2016-01-01
Observations of individual organisms (data) can be combined with expert ecological knowledge of species, especially causal knowledge, to model and extract from flower–visiting data useful information about behavioral interactions between insect and plant organisms, such as nectar foraging and pollen transfer. We describe and evaluate a method to elicit and represent such expert causal knowledge of behavioral ecology, and discuss the potential for wider application of this method to the design of knowledge-based systems for knowledge discovery in biodiversity and ecosystem informatics. PMID:27851814
Ecological Education: Integration of Scientific Knowledge and Figurative Representations.
ERIC Educational Resources Information Center
Senkevich, V. M.
1991-01-01
Argues that understanding the interaction of society and the environment is a social-economical, technological, and moral task. Describes techniques developed by one Soviet academy's ecological education laboratory for helping middle school students integrate knowledge from science and art. Suggests that the study of specific ecological problems…
Nancy C. Ratner; Davin L. Holen
2007-01-01
Traditional ecological knowledge within specific cultural and geographical contexts was explored during an interactive session at the 8th World Wilderness Congress to identify traditional principles of sustainability. Participants analyzed the traditional knowledge contained in ten posters from Canada and Alaska and identified and discussed the traditional principles...
A Discourse Based Approach to the Language Documentation of Local Ecological Knowledge
ERIC Educational Resources Information Center
Odango, Emerson Lopez
2016-01-01
This paper proposes a discourse-based approach to the language documentation of local ecological knowledge (LEK). The knowledge, skills, beliefs, cultural worldviews, and ideologies that shape the way a community interacts with its environment can be examined through the discourse in which LEK emerges. 'Discourse-based' refers to two components:…
A 'Knowledge Ecologies' Analysis of Co-designing Water and Sanitation Services in Alaska.
Fam, Dena; Sofoulis, Zoë
2017-08-01
Willingness to collaborate across disciplinary boundaries is necessary but not sufficient for project success. This is a case study of a transdisciplinary project whose success was constrained by contextual factors that ultimately favoured technical and scientific forms of knowledge over the cultural intelligence that might ensure technical solutions were socially feasible. In response to Alaskan Water and Sewer Challenge (AWSC), an international team with expertise in engineering, consultative design and public health formed in 2013 to collaborate on a two-year project to design remote area water and sanitation systems in consultation with two native Alaskan communities. Team members were later interviewed about their experiences. Project processes are discussed using a 'Knowledge Ecology' framework, which applies principles of ecosystems analysis to knowledge ecologies, identifying the knowledge equivalents of 'biotic' and 'abiotic' factors and looking at their various interactions. In a positivist 'knowledge integration' perspective, different knowledges are like Lego blocks that combine with other 'data sets' to create a unified structure. The knowledge ecology framework highlights how interactions between different knowledges and knowledge practitioners ('biotic factors') are shaped by contextual ('abiotic') factors: the conditions of knowledge production, the research policy and funding climate, the distribution of research resources, and differential access to enabling infrastructures (networks, facilities). This case study highlights the importance of efforts to negotiate between different knowledge frameworks, including by strategic use of language and precepts that help translate social research into technical design outcomes that are grounded in social reality.
NASA Astrophysics Data System (ADS)
Suwondo; Darmadi; Yunus, M.
2018-01-01
The development process has resulted in deforestation. A comprehensive study is needed to obtain an objective solution by integrating the ecological dimension and human dimension. This study was conducted within Balai Raja Wildlife Reserve (BRWR), Bengkalis Regency, Riau Province, Indonesia. We used the social-ecological systems (SES) approach based on local characteristics, categorized into ecological status, social status and actors. Each factoris ranked using Multi-Dimensional Scaling (MDS).BRWR sustainability levels are in moderate condition. The ecological dimension is in a less sustainable state, with leverage: (1) forest conversion; (2) local ecological knowledge; (3) high conservation value. The social dimension is in a less sustainable state, with leverage: (1) community empowerment; (2) social conflict; (3) participation in landscape management. Dimensions actors are on a fairly sustainable status, with leverage: (1) institutional interaction; (2) stakeholder’s commitment; (3) law enforcement. We recommend strengthening community empowerment, local ecological knowledge, interaction, and stakeholder commitment
Novak, M.; Wootton, J.T.; Doak, D.F.; Emmerson, M.; Estes, J.A.; Tinker, M.T.
2011-01-01
How best to predict the effects of perturbations to ecological communities has been a long-standing goal for both applied and basic ecology. This quest has recently been revived by new empirical data, new analysis methods, and increased computing speed, with the promise that ecologically important insights may be obtainable from a limited knowledge of community interactions. We use empirically based and simulated networks of varying size and connectance to assess two limitations to predicting perturbation responses in multispecies communities: (1) the inaccuracy by which species interaction strengths are empirically quantified and (2) the indeterminacy of species responses due to indirect effects associated with network size and structure. We find that even modest levels of species richness and connectance (??25 pairwise interactions) impose high requirements for interaction strength estimates because system indeterminacy rapidly overwhelms predictive insights. Nevertheless, even poorly estimated interaction strengths provide greater average predictive certainty than an approach that uses only the sign of each interaction. Our simulations provide guidance in dealing with the trade-offs involved in maximizing the utility of network approaches for predicting dynamics in multispecies communities. ?? 2011 by the Ecological Society of America.
ERIC Educational Resources Information Center
Garavito-Bermúdez, Diana; Lundholm, Cecilia
2017-01-01
The ecological knowledge of those who interact with ecosystems in everyday-life is situated in social and cultural contexts, as well as accumulated, transferred and adjusted through work practices. For them, ecosystems represent not only places for living but also places for working and defining themselves. This paper explores psychological…
The Tree of Knowledge Project: Organic Designs as Virtual Learning Spaces
ERIC Educational Resources Information Center
Gui, Dean A. F.; AuYeung, Gigi
2013-01-01
The virtual Department of English at the Hong Kong Polytechnic University, also known as the Tree of Knowledge, is a project premised upon using ecology and organic forms to promote language learning in Second Life (SL). Inspired by Salmon's (2010) Tree of Learning concept this study examines how an interactive ecological environment--in this…
Seahorses in focus: local ecological knowledge of seahorse-watching operators in a tropical estuary.
Ternes, Maria L F; Gerhardinger, Leopoldo C; Schiavetti, Alexandre
2016-11-08
Seahorses are endangered teleost fishes under increasing human pressures worldwide. In Brazil, marine conservationists and policy-makers are thus often skeptical about the viability of sustainable human-seahorse interactions. This study focuses on local ecological knowledge on seahorses and the implications of their non-lethal touristic use by a coastal community in northeastern Brazil. Community-based seahorse-watching activities have been carried out in Maracaípe village since 1999, but remained uninvestigated until the present study. Our goal is to provide ethnoecological understanding on this non-extractive use to support seahorse conservation and management. We interviewed 32 informants through semi-structured questionnaires to assess their socioeconomic profile, their knowledge on seahorse natural history traits, human uses, threats and abundance trends. Seahorse-watching has high socioeconomic relevance, being the primary income source for all respondents. Interviewees elicited a body of knowledge on seahorse biology largely consistent with up-to-date research literature. Most informants (65.5 %) perceived no change in seahorse abundance. Their empirical knowledge often surpassed scientific reports, i.e. through remarks on trophic ecology; reproductive aspects, such as, behavior and breeding season; spatial and temporal distribution, suggesting seahorse migration related to environmental parameters. Seahorse-watching operators were aware of seahorse biological and ecological aspects. Despite the gaps remaining on biological data about certain seahorse traits, the respondents provided reliable information on all questions, adding ethnoecological remarks not yet assessed by conventional scientific surveys. We provide novel ethnobiological insight on non-extractive modes of human-seahorse interaction, eliciting environmental policies to integrate seahorse conservation with local ecological knowledge and innovative ideas for seahorse sustainable use. Our study resonates with calls for more active engagement with communities and their local ecologies if marine conservation and development are to be reconciled.
Novak, Mark; Wootton, J. Timothy; Doak, Daniel F.; Emmerson, Mark; Estes, James A.; Tinker, M. Timothy
2011-01-01
How best to predict the effects of perturbations to ecological communities has been a long-standing goal for both applied and basic ecology. This quest has recently been revived by new empirical data, new analysis methods, and increased computing speed, with the promise that ecologically important insights may be obtainable from a limited knowledge of community interactions. We use empirically based and simulated networks of varying size and connectance to assess two limitations to predicting perturbation responses in multispecies communities: (1) the inaccuracy by which species interaction strengths are empirically quantified and (2) the indeterminacy of species responses due to indirect effects associated with network size and structure. We find that even modest levels of species richness and connectance (∼25 pairwise interactions) impose high requirements for interaction strength estimates because system indeterminacy rapidly overwhelms predictive insights. Nevertheless, even poorly estimated interaction strengths provide greater average predictive certainty than an approach that uses only the sign of each interaction. Our simulations provide guidance in dealing with the trade-offs involved in maximizing the utility of network approaches for predicting dynamics in multispecies communities.
Soliveres, Santiago; Smit, Christian; Maestre, Fernando T.
2015-01-01
Once seen as anomalous, facilitative interactions among plants and their importance for community structure and functioning are now widely recognized. The growing body of modelling, descriptive and experimental studies on facilitation covers a wide variety of terrestrial and aquatic systems throughout the globe. However, the lack of a general body of theory linking facilitation among different types of organisms and biomes and their responses to environmental changes prevents further advances in our knowledge regarding the evolutionary and ecological implications of facilitation in plant communities. Moreover, insights gathered from alternative lines of inquiry may substantially improve our understanding of facilitation, but these have been largely neglected thus far. Despite over 15 years of research and debate on this topic, there is no consensus on the degree to which plant–plant interactions change predictably along environmental gradients (i.e. the stress-gradient hypothesis), and this hinders our ability to predict how plant–plant interactions may affect the response of plant communities to ongoing global environmental change. The existing controversies regarding the response of plant–plant interactions across environmental gradients can be reconciled when clearly considering and determining the species-specificity of the response, the functional or individual stress type, and the scale of interest (pairwise interactions or community-level response). Here, we introduce a theoretical framework to do this, supported by multiple lines of empirical evidence. We also discuss current gaps in our knowledge regarding how plant–plant interactions change along environmental gradients. These include the existence of thresholds in the amount of species-specific stress that a benefactor can alleviate, the linearity or non-linearity of the response of pairwise interactions across distance from the ecological optimum of the beneficiary, and the need to explore further how frequent interactions among multiple species are and how they change across different environments. We review the latest advances in these topics and provide new approaches to fill current gaps in our knowledge. We also apply our theoretical framework to advance our knowledge on the evolutionary aspects of plant facilitation, and the relative importance of facilitation, in comparison with other ecological processes, for maintaining ecosystem structure, functioning and dynamics. We build links between these topics and related fields, such as ecological restoration, woody encroachment, invasion ecology, ecological modelling and biodiversity–ecosystem-functioning relationships. By identifying commonalities and insights from alternative lines of research, we further advance our understanding of facilitation and provide testable hypotheses regarding the role of (positive) biotic interactions in the maintenance of biodiversity and the response of ecological communities to ongoing environmental changes. PMID:24774563
Soliveres, Santiago; Smit, Christian; Maestre, Fernando T
2015-02-01
Once seen as anomalous, facilitative interactions among plants and their importance for community structure and functioning are now widely recognized. The growing body of modelling, descriptive and experimental studies on facilitation covers a wide variety of terrestrial and aquatic systems throughout the globe. However, the lack of a general body of theory linking facilitation among different types of organisms and biomes and their responses to environmental changes prevents further advances in our knowledge regarding the evolutionary and ecological implications of facilitation in plant communities. Moreover, insights gathered from alternative lines of inquiry may substantially improve our understanding of facilitation, but these have been largely neglected thus far. Despite over 15 years of research and debate on this topic, there is no consensus on the degree to which plant-plant interactions change predictably along environmental gradients (i.e. the stress-gradient hypothesis), and this hinders our ability to predict how plant-plant interactions may affect the response of plant communities to ongoing global environmental change. The existing controversies regarding the response of plant-plant interactions across environmental gradients can be reconciled when clearly considering and determining the species-specificity of the response, the functional or individual stress type, and the scale of interest (pairwise interactions or community-level response). Here, we introduce a theoretical framework to do this, supported by multiple lines of empirical evidence. We also discuss current gaps in our knowledge regarding how plant-plant interactions change along environmental gradients. These include the existence of thresholds in the amount of species-specific stress that a benefactor can alleviate, the linearity or non-linearity of the response of pairwise interactions across distance from the ecological optimum of the beneficiary, and the need to explore further how frequent interactions among multiple species are and how they change across different environments. We review the latest advances in these topics and provide new approaches to fill current gaps in our knowledge. We also apply our theoretical framework to advance our knowledge on the evolutionary aspects of plant facilitation, and the relative importance of facilitation, in comparison with other ecological processes, for maintaining ecosystem structure, functioning and dynamics. We build links between these topics and related fields, such as ecological restoration, woody encroachment, invasion ecology, ecological modelling and biodiversity-ecosystem-functioning relationships. By identifying commonalities and insights from alternative lines of research, we further advance our understanding of facilitation and provide testable hypotheses regarding the role of (positive) biotic interactions in the maintenance of biodiversity and the response of ecological communities to ongoing environmental changes. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.
Essington, Timothy E; Sanchirico, James N; Baskett, Marissa L
2018-02-13
Ecosystem approaches to natural resource management are seen as a way to provide better outcomes for ecosystems and for people, yet the nature and strength of interactions among ecosystem components is usually unknown. Here we characterize the economic benefits of ecological knowledge through a simple model of fisheries that target a predator (piscivore) and its prey. We solve for the management (harvest) trajectory that maximizes net present value (NPV) for different ecological interactions and initial conditions that represent different levels of exploitation history. Optimal management trajectories generally approached similar harvest levels, but the pathways toward those levels varied considerably by ecological scenario. Application of the wrong harvest trajectory, which would happen if one type of ecological interaction were assumed but in fact another were occurring, generally led to only modest reductions in NPV. However, the risks were not equal across fleets: risks of incurring large losses of NPV and missing management targets were much higher in the fishery targeting piscivores, especially when piscivores were heavily depleted. Our findings suggest that the ecosystem approach might provide the greatest benefits when used to identify system states where management performs poorly with imperfect knowledge of system linkages so that management strategies can be adopted to avoid those states. Copyright © 2018 the Author(s). Published by PNAS.
Spiteller, Peter
2015-07-01
Fungi are widespread in nature and have conquered nearly every ecological niche. Fungi occur not only in terrestrial but also in freshwater and marine environments. Moreover, fungi are known as a rich source of secondary metabolites. Despite these facts, the ecological role of many of these metabolites is still unknown and the chemical ecology of fungi has not been investigated systematically so far. This review intends to present examples of the various chemical interactions of fungi with other fungi, plants, bacteria and animals and to give an overview of the current knowledge of fungal chemical ecology.
The portrayal of natural environment in the evolution of the ecological public health paradigm.
Coutts, Christopher; Forkink, Annet; Weiner, Jocelyn
2014-01-10
This paper explores the conceptualization of the natural environment in an evolving ecological public health paradigm. The natural environment has long been recognized as essential to supporting life, health, and wellbeing. Our understanding of the relationship between the natural environment and health has steadily evolved from one of an undynamic environment to a more sophisticated understanding of ecological interactions. This evolution is reflected in a number of ecological public health models which demonstrate the many external and overlapping determinants of human health. Six models are presented here to demonstrate this evolution, each model reflecting an increasingly ecological appreciation for the fundamental role of the natural environment in supporting human health. We conclude that after decades of public health's acceptance of the ecological paradigm, we are only now beginning to assemble knowledge of sophisticated ecological interdependencies and apply this knowledge to the conceptualization and study of the relationship between the natural environment and the determinants of human health.
The Portrayal of Natural Environment in the Evolution of the Ecological Public Health Paradigm
Coutts, Christopher; Forkink, Annet; Weiner, Jocelyn
2014-01-01
This paper explores the conceptualization of the natural environment in an evolving ecological public health paradigm. The natural environment has long been recognized as essential to supporting life, health, and wellbeing. Our understanding of the relationship between the natural environment and health has steadily evolved from one of an undynamic environment to a more sophisticated understanding of ecological interactions. This evolution is reflected in a number of ecological public health models which demonstrate the many external and overlapping determinants of human health. Six models are presented here to demonstrate this evolution, each model reflecting an increasingly ecological appreciation for the fundamental role of the natural environment in supporting human health. We conclude that after decades of public health’s acceptance of the ecological paradigm, we are only now beginning to assemble knowledge of sophisticated ecological interdependencies and apply this knowledge to the conceptualization and study of the relationship between the natural environment and the determinants of human health. PMID:24434596
ERIC Educational Resources Information Center
Wohlwill, Joachim F.
1985-01-01
Introduces the 1983 SRCD symposium on Martha Muchow, the German child psychologist and associate of William Stern and Heinz Werner at the University of Hamburg. Her work integrates developmental and ecological approaches to the study of children's knowledge of and interaction with their physical surroundings. (Author/SO)
Nagelkerken, Ivan; Munday, Philip L
2016-03-01
Biological communities are shaped by complex interactions between organisms and their environment as well as interactions with other species. Humans are rapidly changing the marine environment through increasing greenhouse gas emissions, resulting in ocean warming and acidification. The first response by animals to environmental change is predominantly through modification of their behaviour, which in turn affects species interactions and ecological processes. Yet, many climate change studies ignore animal behaviour. Furthermore, our current knowledge of how global change alters animal behaviour is mostly restricted to single species, life phases and stressors, leading to an incomplete view of how coinciding climate stressors can affect the ecological interactions that structure biological communities. Here, we first review studies on the effects of warming and acidification on the behaviour of marine animals. We demonstrate how pervasive the effects of global change are on a wide range of critical behaviours that determine the persistence of species and their success in ecological communities. We then evaluate several approaches to studying the ecological effects of warming and acidification, and identify knowledge gaps that need to be filled, to better understand how global change will affect marine populations and communities through altered animal behaviours. Our review provides a synthesis of the far-reaching consequences that behavioural changes could have for marine ecosystems in a rapidly changing environment. Without considering the pervasive effects of climate change on animal behaviour we will limit our ability to forecast the impacts of ocean change and provide insights that can aid management strategies. © 2015 John Wiley & Sons Ltd.
Approaches to advancescientific understanding of macrosystems ecology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levy, Ofir; Ball, Becky; Bond-Lamberty, Benjamin
Macrosystem ecological studies inherently investigate processes that interact across multiple spatial and temporal scales, requiring intensive sampling and massive amounts of data from diverse sources to incorporate complex cross-scale and hierarchical interactions. Inherent challenges associated with these characteristics include high computational demands, data standardization and assimilation, identification of important processes and scales without prior knowledge, and the need for large, cross-disciplinary research teams that conduct long-term studies. Therefore, macrosystem ecology studies must utilize a unique set of approaches that are capable of encompassing these methodological characteristics and associated challenges. Several case studies demonstrate innovative methods used in current macrosystem ecologymore » studies.« less
Potential applications of insect symbionts in biotechnology.
Berasategui, Aileen; Shukla, Shantanu; Salem, Hassan; Kaltenpoth, Martin
2016-02-01
Symbiotic interactions between insects and microorganisms are widespread in nature and are often the source of ecological innovations. In addition to supplementing their host with essential nutrients, microbial symbionts can produce enzymes that help degrade their food source as well as small molecules that defend against pathogens, parasites, and predators. As such, the study of insect ecology and symbiosis represents an important source of chemical compounds and enzymes with potential biotechnological value. In addition, the knowledge on insect symbiosis can provide novel avenues for the control of agricultural pest insects and vectors of human diseases, through targeted manipulation of the symbionts or the host-symbiont associations. Here, we discuss different insect-microbe interactions that can be exploited for insect pest and human disease control, as well as in human medicine and industrial processes. Our aim is to raise awareness that insect symbionts can be interesting sources of biotechnological applications and that knowledge on insect ecology can guide targeted efforts to discover microorganisms of applied value.
NASA Astrophysics Data System (ADS)
Ternjej, Ivancica; Mihaljevic, Zlatko
2017-10-01
Ecology is a science that studies the mutual interactions between organisms and their environment. The fundamental subject of interest in ecology is the individual. Topics of interest to ecologists include the diversity, distribution and number of particular organisms, as well as cooperation and competition between organisms, both within and among ecosystems. Today, ecology is a multidisciplinary science. This is particularly true when the subject of interest is the ecosystem or biosphere, which requires the knowledge and input of biologists, chemists, physicists, geologists, geographists, climatologists, hydrologists and many other experts. Ecology is applied in a science of restoration, repairing disturbed sites through human intervention, in natural resource management, and in environmental impact assessments.
Host-rumen microbe interactions may be leveraged to improve the productivity of dairy cows
USDA-ARS?s Scientific Manuscript database
The cattle rumen serves as a digestive bioreactor for the dairy cow, yet our knowledge of the microbial contents, ecology, and host selection within the rumen is only precursory. This is despite the knowledge that the volatile fatty acids (VFA) and microbial crude protein (MCP) produced by rumen mic...
Koehl, M A
1999-12-01
We can gain biomechanical insights if we couple knowledge of the environments, ecological roles and life history strategies of organisms with our laboratory analyses of their mechanical function or fluid dynamics, as illustrated by studies of the mechanical design of bottom-dwelling marine organisms. Obviously, measurements of the spatial and temporal distribution of loads on an organism in nature reveal the magnitudes and rates at which biomechanical tests should be performed in the laboratory. Furthermore, knowledge of the population biology and ecological interactions of the organisms being studied is crucial to determine when during the life of an individual particular aspects of mechanical performance should be measured; not only can the size, shape and material properties of an individual change during ontogeny, but so can its habitat, activities and ecological role. Such ecological information is also necessary to determine whether the aspects of mechanical performance being studied are biologically important, i.e. whether they affect the survivorship or fitness of the organisms. My point in raising these examples is to illustrate how ecological studies can enhance or change our understanding of biomechanical function.
Borghi, Monica; Fernie, Alisdair R; Schiestl, Florian P; Bouwmeester, Harro J
2017-04-01
A striking feature of the angiosperms that use animals as pollen carriers to sexually reproduce is the great diversity of their flowers with regard to morphology and traits such as color, odor, and nectar. These traits are underpinned by the synthesis of secondary metabolites such as pigments and volatiles, as well as carbohydrates and amino acids, which are used by plants to lure and reward animal pollinators. We review here the knowledge of the metabolic network that supports the biosynthesis of these compounds and the behavioral responses that these molecules elicit in the animal pollinators. Such knowledge provides us with a deeper insight into the ecology and evolution of plant-pollinator interactions, and should help us to better manage these ecologically essential interactions in agricultural ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Co-Construction of Knowledge in Tertiary Online Settings: An Ecology of Resources Perspective
ERIC Educational Resources Information Center
Westberry, Nicola; Franken, Margaret
2013-01-01
Tertiary education has seen a shift toward pedagogies that make use of social interaction. As part of the shift, teachers have considered re-framing their role in the teaching process, and giving more attention to ways in which knowledge construction amongst students can be supported. While many online technologies are well positioned to support…
Fifty important research questions in microbial ecology.
Antwis, Rachael E; Griffiths, Sarah M; Harrison, Xavier A; Aranega-Bou, Paz; Arce, Andres; Bettridge, Aimee S; Brailsford, Francesca L; de Menezes, Alexandre; Devaynes, Andrew; Forbes, Kristian M; Fry, Ellen L; Goodhead, Ian; Haskell, Erin; Heys, Chloe; James, Chloe; Johnston, Sarah R; Lewis, Gillian R; Lewis, Zenobia; Macey, Michael C; McCarthy, Alan; McDonald, James E; Mejia-Florez, Nasmille L; O'Brien, David; Orland, Chloé; Pautasso, Marco; Reid, William D K; Robinson, Heather A; Wilson, Kenneth; Sutherland, William J
2017-05-01
Microbial ecology provides insights into the ecological and evolutionary dynamics of microbial communities underpinning every ecosystem on Earth. Microbial communities can now be investigated in unprecedented detail, although there is still a wealth of open questions to be tackled. Here we identify 50 research questions of fundamental importance to the science or application of microbial ecology, with the intention of summarising the field and bringing focus to new research avenues. Questions are categorised into seven themes: host-microbiome interactions; health and infectious diseases; human health and food security; microbial ecology in a changing world; environmental processes; functional diversity; and evolutionary processes. Many questions recognise that microbes provide an extraordinary array of functional diversity that can be harnessed to solve real-world problems. Our limited knowledge of spatial and temporal variation in microbial diversity and function is also reflected, as is the need to integrate micro- and macro-ecological concepts, and knowledge derived from studies with humans and other diverse organisms. Although not exhaustive, the questions presented are intended to stimulate discussion and provide focus for researchers, funders and policy makers, informing the future research agenda in microbial ecology. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Developing interprofessional education online: An ecological systems theory analysis.
Bluteau, Patricia; Clouder, Lynn; Cureton, Debra
2017-07-01
This article relates the findings of a discourse analysis of an online asynchronous interprofessional learning initiative involving two UK universities. The impact of the initiative is traced over three intensive periods of online interaction, each of several-weeks duration occurring over a three-year period, through an analysis of a random sample of discussion forum threads. The corpus of rich data drawn from the forums is interpreted using ecological systems theory, which highlights the complexity of interaction of individual, social and cultural elements. Ecological systems theory adopts a life course approach to understand how development occurs through processes of progressively more complex reciprocal interaction between people and their environment. This lens provides a novel approach for analysis and interpretation of findings with respect to the impact of pre-registration interprofessional education and the interaction between the individual and their social and cultural contexts as they progress through 3/4 years of their programmes. Development is mapped over time (the chronosystem) to highlight the complexity of interaction across microsystems (individual), mesosystems (curriculum and institutional/care settings), exosystems (community/wider local context), and macrosystems (national context and culture). This article illustrates the intricacies of students' interprofessional development over time and the interactive effects of social ecological components in terms of professional knowledge and understanding, wider appreciation of health and social care culture and identity work. The implications for contemporary pre-registration interprofessional education and the usefulness and applicability of ecological systems theory for future research and development are considered.
Living in the branches: population dynamics and ecological processes in dendritic networks
Grant, E.H.C.; Lowe, W.H.; Fagan, W.F.
2007-01-01
Spatial structure regulates and modifies processes at several levels of ecological organization (e.g. individual/genetic, population and community) and is thus a key component of complex systems, where knowledge at a small scale can be insufficient for understanding system behaviour at a larger scale. Recent syntheses outline potential applications of network theory to ecological systems, but do not address the implications of physical structure for network dynamics. There is a specific need to examine how dendritic habitat structure, such as that found in stream, hedgerow and cave networks, influences ecological processes. Although dendritic networks are one type of ecological network, they are distinguished by two fundamental characteristics: (1) both the branches and the nodes serve as habitat, and (2) the specific spatial arrangement and hierarchical organization of these elements interacts with a species' movement behaviour to alter patterns of population distribution and abundance, and community interactions. Here, we summarize existing theory relating to ecological dynamics in dendritic networks, review empirical studies examining the population- and community-level consequences of these networks, and suggest future research integrating spatial pattern and processes in dendritic systems.
Host–parasite fluctuating selection in the absence of specificity
Ashby, Ben; White, Andy; Bowers, Roger; Buckling, Angus; Koskella, Britt
2017-01-01
Fluctuating selection driven by coevolution between hosts and parasites is important for the generation of host and parasite diversity across space and time. Theory has focused primarily on infection genetics, with highly specific ‘matching-allele’ frameworks more likely to generate fluctuating selection dynamics (FSD) than ‘gene-for-gene’ (generalist–specialist) frameworks. However, the environment, ecological feedbacks and life-history characteristics may all play a role in determining when FSD occurs. Here, we develop eco-evolutionary models with explicit ecological dynamics to explore the ecological, epidemiological and host life-history drivers of FSD. Our key result is to demonstrate for the first time, to our knowledge, that specificity between hosts and parasites is not required to generate FSD. Furthermore, highly specific host–parasite interactions produce unstable, less robust stochastic fluctuations in contrast to interactions that lack specificity altogether or those that vary from generalist to specialist, which produce predictable limit cycles. Given the ubiquity of ecological feedbacks and the variation in the nature of specificity in host–parasite interactions, our work emphasizes the underestimated potential for host–parasite coevolution to generate fluctuating selection. PMID:29093222
Proceedings of the symposium on the ecology and management of dead wood in western forests
William F. Laudenslayer; Patrick J. Shea; Bradley E. Valentine; C. Phillip Weatherspoon; Thomas E. Lisle
2002-01-01
Dead trees, both snags (standing dead trees) and logs (downed dead trees), are critical elements of healthy and productive forests. The âSymposium on the Ecology and Management of Dead Wood in Western Forestsâ was convened to bring together forest researchers and managers to share the current state of knowledge relative to the values and interactions of dead wood to...
Staniczenko, Phillip P A; Sivasubramaniam, Prabu; Suttle, K Blake; Pearson, Richard G
2017-06-01
Macroecological models for predicting species distributions usually only include abiotic environmental conditions as explanatory variables, despite knowledge from community ecology that all species are linked to other species through biotic interactions. This disconnect is largely due to the different spatial scales considered by the two sub-disciplines: macroecologists study patterns at large extents and coarse resolutions, while community ecologists focus on small extents and fine resolutions. A general framework for including biotic interactions in macroecological models would help bridge this divide, as it would allow for rigorous testing of the role that biotic interactions play in determining species ranges. Here, we present an approach that combines species distribution models with Bayesian networks, which enables the direct and indirect effects of biotic interactions to be modelled as propagating conditional dependencies among species' presences. We show that including biotic interactions in distribution models for species from a California grassland community results in better range predictions across the western USA. This new approach will be important for improving estimates of species distributions and their dynamics under environmental change. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Sandy beaches: state of the art of nematode ecology.
Maria, Tatiana F; Vanaverbeke, Jan; Vanreusel, Ann; Esteves, André M
2016-01-01
In this review, we summarize existing knowledge of the ecology of sandy-beach nematodes, in relation to spatial distribution, food webs, pollution and climate change. We attempt to discuss spatial scale patterns (macro-, meso- and microscale) according to their degree of importance in structuring sandy-beach nematode assemblages. This review will provide a substantial background on current knowledge of sandy-beach nematodes, and can be used as a starting point to delineate further investigations in this field. Over decades, sandy beaches have been the scene of studies focusing on community and population ecology, both related to morphodynamic models. The combination of physical factors (e.g. grain size, tidal exposure) and biological interactions (e.g. trophic relationships) is responsible for the spatial distribution of nematodes. In other words, the physical factors are more important in structuring nematodes communities over large scale of distribution while biological interactions are largely important in finer-scale distributions. It has been accepted that biological interactions are assumed to be of minor importance because physical factors overshadow the biological interactions in sandy beach sediments; however, the most recent results from in-situ and ex-situ experimental investigations on behavior and biological factors on a microscale have shown promise for understanding the mechanisms underlying larger-scale patterns and processes. Besides nematodes are very promising organisms used to understand the effects of pollution and climate changes although these subjects are less studied in sandy beaches than distribution patterns.
Community-level demographic consequences of urbanization: an ecological network approach.
Rodewald, Amanda D; Rohr, Rudolf P; Fortuna, Miguel A; Bascompte, Jordi
2014-11-01
Ecological networks are known to influence ecosystem attributes, but we poorly understand how interspecific network structure affect population demography of multiple species, particularly for vertebrates. Establishing the link between network structure and demography is at the crux of being able to use networks to understand population dynamics and to inform conservation. We addressed the critical but unanswered question, does network structure explain demographic consequences of urbanization? We studied 141 ecological networks representing interactions between plants and nesting birds in forests across an urbanization gradient in Ohio, USA, from 2001 to 2011. Nest predators were identified by video-recording nests and surveyed from 2004 to 2011. As landscapes urbanized, bird-plant networks were more nested, less compartmentalized and dominated by strong interactions between a few species (i.e. low evenness). Evenness of interaction strengths promoted avian nest survival, and evenness explained demography better than urbanization, level of invasion, numbers of predators or other qualitative network metrics. Highly uneven networks had approximately half the nesting success as the most even networks. Thus, nest survival reflected how urbanization altered species interactions, particularly with respect to how nest placement affected search efficiency of predators. The demographic effects of urbanization were not direct, but were filtered through bird-plant networks. This study illustrates how network structure can influence demography at the community level and further, that knowledge of species interactions and a network approach may be requisite to understanding demographic responses to environmental change. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Lister, Bradford C.; Hanna, Michael H.; Roy, Harry
2007-01-01
Our Introduction to Biology course (BIOL 1010) changed in 2004 from a standard instructor-centered, lecture-homework-exam format to a student-centered format that used Web-enhanced, interactive pedagogy. To measure and compare conceptual learning gains in the traditional course in fall 2003 with a section of the interactive course in fall 2004, we created concept inventories for both evolution and ecology. Both classes were taught by the same instructor who had taught BIOL 1010 since 1976, and each had a similar student composition with comparable biological knowledge. A significant increase in learning gain was observed with the Web-enhanced, interactive pedagogy in evolution (traditional, 0.10; interactive, 0.19; p = 0.024) and ecology (traditional, −0.05; interactive, 0.14; p = 0.000009) when assessment was made unannounced and for no credit in the last week of classes. These results strengthen the case for augmenting or replacing instructor-centered teaching with Web-enhanced, interactive, student-centered teaching. When assessment was made using the final exam in the interactive course, for credit and after studying, significantly greater learning gains were made in evolution (95%, 0.37, p = 0.0001) and ecology (143%, 0.34, p = 0.000003) when compared with learning gains measured without credit or study in the last week of classes. PMID:17785407
Wrede, Christoph; Dreier, Anne; Kokoschka, Sebastian; Hoppert, Michael
2012-01-01
During the last few years, the analysis of microbial diversity in various habitats greatly increased our knowledge on the kingdom Archaea. At the same time, we became aware of the multiple ways in which Archaea may interact with each other and with organisms of other kingdoms. The large group of euryarchaeal methanogens and their methane oxidizing relatives, in particular, take part in essential steps of the global methane cycle. Both of these processes, which are in reverse to each other, are partially conducted in a symbiotic interaction with different partners, either ciliates and xylophagous animals or sulfate reducing bacteria. Other symbiotic interactions are mostly of unknown ecological significance but depend on highly specific mechanisms. This paper will give an overview on interactions between Archaea and other organisms and will point out the ecological relevance of these symbiotic processes, as long as these have been already recognized.
Wrede, Christoph; Dreier, Anne; Kokoschka, Sebastian; Hoppert, Michael
2012-01-01
During the last few years, the analysis of microbial diversity in various habitats greatly increased our knowledge on the kingdom Archaea. At the same time, we became aware of the multiple ways in which Archaea may interact with each other and with organisms of other kingdoms. The large group of euryarchaeal methanogens and their methane oxidizing relatives, in particular, take part in essential steps of the global methane cycle. Both of these processes, which are in reverse to each other, are partially conducted in a symbiotic interaction with different partners, either ciliates and xylophagous animals or sulfate reducing bacteria. Other symbiotic interactions are mostly of unknown ecological significance but depend on highly specific mechanisms. This paper will give an overview on interactions between Archaea and other organisms and will point out the ecological relevance of these symbiotic processes, as long as these have been already recognized. PMID:23326206
Trophic interactions between native and introduced fish species in a littoral fish community.
Monroy, M; Maceda-Veiga, A; Caiola, N; De Sostoa, A
2014-11-01
The trophic interactions between 15 native and two introduced fish species, silverside Odontesthes bonariensis and rainbow trout Oncorhynchus mykiss, collected in a major fishery area at Lake Titicaca were explored by integrating traditional ecological knowledge and stable-isotope analyses (SIA). SIA suggested the existence of six trophic groups in this fish community based on δ(13)C and δ(15)N signatures. This was supported by ecological evidence illustrating marked spatial segregation between groups, but a similar trophic level for most of the native groups. Based on Bayesian ellipse analyses, niche overlap appeared to occur between small O. bonariensis (<90 mm) and benthopelagic native species (31.6%), and between the native pelagic killifish Orestias ispi and large O. bonariensis (39%) or O. mykiss (19.7%). In addition, Bayesian mixing models suggested that O. ispi and epipelagic species are likely to be the main prey items for the two introduced fish species. This study reveals a trophic link between native and introduced fish species, and demonstrates the utility of combining both SIA and traditional ecological knowledge to understand trophic relationships between fish species with similar feeding habits. © 2014 The Fisheries Society of the British Isles.
Singh, Anshika; Thakur, Narsinh L
2016-01-05
Marine sessile organisms often inhabit rocky substrata, which are crowded by other sessile organisms. They acquire living space via growth interactions and/or by allelopathy. They are known to secrete toxic compounds having multiple roles. These compounds have been explored for their possible applications in cancer chemotherapy, because of their ability to kill rapidly dividing cells of competitor organisms. As compared to the therapeutic applications of these compounds, their possible ecological role in competition for space has received little attention. To select the potential candidate organisms for the isolation of lead cytotoxic molecules, it is important to understand their chemical ecology with special emphasis on their allelopathic interactions with their competitors. Knowledge of the ecological role of allelopathic compounds will contribute significantly to an understanding of their natural variability and help us to plan effective and sustainable wild harvests to obtain novel cytotoxic chemicals. This review highlights the significance of studying allelopathic interactions of marine invertebrates in the discovery of cytotoxic compounds, by selecting sponge as a model organism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Parker, Michael T.
2016-01-01
Recent advances in sequencing technologies have opened the door for the classification of the human virome. While taxonomic classification can be applied to the viruses identified in such studies, this gives no information as to the type of interaction the virus has with the host. As follow-up studies are performed to address these questions, the description of these virus-host interactions would be greatly enriched by applying a standard set of definitions that typify them. This paper describes a framework with which all members of the human virome can be classified based on principles of ecology. The scaffold not only enables categorization of the human virome, but can also inform research aimed at identifying novel virus-host interactions. PMID:27698618
An Ecological Network of Polysaccharide Utilization Among Human Intestinal Symbionts
Rakoff-Nahoum, Seth; Coyne, Michael J.; Comstock, Laurie E.
2013-01-01
Summary Background: The human intestine is colonized with trillions of microorganisms important to health and disease. There has been an intensive effort to catalog the species and genetic content of this microbial ecosystem. However, little is known of the ecological interactions between these microbes, a prerequisite to understanding the dynamics and stability of this host-associated microbial community. Here we perform a systematic investigation of public goods-based syntrophic interactions among the abundant human gut bacteria, the Bacteroidales. Results: We find evidence for a rich interaction network based on the breakdown and use of polysaccharides. Species that utilize a particular polysaccharide (producers) liberate polysaccharide breakdown products (PBP) that are consumed by other species unable to grow on the polysaccharide alone (recipients). Cross-species gene addition experiments demonstrate that recipients can grow on a polysaccharide if the producer-derived glycoside hydrolase, responsible for PBP generation, is provided. These producer-derived glycoside hydrolases are public goods transported extracellularly in outer membrane vesicles allowing for the creation of PBP and concomitant recipient growth spatially distant from the producer. Recipients can exploit these ecological interactions and conditionally outgrow producers. Finally, we show that these public good-based interactions occur among Bacteroidales species co-resident within a natural human intestinal community. Conclusions: This study examines public-goods based syntrophic interactions between bacterial members of the critically important gut microbial ecosystem. This polysaccharide-based network likely represents foundational relationships creating organized ecological units within the intestinal microbiota, knowledge of which can be applied to impact human health. PMID:24332541
Microbial ecology-based engineering of Microbial Electrochemical Technologies.
Koch, Christin; Korth, Benjamin; Harnisch, Falk
2018-01-01
Microbial ecology is devoted to the understanding of dynamics, activity and interaction of microorganisms in natural and technical ecosystems. Bioelectrochemical systems represent important technical ecosystems, where microbial ecology is of highest importance for their function. However, whereas aspects of, for example, materials and reactor engineering are commonly perceived as highly relevant, the study and engineering of microbial ecology are significantly underrepresented in bioelectrochemical systems. This shortfall may be assigned to a deficit on knowledge and power of these methods as well as the prerequisites for their thorough application. This article discusses not only the importance of microbial ecology for microbial electrochemical technologies but also shows which information can be derived for a knowledge-driven engineering. Instead of providing a comprehensive list of techniques from which it is hard to judge the applicability and value of information for a respective one, this review illustrates the suitability of selected techniques on a case study. Thereby, best practice for different research questions is provided and a set of key questions for experimental design, data acquisition and analysis is suggested. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Grant, William B.
2016-01-01
ABSTRACT Using a variety of approaches, researchers have studied the health effects of solar ultraviolet (UV) radiation exposure and vitamin D. This review compares the contributions from geographical ecological studies with those of observational studies and clinical trials. Health outcomes discussed were based on the author's knowledge and include anaphylaxis/food allergy, atopic dermatitis and eczema, attention deficit hyperactivity disorder, autism, back pain, cancer, dental caries, diabetes mellitus type 1, hypertension, inflammatory bowel disease, lupus, mononucleosis, multiple sclerosis, Parkinson disease, pneumonia, rheumatoid arthritis, and sepsis. Important interactions have taken place between study types; sometimes ecological studies were the first to report an inverse correlation between solar UVB doses and health outcomes such as for cancer, leading to both observational studies and clinical trials. In other cases, ecological studies added to the knowledge base. Many ecological studies include other important risk-modifying factors, thereby minimizing the chance of reporting the wrong link. Laboratory studies of mechanisms generally support the role of vitamin D in the outcomes discussed. Indications exist that for some outcomes, UVB effects may be independent of vitamin D. This paper discusses the concept of the ecological fallacy, noting that it applies to all epidemiological studies. PMID:27195055
USDA-ARS?s Scientific Manuscript database
Microorganisms are the main drivers shaping the functioning and equilibrium of all ecosystems, contributing to nutrient cycling, primary production, litter decomposition, and multi-trophic interactions. Knowledge about the microbial assemblies in specific ecological niches is pivotal to understand ...
