with the RNA-Seq analysis and GC-MS results. Our results suggest that NaCl stress affects the emission of volatile substances from L. esculentum leaves by regulating the expression of genes that are involved in volatile organic compounds' biosynthesis. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. A transcriptomic analysis of turmeric: Curcumin represses the expression of cholesterol biosynthetic genes and synergizes with simvastatin.

    PubMed

    Einbond, Linda Saxe; Manservisi, Fabiana; Wu, Hsan-Au; Balick, Michael; Antonetti, Victoria; Vornoli, Andrea; Menghetti, Ilaria; Belpoggi, Fiorella; Redenti, Stephen; Roter, Alan

    2018-06-01

    The spice turmeric (Curcuma longa L.) has a long history of use as an anti-inflammatory agent. The active component curcumin induces a variety of diverse biological effects and forms a series of degradation and metabolic products in vivo. Our hypothesis is that the field of toxicogenomics provides tools that can be used to characterize the mode of action and toxicity of turmeric components and to predict turmeric-drug interactions. Male Sprague-Dawley rats were treated for 4 days with turmeric root containing about 3% curcumin (comparable to what people consume in the fresh or dried root) or a fraction of turmeric enriched for curcumin (∼74%) and liver tissue collected for gene expression analysis. Two doses of each agent were added to the diet, corresponding to 540 and 2700 mg/kg body weight/day of turmeric. The transcriptomic effects of turmeric on rat liver tissue were examined using 3 programs, ToxFx Analysis Suite, in the context of a large drug database, Ingenuity Pathway and NextBio analyses. ToxFx analysis indicates that turmeric containing about 3% or 74% curcumin represses the expression of cholesterol biosynthetic genes. The dose of 400 mg/kg b.w./day curcumin induced the Drug Signature associated with hepatic inflammatory infiltrate. Ingenuity analysis confirmed that all 4 turmeric treatments had a significant effect on cholesterol biosynthesis, specifically the Cholesterol biosynthesis superpathway and Cholesterol biosynthesis 1 and 2. Among the top 10 up or downregulated genes, all 4 treatments downregulated PDK4; while 3 treatments downregulated ANGPTL4 or FASN. These findings suggest curcumin may enhance the anticancer effects of certain classes of statins, which we confirmed with biological assays. Given this enhancement, lower levels of statins may be required, and even be desirable. Our findings also warn of possible safety issues, such as potential inflammatory liver effects, for patients who ingest a combination of certain classes of statins and curcumin. Transcriptomic analysis suggests that turmeric is worthwhile to study to prevent and treat cancer and lipid disorders. Our approach lays new groundwork for studies of the mode of action and safety of herbal medicines and can also be used to develop a methodology to standardize herbal medicines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Comparative Transcriptome Analysis of Climacteric Fruit of Chinese Pear (Pyrus ussuriensis) Reveals New Insights into Fruit Ripening

    PubMed Central

    Tan, Dongmei; Jiang, Zhongyu; Wei, Yun; Li, Juncai; Wang, Aide

    2014-01-01

    The fruit of Pyrus ussuriensis is typically climacteric. During ripening, the fruits produce a large amount of ethylene, and their firmness drops rapidly. Although the molecular basis of climacteric fruit ripening has been studied in depth, some aspects remain unclear. Here, we compared the transcriptomes of pre- and post-climacteric fruits of Chinese pear (P. ussuriensis c.v. Nanguo) using RNA-seq. In total, 3,279 unigenes were differentially expressed between the pre- and post-climacteric fruits. Differentially expressed genes (DEGs) were subjected to Gene Ontology analysis, and 31 categories were significantly enriched in the groups ‘biological process’, ‘molecular function’ and ‘cellular component’. The DEGs included genes related to plant hormones, such as ethylene, ABA, auxin, GA and brassinosteroid, and transcription factors, such as MADS, NAC, WRKY and HSF. Moreover, genes encoding enzymes related to DNA methylation, cytoskeletal proteins and heat shock proteins (HSPs) showed differential expression between the pre- and post-climacteric fruits. Select DEGs were subjected to further analysis using quantitative RT-PCR (qRT-PCR), and the results were consistent with those of RNA-seq. Our data suggest that in addition to ethylene, other hormones play important roles in regulating fruit ripening and may interact with ethylene signaling during this process. DNA methylation-related methyltransferase and cytoskeletal protein genes are also involved in fruit ripening. Our results provide useful information for future research on pear fruit ripening. PMID:25215597

  18. pico-PLAZA, a genome database of microbial photosynthetic eukaryotes.

    PubMed

    Vandepoele, Klaas; Van Bel, Michiel; Richard, Guilhem; Van Landeghem, Sofie; Verhelst, Bram; Moreau, Hervé; Van de Peer, Yves; Grimsley, Nigel; Piganeau, Gwenael

    2013-08-01

    With the advent of next generation genome sequencing, the number of sequenced algal genomes and transcriptomes is rapidly growing. Although a few genome portals exist to browse individual genome sequences, exploring complete genome information from multiple species for the analysis of user-defined sequences or gene lists remains a major challenge. pico-PLAZA is a web-based resource (http://bioinformatics.psb.ugent.be/pico-plaza/) for algal genomics that combines different data types with intuitive tools to explore genomic diversity, perform integrative evolutionary sequence analysis and study gene functions. Apart from homologous gene families, multiple sequence alignments, phylogenetic trees, Gene Ontology, InterPro and text-mining functional annotations, different interactive viewers are available to study genome organization using gene collinearity and synteny information. Different search functions, documentation pages, export functions and an extensive glossary are available to guide non-expert scientists. To illustrate the versatility of the platform, different case studies are presented demonstrating how pico-PLAZA can be used to functionally characterize large-scale EST/RNA-Seq data sets and to perform environmental genomics. Functional enrichments analysis of 16 Phaeodactylum tricornutum transcriptome libraries offers a molecular view on diatom adaptation to different environments of ecological relevance. Furthermore, we show how complementary genomic data sources can easily be combined to identify marker genes to study the diversity and distribution of algal species, for example in metagenomes, or to quantify intraspecific diversity from environmental strains. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  19. Comparative transcriptome analysis of rumen papillae in suckling and weaned Japanese Black calves using RNA sequencing.

    PubMed

    Nishihara, Koki; Kato, Daichi; Suzuki, Yutaka; Kim, Dahye; Nakano, Misato; Yajima, Yu; Haga, Satoshi; Nakano, Miwa; Ishizaki, Hiroshi; Kawahara-Miki, Ryouka; Kono, Tomohiro; Katoh, Kazuo; Roh, Sang-Gun

    2018-06-04

    The length and density of rumen papillae starts to increase during weaning and growth of ruminants. This significant development increases the intraruminal surface area and the efficiency of VFA (acetate, propionate, butyrate, etc.) uptake. Thus, it is important to investigate the factors controlling the growth and development of rumen papillae during weaning. This study aimed to compare the transcriptomes of rumen papillae in suckling and weaned calves. Total RNA was extracted from the rumen papillae of 10 male Japanese Black calves (5 suckling calves, 5 wk old; 5 weaned calves, 15 wk old) and used in RNA-sequencing. Transcript abundance was estimated and differentially expressed genes were identified and these data were then used in Ingenuity Pathway Analysis (IPA) to predict the major canonical pathways and upstream regulators. Among the 871 differentially expressed genes screened by IPA, 466 genes were upregulated and 405 were downregulated in the weaned group. Canonical pathway analysis showed that "atherosclerosis" was the most significant pathway, and "tretinoin," a derivative of vitamin A, was predicted as the most active upstream regulator during weaning. Analyses also predicted IgG, lipopolysaccharides, and tumor-necrosis factor-α as regulators of the microbe-epithelium interaction that activates rumen-related immune responses. The functional category and the up-regulators found in this study provide a valuable resource for studying new candidate genes related to the proliferation and development of rumen papillae from suckling to weaning Japanese Black calves.

  20. Identification of Major Signaling Pathways in Prion Disease Progression Using Network Analysis

    PubMed Central

    Newaz, Khalique; Sriram, K.; Bera, Debajyoti

    2015-01-01

    Prion diseases are transmissible neurodegenerative diseases that arise due to conformational change of normal, cellular prion protein (PrPC) to protease-resistant isofrom (rPrPSc). Deposition of misfolded PrpSc proteins leads to an alteration of many signaling pathways that includes immunological and apoptotic pathways. As a result, this culminates in the dysfunction and death of neuronal cells. Earlier works on transcriptomic studies have revealed some affected pathways, but it is not clear which is (are) the prime network pathway(s) that change during the disease progression and how these pathways are involved in crosstalks with each other from the time of incubation to clinical death. We perform network analysis on large-scale transcriptomic data of differentially expressed genes obtained from whole brain in six different mouse strain-prion strain combination models to determine the pathways involved in prion diseases, and to understand the role of crosstalks in disease propagation. We employ a notion of differential network centrality measures on protein interaction networks to identify the potential biological pathways involved. We also propose a crosstalk ranking method based on dynamic protein interaction networks to identify the core network elements involved in crosstalk with different pathways. We identify 148 DEGs (differentially expressed genes) potentially related to the prion disease progression. Functional association of the identified genes implicates a strong involvement of immunological pathways. We extract a bow-tie structure that is potentially dysregulated in prion disease. We also propose an ODE model for the bow-tie network. Predictions related to diseased condition suggests the downregulation of the core signaling elements (PI3Ks and AKTs) of the bow-tie network. In this work, we show using transcriptomic data that the neuronal dysfunction in prion disease is strongly related to the immunological pathways. We conclude that these immunological pathways occupy influential positions in the PFNs (protein functional networks) that are related to prion disease. Importantly, this functional network involvement is prevalent in all the five different mouse strain-prion strain combinations that we studied. We also conclude that the dysregulation of the core elements of the bow-tie structure, which belongs to PI3K-Akt signaling pathway, leads to dysregulation of the downstream components corresponding to other biological pathways. PMID:26646948

  1. Transcriptome profiling of resistant and susceptible Cavendish banana roots following inoculation with Fusarium oxysporum f. sp. cubense tropical race 4

    PubMed Central

    2012-01-01

    Background Fusarium wilt, caused by the fungal pathogen Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), is considered the most lethal disease of Cavendish bananas in the world. The disease can be managed in the field by planting resistant Cavendish plants generated by somaclonal variation. However, little information is available on the genetic basis of plant resistance to Foc TR4. To a better understand the defense response of resistant banana plants to the Fusarium wilt pathogen, the transcriptome profiles in roots of resistant and susceptible Cavendish banana challenged with Foc TR4 were compared. Results RNA-seq analysis generated more than 103 million 90-bp clean pair end (PE) reads, which were assembled into 88,161 unigenes (mean size = 554 bp). Based on sequence similarity searches, 61,706 (69.99%) genes were identified, among which 21,273 and 50,410 unigenes were assigned to gene ontology (GO) categories and clusters of orthologous groups (COG), respectively. Searches in the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) mapped 33,243 (37.71%) unigenes to 119 KEGG pathways. A total of 5,008 genes were assigned to plant-pathogen interactions, including disease defense and signal transduction. Digital gene expression (DGE) analysis revealed large differences in the transcriptome profiles of the Foc TR4-resistant somaclonal variant and its susceptible wild-type. Expression patterns of genes involved in pathogen-associated molecular pattern (PAMP) recognition, activation of effector-triggered immunity (ETI), ion influx, and biosynthesis of hormones as well as pathogenesis-related (PR) genes, transcription factors, signaling/regulatory genes, cell wall modification genes and genes with other functions were analyzed and compared. The results indicated that basal defense mechanisms are involved in the recognition of PAMPs, and that high levels of defense-related transcripts may contribute to Foc TR4 resistance in banana. Conclusions This study generated a substantial amount of banana transcript sequences and compared the defense responses against Foc TR4 between resistant and susceptible Cavendish bananas. The results contribute to the identification of candidate genes related to plant resistance in a non-model organism, banana, and help to improve the current understanding of host-pathogen interactions. PMID:22863187

  2. RNA-Sequencing Analysis Reveals a Regulatory Role for Transcription Factor Fezf2 in the Mature Motor Cortex

    PubMed Central

    Clare, Alison J.; Wicky, Hollie E.; Empson, Ruth M.; Hughes, Stephanie M.

    2017-01-01

    Forebrain embryonic zinc finger (Fezf2) encodes a transcription factor essential for the specification of layer 5 projection neurons (PNs) in the developing cerebral cortex. As with many developmental transcription factors, Fezf2 continues to be expressed into adulthood, suggesting it remains crucial to the maintenance of neuronal phenotypes. Despite the continued expression, a function has yet to be explored for Fezf2 in the PNs of the developed cortex. Here, we investigated the role of Fezf2 in mature neurons, using lentiviral-mediated delivery of a shRNA to conditionally knockdown the expression of Fezf2 in the mouse primary motor cortex (M1). RNA-sequencing analysis of Fezf2-reduced M1 revealed significant changes to the transcriptome, identifying a regulatory role for Fezf2 in the mature M1. Kyoto Encyclopedia Genes and Genomes (KEGG) pathway analyses of Fezf2-regulated genes indicated a role in neuronal signaling and plasticity, with significant enrichment of neuroactive ligand-receptor interaction, cell adhesion molecules and calcium signaling pathways. Gene Ontology analysis supported a functional role for Fezf2-regulated genes in neuronal transmission and additionally indicated an importance in the regulation of behavior. Using the mammalian phenotype ontology database, we identified a significant overrepresentation of Fezf2-regulated genes associated with specific behavior phenotypes, including associative learning, social interaction, locomotor activation and hyperactivity. These roles were distinct from that of Fezf2-regulated genes identified in development, indicating a dynamic transition in Fezf2 function. Together our findings demonstrate a regulatory role for Fezf2 in the mature brain, with Fezf2-regulated genes having functional roles in sustaining normal neuronal and behavioral phenotypes. These results support the hypothesis that developmental transcription factors are important for maintaining neuron transcriptomes and that disruption of their expression could contribute to the progression of disease phenotypes. PMID:28936162

  3. De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity

    PubMed Central

    Yassour, Moran; Grabherr, Manfred; Blood, Philip D.; Bowden, Joshua; Couger, Matthew Brian; Eccles, David; Li, Bo; Lieber, Matthias; MacManes, Matthew D.; Ott, Michael; Orvis, Joshua; Pochet, Nathalie; Strozzi, Francesco; Weeks, Nathan; Westerman, Rick; William, Thomas; Dewey, Colin N.; Henschel, Robert; LeDuc, Richard D.; Friedman, Nir; Regev, Aviv

    2013-01-01

    De novo assembly of RNA-Seq data allows us to study transcriptomes without the need for a genome sequence, such as in non-model organisms of ecological and evolutionary importance, cancer samples, or the microbiome. In this protocol, we describe the use of the Trinity platform for de novo transcriptome assembly from RNA-Seq data in non-model organisms. We also present Trinity’s supported companion utilities for downstream applications, including RSEM for transcript abundance estimation, R/Bioconductor packages for identifying differentially expressed transcripts across samples, and approaches to identify protein coding genes. In an included tutorial we provide a workflow for genome-independent transcriptome analysis leveraging the Trinity platform. The software, documentation and demonstrations are freely available from http://trinityrnaseq.sf.net. PMID:23845962

  4. Assessing the hodgepodge of non-mapped reads in bacterial transcriptomes: real or artifactual RNA chimeras?

    PubMed

    Lloréns-Rico, Verónica; Serrano, Luis; Lluch-Senar, Maria

    2014-07-29

    RNA sequencing methods have already altered our view of the extent and complexity of bacterial and eukaryotic transcriptomes, revealing rare transcript isoforms (circular RNAs, RNA chimeras) that could play an important role in their biology. We performed an analysis of chimera formation by four different computational approaches, including a custom designed pipeline, to study the transcriptomes of M. pneumoniae and P. aeruginosa, as well as mixtures of both. We found that rare transcript isoforms detected by conventional pipelines of analysis could be artifacts of the experimental procedure used in the library preparation, and that they are protocol-dependent. By using a customized pipeline we show that optimal library preparation protocol and the pipeline to analyze the results are crucial to identify real chimeric RNAs.

  5. Veterinary Medicine and Multi-Omics Research for Future Nutrition Targets: Metabolomics and Transcriptomics of the Common Degenerative Mitral Valve Disease in Dogs.