Wolverine conservation and management.
L.F. Ruggiero; K.S. McKelvey; K.B. Aubry; J.P. Copeland; D.H. Pletscher; M.G. Hornocker
2007-01-01
This Special Section includes 8 peer-reviewed papers on the wolverine (Gulo gulo) in southern North America. These papers provide new information on current and historical distribution, habitat relations at multiple spatial scales, and interaction with humans. In aggregate, these papers substantially increase our knowledge of wolverine ecology and...
Wolverine conservation and management
Leonard F. Ruggiero; Kevin S. Mckelvey; Keith B. Aubry; Jeffrey P. Copeland; Daniel H. Pletscher; Maurice G. Hornocker
2007-01-01
This Special Section includes 8 peer-reviewed papers on the wolverine (Gulo gulo) in southern North America. These papers provide new information on current and historical distribution, habitat relations at multiple spatial scales, and interactions with humans. In aggregate, these papers substantially increase our knowledge of wolverine ecology and...
The spatial scaling of species interaction networks.
Galiana, Nuria; Lurgi, Miguel; Claramunt-López, Bernat; Fortin, Marie-Josée; Leroux, Shawn; Cazelles, Kevin; Gravel, Dominique; Montoya, José M
2018-05-01
Species-area relationships (SARs) are pivotal to understand the distribution of biodiversity across spatial scales. We know little, however, about how the network of biotic interactions in which biodiversity is embedded changes with spatial extent. Here we develop a new theoretical framework that enables us to explore how different assembly mechanisms and theoretical models affect multiple properties of ecological networks across space. We present a number of testable predictions on network-area relationships (NARs) for multi-trophic communities. Network structure changes as area increases because of the existence of different SARs across trophic levels, the preferential selection of generalist species at small spatial extents and the effect of dispersal limitation promoting beta-diversity. Developing an understanding of NARs will complement the growing body of knowledge on SARs with potential applications in conservation ecology. Specifically, combined with further empirical evidence, NARs can generate predictions of potential effects on ecological communities of habitat loss and fragmentation in a changing world.
NASA Astrophysics Data System (ADS)
Tweddle, J. F.; Byg, A.; Davies, I.; Gubbins, M.; Irvine, K.; Kafas, A.; Kenter, J.; MacDonald, A.; Murray, R. B. O.; Potts, T.; Slater, A. M.; Wright, K.; Scott, B. E.
2016-02-01
The marine environment is under increasing use, putting pressure on marine ecosystems and increasing competition for space. New activities (e.g. renewable energy developments), evolving marine policies (e.g. implementation of marine protected areas), and climate change may drive changes in biodiversity and resulting ecosystem services (ES) that society and business utilise from coastal and marine systems. A process is needed that integrates ecological assessment of changes with stakeholder perceptions and valuation of ES, whilst balancing ease of application with the ability to deal with complex social-economic-ecological issues. The project "Cooperative participatory assessment of the impact of renewable technology on ecosystem services: CORPORATES" involved natural and social scientists, law and policy experts, and marine managers, with the aim of promoting more integrated decision making using ES concepts in marine management. CORPORATES developed a process to bring ES concepts into stakeholders' awareness. The interactive process, involving 2 workshops, employs interludes of knowledge exchange by experts on ecological processes underpinning ES and on law and policy. These enable mapping of benefits linked to activities, participatory system modelling, and deliberation of policy impacts on different sectors. The workshops were attended by industry representatives, regulatory/advisory partners, and other stakeholders (NGOs, SMEs, recreationalists, local government). Mixed sector groups produced new insights into links between activities and ES, and highlighted cross-sector concerns. Here we present the aspects of the process that successfully built shared understanding between industry and stakeholders of inter-linkages and interactions between ES, benefits, activities, and economic and cultural values. These methods provide an ES-based decision-support model for exchanging societal-ecological knowledge and providing stakeholder interaction in marine planning, supporting ecosystem-based management.
NASA Astrophysics Data System (ADS)
Tweddle, J. F.; Byg, A.; Davies, I.; Gubbins, M.; Irvine, K.; Kafas, A.; Kenter, J.; MacDonald, A.; Murray, R. B. O.; Potts, T.; Slater, A. M.; Wright, K.; Scott, B. E.
2016-12-01
The marine environment is under increasing use, putting pressure on marine ecosystems and increasing competition for space. New activities (e.g. renewable energy developments), evolving marine policies (e.g. implementation of marine protected areas), and climate change may drive changes in biodiversity and resulting ecosystem services (ES) that society and business utilise from coastal and marine systems. A process is needed that integrates ecological assessment of changes with stakeholder perceptions and valuation of ES, whilst balancing ease of application with the ability to deal with complex social-economic-ecological issues. The project "Cooperative participatory assessment of the impact of renewable technology on ecosystem services: CORPORATES" involved natural and social scientists, law and policy experts, and marine managers, with the aim of promoting more integrated decision making using ES concepts in marine management. CORPORATES developed a process to bring ES concepts into stakeholders' awareness. The interactive process, involving 2 workshops, employs interludes of knowledge exchange by experts on ecological processes underpinning ES and on law and policy. These enable mapping of benefits linked to activities, participatory system modelling, and deliberation of policy impacts on different sectors. The workshops were attended by industry representatives, regulatory/advisory partners, and other stakeholders (NGOs, SMEs, recreationalists, local government). Mixed sector groups produced new insights into links between activities and ES, and highlighted cross-sector concerns. Here we present the aspects of the process that successfully built shared understanding between industry and stakeholders of inter-linkages and interactions between ES, benefits, activities, and economic and cultural values. These methods provide an ES-based decision-support model for exchanging societal-ecological knowledge and providing stakeholder interaction in marine planning, supporting ecosystem-based management.
Airpower and the Environment: The Ecological Implications of Modern Air Warfare
2013-07-01
communications.42 Never- theless, local environmental knowledge should not be discounted; simple word -of- mouth , low-tech communication can be very eec...communications.42 Never- theless, local environmental knowledge should not be discounted; simple word -of- mouth , low-tech communication can be very eec...their non-living environment interacting as a functional unit.”9 In other words , an ecosystem is a group of interdependent organisms which share the
Priorities for research in soil ecology
Eisenhauer, Nico; Antunes, Pedro M.; Bennett, Alison E.; Birkhofer, Klaus; Bissett, Andrew; Bowker, Matthew A.; Caruso, Tancredi; Chen, Baodong; Coleman, David C.; de Boer, Wietse; de Ruiter, Peter; DeLuca, Thomas H.; Frati, Francesco; Griffiths, Bryan S.; Hart, Miranda M.; Hättenschwiler, Stephan; Haimi, Jari; Heethoff, Michael; Kaneko, Nobuhiro; Kelly, Laura C.; Leinaas, Hans Petter; Lindo, Zoë; Macdonald, Catriona; Rillig, Matthias C.; Ruess, Liliane; Scheu, Stefan; Schmidt, Olaf; Seastedt, Timothy R.; van Straalen, Nico M.; Tiunov, Alexei V.; Zimmer, Martin; Powell, Jeff R.
2017-01-01
The ecological interactions that occur in and with soil are of consequence in many ecosystems on the planet. These interactions provide numerous essential ecosystem services, and the sustainable management of soils has attracted increasing scientific and public attention. Although soil ecology emerged as an independent field of research many decades ago, and we have gained important insights into the functioning of soils, there still are fundamental aspects that need to be better understood to ensure that the ecosystem services that soils provide are not lost and that soils can be used in a sustainable way. In this perspectives paper, we highlight some of the major knowledge gaps that should be prioritized in soil ecological research. These research priorities were compiled based on an online survey of 32 editors of Pedobiologia – Journal of Soil Ecology. These editors work at universities and research centers in Europe, North America, Asia, and Australia.The questions were categorized into four themes: (1) soil biodiversity and biogeography, (2) interactions and the functioning of ecosystems, (3) global change and soil management, and (4) new directions. The respondents identified priorities that may be achievable in the near future, as well as several that are currently achievable but remain open. While some of the identified barriers to progress were technological in nature, many respondents cited a need for substantial leadership and goodwill among members of the soil ecology research community, including the need for multi-institutional partnerships, and had substantial concerns regarding the loss of taxonomic expertise. PMID:29129942
Form of an evolutionary tradeoff affects eco-evolutionary dynamics in a predator-prey system.
Kasada, Minoru; Yamamichi, Masato; Yoshida, Takehito
2014-11-11
Evolution on a time scale similar to ecological dynamics has been increasingly recognized for the last three decades. Selection mediated by ecological interactions can change heritable phenotypic variation (i.e., evolution), and evolution of traits, in turn, can affect ecological interactions. Hence, ecological and evolutionary dynamics can be tightly linked and important to predict future dynamics, but our understanding of eco-evolutionary dynamics is still in its infancy and there is a significant gap between theoretical predictions and empirical tests. Empirical studies have demonstrated that the presence of genetic variation can dramatically change ecological dynamics, whereas theoretical studies predict that eco-evolutionary dynamics depend on the details of the genetic variation, such as the form of a tradeoff among genotypes, which can be more important than the presence or absence of the genetic variation. Using a predator-prey (rotifer-algal) experimental system in laboratory microcosms, we studied how different forms of a tradeoff between prey defense and growth affect eco-evolutionary dynamics. Our experimental results show for the first time to our knowledge that different forms of the tradeoff produce remarkably divergent eco-evolutionary dynamics, including near fixation, near extinction, and coexistence of algal genotypes, with quantitatively different population dynamics. A mathematical model, parameterized from completely independent experiments, explains the observed dynamics. The results suggest that knowing the details of heritable trait variation and covariation within a population is essential for understanding how evolution and ecology will interact and what form of eco-evolutionary dynamics will result.
Priorities for research in soil ecology.
Eisenhauer, Nico; Antunes, Pedro M; Bennett, Alison E; Birkhofer, Klaus; Bissett, Andrew; Bowker, Matthew A; Caruso, Tancredi; Chen, Baodong; Coleman, David C; de Boer, Wietse; de Ruiter, Peter; DeLuca, Thomas H; Frati, Francesco; Griffiths, Bryan S; Hart, Miranda M; Hättenschwiler, Stephan; Haimi, Jari; Heethoff, Michael; Kaneko, Nobuhiro; Kelly, Laura C; Leinaas, Hans Petter; Lindo, Zoë; Macdonald, Catriona; Rillig, Matthias C; Ruess, Liliane; Scheu, Stefan; Schmidt, Olaf; Seastedt, Timothy R; van Straalen, Nico M; Tiunov, Alexei V; Zimmer, Martin; Powell, Jeff R
2017-07-01
The ecological interactions that occur in and with soil are of consequence in many ecosystems on the planet. These interactions provide numerous essential ecosystem services, and the sustainable management of soils has attracted increasing scientific and public attention. Although soil ecology emerged as an independent field of research many decades ago, and we have gained important insights into the functioning of soils, there still are fundamental aspects that need to be better understood to ensure that the ecosystem services that soils provide are not lost and that soils can be used in a sustainable way. In this perspectives paper, we highlight some of the major knowledge gaps that should be prioritized in soil ecological research. These research priorities were compiled based on an online survey of 32 editors of Pedobiologia - Journal of Soil Ecology. These editors work at universities and research centers in Europe, North America, Asia, and Australia.The questions were categorized into four themes: (1) soil biodiversity and biogeography, (2) interactions and the functioning of ecosystems, (3) global change and soil management, and (4) new directions. The respondents identified priorities that may be achievable in the near future, as well as several that are currently achievable but remain open. While some of the identified barriers to progress were technological in nature, many respondents cited a need for substantial leadership and goodwill among members of the soil ecology research community, including the need for multi-institutional partnerships, and had substantial concerns regarding the loss of taxonomic expertise.
Biomass and fuel characteristics of chaparral in southern California
J.C. Regelbrugge; S.G. Conard
2002-01-01
Knowledge of biomass components and fuel characteristics of southern California chaparral plant communities is important for planning prescribed fires, suppressing wildfires, managing the fire regime, and understanding the ecological interactions between fire and chaparral community development and succession. To improve our understanding of the relationship between...
Climate and dengue transmission: evidence and implications.
Morin, Cory W; Comrie, Andrew C; Ernst, Kacey
2013-01-01
Climate influences dengue ecology by affecting vector dynamics, agent development, and mosquito/human interactions. Although these relationships are known, the impact climate change will have on transmission is unclear. Climate-driven statistical and process-based models are being used to refine our knowledge of these relationships and predict the effects of projected climate change on dengue fever occurrence, but results have been inconsistent. We sought to identify major climatic influences on dengue virus ecology and to evaluate the ability of climate-based dengue models to describe associations between climate and dengue, simulate outbreaks, and project the impacts of climate change. We reviewed the evidence for direct and indirect relationships between climate and dengue generated from laboratory studies, field studies, and statistical analyses of associations between vectors, dengue fever incidence, and climate conditions. We assessed the potential contribution of climate-driven, process-based dengue models and provide suggestions to improve their performance. Relationships between climate variables and factors that influence dengue transmission are complex. A climate variable may increase dengue transmission potential through one aspect of the system while simultaneously decreasing transmission potential through another. This complexity may at least partly explain inconsistencies in statistical associations between dengue and climate. Process-based models can account for the complex dynamics but often omit important aspects of dengue ecology, notably virus development and host-species interactions. Synthesizing and applying current knowledge of climatic effects on all aspects of dengue virus ecology will help direct future research and enable better projections of climate change effects on dengue incidence.
Evolution and biogeography of Haemonchus contortus, linking faunal dynamics in space and time
USDA-ARS?s Scientific Manuscript database
History is the foundation that informs about the nuances of faunal assembly that are essential in understanding the dynamic nature of the host-parasite interface. All of our knowledge begins and ends with evolution, ecology and biogeography as these interacting facets determine the history of biodi...
Parasite-Microbiota Interactions With the Vertebrate Gut: Synthesis Through an Ecological Lens
Leung, Jacqueline M.; Graham, Andrea L.; Knowles, Sarah C. L.
2018-01-01
The vertebrate gut teems with a large, diverse, and dynamic bacterial community that has pervasive effects on gut physiology, metabolism, and immunity. Under natural conditions, these microbes share their habitat with a similarly dynamic community of eukaryotes (helminths, protozoa, and fungi), many of which are well-known parasites. Both parasites and the prokaryotic microbiota can dramatically alter the physical and immune landscape of the gut, creating ample opportunities for them to interact. Such interactions may critically alter infection outcomes and affect overall host health and disease. For instance, parasite infection can change how a host interacts with its bacterial flora, either driving or protecting against dysbiosis and inflammatory disease. Conversely, the microbiota can alter a parasite's colonization success, replication, and virulence, shifting it along the parasitism-mutualism spectrum. The mechanisms and consequences of these interactions are just starting to be elucidated in an emergent transdisciplinary area at the boundary of microbiology and parasitology. However, heterogeneity in experimental designs, host and parasite species, and a largely phenomenological and taxonomic approach to synthesizing the literature have meant that common themes across studies remain elusive. Here, we use an ecological perspective to review the literature on interactions between the prokaryotic microbiota and eukaryotic parasites in the vertebrate gut. Using knowledge about parasite biology and ecology, we discuss mechanisms by which they may interact with gut microbes, the consequences of such interactions for host health, and how understanding parasite-microbiota interactions may lead to novel approaches in disease control. PMID:29867790
Parasite-Microbiota Interactions With the Vertebrate Gut: Synthesis Through an Ecological Lens.
Leung, Jacqueline M; Graham, Andrea L; Knowles, Sarah C L
2018-01-01
The vertebrate gut teems with a large, diverse, and dynamic bacterial community that has pervasive effects on gut physiology, metabolism, and immunity. Under natural conditions, these microbes share their habitat with a similarly dynamic community of eukaryotes (helminths, protozoa, and fungi), many of which are well-known parasites. Both parasites and the prokaryotic microbiota can dramatically alter the physical and immune landscape of the gut, creating ample opportunities for them to interact. Such interactions may critically alter infection outcomes and affect overall host health and disease. For instance, parasite infection can change how a host interacts with its bacterial flora, either driving or protecting against dysbiosis and inflammatory disease. Conversely, the microbiota can alter a parasite's colonization success, replication, and virulence, shifting it along the parasitism-mutualism spectrum. The mechanisms and consequences of these interactions are just starting to be elucidated in an emergent transdisciplinary area at the boundary of microbiology and parasitology. However, heterogeneity in experimental designs, host and parasite species, and a largely phenomenological and taxonomic approach to synthesizing the literature have meant that common themes across studies remain elusive. Here, we use an ecological perspective to review the literature on interactions between the prokaryotic microbiota and eukaryotic parasites in the vertebrate gut. Using knowledge about parasite biology and ecology, we discuss mechanisms by which they may interact with gut microbes, the consequences of such interactions for host health, and how understanding parasite-microbiota interactions may lead to novel approaches in disease control.
Munday, Philip L
2017-09-01
Ocean acidification, caused by the uptake of additional carbon dioxide (CO 2 ) from the atmosphere, will have far-reaching impacts on marine ecosystems (Gattuso & Hansson 2011 Ocean acidification Oxford University Press). The predicted changes in ocean chemistry will affect whole biological communities and will occur within the context of global warming and other anthropogenic stressors; yet much of the biological research conducted to date has tested the short-term responses of single species to ocean acidification conditions alone. While an important starting point, these studies may have limited predictive power because they do not account for possible interactive effects of multiple climate change drivers or for ecological interactions with other species. Furthermore, few studies have considered variation in responses among populations or the evolutionary potential within populations. Therefore, our knowledge about the potential for marine organisms to adapt to ocean acidification is extremely limited. In 2015, two of the pioneers in the field, Ulf Riebesell and Jean-Pierre Gattuso, noted that to move forward as a field of study, future research needed to address critical knowledge gaps in three major areas: (i) multiple environmental drivers, (ii) ecological interactions and (iii) acclimation and adaptation (Riebesell and Gattuso 2015 Nat. Clim. Change 5 , 12-14 (doi:10.1038/nclimate2456)). In May 2016, more than 350 researchers, students and stakeholders met at the 4th International Symposium on the Ocean in a High-CO 2 World in Hobart, Tasmania, to discuss the latest advances in understanding ocean acidification and its biological consequences. Many of the papers presented at the symposium reflected this shift in focus from short-term, single species and single stressor experiments towards multi-stressor and multispecies experiments that address knowledge gaps about the ecological impacts of ocean acidification on marine communities. The nine papers in this Special Feature are from authors who attended the symposium and address cutting-edge questions and emerging topics in ocean acidification research, across the taxonomic spectrum from plankton to top predators. They cover the three streams of research identified as crucial to understanding the biological impacts of ocean acidification: (i) the relationship with other environmental drivers, (ii) the effects on ecological process and species interactions, and (iii) the role that individual variation, phenotypic plasticity and adaptation will have in shaping the impacts of ocean acidification and warming on marine ecosystems. © 2017 The Author(s).
Pesek, Todd; Abramiuk, Marc; Garagic, Denis; Fini, Nick; Meerman, Jan; Cal, Victor
2009-03-01
Ethnobotanical surveys were conducted to locate culturally important, regionally scarce, and disappearing medicinal plants via a novel participatory methodology which involves healer-expert knowledge in interactive spatial modeling to prioritize conservation efforts and thus facilitate health promotion via medicinal plant resource sustained availability. These surveys, conducted in the Maya Mountains, Belize, generate ethnobotanical, ecological, and geospatial data on species which are used by Q'eqchi' Maya healers in practice. Several of these mountainous species are regionally scarce and the healers are expressing difficulties in finding them for use in promotion of community health and wellness. Based on healers' input, zones of highest probability for locating regionally scarce, disappearing, and culturally important plants in their ecosystem niches can be facilitated by interactive modeling. In the present study, this is begun by choosing three representative species to train an interactive predictive model. Model accuracy was then assessed statistically by testing for independence between predicted occurrence and actual occurrence of medicinal plants. A high level of accuracy was achieved using a small set of exemplar data. This work demonstrates the potential of combining ethnobotany and botanical spatial information with indigenous ecosystems concepts and Q'eqchi' Maya healing knowledge via predictive modeling. Through this approach, we may identify regions where species are located and accordingly promote for prioritization and application of in situ and ex situ conservation strategies to protect them. This represents a significant step toward facilitating sustained culturally relative health promotion as well as overall enhanced ecological integrity to the region and the earth.
Exploiting the ecogenomics toolbox for environmental diagnostics of organohalide-respiring bacteria.
Maphosa, Farai; de Vos, Willem M; Smidt, Hauke
2010-06-01
Various 'omics' methods have enabled environmental probing at the molecular level and have created an important new paradigm in bioremediation design and management. Ecogenomics - the application of genomics to ecological and environmental sciences - defines phylogenetic and functional biodiversity at the DNA, RNA and protein levels. It capitalizes on this knowledge to elucidate functions and interactions of organisms at the ecosystem level in relation to ecological and evolutionary processes. Effective bioremediation of widespread halo-organic pollutants in anaerobic environments requires knowledge of catabolic potential and in situ dynamics of organohalide-respiring and co-metabolizing microorganisms. Here, we discuss the potential of ecogenomics approaches in developing high-throughput methods for detecting and monitoring organohalide respirers, and for providing improvements to selection, specificity and sensitivity of target biomarkers and their application to evaluate bioremediation strategies.
Incidental Learning of Melodic Structure of North Indian Music.
Rohrmeier, Martin; Widdess, Richard
2017-07-01
Musical knowledge is largely implicit. It is acquired without awareness of its complex rules, through interaction with a large number of samples during musical enculturation. Whereas several studies explored implicit learning of mostly abstract and less ecologically valid features of Western music, very little work has been done with respect to ecologically valid stimuli as well as non-Western music. The present study investigated implicit learning of modal melodic features in North Indian classical music in a realistic and ecologically valid way. It employed a cross-grammar design, using melodic materials from two modes (rāgas) that use the same scale. Findings indicated that Western participants unfamiliar with Indian music incidentally learned to identify distinctive features of each mode. Confidence ratings suggest that participants' performance was consistently correlated with confidence, indicating that they became aware of whether they were right in their responses; that is, they possessed explicit judgment knowledge. Altogether our findings show incidental learning in a realistic ecologically valid context during only a very short exposure, they provide evidence that incidental learning constitutes a powerful mechanism that plays a fundamental role in musical acquisition. Copyright © 2016 Cognitive Science Society, Inc.
Learning about Ecological Systems by Constructing Qualitative Models with DynaLearn
ERIC Educational Resources Information Center
Leiba, Moshe; Zuzovsky, Ruth; Mioduser, David; Benayahu, Yehuda; Nachmias, Rafi
2012-01-01
A qualitative model of a system is an abstraction that captures ordinal knowledge and predicts the set of qualitatively possible behaviours of the system, given a qualitative description of its structure and initial state. This paper examines an innovative approach to science education using an interactive learning environment that supports…
Incidental Learning of Melodic Structure of North Indian Music
ERIC Educational Resources Information Center
Rohrmeier, Martin; Widdess, Richard
2017-01-01
Musical knowledge is largely implicit. It is acquired without awareness of its complex rules, through interaction with a large number of samples during musical enculturation. Whereas several studies explored implicit learning of mostly abstract and less ecologically valid features of Western music, very little work has been done with respect to…
Investigating the Marine Environment and Its Resources, Part I.
ERIC Educational Resources Information Center
Lien, Violetta F.
This is the first of two volumes comprising a resource unit designed to help students become more knowledgeable about the marine environment and its resources. Included in this volume are discussions of geography of the Gulf of Mexico, geology, physical characteristics of the marine environment, marine ecology, and ocean/land interaction.…
Proximal Processes in Urban Classrooms: Engagement and Disaffection in Urban Youth of Color
ERIC Educational Resources Information Center
Wallace, Tanner LeBaron; Chhuon, Vichet
2014-01-01
We examine adolescents' interpretations of instructional interactions to understand the academic and developmental implications of pedagogy for urban youth of color. In doing so, we seek to advance existing knowledge regarding student engagement in two ways--enhancing the ecological validity of such theories and making the links to teacher…
USDA-ARS?s Scientific Manuscript database
The abundance and composition of arthropod communities in agricultural landscapes vary across space and time, responding to environmental features, resources and behavioral cues. As “second-generation” bioenergy feedstocks continue to develop, knowledge is needed about the broader scale ecological i...
Woodpecker-snag interactions: an overview of current knowledge in ponderosa pine systems
Kerry L. Farris; Steve Zack
2005-01-01
Standing dead trees (snags) with cavities are a critical ecological component of western coniferous forests. These structures provide foraging, roosting, and nesting habitat for numerous species of invertebrates, amphibians, reptiles, birds, and mammals. Snags may be created through a variety of interrelated processes including wildfire, drought, insects and disease....
NASA Astrophysics Data System (ADS)
Twichell, Julia; Pollnac, Richard; Christie, Patrick
2018-06-01
International interest in increasing marine protected area (MPA) coverage reflects broad recognition of the MPA as a key tool for marine ecosystems and fisheries management. Nevertheless, effective management remains a significant challenge. The present study contributes to enriching an understanding of best practices for MPA management through analysis of archived community survey data collected in the Philippines by the Learning Project (LP), a collaboration with United States Coral Triangle Initiative (USCTI), United States Agency for International Development (USAID), and partners. We evaluate stakeholder participation and social ecological interactions among resource users in MPA programs in the Palawan, Occidental Mindoro, and Batangas provinces in the Philippines. Analysis indicates that a complex suite of social ecological factors, including demographics, conservation beliefs, and scientifically correct knowledge influence participation, which in turn is related to perceived MPA performance. Findings indicate positive feedbacks within the system that have potential to strengthen perceptions of MPA success. The results of this evaluation provide empirical reinforcement to current inquiries concerning the role of participation in influencing MPA performance.
de Magalhães, Henrique Fernandes; Costa Neto, Eraldo Medeiros; Schiavetti, Alexandre
2012-07-02
This article records the traditional knowledge of crab gatherers in the city of Conde, in the North Coast Region of Bahia State, Northeastern Brazil. Data on biological and ecological aspects of economically important brachyuran crustaceans have been obtained from semi-structured interviews and in loco observations conducted from September 2007 to December 2009. A total of 57 fishermen of both genders, aged between 10 and 78 years have been interviewed (individually or collectively) in different contexts; interviewees were asked about aspects such as external morphology, life cycle, trophic ecology, and spatial and temporal distribution of the major economically important brachyuran crustaceans in the region. Seven fishing communities were visited: Siribinha, Sítio do Conde, Poças, Ilha das Ostras, Cobó, Buri and Sempre Viva. Data were analyzed by comparing the information provided by participants with those from the specialized academic literature. The results show that artisanal fishermen have a wide ranging and well-grounded knowledge on the ecological and biological aspects of crustaceans. Crab gatherers of Conde know about growth and reproductive behavior of the animals they interact with, especially with regard to the three major biological aspects: "molt", "walking dance" and "spawning". This knowledge constitutes an important source of information that should be considered in studies of management and sustainable use of fishery resources in the North Coast Region of Bahia State.
Reyes-García, Victoria; Luz, Ana C; Gueze, Maximilien; Paneque-Gálvez, Jaime; Macía, Manuel J; Orta-Martínez, Martí; Pino, Joan
2013-10-01
Empirical research provides contradictory evidence of the loss of traditional ecological knowledge across societies. Researchers have argued that culture, methodological differences, and site-specific conditions are responsible for such contradictory evidences. We advance and test a third explanation: the adaptive nature of traditional ecological knowledge systems. Specifically, we test whether different domains of traditional ecological knowledge experience different secular changes and analyze trends in the context of other changes in livelihoods. We use data collected among 651 Tsimane' men (Bolivian Amazon). Our findings indicate that different domains of knowledge follow different secular trends. Among the domains of knowledge analyzed, medicinal and wild edible knowledge appear as the most vulnerable; canoe building and firewood knowledge seem to remain constant across generations; whereas house building knowledge seems to experience a slight secular increase. Our analysis reflects on the adaptive nature of traditional ecological knowledge, highlighting how changes in this knowledge system respond to the particular needs of a society in a given point of time.
A Critical Review of Traditional Ecological Knowledge (TEK) in Science Education
ERIC Educational Resources Information Center
Kim, Eun-Ji Amy; Asghar, Anila; Jordan, Steven
2017-01-01
What is traditional ecological knowledge? In many disciplines, including science education, anthropology, and resource management, it has been conflated with Indigenous knowledges, which has contributed to misunderstandings. This article explores the history of traditional ecological knowledge and examines its contemporary conceptualizations in…
MI-Sim: A MATLAB package for the numerical analysis of microbial ecological interactions.
Wade, Matthew J; Oakley, Jordan; Harbisher, Sophie; Parker, Nicholas G; Dolfing, Jan
2017-01-01
Food-webs and other classes of ecological network motifs, are a means of describing feeding relationships between consumers and producers in an ecosystem. They have application across scales where they differ only in the underlying characteristics of the organisms and substrates describing the system. Mathematical modelling, using mechanistic approaches to describe the dynamic behaviour and properties of the system through sets of ordinary differential equations, has been used extensively in ecology. Models allow simulation of the dynamics of the various motifs and their numerical analysis provides a greater understanding of the interplay between the system components and their intrinsic properties. We have developed the MI-Sim software for use with MATLAB to allow a rigorous and rapid numerical analysis of several common ecological motifs. MI-Sim contains a series of the most commonly used motifs such as cooperation, competition and predation. It does not require detailed knowledge of mathematical analytical techniques and is offered as a single graphical user interface containing all input and output options. The tools available in the current version of MI-Sim include model simulation, steady-state existence and stability analysis, and basin of attraction analysis. The software includes seven ecological interaction motifs and seven growth function models. Unlike other system analysis tools, MI-Sim is designed as a simple and user-friendly tool specific to ecological population type models, allowing for rapid assessment of their dynamical and behavioural properties.
Encyrtid parasitoids of soft scale insects: biology, behavior, and their use in biological control.
Kapranas, Apostolos; Tena, Alejandro
2015-01-07
Parasitoids of the hymenopterous family Encyrtidae are one of the most important groups of natural enemies of soft scale insects and have been used extensively in biological control. We summarize existing knowledge of the biology, ecology, and behavior of these parasitoids and how it relates to biological control. Soft scale stage/size and phenology are important determinants of host range and host utilization, which are key aspects in understanding how control by these parasitoids is exerted. Furthermore, the nutritional ecology of encyrtids and their physiological interactions with their hosts affect soft scale insect population dynamics. Lastly, the interactions among encyrtids, heteronomous parasitoids, and ants shape parasitoid species complexes and consequently have a direct impact on the biological control of soft scale insects.
Ecology of zoonotic infectious diseases in bats: current knowledge and future directions
Hayman, D.T.; Bowen, R.A.; Cryan, P.M.; McCracken, G.F.; O'Shea, T.J.; Peel, A.J.; Gilbert, A.; Webb, C.T.; Wood, J.L.
2013-01-01
Bats are hosts to a range of zoonotic and potentially zoonotic pathogens. Human activities that increase exposure to bats will likely increase the opportunity for infections to spill over in the future. Ecological drivers of pathogen spillover and emergence in novel hosts, including humans, involve a complex mixture of processes, and understanding these complexities may aid in predicting spillover. In particular, only once the pathogen and host ecologies are known can the impacts of anthropogenic changes be fully appreciated. Cross-disciplinary approaches are required to understand how host and pathogen ecology interact. Bats differ from other sylvatic disease reservoirs because of their unique and diverse lifestyles, including their ability to fly, often highly gregarious social structures, long lifespans and low fecundity rates. We highlight how these traits may affect infection dynamics and how both host and pathogen traits may interact to affect infection dynamics. We identify key questions relating to the ecology of infectious diseases in bats and propose that a combination of field and laboratory studies are needed to create data-driven mechanistic models to elucidate those aspects of bat ecology that are most critical to the dynamics of emerging bat viruses. If commonalities can be found, then predicting the dynamics of newly emerging diseases may be possible. This modelling approach will be particularly important in scenarios when population surveillance data are unavailable and when it is unclear which aspects of host ecology are driving infection dynamics.
Ecology of Zoonotic Infectious Diseases in Bats: Current Knowledge and Future Directions
Hayman, D T S; Bowen, R A; Cryan, P M; McCracken, G F; O’Shea, T J; Peel, A J; Gilbert, A; Webb, C T; Wood, J L N
2013-01-01
Bats are hosts to a range of zoonotic and potentially zoonotic pathogens. Human activities that increase exposure to bats will likely increase the opportunity for infections to spill over in the future. Ecological drivers of pathogen spillover and emergence in novel hosts, including humans, involve a complex mixture of processes, and understanding these complexities may aid in predicting spillover. In particular, only once the pathogen and host ecologies are known can the impacts of anthropogenic changes be fully appreciated. Cross-disciplinary approaches are required to understand how host and pathogen ecology interact. Bats differ from other sylvatic disease reservoirs because of their unique and diverse lifestyles, including their ability to fly, often highly gregarious social structures, long lifespans and low fecundity rates. We highlight how these traits may affect infection dynamics and how both host and pathogen traits may interact to affect infection dynamics. We identify key questions relating to the ecology of infectious diseases in bats and propose that a combination of field and laboratory studies are needed to create data-driven mechanistic models to elucidate those aspects of bat ecology that are most critical to the dynamics of emerging bat viruses. If commonalities can be found, then predicting the dynamics of newly emerging diseases may be possible. This modelling approach will be particularly important in scenarios when population surveillance data are unavailable and when it is unclear which aspects of host ecology are driving infection dynamics. PMID:22958281
Learning About Bird Species on the Primary Level
NASA Astrophysics Data System (ADS)
Randler, Christoph
2009-04-01
Animal species identification is often emphasized as a basic prerequisite for an understanding of ecology because ecological interactions are based on interactions between species at least as it is taught on the school level. Therefore, training identification skills or using identification books seems a worthwhile task in biology education, and should already start on the primary level. On the primary level, however, complex interactions could not be taught but pupils are often interested in basic knowledge about species. We developed a hands-on, group-based and self-determined learning phase organized in workstations. About 138 pupils (2nd-4th graders) participated in this study. The two groups received an identification treatment with six different bird species. These were presented either as soft toys or as taxidermy specimen. Both groups scored similar prior and after the treatment (posttest 1) and with a delay of 6-8 weeks (posttest 2). More complex general linear modeling revealed a significant influence of prior knowledge, treatment and of grade (2nd, 3rd or 4th grade) on the first posttest while in the retention test gender differences emerged. We suggest that soft toys may be of equal value for teaching species identification on the primary level compared to natural taxidermic specimen, especially when considering pricing, insensitivity to handling, and contamination with agents used for preservation.
Interactions of social, terrestrial, and marine sub-systems in the Galapagos Islands, Ecuador.
Walsh, Stephen J; Mena, Carlos F
2016-12-20
Galapagos is often cited as an example of the conflicts that are emerging between resource conservation and economic development in island ecosystems, as the pressures associated with tourism threaten nature, including the iconic and emblematic species, unique terrestrial landscapes, and special marine environments. In this paper, two projects are described that rely upon dynamic systems models and agent-based models to examine human-environment interactions. We use a theoretical context rooted in complexity theory to guide the development of our models that are linked to social-ecological dynamics. The goal of this paper is to describe key elements, relationships, and processes to inform and enhance our understanding of human-environment interactions in the Galapagos Islands of Ecuador. By formalizing our knowledge of how systems operate and the manner in which key elements are linked in coupled human-natural systems, we specify rules, relationships, and rates of exchange between social and ecological features derived through statistical functions and/or functions specified in theory or practice. The processes described in our models also have practical applications in that they emphasize how political policies generate different human responses and model outcomes, many detrimental to the social-ecological sustainability of the Galapagos Islands.
Interactions of social, terrestrial, and marine sub-systems in the Galapagos Islands, Ecuador
Walsh, Stephen J.; Mena, Carlos F.
2016-01-01
Galapagos is often cited as an example of the conflicts that are emerging between resource conservation and economic development in island ecosystems, as the pressures associated with tourism threaten nature, including the iconic and emblematic species, unique terrestrial landscapes, and special marine environments. In this paper, two projects are described that rely upon dynamic systems models and agent-based models to examine human–environment interactions. We use a theoretical context rooted in complexity theory to guide the development of our models that are linked to social–ecological dynamics. The goal of this paper is to describe key elements, relationships, and processes to inform and enhance our understanding of human–environment interactions in the Galapagos Islands of Ecuador. By formalizing our knowledge of how systems operate and the manner in which key elements are linked in coupled human–natural systems, we specify rules, relationships, and rates of exchange between social and ecological features derived through statistical functions and/or functions specified in theory or practice. The processes described in our models also have practical applications in that they emphasize how political policies generate different human responses and model outcomes, many detrimental to the social–ecological sustainability of the Galapagos Islands. PMID:27791072
Potential ecological roles of flavonoids from Stellera chamaejasme
Yan, Zhiqiang; Zeng, Liming; Jin, Hui; Qin, Bo
2015-01-01
Stellera chamaejasme L. (Thymelaeaceae), a perennial weed, distributes widely in the grasslands of Russia, Mongolia and China. The plant synthesizes various secondary metabolites including a group of flavonoids. To our knowledge, flavonoids play important roles in the interactions between plants and the environment. So, what are the benefits to S. chamaejasme from producing these flavonoids? Here, we discuss the potential ecological role of flavonoids from S. chamaejasme in protecting the plant from insects and other herbivores, as well as pathogens and competing plant species, and new data are provided on the phytotoxicity of flavonoids from S. chamaejasme toward Poa annua L. PMID:25848835
Potential ecological roles of flavonoids from Stellera chamaejasme.
Yan, Zhiqiang; Zeng, Liming; Jin, Hui; Qin, Bo
2015-01-01
Stellera chamaejasme L. (Thymelaeaceae), a perennial weed, distributes widely in the grasslands of Russia, Mongolia and China. The plant synthesizes various secondary metabolites including a group of flavonoids. To our knowledge, flavonoids play important roles in the interactions between plants and the environment. So, what are the benefits to S. chamaejasme from producing these flavonoids? Here, we discuss the potential ecological role of flavonoids from S. chamaejasme in protecting the plant from insects and other herbivores, as well as pathogens and competing plant species, and new data are provided on the phytotoxicity of flavonoids from S. chamaejasme toward Poa annua L.
Marshall, Athole H; Collins, Rosemary P; Humphreys, Mike W; Scullion, John
2016-02-01
Grasslands cover a significant proportion of the agricultural land within the UK and across the EU, providing a relatively cheap source of feed for ruminants and supporting the production of meat, wool and milk from grazing animals. Delivering efficient animal production from grassland systems has traditionally been the primary focus of grassland-based research. But there is increasing recognition of the ecological and environmental benefits of these grassland systems and the importance of the interaction between their component plants and a host of other biological organisms in the soil and in adjoining habitats. Many of the ecological and environmental benefits provided by grasslands emanate from the interactions between the roots of plant species and the soil in which they grow. We review current knowledge on the role of grassland ecosystems in delivering ecological and environmental benefits. We will consider how improved grassland can deliver these benefits, and the potential opportunities for plant breeding to improve specific traits that will enhance these benefits whilst maintaining forage production for livestock consumption. Opportunities for exploiting new plant breeding approaches, including high throughput phenotyping, and for introducing traits from closely related species are discussed.
Pleistocene megafaunal interaction networks became more vulnerable after human arrival.
Pires, Mathias M; Koch, Paul L; Fariña, Richard A; de Aguiar, Marcus A M; dos Reis, Sérgio F; Guimarães, Paulo R
2015-09-07
The end of the Pleistocene was marked by the extinction of almost all large land mammals worldwide except in Africa. Although the debate on Pleistocene extinctions has focused on the roles of climate change and humans, the impact of perturbations depends on properties of ecological communities, such as species composition and the organization of ecological interactions. Here, we combined palaeoecological and ecological data, food-web models and community stability analysis to investigate if differences between Pleistocene and modern mammalian assemblages help us understand why the megafauna died out in the Americas while persisting in Africa. We show Pleistocene and modern assemblages share similar network topology, but differences in richness and body size distributions made Pleistocene communities significantly more vulnerable to the effects of human arrival. The structural changes promoted by humans in Pleistocene networks would have increased the likelihood of unstable dynamics, which may favour extinction cascades in communities facing extrinsic perturbations. Our findings suggest that the basic aspects of the organization of ecological communities may have played an important role in major extinction events in the past. Knowledge of community-level properties and their consequences to dynamics may be critical to understand past and future extinctions. © 2015 The Author(s).
Pleistocene megafaunal interaction networks became more vulnerable after human arrival
Pires, Mathias M.; Koch, Paul L.; Fariña, Richard A.; de Aguiar, Marcus A. M.; dos Reis, Sérgio F.; Guimarães, Paulo R.
2015-01-01
The end of the Pleistocene was marked by the extinction of almost all large land mammals worldwide except in Africa. Although the debate on Pleistocene extinctions has focused on the roles of climate change and humans, the impact of perturbations depends on properties of ecological communities, such as species composition and the organization of ecological interactions. Here, we combined palaeoecological and ecological data, food-web models and community stability analysis to investigate if differences between Pleistocene and modern mammalian assemblages help us understand why the megafauna died out in the Americas while persisting in Africa. We show Pleistocene and modern assemblages share similar network topology, but differences in richness and body size distributions made Pleistocene communities significantly more vulnerable to the effects of human arrival. The structural changes promoted by humans in Pleistocene networks would have increased the likelihood of unstable dynamics, which may favour extinction cascades in communities facing extrinsic perturbations. Our findings suggest that the basic aspects of the organization of ecological communities may have played an important role in major extinction events in the past. Knowledge of community-level properties and their consequences to dynamics may be critical to understand past and future extinctions. PMID:26336175
NASA Astrophysics Data System (ADS)
Alao, Solomon
The need to identify factors that contribute to students' understanding of ecological concepts has been widely expressed in recent literature. The purpose of this study was to investigate the relationship between fifth grade students' prior knowledge, learning strategies, interest, and learning goals and their conceptual understanding of ecological science concepts. Subject were 72 students from three fifth grade classrooms located in a metropolitan area of the eastern United States. Students completed the goal commitment, interest, and strategy use questionnaire (GISQ), and a knowledge test designed to assess their prior knowledge and conceptual understanding of ecological science concepts. The learning goals scale assessed intentions to try to learn and understand ecological concepts. The interest scale assessed the feeling and value-related valences that students ascribed to science and ecological science concepts. The strategy use scale assessed the use of two cognitive strategies (monitoring and elaboration). The knowledge test assessed students' understanding of ecological concepts (the relationship between living organisms and their environment). Scores on all measures were examined for gender differences; no significant gender differences were observed. The motivational and cognitive variables contributed to students' understanding of ecological concepts. After accounting for interest, learning goals, and strategy use, prior knowledge accounted for 28% of the total variance in conceptual understanding. After accounting for prior knowledge, interest, learning goals, and strategy use explained 7%, 6%, and 4% of the total variance in conceptual understanding, respectively. More importantly, these variables were interrelated to each other and to conceptual understanding. After controlling for prior knowledge, learning goals, and strategy use, interest did not predict the variance in conceptual understanding. After controlling for prior knowledge, interest, and strategy use, learning goals did not predict the variance in conceptual understanding. And, after controlling for prior knowledge, interest, and learning goals, strategy use did not predict the variance in conceptual understanding. Results of this study indicated that prior knowledge, interest, learning goals, and strategy use should be included in theoretical models design to explain and to predict fifth grade students' understanding of ecological concepts. Results of this study further suggested that curriculum developers and science teachers need to take fifth grade students' prior knowledge of ecological concepts, interest in science and ecological concepts; intentions to learn and understand ecological concepts, and use of cognitive strategies into account when designing instructional contexts to support these students' understanding of ecological concepts.
de Freitas, Carolina T.; Shepard, Glenn H.; Piedade, Maria T. F.
2015-01-01
Matupás are floating vegetation islands found in floodplain lakes of the central Brazilian Amazon. They form initially from the agglomeration of aquatic vegetation, and through time can accumulate a substrate of organic matter sufficient to grow forest patches of several hectares in area and up to 12 m in height. There is little published information on matupás despite their singular characteristics and importance to local fauna and people. In this study we document the traditional ecological knowledge of riverine populations who live near and interact with matupás. We expected that their knowledge, acquired through long term observations and use in different stages of the matupá life cycle, could help clarify various aspects about the ecology and natural history of these islands that field biologists may not have had the opportunity to observe. Research was carried out in five riverine communities of the Amanã Sustainable Development Reserve (Brazil). Semi-structured interviews were conducted with 45 inhabitants in order to register local understandings of how matupás are formed, biotic/abiotic factors related to their occurrence, the plants and animals that occur on them, their ecological relevance, and local uses. Local people elucidated several little-known aspects about matupá ecology, especially regarding the importance of seasonal dynamics of high/low water for matupás formation and the relevance of these islands for fish populations. Soil from matupás is especially fertile and is frequently gathered for use in vegetable gardens. In some cases, crops are planted directly onto matupás, representing an incipient agricultural experiment that was previously undocumented in the Amazon. Matupás are also considered a strategic habitat for fishing, mainly for arapaima (Arapaima gigas). The systematic study of traditional ecological knowledge proved to be an important tool for understanding this little-known Amazonian landscape. PMID:25837281
de Freitas, Carolina T; Shepard, Glenn H; Piedade, Maria T F
2015-01-01
Matupás are floating vegetation islands found in floodplain lakes of the central Brazilian Amazon. They form initially from the agglomeration of aquatic vegetation, and through time can accumulate a substrate of organic matter sufficient to grow forest patches of several hectares in area and up to 12 m in height. There is little published information on matupás despite their singular characteristics and importance to local fauna and people. In this study we document the traditional ecological knowledge of riverine populations who live near and interact with matupás. We expected that their knowledge, acquired through long term observations and use in different stages of the matupá life cycle, could help clarify various aspects about the ecology and natural history of these islands that field biologists may not have had the opportunity to observe. Research was carried out in five riverine communities of the Amanã Sustainable Development Reserve (Brazil). Semi-structured interviews were conducted with 45 inhabitants in order to register local understandings of how matupás are formed, biotic/abiotic factors related to their occurrence, the plants and animals that occur on them, their ecological relevance, and local uses. Local people elucidated several little-known aspects about matupá ecology, especially regarding the importance of seasonal dynamics of high/low water for matupás formation and the relevance of these islands for fish populations. Soil from matupás is especially fertile and is frequently gathered for use in vegetable gardens. In some cases, crops are planted directly onto matupás, representing an incipient agricultural experiment that was previously undocumented in the Amazon. Matupás are also considered a strategic habitat for fishing, mainly for arapaima (Arapaima gigas). The systematic study of traditional ecological knowledge proved to be an important tool for understanding this little-known Amazonian landscape.
Johnston, Daniel T; Furness, Robert W; Robbins, Alexandra M C; Tyler, Glen; Taggart, Mark A; Masden, Elizabeth A
2018-03-01
The black guillemot Cepphus grylle has been identified as a species likely to interact with marine renewable energy devices, specifically tidal turbines, with the potential to experience negative impacts. This likelihood is primarily based on the species being a diving seabird, and an inshore, benthic forager often associating with tidal streams. These behavioural properties may bring them into contact with turbine blades, or make them susceptible to alterations to tidal current speed, and/or changes in benthic habitat structure. We examine the knowledge currently available to assess the potential impacts of tidal stream turbines on black guillemot ecology, highlight knowledge gaps and make recommendations for future research. The key ecological aspects investigated include: foraging movements, diving behaviour, seasonal distribution, other sources of disturbance and colony recovery. Relating to foraging behaviour, between studies there is heterogeneity in black guillemot habitat use in relation to season, tide, diurnal cycles, and bathymetry. Currently, there is also little knowledge regarding the benthic habitats associated with foraging. With respect to diving behaviour, there is currently no available research regarding how black guillemots orientate and manoeuvre within the water column. Black guillemots are considered to be a non-migratory species, however little is known about their winter foraging range and habitat. The effect of human disturbance on breeding habitat and the metapopulation responses to potential mortalities are unknown. It is clear further understanding of black guillemot foraging habitat and behaviour is needed to provide renewable energy developers with the knowledge to sustainably locate tidal turbines and mitigate their impacts. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gastropod-Borne Helminths: A Look at the Snail-Parasite Interplay.
Giannelli, Alessio; Cantacessi, Cinzia; Colella, Vito; Dantas-Torres, Filipe; Otranto, Domenico
2016-03-01
More than 300 million people suffer from a range of diseases caused by gastropod-borne helminths, predominantly flatworms and roundworms, whose life cycles are characterized by a diversified ecology and epidemiology. Despite the plethora of data on these parasites, very little is known of the fundamental biology of their gastropod intermediate hosts, or of the interactions occurring at the snail-helminth interface. In this article, we focus on schistosomes and metastrongylids of human and animal significance, and review current knowledge of snail-parasite interplay. Future efforts aimed at elucidating key elements of the biology and ecology of the snail intermediate hosts, together with an improved understanding of snail-parasite interactions, will aid to identify, plan, and develop new strategies for disease control focused on gastropod intermediate hosts. Copyright © 2015 Elsevier Ltd. All rights reserved.
The ecology of anaerobic degraders of BTEX hydrocarbons in aquifers
Lueders, Tillmann
2017-01-01
Abstract The degradation of benzene, toluene, ethylbenzene and xylene (BTEX) contaminants in groundwater relies largely on anaerobic processes. While the physiology and biochemistry of selected relevant microbes have been intensively studied, research has now started to take the generated knowledge back to the field, in order to trace the populations truly responsible for the anaerobic degradation of BTEX hydrocarbons in situ and to unravel their ecology in contaminated aquifers. Here, recent advances in our knowledge of the identity, diversity and ecology of microbes involved in these important ecosystem services are discussed. At several sites, distinct lineages within the Desulfobulbaceae, the Rhodocyclaceae and the Gram-positive Peptococcaceae have been shown to dominate the degradation of different BTEX hydrocarbons. Especially for the functional guild of anaerobic toluene degraders, specific molecular detection systems have been developed, allowing researchers to trace their diversity and distribution in contaminated aquifers. Their populations appear enriched in hot spots of biodegradation in situ. 13C-labelling experiments have revealed unexpected pathways of carbon sharing and obligate syntrophic interactions to be relevant in degradation. Together with feedback mechanisms between abiotic and biotic habitat components, this promotes an enhanced ecological perspective of the anaerobic degradation of BTEX hydrocarbons, as well as its incorporation into updated concepts for site monitoring and bioremediation. PMID:27810873
Understanding the physical dynamics and ecological interactions in tidal stream energy environments
NASA Astrophysics Data System (ADS)
Fraser, Shaun; Williamson, Benjamin J.; Nikora, Vladimir; Scott, Beth E.
2017-04-01
Tidal stream energy devices are intended to operate in energetic physical environments characterised by high flows and extreme turbulence. These environments are often of ecological importance to a range of marine species. Understanding the physical dynamics and ecological interactions at fine scales in such sites is essential for device/array design and to understand environmental impacts. However, investigating fine scale characteristics requires high resolution field measurements which are difficult to attain and interpret, with data often confounded by interference related to turbulence. Consequently, field observations in tidal stream energy environments are limited and require the development of specialised analysis methods and so significant knowledge gaps are still present. The seabed mounted FLOWBEC platform is addressing these knowledge gaps using upward facing instruments to collect information from around marine energy infrastructure. Multifrequency and multibeam echosounder data provide detailed information on the distribution and interactions of biological targets, such as fish and diving seabirds, while simultaneously recording the scales and intensity of turbulence. Novel processing methodologies and instrument integration techniques have been developed which combine different data types and successfully separates signal from noise to reveal new evidence about the behaviour of mobile species and the structure of turbulence at all speeds of the tide and throughout the water column. Multiple platform deployments in the presence and absence of marine energy infrastructure reveal the natural characteristics of high energy sites, and enable the interpretation of the physical and biological impacts of tidal stream devices. These methods and results are relevant to the design and consenting of marine renewable energy technologies, and provide novel information on the use of turbulence for foraging opportunities in high energy sites by mobile species.
2012-01-01
Background This article records the traditional knowledge of crab gatherers in the city of Conde, in the North Coast Region of Bahia State, Northeastern Brazil. Methods Data on biological and ecological aspects of economically important brachyuran crustaceans have been obtained from semi-structured interviews and in loco observations conducted from September 2007 to December 2009. A total of 57 fishermen of both genders, aged between 10 and 78 years have been interviewed (individually or collectively) in different contexts; interviewees were asked about aspects such as external morphology, life cycle, trophic ecology, and spatial and temporal distribution of the major economically important brachyuran crustaceans in the region. Seven fishing communities were visited: Siribinha, Sítio do Conde, Poças, Ilha das Ostras, Cobó, Buri and Sempre Viva. Data were analyzed by comparing the information provided by participants with those from the specialized academic literature. Results The results show that artisanal fishermen have a wide ranging and well-grounded knowledge on the ecological and biological aspects of crustaceans. Crab gatherers of Conde know about growth and reproductive behavior of the animals they interact with, especially with regard to the three major biological aspects: “molt”, “walking dance” and “spawning”. Conclusion This knowledge constitutes an important source of information that should be considered in studies of management and sustainable use of fishery resources in the North Coast Region of Bahia State. PMID:22449069
NASA Astrophysics Data System (ADS)
Putra, A.; Rahmat, A.; Redjeki, S.
2017-09-01
This research aims to find out how much the content of sustainable development exist in the content of environmental knowledge and plant ecology courses. The focus indicators of sustainable development indicators is the environment. This research is a qualitative research type with qualitative descriptive approach. The analyzed variables are only 2 courses, which are environmental knowledge and plants ecology. The results showed that the syllabus contents analysis of environmental knowledge and plants ecology courses in private Lembaga Pendidikan Tenaga Kependidikan (LPTK) in the province of Nusa Tenggara Barat is already good enough and the sustainable development contents is very large, almost all syllabus contents has already prioritize the sustainable development load of both the subject of environmental knowledge and plants ecology, although there are still some syllabus contents that was not includes sustainable development load, but the percentage is quite small, especially in the course of Plant Ecology.
Friess, Daniel A.; Krauss, Ken W.; Horstman, Erik M.; Balke, Thorsten; Bouma, Tjeerd J.; Galli, Demis; Webb, Edward L.
2011-01-01
Intertidal wetlands such as saltmarshes and mangroves provide numerous important ecological functions, though they are in rapid and global decline. To better conserve and restore these wetland ecosystems, we need an understanding of the fundamental natural bottlenecks and thresholds to their establishment and long-term ecological maintenance. Despite inhabiting similar intertidal positions, the biological traits of these systems differ markedly in structure, phenology, life history, phylogeny and dispersal, suggesting large differences in biophysical interactions. By providing the first systematic comparison between saltmarshes and mangroves, we unravel how the interplay between species-specific life-history traits, biophysical interactions and biogeomorphological feedback processes determine where, when and what wetland can establish, the thresholds to long-term ecosystem stability, and constraints to genetic connectivity between intertidal wetland populations at the landscape level. To understand these process interactions, research into the constraints to wetland development, and biological adaptations to overcome these critical bottlenecks and thresholds requires a truly interdisciplinary approach.
The smell of change: warming affects species interactions mediated by chemical information.
Sentis, Arnaud; Ramon-Portugal, Felipe; Brodeur, Jacques; Hemptinne, Jean-Louis
2015-10-01
Knowledge of how temperature influences an organism's physiology and behaviour is of paramount importance for understanding and predicting the impacts of climate change on species' interactions. While the behaviour of many organisms is driven by chemical information on which they rely on to detect resources, conspecifics, natural enemies and competitors, the effects of temperature on infochemical-mediated interactions remain largely unexplored. Here, we experimentally show that temperature strongly influences the emission of infochemicals by ladybeetle larvae, which, in turn, modifies the oviposition behaviour of conspecific females. Temperature also directly affects female perception of infochemicals and their oviposition behaviour. Our results suggest that temperature-mediated effects on chemical communication can influence flows across system boundaries (e.g. immigration and emigration) and thus alter the dynamics and stability of ecological networks. We therefore argue that investigating the effects of temperature on chemical communication is a crucial step towards a better understanding of the functioning of ecological communities facing rapid environmental changes. © 2015 John Wiley & Sons Ltd.
Planetary Citizenship and the Ecology of Knowledges in Brazilian Universities
ERIC Educational Resources Information Center
Moraes, Silvia Elisabeth; de Almeida Freire, Ludmila
2017-01-01
This article discusses the formation of a "planetary citizenship" based on the "ecology of knowledges" perspective in Brazilian universities. It is informed by the authors' experiences and the partial results from a research project entitled "Planetary citizenship and the ecology of knowledges: Interdisciplinarity,…
Bushmeat Hunting, Deforestation, and Prediction of Zoonotic Disease
Daszak, Peter; Kilpatrick, A. Marm; Burke, Donald S.
2005-01-01
Understanding the emergence of new zoonotic agents requires knowledge of pathogen biodiversity in wildlife, human-wildlife interactions, anthropogenic pressures on wildlife populations, and changes in society and human behavior. We discuss an interdisciplinary approach combining virology, wildlife biology, disease ecology, and anthropology that enables better understanding of how deforestation and associated hunting leads to the emergence of novel zoonotic pathogens. PMID:16485465
Population Cycles, Disease, and Networks of Ecological Knowledge.
Jones, Susan D
2017-05-01
Wildlife populations in the northern reaches of the globe have long been observed to fluctuate or cycle periodically, with dramatic increases followed by catastrophic crashes. Focusing on the early work of Charles S. Elton, this article analyzes how investigations into population cycles shaped the development of Anglo-American animal ecology during the 1920s-1930s. Population cycling revealed patterns that challenged ideas about the "balance" of nature; stimulated efforts to quantify population data; and brought animal ecology into conversation with intellectual debates about natural selection. Elton used the problem of understanding wildlife population cycles to explore a central tension in ecological thought: the relative influences of local conditions (food supply, predation) and universal forces (such as climate change and natural selection) in regulating wild animal populations. He also sought patronage and built research practices and the influential Bureau of Animal Population around questions of population regulation during the 1930s. Focusing on disease as a local population regulator that could interact with global climatic influences, Elton facilitated an interdisciplinary and population-based approach in early animal ecology. Elton created a network of epidemiologists, conservationists, pathologists and mathematicians, who contributed to population cycle research. I argue that, although these people often remained peripheral to ecology, their ideas shaped the young discipline. Particularly important were the concepts of abundance, density, and disease; and the interactions between these factors and natural selection. However, Elton's reliance on density dependence unwittingly helped set up conditions conducive to the development of controversies in animal ecology in later years. While ecologists did not come to consensus on the ultimate causes of population cycles, this phenomenon was an important early catalyst for the development of theory and practice in animal ecology.
Etges, William J
2014-01-01
Revealing the genetic basis of traits that cause reproductive isolation, particularly premating or sexual isolation, usually involves the same challenges as most attempts at genotype-phenotype mapping and so requires knowledge of how these traits are expressed in different individuals, populations, and environments, particularly under natural conditions. Genetic dissection of speciation phenotypes thus requires understanding of the internal and external contexts in which underlying genetic elements are expressed. Gene expression is a product of complex interacting factors internal and external to the organism including developmental programs, the genetic background including nuclear-cytotype interactions, epistatic relationships, interactions among individuals or social effects, stochasticity, and prevailing variation in ecological conditions. Understanding of genomic divergence associated with reproductive isolation will be facilitated by functional expression analysis of annotated genomes in organisms with well-studied evolutionary histories, phylogenetic affinities, and known patterns of ecological variation throughout their life cycles. I review progress and prospects for understanding the pervasive role of host plant use on genetic and phenotypic expression of reproductive isolating mechanisms in cactophilic Drosophila mojavensis and suggest how this system can be used as a model for revealing the genetic basis for species formation in organisms where speciation phenotypes are under the joint influences of genetic and environmental factors. © The American Genetic Association. 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Serra J. Hoagland
2017-01-01
Traditional ecological knowledge (TEK) has been recognized within indigenous communities for millennia; however, traditional ecological knowledge has received growing attention within the western science (WS) paradigm over the past twenty-five years. Federal agencies, national organizations, and university programs dedicated to natural resource management are beginning...
Morris, Cindy E; Barny, Marie-Anne; Berge, Odile; Kinkel, Linda L; Lacroix, Christelle
2017-02-01
Methods to ensure the health of crops owe their efficacy to the extent to which we understand the ecology and biology of environmental microorganisms and the conditions under which their interactions with plants lead to losses in crop quality or yield. However, in the pursuit of this knowledge, notions of the ecology of plant-pathogenic microorganisms have been reduced to a plant-centric and agro-centric focus. With increasing global change, i.e. changes that encompass not only climate, but also biodiversity, the geographical distribution of biomes, human demographic and socio-economic adaptations and land use, new plant health problems will emerge via a range of processes influenced by these changes. Hence, knowledge of the ecology of plant pathogens will play an increasingly important role in the anticipation and response to disease emergence. Here, we present our opinion on the major challenges facing the study of the ecology of plant-pathogenic bacteria. We argue that the discovery of markedly novel insights into the ecology of plant-pathogenic bacteria is most likely to happen within a framework of more extensive scales of space, time and biotic interactions than those that currently guide much of the research on these bacteria. This will set a context that is more propitious for the discovery of unsuspected drivers of the survival and diversification of plant-pathogenic bacteria and of the factors most critical for disease emergence, and will set the foundation for new approaches to the sustainable management of plant health. We describe the contextual background of, justification for and specific research questions with regard to the following challenges: Development of terminology to describe plant-bacterial relationships in terms of bacterial fitness. Definition of the full scope of the environments in which plant-pathogenic bacteria reside or survive. Delineation of pertinent phylogenetic contours of plant-pathogenic bacteria and naming of strains independent of their presumed life style. Assessment of how traits of plant-pathogenic bacteria evolve within the overall framework of their life history. Exploration of possible beneficial ecosystem services contributed to by plant-pathogenic bacteria. © 2016 BSPP AND JOHN WILEY & SONS LTD.
The Gut Microbiota: Ecology and Function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willing, B.P.; Jansson, J.K.
The gastrointestinal (GI) tract is teeming with an extremely abundant and diverse microbial community. The members of this community have coevolved along with their hosts over millennia. Until recently, the gut ecosystem was viewed as black box with little knowledge of who or what was there or their specific functions. Over the past decade, however, this ecosystem has become one of fastest growing research areas of focus in microbial ecology and human and animal physiology. This increased interest is largely in response to studies tying microbes in the gut to important diseases afflicting modern society, including obesity, allergies, inflammatory bowelmore » diseases, and diabetes. Although the importance of a resident community of microorganisms in health was first hypothesized by Pasteur over a century ago (Sears, 2005), the multiplicity of physiological changes induced by commensal bacteria has only recently been recognized (Hooper et al., 2001). The term 'ecological development' was recently coined to support the idea that development of the GI tract is a product of the genetics of the host and the host's interactions with resident microbes (Hooper, 2004). The search for new therapeutic targets and disease biomarkers has escalated the need to understand the identities and functions of the microorganisms inhabiting the gut. Recent studies have revealed new insights into the membership of the gut microbial community, interactions within that community, as well as mechanisms of interaction with the host. This chapter focuses on the microbial ecology of the gut, with an emphasis on information gleaned from recent molecular studies.« less
Late Permian wood-borings reveal an intricate network of ecological relationships.
Feng, Zhuo; Wang, Jun; Rößler, Ronny; Ślipiński, Adam; Labandeira, Conrad
2017-09-15
Beetles are the most diverse group of macroscopic organisms since the mid-Mesozoic. Much of beetle speciosity is attributable to myriad life habits, particularly diverse-feeding strategies involving interactions with plant substrates, such as wood. However, the life habits and early evolution of wood-boring beetles remain shrouded in mystery from a limited fossil record. Here we report new material from the upper Permian (Changhsingian Stage, ca. 254-252 million-years ago) of China documenting a microcosm of ecological associations involving a polyphagan wood-borer consuming cambial and wood tissues of the conifer Ningxiaites specialis. This earliest evidence for a component community of several trophically interacting taxa is frozen in time by exceptional preservation. The combination of an entry tunnel through bark, a cambium mother gallery, and up to 11 eggs placed in lateral niches-from which emerge multi-instar larval tunnels that consume cambium, wood and bark-is ecologically convergent with Early Cretaceous bark-beetle borings 120 million-years later.Numerous gaps remain in our knowledge of how groups of organisms interacted in ancient ecosystems. Here, Feng and colleagues describe a late Permian fossil wood-boring beetle microcosm, with the oldest known example of complex tunnel geometry, host tissue response, and the presence of fungi within.
Liang, Yuting; Zhao, Huihui; Deng, Ye; Zhou, Jizhong; Li, Guanghe; Sun, Bo
2016-01-01
With knowledge on microbial composition and diversity, investigation of within-community interactions is a further step to elucidate microbial ecological functions, such as the biodegradation of hazardous contaminants. In this work, microbial functional molecular ecological networks were studied in both contaminated and uncontaminated soils to determine the possible influences of oil contamination on microbial interactions and potential functions. Soil samples were obtained from an oil-exploring site located in South China, and the microbial functional genes were analyzed with GeoChip, a high-throughput functional microarray. By building random networks based on null model, we demonstrated that overall network structures and properties were significantly different between contaminated and uncontaminated soils (P < 0.001). Network connectivity, module numbers, and modularity were all reduced with contamination. Moreover, the topological roles of the genes (module hub and connectors) were altered with oil contamination. Subnetworks of genes involved in alkane and polycyclic aromatic hydrocarbon degradation were also constructed. Negative co-occurrence patterns prevailed among functional genes, thereby indicating probable competition relationships. The potential “keystone” genes, defined as either “hubs” or genes with highest connectivities in the network, were further identified. The network constructed in this study predicted the potential effects of anthropogenic contamination on microbial community co-occurrence interactions. PMID:26870020
ERIC Educational Resources Information Center
Kimmerer, Robin Wall
2012-01-01
Scientific ecological knowledge (SEK) is a powerful discipline for diagnosing and analyzing environmental degradation, but has been far less successful in devising sustainable solutions which lie at the intersection of nature and culture. Traditional ecological knowledge (TEK) of indigenous and local peoples is rich in prescriptions for the…
Traditional Ecological Knowledge in the Tribal College Classroom
ERIC Educational Resources Information Center
Van Lopik, William
2012-01-01
The college classroom at a tribal college offers a dynamic perspective on the discussion of traditional ecological knowledge. It provides a unique view because it is one of the very few settings in higher education where the majority of students in the class are American Indian. It is here where traditional ecological knowledge should become…
Dynamics and ecology of wood in world rivers
NASA Astrophysics Data System (ADS)
Picco, Lorenzo; Bertoldi, Walter; Comiti, Francesco
2017-02-01
Scientific investigation on fluvial wood (FW) has increased greatly during the last decades, mostly for the need to better comprehend and better manage the numerous and complex interactions between the river network and the riparian areas. Following the first two International Conferences on ;Wood in World Rivers;, held at the Oregon State University (USA) in October 2000 and at the University of Stirling (Scotland) in August 2006, the Third Conference was organized in Padova (Italy) in July 2015, by the University of Padova (Dept. Land and Agroforest Environment), University of Trento (Dept. Civil and Environmental Engineering) and Free University of Bolzano (Fac. Science and Technology). This Special Issue contains fifteen papers, thirteen presented during this third conference, which overall cover its main topics: (i) synthesis of the knowledge on physical dynamics and ecological interactions of wood in different geographical regions; (ii) building of a framework for interpreting and applying research results and management approaches; (iii) assessment of physical and biological responses of large wood in stream restoration processes; (iv) exploration of the links between physical and ecological dynamics of large wood, river management, and the communities and cultures in which they are; (v) promotion of a connection between geosciences and ecology which represents a challenge for restoration purposes.
Predicting oscillatory dynamics in the movement of territorial animals.
Giuggioli, L; Potts, J R; Harris, S
2012-07-07
Understanding ecological processes relies upon the knowledge of the dynamics of each individual component. In the context of animal population ecology, the way animals move and interact is of fundamental importance in explaining a variety of observed patterns. Here, we present a theoretical investigation on the movement dynamics of interacting scent-marking animals. We study how the movement statistics of territorial animals is responsible for the appearance of damped oscillations in the mean square displacement (MSD) of the animals. This non-monotonicity is shown to depend on one dimensionless parameter, given by the ratio of the correlation distance between successive steps to the size of the territory. As that parameter increases, the time dependence of the animal's MSD displays a transition from monotonic, characteristic of Brownian walks, to non-monotonic, characteristic of highly correlated walks. The results presented here represent a novel way of determining the degree of persistence in animal movement processes within confined regions.
Predicting oscillatory dynamics in the movement of territorial animals
Giuggioli, L.; Potts, J. R.; Harris, S.
2012-01-01
Understanding ecological processes relies upon the knowledge of the dynamics of each individual component. In the context of animal population ecology, the way animals move and interact is of fundamental importance in explaining a variety of observed patterns. Here, we present a theoretical investigation on the movement dynamics of interacting scent-marking animals. We study how the movement statistics of territorial animals is responsible for the appearance of damped oscillations in the mean square displacement (MSD) of the animals. This non-monotonicity is shown to depend on one dimensionless parameter, given by the ratio of the correlation distance between successive steps to the size of the territory. As that parameter increases, the time dependence of the animal's MSD displays a transition from monotonic, characteristic of Brownian walks, to non-monotonic, characteristic of highly correlated walks. The results presented here represent a novel way of determining the degree of persistence in animal movement processes within confined regions. PMID:22262814
Comparing species interaction networks along environmental gradients.
Pellissier, Loïc; Albouy, Camille; Bascompte, Jordi; Farwig, Nina; Graham, Catherine; Loreau, Michel; Maglianesi, Maria Alejandra; Melián, Carlos J; Pitteloud, Camille; Roslin, Tomas; Rohr, Rudolf; Saavedra, Serguei; Thuiller, Wilfried; Woodward, Guy; Zimmermann, Niklaus E; Gravel, Dominique
2018-05-01
Knowledge of species composition and their interactions, in the form of interaction networks, is required to understand processes shaping their distribution over time and space. As such, comparing ecological networks along environmental gradients represents a promising new research avenue to understand the organization of life. Variation in the position and intensity of links within networks along environmental gradients may be driven by turnover in species composition, by variation in species abundances and by abiotic influences on species interactions. While investigating changes in species composition has a long tradition, so far only a limited number of studies have examined changes in species interactions between networks, often with differing approaches. Here, we review studies investigating variation in network structures along environmental gradients, highlighting how methodological decisions about standardization can influence their conclusions. Due to their complexity, variation among ecological networks is frequently studied using properties that summarize the distribution or topology of interactions such as number of links, connectance, or modularity. These properties can either be compared directly or using a procedure of standardization. While measures of network structure can be directly related to changes along environmental gradients, standardization is frequently used to facilitate interpretation of variation in network properties by controlling for some co-variables, or via null models. Null models allow comparing the deviation of empirical networks from random expectations and are expected to provide a more mechanistic understanding of the factors shaping ecological networks when they are coupled with functional traits. As an illustration, we compare approaches to quantify the role of trait matching in driving the structure of plant-hummingbird mutualistic networks, i.e. a direct comparison, standardized by null models and hypothesis-based metaweb. Overall, our analysis warns against a comparison of studies that rely on distinct forms of standardization, as they are likely to highlight different signals. Fostering a better understanding of the analytical tools available and the signal they detect will help produce deeper insights into how and why ecological networks vary along environmental gradients. © 2017 Cambridge Philosophical Society.
Reyes-García, Victoria; Paneque-Gálvez, Jaime; Luz, Ana C; Gueze, Maximilien; Macía, Manuel J; Orta-Martínez, Martí; Pino, Joan
2014-01-01
Among the different factors associated to change in traditional ecological knowledge, the study of the relations between cultural change and traditional ecological knowledge has received scan and inadequate scholarly attention. Using data from indigenous peoples of an Amazonian society facing increasing exposure to the mainstream Bolivian society, we analyzed the relation between traditional ecological knowledge, proxied with individual plant use knowledge (n=484), and cultural change, proxied with individual- and village-level (n=47) measures of attachment to traditional beliefs and values. We found that both the individual level of detachment to traditional values and the village level of agreement in detachment to traditional values were associated with individual levels of plant use knowledge, irrespective of other proxy measures for cultural change. Because both the individual- and the village-level variables bear statistically significant associations with plant use knowledge, our results suggest that both the individual- and the supra-individual level processes of cultural change are related to the erosion of plant use knowledge. Results from our work highlight the importance of analyzing processes that happen at intermediary social units -the village in our case study- to explain changes in traditional ecological knowledge.
Reyes-García, Victoria; Paneque-Gálvez, Jaime; Luz, Ana C.; Gueze, Maximilien; Macía, Manuel J.; Orta-Martínez, Martí; Pino, Joan
2016-01-01
Among the different factors associated to change in traditional ecological knowledge, the study of the relations between cultural change and traditional ecological knowledge has received scan and inadequate scholarly attention. Using data from indigenous peoples of an Amazonian society facing increasing exposure to the mainstream Bolivian society, we analyzed the relation between traditional ecological knowledge, proxied with individual plant use knowledge (n=484), and cultural change, proxied with individual- and village-level (n=47) measures of attachment to traditional beliefs and values. We found that both the individual level of detachment to traditional values and the village level of agreement in detachment to traditional values were associated with individual levels of plant use knowledge, irrespective of other proxy measures for cultural change. Because both the individual- and the village-level variables bear statistically significant associations with plant use knowledge, our results suggest that both the individual- and the supra-individual level processes of cultural change are related to the erosion of plant use knowledge. Results from our work highlight the importance of analyzing processes that happen at intermediary social units -the village in our case study- to explain changes in traditional ecological knowledge. PMID:27642188
Warming Climate and Changing Societies - a Challenge or an Opportunity for Reindeer Herding?
NASA Astrophysics Data System (ADS)
Käyhkö, J.; Horstkotte, T.; Kivinen, S.; Vehmas, J.; Oksanen, L.; Forbes, B. C.; Johansen, B.; Jepsen, J. U.; Markkola, A.; Pulliainen, J.; Olofsson, J.; Oksanen, T.; Utsi, T. A.; Korpimäki, E.; Menard, C.; Ericson, L.
2015-12-01
The Arctic region will warm more rapidly than the global mean, influencing dramatically the northern ecosystems. Simultaneously, our societies transform towards urbanized, highly educated, service-based culture, where a decreasing population will gain its livelihood from primary production. We study various ecosystem interactions in a changing climate and integrate these with reindeer husbandry and the indigenous Sámi culture dependent on it1. Potential climate impacts include the transformation of arctic-alpine tundra to dense scrubland with conceivable consequences to reindeer husbandry, but also global warming due to decreasing albedo. The social-ecological system (SES) of reindeer husbandry includes administrative and ecological processes that do not always correspond (Figure 1). Consequently, management priorities and administration may conflict with local social and ecological processes, bringing about risks of environmental degradation, loss of biodiversity and defeat of traditional livelihoods. We hypothesize the plausibility to support the indigenous reindeer herding livelihood against rapid external changes by utilizing the migratory reindeer grazing system of the Sámi as a management tool for sustaining the high-albedo tundra and mitigating global warming. Our first-of-a-kind satellite-based high resolution vegetation map covering Northern Fennoscandia allows detailed management plans. Our ecological research demonstrates the important role of herbivory on arctic vegetation communities. Interactive workshops with reindeer herders offer indigenous knowledge of state and changes of the ecosystems, and reflect the threats and expectations of the herders. We are currently building models of the complex social-ecological system of Northern Fennoscandia and will report the first findings of the exercise. 1 www.ncoetundra.utu.fi Figure 1. The scales of administrative and ecological processes do not always coincide. This may bring about challenges in managing the social-ecological systems.
The ecology of anaerobic degraders of BTEX hydrocarbons in aquifers.
Lueders, Tillmann
2017-01-01
The degradation of benzene, toluene, ethylbenzene and xylene (BTEX) contaminants in groundwater relies largely on anaerobic processes. While the physiology and biochemistry of selected relevant microbes have been intensively studied, research has now started to take the generated knowledge back to the field, in order to trace the populations truly responsible for the anaerobic degradation of BTEX hydrocarbons in situ and to unravel their ecology in contaminated aquifers. Here, recent advances in our knowledge of the identity, diversity and ecology of microbes involved in these important ecosystem services are discussed. At several sites, distinct lineages within the Desulfobulbaceae, the Rhodocyclaceae and the Gram-positive Peptococcaceae have been shown to dominate the degradation of different BTEX hydrocarbons. Especially for the functional guild of anaerobic toluene degraders, specific molecular detection systems have been developed, allowing researchers to trace their diversity and distribution in contaminated aquifers. Their populations appear enriched in hot spots of biodegradation in situ 13 C-labelling experiments have revealed unexpected pathways of carbon sharing and obligate syntrophic interactions to be relevant in degradation. Together with feedback mechanisms between abiotic and biotic habitat components, this promotes an enhanced ecological perspective of the anaerobic degradation of BTEX hydrocarbons, as well as its incorporation into updated concepts for site monitoring and bioremediation. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Postcolonial Ecologies of Parasite and Host: Making Parasitism Cosmopolitan.
Anderson, Warwick
2016-04-01
The interest of F. Macfarlane Burnet in host-parasite interactions grew through the 1920s and 1930s, culminating in his book, Biological Aspects of Infectious Disease (1940), often regarded as the founding text of disease ecology. Our knowledge of the influences on Burnet's ecological thinking is still incomplete. Burnet later attributed much of his conceptual development to his reading of British theoretical biology, especially the work of Julian Huxley and Charles Elton, and regretted he did not study Theobald Smith's Parasitism and Disease (1934) until after he had formulated his ideas. Scholars also have adduced Burnet's fascination with natural history and the clinical and public health demands on his research effort, among other influences. I want to consider here additional contributions to Burnet's ecological thinking, focusing on his intellectual milieu, placing his research in a settler society with exceptional expertise in environmental studies and pest management. In part, an ''ecological turn'' in Australian science in the 1930s, derived to a degree from British colonial scientific investments, shaped Burnet's conceptual development. This raises the question of whether we might characterize, in postcolonial fashion, disease ecology, and other studies of parasitism, as successful settler colonial or dominion science.
Expressions of ecological identity across the life span of eight environmental exemplars
NASA Astrophysics Data System (ADS)
Seydel, Jennifer
While there is a substantial body of literature looking at various aspects of ecological identity and factors that influence it, there has been less work done on how an individual's ecological identity changes with time. Much of that work is limited to short segments of the life span (e.g. the impact of wilderness experiences). This dissertation attempts to address this perceived gap by investigating how the ecological identity of eight environmental exemplars changed during the course of his or her life. What has emerged from this qualitative grounded theory investigation of the lives and works of Charles Darwin, John Muir, Aldo Leopold, Marjory Stoneman Douglas, Hazel Wolf, Rachel Carson, James Lovelock and E.O. Wilson are five sequential expressions of ecological identity. These 'stages' serve as a framework to explain ecological identity as a developmental process, both fluid and continuous, rather than at) end product. The development of an ecological identity is traced, through the development of five cognitive foundations and their alignment with five emotional foundations that reflect a progression from a sensory interaction and a kinship bond with nature into a deep understanding of the interconnectedness of all aspects of the planet. The findings reveal the evolution of an ecological identity and suggest the importance of looking beyond content knowledge in the nurturing of ecological attitudes, values, and lifestyles.
Gallois, Sandrine; Duda, Romain; Hewlett, Barry; Reyes-García, Victoria
2015-12-24
The acquisition of local knowledge occurs through complex interactions between individual and contextual characteristics: as context changes, so it changes the acquisition of knowledge. Contemporary small-scale societies facing rapid social-ecological change provide a unique opportunity to study the relation between social-ecological changes and the process of acquisition of local knowledge. In this work, we study children's involvement in subsistence related activities (i.e., hunting and gathering) in a context of social-ecological change and discuss how such involvement might condition the acquisition of local knowledge during childhood. We interviewed 98 children from a hunter-gatherer society, the Baka, living in two different villages in southeastern Cameroon and assessed their involvement in daily activities. Using interviews, we collected self-reported data on the main activities performed during the previous 24 h. We describe the frequency of occurrence of daily activities during middle childhood and adolescence and explore the variation in occurrence according to the sex, the age group, and the village of residency of the child. We also explore variation according to the season in which the activity is conducted and to the predicted potential of the activity for the acquisition of local knowledge. Baka children and adolescents engage in subsistence-related activities (i.e., hunting and gathering) and playing more frequently than in other activities (i.e., traditional tales or schooling). Gender differences in children's subsistence activities emerge at an early age. Engagement in activities also varies with age, with adolescents spending more time in agricultural activities, modern leisure (i.e., going to bars), and socializing than younger children. When conducting similar activities, adolescents use more complex techniques than younger children. Subsistence activities, which present a high potential for transmission of local knowledge, continue to be predominant in Baka childhood. However, Baka children also engage in other, non-traditional activities, such as modern forms of leisure, or schooling, with a low potential for the transmission of local knowledge. Baka children's involvement in non-traditional activities might have unforeseen impacts on the acquisition of local knowledge.
Ecological interactions are evolutionarily conserved across the entire tree of life.
Gómez, José M; Verdú, Miguel; Perfectti, Francisco
2010-06-17
Ecological interactions are crucial to understanding both the ecology and the evolution of organisms. Because the phenotypic traits regulating species interactions are largely a legacy of their ancestors, it is widely assumed that ecological interactions are phylogenetically conserved, with closely related species interacting with similar partners. However, the existing empirical evidence is inadequate to appropriately evaluate the hypothesis of phylogenetic conservatism in ecological interactions, because it is both ecologically and taxonomically biased. In fact, most studies on the evolution of ecological interactions have focused on specialized organisms, such as some parasites or insect herbivores, belonging to a limited subset of the overall tree of life. Here we study the evolution of host use in a large and diverse group of interactions comprising both specialist and generalist acellular, unicellular and multicellular organisms. We show that, as previously found for specialized interactions, generalized interactions can be evolutionarily conserved. Significant phylogenetic conservatism of interaction patterns was equally likely to occur in symbiotic and non-symbiotic interactions, as well as in mutualistic and antagonistic interactions. Host-use differentiation among species was higher in phylogenetically conserved clades, irrespective of their generalization degree and taxonomic position within the tree of life. Our findings strongly suggest a shared pattern in the organization of biological systems through evolutionary time, mediated by marked conservatism of ecological interactions among taxa.