    PubMed

    Li, Qinghong; Freeman, Lisa M; Rush, John E; Huggins, Gordon S; Kennedy, Adam D; Labuda, Jeffrey A; Laflamme, Dorothy P; Hannah, Steven S

    2015-08-01

    Canine degenerative mitral valve disease (DMVD) is the most common form of heart disease in dogs. The objective of this study was to identify cellular and metabolic pathways that play a role in DMVD by performing metabolomics and transcriptomics analyses on serum and tissue (mitral valve and left ventricle) samples previously collected from dogs with DMVD or healthy hearts. Gas or liquid chromatography followed by mass spectrophotometry were used to identify metabolites in serum. Transcriptomics analysis of tissue samples was completed using RNA-seq, and selected targets were confirmed by RT-qPCR. Random Forest analysis was used to classify the metabolites that best predicted the presence of DMVD. Results identified 41 known and 13 unknown serum metabolites that were significantly different between healthy and DMVD dogs, representing alterations in fat and glucose energy metabolism, oxidative stress, and other pathways. The three metabolites with the greatest single effect in the Random Forest analysis were γ-glutamylmethionine, oxidized glutathione, and asymmetric dimethylarginine. Transcriptomics analysis identified 812 differentially expressed transcripts in left ventricle samples and 263 in mitral valve samples, representing changes in energy metabolism, antioxidant function, nitric oxide signaling, and extracellular matrix homeostasis pathways. Many of the identified alterations may benefit from nutritional or medical management. Our study provides evidence of the growing importance of integrative approaches in multi-omics research in veterinary and nutritional sciences.

  6. Genome wide transcriptional profiling of Herbaspirillum seropedicae SmR1 grown in the presence of naringenin.

    PubMed

    Tadra-Sfeir, Michelle Z; Faoro, Helisson; Camilios-Neto, Doumit; Brusamarello-Santos, Liziane; Balsanelli, Eduardo; Weiss, Vinicius; Baura, Valter A; Wassem, Roseli; Cruz, Leonardo M; De Oliveira Pedrosa, Fábio; Souza, Emanuel M; Monteiro, Rose A

    2015-01-01

    Herbaspirillum seropedicae is a diazotrophic bacterium which associates endophytically with economically important gramineae. Flavonoids such as naringenin have been shown to have an effect on the interaction between H. seropedicae and its host plants. We used a high-throughput sequencing based method (RNA-Seq) to access the influence of naringenin on the whole transcriptome profile of H. seropedicae. Three hundred and four genes were downregulated and seventy seven were upregulated by naringenin. Data analysis revealed that genes related to bacterial flagella biosynthesis, chemotaxis and biosynthesis of peptidoglycan were repressed by naringenin. Moreover, genes involved in aromatic metabolism and multidrug transport efllux were actived.

  7. Silicon protects soybean plants against Phytophthora sojae by interfering with effector-receptor expression.

    PubMed

    Rasoolizadeh, Aliyeh; Labbé, Caroline; Sonah, Humira; Deshmukh, Rupesh K; Belzile, François; Menzies, James G; Bélanger, Richard R

    2018-05-30

    Silicon (Si) is known to protect against biotrophic and hemibiotrophic plant pathogens; however, the mechanisms by which it exerts its prophylactic role remain unknown. In an attempt to obtain unique insights into the mode of action of Si, we conducted a full comparative transcriptomic analysis of soybean (Glycine max) plants and Phytophthora sojae, a hemibiotroph that relies heavily on effectors for its virulence. Supplying Si to inoculated plants provided a strong protection against P. sojae over the course of the experiment (21 day). Our results showed that the response of Si-free (Si - ) plants to inoculation was characterized early (4 dpi) by a high expression of defense-related genes, including plant receptors, which receded over time as the pathogen progressed into the roots. The infection was synchronized with a high expression of effectors by P. sojae, the nature of which changed over time. By contrast, the transcriptomic response of Si-fed (Si + ) plants was remarkably unaffected by the presence of P. sojae, and the expression of effector-coding genes by the pathogen was significantly reduced. Given that the apoplast is a key site of interaction between effectors and plant defenses and receptors in the soybean-P. sojae complex, as well as the site of amorphous-Si accumulation, our results indicate that Si likely interferes with the signaling network between P. sojae and the plant, preventing or decreasing the release of effectors reaching plant receptors, thus creating a form of incompatible interaction.

  8. Roles of Non-Coding RNA in Sugarcane-Microbe Interaction.

    PubMed

    Thiebaut, Flávia; Rojas, Cristian A; Grativol, Clícia; Calixto, Edmundo P da R; Motta, Mariana R; Ballesteros, Helkin G F; Peixoto, Barbara; de Lima, Berenice N S; Vieira, Lucas M; Walter, Maria Emilia; de Armas, Elvismary M; Entenza, Júlio O P; Lifschitz, Sergio; Farinelli, Laurent; Hemerly, Adriana S; Ferreira, Paulo C G

    2017-12-20

    Studies have highlighted the importance of non-coding RNA regulation in plant-microbe interaction. However, the roles of sugarcane microRNAs (miRNAs) in the regulation of disease responses have not been investigated. Firstly, we screened the sRNA transcriptome of sugarcane infected with Acidovorax avenae . Conserved and novel miRNAs were identified. Additionally, small interfering RNAs (siRNAs) were aligned to differentially expressed sequences from the sugarcane transcriptome. Interestingly, many siRNAs aligned to a transcript encoding a copper-transporter gene whose expression was induced in the presence of A. avenae , while the siRNAs were repressed in the presence of A. avenae . Moreover, a long intergenic non-coding RNA was identified as a potential target or decoy of miR408. To extend the bioinformatics analysis, we carried out independent inoculations and the expression patterns of six miRNAs were validated by quantitative reverse transcription-PCR (qRT-PCR). Among these miRNAs, miR408-a copper-microRNA-was downregulated. The cleavage of a putative miR408 target, a laccase, was confirmed by a modified 5'RACE (rapid amplification of cDNA ends) assay. MiR408 was also downregulated in samples infected with other pathogens, but it was upregulated in the presence of a beneficial diazotrophic bacteria. Our results suggest that regulation by miR408 is important in sugarcane sensing whether microorganisms are either pathogenic or beneficial, triggering specific miRNA-mediated regulatory mechanisms accordingly.

  9. Roles of Non-Coding RNA in Sugarcane-Microbe Interaction

    PubMed Central

    Grativol, Clícia; Motta, Mariana R.; Ballesteros, Helkin G. F.; Peixoto, Barbara; Vieira, Lucas M.; Walter, Maria Emilia; de Armas, Elvismary M.; Entenza, Júlio O. P.; Lifschitz, Sergio; Farinelli, Laurent; Hemerly, Adriana S.

    2017-01-01

    Studies have highlighted the importance of non-coding RNA regulation in plant-microbe interaction. However, the roles of sugarcane microRNAs (miRNAs) in the regulation of disease responses have not been investigated. Firstly, we screened the sRNA transcriptome of sugarcane infected with Acidovorax avenae. Conserved and novel miRNAs were identified. Additionally, small interfering RNAs (siRNAs) were aligned to differentially expressed sequences from the sugarcane transcriptome. Interestingly, many siRNAs aligned to a transcript encoding a copper-transporter gene whose expression was induced in the presence of A. avenae, while the siRNAs were repressed in the presence of A. avenae. Moreover, a long intergenic non-coding RNA was identified as a potential target or decoy of miR408. To extend the bioinformatics analysis, we carried out independent inoculations and the expression patterns of six miRNAs were validated by quantitative reverse transcription-PCR (qRT-PCR). Among these miRNAs, miR408—a copper-microRNA—was downregulated. The cleavage of a putative miR408 target, a laccase, was confirmed by a modified 5′RACE (rapid amplification of cDNA ends) assay. MiR408 was also downregulated in samples infected with other pathogens, but it was upregulated in the presence of a beneficial diazotrophic bacteria. Our results suggest that regulation by miR408 is important in sugarcane sensing whether microorganisms are either pathogenic or beneficial, triggering specific miRNA-mediated regulatory mechanisms accordingly. PMID:29657296

  10. Leveraging Genetic-Background Effects in Saccharomyces cerevisiae To Improve Lignocellulosic Hydrolysate Tolerance

    DOE PAGES

    Sardi, Maria; Rovinskiy, Nikolay; Zhang, Yaoping; ...

    2016-07-22

    We report a major obstacle to sustainable lignocellulosic biofuel production is microbe inhibition by the combinatorial stresses in pretreated plant hydrolysate. Chemical biomass pretreatment releases a suite of toxins that interact with other stressors, including high osmolarity and temperature, which together can have poorly understood synergistic effects on cells. Improving tolerance in industrial strains has been hindered, in part because the mechanisms of tolerance reported in the literature often fail to recapitulate in other strain backgrounds. Here, we explored and then exploited variations in stress tolerance, toxin-induced transcriptomic responses, and fitness effects of gene overexpression in different Saccharomyces cerevisiae (yeast)more » strains to identify genes and processes linked to tolerance of hydrolysate stressors. Using six different S. cerevisiae strains that together maximized phenotypic and genetic diversity, first we explored transcriptomic differences between resistant and sensitive strains to identify common and strain-specific responses. This comparative analysis implicated primary cellular targets of hydrolysate toxins, secondary effects of defective defense strategies, and mechanisms of tolerance. Dissecting the responses to individual hydrolysate components across strains pointed to synergistic interactions between osmolarity, pH, hydrolysate toxins, and nutrient composition. By characterizing the effects of high-copy gene overexpression in three different strains, we revealed the breadth of the background-specific effects of gene fitness contributions in synthetic hydrolysate. Lastly, our approach identified new genes for engineering improved stress tolerance in diverse strains while illuminating the effects of genetic background on molecular mechanisms.« less

  11. Transcriptome profiling of soybean (Glycine max) roots challenged with pathogenic and non-pathogenic isolates of Fusarium oxysporum.

    PubMed

    Lanubile, Alessandra; Muppirala, Usha K; Severin, Andrew J; Marocco, Adriano; Munkvold, Gary P

    2015-12-21

    Fusarium oxysporum is one of the most common fungal pathogens causing soybean root rot and seedling blight in U.S.A. In a recent study, significant variation in aggressiveness was observed among isolates of F. oxysporum collected from roots in Iowa, ranging from highly pathogenic to weakly or non-pathogenic isolates. We used RNA-seq analysis to investigate the molecular aspects of the interactions of a partially resistant soybean genotype with non-pathogenic/pathogenic isolates of F. oxysporum at 72 and 96 h post inoculation (hpi). Markedly different gene expression profiles were observed in response to the two isolates. A peak of highly differentially expressed genes (HDEGs) was triggered at 72 hpi in soybean roots and the number of HDEGs was about eight times higher in response to the pathogenic isolate compared to the non-pathogenic one (1,659 vs. 203 HDEGs, respectively). Furthermore, the magnitude of induction was much greater in response to the pathogenic isolate. This response included a stronger activation of defense-related genes, transcription factors, and genes involved in ethylene biosynthesis, secondary and sugar metabolism. The obtained data provide an important insight into the transcriptional responses of soybean-F. oxysporum interactions and illustrate the more drastic changes in the host transcriptome in response to the pathogenic isolate. These results may be useful in the developing new methods of broadening resistance of soybean to F. oxysporum, including the over-expression of key soybean genes.

  12. In-cell RNA structure probing with SHAPE-MaP.

    PubMed

    Smola, Matthew J; Weeks, Kevin M

    2018-06-01

    This protocol is an extension to: Nat. Protoc. 10, 1643-1669 (2015); doi:10.1038/nprot.2015.103; published online 01 October 2015RNAs play key roles in many cellular processes. The underlying structure of RNA is an important determinant of how transcripts function, are processed, and interact with RNA-binding proteins and ligands. RNA structure analysis by selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) takes advantage of the reactivity of small electrophilic chemical probes that react with the 2'-hydroxyl group to assess RNA structure at nucleotide resolution. When coupled with mutational profiling (MaP), in which modified nucleotides are detected as internal miscodings during reverse transcription and then read out by massively parallel sequencing, SHAPE yields quantitative per-nucleotide measurements of RNA structure. Here, we provide an extension to our previous in vitro SHAPE-MaP protocol with detailed guidance for undertaking and analyzing SHAPE-MaP probing experiments in live cells. The MaP strategy works for both abundant-transcriptome experiments and for cellular RNAs of low to moderate abundance, which are not well examined by whole-transcriptome methods. In-cell SHAPE-MaP, performed in roughly 3 d, can be applied in cell types ranging from bacteria to cultured mammalian cells and is compatible with a variety of structure-probing reagents. We detail several strategies by which in-cell SHAPE-MaP can inform new biological hypotheses and emphasize downstream analyses that reveal sequence or structure motifs important for RNA interactions in cells.

  13. RNAseq Analysis of the Drosophila Response to the Entomopathogenic Nematode Steinernema

    PubMed Central

    Yadav, Shruti; Daugherty, Sean; Shetty, Amol Carl; Eleftherianos, Ioannis

    2017-01-01

    Drosophila melanogaster is an outstanding model to study the molecular and functional basis of host–pathogen interactions. Currently, our knowledge of microbial infections in D. melanogaster is well understood; however, the response of flies to nematode infections is still in its infancy. Here, we have used the potent parasitic nematode Steinernema carpocapsae, which lives in mutualism with its endosymbiotic bacteria Xenorhabdus nematophila, to examine the transcriptomic basis of the interaction between D. melanogaster and entomopathogenic nematodes. We have employed next-generation RNA sequencing (RNAseq) to investigate the transcriptomic profile of D. melanogaster larvae in response to infection by S. carpocapsae symbiotic (carrying X. nematophila) or axenic (lacking X. nematophila) nematodes. Bioinformatic analyses have identified the strong induction of genes that are associated with the peritrophic membrane and the stress response, as well as several genes that participate in developmental processes. We have also found that genes with different biological functions are enriched in D. melanogaster larvae responding to either symbiotic or axenic nematodes. We further show that while symbiotic nematode infection enriched certain known immune-related genes, axenic nematode infection enriched several genes associated with chitin binding, lipid metabolic functions, and neuroactive ligand receptors. In addition, we have identified genes with a potential role in nematode recognition and genes with potential antinematode activity. Findings from this study will undoubtedly set the stage for the identification of key regulators of antinematode immune mechanisms in D. melanogaster, as well as in other insects of socioeconomic importance. PMID:28450373

  14. RNAseq Analysis of the Drosophila Response to the Entomopathogenic Nematode Steinernema.

    PubMed

    Yadav, Shruti; Daugherty, Sean; Shetty, Amol Carl; Eleftherianos, Ioannis

    2017-06-07

    Drosophila melanogaster is an outstanding model to study the molecular and functional basis of host-pathogen interactions. Currently, our knowledge of microbial infections in D. melanogaster is well understood; however, the response of flies to nematode infections is still in its infancy. Here, we have used the potent parasitic nematode Steinernema carpocapsae , which lives in mutualism with its endosymbiotic bacteria Xenorhabdus nematophila , to examine the transcriptomic basis of the interaction between D. melanogaster and entomopathogenic nematodes. We have employed next-generation RNA sequencing (RNAseq) to investigate the transcriptomic profile of D. melanogaster larvae in response to infection by S. carpocapsae symbiotic (carrying X. nematophila ) or axenic (lacking X. nematophila ) nematodes. Bioinformatic analyses have identified the strong induction of genes that are associated with the peritrophic membrane and the stress response, as well as several genes that participate in developmental processes. We have also found that genes with different biological functions are enriched in D. melanogaster larvae responding to either symbiotic or axenic nematodes. We further show that while symbiotic nematode infection enriched certain known immune-related genes, axenic nematode infection enriched several genes associated with chitin binding, lipid metabolic functions, and neuroactive ligand receptors. In addition, we have identified genes with a potential role in nematode recognition and genes with potential antinematode activity. Findings from this study will undoubtedly set the stage for the identification of key regulators of antinematode immune mechanisms in D. melanogaster , as well as in other insects of socioeconomic importance. Copyright © 2017 Yadav et al.