Managing the climate commons at the nexus of ecology, behaviour and economics
NASA Astrophysics Data System (ADS)
Tavoni, Alessandro; Levin, Simon
2014-12-01
Sustainably managing coupled ecological-economic systems requires not only an understanding of the environmental factors that affect them, but also knowledge of the interactions and feedback cycles that operate between resource dynamics and activities attributable to human intervention. The socioeconomic dynamics, in turn, call for an investigation of the behavioural drivers behind human action. We argue that a multidisciplinary approach is needed in order to tackle the increasingly pressing and intertwined environmental challenges faced by modern societies. Academic contributions to climate change policy have been constrained by methodological and terminological differences, so we discuss how programmes aimed at cross-disciplinary education and involvement in governance may help to unlock scholars' potential to propose new solutions.
Unanswered questions in ecology.
May, R
1999-01-01
This is very much a personal view of what I think are some of the most important unanswered questions in ecology. That is, these are the questions that I expect will be high on the research agenda over the coming century. The list is organized hierarchically, beginning with questions at the level of individual populations, and progressing through interacting populations to entire communities or ecosystems. I will try to guess both at possible advances in basic knowledge and at potential applications. The only thing that is certain about this view of the future is that much of it will surely turn out to be wrong, and many of the most interesting future developments will be quite unforeseen. PMID:10670015
Trentacosta, Christopher J; Hyde, Luke W; Shaw, Daniel S; Cheong, JeeWon
2009-08-01
This study examined an ecological perspective on the development of antisocial behavior during adolescence, examining direct, additive, and interactive effects of child and both parenting and community factors in relation to youth problem behavior. To address this goal, the authors examined early adolescent dispositional qualities as predictors of boys' antisocial behavior within the context of parents' knowledge of adolescent activities and neighborhood dangerousness. Antisocial behavior was examined using a multimethod latent construct that included self-reported delinquency, symptoms of conduct disorder, and court petitions in a sample of 289 boys from lower socioeconomic status backgrounds who were followed longitudinally from early childhood through adolescence. Results demonstrated direct and additive findings for child prosociality, daring, and negative emotionality, which were qualified by interactions between daring and neighborhood dangerousness, and between prosociality and parental knowledge. The findings have implications for preventive intervention approaches that address the interplay of dispositional and contextual factors to prevent delinquent behavior in adolescence.
Trentacosta, Christopher J.; Hyde, Luke W.; Shaw, Daniel S.; Cheong, JeeWon
2010-01-01
This study examined an ecological perspective on the development of antisocial behavior during adolescence, examining direct, additive, and interactive effects of child and both parenting and community factors in relation to youth problem behavior. To address this goal, early adolescent dispositional qualities were examined as predictors of boys' antisocial behavior within the context of parents' knowledge of adolescent activities and neighborhood dangerousness. Antisocial behavior was examined using a multi-method latent construct that included self-reported delinquency, symptoms of conduct disorder, and court petitions in a sample of 289 boys from lower socioeconomic status backgrounds who were followed longitudinally from early childhood through adolescence. Results demonstrated direct and additive findings for child prosociality, daring, and negative emotionality that were qualified by interactions between daring and neighborhood dangerousness, and between prosociality and parental knowledge. The findings have implications for preventive intervention approaches that address the interplay of dispositional and contextual factors to prevent delinquent behavior in adolescence. PMID:19685953
Placing biodiversity in ecosystem models without getting lost in translation
NASA Astrophysics Data System (ADS)
Queirós, Ana M.; Bruggeman, Jorn; Stephens, Nicholas; Artioli, Yuri; Butenschön, Momme; Blackford, Jeremy C.; Widdicombe, Stephen; Allen, J. Icarus; Somerfield, Paul J.
2015-04-01
A key challenge to progressing our understanding of biodiversity's role in the sustenance of ecosystem function is the extrapolation of the results of two decades of dedicated empirical research to regional, global and future landscapes. Ecosystem models provide a platform for this progression, potentially offering a holistic view of ecosystems where, guided by the mechanistic understanding of processes and their connection to the environment and biota, large-scale questions can be investigated. While the benefits of depicting biodiversity in such models are widely recognized, its application is limited by difficulties in the transfer of knowledge from small process oriented ecology into macro-scale modelling. Here, we build on previous work, breaking down key challenges of that knowledge transfer into a tangible framework, highlighting successful strategies that both modelling and ecology communities have developed to better interact with one another. We use a benthic and a pelagic case-study to illustrate how aspects of the links between biodiversity and ecosystem process have been depicted in marine ecosystem models (ERSEM and MIRO), from data, to conceptualisation and model development. We hope that this framework may help future interactions between biodiversity researchers and model developers by highlighting concrete solutions to common problems, and in this way contribute to the advance of the mechanistic understanding of the role of biodiversity in marine (and terrestrial) ecosystems.
ERIC Educational Resources Information Center
Chinn, Pauline W. U.
2009-01-01
This response draws from the literature on adaptive learning, traditional ecological knowledge, and social-ecological systems to show that Brad's choice is not a simple decision between traditional ecological knowledge and authentic science. This perspective recognizes knowledge systems as dynamic, cultural and historical activities characterized…
Lindgren, Natalie K; Sisson, Melissa S; Archambeault, Alan D; Rahlwes, Brent C; Willett, James R; Bucheli, Sibyl R
2015-03-01
A yearlong survey of insect taxa associated with human decomposition was conducted at the Southeast Texas Applied Forensic Science (STAFS) facility located in the Center for Biological Field Studies of Sam Houston State University in Huntsville, TX. During this study, four insect-cadaver interactions were observed that represent previously poorly documented yet forensically significant interactions: Syrphidae maggots colonized a corpse in an aquatic situation; Psychodidae adults mated and oviposited on an algal film that was present on a corpse that had been recently removed from water; several Panorpidae were the first insects to feed upon a freshly placed corpse in the autumn; and a noctuid caterpillar was found chewing and ingesting dried human skin. Baseline knowledge of insect-cadaver interactions is the foundation of forensic entomology, and unique observations have the potential to expand our understanding of decomposition ecology. © The Author 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
The river and the sea: fieldwork in human ecology and ethnobiology.
Begossi, Alpina
2014-10-02
This article is a commentary on the experiences that motivated my decision to become a human ecologist and ethnobiologist. These experiences include the pleasure of studying and of having the sense of being within nature, as well as the curiosity towards understanding the world and minds of local people. In particular, such understanding could be driven by addressing the challenging questions that originate in the interactions of such individuals with their natural surroundings. I have been particularly interested in the sea and the riverine forests that are inhabited by coastal or riverine small-scale fishers. Sharing the distinctive world of these fishers enjoyably incited my curiosity and challenged me to understand why fishers and their families 'do as they do' for their livelihoods including their beliefs. This challenge involved understanding the rationality (or the arguments or views) that underlies the decisions these individuals make in their interaction with nature. This curiosity was fundamental to my career choice, as were a number of reading interests. These reading interests included political economy and philosophy; evolution and sociobiology; evolutionary, human, and cultural ecology; cultural transmission; fisheries; local knowledge; ecological economics; and, naturally, ethnobiology.
Public ecology: an environmental science and policy for global society
David P. Robertson; R. Bruce Hull
2003-01-01
Public ecology exists at the interface of science and policy. Public ecology is an approach to environmental inquiry and decision making that does not expect scientific knowledge to be perfect or complete. Rather, public ecology requires that science be produced in collaboration with a wide variety of stakeholders in order to construct a body of knowledge that will...
Local ecological knowledge among Baka children: a case of “children's culture” ?
Gallois, Sandrine; Duda, Romain; Reyes-García, Victoria
2016-01-01
Childhood is an extensive life period specific to the human species and a key stage for development. Considering the importance of childhood for cultural transmission, we test the existence of a 'children's culture', or child-specific knowledge and practices not necessarily shared with adults, among the Baka in Southeast Cameroon. Using structured questionnaires, we collected data among 69 children and 175 adults to assess the ability to name, identify, and conceptualize animals and wild edibles. We found that some of the ecological knowledge related to little mammals and birds reported by Baka children was not reported by adults. We also found similarities between children’s and adult’s knowledge, both regarding the content of knowledge and how knowledge is distributed. Thus, middle childhood children hold similar knowledge than adults, especially related to wild edibles. Moreover, as children age, they start shedding child-specific knowledge and holding more adult’s knowledge. Additionally and echoing the gendered knowledge distribution present in adulthood, since middle childhood there are differences in the knowledge hold by boys and girls. We discuss our results highlighting the existence of specific ecological knowledge held by Baka children, the overlap between children’s and adults’ knowledge, and the changes in children’s ecological knowledge as they move into adulthood. PMID:28386157
Gosselin, Frédéric; Cordonnier, Thomas; Bilger, Isabelle; Jappiot, Marielle; Chauvin, Christophe; Gosselin, Marion
2018-04-25
The role of ecological science in environmental management has been discussed by many authors who recognize that there is a persistent gap between ecological science and environmental management. Here we develop theory through different perspectives based on knowledge types, research categories and research-management interface types, which we combine into a common framework. To draw out insights for bridging this gap, we build our case by:We point out the complementarities as well as the specificities and limitations of the different types of ecological research, ecological knowledge and research-management interfaces, which is of major importance for environmental management and research policies. Copyright © 2018 Elsevier Ltd. All rights reserved.
The changing role of history in restoration ecology
Eric Higgs,; Falk, Donald A.; Guerrini, Anita; Hall, Marcus; Harris, Jim; Hobbs, Richard J.; Jackson, Stephen T.; Rhemtulla, Jeanine M.; Throop, William
2014-01-01
In the face of rapid environmental and cultural change, orthodox concepts in restoration ecology such as historical fidelity are being challenged. Here we re-examine the diverse roles played by historical knowledge in restoration, and argue that these roles remain vitally important. As such, historical knowledge will be critical in shaping restoration ecology in the future. Perhaps the most crucial role in shifting from the present version of restoration ecology (“v1.0”) to a newer formulation (“v2.0”) is the value of historical knowledge in guiding scientific interpretation, recognizing key ecological legacies, and influencing the choices available to practitioners of ecosystem intervention under conditions of open-ended and rapid change.
Epidemiology today: Mitigating threats to an ecosystem.
Kreiger, Nancy
2016-06-27
Ecosystems comprise all the living and non-living things in a particular area (e.g., rain forest, desert), which interact and maintain equilibrium. Loss of equilibrium (e.g., clear-cutting trees in a rain forest) can mean the decline of the ecosystem, unless it is able to adapt to the new circumstances. The term "knowledge ecosystem" describes an approach to managing knowledge in a particular field; the components of this system include the people, the technological skills and resources, and information or data. Epidemiology can be thought of as a knowledge ecosystem and, like ecological systems, its existence can be threatened, from both internal and external forces that may alter its equilibrium. This paper describes some threats to the epidemiology knowledge ecosystem, how these threats came about, and what responses we can make that may serve to mitigate those threats.
Systematic Representation of Knowledge of Ecology: Concepts and Relationships.
ERIC Educational Resources Information Center
Garb, Yaakov; And Others
This study describes efforts to apply principles of systematic knowledge representation (concept mapping and computer-based semantic networking techniques) to the domain of ecology. A set of 24 relationships and modifiers is presented that seem sufficient for describing all ecological relationships discussed in an introductory course. Many of…
Interaction rewiring and the rapid turnover of plant-pollinator networks.
CaraDonna, Paul J; Petry, William K; Brennan, Ross M; Cunningham, James L; Bronstein, Judith L; Waser, Nickolas M; Sanders, Nathan J
2017-03-01
Whether species interactions are static or change over time has wide-reaching ecological and evolutionary consequences. However, species interaction networks are typically constructed from temporally aggregated interaction data, thereby implicitly assuming that interactions are fixed. This approach has advanced our understanding of communities, but it obscures the timescale at which interactions form (or dissolve) and the drivers and consequences of such dynamics. We address this knowledge gap by quantifying the within-season turnover of plant-pollinator interactions from weekly censuses across 3 years in a subalpine ecosystem. Week-to-week turnover of interactions (1) was high, (2) followed a consistent seasonal progression in all years of study and (3) was dominated by interaction rewiring (the reassembly of interactions among species). Simulation models revealed that species' phenologies and relative abundances constrained both total interaction turnover and rewiring. Our findings reveal the diversity of species interactions that may be missed when the temporal dynamics of networks are ignored. © 2017 John Wiley & Sons Ltd/CNRS.
Manzan, Maíra Fontes; Lopes, Priscila F M
2015-01-01
Fishers' local ecological knowledge (LEK) is an additional tool to obtain information about cetaceans, regarding their local particularities, fishing interactions, and behavior. However, this knowledge could vary in depth of detail according to the level of interaction that fishers have with a specific species. This study investigated differences in small-scale fishers' LEK regarding the estuarine dolphin (Sotalia guianensis) in three Brazilian northeast coastal communities where fishing is practiced in estuarine lagoons and/or coastal waters and where dolphin-watching tourism varies from incipient to important. The fishers (N = 116) were asked about general characteristics of S. guianensis and their interactions with this dolphin during fishing activities. Compared to lagoon fishers, coastal fishers showed greater knowledge about the species but had more negative interactions with the dolphin during fishing activities. Coastal fishing not only offered the opportunity for fishers to observe a wider variety of the dolphin's behavior, but also implied direct contact with the dolphins, as they are bycaught in coastal gillnets. Besides complementing information that could be used for the management of cetaceans, this study shows that the type of environment most used by fishers also affects the accuracy of the information they provide. When designing studies to gather information on species and/or populations with the support of fishers, special consideration should be given to local particularities such as gear and habitats used within the fishing community.
An Ecological Perspective on Sleep Disruption.
Tougeron, Kévin; Abram, Paul K
2017-09-01
Despite its evolutionary importance and apparent ubiquity among animals, the ecological significance of sleep is largely unresolved. The ecology of sleep has been particularly neglected in invertebrates. In insects, recent neurobehavioral research convincingly demonstrates that resting behavior shares several common characteristics with sleep in vertebrates. Laboratory studies have produced compelling evidence that sleep disruption can cause changes in insect daily activity patterns (via "sleep rebound") and have consequences for behavioral performance during active periods. However, factors that could cause insect sleep disruption in nature have not been considered nor have the ecological consequences. Drawing on evidence from laboratory studies, we argue that sleep disruption may be an overlooked component of insect ecology and could be caused by a variety of anthropogenic and nonanthropogenic factors in nature. We identify several candidate sleep-disrupting factors and provide new insights on the potential consequences of sleep disruption on individual fitness, species interactions, and ecosystem services. We propose an experimental framework to bridge the current gap in knowledge between laboratory and field studies. We conclude that sleep disruption is a potential mechanism underpinning variation in behavioral, population, and community-level processes associated with several aspects of global change.
Stronen, Astrid V; Navid, Erin L; Quinn, Michael S; Paquet, Paul C; Bryan, Heather M; Darimont, Christopher T
2014-06-10
Emerging evidence suggests that ecological heterogeneity across space can influence the genetic structure of populations, including that of long-distance dispersers such as large carnivores. On the central coast of British Columbia, Canada, wolf (Canis lupus L., 1758) dietary niche and parasite prevalence data indicate strong ecological divergence between marine-oriented wolves inhabiting islands and individuals on the coastal mainland that interact primarily with terrestrial prey. Local holders of traditional ecological knowledge, who distinguish between mainland and island wolf forms, also informed our hypothesis that genetic differentiation might occur between wolves from these adjacent environments. We used microsatellite genetic markers to examine data obtained from wolf faecal samples. Our results from 116 individuals suggest the presence of a genetic cline between mainland and island wolves. This pattern occurs despite field observations that individuals easily traverse the 30 km wide study area and swim up to 13 km among landmasses in the region. Natal habitat-biased dispersal (i.e., the preference for dispersal into familiar ecological environments) might contribute to genetic differentiation. Accordingly, this working hypothesis presents an exciting avenue for future research where marine resources or other components of ecological heterogeneity are present.
Ben-Arieh, Asher; Attar-Schwartz, Shalhevet
2013-01-01
Current knowledge emphasizes either a developmental or a cultural/contextual theoretical framework for understanding children's approaches to the concepts of rights and participation. This study, carried out among 1,753 Israeli adolescents (ages 15-17), uses a socioecological perspective instead to understand children's rights and participation. It examines adolescents' approaches to their rights and participation at 4 ecological levels-family, school, community, and the larger sociopolitical system-as well as a number of possible child, family, and societal correlates. It also looks at the interactions between some of these correlates. The findings show that different correlates have different links with various ecological circles. For example, girls reported higher levels of participation in the family and at school, but no significant differences were found between boys and girls in their participation in the community and at civic-political levels. Israeli Palestinians reported higher levels of participation in their schools and at the civic-political level but lower levels of participation in the family and the community compared with their Jewish counterparts. The significant interaction effect between nation and gender showed that, among Arab students, there were larger gaps between boys and girls in the different participation domains than there were among Jewish students. Furthermore, higher rates of participation in the family and lower rates of civic participation were found among students from single-parent families. This study shows that employing an ecological framework to the efforts to understand children's approaches to rights and participation is a first step in the right direction for fostering children's rights and participation. © 2013 American Orthopsychiatric Association.
Millard, Michael J.; Sweka, John A.; McGowan, Conor P.; Smith, David R.
2015-01-01
The horseshoe crab fishery on the US Atlantic coast represents a compelling fishery management story for many reasons, including ecological complexity, health and human safety ramifications, and socio-economic conflicts. Knowledge of stock status and assessment and monitoring capabilities for the species have increased greatly in the last 15 years and permitted managers to make more informed harvest recommendations. Incorporating the bioenergetics needs of migratory shorebirds, which feed on horseshoe crab eggs, into the management framework for horseshoe crabs was identified as a goal, particularly in the Delaware Bay region where the birds and horseshoe crabs exhibit an important ecological interaction. In response, significant effort was invested in studying the population dynamics, migration ecology, and the ecologic relationship of a key migratory shorebird, the Red Knot, to horseshoe crabs. A suite of models was developed that linked Red Knot populations to horseshoe crab populations through a mass gain function where female spawning crab abundance determined what proportion of the migrating Red Knot population reached a critical body mass threshold. These models were incorporated in an adaptive management framework wherein optimal harvest decisions for horseshoe crab are recommended based on several resource-based and value-based variables and thresholds. The current adaptive framework represents a true multispecies management effort where additional data over time are employed to improve the predictive models and reduce parametric uncertainty. The possibility of increasing phenologic asynchrony between the two taxa in response to climate change presents a potential challenge to their ecologic interaction in Delaware Bay.
Towards the Integration of Niche and Network Theories.
Godoy, Oscar; Bartomeus, Ignasi; Rohr, Rudolf P; Saavedra, Serguei
2018-04-01
The quest for understanding how species interactions modulate diversity has progressed by theoretical and empirical advances following niche and network theories. Yet, niche studies have been limited to describe coexistence within tropic levels despite incorporating information about multi-trophic interactions. Network approaches could address this limitation, but they have ignored the structure of species interactions within trophic levels. Here we call for the integration of niche and network theories to reach new frontiers of knowledge exploring how interactions within and across trophic levels promote species coexistence. This integration is possible due to the strong parallelisms in the historical development, ecological concepts, and associated mathematical tools of both theories. We provide a guideline to integrate this framework with observational and experimental studies. Copyright © 2018 Elsevier Ltd. All rights reserved.
Craig, Laura S.; Olden, Julian D.; Arthington, Angela; Entrekin, Sally; Hawkins, Charles P.; Kelly, John J.; Kennedy, Theodore A.; Maitland, Bryan M.; Rosi, Emma J.; Roy, Allison; Strayer, David L.; Tank, Jennifer L.; West, Amie O.; Wooten, Matthew S.
2017-01-01
Human activities create threats that have consequences for freshwater ecosystems and, in most watersheds, observed ecological responses are the result of complex interactions among multiple threats and their associated ecological alterations. Here we discuss the value of considering multiple threats in research and management, offer suggestions for filling knowledge gaps, and provide guidance for addressing the urgent management challenges posed by multiple threats in freshwater ecosystems. There is a growing literature assessing responses to multiple alterations, and we build off this background to identify three areas that require greater attention: linking observed alterations to threats, understanding when and where threats overlap, and choosing metrics that best quantify the effects of multiple threats. Advancing science in these areas will help us understand existing ecosystem conditions and predict future risk from multiple threats. Because addressing the complex issues and novel ecosystems that arise from the interaction of multiple threats in freshwater ecosystems represents a significant management challenge, and the risks of management failure include loss of biodiversity, ecological goods, and ecosystem services, we also identify actions that could improve decision-making and management outcomes. These actions include drawing insights from management of individual threats, using threat attributes (e.g., causes and spatio-temporal dynamics) to identify suitable management approaches, testing management strategies that are likely to be successful despite uncertainties about the nature of interactions among threats, avoiding unintended consequences, and maximizing conservation benefits. We also acknowledge the broadly applicable challenges of decision-making within a socio-political and economic framework, and suggest that multidisciplinary teams will be needed to innovate solutions to meet the current and future challenge of interacting threats in freshwater ecosystems.
Homan, J Michael
2010-01-01
The 2009 Janet Doe Lecture reflects on the continuing value and increasing return on investment of librarian-mediated services in the constantly evolving digital ecology and complex knowledge environment of the health sciences. The interrelationship of knowledge, decision making based on knowledge, technology used to access and retrieve knowledge, and the important linkage roles of expert librarian intermediaries is examined. Professional experiences from 1969 to 2009, occurring during a time of unprecedented changes in the digital ecology of librarianship, are the base on which the evolving role and value of librarians as knowledge coaches and expert intermediaries are examined. Librarian-mediated services linking knowledge and critical decision making in health care have become more valuable than ever as technology continues to reshape an increasingly complex knowledge environment.
Chemical ecology of interactions between human skin microbiota and mosquitoes.
Verhulst, Niels O; Takken, Willem; Dicke, Marcel; Schraa, Gosse; Smallegange, Renate C
2010-10-01
Microbiota on the human skin plays a major role in body odour production. The human microbial and chemical signature displays a qualitative and quantitative correlation. Genes may influence the chemical signature by shaping the composition of the microbiota. Recent studies on human skin microbiota, using 16S rRNA gene sequencing, found a high inter- and intrapersonal variation in bacterial species on the human skin, which is relatively stable over time. Human body odours mediate the attraction of mosquitoes to their blood hosts. Odours produced by skin microbiota are attractive to mosquitoes as shown by in vitro studies, and variation in bacterial species on the human skin may explain the variation in mosquito attraction between humans. Detailed knowledge of the ecology and genetics of human skin microbiota is needed in order to unravel the evolutionary mechanisms that underlie the interactions between mosquitoes and their hosts. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Amplification without instability: applying fluid dynamical insights in chemistry and biology
NASA Astrophysics Data System (ADS)
McCoy, Jonathan H.
2013-11-01
While amplification of small perturbations often arises from instability, transient amplification is possible locally even in asymptotically stable systems. That is, knowledge of a system's stability properties can mislead one's intuition for its transient behaviors. This insight, which has an interesting history in fluid dynamics, has more recently been rediscovered in ecology. Surprisingly, many nonlinear fluid dynamical and ecological systems share linear features associated with transient amplification of noise. This paper aims to establish that these features are widespread in many other disciplines concerned with noisy systems, especially chemistry, cell biology and molecular biology. Here, using classic nonlinear systems and the graphical language of network science, we explore how the noise amplification problem can be reframed in terms of activatory and inhibitory interactions between dynamical variables. The interaction patterns considered here are found in a great variety of systems, ranging from autocatalytic reactions and activator-inhibitor systems to influential models of nerve conduction, glycolysis, cell signaling and circadian rhythms.
Heron, Kristin E; Mason, Tyler B; Sutton, Tiphanie G; Myers, Taryn A
2015-09-01
Perceptions of physical appearance, or body image, can affect psychosocial functioning and quality of life (QOL). The present study evaluated the real-world predictive validity of the Body Image Quality of Life Inventory (BIQLI) using Ecological Momentary Assessment (EMA). College women reporting subclinical disordered eating/body dissatisfaction (N=131) completed the BIQLI and related measures. For one week they then completed five daily EMA surveys of mood, social interactions, stress, and eating behaviors on palmtop computers. Results showed better body image QOL was associated with less negative affect, less overwhelming emotions, more positive affect, more pleasant social interactions, and higher self-efficacy for handling stress. Lower body image QOL was marginally related to less overeating and lower loss of control over eating in daily life. To our knowledge, this is the first study to support the real-world predictive validity of the BIQLI by identifying social, affective, and behavioral correlates in everyday life using EMA. Copyright © 2015 Elsevier Ltd. All rights reserved.
Extrafloral-nectar-based partner manipulation in plant–ant relationships
Grasso, D. A.; Pandolfi, C.; Bazihizina, N.; Nocentini, D.; Nepi, M.; Mancuso, S.
2015-01-01
Plant–ant interactions are generally considered as mutualisms, with both parties gaining benefits from the association. It has recently emerged that some of these mutualistic associations have, however, evolved towards other forms of relationships and, in particular, that plants may manipulate their partner ants to make reciprocation more beneficial, thereby stabilizing the mutualism. Focusing on plants bearing extrafloral nectaries, we review recent studies and address three key questions: (i) how can plants attract potential partners and maintain their services; (ii) are there compounds in extrafloral nectar that could mediate partner manipulation; and (iii) are ants susceptible to such compounds? After reviewing the current knowledge on plant–ant associations, we propose a possible scenario where plant-derived chemicals, such as secondary metabolites, known to have an impact on animal brain, could have evolved in plants to attract and manipulate ant behaviour. This new viewpoint would place plant–animal interaction in a different ecological context, opening new ecological and neurobiological perspectives of drug seeking and use. PMID:25589521
Viral dark matter and virus–host interactions resolved from publicly available microbial genomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roux, Simon; Hallam, Steven J.; Woyke, Tanja
The ecological importance of viruses is now widely recognized, yet our limited knowledge of viral sequence space and virus–host interactions precludes accurate prediction of their roles and impacts. In this study, we mined publicly available bacterial and archaeal genomic data sets to identify 12,498 high-confidence viral genomes linked to their microbial hosts. These data augment public data sets 10-fold, provide first viral sequences for 13 new bacterial phyla including ecologically abundant phyla, and help taxonomically identify 7–38% of ‘unknown’ sequence space in viromes. Genome- and network-based classification was largely consistent with accepted viral taxonomy and suggested that (i) 264 newmore » viral genera were identified (doubling known genera) and (ii) cross-taxon genomic recombination is limited. Further analyses provided empirical data on extrachromosomal prophages and coinfection prevalences, as well as evaluation of in silico virus–host linkage predictions. Together these findings illustrate the value of mining viral signal from microbial genomes.« less
Viral dark matter and virus-host interactions resolved from publicly available microbial genomes.
Roux, Simon; Hallam, Steven J; Woyke, Tanja; Sullivan, Matthew B
2015-07-22
The ecological importance of viruses is now widely recognized, yet our limited knowledge of viral sequence space and virus-host interactions precludes accurate prediction of their roles and impacts. In this study, we mined publicly available bacterial and archaeal genomic data sets to identify 12,498 high-confidence viral genomes linked to their microbial hosts. These data augment public data sets 10-fold, provide first viral sequences for 13 new bacterial phyla including ecologically abundant phyla, and help taxonomically identify 7-38% of 'unknown' sequence space in viromes. Genome- and network-based classification was largely consistent with accepted viral taxonomy and suggested that (i) 264 new viral genera were identified (doubling known genera) and (ii) cross-taxon genomic recombination is limited. Further analyses provided empirical data on extrachromosomal prophages and coinfection prevalences, as well as evaluation of in silico virus-host linkage predictions. Together these findings illustrate the value of mining viral signal from microbial genomes.
Viral dark matter and virus–host interactions resolved from publicly available microbial genomes
Roux, Simon; Hallam, Steven J.; Woyke, Tanja; ...
2015-07-22
The ecological importance of viruses is now widely recognized, yet our limited knowledge of viral sequence space and virus–host interactions precludes accurate prediction of their roles and impacts. In this study, we mined publicly available bacterial and archaeal genomic data sets to identify 12,498 high-confidence viral genomes linked to their microbial hosts. These data augment public data sets 10-fold, provide first viral sequences for 13 new bacterial phyla including ecologically abundant phyla, and help taxonomically identify 7–38% of ‘unknown’ sequence space in viromes. Genome- and network-based classification was largely consistent with accepted viral taxonomy and suggested that (i) 264 newmore » viral genera were identified (doubling known genera) and (ii) cross-taxon genomic recombination is limited. Further analyses provided empirical data on extrachromosomal prophages and coinfection prevalences, as well as evaluation of in silico virus–host linkage predictions. Together these findings illustrate the value of mining viral signal from microbial genomes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brugger, K.E.; Tiebout, H.M. III
1994-12-31
Wildlife toxicologists pioneered methodologies for assessing ecological risk to nontarget species. Historically, ecological risk assessments (ERAS) focused on a limited array of species and were based on a relatively few population-level endpoints (mortality, reproduction). Currently, risk assessment models are becoming increasingly complex that factor in multi-species interactions (across trophic levels) and utilize an increasingly diverse number of ecologically significant endpoints. This trend suggests the increasing importance of safeguarding not only populations of individual species, but also the overall integrity of the larger biotic systems that support them. In this sense, ERAs are in alignment with Conservation Biology, an applied sciencemore » of ecological knowledge used to conserve biodiversity. A theoretical conservation biology model could be incorporated in ERAs to quantify impacts to biodiversity (structure, function or composition across levels of biological organization). The authors suggest that the Franklin-Noss model for evaluating biodiversity, with its nested, hierarchical approach, may provide a suitable paradigm for assessing and integrating the ecological risk that chemical contaminants pose to biological systems from the simplest levels (genotypes, individual organisms) to the most complex levels of organization (communities and ecosystems). The Franklin-Noss model can accommodate the existing ecotoxicological database and, perhaps more importantly, indicate new areas in which critical endpoints should be identified and investigated.« less
Key ecological responses to nitrogen are altered by climate ...
Here we review the effects of nitrogen and climate (e.g. temperature and precipitation) on four aspects of ecosystem structure and function including hydrologic-coupled nitrogen cycling, carbon cycling, acidification and biodiversity. Ecosystems are simultaneously exposed to multiple stressors; two dominant drivers threatening ecosystems are anthropogenic nitrogen loading and climate change. Evaluating the cumulative effects of these stressors provides a holistic view of ecosystem vulnerability, which would better inform policy decisions aimed to protect the sustainability of ecosystems. Our current knowledge of the cumulative effects of these stressors is growing, but limited. The goal of this paper is to synthesize the state of scientific knowledge on how ecosystems are affected by the interactions of meteorlogic/climatic factors (e.g., temperature and precipitation) and nitrogen addition. Understanding the interactions of meteorlogic/climatic factors and nitrogen will help to inform how current and projected variability may affect ecosystem response.
The computational future for climate and Earth system models: on the path to petaflop and beyond.
Washington, Warren M; Buja, Lawrence; Craig, Anthony
2009-03-13
The development of the climate and Earth system models has had a long history, starting with the building of individual atmospheric, ocean, sea ice, land vegetation, biogeochemical, glacial and ecological model components. The early researchers were much aware of the long-term goal of building the Earth system models that would go beyond what is usually included in the climate models by adding interactive biogeochemical interactions. In the early days, the progress was limited by computer capability, as well as by our knowledge of the physical and chemical processes. Over the last few decades, there has been much improved knowledge, better observations for validation and more powerful supercomputer systems that are increasingly meeting the new challenges of comprehensive models. Some of the climate model history will be presented, along with some of the successes and difficulties encountered with present-day supercomputer systems.
Ecology and functional roles of biological soil crusts in semi-arid ecosystems of Spain
Maestre, Fernando T.; Bowker, Matthew A.; Cantón, Yolanda; Castillo-Monroy, Andrea P.; Cortina, Jordi; Escolar, Cristina; Escudero, Adrián; Lázaro, Roberto; Martínez, Isabel
2015-01-01
Biological soil crusts (BSCs), composed of lichens, cyanobacteria, mosses, liverworts and microorganisms, are key biotic components of arid and semi-arid ecosystems worldwide. Despite they are widespread in Spain, these organisms have been historically understudied in this country. This trend is beginning to change as a recent wave of research has been identifying BSCs as a model ecological system. Many studies and research projects carried out in Spain have explored the role of BSCs on water, carbon and nitrogen fluxes, the interactions between BSCs and vascular plants, their dynamics after disturbances, and their response to global change, among other topics. In this article we review the growing body of research on BSCs available from semi-arid areas of Spain, highlighting its importance for increasing our knowledge on this group of organisms. We also discuss how it is breaking new ground in emerging research areas on the ecology of BSCs, and how it can be use to guide management and restoration efforts. Finally, we provide directions for future research on the ecology of BSCs in Spain and abroad. PMID:25908884
Climate change and the past, present, and future of biotic interactions.
Blois, Jessica L; Zarnetske, Phoebe L; Fitzpatrick, Matthew C; Finnegan, Seth
2013-08-02
Biotic interactions drive key ecological and evolutionary processes and mediate ecosystem responses to climate change. The direction, frequency, and intensity of biotic interactions can in turn be altered by climate change. Understanding the complex interplay between climate and biotic interactions is thus essential for fully anticipating how ecosystems will respond to the fast rates of current warming, which are unprecedented since the end of the last glacial period. We highlight episodes of climate change that have disrupted ecosystems and trophic interactions over time scales ranging from years to millennia by changing species' relative abundances and geographic ranges, causing extinctions, and creating transient and novel communities dominated by generalist species and interactions. These patterns emerge repeatedly across disparate temporal and spatial scales, suggesting the possibility of similar underlying processes. Based on these findings, we identify knowledge gaps and fruitful areas for research that will further our understanding of the effects of climate change on ecosystems.
One hundred years of population ecology: Successes, failures and the road ahead.
Krebs, Charles J
2015-05-01
Population ecology is the most mature of the three subdisciplines of ecology partly because it has a solid mathematical foundation and partly because it can address the primary questions of distribution and abundance with experimental protocols. Yet there is much left to do to integrate our population knowledge into community and ecosystem ecology to help address the global issues of food security and the conservation of biodiversity. Many different approaches are now being developed to bring about this integration and much more research will be necessary to decide which if any will be most useful in achieving our goals of explaining the changes we see in the distribution and abundance of animals and plants. Food web ecology would appear to be the best approach at present because it uses the detailed information of the population ecology of particular species in combination with data on consumer-resource interactions to apply to the applied problems of biodiversity conservation, food security, pest management and disease prevention. If we can use our understanding of population ecology to address the practical problems of our time in a creative way, we will benefit both the human population and the Earth's biodiversity. Much remains to be done. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.
NASA Astrophysics Data System (ADS)
Rist, Lucy; Shackleton, Charlie; Gadamus, Lily; Chapin, F. Stuart; Gowda, C. Made; Setty, Siddappa; Kannan, Ramesh; Shaanker, R. Uma
2016-04-01
Multiple actors are typically involved in forest management, namely communities, managers and researchers. In such cases, suboptimal management outcomes may, in addition to other factors, be symptomatic of a divergence in perspectives among these actors driven by fundamental differences in ecological knowledge. We examine the degree of congruence between the understandings of actors surrounding key issues of management concern in three case studies from tropical, subtropical and boreal forests. We identify commonly encountered points of divergence in ecological knowledge relating to key management processes and issues. We use these to formulate seven hypotheses about differences in the bodies of knowledge that frequently underlie communication and learning failures in forest management contexts where multiple actors are involved and outcomes are judged to be suboptimal. Finally, we present a set of propositions to acknowledge and narrow these differences. A more complete recognition of the full triangulation between all actors involved, and of the influence that fundamental differences in ecological knowledge can exert, may help lead to a more fruitful integration between local knowledge and practice, manager knowledge and practice, and contemporary science in forest management.
Homan, J. Michael
2010-01-01
Objective: The 2009 Janet Doe Lecture reflects on the continuing value and increasing return on investment of librarian-mediated services in the constantly evolving digital ecology and complex knowledge environment of the health sciences. Setting: The interrelationship of knowledge, decision making based on knowledge, technology used to access and retrieve knowledge, and the important linkage roles of expert librarian intermediaries is examined. Methodology: Professional experiences from 1969 to 2009, occurring during a time of unprecedented changes in the digital ecology of librarianship, are the base on which the evolving role and value of librarians as knowledge coaches and expert intermediaries are examined. Conclusion: Librarian-mediated services linking knowledge and critical decision making in health care have become more valuable than ever as technology continues to reshape an increasingly complex knowledge environment. PMID:20098655
The ecology, evolution, impacts and management of host-parasite interactions of marine molluscs.
Coen, Loren D; Bishop, Melanie J
2015-10-01
Molluscs are economically and ecologically important components of aquatic ecosystems. In addition to supporting valuable aquaculture and wild-harvest industries, their populations determine the structure of benthic communities, cycling of nutrients, serve as prey resources for higher trophic levels and, in some instances, stabilize shorelines and maintain water quality. This paper reviews existing knowledge of the ecology of host-parasite interactions involving marine molluscs, with a focus on gastropods and bivalves. It considers the ecological and evolutionary impacts of molluscan parasites on their hosts and vice versa, and on the communities and ecosystems in which they are a part, as well as disease management and its ecological impacts. An increasing number of case studies show that disease can have important effects on marine molluscs, their ecological interactions and ecosystem services, at spatial scales from centimeters to thousands of kilometers and timescales ranging from hours to years. In some instances the cascading indirect effects arising from parasitic infection of molluscs extend well beyond the temporal and spatial scales at which molluscs are affected by disease. In addition to the direct effects of molluscan disease, there can be large indirect impacts on marine environments resulting from strategies, such as introduction of non-native species and selective breeding for disease resistance, put in place to manage disease. Much of our understanding of impacts of molluscan diseases on the marine environment has been derived from just a handful of intensively studied marine parasite-host systems, namely gastropod-trematode, cockle-trematode, and oyster-protistan interactions. Understanding molluscan host-parasite dynamics is of growing importance because: (1) expanding aquaculture; (2) current and future climate change; (3) movement of non-native species; and (4) coastal development are modifying molluscan disease dynamics, ultimately leading to complex relationships between diseases and cultivated and natural molluscan populations. Further, in some instances the enhancement or restoration of valued ecosystem services may be contingent on management of molluscan disease. The application of newly emerging molecular tools and remote sensing techniques to the study of molluscan disease will be important in identifying how changes at varying spatial and temporal scales with global change are modifying host-parasite systems. Copyright © 2015 Elsevier Inc. All rights reserved.
Learning Ecosystem Complexity: A Study on Small-Scale Fishers' Ecological Knowledge Generation
ERIC Educational Resources Information Center
Garavito-Bermúdez, Diana
2018-01-01
Small-scale fisheries are learning contexts of importance for generating, transferring and updating ecological knowledge of natural environments through everyday work practices. The rich knowledge fishers have of local ecosystems is the result of the intimate relationship fishing communities have had with their natural environments across…
Rolls, Robert J; Hayden, Brian; Kahilainen, Kimmo K
2017-06-01
Climate change and species invasions represent key threats to global biodiversity. Subarctic freshwaters are sentinels for understanding both stressors because the effects of climate change are disproportionately strong at high latitudes and invasion of temperate species is prevalent. Here, we summarize the environmental effects of climate change and illustrate the ecological responses of freshwater fishes to these effects, spanning individual, population, community and ecosystem levels. Climate change is modifying hydrological cycles across atmospheric, terrestrial and aquatic components of subarctic ecosystems, causing increases in ambient water temperature and nutrient availability. These changes affect the individual behavior, habitat use, growth and metabolism, alter population spawning and recruitment dynamics, leading to changes in species abundance and distribution, modify food web structure, trophic interactions and energy flow within communities and change the sources, quantity and quality of energy and nutrients in ecosystems. Increases in temperature and its variability in aquatic environments underpin many ecological responses; however, altered hydrological regimes, increasing nutrient inputs and shortened ice cover are also important drivers of climate change effects and likely contribute to context-dependent responses. Species invasions are a complex aspect of the ecology of climate change because the phenomena of invasion are both an effect and a driver of the ecological consequences of climate change. Using subarctic freshwaters as an example, we illustrate how climate change can alter three distinct aspects of species invasions: (1) the vulnerability of ecosystems to be invaded, (2) the potential for species to spread and invade new habitats, and (3) the subsequent ecological effects of invaders. We identify three fundamental knowledge gaps focused on the need to determine (1) how environmental and landscape characteristics influence the ecological impact of climate change, (2) the separate and combined effects of climate and non-native invading species and (3) the underlying ecological processes or mechanisms responsible for changes in patterns of biodiversity.
Segner, Helmut
2011-10-01
In order to improve the ability to link chemical exposure to toxicological and ecological effects, aquatic toxicology will have to move from observing what chemical concentrations induce adverse effects to more explanatory approaches, that are concepts which build on knowledge of biological processes and pathways leading from exposure to adverse effects, as well as on knowledge on stressor vulnerability as given by the genetic, physiological and ecological (e.g., life history) traits of biota. Developing aquatic toxicology in this direction faces a number of challenges, including (i) taking into account species differences in toxicant responses on the basis of the evolutionarily developed diversity of phenotypic vulnerability to environmental stressors, (ii) utilizing diversified biological response profiles to serve as biological read across for prioritizing chemicals, categorizing them according to modes of action, and for guiding targeted toxicity evaluation; (iii) prediction of ecological consequences of toxic exposure from knowledge of how biological processes and phenotypic traits lead to effect propagation across the levels of biological hierarchy; and (iv) the search for concepts to assess the cumulative impact of multiple stressors. An underlying theme in these challenges is that, in addition to the question of what the chemical does to the biological receptor, we should give increasing emphasis to the question how the biological receptor handles the chemicals, i.e., through which pathways the initial chemical-biological interaction extends to the adverse effects, how this extension is modulated by adaptive or compensatory processes as well as by phenotypic traits of the biological receptor. 2011 Elsevier B.V. All rights reserved.