  15. CAS-viewer: web-based tool for splicing-guided integrative analysis of multi-omics cancer data.

    PubMed

    Han, Seonggyun; Kim, Dongwook; Kim, Youngjun; Choi, Kanghoon; Miller, Jason E; Kim, Dokyoon; Lee, Younghee

    2018-04-20

    The Cancer Genome Atlas (TCGA) project is a public resource that provides transcriptomic, DNA sequence, methylation, and clinical data for 33 cancer types. Transforming the large size and high complexity of TCGA cancer genome data into integrated knowledge can be useful to promote cancer research. Alternative splicing (AS) is a key regulatory mechanism of genes in human cancer development and in the interaction with epigenetic factors. Therefore, AS-guided integration of existing TCGA data sets will make it easier to gain insight into the genetic architecture of cancer risk and related outcomes. There are already existing tools analyzing and visualizing alternative mRNA splicing patterns for large-scale RNA-seq experiments. However, these existing web-based tools are limited to the analysis of individual TCGA data sets at a time, such as only transcriptomic information. We implemented CAS-viewer (integrative analysis of Cancer genome data based on Alternative Splicing), a web-based tool leveraging multi-cancer omics data from TCGA. It illustrates alternative mRNA splicing patterns along with methylation, miRNAs, and SNPs, and then provides an analysis tool to link differential transcript expression ratio to methylation, miRNA, and splicing regulatory elements for 33 cancer types. Moreover, one can analyze AS patterns with clinical data to identify potential transcripts associated with different survival outcome for each cancer. CAS-viewer is a web-based application for transcript isoform-driven integration of multi-omics data in multiple cancer types and will aid in the visualization and possible discovery of biomarkers for cancer by integrating multi-omics data from TCGA.

  16. Transcriptome-wide identification of reference genes for expression analysis of soybean responses to drought stress along the day

    USDA-ARS?s Scientific Manuscript database

    The soybean transcriptome displays strong variation along the day in optimal growth conditions and also in response to adverse circumstances, like drought stress. However, no study conducted to date has presented suitable reference genes, with stable expression along the day, for relative gene expre...

  17. Comparison of ribosomal RNA removal methods for transcriptome sequencing workflows in teleost fish

    USDA-ARS?s Scientific Manuscript database

    RNA sequencing (RNA-Seq) is becoming the standard for transcriptome analysis. Removal of contaminating ribosomal RNA (rRNA) is a priority in the preparation of libraries suitable for sequencing. rRNAs are commonly removed from total RNA via either mRNA selection or rRNA depletion. These methods have...

  18. Transcriptome analysis reveals a comprehensive insect resistance response mechanism in cotton to infestation by the phloem feeding insect Bemisia tabaci (whitefly)

    USDA-ARS?s Scientific Manuscript database

    The whitefly (Bemisia tabaci) causes tremendous damage to cotton production worldwide. However, very limited information is available about how plants perceive and defend themselves from this destructive pest. In this study, the transcriptomics differences between two cotton cultivars that exhibit e...

  19. Transcriptomic analysis reveals numerous diverse protein kinases and transcription factors involved in desiccation tolerance in the resurrection plant Myrothamnus flabellifolia

    USDA-ARS?s Scientific Manuscript database

    The woody resurrection plant Myrothamnus flabellifolia has remarkable tolerance to desiccation. Pyro-sequencing technology permitted us to analyze the transcriptome of M. flabellifolia during both dehydration and rehydration. We identified a total of 8287 and 8542 differentially transcribed genes du...

  20. Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium

    Treesearch

    Amber J. Vanden Wymelenberg; Jill Gaskell; Michael Mozuch; Grzegorz Sabat; John Ralph; Oleksandr Skyba; Shawn D Mansfield; Robert A. Blanchette; Diego Martinez; Igor Grigoriev; Philip J Kersten; Daniel Cullen

    2010-01-01

    Cellulose degradation by brown rot fungi, such as Postia placenta, is poorly understood relative to the phylogenetically related white rot basidiomycete, Phanerochaete chrysosporium. To elucidate the number, structure, and regulation of genes involved in lignocellulosic cell wall attack, secretome and transcriptome analyses were performed on both wood decay fungi...

  1. Root herbivory: molecular analysis of the maize transcriptome upon infestation by Southern corn rootworm, Diabrotica undecimpunctata howardi

    USDA-ARS?s Scientific Manuscript database

    While many studies have characterized the transcriptome of plants attacked by herbivorous insect pests, few have undertaken an examination of the genes affected by root pests. We have subjected maize seedlings to infestation by southern corn rootworm (SCR) Diabrotica undecimpunctata howardi and usin...

  2. Mango (Mangifera indica L.) cv. Kent fruit mesocarp de novo transcriptome assembly identifies gene families important for ripening

    USDA-ARS?s Scientific Manuscript database

    Fruit ripening is a physiological and biochemical process genetically programmed to regulate fruit quality parameters like firmness, flavor, odor and color, as well as production of ethylene in climacteric fruit. In this study, a transcriptomic analysis of mango (Mangifera indica L.) mesocarp cv. "K...

  3. Information Theoretical Analysis of a Bovine Gene Atlas Reveals Chromosomal Regions with Tissue Specific Gene Expression.

    USDA-ARS?s Scientific Manuscript database

    An essential step to understanding the genomic biology of any organism is to comprehensively survey its transcriptome. We present the Bovine Gene Atlas (BGA) a compendium of over 7.2 million unique 20 base Illumina DGE tags representing 100 tissue transcriptomes collected primarily from L1 Dominette...

  4. Consensus-phenotype integration of transcriptomic and metabolomic data implies a role for metabolism in the chemosensitivity of tumour cells.

    PubMed

    Cavill, Rachel; Kamburov, Atanas; Ellis, James K; Athersuch, Toby J; Blagrove, Marcus S C; Herwig, Ralf; Ebbels, Timothy M D; Keun, Hector C

    2011-03-01

    Using transcriptomic and metabolomic measurements from the NCI60 cell line panel, together with a novel approach to integration of molecular profile data, we show that the biochemical pathways associated with tumour cell chemosensitivity to platinum-based drugs are highly coincident, i.e. they describe a consensus phenotype. Direct integration of metabolome and transcriptome data at the point of pathway analysis improved the detection of consensus pathways by 76%, and revealed associations between platinum sensitivity and several metabolic pathways that were not visible from transcriptome analysis alone. These pathways included the TCA cycle and pyruvate metabolism, lipoprotein uptake and nucleotide synthesis by both salvage and de novo pathways. Extending the approach across a wide panel of chemotherapeutics, we confirmed the specificity of the metabolic pathway associations to platinum sensitivity. We conclude that metabolic phenotyping could play a role in predicting response to platinum chemotherapy and that consensus-phenotype integration of molecular profiling data is a powerful and versatile tool for both biomarker discovery and for exploring the complex relationships between biological pathways and drug response.

  5. CBrowse: a SAM/BAM-based contig browser for transcriptome assembly visualization and analysis.

    PubMed

    Li, Pei; Ji, Guoli; Dong, Min; Schmidt, Emily; Lenox, Douglas; Chen, Liangliang; Liu, Qi; Liu, Lin; Zhang, Jie; Liang, Chun

    2012-09-15

    To address the impending need for exploring rapidly increased transcriptomics data generated for non-model organisms, we developed CBrowse, an AJAX-based web browser for visualizing and analyzing transcriptome assemblies and contigs. Designed in a standard three-tier architecture with a data pre-processing pipeline, CBrowse is essentially a Rich Internet Application that offers many seamlessly integrated web interfaces and allows users to navigate, sort, filter, search and visualize data smoothly. The pre-processing pipeline takes the contig sequence file in FASTA format and its relevant SAM/BAM file as the input; detects putative polymorphisms, simple sequence repeats and sequencing errors in contigs and generates image, JSON and database-compatible CSV text files that are directly utilized by different web interfaces. CBowse is a generic visualization and analysis tool that facilitates close examination of assembly quality, genetic polymorphisms, sequence repeats and/or sequencing errors in transcriptome sequencing projects. CBrowse is distributed under the GNU General Public License, available at http://bioinfolab.muohio.edu/CBrowse/ liangc@muohio.edu or liangc.mu@gmail.com; glji@xmu.edu.cn Supplementary data are available at Bioinformatics online.

  6. Identification of potential transcriptomic markers in developing pediatric sepsis: a weighted gene co-expression network analysis and a case-control validation study.

    PubMed

    Li, Yiping; Li, Yanhong; Bai, Zhenjiang; Pan, Jian; Wang, Jian; Fang, Fang

    2017-12-13

    Sepsis represents a complex disease with the dysregulated inflammatory response and high mortality rate. The goal of this study was to identify potential transcriptomic markers in developing pediatric sepsis by a co-expression module analysis of the transcriptomic dataset. Using the R software and Bioconductor packages, we performed a weighted gene co-expression network analysis to identify co-expression modules significantly associated with pediatric sepsis. Functional interpretation (gene ontology and pathway analysis) and enrichment analysis with known transcription factors and microRNAs of the identified candidate modules were then performed. In modules significantly associated with sepsis, the intramodular analysis was further performed and "hub genes" were identified and validated by quantitative real-time PCR (qPCR) in this study. 15 co-expression modules in total were detected, and four modules ("midnight blue", "cyan", "brown", and "tan") were most significantly associated with pediatric sepsis and suggested as potential sepsis-associated modules. Gene ontology analysis and pathway analysis revealed that these four modules strongly associated with immune response. Three of the four sepsis-associated modules were also enriched with known transcription factors (false discovery rate-adjusted P < 0.05). Hub genes were identified in each of the four modules. Four of the identified hub genes (MYB proto-oncogene like 1, killer cell lectin like receptor G1, stomatin, and membrane spanning 4-domains A4A) were further validated to be differentially expressed between septic children and controls by qPCR. Four pediatric sepsis-associated co-expression modules were identified in this study. qPCR results suggest that hub genes in these modules are potential transcriptomic markers for pediatric sepsis diagnosis. These results provide novel insights into the pathogenesis of pediatric sepsis and promote the generation of diagnostic gene sets.

  7. De Novo Assembly and Comparative Transcriptome Analyses of Red and Green Morphs of Sweet Basil Grown in Full Sunlight.

    PubMed

    Torre, Sara; Tattini, Massimiliano; Brunetti, Cecilia; Guidi, Lucia; Gori, Antonella; Marzano, Cristina; Landi, Marco; Sebastiani, Federico

    2016-01-01

    Sweet basil (Ocimum basilicum), one of the most popular cultivated herbs worldwide, displays a number of varieties differing in several characteristics, such as the color of the leaves. The development of a reference transcriptome for sweet basil, and the analysis of differentially expressed genes in acyanic and cyanic cultivars exposed to natural sunlight irradiance, has interest from horticultural and biological point of views. There is still great uncertainty about the significance of anthocyanins in photoprotection, and how green and red morphs may perform when exposed to photo-inhibitory light, a condition plants face on daily and seasonal basis. We sequenced the leaf transcriptome of the green-leaved Tigullio (TIG) and the purple-leaved Red Rubin (RR) exposed to full sunlight over a four-week experimental period. We assembled and annotated 111,007 transcripts. A total of 5,468 and 5,969 potential SSRs were identified in TIG and RR, respectively, out of which 66 were polymorphic in silico. Comparative analysis of the two transcriptomes showed 2,372 differentially expressed genes (DEGs) clustered in 222 enriched Gene ontology terms. Green and red basil mostly differed for transcripts abundance of genes involved in secondary metabolism. While the biosynthesis of waxes was up-regulated in red basil, the biosynthesis of flavonols and carotenoids was up-regulated in green basil. Data from our study provides a comprehensive transcriptome survey, gene sequence resources and microsatellites that can be used for further investigations in sweet basil. The analysis of DEGs and their functional classification also offers new insights on the functional role of anthocyanins in photoprotection.

  8. Biosynthesis of the active compounds of Isatis indigotica based on transcriptome sequencing and metabolites profiling

    PubMed Central

    2013-01-01

    Backgroud Isatis indigotica is a widely used herb for the clinical treatment of colds, fever, and influenza in Traditional Chinese Medicine (TCM). Various structural classes of compounds have been identified as effective ingredients. However, little is known at genetics level about these active metabolites. In the present study, we performed de novo transcriptome sequencing for the first time to produce a comprehensive dataset of I. indigotica. Results A database of 36,367 unigenes (average length = 1,115.67 bases) was generated by performing transcriptome sequencing. Based on the gene annotation of the transcriptome, 104 unigenes were identified covering most of the catalytic steps in the general biosynthetic pathways of indole, terpenoid, and phenylpropanoid. Subsequently, the organ-specific expression patterns of the genes involved in these pathways, and their responses to methyl jasmonate (MeJA) induction, were investigated. Metabolites profile of effective phenylpropanoid showed accumulation pattern of secondary metabolites were mostly correlated with the transcription of their biosynthetic genes. According to the analysis of UDP-dependent glycosyltransferases (UGT) family, several flavonoids were indicated to exist in I. indigotica and further identified by metabolic profile using UPLC/Q-TOF. Moreover, applying transcriptome co-expression analysis, nine new, putative UGTs were suggested as flavonol glycosyltransferases and lignan glycosyltransferases. Conclusions This database provides a pool of candidate genes involved in biosynthesis of effective metabolites in I. indigotica. Furthermore, the comprehensive analysis and characterization of the significant pathways are expected to give a better insight regarding the diversity of chemical composition, synthetic characteristics, and the regulatory mechanism which operate in this medical herb. PMID:24308360

  9. Integrative "omic" analysis of experimental bacteremia identifies a metabolic signature that distinguishes human sepsis from systemic inflammatory response syndromes.

    PubMed

    Langley, Raymond J; Tipper, Jennifer L; Bruse, Shannon; Baron, Rebecca M; Tsalik, Ephraim L; Huntley, James; Rogers, Angela J; Jaramillo, Richard J; O'Donnell, Denise; Mega, William M; Keaton, Mignon; Kensicki, Elizabeth; Gazourian, Lee; Fredenburgh, Laura E; Massaro, Anthony F; Otero, Ronny M; Fowler, Vance G; Rivers, Emanuel P; Woods, Chris W; Kingsmore, Stephen F; Sopori, Mohan L; Perrella, Mark A; Choi, Augustine M K; Harrod, Kevin S

    2014-08-15

    Sepsis is a leading cause of morbidity and mortality. Currently, early diagnosis and the progression of the disease are difficult to make. The integration of metabolomic and transcriptomic data in a primate model of sepsis may provide a novel molecular signature of clinical sepsis. To develop a biomarker panel to characterize sepsis in primates and ascertain its relevance to early diagnosis and progression of human sepsis. Intravenous inoculation of Macaca fascicularis with Escherichia coli produced mild to severe sepsis, lung injury, and death. Plasma samples were obtained before and after 1, 3, and 5 days of E. coli challenge and at the time of killing. At necropsy, blood, lung, kidney, and spleen samples were collected. An integrative analysis of the metabolomic and transcriptomic datasets was performed to identify a panel of sepsis biomarkers. The extent of E. coli invasion, respiratory distress, lethargy, and mortality was dependent on the bacterial dose. Metabolomic and transcriptomic changes characterized severe infections and death, and indicated impaired mitochondrial, peroxisomal, and liver functions. Analysis of the pulmonary transcriptome and plasma metabolome suggested impaired fatty acid catabolism regulated by peroxisome-proliferator activated receptor signaling. A representative four-metabolite model effectively diagnosed sepsis in primates (area under the curve, 0.966) and in two human sepsis cohorts (area under the curve, 0.78 and 0.82). A model of sepsis based on reciprocal metabolomic and transcriptomic data was developed in primates and validated in two human patient cohorts. It is anticipated that the identified parameters will facilitate early diagnosis and management of sepsis.

  10. The Transcriptomes of Xiphinema index and Longidorus elongatus Suggest Independent Acquisition of Some Plant Parasitism Genes by Horizontal Gene Transfer in Early-Branching Nematodes

    PubMed Central

    Danchin, Etienne G.J.; Perfus-Barbeoch, Laetitia; Rancurel, Corinne; Thorpe, Peter; Da Rocha, Martine; Bajew, Simon; Neilson, Roy; Sokolova (Guzeeva), Elena; Da Silva, Corinne; Guy, Julie; Labadie, Karine; Esmenjaud, Daniel; Helder, Johannes; Jones, John T.