The raison d'être of chemical ecology.
Raguso, Robert A; Agrawal, Anurag A; Douglas, Angela E; Jander, Georg; Kessler, André; Poveda, Katja; Thaler, Jennifer S
2015-03-01
Chemical ecology is a mechanistic approach to understanding the causes and consequences of species interactions, distribution, abundance, and diversity. The promise of chemical ecology stems from its potential to provide causal mechanisms that further our understanding of ecological interactions and allow us to more effectively manipulate managed systems. Founded on the notion that all organisms use endogenous hormones and chemical compounds that mediate interactions, chemical ecology has flourished over the past 50 years since its origin. In this essay we highlight the breadth of chemical ecology, from its historical focus on pheromonal communication, plant-insect interactions, and coevolution to frontier themes including community and ecosystem effects of chemically mediated species interactions. Emerging approaches including the -omics, phylogenetic ecology, the form and function of microbiomes, and network analysis, as well as emerging challenges (e.g., sustainable agriculture and public health) are guiding current growth of this field. Nonetheless, the directions and approaches we advocate for the future are grounded in classic ecological theories and hypotheses that continue to motivate our broader discipline.
Gómez-Baggethun, Erik; Corbera, Esteve; Reyes-García, Victoria
2015-01-01
This paper introduces the special feature of Ecology and Society entitled “Traditional Ecological Knowledge and Global Environmental Change. The special feature addresses two main research themes. The first theme concerns the resilience of Traditional Ecological Knowledge (hereafter TEK) and the conditions that might explain its loss or persistence in the face of global change. The second theme relates to new findings regarding the way in which TEK strengthens community resilience to respond to the multiple stressors of global environmental change. Those themes are analyzed using case studies from Africa, Asia, America and Europe. Theoretical insights and empirical findings from the studies suggest that despite the generalized worldwide trend of TEK erosion, substantial pockets of TEK persist in both developing and developed countries. A common trend on the studies presented here is hybridization, where traditional knowledge, practices, and beliefs are merged with novel forms of knowledge and technologies to create new knowledge systems. The findings also reinforce previous hypotheses pointing at the importance of TEK systems as reservoirs of experiential knowledge that can provide important insights for the design of adaptation and mitigation strategies to cope with global environmental change. Based on the results from papers in this feature, we discuss policy directions that might help to promote maintenance and restoration of living TEK systems as sources of social-ecological resilience. PMID:26097492
Cabrol, Lea; Marone, Antonella; Tapia-Venegas, Estela; Steyer, Jean-Philippe; Ruiz-Filippi, Gonzalo; Trably, Eric
2017-03-01
One of the most important biotechnological challenges is to develop environment friendly technologies to produce new sources of energy. Microbial production of biohydrogen through dark fermentation, by conversion of residual biomass, is an attractive solution for short-term development of bioH2 producing processes. Efficient biohydrogen production relies on complex mixed communities working in tight interaction. Species composition and functional traits are of crucial importance to maintain the ecosystem service. The analysis of microbial community revealed a wide phylogenetic diversity that contributes in different-and still mostly unclear-ways to hydrogen production. Bridging this gap of knowledge between microbial ecology features and ecosystem functionality is essential to optimize the bioprocess and develop strategies toward a maximization of the efficiency and stability of substrate conversion. The aim of this review is to provide a comprehensive overview of the most up-to-date biodata available and discuss the main microbial community features of biohydrogen engineered ecosystems, with a special emphasis on the crucial role of interactions and the relationships between species composition and ecosystem service. The elucidation of intricate relationships between community structure and ecosystem function would make possible to drive ecosystems toward an improved functionality on the basis of microbial ecology principles. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology.
Brooker, Rob W; Bennett, Alison E; Cong, Wen-Feng; Daniell, Tim J; George, Timothy S; Hallett, Paul D; Hawes, Cathy; Iannetta, Pietro P M; Jones, Hamlyn G; Karley, Alison J; Li, Long; McKenzie, Blair M; Pakeman, Robin J; Paterson, Eric; Schöb, Christian; Shen, Jianbo; Squire, Geoff; Watson, Christine A; Zhang, Chaochun; Zhang, Fusuo; Zhang, Junling; White, Philip J
2015-04-01
Intercropping is a farming practice involving two or more crop species, or genotypes, growing together and coexisting for a time. On the fringes of modern intensive agriculture, intercropping is important in many subsistence or low-input/resource-limited agricultural systems. By allowing genuine yield gains without increased inputs, or greater stability of yield with decreased inputs, intercropping could be one route to delivering ‘sustainable intensification’. We discuss how recent knowledge from agronomy, plant physiology and ecology can be combined with the aim of improving intercropping systems. Recent advances in agronomy and plant physiology include better understanding of the mechanisms of interactions between crop genotypes and species – for example, enhanced resource availability through niche complementarity. Ecological advances include better understanding of the context-dependency of interactions, the mechanisms behind disease and pest avoidance, the links between above- and below-ground systems, and the role of microtopographic variation in coexistence. This improved understanding can guide approaches for improving intercropping systems, including breeding crops for intercropping. Although such advances can help to improve intercropping systems, we suggest that other topics also need addressing. These include better assessment of the wider benefits of intercropping in terms of multiple ecosystem services, collaboration with agricultural engineering, and more effective interdisciplinary research.
Climate change, biotic interactions and ecosystem services
Montoya, José M.; Raffaelli, Dave
2010-01-01
Climate change is real. The wrangling debates are over, and we now need to move onto a predictive ecology that will allow managers of landscapes and policy makers to adapt to the likely changes in biodiversity over the coming decades. There is ample evidence that ecological responses are already occurring at the individual species (population) level. The challenge is how to synthesize the growing list of such observations with a coherent body of theory that will enable us to predict where and when changes will occur, what the consequences might be for the conservation and sustainable use of biodiversity and what we might do practically in order to maintain those systems in as good condition as possible. It is thus necessary to investigate the effects of climate change at the ecosystem level and to consider novel emergent ecosystems composed of new species assemblages arising from differential rates of range shifts of species. Here, we present current knowledge on the effects of climate change on biotic interactions and ecosystem services supply, and summarize the papers included in this volume. We discuss how resilient ecosystems are in the face of the multiple components that characterize climate change, and suggest which current ecological theories may be used as a starting point to predict ecosystem-level effects of climate change. PMID:20513709
Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health.
Bitas, Vasileios; Kim, Hye-Seon; Bennett, Joan W; Kang, Seogchan
2013-08-01
Secreted proteins and metabolites play diverse and critical roles in organismal and organism-environment interactions. Volatile organic compounds (VOC) can travel far from the point of production through the atmosphere, porous soils, and liquid, making them ideal info-chemicals for mediating both short- and long-distance intercellular and organismal interactions. Critical ecological roles for animal- and plant-derived VOC in directing animal behaviors and for VOC as a language for plant-to-plant communication and regulators of various physiological processes have been well documented. Similarly, microbial VOC appear to be involved in antagonism, mutualism, intra- and interspecies regulation of cellular and developmental processes, and modification of their surrounding environments. However, the available knowledge of how microbial VOC affect other organisms is very limited. Evidence supporting diverse roles of microbial VOC with the focus on their impact on plant health is reviewed here. Given the vast diversity of microbes in nature and the critical importance of microbial communities associated with plants for their ecology and fitness, systematic exploration of microbial VOC and characterization of their biological functions and ecological roles will likely uncover novel mechanisms for controlling diverse biological processes critical to plant health and will also offer tangible practical benefits in addressing agricultural and environmental problems.
A host-endoparasite network of Neotropical marine fish: are there organizational patterns?
Bellay, Sybelle; Lima, Dilermando P; Takemoto, Ricardo M; Luque, José L
2011-12-01
Properties of ecological networks facilitate the understanding of interaction patterns in host-parasite systems as well as the importance of each species in the interaction structure of a community. The present study evaluates the network structure, functional role of all species and patterns of parasite co-occurrence in a host-parasite network to determine the organization level of a host-parasite system consisting of 170 taxa of gastrointestinal metazoans of 39 marine fish species on the coast of Brazil. The network proved to be nested and modular, with a low degree of connectance. Host-parasite interactions were influenced by host phylogeny. Randomness in parasite co-occurrence was observed in most modules and component communities, although species segregation patterns were also observed. The low degree of connectance in the network may be the cause of properties such as nestedness and modularity, which indicate the presence of a high number of peripheral species. Segregation patterns among parasite species in modules underscore the role of host specificity. Knowledge of ecological networks allows detection of keystone species for the maintenance of biodiversity and the conduction of further studies on the stability of networks in relation to frequent environmental changes.
The role of ecology in speciation by sexual selection: a systematic empirical review.
Scordato, Elizabeth S C; Symes, Laurel B; Mendelson, Tamra C; Safran, Rebecca J
2014-01-01
Theoretical and empirical research indicates that sexual selection interacts with the ecological context in which mate choice occurs, suggesting that sexual and natural selection act together during the evolution of premating reproductive isolation. However, the relative importance of natural and sexual selection to speciation remains poorly understood. Here, we applied a recent conceptual framework for examining interactions between mate choice divergence and ecological context to a review of the empirical literature on speciation by sexual selection. This framework defines two types of interactions between mate choice and ecology: internal interactions, wherein natural and sexual selection jointly influence divergence in sexual signal traits and preferences, and external interactions, wherein sexual selection alone acts on traits and preferences but ecological context shapes the transmission efficacy of sexual signals. The objectives of this synthesis were 3-fold: to summarize the traits, ecological factors, taxa, and geographic contexts involved in studies of mate choice divergence; to analyze patterns of association between these variables; and to identify the most common types of interactions between mate choice and ecological factors. Our analysis revealed that certain traits are consistently associated with certain ecological factors. Moreover, among studies that examined a divergent sexually selected trait and an ecological factor, internal interactions were more common than external interactions. Trait-preference associations may thus frequently be subject to both sexual and natural selection in cases of divergent mate choice. Our results highlight the importance of interactions between sexual selection and ecology in mate choice divergence and suggest areas for future research. © The American Genetic Association. 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
76 FR 23339 - Notice of Solicitation
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-26
... Advisors on Marine Mammals. The Committee is to consist of scientists knowledgeable in marine ecology and... knowledge with respect to the biology and ecology of certain marine mammal species that, due to their small...
1991-05-01
Plant Biology); Carol Augspurger 376 INSTITUTION; COOPERATOR University of Illinois, Urbana ( Ecology , Ethology & Evolution ...43 Ph.D. 33 33 33 1 STRENGTHS AND SPECIALTIES Subject Matter Strengths: Biogeography, community ecology , vertebrate ecology , plant /insect interactions ... ecology , population ecology of small mammals, avian ecology , plant /animal interactions . Formal Teaching/Research Arrangements With Other
Influence of evolution on the stability of ecological communities.
Loeuille, Nicolas
2010-12-01
In randomly assembled communities, diversity is known to have a destabilizing effect. Evolution may affect this result, but our theoretical knowledge of its role is mostly limited to models of small food webs. In the present article, I introduce evolution in a two-species Lotka-Volterra model in which I vary the interaction type and the cost constraining evolution. Regardless of the cost type, evolution tends to stabilize the dynamics more often in trophic interactions than for mutualism or competition. I then use simulations to study the effect of evolution in larger communities that contain all interaction types. Results suggest that evolution usually stabilizes the dynamics. This stabilizing effect is stronger when evolution affects trophic interactions, but happens for all interaction types. Stabilization decreases with diversity and evolution becomes destabilizing in very diverse communities. This suggests that evolution may not counteract the destabilizing effect of diversity observed in random communities. © 2010 Blackwell Publishing Ltd/CNRS.
Zhuge, Hai-jin; Lin, Dan-qi; Li, Xiao-wen
2015-08-01
The alpine desert of Qinghai-Tibet Plateau (QTP) provides the largest habitats for those endangered ungulates (e.g., Tibetan antelope, Tibetan Kiang and wild yak) on the earth. However, human disturbance especially infrastructure constructions (e.g., railway & highway) has increasingly fragmented the habitats of those endangered ungulates by disturbing and interrupting their ecological corridors for their seasonal migration. Aiming at identifying the potential ecological corridors for Tibetan antelope, a GIS-based model-Linkage Mapper was used to model and detect the potential ecological corridors of Tibetan antelope based on the principle of least cost path. Three categories of ecological corridors, i. e., closed (inside reserves), linking (linking the reserves) and open (starting from reserve but ending outside) corridors were distinguished by their spatial interactions with existing major national nature reserves (i.e., Altun, Kekexili and Qiangtang NNRs) in the alpine desert of QTP, and their spatial patterns, conservation status associated with human disturbance were also examined. Although our research indicated a general ecological integration of both habitats and ecological corridors in the alpine desert ecosystem, increasing human disturbance should not be ignored, which particularly partially undermined the functioning of those ecological corridors linking the nature reserves. Considering disadvantages of prevailing separate administrative structure of nature reserve on the effective conservation of ecological corridors for those endangered ungulates, a coordinative conservation network among these major national nature reserves should be established to ensure the unified trans-boundary conservation efforts and to enhance its overall conservation efficacy by sharing information, knowledge and optimizing conservation resources.
Introduction: Ecological knowledge, theory and information in space and time [Chapter 1
Samuel A. Cushman; Falk Huettmann
2010-01-01
A central theme of this book is that there is a strong mutual dependence between explanatory theory, available data and analytical method in determining the lurching progress of ecological knowledge (Fig. 1.1). The two central arguments are first that limits in each of theory, data and method have continuously constrained advances in understanding ecological systems...
Asymmetric ecological conditions favor Red-Queen type of continued evolution over stasis.
Nordbotten, Jan Martin; Stenseth, Nils C
2016-02-16
Four decades ago, Leigh Van Valen presented the Red Queen's hypothesis to account for evolution of species within a multispecies ecological community [Van Valen L (1973) Evol Theory 1(1):1-30]. The overall conclusion of Van Valen's analysis was that evolution would continue even in the absence of abiotic perturbations. Stenseth and Maynard Smith presented in 1984 [Stenseth NC, Maynard Smith J (1984) Evolution 38(4):870-880] a model for the Red Queen's hypothesis showing that both Red-Queen type of continuous evolution and stasis could result from a model with biotically driven evolution. However, although that contribution demonstrated that both evolutionary outcomes were possible, it did not identify which ecological conditions would lead to each of these evolutionary outcomes. Here, we provide, using a simple, yet general population-biologically founded eco-evolutionary model, such analytically derived conditions: Stasis will predominantly emerge whenever the ecological system contains only symmetric ecological interactions, whereas both Red-Queen and stasis type of evolution may result if the ecological interactions are asymmetrical, and more likely so with increasing degree of asymmetry in the ecological system (i.e., the more trophic interactions, host-pathogen interactions, and the like there are [i.e., +/- type of ecological interactions as well as asymmetric competitive (-/-) and mutualistic (+/+) ecological interactions]). In the special case of no between-generational genetic variance, our results also predict dynamics within these types of purely ecological systems.
Multiple micro-predators controlling bacterial communities in the environment.
Johnke, Julia; Cohen, Yossi; de Leeuw, Marina; Kushmaro, Ariel; Jurkevitch, Edouard; Chatzinotas, Antonis
2014-06-01
Predator-prey interactions are a main issue in ecological theory, including multispecies predator-prey relationships and intraguild predation. This knowledge is mainly based on the study of plants and animals, while its relevance for microorganisms is not well understood. The three key groups of micro-predators include protists, predatory bacteria and bacteriophages. They greatly differ in size, in prey specificity, in hunting strategies and in the resulting population dynamics. Yet, their potential to jointly control bacterial populations and reducing biomass in complex environments such as wastewater treatment plants is vast. Here, we present relevant ecological concepts and recent findings on micropredators, and propose that an integrative approach to predation at the microscale should be developed enabling the exploitation of this potential. Copyright © 2014 Elsevier Ltd. All rights reserved.
Xiong, Jinbo; Dai, Wenfang; Zhu, Jinyong; Liu, Keshao; Dong, Chunming; Qiu, Qiongfen
2017-05-01
Increasing evidence of tight links among the gut microbiota, obesity, and host health has emerged, but knowledge of the ecological processes that shape the variation in microbial assemblages across growth rates remains elusive. Moreover, inadequately control for differences in factors that profoundly affect the gut microbial community, hampers evaluation of the gut microbiota roles in regulating growth rates. To address this gap, we evaluated the composition and ecological processes of the gut bacterial community in cohabitating retarded, overgrown, and normal shrimps from identically managed ponds. Gut bacterial community structures were distinct (P = 0.0006) among the shrimp categories. Using a structural equation modeling (SEM), we found that changes in the gut bacterial community were positively related to digestive activities, which subsequently affected shrimp growth rate. This association was further supported by intensified interspecies interaction and enriched lineages with high nutrient intake efficiencies in overgrown shrimps. However, the less phylogenetic clustering of gut microbiota in overgrown and retarded subjects may offer empty niches for pathogens invasion, as evidenced by higher abundances of predicted functional pathways involved in disease infection. Given no differences in biotic and abiotic factors among the cohabitating shrimps, we speculated that the distinct gut community assembly could be attributed to random colonization in larval shrimp (e.g., priority effects) and that an altered microbiota could be a causative factor in overgrowth or retardation in shrimp. To our knowledge, this is the first study to provide an integrated overview of the direct roles of gut microbiota in shaping shrimp growth rate and the underlying ecological mechanisms.
Wijermans, Nanda; Schlüter, Maja; Lindahl, Therese
2016-01-01
Cooperation amongst resource users holds the key to overcoming the social dilemma that characterizes community-based common-pool resource management. But is cooperation alone enough to achieve sustainable resource use? The short answer is no. Developing management strategies in a complex social-ecological environment also requires ecological knowledge and approaches to deal with perceived environmental uncertainty. Recent behavioral experimental research indicates variation in the degree to which a group of users can identify a sustainable exploitation level. In this paper, we identify social-ecological micro-foundations that facilitate cooperative sustainable common-pool resource use. We do so by using an agent-based model (ABM) that is informed by behavioral common-pool resource experiments. In these experiments, groups that cooperate do not necessarily manage the resource sustainably, but also over- or underexploit. By reproducing the patterns of the behavioral experiments in a qualitative way, the ABM represents a social-ecological explanation for the experimental observations. We find that the ecological knowledge of each group member cannot sufficiently explain the relationship between cooperation and sustainable resource use. Instead, the development of a sustainable exploitation level depends on the distribution of ecological knowledge among the group members, their influence on each other’s knowledge, and the environmental uncertainty the individuals perceive. The study provides insights about critical social-ecological micro-foundations underpinning collective action and sustainable resource management. These insights may inform policy-making, but also point to future research needs regarding the mechanisms of social learning, the development of shared management strategies and the interplay of social and ecological uncertainty. PMID:27556175
Fujitani, Marie; McFall, Andrew; Randler, Christoph; Arlinghaus, Robert
2017-06-01
Resolving uncertainties in managed social-ecological systems requires adaptive experimentation at whole-ecosystem levels. However, whether participatory adaptive management fosters ecological understanding among stakeholders beyond the sphere of science is unknown. We experimentally involved members of German angling clubs ( n = 181 in workshops, n = 2483 in total) engaged in self-governance of freshwater fisheries resources in a large-scale ecological experiment of active adaptive management of fish stocking, which constitutes a controversial management practice for biodiversity and ecosystem functioning when conducted inappropriately. The collaborative ecological experiments spanned several years and manipulated fish densities in 24 lakes with two species. In parallel, we experimentally compared changes in ecological knowledge and antecedents of proenvironmental behavior in stakeholders and managers who were members of a participatory adaptive management treatment group, with those receiving only a standard lecture, relative to placebo controls. Using a within-subjects pretest-posttest control design, changes in ecological knowledge, environmental beliefs, attitudes, norms, and behavioral intentions were evaluated. Participants in adaptive management retained more knowledge of ecological topics after a period of 8 months compared to those receiving a standard lecture, both relative to controls. Involvement in adaptive management was also the only treatment that altered personal norms and beliefs related to stocking. Critically, only the stakeholders who participated in adaptive management reduced their behavioral intentions to engage in fish stocking in the future. Adaptive management is essential for robust ecological knowledge, and we show that involving stakeholders in adaptive management experiments is a powerful tool to enhance ecological literacy and build environmental capacity to move toward sustainability.
Fujitani, Marie; McFall, Andrew; Randler, Christoph; Arlinghaus, Robert
2017-01-01
Resolving uncertainties in managed social-ecological systems requires adaptive experimentation at whole-ecosystem levels. However, whether participatory adaptive management fosters ecological understanding among stakeholders beyond the sphere of science is unknown. We experimentally involved members of German angling clubs (n = 181 in workshops, n = 2483 in total) engaged in self-governance of freshwater fisheries resources in a large-scale ecological experiment of active adaptive management of fish stocking, which constitutes a controversial management practice for biodiversity and ecosystem functioning when conducted inappropriately. The collaborative ecological experiments spanned several years and manipulated fish densities in 24 lakes with two species. In parallel, we experimentally compared changes in ecological knowledge and antecedents of proenvironmental behavior in stakeholders and managers who were members of a participatory adaptive management treatment group, with those receiving only a standard lecture, relative to placebo controls. Using a within-subjects pretest-posttest control design, changes in ecological knowledge, environmental beliefs, attitudes, norms, and behavioral intentions were evaluated. Participants in adaptive management retained more knowledge of ecological topics after a period of 8 months compared to those receiving a standard lecture, both relative to controls. Involvement in adaptive management was also the only treatment that altered personal norms and beliefs related to stocking. Critically, only the stakeholders who participated in adaptive management reduced their behavioral intentions to engage in fish stocking in the future. Adaptive management is essential for robust ecological knowledge, and we show that involving stakeholders in adaptive management experiments is a powerful tool to enhance ecological literacy and build environmental capacity to move toward sustainability. PMID:28630904
Schill, Caroline; Wijermans, Nanda; Schlüter, Maja; Lindahl, Therese
2016-01-01
Cooperation amongst resource users holds the key to overcoming the social dilemma that characterizes community-based common-pool resource management. But is cooperation alone enough to achieve sustainable resource use? The short answer is no. Developing management strategies in a complex social-ecological environment also requires ecological knowledge and approaches to deal with perceived environmental uncertainty. Recent behavioral experimental research indicates variation in the degree to which a group of users can identify a sustainable exploitation level. In this paper, we identify social-ecological micro-foundations that facilitate cooperative sustainable common-pool resource use. We do so by using an agent-based model (ABM) that is informed by behavioral common-pool resource experiments. In these experiments, groups that cooperate do not necessarily manage the resource sustainably, but also over- or underexploit. By reproducing the patterns of the behavioral experiments in a qualitative way, the ABM represents a social-ecological explanation for the experimental observations. We find that the ecological knowledge of each group member cannot sufficiently explain the relationship between cooperation and sustainable resource use. Instead, the development of a sustainable exploitation level depends on the distribution of ecological knowledge among the group members, their influence on each other's knowledge, and the environmental uncertainty the individuals perceive. The study provides insights about critical social-ecological micro-foundations underpinning collective action and sustainable resource management. These insights may inform policy-making, but also point to future research needs regarding the mechanisms of social learning, the development of shared management strategies and the interplay of social and ecological uncertainty.
Specific non-monotonous interactions increase persistence of ecological networks.
Yan, Chuan; Zhang, Zhibin
2014-03-22
The relationship between stability and biodiversity has long been debated in ecology due to opposing empirical observations and theoretical predictions. Species interaction strength is often assumed to be monotonically related to population density, but the effects on stability of ecological networks of non-monotonous interactions that change signs have not been investigated previously. We demonstrate that for four kinds of non-monotonous interactions, shifting signs to negative or neutral interactions at high population density increases persistence (a measure of stability) of ecological networks, while for the other two kinds of non-monotonous interactions shifting signs to positive interactions at high population density decreases persistence of networks. Our results reveal a novel mechanism of network stabilization caused by specific non-monotonous interaction types through either increasing stable equilibrium points or reducing unstable equilibrium points (or both). These specific non-monotonous interactions may be important in maintaining stable and complex ecological networks, as well as other networks such as genes, neurons, the internet and human societies.
Quantitative approaches in climate change ecology
Brown, Christopher J; Schoeman, David S; Sydeman, William J; Brander, Keith; Buckley, Lauren B; Burrows, Michael; Duarte, Carlos M; Moore, Pippa J; Pandolfi, John M; Poloczanska, Elvira; Venables, William; Richardson, Anthony J
2011-01-01
Contemporary impacts of anthropogenic climate change on ecosystems are increasingly being recognized. Documenting the extent of these impacts requires quantitative tools for analyses of ecological observations to distinguish climate impacts in noisy data and to understand interactions between climate variability and other drivers of change. To assist the development of reliable statistical approaches, we review the marine climate change literature and provide suggestions for quantitative approaches in climate change ecology. We compiled 267 peer-reviewed articles that examined relationships between climate change and marine ecological variables. Of the articles with time series data (n = 186), 75% used statistics to test for a dependency of ecological variables on climate variables. We identified several common weaknesses in statistical approaches, including marginalizing other important non-climate drivers of change, ignoring temporal and spatial autocorrelation, averaging across spatial patterns and not reporting key metrics. We provide a list of issues that need to be addressed to make inferences more defensible, including the consideration of (i) data limitations and the comparability of data sets; (ii) alternative mechanisms for change; (iii) appropriate response variables; (iv) a suitable model for the process under study; (v) temporal autocorrelation; (vi) spatial autocorrelation and patterns; and (vii) the reporting of rates of change. While the focus of our review was marine studies, these suggestions are equally applicable to terrestrial studies. Consideration of these suggestions will help advance global knowledge of climate impacts and understanding of the processes driving ecological change.
2014-01-01
Background Emerging evidence suggests that ecological heterogeneity across space can influence the genetic structure of populations, including that of long-distance dispersers such as large carnivores. On the central coast of British Columbia, Canada, wolf (Canis lupus L., 1758) dietary niche and parasite prevalence data indicate strong ecological divergence between marine-oriented wolves inhabiting islands and individuals on the coastal mainland that interact primarily with terrestrial prey. Local holders of traditional ecological knowledge, who distinguish between mainland and island wolf forms, also informed our hypothesis that genetic differentiation might occur between wolves from these adjacent environments. Results We used microsatellite genetic markers to examine data obtained from wolf faecal samples. Our results from 116 individuals suggest the presence of a genetic cline between mainland and island wolves. This pattern occurs despite field observations that individuals easily traverse the 30 km wide study area and swim up to 13 km among landmasses in the region. Conclusions Natal habitat-biased dispersal (i.e., the preference for dispersal into familiar ecological environments) might contribute to genetic differentiation. Accordingly, this working hypothesis presents an exciting avenue for future research where marine resources or other components of ecological heterogeneity are present. PMID:24915756
Traditional and local ecological knowledge about forest biodiversity in the Pacific Northwest.
Susan Charnley; A. Paige Fischer; Eric T. Jones
2008-01-01
This paper synthesizes the existing literature about traditional and local ecological knowledge relating to biodiversity in Pacific Northwest forests in order to assess what is needed to apply this knowledge to forest biodiversity conservation efforts. We address four topics: (1) views and values people have relating to biodiversity, (2) the resource use and management...
Global trends of local ecological knowledge and future implications
Lemahieu, Anne; Sauer, Warwick H. H.
2018-01-01
Local and indigenous knowledge is being transformed globally, particularly being eroded when pertaining to ecology. In many parts of the world, rural and indigenous communities are facing tremendous cultural, economic and environmental changes, which contribute to weaken their local knowledge base. In the face of profound and ongoing environmental changes, both cultural and biological diversity are likely to be severely impacted as well as local resilience capacities from this loss. In this global literature review, we analyse the drivers of various types of local and indigenous ecological knowledge transformation and assess the directionality of the reported change. Results of this analysis show a global impoverishment of local and indigenous knowledge with 77% of papers reporting the loss of knowledge driven by globalization, modernization, and market integration. The recording of this loss, however, is not symmetrical, with losses being recorded more strongly in medicinal and ethnobotanical knowledge. Persistence of knowledge (15% of the studies) occurred in studies where traditional practices were being maintained consiously and where hybrid knowledge was being produced as a resut of certain types of incentives created by economic development. This review provides some insights into local and indigenous ecological knowledge change, its causes and implications, and recommends venues for the development of replicable and comparative research. The larger implication of these results is that because of the interconnection between cultural and biological diversity, the loss of local and indigenous knowledge is likely to critically threaten effective conservation of biodiversity, particularly in community-based conservation local efforts. PMID:29621311
Marla R. Emery; Alexandra Wrobel; Mark H. Hansen; Michael Dockry; W. Keith Moser; Kekek Jason Stark; Jonathan H. Gilbert
2014-01-01
Traditional ecological knowledge (TEK) has been proposed as a basis for enhanced understanding of ecological systems and their management. TEK also can contribute to targeted inventories of resources not included in standard mensuration. We discuss the results of a cooperative effort between the Great Lakes Indian Fish and Wildlife Commission (GLIFWC) and USDA Forest...
Coggan, Nicole V; Hayward, Matthew W; Gibb, Heloise
2018-02-28
Ecosystem engineers have been widely studied for terrestrial systems, but global trends in research encompassing the range of taxa and functions have not previously been synthesised. We reviewed contemporary understanding of engineer fauna in terrestrial habitats and assessed the methods used to document patterns and processes, asking: (a) which species act as ecosystem engineers and with whom do they interact? (b) What are the impacts of ecosystem engineers in terrestrial habitats and how are they distributed? (c) What are the primary methods used to examine engineer effects and how have these developed over time? We considered the strengths, weaknesses and gaps in knowledge related to each of these questions and suggested a conceptual framework to delineate "significant impacts" of engineering interactions for all terrestrial animals. We collected peer-reviewed publications examining ecosystem engineer impacts and created a database of engineer species to assess experimental approaches and any additional covariates that influenced the magnitude of engineer impacts. One hundred and twenty-two species from 28 orders were identified as ecosystem engineers, performing five ecological functions. Burrowing mammals were the most researched group (27%). Half of all studies occurred in dry/arid habitats. Mensurative studies comparing sites with and without engineers (80%) were more common than manipulative studies (20%). These provided a broad framework for predicting engineer impacts upon abundance and species diversity. However, the roles of confounding factors, processes driving these patterns and the consequences of experimentally adjusting variables, such as engineer density, have been neglected. True spatial and temporal replication has also been limited, particularly for emerging studies of engineer reintroductions. Climate change and habitat modification will challenge the roles that engineers play in regulating ecosystems, and these will become important avenues for future research. We recommend future studies include simulation of engineer effects and experimental manipulation of engineer densities to determine the potential for ecological cascades through trophic and engineering pathways due to functional decline. We also recommend improving knowledge of long-term engineering effects and replication of engineer reintroductions across landscapes to better understand how large-scale ecological gradients alter the magnitude of engineering impacts. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.
Ecological networks and their fragility.
Montoya, José M; Pimm, Stuart L; Solé, Ricard V
2006-07-20
Darwin used the metaphor of a 'tangled bank' to describe the complex interactions between species. Those interactions are varied: they can be antagonistic ones involving predation, herbivory and parasitism, or mutualistic ones, such as those involving the pollination of flowers by insects. Moreover, the metaphor hints that the interactions may be complex to the point of being impossible to understand. All interactions can be visualized as ecological networks, in which species are linked together, either directly or indirectly through intermediate species. Ecological networks, although complex, have well defined patterns that both illuminate the ecological mechanisms underlying them and promise a better understanding of the relationship between complexity and ecological stability.
Thrush, Simon F; Hewitt, Judi E; Parkes, Samantha; Lohrer, Andrew M; Pilditch, Conrad; Woodin, Sarah A; Wethey, David S; Chiantore, Mariachiara; Asnaghi, Valentina; De Juan, Silvia; Kraan, Casper; Rodil, Ivan; Savage, Candida; Van Colen, Carl
2014-06-01
Thresholds profoundly affect our understanding and management of ecosystem dynamics, but we have yet to develop practical techniques to assess the risk that thresholds will be crossed. Combining ecological knowledge of critical system interdependencies with a large-scale experiment, we tested for breaks in the ecosystem interaction network to identify threshold potential in real-world ecosystem dynamics. Our experiment with the bivalves Macomona liliana and Austrovenus stutchburyi on marine sandflats in New Zealand demonstrated that reductions in incident sunlight changed the interaction network between sediment biogeochemical fluxes, productivity, and macrofauna. By demonstrating loss of positive feedbacks and changes in the architecture of the network, we provide mechanistic evidence that stressors lead to break points in dynamics, which theory predicts predispose a system to a critical transition.
Revitalizing traditional ecological knowledge: a study in an Alpine rural community.
Ianni, Elena; Geneletti, Davide; Ciolli, Marco
2015-07-01
This study aims to contribute to the debate on the value and the role of ecological knowledge in modern conservation strategies, with reference to the results of a case study conducted in the community of Montagne, located within a World Heritage site in the Italian Alps. This community is a paradigmatic example of the multiple transformations experienced by cultural landscapes in Alpine areas under the influence of global change. This study seeks to understand whether ecological knowledge is still in place in the community, and what the relationship is between the knowledge transmission and land use and social changes that have occurred in recent decades. To that end, the community is described by identifying the key variables (social, institutional, and ecological) that have historically shaped the landscape and the future priorities of the residents. Forest expansion, the most significant change in land use in the last 60 years, is analyzed using aerial photos; changes in biodiversity-related knowledge in the community are quantified by analyzing the inter-generational differences in plant species recognition. Results are discussed in the context of the current situation of the Montagne community, and the recommendation is made that policies and actions to promote traditional ecological knowledge protection or recovery in Europe be viewed as an important part of the recovery of community sovereignty and vitality. Lastly, concrete actions that can be implemented in our case study are proposed.
Revitalizing Traditional Ecological Knowledge: A Study in an Alpine Rural Community
NASA Astrophysics Data System (ADS)
Ianni, Elena; Geneletti, Davide; Ciolli, Marco
2015-07-01
This study aims to contribute to the debate on the value and the role of ecological knowledge in modern conservation strategies, with reference to the results of a case study conducted in the community of Montagne, located within a World Heritage site in the Italian Alps. This community is a paradigmatic example of the multiple transformations experienced by cultural landscapes in Alpine areas under the influence of global change. This study seeks to understand whether ecological knowledge is still in place in the community, and what the relationship is between the knowledge transmission and land use and social changes that have occurred in recent decades. To that end, the community is described by identifying the key variables (social, institutional, and ecological) that have historically shaped the landscape and the future priorities of the residents. Forest expansion, the most significant change in land use in the last 60 years, is analyzed using aerial photos; changes in biodiversity-related knowledge in the community are quantified by analyzing the inter-generational differences in plant species recognition. Results are discussed in the context of the current situation of the Montagne community, and the recommendation is made that policies and actions to promote traditional ecological knowledge protection or recovery in Europe be viewed as an important part of the recovery of community sovereignty and vitality. Lastly, concrete actions that can be implemented in our case study are proposed.
Weaving Traditional Ecological Knowledge into Biological Education: A Call to Action.
ERIC Educational Resources Information Center
Kimmerer, Robin Wall
2002-01-01
Traditional ecological knowledge has value not only for the wealth of biological information it contains but also for the cultural framework of respect, reciprocity, and responsibility in which it is embedded. (Contains 48 references.) (DDR)
Calhoun, Aram J K; Jansujwicz, Jessica S; Bell, Kathleen P; Hunter, Malcolm L
2014-07-29
Vernal pools are far more important for providing ecosystem services than one would predict based on their small size. However, prevailing resource-management strategies are not effectively conserving pools and other small natural features on private lands. Solutions are complicated by tensions between private property and societal rights, uncertainties over resource location and function, diverse stakeholders, and fragmented regulatory authority. The development and testing of new conservation approaches that link scientific knowledge, stakeholder decision-making, and conservation outcomes are important responses to this conservation dilemma. Drawing from a 15-y history of vernal pool conservation efforts in Maine, we describe the coevolution of pool conservation and research approaches, focusing on how research-based knowledge was produced and used in support of management decisions. As management shifted from reactive, top-down approaches to proactive and flexible approaches, research shifted from an ecology-focused program to an interdisciplinary program based on social-ecological systems. The most effective strategies for linking scientific knowledge with action changed as the decision-makers, knowledge needs, and context for vernal pool management advanced. Interactions among stakeholders increased the extent to which knowledge was coproduced and shifted the objective of stakeholder engagement from outreach to research collaboration and development of innovative conservation approaches. New conservation strategies were possible because of the flexible, solutions-oriented collaborations and trust between scientists and decision-makers (fostered over 15 y) and interdisciplinary, engaged research. Solutions to the dilemma of conserving small natural features on private lands, and analogous sustainability science challenges, will benefit from repeated negotiations of the science-policy boundary.
Asymmetric ecological conditions favor Red-Queen type of continued evolution over stasis
Nordbotten, Jan Martin; Stenseth, Nils C.
2016-01-01
Four decades ago, Leigh Van Valen presented the Red Queen’s hypothesis to account for evolution of species within a multispecies ecological community [Van Valen L (1973) Evol Theory 1(1):1–30]. The overall conclusion of Van Valen’s analysis was that evolution would continue even in the absence of abiotic perturbations. Stenseth and Maynard Smith presented in 1984 [Stenseth NC, Maynard Smith J (1984) Evolution 38(4):870–880] a model for the Red Queen’s hypothesis showing that both Red-Queen type of continuous evolution and stasis could result from a model with biotically driven evolution. However, although that contribution demonstrated that both evolutionary outcomes were possible, it did not identify which ecological conditions would lead to each of these evolutionary outcomes. Here, we provide, using a simple, yet general population-biologically founded eco-evolutionary model, such analytically derived conditions: Stasis will predominantly emerge whenever the ecological system contains only symmetric ecological interactions, whereas both Red-Queen and stasis type of evolution may result if the ecological interactions are asymmetrical, and more likely so with increasing degree of asymmetry in the ecological system (i.e., the more trophic interactions, host–pathogen interactions, and the like there are [i.e., +/− type of ecological interactions as well as asymmetric competitive (−/−) and mutualistic (+/+) ecological interactions]). In the special case of no between-generational genetic variance, our results also predict dynamics within these types of purely ecological systems. PMID:26831108
Takemoto, Kazuhiro; Aie, Kazuki
2017-05-25
Host-pathogen interactions are important in a wide range of research fields. Given the importance of metabolic crosstalk between hosts and pathogens, a metabolic network-based reverse ecology method was proposed to infer these interactions. However, the validity of this method remains unclear because of the various explanations presented and the influence of potentially confounding factors that have thus far been neglected. We re-evaluated the importance of the reverse ecology method for evaluating host-pathogen interactions while statistically controlling for confounding effects using oxygen requirement, genome, metabolic network, and phylogeny data. Our data analyses showed that host-pathogen interactions were more strongly influenced by genome size, primary network parameters (e.g., number of edges), oxygen requirement, and phylogeny than the reserve ecology-based measures. These results indicate the limitations of the reverse ecology method; however, they do not discount the importance of adopting reverse ecology approaches altogether. Rather, we highlight the need for developing more suitable methods for inferring host-pathogen interactions and conducting more careful examinations of the relationships between metabolic networks and host-pathogen interactions.
Microbial genome-enabled insights into plant-microorganism interactions.
Guttman, David S; McHardy, Alice C; Schulze-Lefert, Paul
2014-12-01
Advances in genome-based studies on plant-associated microorganisms have transformed our understanding of many plant pathogens and are beginning to greatly widen our knowledge of plant interactions with mutualistic and commensal microorganisms. Pathogenomics has revealed how pathogenic microorganisms adapt to particular hosts, subvert innate immune responses and change host range, as well as how new pathogen species emerge. Similarly, culture-independent community profiling methods, coupled with metagenomic and metatranscriptomic studies, have provided the first insights into the emerging field of research on plant-associated microbial communities. Together, these approaches have the potential to bridge the gap between plant microbial ecology and plant pathology, which have traditionally been two distinct research fields.