    2017-01-01

    Nematodes have evolved the ability to parasitize plants on at least four independent occasions, with plant parasites present in Clades 1, 2, 10 and 12 of the phylum. In the case of Clades 10 and 12, horizontal gene transfer of plant cell wall degrading enzymes from bacteria and fungi has been implicated in the evolution of plant parasitism. We have used ribonucleic acid sequencing (RNAseq) to generate reference transcriptomes for two economically important nematode species, Xiphinema index and Longidorus elongatus, representative of two genera within the early-branching Clade 2 of the phylum Nematoda. We used a transcriptome-wide analysis to identify putative horizontal gene transfer events. This represents the first in-depth transcriptome analysis from any plant-parasitic nematode of this clade. For each species, we assembled ~30 million Illumina reads into a reference transcriptome. We identified 62 and 104 transcripts, from X. index and L. elongatus, respectively, that were putatively acquired via horizontal gene transfer. By cross-referencing horizontal gene transfer prediction with a phylum-wide analysis of Pfam domains, we identified Clade 2-specific events. Of these, a GH12 cellulase from X. index was analysed phylogenetically and biochemically, revealing a likely bacterial origin and canonical enzymatic function. Horizontal gene transfer was previously shown to be a phenomenon that has contributed to the evolution of plant parasitism among nematodes. Our findings underline the importance and the extensiveness of this phenomenon in the evolution of plant-parasitic life styles in this speciose and widespread animal phylum. PMID:29065523

  11. The Transcriptomes of Xiphinema index and Longidorus elongatus Suggest Independent Acquisition of Some Plant Parasitism Genes by Horizontal Gene Transfer in Early-Branching Nematodes.

    PubMed

    Danchin, Etienne G J; Perfus-Barbeoch, Laetitia; Rancurel, Corinne; Thorpe, Peter; Da Rocha, Martine; Bajew, Simon; Neilson, Roy; Guzeeva, Elena Sokolova; Da Silva, Corinne; Guy, Julie; Labadie, Karine; Esmenjaud, Daniel; Helder, Johannes; Jones, John T; den Akker, Sebastian Eves-van

    2017-10-23

    Nematodes have evolved the ability to parasitize plants on at least four independent occasions, with plant parasites present in Clades 1, 2, 10 and 12 of the phylum. In the case of Clades 10 and 12, horizontal gene transfer of plant cell wall degrading enzymes from bacteria and fungi has been implicated in the evolution of plant parasitism. We have used ribonucleic acid sequencing (RNAseq) to generate reference transcriptomes for two economically important nematode species, Xiphinema index and Longidorus elongatus , representative of two genera within the early-branching Clade 2 of the phylum Nematoda. We used a transcriptome-wide analysis to identify putative horizontal gene transfer events. This represents the first in-depth transcriptome analysis from any plant-parasitic nematode of this clade. For each species, we assembled ~30 million Illumina reads into a reference transcriptome. We identified 62 and 104 transcripts, from X. index and L. elongatus , respectively, that were putatively acquired via horizontal gene transfer. By cross-referencing horizontal gene transfer prediction with a phylum-wide analysis of Pfam domains, we identified Clade 2-specific events. Of these, a GH12 cellulase from X. index was analysed phylogenetically and biochemically, revealing a likely bacterial origin and canonical enzymatic function. Horizontal gene transfer was previously shown to be a phenomenon that has contributed to the evolution of plant parasitism among nematodes. Our findings underline the importance and the extensiveness of this phenomenon in the evolution of plant-parasitic life styles in this speciose and widespread animal phylum.

  12. Dawn of the in vivo RNA structurome and interactome.

    PubMed

    Kwok, Chun Kit

    2016-10-15

    RNA is one of the most fascinating biomolecules in living systems given its structural versatility to fold into elaborate architectures for important biological functions such as gene regulation, catalysis, and information storage. Knowledge of RNA structures and interactions can provide deep insights into their functional roles in vivo For decades, RNA structural studies have been conducted on a transcript-by-transcript basis. The advent of next-generation sequencing (NGS) has enabled the development of transcriptome-wide structural probing methods to profile the global landscape of RNA structures and interactions, also known as the RNA structurome and interactome, which transformed our understanding of the RNA structure-function relationship on a transcriptomic scale. In this review, molecular tools and NGS methods used for RNA structure probing are presented, novel insights uncovered by RNA structurome and interactome studies are highlighted, and perspectives on current challenges and potential future directions are discussed. A more complete understanding of the RNA structures and interactions in vivo will help illuminate the novel roles of RNA in gene regulation, development, and diseases. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  13. RNA-seq in kinetoplastids: A powerful tool for the understanding of the biology and host-pathogen interactions.

    PubMed

    Patino, Luz Helena; Ramírez, Juan David

    2017-04-01

    The kinetoplastids include a large number of parasites responsible for serious diseases in humans and animals (Leishmania and Trypanosoma brucei) considered endemic in several regions of the world. These parasites are characterized by digenetic life cycles that undergo morphological and genetic changes that allow them to adapt to different microenvironments on their vertebrates and invertebrates hosts. Recent advances in ´omics´ technology, specifically transcriptomics have allowed to reveal aspects associated with such molecular changes. So far, different techniques have been used to evaluate the gene expression profile during the various stages of the life cycle of these parasites and during the host-parasite interactions. However, some of them have serious drawbacks that limit the precise study and full understanding of their transcriptomes. Therefore, recently has been implemented the latest technology (RNA-seq), which overcomes the drawbacks of traditional methods. In this review, studies that so far have used RNA-seq are presented and allowed to expand our knowledge regarding the biology of these parasites and their interactions with their hosts. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Differentially-Expressed Pseudogenes in HIV-1 Infection.

    PubMed

    Gupta, Aditi; Brown, C Titus; Zheng, Yong-Hui; Adami, Christoph

    2015-09-29

    Not all pseudogenes are transcriptionally silent as previously thought. Pseudogene transcripts, although not translated, contribute to the non-coding RNA pool of the cell that regulates the expression of other genes. Pseudogene transcripts can also directly compete with the parent gene transcripts for mRNA stability and other cell factors, modulating their expression levels. Tissue-specific and cancer-specific differential expression of these "functional" pseudogenes has been reported. To ascertain potential pseudogene:gene interactions in HIV-1 infection, we analyzed transcriptomes from infected and uninfected T-cells and found that 21 pseudogenes are differentially expressed in HIV-1 infection. This is interesting because parent genes of one-third of these differentially-expressed pseudogenes are implicated in HIV-1 life cycle, and parent genes of half of these pseudogenes are involved in different viral infections. Our bioinformatics analysis identifies candidate pseudogene:gene interactions that may be of significance in HIV-1 infection. Experimental validation of these interactions would establish that retroviruses exploit this newly-discovered layer of host gene expression regulation for their own benefit.

  15. Transcriptome profile and unique genetic evolution of positively selected genes in yak lungs.

    PubMed

    Lan, DaoLiang; Xiong, XianRong; Ji, WenHui; Li, Jian; Mipam, Tserang-Donko; Ai, Yi; Chai, ZhiXin

    2018-04-01

    The yak (Bos grunniens), which is a unique bovine breed that is distributed mainly in the Qinghai-Tibetan Plateau, is considered a good model for studying plateau adaptability in mammals. The lungs are important functional organs that enable animals to adapt to their external environment. However, the genetic mechanism underlying the adaptability of yak lungs to harsh plateau environments remains unknown. To explore the unique evolutionary process and genetic mechanism of yak adaptation to plateau environments, we performed transcriptome sequencing of yak and cattle (Bos taurus) lungs using RNA-Seq technology and a subsequent comparison analysis to identify the positively selected genes in the yak. After deep sequencing, a normal transcriptome profile of yak lung that containing a total of 16,815 expressed genes was obtained, and the characteristics of yak lungs transcriptome was described by functional analysis. Furthermore, Ka/Ks comparison statistics result showed that 39 strong positively selected genes are identified from yak lungs. Further GO and KEGG analysis was conducted for the functional annotation of these genes. The results of this study provide valuable data for further explorations of the unique evolutionary process of high-altitude hypoxia adaptation in yaks in the Tibetan Plateau and the genetic mechanism at the molecular level.

  16. Sequencing and De Novo Assembly of the Toxicodendron radicans (Poison Ivy) Transcriptome

    PubMed Central

    Kim, Gunjune

    2017-01-01

    Contact with poison ivy plants is widely dreaded because they produce a natural product called urushiol that is responsible for allergenic contact delayed-dermatitis symptoms lasting for weeks. For this reason, the catchphrase most associated with poison ivy is “leaves of three, let it be”, which serves the purpose of both identification and an appeal for avoidance. Ironically, despite this notoriety, there is a dearth of specific knowledge about nearly all other aspects of poison ivy physiology and ecology. As a means of gaining a more molecular-oriented understanding of poison ivy physiology and ecology, Next Generation DNA sequencing technology was used to develop poison ivy root and leaf RNA-seq transcriptome resources. De novo assembled transcriptomes were analyzed to generate a core set of high quality expressed transcripts present in poison ivy tissue. The predicted protein sequences were evaluated for similarity to SwissProt homologs and InterProScan domains, as well as assigned both GO terms and KEGG annotations. Over 23,000 simple sequence repeats were identified in the transcriptome, and corresponding oligo nucleotide primer pairs were designed. A pan-transcriptome analysis of existing Anacardiaceae transcriptomes revealed conserved and unique transcripts among these species. PMID:29125533

  17. Sequencing and De Novo Assembly of the Toxicodendron radicans (Poison Ivy) Transcriptome.

    PubMed

    Weisberg, Alexandra J; Kim, Gunjune; Westwood, James H; Jelesko, John G

    2017-11-10

    Contact with poison ivy plants is widely dreaded because they produce a natural product called urushiol that is responsible for allergenic contact delayed-dermatitis symptoms lasting for weeks. For this reason, the catchphrase most associated with poison ivy is "leaves of three, let it be", which serves the purpose of both identification and an appeal for avoidance. Ironically, despite this notoriety, there is a dearth of specific knowledge about nearly all other aspects of poison ivy physiology and ecology. As a means of gaining a more molecular-oriented understanding of poison ivy physiology and ecology, Next Generation DNA sequencing technology was used to develop poison ivy root and leaf RNA-seq transcriptome resources. De novo assembled transcriptomes were analyzed to generate a core set of high quality expressed transcripts present in poison ivy tissue. The predicted protein sequences were evaluated for similarity to SwissProt homologs and InterProScan domains, as well as assigned both GO terms and KEGG annotations. Over 23,000 simple sequence repeats were identified in the transcriptome, and corresponding oligo nucleotide primer pairs were designed. A pan-transcriptome analysis of existing Anacardiaceae transcriptomes revealed conserved and unique transcripts among these species.

  18. Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing

    PubMed Central

    Wang, Bin; Guo, Guangwu; Wang, Chao; Lin, Ying; Wang, Xiaoning; Zhao, Mouming; Guo, Yong; He, Minghui; Zhang, Yong; Pan, Li

    2010-01-01

    Aspergillus oryzae, an important filamentous fungus used in food fermentation and the enzyme industry, has been shown through genome sequencing and various other tools to have prominent features in its genomic composition. However, the functional complexity of the A. oryzae transcriptome has not yet been fully elucidated. Here, we applied direct high-throughput paired-end RNA-sequencing (RNA-Seq) to the transcriptome of A. oryzae under four different culture conditions. With the high resolution and sensitivity afforded by RNA-Seq, we were able to identify a substantial number of novel transcripts, new exons, untranslated regions, alternative upstream initiation codons and upstream open reading frames, which provide remarkable insight into the A. oryzae transcriptome. We were also able to assess the alternative mRNA isoforms in A. oryzae and found a large number of genes undergoing alternative splicing. Many genes and pathways that might be involved in higher levels of protein production in solid-state culture than in liquid culture were identified by comparing gene expression levels between different cultures. Our analysis indicated that the transcriptome of A. oryzae is much more complex than previously anticipated, and these results may provide a blueprint for further study of the A. oryzae transcriptome. PMID:20392818

  19. Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing.

    PubMed

    Wang, Bin; Guo, Guangwu; Wang, Chao; Lin, Ying; Wang, Xiaoning; Zhao, Mouming; Guo, Yong; He, Minghui; Zhang, Yong; Pan, Li

    2010-08-01

    Aspergillus oryzae, an important filamentous fungus used in food fermentation and the enzyme industry, has been shown through genome sequencing and various other tools to have prominent features in its genomic composition. However, the functional complexity of the A. oryzae transcriptome has not yet been fully elucidated. Here, we applied direct high-throughput paired-end RNA-sequencing (RNA-Seq) to the transcriptome of A. oryzae under four different culture conditions. With the high resolution and sensitivity afforded by RNA-Seq, we were able to identify a substantial number of novel transcripts, new exons, untranslated regions, alternative upstream initiation codons and upstream open reading frames, which provide remarkable insight into the A. oryzae transcriptome. We were also able to assess the alternative mRNA isoforms in A. oryzae and found a large number of genes undergoing alternative splicing. Many genes and pathways that might be involved in higher levels of protein production in solid-state culture than in liquid culture were identified by comparing gene expression levels between different cultures. Our analysis indicated that the transcriptome of A. oryzae is much more complex than previously anticipated, and these results may provide a blueprint for further study of the A. oryzae transcriptome.

  20. Global Analysis of Transcriptome Responses and Gene Expression Profiles to Cold Stress of Jatropha curcas L.

    PubMed Central

    Wang, Haibo; Zou, Zhurong; Wang, Shasha; Gong, Ming

    2013-01-01

    Background Jatropha curcas L., also called the Physic nut, is an oil-rich shrub with multiple uses, including biodiesel production, and is currently exploited as a renewable energy resource in many countries. Nevertheless, because of its origin from the tropical MidAmerican zone, J. curcas confers an inherent but undesirable characteristic (low cold resistance) that may seriously restrict its large-scale popularization. This adaptive flaw can be genetically improved by elucidating the mechanisms underlying plant tolerance to cold temperatures. The newly developed Illumina Hiseq™ 2000 RNA-seq and Digital Gene Expression (DGE) are deep high-throughput approaches for gene expression analysis at the transcriptome level, using which we carefully investigated the gene expression profiles in response to cold stress to gain insight into the molecular mechanisms of cold response in J. curcas. Results In total, 45,251 unigenes were obtained by assembly of clean data generated by RNA-seq analysis of the J. curcas transcriptome. A total of 33,363 and 912 complete or partial coding sequences (CDSs) were determined by protein database alignments and ESTScan prediction, respectively. Among these unigenes, more than 41.52% were involved in approximately 128 known metabolic or signaling pathways, and 4,185 were possibly associated with cold resistance. DGE analysis was used to assess the changes in gene expression when exposed to cold condition (12°C) for 12, 24, and 48 h. The results showed that 3,178 genes were significantly upregulated and 1,244 were downregulated under cold stress. These genes were then functionally annotated based on the transcriptome data from RNA-seq analysis. Conclusions This study provides a global view of transcriptome response and gene expression profiling of J. curcas in response to cold stress. The results can help improve our current understanding of the mechanisms underlying plant cold resistance and favor the screening of crucial genes for genetically enhancing cold resistance in J. curcas. PMID:24349370

  1. Global analysis of transcriptome responses and gene expression profiles to cold stress of Jatropha curcas L.

    PubMed

    Wang, Haibo; Zou, Zhurong; Wang, Shasha; Gong, Ming

    2013-01-01

    Jatropha curcas L., also called the Physic nut, is an oil-rich shrub with multiple uses, including biodiesel production, and is currently exploited as a renewable energy resource in many countries. Nevertheless, because of its origin from the tropical MidAmerican zone, J. curcas confers an inherent but undesirable characteristic (low cold resistance) that may seriously restrict its large-scale popularization. This adaptive flaw can be genetically improved by elucidating the mechanisms underlying plant tolerance to cold temperatures. The newly developed Illumina Hiseq™ 2000 RNA-seq and Digital Gene Expression (DGE) are deep high-throughput approaches for gene expression analysis at the transcriptome level, using which we carefully investigated the gene expression profiles in response to cold stress to gain insight into the molecular mechanisms of cold response in J. curcas. In total, 45,251 unigenes were obtained by assembly of clean data generated by RNA-seq analysis of the J. curcas transcriptome. A total of 33,363 and 912 complete or partial coding sequences (CDSs) were determined by protein database alignments and ESTScan prediction, respectively. Among these unigenes, more than 41.52% were involved in approximately 128 known metabolic or signaling pathways, and 4,185 were possibly associated with cold resistance. DGE analysis was used to assess the changes in gene expression when exposed to cold condition (12°C) for 12, 24, and 48 h. The results showed that 3,178 genes were significantly upregulated and 1,244 were downregulated under cold stress. These genes were then functionally annotated based on the transcriptome data from RNA-seq analysis. This study provides a global view of transcriptome response and gene expression profiling of J. curcas in response to cold stress. The results can help improve our current understanding of the mechanisms underlying plant cold resistance and favor the screening of crucial genes for genetically enhancing cold resistance in J. curcas.

  2. ReprOlive: a database with linked data for the olive tree (Olea europaea L.) reproductive transcriptome

    PubMed Central

    Carmona, Rosario; Zafra, Adoración; Seoane, Pedro; Castro, Antonio J.; Guerrero-Fernández, Darío; Castillo-Castillo, Trinidad; Medina-García, Ana; Cánovas, Francisco M.; Aldana-Montes, José F.; Navas-Delgado, Ismael; Alché, Juan de Dios; Claros, M. Gonzalo

    2015-01-01

    Plant reproductive transcriptomes have been analyzed in different species due to the agronomical and biotechnological importance of plant reproduction. Here we presented an olive tree reproductive transcriptome database with samples from pollen and pistil at different developmental stages, and leaf and root as control vegetative tissues http://reprolive.eez.csic.es). It was developed from 2,077,309 raw reads to 1,549 Sanger sequences. Using a pre-defined workflow based on open-source tools, sequences were pre-processed, assembled, mapped, and annotated with expression data, descriptions, GO terms, InterPro signatures, EC numbers, KEGG pathways, ORFs, and SSRs. Tentative transcripts (TTs) were also annotated with the corresponding orthologs in Arabidopsis thaliana from TAIR and RefSeq databases to enable Linked Data integration. It results in a reproductive transcriptome comprising 72,846 contigs with average length of 686 bp, of which 63,965 (87.8%) included at least one functional annotation, and 55,356 (75.9%) had an ortholog. A minimum of 23,568 different TTs was identified and 5,835 of them contain a complete ORF. The representative reproductive transcriptome can be reduced to 28,972 TTs for further gene expression studies. Partial transcriptomes from pollen, pistil, and vegetative tissues as control were also constructed. ReprOlive provides free access and download capability to these results. Retrieval mechanisms for sequences and transcript annotations are provided. Graphical localization of annotated enzymes into KEGG pathways is also possible. Finally, ReprOlive has included a semantic conceptualisation by means of a Resource Description Framework (RDF) allowing a Linked Data search for extracting the most updated information related to enzymes, interactions, allergens, structures, and reactive oxygen species. PMID:26322066

  3. Dual RNA-seq reveals no plastic transcriptional response of the coccidian parasite Eimeria falciformis to host immune defenses.

    PubMed

    Ehret, Totta; Spork, Simone; Dieterich, Christoph; Lucius, Richard; Heitlinger, Emanuel

    2017-09-05

    Parasites can either respond to differences in immune defenses that exist between individual hosts plastically or, alternatively, follow a genetically canalized ("hard wired") program of infection. Assuming that large-scale functional plasticity would be discernible in the parasite transcriptome we have performed a dual RNA-seq study of the lifecycle of Eimeria falciformis using infected mice with different immune status as models for coccidian infections. We compared parasite and host transcriptomes (dual transcriptome) between naïve and challenge infected mice, as well as between immune competent and immune deficient ones. Mice with different immune competence show transcriptional differences as well as differences in parasite reproduction (oocyst shedding). Broad gene categories represented by differently abundant host genes indicate enrichments for immune reaction and tissue repair functions. More specifically, TGF-beta, EGF, TNF and IL-1 and IL-6 are examples of functional annotations represented differently depending on host immune status. Much in contrast, parasite transcriptomes were neither different between Coccidia isolated from immune competent and immune deficient mice, nor between those harvested from naïve and challenge infected mice. Instead, parasite transcriptomes have distinct profiles early and late in infection, characterized largely by biosynthesis or motility associated functional gene groups, respectively. Extracellular sporozoite and oocyst stages showed distinct transcriptional profiles and sporozoite transcriptomes were found enriched for species specific genes and likely pathogenicity factors. We propose that the niche and host-specific parasite E. falciformis uses a genetically canalized program of infection. This program is likely fixed in an evolutionary process rather than employing phenotypic plasticity to interact with its host. This in turn might limit the potential of the parasite to adapt to new host species or niches, forcing it to coevolve with its host.

  4. A pipeline for the de novo assembly of the Themira biloba (Sepsidae: Diptera) transcriptome using a multiple k-mer length approach.

    PubMed

    Melicher, Dacotah; Torson, Alex S; Dworkin, Ian; Bowsher, Julia H

    2014-03-12

    The Sepsidae family of flies is a model for investigating how sexual selection shapes courtship and sexual dimorphism in a comparative framework. However, like many non-model systems, there are few molecular resources available. Large-scale sequencing and assembly have not been performed in any sepsid, and the lack of a closely related genome makes investigation of gene expression challenging. Our goal was to develop an automated pipeline for de novo transcriptome assembly, and to use that pipeline to assemble and analyze the transcriptome of the sepsid Themira biloba. Our bioinformatics pipeline uses cloud computing services to assemble and analyze the transcriptome with off-site data management, processing, and backup. It uses a multiple k-mer length approach combined with a second meta-assembly to extend transcripts and recover more bases of transcript sequences than standard single k-mer assembly. We used 454 sequencing to generate 1.48 million reads from cDNA generated from embryo, larva, and pupae of T. biloba and assembled a transcriptome consisting of 24,495 contigs. Annotation identified 16,705 transcripts, including those involved in embryogenesis and limb patterning. We assembled transcriptomes from an additional three non-model organisms to demonstrate that our pipeline assembled a higher-quality transcriptome than single k-mer approaches across multiple species. The pipeline we have developed for assembly and analysis increases contig length, recovers unique transcripts, and assembles more base pairs than other methods through the use of a meta-assembly. The T. biloba transcriptome is a critical resource for performing large-scale RNA-Seq investigations of gene expression patterns, and is the first transcriptome sequenced in this Dipteran family.

  5. Sequencing, Annotation and Analysis of the Syrian Hamster (Mesocricetus auratus) Transcriptome

    PubMed Central

    Tchitchek, Nicolas; Safronetz, David; Rasmussen, Angela L.; Martens, Craig; Virtaneva, Kimmo; Porcella, Stephen F.; Feldmann, Heinz

    2014-01-01

    Background The Syrian hamster (golden hamster, Mesocricetus auratus) is gaining importance as a new experimental animal model for multiple pathogens, including emerging zoonotic diseases such as Ebola. Nevertheless there are currently no publicly available transcriptome reference sequences or genome for this species. Results A cDNA library derived from mRNA and snRNA isolated and pooled from the brains, lungs, spleens, kidneys, livers, and hearts of three adult female Syrian hamsters was sequenced. Sequence reads were assembled into 62,482 contigs and 111,796 reads remained unassembled (singletons). This combined contig/singleton dataset, designated as the Syrian hamster transcriptome, represents a total of 60,117,204 nucleotides. Our Mesocricetus auratus Syrian hamster transcriptome mapped to 11,648 mouse transcripts representing 9,562 distinct genes, and mapped to a similar number of transcripts and genes in the rat. We identified 214 quasi-complete transcripts based on mouse annotations. Canonical pathways involved in a broad spectrum of fundamental biological processes were significantly represented in the library. The Syrian hamster transcriptome was aligned to the current release of the Chinese hamster ovary (CHO) cell transcriptome and genome to improve the genomic annotation of this species. Finally, our Syrian hamster transcriptome was aligned against 14 other rodents, primate and laurasiatheria species to gain insights about the genetic relatedness and placement of this species. Conclusions This Syrian hamster transcriptome dataset significantly improves our knowledge of the Syrian hamster's transcriptome, especially towards its future use in infectious disease research. Moreover, this library is an important resource for the wider scientific community to help improve genome annotation of the Syrian hamster and other closely related species. Furthermore, these data provide the basis for development of expression microarrays that can be used in functional genomics studies. PMID:25398096

  6. Laser assisted microdissection, an efficient technique to understand tissue specific gene expression patterns and functional genomics in plants.

    PubMed

    Gautam, Vibhav; Sarkar, Ananda K

    2015-04-01

    Laser assisted microdissection (LAM) is an advanced technology used to perform tissue or cell-specific expression profiling of genes and proteins, owing to its ability to isolate the desired tissue or cell type from a heterogeneous population. Due to the specificity and high efficiency acquired during its pioneering use in medical science, the LAM technique has quickly been adopted for use in many biological researches. Today, it has become a potent tool to address a wide range of questions in diverse field of plant biology. Beginning with comparative transcriptome analysis of different tissues such as reproductive parts, meristems, lateral organs, roots etc., LAM has also been extensively used in plant-pathogen interaction studies, proteomics, and metabolomics. In combination with next generation sequencing and proteomics analysis, LAM has opened up promising opportunities in the area of large scale functional studies in plants. Ever since the advent of this technique, significant improvements have been achieved in term of its instrumentation and method, which has made LAM a more efficient tool applicable in wider research areas. Here, we discuss the advancement of LAM technique with special emphasis on its methodology and highlight its scope in modern research areas of plant biology. Although we put emphasis on use of LAM in transcriptome studies, which is mostly used, we also discuss its recent application and scope in proteome and metabolome studies.

  7. De Novo Assembled Wheat Transcriptomes Delineate Differentially Expressed Host Genes in Response to Leaf Rust Infection.

    PubMed

    Chandra, Saket; Singh, Dharmendra; Pathak, Jyoti; Kumari, Supriya; Kumar, Manish; Poddar, Raju; Balyan, Harindra Singh; Gupta, Puspendra Kumar; Prabhu, Kumble Vinod; Mukhopadhyay, Kunal

    2016-01-01

    Pathogens like Puccinia triticina, the causal organism for leaf rust, extensively damages wheat production. The interaction at molecular level between wheat and the pathogen is complex and less explored. The pathogen induced response was characterized using mock- or pathogen inoculated near-isogenic wheat lines (with or without seedling leaf rust resistance gene Lr28). Four Serial Analysis of Gene Expression libraries were prepared from mock- and pathogen inoculated plants and were subjected to Sequencing by Oligonucleotide Ligation and Detection, which generated a total of 165,767,777 reads, each 35 bases long. The reads were processed and multiple k-mers were attempted for de novo transcript assembly; 22 k-mers showed the best results. Altogether 21,345 contigs were generated and functionally characterized by gene ontology annotation, mining for transcription factors and resistance genes. Expression analysis among the four libraries showed extensive alterations in the transcriptome in response to pathogen infection, reflecting reorganizations in major biological processes and metabolic pathways. Role of auxin in determining pathogenesis in susceptible and resistant lines were imperative. The qPCR expression study of four LRR-RLK (Leucine-rich repeat receptor-like protein kinases) genes showed higher expression at 24 hrs after inoculation with pathogen. In summary, the conceptual model of induced resistance in wheat contributes insights on defense responses and imparts knowledge of Puccinia triticina-induced defense transcripts in wheat plants.

  8. De Novo Assembled Wheat Transcriptomes Delineate Differentially Expressed Host Genes in Response to Leaf Rust Infection

    PubMed Central

    Pathak, Jyoti; Kumari, Supriya; Kumar, Manish; Poddar, Raju; Balyan, Harindra Singh; Gupta, Puspendra Kumar; Prabhu, Kumble Vinod; Mukhopadhyay, Kunal

    2016-01-01

    Pathogens like Puccinia triticina, the causal organism for leaf rust, extensively damages wheat production. The interaction at molecular level between wheat and the pathogen is complex and less explored. The pathogen induced response was characterized using mock- or pathogen inoculated near-isogenic wheat lines (with or without seedling leaf rust resistance gene Lr28). Four Serial Analysis of Gene Expression libraries were prepared from mock- and pathogen inoculated plants and were subjected to Sequencing by Oligonucleotide Ligation and Detection, which generated a total of 165,767,777 reads, each 35 bases long. The reads were processed and multiple k-mers were attempted for de novo transcript assembly; 22 k-mers showed the best results. Altogether 21,345 contigs were generated and functionally characterized by gene ontology annotation, mining for transcription factors and resistance genes. Expression analysis among the four libraries showed extensive alterations in the transcriptome in response to pathogen infection, reflecting reorganizations in major biological processes and metabolic pathways. Role of auxin in determining pathogenesis in susceptible and resistant lines were imperative. The qPCR expression study of four LRR-RLK (Leucine-rich repeat receptor-like protein kinases) genes showed higher expression at 24 hrs after inoculation with pathogen. In summary, the conceptual model of induced resistance in wheat contributes insights on defense responses and imparts knowledge of Puccinia triticina-induced defense transcripts in wheat plants. PMID:26840746

  9. Impact of Lactobacillus plantarum Sortase on Target Protein Sorting, Gastrointestinal Persistence, and Host Immune Response Modulation

    PubMed Central

    Remus, Daniela M.; Bongers, Roger S.; Meijerink, Marjolein; Fusetti, Fabrizia; Poolman, Bert; de Vos, Paul; Wells, Jerry M.; Bron, Peter A.

    2013-01-01

    Sortases are transpeptidases that couple surface proteins to the peptidoglycan of Gram-positive bacteria, and several sortase-dependent proteins (SDPs) have been demonstrated to be crucial for the interactions of pathogenic and nonpathogenic bacteria with their hosts. Here, we studied the role of sortase A (SrtA) in Lactobacillus plantarum WCFS1, a model Lactobacillus for probiotic organisms. An isogenic srtA deletion derivative was constructed which did not show residual SrtA activity. DNA microarray-based transcriptome analysis revealed that the srtA deletion had only minor impact on the full-genome transcriptome of L. plantarum, while the expression of SDP-encoding genes remained completely unaffected. Mass spectrometry analysis of the bacterial cell surface proteome, which was assessed by trypsinization of intact bacterial cells and by LiCl protein extraction, revealed that SrtA is required for the appropriate subcellular location of specific SDPs and for their covalent coupling to the cell envelope, respectively. We further found that SrtA deficiency did not affect the persistence and/or survival of L. plantarum in the gastrointestinal tract of mice. In addition, an in vitro immature dendritic cell (iDC) assay revealed that the removal of surface proteins by LiCl strongly affected the proinflammatory signaling properties of the SrtA-deficient strain but not of the wild type, which suggests a role of SDPs in host immune response modulation. PMID:23175652

  10. Transcriptome analysis of the sea cucumber (Apostichopus japonicus) with variation in individual growth.

    PubMed

    Gao, Lei; He, Chongbo; Bao, Xiangbo; Tian, Meilin; Ma, Zhen

    2017-01-01

    The sea cucumber (Apostichopus japonicus) is an economically important aquaculture species in China. However, the serious individual growth variation often caused financial losses to farmers and the genetic mechanisms are poorly understood. In the present study, the extensively analysis at the transcriptome level for individual growth variation in sea cucumber was carried out. A total of 118946 unigenes were assembled from 255861 transcripts, with N50 of 1700. Of all unigenes, about 23% were identified with at least one significant match to known databases. In all four pair of comparison, 1840 genes were found to be expressed differently. Global hypometabolism was found to be occurred in the slow growing population, based on which the hypothesis was raised that growth retardation in individual growth variation of sea cucumber is one type of dormancy which is used to be against to adverse circumstances. Besides, the pathways such as ECM-receptor interaction and focal adhesion were enriched in the maintenance of cell and tissue structure and communication. Further, 76645 SSRs, 765242 SNPs and 146886 ins-dels were detected in the current study providing an extensive set of data for future studies of genetic mapping and selective breeding. In summary, these results will provides deep insight into the molecular basis of individual growth variation in marine invertebrates, and be valuable for understanding the physiological differences of growth process.