NASA Astrophysics Data System (ADS)
Oluka, Silas Omoding
This inquiry thus probed into perceptions about science and its applications towards social change and how these are placed in a broader perspective to capture sociocultural and ecological sustainability. Makerere University and an indigenous rural community of Osukuru were used as the setting for the study as they are the acclaimed targets of Ugandan development policies and programs which seek to move the country out of primitivity and backwardness and into a modernized society. A qualitative methodology involving focus group discussions, interviews and a workshop was employed in exploring perceptions, beliefs, assumptions and insights about science and its role in development and environmental conservation, of indigenous perspectives of development, and ecological well-being, and how these are shaped by various worldviews. With little known about how indigenous knowledge and worldviews could work in concert with modern science and technology in the African setting, the study initiated dialogue among scientists government officials, and rural elders towards appropriate harmonization of modern science and technology with local needs and knowledge ways in that promise ecological sustainability and cultural balance. The data indicated that science in Uganda is predominantly regarded as an exploration of natural phenomena and as a body of facts to be memorized or discovered by students within the defined process skills of scientific inquiry, irrespective of context. The nature of the market economy, its application of science and subsequent impacts on society and the environment were not seen as the responsibility of scientists, science research, or discourse. Rather, they were seen as "problems" for the politicians, industrialists and international or corporate organizations. There were no indications of planning, teaching nor research in science and technology education that explored the linkages and issues related to the interactions of economy, society, environmental degradation and the role of education, or related policy implications for science and technology education. The science curricula at the university and school setting are predominantly academic, descriptive, knowledge-based as in grammar-school traditions in the industrialized nations. Apparent was the delegitimation of indigenous knowledge and values in science and science education, enhanced by an academic ethic which seeks identification with educational institutions and peers in the North than with the rural masses. Ties between the local elite and their counterparts in the North also impact on representativeness and responsiveness of policies to majority needs and environmental care. To illuminate the ways in which science and technology at the university and school system should be culturally informed, the study recommends a framework of science and science education which could foster closer alliances with indigenous knowledge, the needs of the majorities, including women, and sensitivity to ecological balance. Such a socially and ecologically responsive science could play a crucial role of combating social injustice, and develop critical scientific and political awareness essential for the redirection of the scientific and technological discourse along more socially just and ecologically sustainable lines. (Abstract shortened by UMI.)
PEZZOLI, KEITH; KOZO, JUSTINE; FERRAN, KAREN; WOOTEN, WILMA; GOMEZ, GUDELIA RANGEL; AL-DELAIMY, WAEL K.
2015-01-01
Global megatrends—including climate change, food and water insecurity, economic crisis, large-scale disasters and widespread increases in preventable diseases—are motivating a bioregionalisation of planning in city-regions around the world. Bioregionalisation is an emergent process. It is visible where societies have begun grappling with complex socio-ecological problems by establishing place-based (territorial) approaches to securing health and well-being. This article examines a bioregional effort to merge place-based health planning and ecological restoration along the US–Mexico border. The theoretical construct underpinning this effort is called One Bioregion/One Health (OBROH). OBROH frames health as a transborder phenomenon that involves human-animal-environment interactions. The OBROH approach aims to improve transborder knowledge networking, ecosystem resilience, community participation in science–society relations, leadership development and cross-disciplinary training. It is a theoretically informed narrative to guide action. OBROH is part of a paradigm shift evident worldwide; it is redefining human-ecological relationships in the quest for healthy place making. The article concludes on a forward-looking note about the promise of environmental epidemiology, telecoupling, ecological restoration, the engaged university and bioregional justice as concepts pertinent to reinventing place-based planning. PMID:26097402
[The present-day issues of ecology, and possible solutions].
Galichiĭ, V A; Stepanova, S I
2005-01-01
Ecology is considered an interdisciplinary bank of knowledge about the relations of humans with nature and anthropogenic environment. The central issue of ecology is prevention of the global catastrophe in consequence of anthropogenic factors. The dire threat of the ecological catastrophe comes from breaching the principle of co-evolution of mankind and nature due to the unilateral prevalence of human interests during formation of the civilization. Issues revealed by the analysis of the present-day knowledge of ecology can be resolved by creating an ecology-oriented ethic system (moral imperative or ecology-focused morals) an ecological imperative (internationally endorsed bans), and taking actions toward the recovery of ruined and preservation of survived eco-systems. Of special concern is analysis of the doctrine of noosphere developed by V.I. Vernadsky. The authors also dwell upon eco-monitoring and prediction with account of the rhythm of animate nature and abiocoen.
ERIC Educational Resources Information Center
Koupal, Keith; Krasny, Marianne
2003-01-01
The effect of a 1-week sportfishing and environmental curriculum on participants' (aged 9-14) knowledge of fishing and biology/ecology, awareness of ethical behavior, and attitudes was assessed with 127 completed pre-/post-surveys. The program developed fishing and biology/ecology knowledge, but did not affect ethical behavior awareness or…
Trophic structure of pelagic species in the northwestern Mediterranean Sea
NASA Astrophysics Data System (ADS)
Albo-Puigserver, Marta; Navarro, Joan; Coll, Marta; Layman, Craig A.; Palomera, Isabel
2016-11-01
Ecological knowledge of food web interactions within pelagic marine communities is often limited, impairing our capabilities to manage these ecologically and economically important marine fish species. Here we used stable isotope analyses to investigate trophic interactions in the pelagic ecosystem of the northwestern Mediterranean Sea during 2012 and 2013. Our results suggest that European sardine, Sardina pilchardus, and anchovy, Engraulis encrasicolus, are consumers located at relatively low levels of the pelagic food web. Unexpectedly, the round sardinella, Sardinella aurita, appeared to be located at a higher trophic level than the other small pelagic fish species, although previous studies found similarity in their diets. Isotope data suggested that trophic niches of species within the genera Trachurus spp. and Scomber spp., were distinct. Atlantic bonito Sarda sarda, European hake Merluccius merluccius and European squid Loligo vulgaris, appeared to feed at higher trophic levels than other species. Despite some intraspecific seasonal variability for some species, community trophic structure appeared relatively stable through the year. These data provide an important step for developing models of food web dynamics in the northwestern Mediterranean Sea.
Viral dark matter and virus–host interactions resolved from publicly available microbial genomes
Roux, Simon; Hallam, Steven J; Woyke, Tanja; Sullivan, Matthew B
2015-01-01
The ecological importance of viruses is now widely recognized, yet our limited knowledge of viral sequence space and virus–host interactions precludes accurate prediction of their roles and impacts. In this study, we mined publicly available bacterial and archaeal genomic data sets to identify 12,498 high-confidence viral genomes linked to their microbial hosts. These data augment public data sets 10-fold, provide first viral sequences for 13 new bacterial phyla including ecologically abundant phyla, and help taxonomically identify 7–38% of ‘unknown’ sequence space in viromes. Genome- and network-based classification was largely consistent with accepted viral taxonomy and suggested that (i) 264 new viral genera were identified (doubling known genera) and (ii) cross-taxon genomic recombination is limited. Further analyses provided empirical data on extrachromosomal prophages and coinfection prevalences, as well as evaluation of in silico virus–host linkage predictions. Together these findings illustrate the value of mining viral signal from microbial genomes. DOI: http://dx.doi.org/10.7554/eLife.08490.001 PMID:26200428
Engaging Imagination in Ecological Education: Practical Strategies for Teaching
ERIC Educational Resources Information Center
Judson, Gillian
2015-01-01
"Engaging Imagination in Ecological Education" illustrates how to connect students to the natural world and encourage them to care about a more sustainable, ecologically secure planet. Cultivating ecological understanding can be more challenging for teachers than simply imparting knowledge of ecological issues; it requires reimagining…
Naah, John-Baptist S N; Guuroh, Reginald T
2017-03-01
Recording local ecological knowledge (LEK) is a useful approach to understanding interactions of the complex social-ecological systems. In spite of the recent growing interest in LEK studies on the effects of climate and land use changes, livestock mobility decisions and other aspects of agro-pastoral systems, LEK on forage plants has still been vastly under-documented in the West African savannas. Using a study area ranging from northern Ghana to central Burkina Faso, we thus aimed at exploring how aridity and socio-demographic factors drive the distributional patterns of forage-related LEK among its holders. With stratified random sampling, we elicited LEK among 450 informants in 15 villages (seven in Ghana and eight in Burkina Faso) via free list tasks coupled with ethnobotanical walks and direct field observations. We performed generalized linear mixed-effects models (aridity- and ethnicity-based models) and robust model selection procedures. Our findings revealed that LEK for woody and herbaceous forage plants was strongly influenced by the ethnicity-based model, while aridity-based model performed better for LEK on overall forage resources and crop-related forage plants. We also found that climatic aridity had negative effect on the forage-related LEK across gender and age groups, while agro- and floristic diversity had positive effect on the body of LEK. About 135 species belonging to 95 genera and 52 families were cited. Our findings shed more light on how ethnicity and environmental harshness can markedly shape the body of LEK in the face of global climate change. Better understanding of such a place-based knowledge system is relevant for sustainable forage plants utilization and livestock production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Parallel ecological networks in ecosystems
Olff, Han; Alonso, David; Berg, Matty P.; Eriksson, B. Klemens; Loreau, Michel; Piersma, Theunis; Rooney, Neil
2009-01-01
In ecosystems, species interact with other species directly and through abiotic factors in multiple ways, often forming complex networks of various types of ecological interaction. Out of this suite of interactions, predator–prey interactions have received most attention. The resulting food webs, however, will always operate simultaneously with networks based on other types of ecological interaction, such as through the activities of ecosystem engineers or mutualistic interactions. Little is known about how to classify, organize and quantify these other ecological networks and their mutual interplay. The aim of this paper is to provide new and testable ideas on how to understand and model ecosystems in which many different types of ecological interaction operate simultaneously. We approach this problem by first identifying six main types of interaction that operate within ecosystems, of which food web interactions are one. Then, we propose that food webs are structured among two main axes of organization: a vertical (classic) axis representing trophic position and a new horizontal ‘ecological stoichiometry’ axis representing decreasing palatability of plant parts and detritus for herbivores and detrivores and slower turnover times. The usefulness of these new ideas is then explored with three very different ecosystems as test cases: temperate intertidal mudflats; temperate short grass prairie; and tropical savannah. PMID:19451126
NASA Astrophysics Data System (ADS)
Chinn, Pauline W. U.
2009-09-01
This response draws from the literature on adaptive learning, traditional ecological knowledge, and social-ecological systems to show that Brad's choice is not a simple decision between traditional ecological knowledge and authentic science. This perspective recognizes knowledge systems as dynamic, cultural and historical activities characterized by diverse worldviews and ways of constructing and legitimizing knowledge. Brad's decision is seen as an example of adaptive learning, identity development and personal/collective agency oriented to increasing tribal influence in resource management decisions and policies. I will conclude that science literacy for all is not served by a transcendent, universal, Western modern view of science.
He, Xiaoqing; Jin, Yi; Ye, Meixia; Chen, Nan; Zhu, Jing; Wang, Jingqi; Jiang, Libo; Wu, Rongling
2017-01-01
How a species responds to such a biotic environment in the community, ultimately leading to its evolution, has been a topic of intense interest to ecological evolutionary biologists. Until recently, limited knowledge was available regarding the genotypic changes that underlie phenotypic changes. Our study implemented GWAS (Genome-Wide Association Studies) to illustrate the genetic architecture of ecological interactions that take place in microbial populations. By choosing 45 such interspecific pairs of Escherichia coli and Staphylococcus aureus strains that were all genotyped throughout the entire genome, we employed Q-ROADTRIPS to analyze the association between single SNPs and microbial abundance measured at each time point for bacterial populations reared in monoculture and co-culture, respectively. We identified a large number of SNPs and indels across the genomes (35.69 G clean data of E. coli and 50.41 G of S. aureus ). We reported 66 and 111 SNPs that were associated with interaction in E. coli and S. aureus , respectively. 23 out of 66 polymorphic changes resulted in amino acid alterations.12 significant genes, such as murE, treA, argS , and relA , which were also identified in previous evolutionary studies. In S. aureus , 111 SNPs detected in coding sequences could be divided into 35 non-synonymous and 76 synonymous SNPs. Our study illustrated the potential of genome-wide association methods for studying rapidly evolving traits in bacteria. Genetic association study methods will facilitate the identification of genetic elements likely to cause phenotypes of interest and provide targets for further laboratory investigation.
Gubbels, Jessica S; Van Kann, Dave Hh; de Vries, Nanne K; Thijs, Carel; Kremers, Stef Pj
2014-04-17
The ecological perspective holds that human behavior depends on the interaction of different environmental factors and personal characteristics, but it lacks validation and operationalization. In the current paper, an ecological view was adopted to examine the interactive impact of several ecological systems on children's dietary intake and physical activity at childcare or similar facilities. The ecological view was operationalized into three types of interaction: 1) interaction between types of childcare environment (physical, social, political, economic); 2) interaction between micro-systems (the childcare and home environment) in meso-systems; and 3) interaction between childcare environment and child characteristics. The predictive value of each of these interactions was tested based on a systematic review of the literature. Several studies support the hypothesis that the influence of the childcare environment on children's physical activity and diet is moderated by child characteristics (age, gender), but interaction between environmental types as well as between micro-systems is hardly examined in the field of behavioral nutrition and physical activity. Qualitative studies and general child development research provide some valuable insights, but we advocate quantitative research adopting an ecological perspective on environmental influences. Empirical studies operationalizing a true ecological view on diet and physical activity are scarce. Theorizing and assessment of interaction is advocated to become common practice rather than an exception in behavioral nutrition and physical activity research, in order to move the field forward.
2014-01-01
Background The ecological perspective holds that human behavior depends on the interaction of different environmental factors and personal characteristics, but it lacks validation and operationalization. In the current paper, an ecological view was adopted to examine the interactive impact of several ecological systems on children’s dietary intake and physical activity at childcare or similar facilities. The ecological view was operationalized into three types of interaction: 1) interaction between types of childcare environment (physical, social, political, economic); 2) interaction between micro-systems (the childcare and home environment) in meso-systems; and 3) interaction between childcare environment and child characteristics. The predictive value of each of these interactions was tested based on a systematic review of the literature. Discussion Several studies support the hypothesis that the influence of the childcare environment on children’s physical activity and diet is moderated by child characteristics (age, gender), but interaction between environmental types as well as between micro-systems is hardly examined in the field of behavioral nutrition and physical activity. Qualitative studies and general child development research provide some valuable insights, but we advocate quantitative research adopting an ecological perspective on environmental influences. Summary Empirical studies operationalizing a true ecological view on diet and physical activity are scarce. Theorizing and assessment of interaction is advocated to become common practice rather than an exception in behavioral nutrition and physical activity research, in order to move the field forward. PMID:24742167
Defining the Core Microbiome in Corals' Microbial Soup.
Hernandez-Agreda, Alejandra; Gates, Ruth D; Ainsworth, Tracy D
2017-02-01
Corals are considered one of the most complex microbial biospheres studied to date, hosting thousands of bacterial phylotypes in species-specific associations. There are, however, substantial knowledge gaps and challenges in understanding the functional significance of bacterial communities and bacterial symbioses of corals. The ubiquitous nature of some bacterial interactions has only recently been investigated and an accurate differentiation between the healthy (symbiotic) and unhealthy (dysbiotic) microbial state has not yet been determined. Here we review the complexity of the coral holobiont, coral microbiome diversity, and recently proposed bacterial symbioses of corals. We provide insight into coupling the core microbiome framework with community ecology principals, and draw on the theoretical insights from other complex systems, to build a framework to aid in deciphering ecologically significant microbes within a corals' microbial soup. Copyright © 2016 Elsevier Ltd. All rights reserved.
John Bussey; Mae A. Davenport; Marla R. Emery; Clint Carroll
2016-01-01
This article explores the generation, transmission, and nature of ecological knowledge used by tribal and nontribal natural resource management agency personnel who collectively manage a 666,542-acre forest in northern Minnesota. Using key informant interviews and an adapted grounded theory analysis, we documented the forms of knowledge participants expressed in their...
Can traditional ecological knowledge and wilderness benefit one another?
Henry P. Huntington
2002-01-01
Traditional ecological knowledge is the system of experiential knowledge gained by continual observation and transmitted among members of a community. It includes spiritual aspects of the proper relationship between humans and their environment. In this context, the Arctic is considered to be âpeopled land.â More recent uses of the term âwildernessâ recognize the...
A cognitive prosthesis for complex decision-making.
Tremblay, Sébastien; Gagnon, Jean-François; Lafond, Daniel; Hodgetts, Helen M; Doiron, Maxime; Jeuniaux, Patrick P J M H
2017-01-01
While simple heuristics can be ecologically rational and effective in naturalistic decision making contexts, complex situations require analytical decision making strategies, hypothesis-testing and learning. Sub-optimal decision strategies - using simplified as opposed to analytic decision rules - have been reported in domains such as healthcare, military operational planning, and government policy making. We investigate the potential of a computational toolkit called "IMAGE" to improve decision-making by developing structural knowledge and increasing understanding of complex situations. IMAGE is tested within the context of a complex military convoy management task through (a) interactive simulations, and (b) visualization and knowledge representation capabilities. We assess the usefulness of two versions of IMAGE (desktop and immersive) compared to a baseline. Results suggest that the prosthesis helped analysts in making better decisions, but failed to increase their structural knowledge about the situation once the cognitive prosthesis is removed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Schneider, D W
2000-12-01
Stephen Forbes's "The Lake as a Microcosm" is one of the founding documents of the science of ecology in the United States. By tracing the connections between scientists and local fishermen underlying the research on floodplain lakes presented in "The Lake as a Microcosm," this essay shows how the birth of ecology was tied to local knowledge and the local politics of environmental transformation. Forbes and the other scientists of the Illinois Natural History Survey relied on fishermen for manual labor, expertise in catching fish, and knowledge of the natural history of the fishes. As Forbes and his colleagues worked in close contact with fishermen, they also adopted many of their political concerns over the privatization of the floodplain and became politically active in supporting their interests. The close connection between scientists and local knowledge forced the ecologists to reframe the boundaries of ecology as objective or political, pure or applied, local or scientific.
Neutral Community Dynamics and the Evolution of Species Interactions.
Coelho, Marco Túlio P; Rangel, Thiago F
2018-04-01
A contemporary goal in ecology is to determine the ecological and evolutionary processes that generate recurring structural patterns in mutualistic networks. One of the great challenges is testing the capacity of neutral processes to replicate observed patterns in ecological networks, since the original formulation of the neutral theory lacks trophic interactions. Here, we develop a stochastic-simulation neutral model adding trophic interactions to the neutral theory of biodiversity. Without invoking ecological differences among individuals of different species, and assuming that ecological interactions emerge randomly, we demonstrate that a spatially explicit multitrophic neutral model is able to capture the recurrent structural patterns of mutualistic networks (i.e., degree distribution, connectance, nestedness, and phylogenetic signal of species interactions). Nonrandom species distribution, caused by probabilistic events of migration and speciation, create nonrandom network patterns. These findings have broad implications for the interpretation of niche-based processes as drivers of ecological networks, as well as for the integration of network structures with demographic stochasticity.
Aslan, Clare E; Rejmánek, Marcel
2010-06-01
Introduced species have the potential to impact processes central to the organization of ecological communities. Although hundreds of nonnative plant species have naturalized in the United States, only a small percentage of these have been studied in their new biotic communities. Their interactions with resident (native and introduced) bird species remain largely unexplored. As a group, citizen scientists such as ornithologists possess a wide range of experiences. They may offer insights into the prevalence and form of bird interactions with nonnative plants on a broad geographic scale. We surveyed 173 ornithologists from four U.S. states, asking them to report observations of bird interactions with nonnative plants. The primary goal of the survey was to obtain information useful in guiding future empirical research. In all, 1143 unique bird-plant interactions were reported, involving 99 plant taxa and 168 bird species. Forty-seven percent of reported interactions concerned potential dispersal (feeding on seeds or fruits). Remaining "habitat interactions" involved bird use of plants for nesting, perching, woodpecking, gleaning, and other activities. We utilized detrended correspondence analysis to ordinate birds with respect to the plants they reportedly utilize. Results illuminate the new guilds formed by these interactions. We assessed the existing level of knowledge about invasiveness of those plants reported most often in feeding interactions, identifying information gaps for biological invasions research priority. To exemplify the usefulness of citizen science data, we utilized survey results to guide field research on invasiveness in some of these plant species and observed both qualitatively and quantitatively strong agreement between survey reports and our empirical data. Questionnaire reports are therefore heuristically informative for the fields of both avian ecology and invasion biology.
Carlier, Yves; Truyens, Carine
2015-11-01
The aim of this paper is to discuss the main ecological interactions between the parasite Trypanosoma cruzi and its hosts, the mother and the fetus, leading to the transmission and development of congenital Chagas disease. One or several infecting strains of T. cruzi (with specific features) interact with: (i) the immune system of a pregnant woman whom responses depend on genetic and environmental factors, (ii) the placenta harboring its own defenses, and, finally, (iii) the fetal immune system displaying responses also susceptible to be modulated by maternal and environmental factors, as well as his own genetic background which is different from her mother. The severity of congenital Chagas disease depends on the magnitude of such final responses. The paper is mainly based on human data, but integrates also complementary observations obtained in experimental infections. It also focuses on important gaps in our knowledge of this congenital infection, such as the role of parasite diversity vs host genetic factors, as well as that of the maternal and placental microbiomes and the microbiome acquisition by infant in the control of infection. Investigations on these topics are needed in order to improve the programs aiming to diagnose, manage and control congenital Chagas disease. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Herbivore-induced plant volatiles and tritrophic interactions across spatial scales.
Aartsma, Yavanna; Bianchi, Felix J J A; van der Werf, Wopke; Poelman, Erik H; Dicke, Marcel
2017-12-01
Herbivore-induced plant volatiles (HIPVs) are an important cue used in herbivore location by carnivorous arthropods such as parasitoids. The effects of plant volatiles on parasitoids have been well characterised at small spatial scales, but little research has been done on their effects at larger spatial scales. The spatial matrix of volatiles ('volatile mosaic') within which parasitoids locate their hosts is dynamic and heterogeneous. It is shaped by the spatial pattern of HIPV-emitting plants, the concentration, chemical composition and breakdown of the emitted HIPV blends, and by environmental factors such as wind, turbulence and vegetation that affect transport and mixing of odour plumes. The volatile mosaic may be exploited differentially by different parasitoid species, in relation to species traits such as sensory ability to perceive volatiles and the physical ability to move towards the source. Understanding how HIPVs influence parasitoids at larger spatial scales is crucial for our understanding of tritrophic interactions and sustainable pest management in agriculture. However, there is a large gap in our knowledge on how volatiles influence the process of host location by parasitoids at the landscape scale. Future studies should bridge the gap between the chemical and behavioural ecology of tritrophic interactions and landscape ecology. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Using virtual reality to assess user experience.
Rebelo, Francisco; Noriega, Paulo; Duarte, Emília; Soares, Marcelo
2012-12-01
The aim of this article is to discuss how user experience (UX) evaluation can benefit from the use of virtual reality (VR). UX is usually evaluated in laboratory settings. However, considering that UX occurs as a consequence of the interaction between the product, the user, and the context of use, the assessment of UX can benefit from a more ecological test setting. VR provides the means to develop realistic-looking virtual environments with the advantage of allowing greater control of the experimental conditions while granting good ecological validity. The methods used to evaluate UX, as well as their main limitations, are identified.The currentVR equipment and its potential applications (as well as its limitations and drawbacks) to overcome some of the limitations in the assessment of UX are highlighted. The relevance of VR for UX studies is discussed, and a VR-based framework for evaluating UX is presented. UX research may benefit from a VR-based methodology in the scopes of user research (e.g., assessment of users' expectations derived from their lifestyles) and human-product interaction (e.g., assessment of users' emotions since the first moment of contact with the product and then during the interaction). This article provides knowledge to researchers and professionals engaged in the design of technological interfaces about the usefulness of VR in the evaluation of UX.
Language Program as Ecology: A Perspective for Leadership
ERIC Educational Resources Information Center
Pennington, Martha C.; Hoekje, Barbara J.
2010-01-01
A language program is a delicate and intricate system of interacting resources or components, which, like a biological ecology, is in a constant state of evolution and change. The interactive system making up the program's internal culture is connected ecologically to the external environment. The ecological model is introduced as a useful…
Ecological literacy and beyond: Problem-based learning for future professionals.
Lewinsohn, Thomas M; Attayde, José Luiz; Fonseca, Carlos Roberto; Ganade, Gislene; Jorge, Leonardo Ré; Kollmann, Johannes; Overbeck, Gerhard E; Prado, Paulo Inácio; Pillar, Valério D; Popp, Daniela; da Rocha, Pedro L B; Silva, Wesley Rodrigues; Spiekermann, Annette; Weisser, Wolfgang W
2015-03-01
Ecological science contributes to solving a broad range of environmental problems. However, lack of ecological literacy in practice often limits application of this knowledge. In this paper, we highlight a critical but often overlooked demand on ecological literacy: to enable professionals of various careers to apply scientific knowledge when faced with environmental problems. Current university courses on ecology often fail to persuade students that ecological science provides important tools for environmental problem solving. We propose problem-based learning to improve the understanding of ecological science and its usefulness for real-world environmental issues that professionals in careers as diverse as engineering, public health, architecture, social sciences, or management will address. Courses should set clear learning objectives for cognitive skills they expect students to acquire. Thus, professionals in different fields will be enabled to improve environmental decision-making processes and to participate effectively in multidisciplinary work groups charged with tackling environmental issues.
Petroleum hydrocarbon contamination in boreal forest soils: a mycorrhizal ecosystems perspective.
Robertson, Susan J; McGill, William B; Massicotte, Hugues B; Rutherford, P Michael
2007-05-01
The importance of developing multi-disciplinary approaches to solving problems relating to anthropogenic pollution is now clearly appreciated by the scientific community, and this is especially evident in boreal ecosystems exposed to escalating threats of petroleum hydrocarbon (PHC) contamination through expanded natural resource extraction activities. This review aims to synthesize information regarding the fate and behaviour of PHCs in boreal forest soils in both ecological and sustainable management contexts. From this, we hope to evaluate potential management strategies, identify gaps in knowledge and guide future research. Our central premise is that mycorrhizal systems, the ubiquitous root symbiotic fungi and associated food-web communities, occupy the structural and functional interface between decomposition and primary production in northern forest ecosystems (i.e. underpin survival and productivity of the ecosystem as a whole), and, as such, are an appropriate focal point for such a synthesis. We provide pertinent basic information about mycorrhizas, followed by insights into the ecology of ecto- and ericoid mycorrhizal systems. Next, we review the fate and behaviour of PHCs in forest soils, with an emphasis on interactions with mycorrhizal fungi and associated bacteria. Finally, we summarize implications for ecosystem management. Although we have gained tremendous insights into understanding linkages between ecosystem functions and the various aspects of mycorrhizal diversity, very little is known regarding rhizosphere communities in PHC-contaminated soils. This makes it difficult to translate ecological knowledge into environmental management strategies. Further research is required to determine which fungal symbionts are likely to survive and compete in various ecosystems, whether certain fungal - plant associations gain in ecological importance following contamination events, and how PHC contamination may interfere with processes of nutrient acquisition and exchange and metabolic processes. Research is also needed to assess whether the metabolic capacity for intrinsic decomposition exists in these ecosystems, taking into account ecological variables such as presence of other organisms (and their involvement in syntrophic biodegradation), bioavailability and toxicity of mixtures of PHCs, and physical changes to the soil environment.
Bretagnolle, Vincent; Berthet, Elsa; Gross, Nicolas; Gauffre, Bertrand; Plumejeaud, Christine; Houte, Sylvie; Badenhausser, Isabelle; Monceau, Karine; Allier, Fabrice; Monestiez, Pascal; Gaba, Sabrina
2018-06-15
Agriculture is currently facing unprecedented challenges: ensuring food, fiber and energy production in the face of global change, maintaining the economic performance of farmers and preserving natural resources such as biodiversity and associated key ecosystem services for sustainable agriculture. Addressing these challenges requires innovative landscape scale farming systems that account for changing economic and environmental targets. These novel agricultural systems need to be recognized, accepted and promoted by all stakeholders, including local residents, and supported by public policies. Agroecosystems should be considered as socio-ecological systems and alternative farming systems should be based on ecological principles while taking societal needs into account. This requires an in-depth knowledge of the multiple interactions between sociological and ecological dynamics. Long Term Socio-Ecological Research platforms (LTSER) are ideal for acquiring this knowledge as they (i) are not constrained by traditional disciplinary boundaries, (ii) operate at a large spatial scale involving all stakeholders, and (iii) use systemic approaches to investigate biodiversity and ecosystem services. This study presents the socio-ecological research strategy from the LTSER "Zone Atelier Plaine & Val de Sèvre" (ZA PVS), a large study area where data has been sampled since 1994. Its global aim is to identify effective solutions for agricultural development and the conservation of biodiversity in farmlands. Three main objectives are targeted by the ZAPVS. The first objective is intensive monitoring of landscape features, the main taxa present and agricultural practices. The second objective is the experimental investigation, in real fields with local farmers, of important ecosystem functions and services, in relation to pesticide use, crop production and farming socio-economic value. The third aim is to involve stakeholders through participatory research, citizen science and the dissemination of scientific results. This paper underlines the relevance of LTSERs for addressing agricultural challenges, while acknowledging that there are some yet unsolved key challenges. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pavao-Zuckerman, M.; Huxman, T.; Morehouse, B.
2008-12-01
Earth system and ecological sustainability problems are complex outcomes of biological, physical, social, and economic interactions. A common goal of outreach and education programs is to foster a scientifically literate community that possesses the knowledge to contribute to environmental policies and decision making. Uncertainty and variability that is both inherent in Earth system and ecological sciences can confound such goals of improved ecological literacy. Public programs provide an opportunity to engage lay-persons in the scientific method, allowing them to experience science in action and confront these uncertainties face-on. We begin with a definition of scientific literacy that expands its conceptualization of science beyond just a collection of facts and concepts to one that views science as a process to aid understanding of natural phenomena. A process-based scientific literacy allows the public, teachers, and students to assimilate new information, evaluate climate research, and to ultimately make decisions that are informed by science. The Biosphere 2 facility (B2) is uniquely suited for such outreach programs because it allows linking Earth system and ecological science research activities in a large scale controlled environment setting with outreach and education opportunities. A primary outreach goal is to demonstrate science in action to an audience that ranges from K-12 groups to retired citizens. Here we discuss approaches to outreach programs that focus on soil-water-atmosphere-plant interactions and their roles in the impacts and causes of global environmental change. We describe a suite of programs designed to vary the amount of participation a visitor has with the science process (from passive learning to data collection to helping design experiments) to test the hypothesis that active learning fosters increased scientific literacy and the creation of science advocates. We argue that a revised framing of the scientific method with a more open role for citizens in science will have greater success in fostering science literacy and produce a citizenry that is equipped to tackle complex environmental decision making.
Historical foundations and future directions in macrosystems ecology.
Rose, Kevin C; Graves, Rose A; Hansen, Winslow D; Harvey, Brian J; Qiu, Jiangxiao; Wood, Stephen A; Ziter, Carly; Turner, Monica G
2017-02-01
Macrosystems ecology is an effort to understand ecological processes and interactions at the broadest spatial scales and has potential to help solve globally important social and ecological challenges. It is important to understand the intellectual legacies underpinning macrosystems ecology: How the subdiscipline fits within, builds upon, differs from and extends previous theories. We trace the rise of macrosystems ecology with respect to preceding theories and present a new hypothesis that integrates the multiple components of macrosystems theory. The spatio-temporal anthropogenic rescaling (STAR) hypothesis suggests that human activities are altering the scales of ecological processes, resulting in interactions at novel space-time scale combinations that are diverse and predictable. We articulate four predictions about how human actions are "expanding", "shrinking", "speeding up" and "slowing down" ecological processes and interactions, and thereby generating new scaling relationships for ecological patterns and processes. We provide examples of these rescaling processes and describe ecological consequences across terrestrial, freshwater and marine ecosystems. Rescaling depends in part on characteristics including connectivity, stability and heterogeneity. Our STAR hypothesis challenges traditional assumptions about how the spatial and temporal scales of processes and interactions operate in different types of ecosystems and provides a lens through which to understand macrosystem-scale environmental change. © 2016 John Wiley & Sons Ltd/CNRS.
Oestrogenic pollutants promote the growth of a parasite in male sticklebacks.
Macnab, Vicki; Katsiadaki, Ioanna; Tilley, Ceinwen A; Barber, Iain
2016-05-01
Aquatic environments are especially susceptible to anthropogenic chemical pollution. Yet although knowledge on the biological effects of pollutants on aquatic organisms is increasing, far less is known about how ecologically-important interspecific interactions are affected by chemicals. In particular, the consequences of anthropogenic pollution for the interaction of hosts and parasites are poorly understood. Here, we examine how exposure to 17β-oestradiol (E2)-a natural oestrogen and a model endocrine disrupting chemical (EDC) -affects infection susceptibility and emergent infection phenotypes in an experimental host-parasite system; three spined sticklebacks (Gasterosteus aculeatus) infected with the common, debilitating cestode Schistocephalus solidus. We exposed individual sticklebacks to a 0ngl(-1) (control), 10ngl(-1) or 100ngl(-1) E2 treatment before feeding them infective stages of S. solidus. E2 exposure significantly elevated vitellogenin (VTG) levels-a biomarker of exposure to xenoestrogens-in both female and male fish, and reduced their body condition. Susceptibility to parasite infection was unaffected by EDC exposure; however, E2 treatment and fish sex interacted significantly to determine the growth rate of parasites, which grew quickest in male hosts held under the higher (100ngl(-1)) E2 treatment. Tissue VTG levels and parasite mass correlated positively across the whole sample of experimentally infected fish, but separate regressions run on the male and female datasets demonstrated a significant relationship only among male fish. Hence, among males-but not females-elevated VTG levels elicited by E2 exposure led to more rapid parasite growth. We outline plausible physiological mechanisms that could explain these results. Our results demonstrate that oestrogenic pollutants can alter host-parasite interactions by promoting parasite growth, and that male hosts may be disproportionately affected. Because ecologically-relevant effects of infection on host antipredator responses, growth, energetics and reproductive development all depend on parasite mass in this host-parasite system, our results indicate that EDCs can mediate the ecological consequences of infections. We therefore consider the implications of our results for the ecology of hosts and parasites in polluted environments. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
SOIL ECOLOGY AS KEY TO SUSTAINABLE CROP PRODUCTION.
De Deyn, G B
2015-01-01
Sustainable production of food, feed and fiberwarrants sustainable soil management and crop protection. The tools available to achieve this are both in the realm of the plants and of the soil, with a key role for plant-soil interactions. At the plant level we have vast knowledge of variation within plant species with respect to pests and diseases, based on which we can breed for resistance. However, given that systems evolve this resistance is bound to be temporarily, hence also other strategies are needed. Here I plea for an integrative approach for sustainable production using ecological principles. Ecology, the study of how organisms interact with their environment, teaches us that diversity promotes productivity and yield stability. These effects are thought to be governed through resource use complementarity and reduced build-up of pests and diseases both above- and belowground. In recent years especially the role of soil biotic interactions has revealed new insights in how plant diversity and productivity are related to soil biodiversity and the functions soil biota govern. In our grassland biodiversity studies we found that root feeders can promote plant diversity and succession without reducing plant community productivity, this illustrates the role of diversity to maintain productivity. Also diversity within species offers scope for sustainable production, for example through awareness of differences between plant genotypes in chemical defense compounds that can attract natural enemies of pests aboveground- and belowground thereby providing plant protection. Plant breeding can also benefit from using complementarity between plant species in the selection for new varieties, as our work demonstrated that when growing in species mixtures plant species adapt to each other over time such that their resource acquisition traits become more complementing. Finally, in a recent meta-analysis we show that earthworms can stimulate crop yield with on average 25%, but also that the effect size is conditional on fertilizer management and crop type. Together these examples illustrate the role of soil ecology in plant growth and the potential of its use for sustainable crop productivity through judicious management of plant-soil interactions.
Reyes-García, Victoria; Pyhälä, Aili; Díaz-Reviriego, Isabel; Duda, Romain; Fernández-Llamazares, Álvaro; Gallois, Sandrine; Guèze, Maximilien; Napitupulu, Lucentezza
2016-01-01
Researchers have analysed whether school and local knowledge complement or substitute each other, but have paid less attention to whether those two learning models use different cognitive strategies. In this study, we use data collected among three contemporary hunter-gatherer societies with relatively low levels of exposure to schooling yet with high levels of local ecological knowledge to test the association between i) schooling and ii) local ecological knowledge and verbal working memory. Participants include 94 people (24 Baka, 25 Punan, and 45 Tsimane') from whom we collected information on 1) schooling and school related skills (i.e., literacy and numeracy), 2) local knowledge and skills related to hunting and medicinal plants, and 3) working memory. To assess working memory, we applied a multi-trial free recall using words relevant to each cultural setting. People with and without schooling have similar levels of accurate and inaccurate recall, although they differ in their strategies to organize recall: people with schooling have higher results for serial clustering, suggesting better learning with repetition, whereas people without schooling have higher results for semantic clustering, suggesting they organize recall around semantically meaningful categories. Individual levels of local ecological knowledge are not related to accurate recall or organization recall, arguably due to overall high levels of local ecological knowledge. While schooling seems to favour some organization strategies this might come at the expense of some other organization strategies.
NASA Technical Reports Server (NTRS)
Wade, Rose C.
1989-01-01
The NASA Controlled Ecological Life Support System (CELSS) Program is involved in developing a biogenerative life support system that will supply food, air, and water to space crews on long-duration missions. An important part of this effort is in development of the knowledge and technological capability of producing and processing foods to provide optimal diets for space crews. This involves such interrelated factors as determination of the diet, based on knowledge of nutrient needs of humans and adjustments in those needs that may be required as a result of the conditions of long-duration space flight; determination of the optimal mixture of crops required to provide nutrients at levels that are sufficient but not excessive or toxic; and consideration of the critical issues of spacecraft space and power limitations, which impose a phytomass minimization requirement. The complex interactions among these factors are examined with the goal of supplying a diet that will satisfy human needs while minimizing the total phytomass requirement. The approach taken was to collect plant nutritional composition and phytomass production data, identify human nutritional needs and estimate the adjustments to the nutrient requirements likely to result from space flight, and then to generate mathematical models from these data.
DeBate, Rita; Plescia, Marcus; Joyner, Dennis; Spann, LaPronda
2004-01-01
An ecological perspective of health promotion was used as the framework for a Charlotte community-based intervention to eliminate rates of health disparities in cardiovascular disease and diabetes. Interventions are targeted on 5 levels of influences, with interaction between levels creating a supportive system for sustained change. The purpose of this qualitative assessment was to explore changes that have occurred among and between the following levels of influences: intrapersonal, interpersonal, organizational, community, and policy. Data from 10 focus groups were analyzed to identify overarching themes and subthemes. Results support positive changes within and between levels of change. REACH participants reported an increase in knowledge of preventative health behaviors, the development of health-related skills, and the diffusion of knowledge to family. Fellowship was identified as the primary motivator to continue positive health behaviors. Community Lay Health Advisors (LHAs) reported changes in individual health perceptions from disease-to prevention-oriented, and positive community changes, including the establishment of walking groups, and a farmers' market. The REACH program staff reported that collaboration between staff and LHAs was crucial to program success. The results of this assessment provide feedback for improving community health promotion activities and developing program sustainability.
Not just black and white: pigment pattern development and evolution in vertebrates
Mills, Margaret G.; Patterson, Larissa B.
2009-01-01
Animals display diverse colors and patterns that vary within and between species. Similar phenotypes appear in both closely related and widely divergent taxa. Pigment patterns thus provide an opportunity to explore how development is altered to produce differences in form and whether similar phenotypes share a common genetic basis. Understanding the development and evolution of pigment patterns requires knowledge of the cellular interactions and signaling pathways that produce those patterns. These complex traits provide unparalleled opportunities for integrating studies from ecology and behavior to molecular biology and biophysics. PMID:19073271
Making research relevant? Ecological methods and the ecosystem services framework
NASA Astrophysics Data System (ADS)
Root-Bernstein, Meredith; Jaksic, Fabián. M.
2017-07-01
We examine some unexpected epistemological conflicts that arise at the interfaces between ecological science, the ecosystem services framework, policy, and industry. We use an example from our own research to motivate and illustrate our main arguments, while also reviewing standard approaches to ecological science using the ecosystem services framework. While we agree that the ecosystem services framework has benefits in its industrial applications because it may force economic decision makers to consider a broader range of costs and benefits than they would do otherwise, we find that many alignments of ecology with the ecosystem services framework are asking questions that are irrelevant to real-world applications, and generating data that does not serve real-world applications. We attempt to clarify why these problems arise and how to avoid them. We urge fellow ecologists to reflect on the kind of research that can lead to both scientific advances and applied relevance to society. In our view, traditional empirical approaches at landscape scales or with place-based emphases are necessary to provide applied knowledge for problem solving, which is needed once decision makers identify risks to ecosystem services. We conclude that the ecosystem services framework is a good policy tool when applied to decision-making contexts, but not a good theory either of social valuation or ecological interactions, and should not be treated as one.
Integrating soil ecological knowledge into restoration management
Liam Heneghan; Susan P. Miller; Sara Baer; Mac A. Callaham; James Montgomery; Mitchell Pavao-Zuckerman; Charles C. Rhoades; Sarah Richardson
2008-01-01
The variability in the type of ecosystem degradation and the specificity of restoration goals can challenge restorationists' ability to generalize about approaches that lead to restoration success. The discipline of soil ecology, which emphasizes both soil organisms and ecosystem processes, has generated a body of knowledge that can be generally useful in...
Landscape genetics: combining landscape ecology and population genetics
Stephanie Manel; Michael K. Schwartz; Gordon Luikart; Pierre Taberlet
2003-01-01
Understanding the processes and patterns of gene flow and local adaptation requires a detailed knowledge of how landscape characteristics structure populations. This understanding is crucial, not only for improving ecological knowledge, but also for managing properly the genetic diversity of threatened and endangered populations. For nearly 80 years, population...
"Tuki Ayllpanchik" (Our Beautiful Land): Indigenous Ecology and Farming in the Peruvian Highlands
ERIC Educational Resources Information Center
Sumida Huaman, Elizabeth
2016-01-01
Based on ethnographic research with an Indigenous community in Junín, Peru, and involving over 21 participants, this article explores the link between Indigenous lands, environmental knowledge, cultural practices, and education. Drawing from traditional ecological knowledge and nature-mediated education, Indigenous community spaces as vital…
Calhoun, Aram J. K.; Jansujwicz, Jessica S.; Bell, Kathleen P.; Hunter, Malcolm L.