  11. Transcriptome Analysis of Green Peach Aphid (Myzus persicae): Insight into Developmental Regulation and Inter-Species Divergence

    PubMed Central

    Ji, Rui; Wang, Yujun; Cheng, Yanbin; Zhang, Meiping; Zhang, Hong-Bin; Zhu, Li; Fang, Jichao; Zhu-Salzman, Keyan

    2016-01-01

    Green peach aphid (Myzus persicae) and pea aphid (Acyrthosiphon pisum) are two phylogenetically closely related agricultural pests. While pea aphid is restricted to Fabaceae, green peach aphid feeds on hundreds of plant species from more than 40 families. Transcriptome comparison could shed light on the genetic factors underlying the difference in host range between the two species. Furthermore, a large scale study contrasting gene expression between immature nymphs and fully developed adult aphids would fill a previous knowledge gap. Here, we obtained transcriptomic sequences of green peach aphid nymphs and adults, respectively, using Illumina sequencing technology. A total of 2244 genes were found to be differentially expressed between the two developmental stages, many of which were associated with detoxification, hormone production, cuticle formation, metabolism, food digestion, and absorption. When searched against publically available pea aphid mRNA sequences, 13,752 unigenes were found to have no homologous counterparts. Interestingly, many of these unigenes that could be annotated in other databases were involved in the “xenobiotics biodegradation and metabolism” pathway, suggesting the two aphids differ in their adaptation to secondary metabolites of host plants. Conversely, 3989 orthologous gene pairs between the two species were subjected to calculations of synonymous and nonsynonymous substitutions, and 148 of the genes potentially evolved in response to positive selection. Some of these genes were predicted to be associated with insect-plant interactions. Our study has revealed certain molecular events related to aphid development, and provided some insight into biological variations in two aphid species, possibly as a result of host plant adaptation. PMID:27812361

  12. Comparative transcriptome profiling of upland (VS16) and lowland (AP13) ecotypes of switchgrass.

    PubMed

    Ayyappan, Vasudevan; Saha, Malay C; Thimmapuram, Jyothi; Sripathi, Venkateswara R; Bhide, Ketaki P; Fiedler, Elizabeth; Hayford, Rita K; Kalavacharla, Venu Kal

    2017-01-01

    Transcriptomes of two switchgrass genotypes representing the upland and lowland ecotypes will be key tools in switchgrass genome annotation and biotic and abiotic stress functional genomics. Switchgrass (Panicum virgatum L.) is an important bioenergy feedstock for cellulosic ethanol production. We report genome-wide transcriptome profiling of two contrasting tetraploid switchgrass genotypes, VS16 and AP13, representing the upland and lowland ecotypes, respectively. A total of 268 million Illumina short reads (50 nt) were generated, of which, 133 million were obtained in AP13 and the rest 135 million in VS16. More than 90% of these reads were mapped to the switchgrass reference genome (V1.1). We identified 6619 and 5369 differentially expressed genes in VS16 and AP13, respectively. Gene ontology and KEGG pathway analysis identified key genes that regulate important pathways including C4 photosynthesis, photorespiration and phenylpropanoid metabolism. A series of genes (33) involved in photosynthetic pathway were up-regulated in AP13 but only two genes showed higher expression in VS16. We identified three dicarboxylate transporter homologs that were highly expressed in AP13. Additionally, genes that mediate drought, heat, and salinity tolerance were also identified. Vesicular transport proteins, syntaxin and signal recognition particles were seen to be up-regulated in VS16. Analyses of selected genes involved in biosynthesis of secondary metabolites, plant-pathogen interaction, membrane transporters, heat, drought and salinity stress responses confirmed significant variation in the relative expression reflected in RNA-Seq data between VS16 and AP13 genotypes. The phenylpropanoid pathway genes identified here are potential targets for biofuel conversion.

  13. RNA-Seq-based transcriptome profiling of early nitrogen deficiency response in cucumber seedlings provides new insight into the putative nitrogen regulatory network.

    PubMed

    Zhao, Wenchao; Yang, Xueyong; Yu, Hongjun; Jiang, Weijie; Sun, Na; Liu, Xiaoran; Liu, Xiaolin; Zhang, Xiaomeng; Wang, Yan; Gu, Xingfang

    2015-03-01

    Nitrogen (N) is both an important macronutrient and a signal for plant growth and development. However, the early regulatory mechanism of plants in response to N starvation is not well understood, especially in cucumber, an economically important crop that normally consumes excessive N during production. In this study, the early time-course transcriptome response of cucumber leaves under N deficiency was monitored using RNA sequencing (RNA-Seq). More than 23,000 transcripts were examined in cucumber leaves, of which 364 genes were differentially expressed in response to N deficiency. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, gene ontology (GO) and protein-protein interaction analysis, 64 signaling-related N-deficiency-responsive genes were identified. Furthermore, the potential regulatory mechanisms of anthocyanin accumulation, Chl decline and cell wall remodeling were assessed at the transcription level. Increased ascorbic acid synthesis was identified in cucumber seedlings and fruit under N-deficient conditions, and a new corresponding regulatory hypothesis has been proposed. A data cross-comparison between model plants and cucumber was made, and some common and specific N-deficient response mechanisms were found in the present study. Our study provides novel insights into the responses of cucumber to nitrogen starvation at the global transcriptome level, which are expected to be highly useful for dissecting the N response pathways in this major vegetable and for improving N fertilization practices. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Comparative transcriptome analysis of Gossypium hirsutum L. in response to sap sucking insects: aphid and whitefly

    PubMed Central

    2013-01-01

    Background Cotton (Gossypium hirsutum L.) is a major fiber crop that is grown worldwide; it faces extensive damage from sap-sucking insects, including aphids and whiteflies. Genome-wide transcriptome analysis was performed to understand the molecular details of interaction between Gossypium hirsutum L. and sap-sucking pests, namely Aphis gossypii (Aphid) and Bemisia tabacci (Whiteflies). Roche’s GS-Titanium was used to sequence transcriptomes of cotton infested with aphids and whiteflies for 2 h and 24 h. Results A total of 100935 contigs were produced with an average length of 529 bp after an assembly in all five selected conditions. The Blastn of the non-redundant (nr) cotton EST database resulted in the identification of 580 novel contigs in the cotton plant. It should be noted that in spite of minimal physical damage caused by the sap-sucking insects, they can change the gene expression of plants in 2 h of infestation; further change in gene expression due to whiteflies is quicker than due to aphids. The impact of the whitefly 24 h after infestation was more or less similar to that of the aphid 2 h after infestation. Aphids and whiteflies affect many genes that are regulated by various phytohormones and in response to microbial infection, indicating the involvement of complex crosstalk between these pathways. The KOBAS analysis of differentially regulated transcripts in response to aphids and whiteflies indicated that both the insects induce the metabolism of amino acids biosynthesis specially in case of whiteflies infestation at later phase. Further we also observed that expression of transcript related to photosynthesis specially carbon fixation were significantly influenced by infestation of Aphids and Whiteflies. Conclusions A comparison of different transcriptomes leads to the identification of differentially and temporally regulated transcripts in response to infestation by aphids and whiteflies. Most of these differentially expressed contigs were related to genes involved in biotic, abiotic stresses and enzymatic activities related to hydrolases, transferases, and kinases. The expression of some marker genes such as the overexpressors of cationic peroxidase 3, lipoxygenase I, TGA2, and non-specific lipase, which are involved in phytohormonal-mediated plant resistance development, was suppressed after infestation by aphids and whiteflies, indicating that insects suppressed plant resistance in order to facilitate their infestation. We also concluded that cotton shares several pathways such as phagosomes, RNA transport, and amino acid metabolism with Arabidopsis in response to the infestation by aphids and whiteflies. PMID:23577705

  15. The Escherichia coli regulator of sigma 70 protein, Rsd, can up-regulate some stress-dependent promoters by sequestering sigma 70.

    PubMed

    Mitchell, Jennie E; Oshima, Taku; Piper, Sarah E; Webster, Christine L; Westblade, Lars F; Karimova, Gouzel; Ladant, Daniel; Kolb, Annie; Hobman, Jon L; Busby, Stephen J W; Lee, David J

    2007-05-01

    The Escherichia coli Rsd protein forms complexes with the RNA polymerase sigma(70) factor, but its biological role is not understood. Transcriptome analysis shows that overexpression of Rsd causes increased expression from some promoters whose expression depends on the alternative sigma(38) factor, and this was confirmed by experiments with lac fusions at selected promoters. The LP18 substitution in Rsd increases the Rsd-dependent stimulation of these promoter-lac fusions. Analysis with a bacterial two-hybrid system shows that the LP18 substitution in Rsd increases its interaction with sigma(70). Our experiments support a model in which the role of Rsd is primarily to sequester sigma(70), thereby increasing the levels of RNA polymerase containing the alternative sigma(38) factor.

  16. Signaling Networks among Stem Cell Precursors, Transit-Amplifying Progenitors, and their Niche in Developing Hair Follicles.

    PubMed

    Rezza, Amélie; Wang, Zichen; Sennett, Rachel; Qiao, Wenlian; Wang, Dongmei; Heitman, Nicholas; Mok, Ka Wai; Clavel, Carlos; Yi, Rui; Zandstra, Peter; Ma'ayan, Avi; Rendl, Michael

    2016-03-29

    The hair follicle (HF) is a complex miniorgan that serves as an ideal model system to study stem cell (SC) interactions with the niche during growth and regeneration. Dermal papilla (DP) cells are required for SC activation during the adult hair cycle, but signal exchange between niche and SC precursors/transit-amplifying cell (TAC) progenitors that regulates HF morphogenetic growth is largely unknown. Here we use six transgenic reporters to isolate 14 major skin and HF cell populations. With next-generation RNA sequencing, we characterize their transcriptomes and define unique molecular signatures. SC precursors, TACs, and the DP niche express a plethora of ligands and receptors. Signaling interaction network analysis reveals a bird's-eye view of pathways implicated in epithelial-mesenchymal interactions. Using a systematic tissue-wide approach, this work provides a comprehensive platform, linked to an interactive online database, to identify and further explore the SC/TAC/niche crosstalk regulating HF growth. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Analysis of the Macaca mulatta transcriptome and the sequence divergence between Macaca and human.

    PubMed

    Magness, Charles L; Fellin, P Campion; Thomas, Matthew J; Korth, Marcus J; Agy, Michael B; Proll, Sean C; Fitzgibbon, Matthew; Scherer, Christina A; Miner, Douglas G; Katze, Michael G; Iadonato, Shawn P

    2005-01-01

    We report the initial sequencing and comparative analysis of the Macaca mulatta transcriptome. Cloned sequences from 11 tissues, nine animals, and three species (M. mulatta, M. fascicularis, and M. nemestrina) were sampled, resulting in the generation of 48,642 sequence reads. These data represent an initial sampling of the putative rhesus orthologs for 6,216 human genes. Mean nucleotide diversity within M. mulatta and sequence divergence among M. fascicularis, M. nemestrina, and M. mulatta are also reported.

  18. RNA-seq Analysis of Host and Viral Gene Expression Highlights Interaction between Varicella Zoster Virus and Keratinocyte Differentiation

    PubMed Central

    Singh, Manuraj; Kanda, Ravinder K.; Yee, Michael B.; Kellam, Paul; Hollinshead, Michael; Kinchington, Paul R.; O'Toole, Edel A.; Breuer, Judith

    2014-01-01

    Varicella zoster virus (VZV) is the etiological agent of chickenpox and shingles, diseases characterized by epidermal skin blistering. Using a calcium-induced keratinocyte differentiation model we investigated the interaction between epidermal differentiation and VZV infection. RNA-seq analysis showed that VZV infection has a profound effect on differentiating keratinocytes, altering the normal process of epidermal gene expression to generate a signature that resembles patterns of gene expression seen in both heritable and acquired skin-blistering disorders. Further investigation by real-time PCR, protein analysis and electron microscopy revealed that VZV specifically reduced expression of specific suprabasal cytokeratins and desmosomal proteins, leading to disruption of epidermal structure and function. These changes were accompanied by an upregulation of kallikreins and serine proteases. Taken together VZV infection promotes blistering and desquamation of the epidermis, both of which are necessary to the viral spread and pathogenesis. At the same time, analysis of the viral transcriptome provided evidence that VZV gene expression was significantly increased following calcium treatment of keratinocytes. Using reporter viruses and immunohistochemistry we confirmed that VZV gene and protein expression in skin is linked with cellular differentiation. These studies highlight the intimate host-pathogen interaction following VZV infection of skin and provide insight into the mechanisms by which VZV remodels the epidermal environment to promote its own replication and spread. PMID:24497829

  19. High throughput, cell type-specific analysis of key proteins in human endometrial biopsies of women from fertile and infertile couples

    PubMed Central

    Leach, Richard E.; Jessmon, Philip; Coutifaris, Christos; Kruger, Michael; Myers, Evan R.; Ali-Fehmi, Rouba; Carson, Sandra A.; Legro, Richard S.; Schlaff, William D.; Carr, Bruce R.; Steinkampf, Michael P.; Silva, Susan; Leppert, Phyllis C.; Giudice, Linda; Diamond, Michael P.; Armant, D. Randall

    2012-01-01

    BACKGROUND Although histological dating of endometrial biopsies provides little help for prediction or diagnosis of infertility, analysis of individual endometrial proteins, proteomic profiling and transcriptome analysis have suggested several biomarkers with altered expression arising from intrinsic abnormalities, inadequate stimulation by or in response to gonadal steroids or altered function due to systemic disorders. The objective of this study was to delineate the developmental dynamics of potentially important proteins in the secretory phase of the menstrual cycle, utilizing a collection of endometrial biopsies from women of fertile (n = 89) and infertile (n = 89) couples. METHODS AND RESULTS Progesterone receptor-B (PGR-B), leukemia inhibitory factor, glycodelin/progestagen-associated endometrial protein (PAEP), homeobox A10, heparin-binding EGF-like growth factor, calcitonin and chemokine ligand 14 (CXCL14) were measured using a high-throughput, quantitative immunohistochemical method. Significant cyclic and tissue-specific regulation was documented for each protein, as well as their dysregulation in women of infertile couples. Infertile patients demonstrated a delay early in the secretory phase in the decline of PGR-B (P < 0.05) and premature mid-secretory increases in PAEP (P < 0.05) and CXCL14 (P < 0.05), suggesting that the implantation interval could be closing early. Correlation analysis identified potential interactions among certain proteins that were disrupted by infertility. CONCLUSIONS This approach overcomes the limitations of a small sample number. Protein expression and localization provided important insights into the potential roles of these proteins in normal and pathological development of the endometrium that is not attainable from transcriptome analysis, establishing a basis for biomarker, diagnostic and targeted drug development for women with infertility. PMID:22215622

  20. Stranded Whole Transcriptome RNA-Seq for All RNA Types

    PubMed Central

    Yan, Pearlly X.; Fang, Fang; Buechlein, Aaron; Ford, James B.; Tang, Haixu; Huang, Tim H.; Burow, Matthew E.; Liu, Yunlong; Rusch, Douglas B.

    2015-01-01

    Stranded whole transcriptome RNA-Seq described in this unit captures quantitative expression data for all types of RNA including, but not limited to miRNA (microRNA), piRNA (Piwi-interacting RNA), snoRNA (small nucleolar RNA), lincRNA (large non-coding intergenic RNA), SRP RNA (signal recognition particle RNA), tRNA (transfer RNA), mtRNA (mitochondrial RNA) and mRNA (messenger RNA). The size and nature of these types of RNA are irrelevant to the approach described here. Barcoded libraries for multiplexing on the Illumina platform are generated with this approach but it can be applied to other platforms with a few modifications. PMID:25599667

  1. Heat-induced masculinization in domesticated zebrafish is family-specific and yields a set of different gonadal transcriptomes.

    PubMed

    Ribas, Laia; Liew, Woei Chang; Díaz, Noèlia; Sreenivasan, Rajini; Orbán, László; Piferrer, Francesc

    2017-02-07

    Understanding environmental influences on sex ratios is important for the study of the evolution of sex-determining mechanisms and for evaluating the effects of global warming and chemical pollution. Fishes exhibit sexual plasticity, but the underlying mechanisms of environmental effects on their reproduction are unclear even in the well-established teleost research model, the zebrafish. Here we established the conditions to study the effects of elevated temperature on zebrafish sex. We showed that sex ratio response to elevated temperature is family-specific and typically leads to masculinization (female-to-male sex reversal), resulting in neomales. These results uncovered genotype-by-environment interactions that support a polygenic sex determination system in domesticated (laboratory) zebrafish. We found that some heat-treated fish had gene expression profiles similar to untreated controls of the same sex, indicating that they were resistant to thermal effects. Further, most neomales had gonadal transcriptomes similar to that of regular males. Strikingly, we discovered heat-treated females that displayed a normal ovarian phenotype but with a "male-like" gonadal transcriptome. Such major transcriptomic reprogramming with preserved organ structure has never been reported. Juveniles were also found to have a male-like transcriptome shortly after exposure to heat. These findings were validated by analyzing the expression of genes and signaling pathways associated with sex differentiation. Our results revealed a lasting thermal effect on zebrafish gonads, suggesting new avenues for detection of functional consequences of elevated temperature in natural fish populations in a global warming scenario.