2014-01-01
Vernal pools are far more important for providing ecosystem services than one would predict based on their small size. However, prevailing resource-management strategies are not effectively conserving pools and other small natural features on private lands. Solutions are complicated by tensions between private property and societal rights, uncertainties over resource location and function, diverse stakeholders, and fragmented regulatory authority. The development and testing of new conservation approaches that link scientific knowledge, stakeholder decision-making, and conservation outcomes are important responses to this conservation dilemma. Drawing from a 15-y history of vernal pool conservation efforts in Maine, we describe the coevolution of pool conservation and research approaches, focusing on how research-based knowledge was produced and used in support of management decisions. As management shifted from reactive, top-down approaches to proactive and flexible approaches, research shifted from an ecology-focused program to an interdisciplinary program based on social–ecological systems. The most effective strategies for linking scientific knowledge with action changed as the decision-makers, knowledge needs, and context for vernal pool management advanced. Interactions among stakeholders increased the extent to which knowledge was coproduced and shifted the objective of stakeholder engagement from outreach to research collaboration and development of innovative conservation approaches. New conservation strategies were possible because of the flexible, solutions-oriented collaborations and trust between scientists and decision-makers (fostered over 15 y) and interdisciplinary, engaged research. Solutions to the dilemma of conserving small natural features on private lands, and analogous sustainability science challenges, will benefit from repeated negotiations of the science–policy boundary. PMID:25002496
Heger, Thierry J; Edgcomb, Virginia P; Kim, Eunsoo; Lukeš, Julius; Leander, Brian S; Yubuki, Naoji
2014-01-01
The discovery and characterization of protist communities from diverse environments are crucial for understanding the overall evolutionary history of life on earth. However, major questions about the diversity, ecology, and evolutionary history of protists remain unanswered, notably because data obtained from natural protist communities, especially of heterotrophic species, remain limited. In this review, we discuss the challenges associated with "field protistology", defined here as the exploration, characterization, and interpretation of microbial eukaryotic diversity within the context of natural environments or field experiments, and provide suggestions to help fill this important gap in knowledge. We also argue that increased efforts in field studies that combine molecular and microscopical methods offer the most promising path toward (1) the discovery of new lineages that expand the tree of eukaryotes; (2) the recognition of novel evolutionary patterns and processes; (3) the untangling of ecological interactions and functions, and their roles in larger ecosystem processes; and (4) the evaluation of protist adaptations to a changing climate. © 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists.
Microbial disease and the coral holobiont
Bourne, David G.; Garren, Melissa; Work, Thierry M.; Rosenberg, Eugene; Smith, Garriet W.; Harvell, C. Drew
2009-01-01
Tropical coral reefs harbour a reservoir of enormous biodiversity that is increasingly threatened by direct human activities and indirect global climate shifts. Emerging coral diseases are one serious threat implicated in extensive reef deterioration through disruption of the integrity of the coral holobiont – a complex symbiosis between the coral animal, endobiotic alga and an array of microorganisms. In this article, we review our current understanding of the role of microorganisms in coral health and disease, and highlight the pressing interdisciplinary research priorities required to elucidate the mechanisms of disease. We advocate an approach that applies knowledge gained from experiences in human and veterinary medicine, integrated into multidisciplinary studies that investigate the interactions between host, agent and environment of a given coral disease. These approaches include robust and precise disease diagnosis, standardised ecological methods and application of rapidly developing DNA, RNA and protein technologies, alongside established histological, microbial ecology and ecological expertise. Such approaches will allow a better understanding of the causes of coral mortality and coral reef declines and help assess potential management options to mitigate their effects in the longer term.
Pitman, Sheryn D.; Daniels, Christopher B.
2016-01-01
Knowledge and understanding about how the Earth functions and supports life create the foundation for ecological literacy. Industrialisation, urbanisation and population growth have resulted in changed relationships between many human communities and the natural world. A potential consequence is a compromised capability to make well-informed decisions about how to live sustainably. To gain a measure of ecological literacy within the South Australian community, we collaborated with senior scientists and educators to develop and apply an instrument with the capacity to determine indicative levels of ecological knowledge and understanding. A formal, variable credit, multiple-choice assessment instrument was distributed online to groups and individuals within diverse community sectors and industries. Quantitative analyses of scores indicated that levels of ecological knowledge and understanding within a self-selected sample of over one thousand individuals ranged from very low to extremely high, with the majority of respondents achieving moderate to high scores. This instrument has a demonstrated capacity to determine indicative levels of ecological literacy within and between individuals and groups. It is able to capture mastery of ecological knowledge and understanding achieved through both formal and informal pathways. Using the results, we have been able to establish a range of standards and an aspirational target score for the South Australian community. The value of this work is in its potential to deliver insights into relationships between humans and the rest of the natural world, and into characteristics of eco-literate individuals and communities, that might not otherwise emerge. PMID:26938258
How can we identify and communicate the ecological value of deep-sea ecosystem services?
Jobstvogt, Niels; Townsend, Michael; Witte, Ursula; Hanley, Nick
2014-01-01
Submarine canyons are considered biodiversity hotspots which have been identified for their important roles in connecting the deep sea with shallower waters. To date, a huge gap exists between the high importance that scientists associate with deep-sea ecosystem services and the communication of this knowledge to decision makers and to the wider public, who remain largely ignorant of the importance of these services. The connectivity and complexity of marine ecosystems makes knowledge transfer very challenging, and new communication tools are necessary to increase understanding of ecological values beyond the science community. We show how the Ecosystem Principles Approach, a method that explains the importance of ocean processes via easily understandable ecological principles, might overcome this challenge for deep-sea ecosystem services. Scientists were asked to help develop a list of clear and concise ecosystem principles for the functioning of submarine canyons through a Delphi process to facilitate future transfers of ecological knowledge. These ecosystem principles describe ecosystem processes, link such processes to ecosystem services, and provide spatial and temporal information on the connectivity between deep and shallow waters. They also elucidate unique characteristics of submarine canyons. Our Ecosystem Principles Approach was successful in integrating ecological information into the ecosystem services assessment process. It therefore has a high potential to be the next step towards a wider implementation of ecological values in marine planning. We believe that successful communication of ecological knowledge is the key to a wider public support for ocean conservation, and that this endeavour has to be driven by scientists in their own interest as major deep-sea stakeholders.
Pitman, Sheryn D; Daniels, Christopher B
2016-01-01
Knowledge and understanding about how the Earth functions and supports life create the foundation for ecological literacy. Industrialisation, urbanisation and population growth have resulted in changed relationships between many human communities and the natural world. A potential consequence is a compromised capability to make well-informed decisions about how to live sustainably. To gain a measure of ecological literacy within the South Australian community, we collaborated with senior scientists and educators to develop and apply an instrument with the capacity to determine indicative levels of ecological knowledge and understanding. A formal, variable credit, multiple-choice assessment instrument was distributed online to groups and individuals within diverse community sectors and industries. Quantitative analyses of scores indicated that levels of ecological knowledge and understanding within a self-selected sample of over one thousand individuals ranged from very low to extremely high, with the majority of respondents achieving moderate to high scores. This instrument has a demonstrated capacity to determine indicative levels of ecological literacy within and between individuals and groups. It is able to capture mastery of ecological knowledge and understanding achieved through both formal and informal pathways. Using the results, we have been able to establish a range of standards and an aspirational target score for the South Australian community. The value of this work is in its potential to deliver insights into relationships between humans and the rest of the natural world, and into characteristics of eco-literate individuals and communities, that might not otherwise emerge.
How Can We Identify and Communicate the Ecological Value of Deep-Sea Ecosystem Services?
Jobstvogt, Niels; Townsend, Michael; Witte, Ursula; Hanley, Nick
2014-01-01
Submarine canyons are considered biodiversity hotspots which have been identified for their important roles in connecting the deep sea with shallower waters. To date, a huge gap exists between the high importance that scientists associate with deep-sea ecosystem services and the communication of this knowledge to decision makers and to the wider public, who remain largely ignorant of the importance of these services. The connectivity and complexity of marine ecosystems makes knowledge transfer very challenging, and new communication tools are necessary to increase understanding of ecological values beyond the science community. We show how the Ecosystem Principles Approach, a method that explains the importance of ocean processes via easily understandable ecological principles, might overcome this challenge for deep-sea ecosystem services. Scientists were asked to help develop a list of clear and concise ecosystem principles for the functioning of submarine canyons through a Delphi process to facilitate future transfers of ecological knowledge. These ecosystem principles describe ecosystem processes, link such processes to ecosystem services, and provide spatial and temporal information on the connectivity between deep and shallow waters. They also elucidate unique characteristics of submarine canyons. Our Ecosystem Principles Approach was successful in integrating ecological information into the ecosystem services assessment process. It therefore has a high potential to be the next step towards a wider implementation of ecological values in marine planning. We believe that successful communication of ecological knowledge is the key to a wider public support for ocean conservation, and that this endeavour has to be driven by scientists in their own interest as major deep-sea stakeholders. PMID:25055119
Dimensionality of consumer search space drives trophic interaction strengths.
Pawar, Samraat; Dell, Anthony I; Savage, Van M
2012-06-28
Trophic interactions govern biomass fluxes in ecosystems, and stability in food webs. Knowledge of how trophic interaction strengths are affected by differences among habitats is crucial for understanding variation in ecological systems. Here we show how substantial variation in consumption-rate data, and hence trophic interaction strengths, arises because consumers tend to encounter resources more frequently in three dimensions (3D) (for example, arboreal and pelagic zones) than two dimensions (2D) (for example, terrestrial and benthic zones). By combining new theory with extensive data (376 species, with body masses ranging from 5.24 × 10(-14) kg to 800 kg), we find that consumption rates scale sublinearly with consumer body mass (exponent of approximately 0.85) for 2D interactions, but superlinearly (exponent of approximately 1.06) for 3D interactions. These results contradict the currently widespread assumption of a single exponent (of approximately 0.75) in consumer-resource and food-web research. Further analysis of 2,929 consumer-resource interactions shows that dimensionality of consumer search space is probably a major driver of species coexistence, and the stability and abundance of populations.
Ice-cover effects on competitive interactions between two fish species.
Helland, Ingeborg P; Finstad, Anders G; Forseth, Torbjørn; Hesthagen, Trygve; Ugedal, Ola
2011-05-01
1. Variations in the strength of ecological interactions between seasons have received little attention, despite an increased focus on climate alterations on ecosystems. Particularly, the winter situation is often neglected when studying competitive interactions. In northern temperate freshwaters, winter implies low temperatures and reduced food availability, but also strong reduction in ambient light because of ice and snow cover. Here, we study how brown trout [Salmo trutta (L.)] respond to variations in ice-cover duration and competition with Arctic charr [Salvelinus alpinus (L.)], by linking laboratory-derived physiological performance and field data on variation in abundance among and within natural brown trout populations. 2. Both Arctic charr and brown trout reduced resting metabolic rate under simulated ice-cover (darkness) in the laboratory, compared to no ice (6-h daylight). However, in contrast to brown trout, Arctic charr was able to obtain positive growth rate in darkness and had higher food intake in tank experiments than brown trout. Arctic charr also performed better (lower energy loss) under simulated ice-cover in a semi-natural environment with natural food supply. 3. When comparing brown trout biomass across 190 Norwegian lakes along a climate gradient, longer ice-covered duration decreased the biomass only in lakes where brown trout lived together with Arctic charr. We were not able to detect any effect of ice-cover on brown trout biomass in lakes where brown trout was the only fish species. 4. Similarly, a 25-year time series from a lake with both brown trout and Arctic charr showed that brown trout population growth rate depended on the interaction between ice breakup date and Arctic charr abundance. High charr abundance was correlated with low trout population growth rate only in combination with long winters. 5. In conclusion, the two species differed in performance under ice, and the observed outcome of competition in natural populations was strongly dependent on duration of the ice-covered period. Our study shows that changes in ice phenology may alter species interactions in Northern aquatic systems. Increased knowledge of how adaptations to winter conditions differ among coexisting species is therefore vital for our understanding of ecological impacts of climate change. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.
Understanding the biological and environmental implications of nanomaterials
NASA Astrophysics Data System (ADS)
Lin, Sijie
The last two decades have witnessed the discovery, development, and large-scale manufacturing of novel nanomaterials. While nanomaterials bring in exciting and extraordinary properties in all areas of materials, electronics, mechanics, and medicine, they also could generate potential adverse effects in biological systems and in the environment. The currently limited application of nanomaterials in biological and ecological systems results from the insufficient and often controversial data on describing the complex behaviors of nanomaterials in living systems. The purpose of this dissertation intends to fill such a knowledge void with methodologies from the disciplines of biophysics, biology, and materials science and engineering. Chapter 1 of this dissertation provides a comprehensive review on the structures and properties of carbon nanomaterials (CBNMs), metal oxides, and quantum dots (QDs). This chapter also details the state-of-the-art on the biological applications, ecological applications, and toxicity of nanomaterials. With Chapter 1 serving as a background, Chapters 2-5 present my PhD research, an inquiry on the fate of nanomaterials in biological and ecological systems, on the whole organism and cellular levels. Specifically, CBNMs are introduced to rice plant seedlings and the uptake, translocation and generational transfer of fullerene C70 in the plant compartments are imaged and characterized. The interactions between CBNMs and rice plants on the whole organism level are initiated by the binding between CBNMs and natural organic matter (NOM), driven by the transpiration of water from the roots to the leaves of the plants and mediated by both the physiochemical properties of the CBNMs and plant physiology. In Chapter 3, semiconducting nanocrystals quantum dots (QDs) are introduced to green algae Chlamydomonas to probe the interactions of nanomaterials with ecological systems on the cellular level. The adsorption of QDs onto the algal cell wall is quantified by UV-vis spectrophotometry and fitted with the Freundlich isothem. Effects of the adsorption of QDs on the photosynthetic activities of the algae are evaluated using O2 evolution and CO2 depletion assays, and the ecological impact of such adsorption is discussed. To understand the effects of nanomaterials on the cell membrane, nanoparticles (Au, TiO2, and QDs) of different surface charges and chemical compositions are introduced to HT-29 mammalian cells in Chapter 4. The polarization of the cell membrane is investigated using a FLIPR membrane potential kit. The phase of the cell membrane, in the presence of both positively and negatively charged nanoparticles, are examined using laurden, a lipophilic dye that serves as a molecular reporter on the fluidic or gel phase of the host membrane. To address the effects of nanomaterials on biological and ecological systems within the same context, Chapter 5 offers a first parallel comparison between mammalian and plant cell responses to nanomaterials. This study is conducted using a plant cell viability assay, complimented by bright field, fluorescence, and electron microscopy imaging. Discussions of this study are presented based on the hydrophobicity and solubility of C60(OH) 20 and of supramolecular complex C70-NOM, hydrophobicity and porous structure of the plant Allium cepa cell wall, and the amphiphilic structure and endocytosis of the plasma cell membrane of both Allium cepa and HT-29 cells. Chapter 6 summarizes and rationalizes results obtained from the entire dissertation research. Future work inspired by this research is presented at the end of the chapter. Specifically, this dissertation is structured to embody the following essential and complementary chapters: (1) Chapter 1: Literature review (2) Chapter 2: Nano-Eco interactions at the whole organism level; (3) Chapter 3: Nano-Eco interactions at the cellular level; (4) Chapter 4: Nano-Bio interactions at the cellular level; (5) Chapter 5: Parallel comparison of Nano-Eco and Nano-Bio interactions at the cellular level. (6) Chapter 6: Conclusions and future work. The overarching goal of this research is to advance our understanding on the fate of nanomaterials in biological and ecological systems. Knowledge obtained from this dissertation is expected to benefit future research on the implications and applications of engineered nanomaterials.
NASA Astrophysics Data System (ADS)
Poppe, Michaela; Böck, Kerstin; Loach, Andreas; Scheikl, Sigrid; Zitek, Andreas; Heidenreich, Andrea; Kurz-Aigner, Roman; Schrittwieser, Martin; Muhar, Susanne
2016-04-01
Equipping young people with the skills to participate successfully in increasingly complex environments and societies is a central issue of policy makers around the world. Only the understanding of complex socio-environmental systems establishes a basis for making decisions leading to sustainable development. However, OECD Pisa studies indicated, that only a low percentage of 15-year-old students was able to solve straightforward problems. Additionally, students get less interested in natural science education. In Austria "Sparkling Science" projects funded by the Federal Ministry of Science, Research and Economy in Austria target at integrating science with school learning by involving young people into scientific research for the purpose of developing new and engaging forms of interactive, meaningful learning. Within the Sparkling Science Project "Traisen.w3" scientists work together with 15 to 18-year-old students of an Austrian Secondary School over two years to identify and evaluate ecosystem services within the catchment of the river Traisen. One of the aims of the project is to foster system understanding of the youths by multi-modal school activities. To support the development of causal systems thinking, students developed qualitative causal models on processes in the catchment of the river Traisen with an interactive, hierarchically structured learning environment that was developed within the EU-FP7 project "DynaLearn" (http://www.dynalearn.eu) based on qualitative reasoning. Students worked in small groups and were encouraged to interlink entities, processes and simulate the results of the proposed interactions of hydrological, biological, ecological, spatial and societal elements. Within this setting collaborative problem solving competency through sharing knowledge, understanding and different perspectives was developed. Additionally, in several school workshops the ecosystem services concept was used as communication tool to show the multifunctionality of river catchments and to highlight the necessity of a sustainable use. Furthermore a field mapping of a restored and an anthropogenically altered section of the river Traisen was performed by the students in collaboration with the scientists. It aimed on the surveying of specific parameters relevant for the identification of cultural and ecological ecosystem services. To investigate the effects of the different forms of learning on youths' factual, regional and system knowledge, tests were conducted before and after the school activities. The evaluation results of the pre- and post-tests proved that the multi-modal school activities lead to a significantly higher students' knowledge of environmental processes in river landscapes. The analyses of the students` model scenarios for the river catchment Traisen revealed a clear students` understanding of relationships of anthropogenic impacts, morphological and ecological river states and restoration measures. Students` feedback showed high enthusiasm for field work and the application of theoretical knowledge in their regional context. Summarizing, the involvement of secondary school students in the research project "Traisen.w3" can be seen as a successful example of how students` system thinking and motivation for learning can be increased. Ensuring that young people are proficient in system knowledge and understanding also in relation to their own surrounding environment makes it more likely that sustainable considerations are soundly addressed in the future.
Ziegler, Jacob P; Golebie, Elizabeth J; Jones, Stuart E; Weidel, Brian C; Solomon, Christopher T
2017-01-01
Many ecosystems continue to experience rapid transformations due to processes like land use change and resource extraction. A systems approach to maintaining natural resources focuses on how interactions and feedbacks among components of complex social-ecological systems generate social and ecological outcomes. In recreational fisheries, residential shoreline development and fish stocking are two widespread human behaviors that influence fisheries, yet emergent social-ecological outcomes from these potentially interacting behaviors remain under explored. We applied a social-ecological systems framework using a simulation model and empirical data to determine whether lakeshore development is likely to promote stocking through its adverse effects on coarse woody habitat and thereby also on survival of juvenile and adult fish. We demonstrate that high lakeshore development is likely to generate dependency of the ecosystem on the social system, in the form of stocking. Further, lakeshore development can interact with social-ecological processes to create deficits for state-level governments, which threatens the ability to fund further ecosystem subsidies. Our results highlight the value of a social-ecological framework for maintaining ecosystem services like recreational fisheries. © 2016 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Ren, Y.
2017-12-01
Context Land surface temperatures (LSTs) spatio-temporal distribution pattern of urban forests are influenced by many ecological factors; the identification of interaction between these factors can improve simulations and predictions of spatial patterns of urban cold islands. This quantitative research requires an integrated method that combines multiple sources data with spatial statistical analysis. Objectives The purpose of this study was to clarify urban forest LST influence interaction between anthropogenic activities and multiple ecological factors using cluster analysis of hot and cold spots and Geogdetector model. We introduced the hypothesis that anthropogenic activity interacts with certain ecological factors, and their combination influences urban forests LST. We also assumed that spatio-temporal distributions of urban forest LST should be similar to those of ecological factors and can be represented quantitatively. Methods We used Jinjiang as a representative city in China as a case study. Population density was employed to represent anthropogenic activity. We built up a multi-source data (forest inventory, digital elevation models (DEM), population, and remote sensing imagery) on a unified urban scale to support urban forest LST influence interaction research. Through a combination of spatial statistical analysis results, multi-source spatial data, and Geogdetector model, the interaction mechanisms of urban forest LST were revealed. Results Although different ecological factors have different influences on forest LST, in two periods with different hot spots and cold spots, the patch area and dominant tree species were the main factors contributing to LST clustering in urban forests. The interaction between anthropogenic activity and multiple ecological factors increased LST in urban forest stands, linearly and nonlinearly. Strong interactions between elevation and dominant species were generally observed and were prevalent in either hot or cold spots areas in different years. Conclusions In conclusion, a combination of spatial statistics and GeogDetector models should be effective for quantitatively evaluating interactive relationships among ecological factors, anthropogenic activity and LST.
Feed Your Mind: Cultivating Ecological Community Literacies with Permaculture
ERIC Educational Resources Information Center
Wade, Stephanie
2015-01-01
This article proposes permaculture, an ecological alternative to industrial agriculture, as a way to design first-year composition and community literacy classes. First, the paper connects permaculture with post-humanism to describe ecological community literacies--the type of knowledge that ecological theorists say we need to navigate the end of…
Gómez-Baggethun, Erik; Mingorría, Sara; Reyes-García, Victoria; Calvet, Laura; Montes, Carlos
2010-06-01
Researchers and conservation managers largely agree on the relevance of traditional ecological knowledge for natural resource management in indigenous communities, but its prevalence and role as societies modernize are contested. We analyzed the transmission of traditional knowledge among rural local people in communities linked to protected areas in Doñana, southwestern Spain. We studied changes in knowledge related to local practices in agriculture and livestock farming among 198 informants from three generations that cover the period in which the area transited from an economy strongly dependent on local ecosystem services to a market economy with intensified production systems. Our results suggest an abrupt loss of traditional agricultural knowledge related to rapid transformations and intensification of agricultural systems, but maintenance of knowledge of traditional livestock farming, an activity allowed in the protected areas that maintains strong links with local cultural identity. Our results demonstrate the potential of protected areas in protecting remaining bodies of traditional ecological knowledge in developed country settings. Nevertheless, we note that strict protection in cultural-landscape-dominated areas can disrupt transmission of traditional knowledge if local resource users and related practices are excluded from ecosystem management.
Ziegler, Jacob P.; Golebie, Elizabeth J.; Jones, Stuart E.; Weidel, Brian C.; Solomon, Christopher T.
2017-01-01
Many ecosystems continue to experience rapid transformations due to processes like land use change and resource extraction. A systems approach to maintaining natural resources focuses on how interactions and feedbacks among components of complex social‐ecological systems generate social and ecological outcomes. In recreational fisheries, residential shoreline development and fish stocking are two widespread human behaviors that influence fisheries, yet emergent social‐ecological outcomes from these potentially interacting behaviors remain under explored. We applied a social‐ecological systems framework using a simulation model and empirical data to determine whether lakeshore development is likely to promote stocking through its adverse effects on coarse woody habitat and thereby also on survival of juvenile and adult fish. We demonstrate that high lakeshore development is likely to generate dependency of the ecosystem on the social system, in the form of stocking. Further, lakeshore development can interact with social‐ecological processes to create deficits for state‐level governments, which threatens the ability to fund further ecosystem subsidies. Our results highlight the value of a social‐ecological framework for maintaining ecosystem services like recreational fisheries.
USDA-ARS?s Scientific Manuscript database
Valuable information on the location and context of ecological studies are locked up in publications in myriad formats that are not easily machine readable. This presents significant challenges to building geographic-based tools to search for and visualize sources of ecological knowledge. JournalMap...
ERIC Educational Resources Information Center
Bequette, James W.
2007-01-01
Teaching about Native artworks as part of school arts curriculum can serve to pass on traditional ecological knowledge while also contextualizing colonialism's influence on traditional and contemporary Native arts practices. This article explores how schools can actively engage in community arts partnerships with American Indians who have…
Knowledge Management for School Leaders: An Ecological Framework for Thinking Schools.
ERIC Educational Resources Information Center
Petrides, Lisa A.; Guiney, Susan Zahra
2002-01-01
Using examples from schools, this paper illustrates how knowledge management can enable schools to examine the plethora of data they collect and how an ecological framework can be used to transform these data into meaningful information. The paper highlights: the history of management information systems; shifts from information management to…
Exploring the role of traditional ecological knowledge in climate change initiatives
Kirsten Vinyeta; Kathy Lynn
2013-01-01
Indigenous populations are projected to face disproportionate impacts as a result of climate change in comparison to nonindigenous populations. For this reason, many American Indian and Alaska Native tribes are identifying and implementing culturally appropriate strategies to assess climate impacts and adapt to projected changes. Traditional ecological knowledge (TEK...
Current knowledge and attitudes: Russian olive biology, ecology and management
Sharlene E. Sing; Kevin J. Delaney
2016-01-01
The primary goals of a two-day Russian olive symposium held in February 2014 were to disseminate current knowledge and identify data gaps regarding Russian olive biology and ecology, distributions, integrated management, and to ascertain the feasibility and acceptance of a proposed program for classical biological control of Russian olive. The symposium was...
EMDS users guide (version 2.0): knowledge-based decision support for ecological assessment.
Keith M. Reynolds
1999-01-01
The USDA Forest Service Pacific Northwest Research Station in Corvallis, Oregon, has developed the ecosystem management decision support (EMDS) system. The system integrates the logical formalism of knowledge-based reasoning into a geographic information system (GIS) environment to provide decision support for ecological landscape assessment and evaluation. The...
Nest predation research: Recent findings and future perspectives
Chalfoun, Anna D.; Ibanez-Alamo, J. D.; Magrath, R. D.; Schmidt, Kenneth A.; Thomson, R. L.; Oteyza, Juan C.; Haff, T. M.; Martin, T.E.
2016-01-01
Nest predation is a key source of selection for birds that has attracted increasing attention from ornithologists. The inclusion of new concepts applicable to nest predation that stem from social information, eavesdropping or physiology has expanded our knowledge considerably. Recent methodological advancements now allow focus on all three players within nest predation interactions: adults, offspring and predators. Indeed, the study of nest predation now forms a vital part of avian research in several fields, including animal behaviour, population ecology, evolution and conservation biology. However, within nest predation research there are important aspects that require further development, such as the comparison between ecological and evolutionary antipredator responses, and the role of anthropogenic change. We hope this review of recent findings and the presentation of new research avenues will encourage researchers to study this important and interesting selective pressure, and ultimately will help us to better understand the biology of birds.
Discontinuities, cross-scale patterns, and the organization of ecosystems
Nash, Kirsty L.; Allen, Craig R.; Angeler, David G.; Barichievy, Chris; Eason, Tarsha; Garmestani, Ahjond S.; Graham, Nicholas A.J.; Granholm, Dean; Knutson, Melinda; Nelson, R. John; Nystrom, Magnus; Stow, Craig A.; Sandstrom, Shana M.
2014-01-01
Ecological structures and processes occur at specific spatiotemporal scales, and interactions that occur across multiple scales mediate scale-specific (e.g., individual, community, local, or regional) responses to disturbance. Despite the importance of scale, explicitly incorporating a multi-scale perspective into research and management actions remains a challenge. The discontinuity hypothesis provides a fertile avenue for addressing this problem by linking measureable proxies to inherent scales of structure within ecosystems. Here we outline the conceptual framework underlying discontinuities and review the evidence supporting the discontinuity hypothesis in ecological systems. Next we explore the utility of this approach for understanding cross-scale patterns and the organization of ecosystems by describing recent advances for examining nonlinear responses to disturbance and phenomena such as extinctions, invasions, and resilience. To stimulate new research, we present methods for performing discontinuity analysis, detail outstanding knowledge gaps, and discuss potential approaches for addressing these gaps.
An ecological approach to hearing-health promotion in workplaces.
Reddy, Ravi; Welch, David; Ameratunga, Shanthi; Thorne, Peter
2017-05-01
To develop and assess use, acceptability and feasibility of an ecological hearing conservation programme for workplaces. A school-based public health hearing preservation education programme (Dangerous Decibels®) was adapted for workplaces using the Multi-level Approach to Community Health (MATCH) Model. The programme was delivered in small manufacturing companies and evaluated using a questionnaire before the training and at one week and two-months after training. Workers (n = 56) from five small manufacturing companies were recruited. There was a significant improvement in knowledge, attitudes and behaviour of workers at the intrapersonal level; in behaviour motivation and safety culture at the interpersonal and organisational levels; and an overall improvement in hearing-health behaviour after two months post-intervention. The developed programme offers a simple, interactive and theory-based intervention that is well accepted and effective in promoting positive hearing-health behaviour in workplaces.
NASA Astrophysics Data System (ADS)
Saito, L.; Biondi, F.; Fenstermaker, L. F.; Arnone, J.; Devitt, D.; Riddle, B.; Young, M.
2010-12-01
In 2008, the Nevada System of Higher Education received a 5-year, $15 million grant from the National Science Foundation’s (NSF) Experimental Program to Stimulate Competitive Research (EPSCoR). The mission of the project is to create a statewide interdisciplinary program to stimulate transformative research, education, and outreach about the effects of regional climate change on ecosystem services (especially water resources), and support use of this knowledge by policy makers and stakeholders. The overarching question that this effort will address is: how will climate change affect water resources, disturbance regimes and linked ecosystem and human services? While the overall project includes cyberinfrastructure, policy, education and climate modeling, this presentation will focus on the ecological change and water resources components. The goals of these two components are: 1) improving understanding of processes controlling local- and basin-wide impacts of climate on species dynamics, disturbance regimes, and water recharge rates; 2) evaluating interactions between landscape-level processes and biophysical indicators; 3) evaluating interactions between surface and groundwater systems; 4) predicting changes in wildfire regime, primary productivity, and biodiversity (including invasive species); and 5) assessing how interactions between water and ecology will differ under climate change and/or climate variability scenarios. To achieve these goals, the two components will quantify present-day climate variability at multiple temporal and spatial scales, including at multiple elevations within Nevada’s Basin and Range ecosystem continuum. This presentation will discuss key elements for achieving these goals, including the establishment of instrumented transects spanning a range of elevations and vegetation zones in eastern and southern Nevada.
Paws without claws? Ecological effects of large carnivores in anthropogenic landscapes
Sahlén, E.; Elmhagen, B.; Chamaillé-Jammes, S.; Sand, H.; Lone, K.; Cromsigt, J. P. G. M.
2016-01-01
Large carnivores are frequently presented as saviours of biodiversity and ecosystem functioning through their creation of trophic cascades, an idea largely based on studies coming primarily out of relatively natural landscapes. However, in large parts of the world, particularly in Europe, large carnivores live in and are returning to strongly human-modified ecosystems. At present, we lack a coherent framework to predict the effects of large carnivores in these anthropogenic landscapes. We review how human actions influence the ecological roles of large carnivores by affecting their density or behaviour or those of mesopredators or prey species. We argue that the potential for density-mediated trophic cascades in anthropogenic landscapes is limited to unproductive areas where even low carnivore numbers may impact prey densities or to the limited parts of the landscape where carnivores are allowed to reach ecologically functional densities. The potential for behaviourally mediated trophic cascades may be larger and more widespread, because even low carnivore densities affect prey behaviour. We conclude that predator–prey interactions in anthropogenic landscapes will be highly context-dependent and human actions will often attenuate the ecological effects of large carnivores. We highlight the knowledge gaps and outline a new research avenue to study the role of carnivores in anthropogenic landscapes. PMID:27798302
Great Lakes rivermouth ecosystems: scientific synthesis and management implications
Larson, James H.; Trebitz, Anett S.; Steinman, Alan D.; Wiley, Michael J.; Carlson Mazur, Martha; Pebbles, Victoria; Braun, Heather A.; Seelbach, Paul W.
2013-01-01
At the interface of the Great Lakes and their tributary rivers lies the rivermouths, a class of aquatic ecosystem where lake and lotic processes mix and distinct features emerge. Many rivermouths are the focal point of both human interaction with the Great Lakes and human impacts to the lakes; many cities, ports, and beaches are located in rivermouth ecosystems, and these human pressures often degrade key ecological functions that rivermouths provide. Despite their ecological uniqueness and apparent economic importance, there has been relatively little research on these ecosystems as a class relative to studies on upstream rivers or the open-lake waters. Here we present a synthesis of current knowledge about ecosystem structure and function in Great Lakes rivermouths based on studies in both Laurentian rivermouths, coastal wetlands, and marine estuarine systems. A conceptual model is presented that establishes a common semantic framework for discussing the characteristic spatial features of rivermouths. This model then is used to conceptually link ecosystem structure and function to ecological services provided by rivermouths. This synthesis helps identify the critical gaps in understanding rivermouth ecology. Specifically, additional information is needed on how rivermouths collectively influence the Great Lakes ecosystem, how human alterations influence rivermouth functions, and how ecosystem services provided by rivermouths can be managed to benefit the surrounding socioeconomic networks.
Reyes-García, Victoria; Pyhälä, Aili; Díaz-Reviriego, Isabel; Duda, Romain; Fernández-Llamazares, Álvaro; Gallois, Sandrine; Guèze, Maximilien; Napitupulu, Lucentezza
2016-01-01
Researchers have analysed whether school and local knowledge complement or substitute each other, but have paid less attention to whether those two learning models use different cognitive strategies. In this study, we use data collected among three contemporary hunter-gatherer societies with relatively low levels of exposure to schooling yet with high levels of local ecological knowledge to test the association between i) schooling and ii) local ecological knowledge and verbal working memory. Participants include 94 people (24 Baka, 25 Punan, and 45 Tsimane’) from whom we collected information on 1) schooling and school related skills (i.e., literacy and numeracy), 2) local knowledge and skills related to hunting and medicinal plants, and 3) working memory. To assess working memory, we applied a multi-trial free recall using words relevant to each cultural setting. People with and without schooling have similar levels of accurate and inaccurate recall, although they differ in their strategies to organize recall: people with schooling have higher results for serial clustering, suggesting better learning with repetition, whereas people without schooling have higher results for semantic clustering, suggesting they organize recall around semantically meaningful categories. Individual levels of local ecological knowledge are not related to accurate recall or organization recall, arguably due to overall high levels of local ecological knowledge. While schooling seems to favour some organization strategies this might come at the expense of some other organization strategies. PMID:26735297
Communicative interactions involving plants: information, evolution, and ecology.
Mescher, Mark C; Pearse, Ian S
2016-08-01
The role of information obtained via sensory cues and signals in mediating the interactions of organisms with their biotic and abiotic environments has been a major focus of work on sensory and behavioral ecology. Information-mediated interactions also have important implications for broader ecological patterns emerging at the community and ecosystem levels that are only now beginning to be explored. Given the extent to which plants dominate the sensory landscapes of terrestrial ecosystems, information-mediated interactions involving plants should be a major focus of efforts to elucidate these broader patterns. Here we explore how such efforts might be enhanced by a clear understanding of information itself-a central and potentially unifying concept in biology that has nevertheless been the subject of considerable confusion-and of its relationship to adaptive evolution and ecology. We suggest that information-mediated interactions should be a key focus of efforts to more fully integrate evolutionary biology and ecology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Key properties of expert movement systems in sport : an ecological dynamics perspective.
Seifert, Ludovic; Button, Chris; Davids, Keith
2013-03-01
This paper identifies key properties of expertise in sport predicated on the performer-environment relationship. Weaknesses of traditional approaches to expert performance, which uniquely focus on the performer and the environment separately, are highlighted by an ecological dynamics perspective. Key properties of expert movement systems include 'multi- and meta-stability', 'adaptive variability', 'redundancy', 'degeneracy' and the 'attunement to affordances'. Empirical research on these expert system properties indicates that skill acquisition does not emerge from the internal representation of declarative and procedural knowledge, or the imitation of expert behaviours to linearly reduce a perceived 'gap' separating movements of beginners and a putative expert model. Rather, expert performance corresponds with the ongoing co-adaptation of an individual's behaviours to dynamically changing, interacting constraints, individually perceived and encountered. The functional role of adaptive movement variability is essential to expert performance in many different sports (involving individuals and teams; ball games and outdoor activities; land and aquatic environments). These key properties signify that, in sport performance, although basic movement patterns need to be acquired by developing athletes, there exists no ideal movement template towards which all learners should aspire, since relatively unique functional movement solutions emerge from the interaction of key constraints.
Toward Political Ecologies of Environmental Education
ERIC Educational Resources Information Center
Henderson, Joseph A.; Zarger, Rebecca K.
2017-01-01
Drawing a causal line between educational practice and ecological impact is a difficult intellectual task given the complexity of variables at work between educational event and ecological effect. This is further complicated by the anthropological fact that diverse peoples interact with nature in myriad ways. Our environmental interactions are…
A spotlight on snow leopard conservation in China.
Alexander, Justine S; Zhang, Chengcheng; Shi, Kun; Riordan, Philip
2016-07-01
China holds the greatest proportion of the snow leopard's (Panthera uncia) global range and is central to their conservation. The country is also undergoing unprecedented economic growth, which increases both the threats to the snow leopard and the opportunities for its conservation. In this paper we aim to review published literature (from 1950 to 2014) in English and Mandarin on snow leopard ecology and conservation in China in order to identify thematic and geographic research gaps and propose research priorities. We first retrieved all published items that considered snow leopards in China (n = 106). We extracted from these papers 274 reports of snow leopard presence in China. We then reviewed a subset of papers (n = 33) of this literature, which specifically focused on snow leopard ecology and conservation within China. We introduced a thematic framework that allows a structured and comprehensive assessment of findings. This framework recognizes 4 critical and interrelated topics underpinning snow leopard ecology and conservation: habitat (distribution and protected area coverage); prey (distribution and abundance, predator-prey relationships); human interactions (hunting and trade, livestock interactions and conflicts); and the underlying policy context. Significant gains in knowledge as well as research gaps and priorities are discussed with reference to our framework. The modest quantity and limited scope of published research on the snow leopard in China calls for a continued and intensified effort to inform and support national conservation policies. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Bertuol-Garcia, Diana; Morsello, Carla; N El-Hani, Charbel; Pardini, Renata
2018-05-01
Applying scientific knowledge to confront societal challenges is a difficult task, an issue known as the science-practice gap. In Ecology and Conservation, scientific evidence has been seldom used directly to support decision-making, despite calls for an increasing role of ecological science in developing solutions for a sustainable future. To date, multiple causes of the science-practice gap and diverse approaches to link science and practice in Ecology and Conservation have been proposed. To foster a transparent debate and broaden our understanding of the difficulties of using scientific knowledge, we reviewed the perceived causes of the science-practice gap, aiming to: (i) identify the perspectives of ecologists and conservation scientists on this problem, (ii) evaluate the predominance of these perspectives over time and across journals, and (iii) assess them in light of disciplines studying the role of science in decision-making. We based our review on 1563 sentences describing causes of the science-practice gap extracted from 122 articles and on discussions with eight scientists on how to classify these sentences. The resulting process-based framework describes three distinct perspectives on the relevant processes, knowledge and actors in the science-practice interface. The most common perspective assumes only scientific knowledge should support practice, perceiving a one-way knowledge flow from science to practice and recognizing flaws in knowledge generation, communication, and/or use. The second assumes that both scientists and decision-makers should contribute to support practice, perceiving a two-way knowledge flow between science and practice through joint knowledge-production/integration processes, which, for several reasons, are perceived to occur infrequently. The last perspective was very rare, and assumes scientists should put their results into practice, but they rarely do. Some causes (e.g. cultural differences between scientists and decision-makers) are shared with other disciplines, while others seem specific to Ecology and Conservation (e.g. inadequate research scales). All identified causes require one of three general types of solutions, depending on whether the causal factor can (e.g. inadequate research questions) or cannot (e.g. scientific uncertainty) be changed, or if misconceptions (e.g. undervaluing abstract knowledge) should be solved. The unchanged predominance of the one-way perspective over time may be associated with the prestige of evidence-based conservation and suggests that debates in Ecology and Conservation lag behind trends in other disciplines towards bidirectional views ascribing larger roles to decision-makers. In turn, the two-way perspective seems primarily restricted to research traditions historically isolated from mainstream conservation biology. All perspectives represented superficial views of decision-making by not accounting for limits to human rationality, complexity of decision-making contexts, fuzzy science-practice boundaries, ambiguity brought about by science, and different types of knowledge use. However, joint knowledge-production processes from the two-way perspective can potentially allow for democratic decision-making processes, explicit discussions of values and multiple types of science use. To broaden our understanding of the interface and foster productive science-practice linkages, we argue for dialogue among different research traditions within Ecology and Conservation, joint knowledge-production processes between scientists and decision-makers and interdisciplinarity across Ecology, Conservation and Political Science in both research and education. © 2017 Cambridge Philosophical Society.
Candidate innate immune system gene expression in the ecological model Daphnia
Decaestecker, Ellen; Labbé, Pierrick; Ellegaard, Kirsten; Allen, Judith E.; Little, Tom J.