  2. Identification of misexpressed genetic elements in hybrids between Drosophila-related species.

    PubMed

    Lopez-Maestre, Hélène; Carnelossi, Elias A G; Lacroix, Vincent; Burlet, Nelly; Mugat, Bruno; Chambeyron, Séverine; Carareto, Claudia M A; Vieira, Cristina

    2017-01-16

    Crosses between close species can lead to genomic disorders, often considered to be the cause of hybrid incompatibility, one of the initial steps in the speciation process. How these incompatibilities are established and what are their causes remain unclear. To understand the initiation of hybrid incompatibility, we performed reciprocal crosses between two species of Drosophila (D. mojavensis and D. arizonae) that diverged less than 1 Mya. We performed a genome-wide transcriptomic analysis on ovaries from parental lines and on hybrids from reciprocal crosses. Using an innovative procedure of co-assembling transcriptomes, we show that parental lines differ in the expression of their genes and transposable elements. Reciprocal hybrids presented specific gene categories and few transposable element families misexpressed relative to the parental lines. Because TEs are mainly silenced by piwi-interacting RNAs (piRNAs), we hypothesize that in hybrids the deregulation of specific TE families is due to the absence of such small RNAs. Small RNA sequencing confirmed our hypothesis and we therefore propose that TEs can indeed be major players of genome differentiation and be implicated in the first steps of genomic incompatibilities through small RNA regulation.

  3. Identification of misexpressed genetic elements in hybrids between Drosophila-related species

    PubMed Central

    Lopez-Maestre, Hélène; Carnelossi, Elias A. G.; Lacroix, Vincent; Burlet, Nelly; Mugat, Bruno; Chambeyron, Séverine; Carareto, Claudia M. A.; Vieira, Cristina

    2017-01-01

    Crosses between close species can lead to genomic disorders, often considered to be the cause of hybrid incompatibility, one of the initial steps in the speciation process. How these incompatibilities are established and what are their causes remain unclear. To understand the initiation of hybrid incompatibility, we performed reciprocal crosses between two species of Drosophila (D. mojavensis and D. arizonae) that diverged less than 1 Mya. We performed a genome-wide transcriptomic analysis on ovaries from parental lines and on hybrids from reciprocal crosses. Using an innovative procedure of co-assembling transcriptomes, we show that parental lines differ in the expression of their genes and transposable elements. Reciprocal hybrids presented specific gene categories and few transposable element families misexpressed relative to the parental lines. Because TEs are mainly silenced by piwi-interacting RNAs (piRNAs), we hypothesize that in hybrids the deregulation of specific TE families is due to the absence of such small RNAs. Small RNA sequencing confirmed our hypothesis and we therefore propose that TEs can indeed be major players of genome differentiation and be implicated in the first steps of genomic incompatibilities through small RNA regulation. PMID:28091568

  4. Transcriptome Analysis of Quantitative Resistance-Specific Response upon Ralstonia solanacearum Infection in Tomato

    PubMed Central

    Ishihara, Takeaki; Mitsuhara, Ichiro; Takahashi, Hideki; Nakaho, Kazuhiro

    2012-01-01

    Bacterial wilt, caused by the soil-borne bacterium Ralstonia solanacearum, is a lethal disease of tomato, but the molecular mechanisms of the host resistance responses to R. solanacearum remain unclear. In this study, we report the first work describing the transcriptome of cultivar resistance and susceptible tomato cultivar after inoculation with R. solanacearum. To elucidate the characteristics of resistance early in the interaction, we analyzed microarrays for resistant cultivar LS-89 and susceptible cultivar Ponderosa 1 day after stem inoculation. No change in gene expression was detected for Ponderosa, but expression levels of over 140 genes, including pathogenesis-related, hormone signaling and lignin biosynthesis genes, increased in LS-89. Expression of β-1,3-glucanase genes increased substantially. In an immunohistochemical study, glucanase in LS-89 accumulated in the xylem and pith tissues surrounding xylem vessels filled with R. solanacearum. The expression of these genes also increased in four other resistant cultivars, but changed little in four susceptible cultivars in response to R. solanacearum, suggesting that similar reactions occur in other cultivars. These gene expression profiles will serve as fundamental information to elucidate the molecular mechanisms in the resistance response to R. solanacearum in tomato. PMID:23071630

  5. Transcriptomic changes in an animal-bacterial symbiosis under modeled microgravity conditions

    PubMed Central

    Casaburi, Giorgio; Goncharenko-Foster, Irina; Duscher, Alexandrea A.; Foster, Jamie S.

    2017-01-01

    Spaceflight imposes numerous adaptive challenges for terrestrial life. The reduction in gravity, or microgravity, represents a novel environment that can disrupt homeostasis of many physiological processes. Additionally, it is becoming increasingly clear that an organism’s microbiome is critical for host health and examining its resiliency in microgravity represents a new frontier for space biology research. In this study, we examine the impact of microgravity on the interactions between the squid Euprymna scolopes and its beneficial symbiont Vibrio fischeri, which form a highly specific binary mutualism. First, animals inoculated with V. fischeri aboard the space shuttle showed effective colonization of the host light organ, the site of the symbiosis, during space flight. Second, RNA-Seq analysis of squid exposed to modeled microgravity conditions exhibited extensive differential gene expression in the presence and absence of the symbiotic partner. Transcriptomic analyses revealed in the absence of the symbiont during modeled microgravity there was an enrichment of genes and pathways associated with the innate immune and oxidative stress response. The results suggest that V. fischeri may help modulate the host stress responses under modeled microgravity. This study provides a window into the adaptive responses that the host animal and its symbiont use during modeled microgravity. PMID:28393904

  6. Protein Corona Analysis of Silver Nanoparticles Links to Their Cellular Effects.

    PubMed

    Juling, Sabine; Niedzwiecka, Alicia; Böhmert, Linda; Lichtenstein, Dajana; Selve, Sören; Braeuning, Albert; Thünemann, Andreas F; Krause, Eberhard; Lampen, Alfonso

    2017-11-03

    The breadth of applications of nanoparticles and the access to food-associated consumer products containing nanosized materials lead to oral human exposure to such particles. In biological fluids nanoparticles dynamically interact with biomolecules and form a protein corona. Knowledge about the protein corona is of great interest for understanding the molecular effects of particles as well as their fate inside the human body. We used a mass spectrometry-based toxicoproteomics approach to elucidate mechanisms of toxicity of silver nanoparticles and to comprehensively characterize the protein corona formed around silver nanoparticles in Caco-2 human intestinal epithelial cells. Results were compared with respect to the cellular function of proteins either affected by exposure to nanoparticles or present in the protein corona. A transcriptomic data set was included in the analyses in order to obtain a combined multiomics view of nanoparticle-affected cellular processes. A relationship between corona proteins and the proteomic or transcriptomic responses was revealed, showing that differentially regulated proteins or transcripts were engaged in the same cellular signaling pathways. Protein corona analyses of nanoparticles in cells might therefore help in obtaining information about the molecular consequences of nanoparticle treatment.

  7. CyanoEXpress: A web database for exploration and visualisation of the integrated transcriptome of cyanobacterium Synechocystis sp. PCC6803.

    PubMed

    Hernandez-Prieto, Miguel A; Futschik, Matthias E

    2012-01-01

    Synechocystis sp. PCC6803 is one of the best studied cyanobacteria and an important model organism for our understanding of photosynthesis. The early availability of its complete genome sequence initiated numerous transcriptome studies, which have generated a wealth of expression data. Analysis of the accumulated data can be a powerful tool to study transcription in a comprehensive manner and to reveal underlying regulatory mechanisms, as well as to annotate genes whose functions are yet unknown. However, use of divergent microarray platforms, as well as distributed data storage make meta-analyses of Synechocystis expression data highly challenging, especially for researchers with limited bioinformatic expertise and resources. To facilitate utilisation of the accumulated expression data for a wider research community, we have developed CyanoEXpress, a web database for interactive exploration and visualisation of transcriptional response patterns in Synechocystis. CyanoEXpress currently comprises expression data for 3073 genes and 178 environmental and genetic perturbations obtained in 31 independent studies. At present, CyanoEXpress constitutes the most comprehensive collection of expression data available for Synechocystis and can be freely accessed. The database is available for free at http://cyanoexpress.sysbiolab.eu.

  8. Defining Mononuclear Phagocyte Subset Homology Across Several Distant Warm-Blooded Vertebrates Through Comparative Transcriptomics

    PubMed Central

    Vu Manh, Thien-Phong; Elhmouzi-Younes, Jamila; Urien, Céline; Ruscanu, Suzana; Jouneau, Luc; Bourge, Mickaël; Moroldo, Marco; Foucras, Gilles; Salmon, Henri; Marty, Hélène; Quéré, Pascale; Bertho, Nicolas; Boudinot, Pierre; Dalod, Marc; Schwartz-Cornil, Isabelle

    2015-01-01

    Mononuclear phagocytes are organized in a complex system of ontogenetically and functionally distinct subsets, that has been best described in mouse and to some extent in human. Identification of homologous mononuclear phagocyte subsets in other vertebrate species of biomedical, economic, and environmental interest is needed to improve our knowledge in physiologic and physio-pathologic processes, and to design intervention strategies against a variety of diseases, including zoonotic infections. We developed a streamlined approach combining refined cell sorting and integrated comparative transcriptomics analyses which revealed conservation of the mononuclear phagocyte organization across human, mouse, sheep, pigs and, in some respect, chicken. This strategy should help democratizing the use of omics analyses for the identification and study of cell types across tissues and species. Moreover, we identified conserved gene signatures that enable robust identification and universal definition of these cell types. We identified new evolutionarily conserved gene candidates and gene interaction networks for the molecular regulation of the development or functions of these cell types, as well as conserved surface candidates for refined subset phenotyping throughout species. A phylogenetic analysis revealed that orthologous genes of the conserved signatures exist in teleost fishes and apparently not in Lamprey. PMID:26150816

  9. Transcriptome analysis in cotton boll weevil (Anthonomus grandis) and RNA interference in insect pests.

    PubMed

    Firmino, Alexandre Augusto Pereira; Fonseca, Fernando Campos de Assis; de Macedo, Leonardo Lima Pepino; Coelho, Roberta Ramos; Antonino de Souza, José Dijair; Togawa, Roberto Coiti; Silva-Junior, Orzenil Bonfim; Pappas, Georgios Joannis; da Silva, Maria Cristina Mattar; Engler, Gilbert; Grossi-de-Sa, Maria Fatima

    2013-01-01

    Cotton plants are subjected to the attack of several insect pests. In Brazil, the cotton boll weevil, Anthonomus grandis, is the most important cotton pest. The use of insecticidal proteins and gene silencing by interference RNA (RNAi) as techniques for insect control are promising strategies, which has been applied in the last few years. For this insect, there are not much available molecular information on databases. Using 454-pyrosequencing methodology, the transcriptome of all developmental stages of the insect pest, A. grandis, was analyzed. The A. grandis transcriptome analysis resulted in more than 500.000 reads and a data set of high quality 20,841 contigs. After sequence assembly and annotation, around 10,600 contigs had at least one BLAST hit against NCBI non-redundant protein database and 65.7% was similar to Tribolium castaneum sequences. A comparison of A. grandis, Drosophila melanogaster and Bombyx mori protein families' data showed higher similarity to dipteran than to lepidopteran sequences. Several contigs of genes encoding proteins involved in RNAi mechanism were found. PAZ Domains sequences extracted from the transcriptome showed high similarity and conservation for the most important functional and structural motifs when compared to PAZ Domains from 5 species. Two SID-like contigs were phylogenetically analyzed and grouped with T. castaneum SID-like proteins. No RdRP gene was found. A contig matching chitin synthase 1 was mined from the transcriptome. dsRNA microinjection of a chitin synthase gene to A. grandis female adults resulted in normal oviposition of unviable eggs and malformed alive larvae that were unable to develop in artificial diet. This is the first study that characterizes the transcriptome of the coleopteran, A. grandis. A new and representative transcriptome database for this insect pest is now available. All data support the state of the art of RNAi mechanism in insects.

  10. Transcriptome Analysis in Cotton Boll Weevil (Anthonomus grandis) and RNA Interference in Insect Pests

    PubMed Central

    Coelho, Roberta Ramos; Antonino de Souza Jr, José Dijair; Togawa, Roberto Coiti; Silva-Junior, Orzenil Bonfim; Pappas-Jr, Georgios Joannis; da Silva, Maria Cristina Mattar; Engler, Gilbert; Grossi-de-Sa, Maria Fatima

    2013-01-01

    Cotton plants are subjected to the attack of several insect pests. In Brazil, the cotton boll weevil, Anthonomus grandis, is the most important cotton pest. The use of insecticidal proteins and gene silencing by interference RNA (RNAi) as techniques for insect control are promising strategies, which has been applied in the last few years. For this insect, there are not much available molecular information on databases. Using 454-pyrosequencing methodology, the transcriptome of all developmental stages of the insect pest, A. grandis, was analyzed. The A. grandis transcriptome analysis resulted in more than 500.000 reads and a data set of high quality 20,841 contigs. After sequence assembly and annotation, around 10,600 contigs had at least one BLAST hit against NCBI non-redundant protein database and 65.7% was similar to Tribolium castaneum sequences. A comparison of A. grandis, Drosophila melanogaster and Bombyx mori protein families’ data showed higher similarity to dipteran than to lepidopteran sequences. Several contigs of genes encoding proteins involved in RNAi mechanism were found. PAZ Domains sequences extracted from the transcriptome showed high similarity and conservation for the most important functional and structural motifs when compared to PAZ Domains from 5 species. Two SID-like contigs were phylogenetically analyzed and grouped with T. castaneum SID-like proteins. No RdRP gene was found. A contig matching chitin synthase 1 was mined from the transcriptome. dsRNA microinjection of a chitin synthase gene to A. grandis female adults resulted in normal oviposition of unviable eggs and malformed alive larvae that were unable to develop in artificial diet. This is the first study that characterizes the transcriptome of the coleopteran, A. grandis. A new and representative transcriptome database for this insect pest is now available. All data support the state of the art of RNAi mechanism in insects. PMID:24386449

  11. Maternal Plane of Nutrition during Late Gestation and Weaning Age Alter Angus × Simmental Offspring Longissimus Muscle Transcriptome and Intramuscular Fat

    PubMed Central

    Moisá, Sonia J.; Shike, Daniel W.; Shoup, Lindsay; Rodriguez-Zas, Sandra L.; Loor, Juan J.

    2015-01-01

    In model organisms both the nutrition of the mother and the young offspring could induce long-lasting transcriptional changes in tissues. In livestock, such changes could have important roles in determining nutrient use and meat quality. The main objective was to evaluate if plane of maternal nutrition during late-gestation and weaning age alter the offspring’s Longissimus muscle (LM) transcriptome, animal performance, and metabolic hormones. Whole-transcriptome microarray analysis was performed on LM samples of early (EW) and normal weaned (NW) Angus × Simmental calves born to grazing cows receiving no supplement [low plane of nutrition (LPN)] or 2.3 kg high-grain mix/day [medium plane of nutrition (MPN)] during the last 105 days of gestation. Biopsies of LM were harvested at 78 (EW), 187 (NW) and 354 (before slaughter) days of age. Despite greater feed intake in MPN offspring, blood insulin was greater in LPN offspring. Carcass intramuscular fat content was greater in EW offspring. Bioinformatics analysis of the transcriptome highlighted a modest overall response to maternal plane of nutrition, resulting in only 35 differentially expressed genes (DEG). However, weaning age and a high-grain diet (EW) strongly impacted the transcriptome (DEG = 167), especially causing a lipogenic program activation. In addition, between 78 and 187 days of age, EW steers had an activation of the innate immune system due presumably to macrophage infiltration of intramuscular fat. Between 187 and 354 days of age (the “finishing” phase), NW steers had an activation of the lipogenic transcriptome machinery, while EW steers had a clear inhibition through the epigenetic control of histone acetylases. Results underscored the need to conduct further studies to understand better the functional outcome of transcriptome changes induced in the offspring by pre- and post-natal nutrition. Additional knowledge on molecular and functional outcomes would help produce more efficient beef cattle. PMID:26153887

  12. De novo transcriptome assembly analysis of weed Apera spica-venti from seven tissues and growth stages.

    PubMed

    Babineau, Marielle; Mahmood, Khalid; Mathiassen, Solvejg K; Kudsk, Per; Kristensen, Michael

    2017-02-06

    Loose silky bentgrass (Apera spica-venti) is an important weed in Europe with a recent increase in herbicide resistance cases. The lack of genetic information about this noxious weed limits its biological understanding such as growth, reproduction, genetic variation, molecular ecology and metabolic herbicide resistance. This study produced a reference transcriptome for A. spica-venti from different tissues (leaf, root, stem) and various growth stages (seed at phenological stages 05, 07, 08, 09). The de novo assembly was performed on individual and combined dataset followed by functional annotations. Individual transcripts and gene families involved in metabolic based herbicide resistance were identified. Eight separate transcriptome assemblies were performed and compared. The combined transcriptome assembly consists of 83,349 contigs with an N50 and average contig length of 762 and 658 bp, respectively. This dataset contains 74,724 transcripts consisting of total 54,846,111 bp. Among them 94% had a homologue to UniProtKB, 73% retrieved a GO mapping, and 50% were functionally annotated. Compared with other grass species, A. spica-venti has 26% proteins in common to Brachypodium distachyon, and 41% to Lolium spp. Glycosyltransferases had the highest number of transcripts in each tissue followed by the cytochrome P450s. The GSTF1 and CYP89A2 transcripts were recovered from the majority of tissues and aligned at a maximum of 66 and 30% to proven herbicide resistant allele from Alopecurus myosuroides and Lolium rigidum, respectively. De novo transcriptome assembly enabled the generation of the first reference transcriptome of A. spica-venti. This can serve as stepping stone for understanding the metabolic herbicide resistance as well as the general biology of this problematic weed. Furthermore, this large-scale sequence data is a valuable scientific resource for comparative transcriptome analysis for Poaceae grasses.

  13. Maternal Plane of Nutrition during Late Gestation and Weaning Age Alter Angus × Simmental Offspring Longissimus Muscle Transcriptome and Intramuscular Fat.

    PubMed

    Moisá, Sonia J; Shike, Daniel W; Shoup, Lindsay; Rodriguez-Zas, Sandra L; Loor, Juan J

    2015-01-01

    In model organisms both the nutrition of the mother and the young offspring could induce long-lasting transcriptional changes in tissues. In livestock, such changes could have important roles in determining nutrient use and meat quality. The main objective was to evaluate if plane of maternal nutrition during late-gestation and weaning age alter the offspring's Longissimus muscle (LM) transcriptome, animal performance, and metabolic hormones. Whole-transcriptome microarray analysis was performed on LM samples of early (EW) and normal weaned (NW) Angus × Simmental calves born to grazing cows receiving no supplement [low plane of nutrition (LPN)] or 2.3 kg high-grain mix/day [medium plane of nutrition (MPN)] during the last 105 days of gestation. Biopsies of LM were harvested at 78 (EW), 187 (NW) and 354 (before slaughter) days of age. Despite greater feed intake in MPN offspring, blood insulin was greater in LPN offspring. Carcass intramuscular fat content was greater in EW offspring. Bioinformatics analysis of the transcriptome highlighted a modest overall response to maternal plane of nutrition, resulting in only 35 differentially expressed genes (DEG). However, weaning age and a high-grain diet (EW) strongly impacted the transcriptome (DEG = 167), especially causing a lipogenic program activation. In addition, between 78 and 187 days of age, EW steers had an activation of the innate immune system due presumably to macrophage infiltration of intramuscular fat. Between 187 and 354 days of age (the "finishing" phase), NW steers had an activation of the lipogenic transcriptome machinery, while EW steers had a clear inhibition through the epigenetic control of histone acetylases. Results underscored the need to conduct further studies to understand better the functional outcome of transcriptome changes induced in the offspring by pre- and post-natal nutrition. Additional knowledge on molecular and functional outcomes would help produce more efficient beef cattle.

  14. Global Landscape of a Co-Expressed Gene Network in Barley and its Application to Gene Discovery in Triticeae Crops

    PubMed Central

    Mochida, Keiichi; Uehara-Yamaguchi, Yukiko; Yoshida, Takuhiro; Sakurai, Tetsuya; Shinozaki, Kazuo

    2011-01-01

    Accumulated transcriptome data can be used to investigate regulatory networks of genes involved in various biological systems. Co-expression analysis data sets generated from comprehensively collected transcriptome data sets now represent efficient resources that are capable of facilitating the discovery of genes with closely correlated expression patterns. In order to construct a co-expression network for barley, we analyzed 45 publicly available experimental series, which are composed of 1,347 sets of GeneChip data for barley. On the basis of a gene-to-gene weighted correlation coefficient, we constructed a global barley co-expression network and classified it into clusters of subnetwork modules. The resulting clusters are candidates for functional regulatory modules in the barley transcriptome. To annotate each of the modules, we performed comparative annotation using genes in Arabidopsis and Brachypodium distachyon. On the basis of a comparative analysis between barley and two model species, we investigated functional properties from the representative distributions of the gene ontology (GO) terms. Modules putatively involved in drought stress response and cellulose biogenesis have been identified. These modules are discussed to demonstrate the effectiveness of the co-expression analysis. Furthermore, we applied the data set of co-expressed genes coupled with comparative analysis in attempts to discover potentially Triticeae-specific network modules. These results demonstrate that analysis of the co-expression network of the barley transcriptome together with comparative analysis should promote the process of gene discovery in barley. Furthermore, the insights obtained should be transferable to investigations of Triticeae plants. The associated data set generated in this analysis is publicly accessible at http://coexpression.psc.riken.jp/barley/. PMID:21441235

  15. Combined venomics, antivenomics and venom gland transcriptome analysis of the monocoled cobra (Naja kaouthia) from China.

    PubMed

    Xu, Ning; Zhao, Hong-Yan; Yin, Yin; Shen, Shan-Shan; Shan, Lin-Lin; Chen, Chuan-Xi; Zhang, Yan-Xia; Gao, Jian-Fang; Ji, Xiang

    2017-04-21

    We conducted an omics-analysis of the venom of Naja kaouthia from China. Proteomics analysis revealed six protein families [three-finger toxins (3-FTx), phospholipase A 2 (PLA 2 ), nerve growth factor, snake venom metalloproteinase (SVMP), cysteine-rich secretory protein and ohanin], and venom-gland transcriptomics analysis revealed 28 protein families from 79 unigenes. 3-FTx (56.5% in proteome/82.0% in transcriptome) and PLA 2 (26.9%/13.6%) were identified as the most abundant families in venom proteome and venom-gland transcriptome. Furthermore, N. kaouthia venom expressed strong lethality (i.p. LD 50 : 0.79μg/g) and myotoxicity (CK: 5939U/l) in mice, and showed notable activity in PLA 2 but weak activity in SVMP, l-amino acid oxidase or 5' nucleotidase. Antivenomic assessment revealed that several venom components (nearly 17.5% of total venom) from N. kaouthia could not be thoroughly immunocaptured by commercial Naja atra antivenom. ELISA analysis revealed that there was no difference in the cross-reaction between N. kaouthia and N. atra venoms against the N. atra antivenom. The use of commercial N. atra antivenom in treatment of snakebites caused by N. kaouthia is reasonable, but design of novel antivenom with the attention on enhancing the immune response of non-immunocaptured components should be encouraged. The venomics, antivenomics and venom-gland transcriptome of the monocoled cobra (Naja kaouthia) from China have been elucidated. Quantitative and qualitative differences are evident when venom proteomic and venom-gland transcriptomic profiles are compared. Two protein families (3-FTx and PLA 2 ) are found to be the predominated components in N. kaouthia venom, and considered as the major players in functional role of venom. Other protein families with relatively low abundance appear to be minor in the functional significance. Antivenomics and ELISA evaluation reveal that the N. kaouthia venom can be effectively immunorecognized by commercial N. atra antivenom, but still a small number of venom components could not be thoroughly immunocaptured. The findings indicate that exploring the precise composition of snake venom should be executed by an integrated omics-approach, and elucidating the venom composition is helpful in understanding composition-function relationships and will facilitate the clinical application of antivenoms. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. How to normalize metatranscriptomic count data for differential expression analysis.

    PubMed

    Klingenberg, Heiner; Meinicke, Peter

    2017-01-01

    Differential expression analysis on the basis of RNA-Seq count data has become a standard tool in transcriptomics. Several studies have shown that prior normalization of the data is crucial for a reliable detection of transcriptional differences. Until now it has not been clear whether and how the transcriptomic approach can be used for differential expression analysis in metatranscriptomics. We propose a model for differential expression in metatranscriptomics that explicitly accounts for variations in the taxonomic composition of transcripts across different samples. As a main consequence the correct normalization of metatranscriptomic count data under this model requires the taxonomic separation of the data into organism-specific bins. Then the taxon-specific scaling of organism profiles yields a valid normalization and allows us to recombine the scaled profiles into a metatranscriptomic count matrix. This matrix can then be analyzed with statistical tools for transcriptomic count data. For taxon-specific scaling and recombination of scaled counts we provide a simple R script. When applying transcriptomic tools for differential expression analysis directly to metatranscriptomic data with an organism-independent (global) scaling of counts the resulting differences may be difficult to interpret. The differences may correspond to changing functional profiles of the contributing organisms but may also result from a variation of taxonomic abundances. Taxon-specific scaling eliminates this variation and therefore the resulting differences actually reflect a different behavior of organisms under changing conditions. In simulation studies we show that the divergence between results from global and taxon-specific scaling can be drastic. In particular, the variation of organism abundances can imply a considerable increase of significant differences with global scaling. Also, on real metatranscriptomic data, the predictions from taxon-specific and global scaling can differ widely. Our studies indicate that in real data applications performed with global scaling it might be impossible to distinguish between differential expression in terms of transcriptomic changes and differential composition in terms of changing taxonomic proportions. As in transcriptomics, a proper normalization of count data is also essential for differential expression analysis in metatranscriptomics. Our model implies a taxon-specific scaling of counts for normalization of the data. The application of taxon-specific scaling consequently removes taxonomic composition variations from functional profiles and therefore provides a clear interpretation of the observed functional differences.

  17. Gene Expression Analysis of Copper Tolerance and Wood Decay in the Brown Rot Fungus Fibroporia radiculosa

    Treesearch

    J. D. Tang; L. A. Parker; A. D. Perkins; T. S. Sonstegard; S. G. Schroeder; D. D. Nicholas; S. V. Diehl

    2013-01-01

    High-throughput transcriptomics was used to identify Fibroporia radiculosa genes that were differentially regulated during colonization of wood treated with a copper-based preservative. The transcriptome was profiled at two time points while the fungus was growing on wood treated with micronized copper quat (MCQ). A total of 917 transcripts were...

  18. Reliable transformation system for Microbotryum lychnidis-dioicae informed by genome and transcriptome project.

    PubMed

    Toh, Su San; Treves, David S; Barati, Michelle T; Perlin, Michael H

    2016-10-01

    Microbotryum lychnidis-dioicae is a member of a species complex infecting host plants in the Caryophyllaceae. It is used as a model system in many areas of research, but attempts to make this organism tractable for reverse genetic approaches have not been fruitful. Here, we exploited the recently obtained genome sequence and transcriptome analysis to inform our design of constructs for use in Agrobacterium-mediated transformation techniques currently available for other fungi. Reproducible transformation was demonstrated at the genomic, transcriptional and functional levels. Moreover, these initial proof-of-principle experiments provide evidence that supports the findings from initial global transcriptome analysis regarding expression from the respective promoters under different growth conditions of the fungus. The technique thus provides for the first time the ability to stably introduce transgenes and over-express target M. lychnidis-dioicae genes.

  19. Nod Factor Effects on Root Hair-Specific Transcriptome of Medicago truncatula: Focus on Plasma Membrane Transport Systems and Reactive Oxygen Species Networks.

    PubMed

    Damiani, Isabelle; Drain, Alice; Guichard, Marjorie; Balzergue, Sandrine; Boscari, Alexandre; Boyer, Jean-Christophe; Brunaud, Véronique; Cottaz, Sylvain; Rancurel, Corinne; Da Rocha, Martine; Fizames, Cécile; Fort, Sébastien; Gaillard, Isabelle; Maillol, Vincent; Danchin, Etienne G J; Rouached, Hatem; Samain, Eric; Su, Yan-Hua; Thouin, Julien; Touraine, Bruno; Puppo, Alain; Frachisse, Jean-Marie; Pauly, Nicolas; Sentenac, Hervé

    2016-01-01

    Root hairs are involved in water and nutrient uptake, and thereby in plant autotrophy. In legumes, they also play a crucial role in establishment of rhizobial symbiosis. To obtain a holistic view of Medicago truncatula genes expressed in root hairs and of their regulation during the first hours of the engagement in rhizobial symbiotic interaction, a high throughput RNA sequencing on isolated root hairs from roots challenged or not with lipochitooligosaccharides Nod factors (NF) for 4 or 20 h was carried out. This provided a repertoire of genes displaying expression in root hairs, responding or not to NF, and specific or not to legumes. In analyzing the transcriptome dataset, special attention was paid to pumps, transporters, or channels active at the plasma membrane, to other proteins likely to play a role in nutrient ion uptake, NF electrical and calcium signaling, control of the redox status or the dynamic reprogramming of root hair transcriptome induced by NF treatment, and to the identification of papilionoid legume-specific genes expressed in root hairs. About 10% of the root hair expressed genes were significantly up- or down-regulated by NF treatment, suggesting their involvement in remodeling plant functions to allow establishment of the symbiotic relationship. For instance, NF-induced changes in expression of genes encoding plasma membrane transport systems or disease response proteins indicate that root hairs reduce their involvement in nutrient ion absorption and adapt their immune system in order to engage in the symbiotic interaction. It also appears that the redox status of root hair cells is tuned in response to NF perception. In addition, 1176 genes that could be considered as "papilionoid legume-specific" were identified in the M. truncatula root hair transcriptome, from which 141 were found to possess an ortholog in every of the six legume genomes that we considered, suggesting their involvement in essential functions specific to legumes. This transcriptome provides a valuable resource to investigate root hair biology in legumes and the roles that these cells play in rhizobial symbiosis establishment. These results could also contribute to the long-term objective of transferring this symbiotic capacity to non-legume plants.

  20. De Novo Foliar Transcriptome of Chenopodium amaranticolor and Analysis of Its Gene Expression During Virus-Induced Hypersensitive Response

    PubMed Central

    Zhang, Yongqiang; Pei, Xinwu; Zhang, Chao; Lu, Zifeng; Wang, Zhixing; Jia, Shirong; Li, Weimin

    2012-01-01

    Background The hypersensitive response (HR) system of Chenopodium spp. confers broad-spectrum virus resistance. However, little knowledge exists at the genomic level for Chenopodium, thus impeding the advanced molecular research of this attractive feature. Hence, we took advantage of RNA-seq to survey the foliar transcriptome of C. amaranticolor, a Chenopodium species widely used as laboratory indicator for pathogenic viruses, in order to facilitate the characterization of the HR-type of virus resistance. Methodology and Principal Findings Using Illumina HiSeq™ 2000 platform, we obtained 39,868,984 reads with 3,588,208,560 bp, which were assembled into 112,452 unigenes (3,847 clusters and 108,605 singletons). BlastX search against the NCBI NR database identified 61,698 sequences with a cut-off E-value above 10−5. Assembled sequences were annotated with gene descriptions, GO, COG and KEGG terms, respectively. A total number of 738 resistance gene analogs (RGAs) and homology sequences of 6 key signaling proteins within the R proteins-directed signaling pathway were identified. Based on this transcriptome data, we investigated the gene expression profiles over the stage of HR induced by Tobacco mosaic virus and Cucumber mosaic virus by using digital gene expression analysis. Numerous candidate genes specifically or commonly regulated by these two distinct viruses at early and late stages of the HR were identified, and the dynamic changes of the differently expressed genes enriched in the pathway of plant-pathogen interaction were particularly emphasized. Conclusions To our knowledge, this study is the first description of the genetic makeup of C. amaranticolor, providing deep insight into the comprehensive gene expression information at transcriptional level in this species. The 738 RGAs as well as the differentially regulated genes, particularly the common genes regulated by both TMV and CMV, are suitable candidates which merit further functional characterization to dissect the molecular mechanisms and regulatory pathways of the HR-type of virus resistance in Chenopodium. PMID:23029338

Top