2011-01-01
The last ten years have witnessed increasing interest in host–pathogen interactions involving invertebrate hosts. The invertebrate innate immune system is now relatively well characterised, but in a limited range of genetic model organisms and under a limited number of conditions. Immune systems have been little studied under real-world scenarios of environmental variation and parasitism. Thus, we have investigated expression of candidate innate immune system genes in the water flea Daphnia, a model organism for ecological genetics, and whose capacity for clonal reproduction facilitates an exceptionally rigorous control of exposure dose or the study of responses at many time points. A unique characteristic of the particular Daphnia clones and pathogen strain combinations used presently is that they have been shown to be involved in specific host–pathogen coevolutionary interactions in the wild. We choose five genes, which are strong candidates to be involved in Daphnia–pathogen interactions, given that they have been shown to code for immune effectors in related organisms. Differential expression of these genes was quantified by qRT-PCR following exposure to the bacterial pathogen Pasteuria ramosa. Constitutive expression levels differed between host genotypes, and some genes appeared to show correlated expression. However, none of the genes appeared to show a major modification of expression level in response to Pasteuria exposure. By applying knowledge from related genetic model organisms (e.g. Drosophila) to models for the study of evolutionary ecology and coevolution (i.e. Daphnia), the candidate gene approach is temptingly efficient. However, our results show that detection of only weak patterns is likely if one chooses target genes for study based on previously identified genome sequences by comparison to homologues from other related organisms. Future work on the Daphnia–Pasteuria system will need to balance a candidate gene approach with more comprehensive approaches to de novo identify immune system genes specific to the Daphnia–Pasteuria interaction. PMID:21550363
Candidate innate immune system gene expression in the ecological model Daphnia.
Decaestecker, Ellen; Labbé, Pierrick; Ellegaard, Kirsten; Allen, Judith E; Little, Tom J
2011-10-01
The last ten years have witnessed increasing interest in host-pathogen interactions involving invertebrate hosts. The invertebrate innate immune system is now relatively well characterised, but in a limited range of genetic model organisms and under a limited number of conditions. Immune systems have been little studied under real-world scenarios of environmental variation and parasitism. Thus, we have investigated expression of candidate innate immune system genes in the water flea Daphnia, a model organism for ecological genetics, and whose capacity for clonal reproduction facilitates an exceptionally rigorous control of exposure dose or the study of responses at many time points. A unique characteristic of the particular Daphnia clones and pathogen strain combinations used presently is that they have been shown to be involved in specific host-pathogen coevolutionary interactions in the wild. We choose five genes, which are strong candidates to be involved in Daphnia-pathogen interactions, given that they have been shown to code for immune effectors in related organisms. Differential expression of these genes was quantified by qRT-PCR following exposure to the bacterial pathogen Pasteuria ramosa. Constitutive expression levels differed between host genotypes, and some genes appeared to show correlated expression. However, none of the genes appeared to show a major modification of expression level in response to Pasteuria exposure. By applying knowledge from related genetic model organisms (e.g. Drosophila) to models for the study of evolutionary ecology and coevolution (i.e. Daphnia), the candidate gene approach is temptingly efficient. However, our results show that detection of only weak patterns is likely if one chooses target genes for study based on previously identified genome sequences by comparison to homologues from other related organisms. Future work on the Daphnia-Pasteuria system will need to balance a candidate gene approach with more comprehensive approaches to de novo identify immune system genes specific to the Daphnia-Pasteuria interaction. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ceríaco, Luis M P; Marques, Mariana P; Madeira, Natália C; Vila-Viçosa, Carlos M; Mendes, Paula
2011-09-05
Traditional Ecological Knowledge (TEK) and folklore are repositories of large amounts of information about the natural world. Ideas, perceptions and empirical data held by human communities regarding local species are important sources which enable new scientific discoveries to be made, as well as offering the potential to solve a number of conservation problems. We documented the gecko-related folklore and TEK of the people of southern Portugal, with the particular aim of understanding the main ideas relating to gecko biology and ecology. Our results suggest that local knowledge of gecko ecology and biology is both accurate and relevant. As a result of information provided by local inhabitants, knowledge of the current geographic distribution of Hemidactylus turcicus was expanded, with its presence reported in nine new locations. It was also discovered that locals still have some misconceptions of geckos as poisonous and carriers of dermatological diseases. The presence of these ideas has led the population to a fear of and aversion to geckos, resulting in direct persecution being one of the major conservation problems facing these animals. It is essential, from both a scientific and conservationist perspective, to understand the knowledge and perceptions that people have towards the animals, since, only then, may hitherto unrecognized pertinent information and conservation problems be detected and resolved.
2011-01-01
Traditional Ecological Knowledge (TEK) and folklore are repositories of large amounts of information about the natural world. Ideas, perceptions and empirical data held by human communities regarding local species are important sources which enable new scientific discoveries to be made, as well as offering the potential to solve a number of conservation problems. We documented the gecko-related folklore and TEK of the people of southern Portugal, with the particular aim of understanding the main ideas relating to gecko biology and ecology. Our results suggest that local knowledge of gecko ecology and biology is both accurate and relevant. As a result of information provided by local inhabitants, knowledge of the current geographic distribution of Hemidactylus turcicus was expanded, with its presence reported in nine new locations. It was also discovered that locals still have some misconceptions of geckos as poisonous and carriers of dermatological diseases. The presence of these ideas has led the population to a fear of and aversion to geckos, resulting in direct persecution being one of the major conservation problems facing these animals. It is essential, from both a scientific and conservationist perspective, to understand the knowledge and perceptions that people have towards the animals, since, only then, may hitherto unrecognized pertinent information and conservation problems be detected and resolved. PMID:21892925
Challenges, developments and perspectives in intermittent ...
Although more than half the world's river networks comprise channels that periodically cease to flow and dry [intermittent rivers (IRs)], river ecology was largely developed from and for perennial systems. Ecological knowledge of IRs is rapidly increasing, so there is a need to synthesise this knowledge and deepen ecological understanding.In this Special Issue, we bring together 13 papers spanning observational case studies, field and laboratory experiments and reviews to guide research and management in this productive field of freshwater science. We summarise new developments in IR ecology, identify research gaps and needs, and address how the study of IRs as highly dynamic ecosystems informs ecological understanding more broadly.This series of articles reveals that contemporary IR ecology is a multifaceted and maturing field of research at the interface between aquatic and terrestrial ecology. This research contributes to fresh water and general ecology by testing concepts across a range of topics, including disturbance ecology, metacommunity ecology and coupled aquatic-terrestrial ecosystems.Drying affects flow continuity through time and flow connectivity across longitudinal, lateral and vertical dimensions of space, which aligns well with the recent emphasis of mainstream ecology on meta-system perspectives. Although most articles here focus on the wet phase, there is growing interest in dry phases, and in the terrestrial vegetation and invertebrate assemb
ERIC Educational Resources Information Center
Kim, Eun-Ji Amy; Dionne, Liliane
2014-01-01
Though science education has been prominent in the Canadian educational system, researchers increasingly recognize the scientific and educational value of integrating traditional ecological knowledge (TEK) into their curriculum. Despite national strategies to integrate TEK, Canada has yet to initiate a comprehensive study of its prevalence and…
ERIC Educational Resources Information Center
Stark, Christina M.; Graham-Kiefer, Meredith L.; Devine, Carol M.; Dollahite, Jamie S.; Olson, Christine M.
2011-01-01
Objective: To assess the impact of an online continuing education course on the knowledge, skills, and self-efficacy of nutrition professionals to use an ecological approach to prevent childhood obesity. Design: Quasi-experimental design using intervention and delayed intervention comparison groups with pre/post-course assessments. Setting: Online…
The scientific basis for lynx conservation: Qualified insights [Chapter 16
Keith B. Aubry; Steven W. Buskirk; Gary M. Koehler; Charles J. Krebs; Kevin S. McKelvey; John R. Squires
2000-01-01
The information presented in this chapter is based on (1) extant knowledge of lynx ecology, (2) the pertinence of this knowledge to lynx conservation in the contiguous United States, (3) the ecological concepts discussed in the first section of this book, and (4) the collective interpretation and judgment of the authors. We have chosen the term "qualified...
ERIC Educational Resources Information Center
Walker, Scott L.
2007-01-01
This article presents an introductory study of early-grade level geography education in terms of human ecology using accepted cognitive process and knowledge dimensions related to learning. The central question addressed is "at what cognitive process and knowledge levels do kindergarten and first-grade teachers teach geography?" A tentative answer…
Iain J. Davidson-Hunt; Fikret Berkes
2001-01-01
We begin this paper by exploring the shift now occurring in the science that provides the theoretical basis for resource management practice. The concepts of traditional ecological knowledge and traditional management systems are presented next to provide the background for an examination of resilient landscapes that emerge through the work and play of humans. These...
ERIC Educational Resources Information Center
Van Eijck, Michiel; Roth, Wolff-Michael
2007-01-01
The debate on the status of traditional ecological knowledge (TEK) in science curricula is currently centered on a juxtaposition of two incompatible frameworks: multiculturalism and universalism. The aim of this paper is to establish a framework that overcomes this opposition between multiculturalism and universalism in science education, so that…
[Some comments on ecological field].
Wang, D
2000-06-01
Based on the data of plant ecological field studies, this paper reviewed the conception of ecological field, field eigenfunctions, graphs of ecological field and its application of ecological field theory in explaining plant interactions. It is suggested that the basic character of ecological field is material, and based on the current research level, it is not sure whether ecological field is a kind of specific field different from general physical field. The author gave some comments on the formula and estimation of parameters of basic field function-ecological potential model on ecological field. Both models have their own characteristics and advantages in specific conditions. The author emphasized that ecological field had even more meaning of ecological methodology, and applying ecological field theory in describing the types and processes of plant interactions had three characteristics: quantitative, synthetic and intuitionistic. Field graphing might provide a new way to ecological studies, especially applying the ecological field theory might give an appropriate quantitative explanation for the dynamic process of plant populations (coexistence and interference competition).
Interactive Videos Enhance Learning about Socio-Ecological Systems
ERIC Educational Resources Information Center
Smithwick, Erica; Baxter, Emily; Kim, Kyung; Edel-Malizia, Stephanie; Rocco, Stevie; Blackstock, Dean
2018-01-01
Two forms of interactive video were assessed in an online course focused on conservation. The hypothesis was that interactive video enhances student perceptions about learning and improves mental models of social-ecological systems. Results showed that students reported greater learning and attitudes toward the subject following interactive video.…
The Amazing Ecology of Terrestrial Isopods
ERIC Educational Resources Information Center
Dobson, Christopher; Postema, Dan
2014-01-01
Ecology is the study of how organisms interact with their environment, and the best place to see these interactions is outside in natural habitats. Pillbugs (roly-polies) provide an excellent opportunity for students to learn ecological concepts through inquiry. Because of their fascinating behaviors, pillbugs are ideal organisms to introduce…
Ecological Principles for Invasive Plant Management
USDA-ARS?s Scientific Manuscript database
Invasive annual grasses continue to advance at an alarming rate despite efforts of control by land managers. Ecologically-based invasive plant management (EBIPM) is a holistic framework that integrates ecosystem health assessment, knowledge of ecological processes and adaptive management into a succ...
Computational pathology: Exploring the spatial dimension of tumor ecology.
Nawaz, Sidra; Yuan, Yinyin
2016-09-28
Tumors are evolving ecosystems where cancer subclones and the microenvironment interact. This is analogous to interaction dynamics between species in their natural habitats, which is a prime area of study in ecology. Spatial statistics are frequently used in ecological studies to infer complex relations including predator-prey, resource dependency and co-evolution. Recently, the emerging field of computational pathology has enabled high-throughput spatial analysis by using image processing to identify different cell types and their locations within histological tumor samples. We discuss how these data may be analyzed with spatial statistics used in ecology to reveal patterns and advance our understanding of ecological interactions occurring among cancer cells and their microenvironment. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Morand, S; Guégan, J-F
2008-08-01
This paper addresses how climate changes interact with other global changes caused by humans (habitat fragmentation, changes in land use, bioinvasions) to affect biodiversity. Changes in biodiversity at all levels (genetic, population and community) affect the functioning of ecosystems, in particular host-pathogen interactions, with major consequences in health ecology (emergence and re-emergence; the evolution of virulence and resistance). In this paper, the authors demonstrate that the biodiversity sciences, epidemiological theory and evolutionary ecology are indispensable in assessing the impact of climate changes, and also for modelling the evolution of host-pathogen interactions in a changing environment. The next step is to apply health ecology to the science of ecological engineering.
Bacteria in decomposing wood and their interactions with wood-decay fungi.
Johnston, Sarah R; Boddy, Lynne; Weightman, Andrew J
2016-11-01
The fungal community within dead wood has received considerable study, but far less attention has been paid to bacteria in the same habitat. Bacteria have long been known to inhabit decomposing wood, but much remains underexplored about their identity and ecology. Bacteria within the dead wood environment must interact with wood-decay fungi, but again, very little is known about the form this takes; there are indications of both antagonistic and beneficial interactions within this fungal microbiome. Fungi are hypothesised to play an important role in shaping bacterial communities in wood, and conversely, bacteria may affect wood-decay fungi in a variety of ways. This minireview considers what is currently known about bacteria in wood and their interactions with fungi, and proposes possible associations based on examples from other habitats. It aims to identify key knowledge gaps and pressing questions for future research. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Cultural adaptation, compounding vulnerabilities and conjunctures in Norse Greenland.
Dugmore, Andrew J; McGovern, Thomas H; Vésteinsson, Orri; Arneborg, Jette; Streeter, Richard; Keller, Christian
2012-03-06
Norse Greenland has been seen as a classic case of maladaptation by an inflexible temperate zone society extending into the arctic and collapse driven by climate change. This paper, however, recognizes the successful arctic adaptation achieved in Norse Greenland and argues that, although climate change had impacts, the end of Norse settlement can only be truly understood as a complex socioenvironmental system that includes local and interregional interactions operating at different geographic and temporal scales and recognizes the cultural limits to adaptation of traditional ecological knowledge. This paper is not focused on a single discovery and its implications, an approach that can encourage monocausal and environmentally deterministic emphasis to explanation, but it is the product of sustained international interdisciplinary investigations in Greenland and the rest of the North Atlantic. It is based on data acquisitions, reinterpretation of established knowledge, and a somewhat different philosophical approach to the question of collapse. We argue that the Norse Greenlanders created a flexible and successful subsistence system that responded effectively to major environmental challenges but probably fell victim to a combination of conjunctures of large-scale historic processes and vulnerabilities created by their successful prior response to climate change. Their failure was an inability to anticipate an unknowable future, an inability to broaden their traditional ecological knowledge base, and a case of being too specialized, too small, and too isolated to be able to capitalize on and compete in the new protoworld system extending into the North Atlantic in the early 15th century.
A Synthetic Community System for Probing Microbial Interactions Driven by Exometabolites
Chodkowski, John L.
2017-01-01
ABSTRACT Though most microorganisms live within a community, we have modest knowledge about microbial interactions and their implications for community properties and ecosystem functions. To advance understanding of microbial interactions, we describe a straightforward synthetic community system that can be used to interrogate exometabolite interactions among microorganisms. The filter plate system (also known as the Transwell system) physically separates microbial populations, but allows for chemical interactions via a shared medium reservoir. Exometabolites, including small molecules, extracellular enzymes, and antibiotics, are assayed from the reservoir using sensitive mass spectrometry. Community member outcomes, such as growth, productivity, and gene regulation, can be determined using flow cytometry, biomass measurements, and transcript analyses, respectively. The synthetic community design allows for determination of the consequences of microbiome diversity for emergent community properties and for functional changes over time or after perturbation. Because it is versatile, scalable, and accessible, this synthetic community system has the potential to practically advance knowledge of microbial interactions that occur within both natural and artificial communities. IMPORTANCE Understanding microbial interactions is a fundamental objective in microbiology and ecology. The synthetic community system described here can set into motion a range of research to investigate how the diversity of a microbiome and interactions among its members impact its function, where function can be measured as exometabolites. The system allows for community exometabolite profiling to be coupled with genome mining, transcript analysis, and measurements of member productivity and population size. It can also facilitate discovery of natural products that are only produced within microbial consortia. Thus, this synthetic community system has utility to address fundamental questions about a diversity of possible microbial interactions that occur in both natural and engineered ecosystems. Author Video: An author video summary of this article is available. PMID:29152587
Chemical-gene interaction networks and causal reasoning for ...
Evaluating the potential human health and ecological risks associated with exposures to complex chemical mixtures in the environment is one of the main challenges of chemical safety assessment and environmental protection. There is a need for approaches that can help to integrate chemical monitoring and biological effects data to evaluate risks associated with chemicals present in the environment. Here, we used prior knowledge about chemical-gene interactions to develop a knowledge assembly model for detected chemicals at five locations near the North Branch and Chisago wastewater treatment plants (WWTP) in the St. Croix River Basin, MN and WI. The assembly model was used to generate hypotheses about the biological impacts of the chemicals at each location. The hypotheses were tested using empirical hepatic gene expression data from fathead minnows exposed for 12 d at each location. Empirical gene expression data were also mapped to the assembly models to evaluate the likelihood of a chemical contributing to the observed biological responses using richness and concordance statistics. The prior knowledge approach was able predict the observed biological pathways impacted at one site but not the other. Atrazine was identified as a potential contributor to the observed gene expression responses at a location upstream of the North Branch WTTP. Four chemicals were identified as contributors to the observed biological responses at the effluent and downstream o
Prat, P; Aulinas, M; Turon, C; Comas, J; Poch, M
2009-01-01
Current management of sanitation infrastructures (sewer systems, wastewater treatment plant, receiving water, bypasses, deposits, etc) is not fulfilling the objectives of up to date legislation, to achieve a good ecological and chemical status of water bodies through integrated management. These made it necessary to develop new methodologies that help decision makers to improve the management in order to achieve that status. Decision Support Systems (DSS) based on Multi-Agent System (MAS) paradigm are promising tools to improve the integrated management. When all the different agents involved interact, new important knowledge emerges. This knowledge can be used to build better DSS and improve wastewater infrastructures management achieving the objectives planned by legislation. The paper describes a methodology to acquire this knowledge through a Role Playing Game (RPG). First of all there is an introduction about the wastewater problems, a definition of RPG, and the relation between RPG and MAS. Then it is explained how the RPG was built with two examples of game sessions and results. The paper finishes with a discussion about the uses of this methodology and future work.
Public Attitudes Toward Ecological Restoration
Alan D. Bright; Susan C. Barro; Randall T. Burtz
2002-01-01
We examined the relationship between attitudes toward urban ecological restoration and cognitive (perceived outcomes, value orientation, and objective knowledge), affective (emotional responses), and behavioral factors using residents of the Chicago Metropolitan Region. Positive and negative attitudes were both related to perceived outcomes of ecological restoration....
Accelerate synthesis in ecology and environmental sciences
USDA-ARS?s Scientific Manuscript database
Synthesis of diverse knowledge is a central part of all sciences, but especially those such as ecology and environmental sciences which draw information from many disciplines. Research and education in ecology are intrinsically synthetic, and synthesis is increasingly needed to find solutions for en...
USDA-ARS?s Scientific Manuscript database
Dynamic Assessment of Microbial Ecology (DAME) is a shiny-based web application for interactive analysis and visualization of microbial sequencing data. DAME provides researchers not familiar with R programming the ability to access the most current R functions utilized for ecology and gene sequenci...
Experiential Learning as a Constraint-Led Process: An Ecological Dynamics Perspective
ERIC Educational Resources Information Center
Brymer, Eric; Davids, Keith
2014-01-01
In this paper we present key ideas for an ecological dynamics approach to learning that reveal the importance of learner-environment interactions to frame outdoor experiential learning. We propose that ecological dynamics provides a useful framework for understanding the interacting constraints of the learning process and for designing learning…
Synthetic microbial ecology and the dynamic interplay between microbial genotypes.
Dolinšek, Jan; Goldschmidt, Felix; Johnson, David R
2016-11-01
Assemblages of microbial genotypes growing together can display surprisingly complex and unexpected dynamics and result in community-level functions and behaviors that are not readily expected from analyzing each genotype in isolation. This complexity has, at least in part, inspired a discipline of synthetic microbial ecology. Synthetic microbial ecology focuses on designing, building and analyzing the dynamic behavior of ‘ecological circuits’ (i.e. a set of interacting microbial genotypes) and understanding how community-level properties emerge as a consequence of those interactions. In this review, we discuss typical objectives of synthetic microbial ecology and the main advantages and rationales of using synthetic microbial assemblages. We then summarize recent findings of current synthetic microbial ecology investigations. In particular, we focus on the causes and consequences of the interplay between different microbial genotypes and illustrate how simple interactions can create complex dynamics and promote unexpected community-level properties. We finally propose that distinguishing between active and passive interactions and accounting for the pervasiveness of competition can improve existing frameworks for designing and predicting the dynamics of microbial assemblages.
ERIC Educational Resources Information Center
Erdogan, Mehmet
2011-01-01
The purpose of the study was to assess the effects of ecology-based nature education program on elementary school students' environmental knowledge, environmental affect, and responsible environmental behavior. A total number of 64 elementary school students including 26 females and 38 males who participated in summer natural education organized…
Higher Order Thinking in an Online World: Toward a Theory of Web-Mediated Knowledge Synthesis
ERIC Educational Resources Information Center
DeSchryver, Michael
2014-01-01
Background/Context: The rapid pace of technological change, undergirded by near ubiquitous access to the web, is producing a new learning ecology--a new ecology of information, of knowledge, of reading, of teaching, and of thinking. This instant availability of digital resources frees both time and cognitive energy that may be used to facilitate…
ERIC Educational Resources Information Center
Orr, Jonathan J.; Hulse-Killacky, Diana
2006-01-01
Concepts of voice, meaning, mutual construction of knowledge, and transfer of learning are presented in this paper as critical ingredients that support the teaching of group work from an ecological perspective. Examples of these concepts are given to illustrate their application in group work classes. (Contains 1 table.)
Zhou, Jin; Lyu, Yihua; Richlen, Mindy; Anderson, Donald M.; Cai, Zhonghua
2017-01-01
Algae are ubiquitous in the marine environment, and the ways in which they interact with bacteria are of particular interest in marine ecology field. The interactions between primary producers and bacteria impact the physiology of both partners, alter the chemistry of their environment, and shape microbial diversity. Although algal-bacterial interactions are well known and studied, information regarding the chemical-ecological role of this relationship remains limited, particularly with respect to quorum sensing (QS), which is a system of stimuli and response correlated to population density. In the microbial biosphere, QS is pivotal in driving community structure and regulating behavioral ecology, including biofilm formation, virulence, antibiotic resistance, swarming motility, and secondary metabolite production. Many marine habitats, such as the phycosphere, harbour diverse populations of microorganisms and various signal languages (such as QS-based autoinducers). QS-mediated interactions widely influence algal-bacterial symbiotic relationships, which in turn determine community organization, population structure, and ecosystem functioning. Understanding infochemicals-mediated ecological processes may shed light on the symbiotic interactions between algae host and associated microbes. In this review, we summarize current achievements about how QS modulates microbial behavior, affects symbiotic relationships, and regulates phytoplankton chemical ecological processes. Additionally, we present an overview of QS-modulated co-evolutionary relationships between algae and bacterioplankton, and consider the potential applications and future perspectives of QS. PMID:28966438
Disrupting the Networks of Cancer
Camacho, Daniel F.; Pienta, Kenneth J.
2014-01-01
Ecosystems are interactive systems involving communities of species and their abiotic environment. Tumors are ecosystems in which cancer cells act as invasive species interacting with native host cell species in an established microenvironment within the larger host biosphere. At its heart, to study ecology is to study interconnectedness. In ecologic science, an ecologic network is a representation of the biotic interactions in an ecosystem in which species (nodes) are connected by pairwise interactions (links). Ecologic networks and signaling network models have been used to describe and compare the structures of ecosystems. It has been shown that disruption of ecologic networks through the loss of species or disruption of interactions between them can lead to the destruction of the ecosystem. Often, the destruction of a single node or link is not enough to disrupt the entire ecosystem. The more complex the network and its interactions, the more difficult it is to cause the extinction of a species, especially without leveraging other aspects of the ecosystem. Similarly, successful treatment of cancer with a single agent is rarely enough to cure a patient without strategically modifying the support systems conducive to survival of cancer. Cancer cells and the ecologic systems they reside in can be viewed as a series of nested networks. The most effective new paradigms for treatment will be developed through application of scaled network disruption. PMID:22442061
Disrupting the networks of cancer.
Camacho, Daniel F; Pienta, Kenneth J
2012-05-15
Ecosystems are interactive systems involving communities of species and their abiotic environment. Tumors are ecosystems in which cancer cells act as invasive species interacting with native host cell species in an established microenvironment within the larger host biosphere. At its heart, to study ecology is to study interconnectedness. In ecologic science, an ecologic network is a representation of the biotic interactions in an ecosystem in which species (nodes) are connected by pairwise interactions (links). Ecologic networks and signaling network models have been used to describe and compare the structures of ecosystems. It has been shown that disruption of ecologic networks through the loss of species or disruption of interactions between them can lead to the destruction of the ecosystem. Often, the destruction of a single node or link is not enough to disrupt the entire ecosystem. The more complex the network and its interactions, the more difficult it is to cause the extinction of a species, especially without leveraging other aspects of the ecosystem. Similarly, successful treatment of cancer with a single agent is rarely enough to cure a patient without strategically modifying the support systems conducive to survival of cancer. Cancer cells and the ecologic systems they reside in can be viewed as a series of nested networks. The most effective new paradigms for treatment will be developed through application of scaled network disruption. ©2012 AACR.
Estrela, Sylvie; Trisos, Christopher H.; Brown, Sam P.
2012-01-01
Polymicrobial interactions are widespread in nature, and play a major role in maintaining human health and ecosystems. Whenever one organism uses metabolites produced by another organism as energy or nutrient sources, this is called cross-feeding. The ecological outcomes of cross-feeding interactions are poorly understood and potentially diverse: mutualism, competition, exploitation or commensalism. A major reason for this uncertainty is the lack of theoretical approaches linking microbial metabolism to microbial ecology. To address this issue, we explore the dynamics of a one-way interspecific cross-feeding interaction, in which food can be traded for a service (detoxification). Our results show that diverse ecological interactions (competition, mutualism, exploitation) can emerge from this simple cross-feeding interaction, and can be predicted by the metabolic, demographic and environmental parameters that govern the balance of the costs and benefits of association. In particular, our model predicts stronger mutualism for intermediate by-product toxicity because the resource-service exchange is constrained to the service being neither too vital (high toxicity impairs resource provision) nor dispensable (low toxicity reduces need for service). These results support the idea that bridging microbial ecology and metabolism is a critical step towards a better understanding of the factors governing the emergence and dynamics of polymicrobial interactions. PMID:23070318
Groundwater and human development: challenges and opportunities in livelihoods and environment.
Shah, T
2005-01-01
At less than 1000 km3/year, the world's annual use of groundwater is 1.5% of renewable water resource but contributes a lion's share of water-induced human welfare. Global groundwater use however has increased manifold in the past 50 years; and the human race has never had to manage groundwater use on such a large scale. Sustaining the massive welfare gains groundwater development has created without ruining the resource is a key water challenge facing the world today. In exploring this challenge, we have focused a good deal on conditions of resource occurrence but less so on resource use. I offer a typology of five groundwater demand systems as Groundwater Socio-ecologies (GwSE), each embodying a unique pattern of interactions between socio-economic and ecological variables, and each facing a distinct groundwater governance challenge. During the past century, a growing corpus of experiential knowledge has accumulated in the industrialized world on managing groundwater in various uses and contexts. A daunting global groundwater issue today is to apply this knowledge intelligently to by far the more formidable challenge that has arisen in developing regions of Asia and Africa, where groundwater irrigation has evolved into a colossal anarchy supporting billions of livelihoods but threatening the resource itself.
Tolar, Bradley B; Herrmann, Jonathan; Bargar, John R; van den Bedem, Henry; Wakatsuki, Soichi; Francis, Christopher A
2017-10-01
Knowledge of the molecular ecology and environmental determinants of ammonia-oxidizing organisms is critical to understanding and predicting the global nitrogen (N) and carbon cycles, but an incomplete biochemical picture hinders in vitro studies of N-cycling enzymes. Although an integrative structural and dynamic characterization at the atomic scale would advance our understanding of function tremendously, structural knowledge of key N-cycling enzymes from ecologically relevant ammonia oxidizers is unfortunately extremely limited. Here, we discuss the challenges and opportunities for examining the ecology of ammonia-oxidizing organisms, particularly uncultivated Thaumarchaeota, through (meta)genome-driven structural biology of the enzymes ammonia monooxygenase (AMO) and nitrite reductase (NirK). © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Challenges, developments and perspectives in intermittent river ecology
Although more than half the world's river networks comprise channels that periodically cease to flow and dry [intermittent rivers (IRs)], river ecology was largely developed from and for perennial systems. Ecological knowledge of IRs is rapidly increasing, so there is a need to s...
USDA-ARS?s Scientific Manuscript database
The Conservation Effects Assessment Program (CEAP) Watershed Assessment Study goals are to quantify the environmental benefits of conservation practices at the watershed scale. Currently, a critical knowledge gap exists in linking conservation practices and their ecological effects on aquatic ecosy...
Cophylogenetic signal is detectable in pollination interactions across ecological scales.
Hutchinson, Matthew C; Cagua, Edgar Fernando; Stouffer, Daniel B
2017-10-01
That evolutionary history can influence the way that species interact is a basic tenet of evolutionary ecology. However, when the role of evolution in determining ecological interactions is investigated, focus typically centers on just one side of the interaction. A cophylogenetic signal, the congruence of evolutionary history across both sides of an ecological interaction, extends these previous explorations and provides a more complete picture of how evolutionary patterns influence the way species interact. To date, cophylogenetic signal has most typically been studied in interactions that occur between fine taxonomic clades that show high intimacy. In this study, we took an alternative approach and made an exhaustive assessment of cophylogeny in pollination interactions. To do so, we assessed the strength of cophylogenetic signal at four distinct scales of pollination interaction: (1) across plant-pollinator associations globally, (2) in local pollination communities, (3) within the modular structure of those communities, and (4) in individual modules. We did so using a globally distributed dataset comprised of 54 pollination networks, over 4000 species, and over 12,000 interactions. Within these data, we detected cophylogenetic signal at all four scales. Cophylogenetic signal was found at the level of plant-pollinator interactions on a global scale and in the majority of pollination communities. At the scale defined by the modular structure within those communities, however, we observed a much weaker cophylogenetic signal. Cophylogenetic signal was detectable in a significant proportion of individual modules and most typically when within-module phylogenetic diversity was low. In sum, the detection of cophylogenetic signal in pollination interactions across scales provides a new dimension to the story of how past evolution shapes extant pollinator-angiosperm interactions. © 2017 by the Ecological Society of America.
Dunham, Jason B.; Angermeier, Paul L.; Crausbay, Shelley D.; Cravens, Amanda; Gosnell, Hannah; McEvoy, Jamie; Moritz, Max A.; Raheem, Nejem; Sanford, Todd
2018-01-01
Incorporation of concepts from landscape ecology into understanding and managing riverine ecosystems has become widely known as riverscape ecology. Riverscape ecology emphasizes interactions among processes at different scales and their consequences for valued ecosystem components, such as riverine fishes. Past studies have focused strongly on understanding the ecological processes in riverscapes and how human actions modify those processes. It is increasingly clear, however, that an understanding of the drivers behind actions that lead to human modification also merit consideration, especially regarding how those drivers influence management efficacy. These indirect drivers of riverscape outcomes can be understood in the context of a diverse array of social processes, which we collectively refer to as human dimensions. Like ecological phenomena, social processes also exhibit complex interactions across spatiotemporal scales. Greater emphasis on feedbacks between social and ecological processes will lead scientists and managers to more completely understand riverscapes as complex, dynamic, interacting social–ecological systems. Emerging applications in riverscapes, as well as studies of other ecosystems, provide examples that can lead to stronger integration of social and ecological science. We argue that conservation successes within riverscapes may not come from better ecological science, improved ecosystem service analyses, or even economic incentives if the fundamental drivers of human behaviors are not understood and addressed in conservation planning and implementation.
Wisz, Mary Susanne; Pottier, Julien; Kissling, W Daniel; Pellissier, Loïc; Lenoir, Jonathan; Damgaard, Christian F; Dormann, Carsten F; Forchhammer, Mads C; Grytnes, John-Arvid; Guisan, Antoine; Heikkinen, Risto K; Høye, Toke T; Kühn, Ingolf; Luoto, Miska; Maiorano, Luigi; Nilsson, Marie-Charlotte; Normand, Signe; Öckinger, Erik; Schmidt, Niels M; Termansen, Mette; Timmermann, Allan; Wardle, David A; Aastrup, Peter; Svenning, Jens-Christian
2013-01-01
Predicting which species will occur together in the future, and where, remains one of the greatest challenges in ecology, and requires a sound understanding of how the abiotic and biotic environments interact with dispersal processes and history across scales. Biotic interactions and their dynamics influence species' relationships to climate, and this also has important implications for predicting future distributions of species. It is already well accepted that biotic interactions shape species' spatial distributions at local spatial extents, but the role of these interactions beyond local extents (e.g. 10 km2 to global extents) are usually dismissed as unimportant. In this review we consolidate evidence for how biotic interactions shape species distributions beyond local extents and review methods for integrating biotic interactions into species distribution modelling tools. Drawing upon evidence from contemporary and palaeoecological studies of individual species ranges, functional groups, and species richness patterns, we show that biotic interactions have clearly left their mark on species distributions and realised assemblages of species across all spatial extents. We demonstrate this with examples from within and across trophic groups. A range of species distribution modelling tools is available to quantify species environmental relationships and predict species occurrence, such as: (i) integrating pairwise dependencies, (ii) using integrative predictors, and (iii) hybridising species distribution models (SDMs) with dynamic models. These methods have typically only been applied to interacting pairs of species at a single time, require a priori ecological knowledge about which species interact, and due to data paucity must assume that biotic interactions are constant in space and time. To better inform the future development of these models across spatial scales, we call for accelerated collection of spatially and temporally explicit species data. Ideally, these data should be sampled to reflect variation in the underlying environment across large spatial extents, and at fine spatial resolution. Simplified ecosystems where there are relatively few interacting species and sometimes a wealth of existing ecosystem monitoring data (e.g. arctic, alpine or island habitats) offer settings where the development of modelling tools that account for biotic interactions may be less difficult than elsewhere. PMID:22686347
Principles for ecologically based invasive plant management
Jeremy J. James; Brenda S. Smith; Edward A. Vasquez; Roger L. Sheley
2010-01-01
Land managers have long identified a critical need for a practical and effective framework for designing restoration strategies, especially where invasive plants dominate. A holistic, ecologically based, invasive plant management (EBIPM) framework that integrates ecosystem health assessment, knowledge of ecological processes, and adaptive management into a successional...
Traditional ecological knowledge and restoration practice
René Senos; Frank K. Lake; Nancy Turner; Dennis Martinez
2006-01-01
Ecological restoration is a process, a directed action aimed at repairing damage to ecocultural systems for which humans are responsible. Environmental degradation has impaired the functioning of both ecological and cultural systems and disrupted traditional practices that maintained these systems over several millennia. Indigenous and local peoples who depend...
NASA Astrophysics Data System (ADS)
Petursdottir, Thorunn; Finger, David
2015-04-01
"Tell me and I will forget, show me and I may remember, involve me and I will understand" (Chinese Proverb). Throughout the global history fundamental knowledge on utilizing natural resources, nowadays known as ecoliteracy, was passed on to next generations by our ancestors. Nevertheless, their practices were often unsustainable and lead directly or indirectly to severe ecosystem degradation. Nowadays, overexploitation of natural resources is still a global main driver for ecological degradation, water quality decrease and climate change. While ecoliteracy is still an essential knowledge, the societal structures required to maintain the knowledge have diminished. Today, about 80% of the population in Western countries lives in urban areas dominated by concrete structures with frequently only isolated green spaces. Environmental education is dominated by theoretical concepts taught using a wide range of multimedia technologies to simulate direct experiences of natural processes. Nevertheless, these technologies can only provide a superficial insight into the functioning of natural processes. Only direct on-sight investigations can provide a thorough experience of the dynamic, ever-changing environmental processes. Iceland is a 103,000 km2 large island, located on the Mid Atlantic Ridge just south of the Arctic Circle. In that area the earth crust is only a few km thick, leading to frequent volcanic eruptions and seismic activity. Due to the long winter and the wet climate glaciers formed on all major peaks and cover 11% of the island. Most riverbeds are in their pristine state and water quality is in general excellent. The Icelandic nature may look pristine but is indeed severely degraded. Unsustainable landuse, namely deforestation and overgrazing, in an environment characterized by harsh winters and volcanic activities had devastating effects on the nature. Since settlement 1100 years ago 40% of its vegetation and soil have been lost. Soil conservation and restoration has been a governmental objective for over a century. Iceland has thus gained tremendous knowledge on ecosystem degradation and restoration. This knowledge is highly valuable for educational purposes, particularly to demonstrate the interactions of natural processes within functional and dysfunctional ecosystems. Iceland has a population of roughly 325'000 whereof only 6% live in rural areas. Although fishing and agriculture are predominant industries in rural areas, in recent years tourism and heavy industry have become increasingly important drivers for economic development. Iceland is a representative democracy with a governmental structure similar to other North European countries. All these factors make Iceland an ideal place to study ecoliteracy and learn about social and ecological systems. In this presentation we will present examples of training schools where the Icelandic nature is used as an outdoor laboratory for environmental education. We will also discuss how the interaction between human and nature in Iceland can be used to demonstrate the importance of linking geoscience to relevant social and ecological systems and how it can feed in to build up resilience-based management of natural resources.
NASA Astrophysics Data System (ADS)
Zhou, Wen-Yong; Song, Ze-Qian
The competitiveness of Supply Chain (SC) correlates intimately with its knowledge operation (KO). In order to realize better assessment value, this paper constructed an evaluation framework on knowledge operation of SC and a detailed index system. According to theory of ecology, expounded the evaluation orientation and future research direction from view of comprehensiveness and adaptability. Additionally, a case about Toyota recall-gate was analyzed. Through research, it provides two dimensions of results evaluating orientation which may help enterprise make right decision upon SC.
Linking science and decision making to promote an ecology for the city: practices and opportunities
Morgan Grove; Daniel L. Childers; Michael Galvin; Sarah J. Hines; Tischa Munoz-Erickson; Erika S. Svendsen
2016-01-01
To promote urban sustainability and resilience, there is an increasing demand for actionable science that links science and decision making based on socialâecological knowledge. Approaches, frameworks, and practices for such actionable science are needed and have only begun to emerge. We propose that approaches based on the co- design and co- production of knowledge...
J. Morgan Grove; Rinku Roy Chowdhury; Daniel Childers
2015-01-01
To promote sustainability and resilience, the role of co-design, co-production, and dissemination of social-ecological knowledge is of growing interest and importance. Although the antecedents for this approach are decades old, the integration of science and practice to advance sustainability and resilience is different from earlier approaches in several ways. In this...
ERIC Educational Resources Information Center
Hashimoto-Martell, Erin A.; McNeill, Katherine L.; Hoffman, Emily M.
2012-01-01
This study explores the impact of an urban ecology program on participating middle school students' understanding of science and pro-environmental attitudes and behaviors. We gathered pre and post survey data from four classes and found significant gains in scientific knowledge, but no significant changes in student beliefs regarding the…
ERIC Educational Resources Information Center
Hamlin, Maria L.
2013-01-01
This study examines how traditional ecological knowledge--TEK--can be identified and utilized to create culturally responsive science learning opportunities for Maya girls from a community in the Guatemalan highlands. Maya girls are situated in a complex socio-historical and political context rooted in racism and sexism. This study contextualizes…
An experimental test of a fundamental food web motif.
Rip, Jason M K; McCann, Kevin S; Lynn, Denis H; Fawcett, Sonia
2010-06-07
Large-scale changes to the world's ecosystem are resulting in the deterioration of biostructure-the complex web of species interactions that make up ecological communities. A difficult, yet crucial task is to identify food web structures, or food web motifs, that are the building blocks of this baroque network of interactions. Once identified, these food web motifs can then be examined through experiments and theory to provide mechanistic explanations for how structure governs ecosystem stability. Here, we synthesize recent ecological research to show that generalist consumers coupling resources with different interaction strengths, is one such motif. This motif amazingly occurs across an enormous range of spatial scales, and so acts to distribute coupled weak and strong interactions throughout food webs. We then perform an experiment that illustrates the importance of this motif to ecological stability. We find that weak interactions coupled to strong interactions by generalist consumers dampen strong interaction strengths and increase community stability. This study takes a critical step by isolating a common food web motif and through clear, experimental manipulation, identifies the fundamental stabilizing consequences of this structure for ecological communities.
Souza, Arlene Oliveira; Chaves, Maria do Perpétuo Socorro Rodrigues; Barbosa, Reinaldo Imbrozio; Clement, Charles Roland
2018-05-03
Invasive plants can impact biodiversity as well as the lives of native human populations. Natural ecosystems represent sources of natural resources essential for the subsistence and socio-cultural continuity of these social groups. Approximately 30,000 ha of Acacia mangium were planted for commercial purposes in savanna areas surrounding indigenous lands in Roraima State, Brazil, at the end of the 1990s. We examined the local ecological knowledge of indigenous Wapichana and Macuxi Amerindians, members of the Arawak and Carib linguistic families, respectively, concerning A. mangium Willdenow (Fabaceae) in a savanna ecosystem ("Lavrado") to attempt to understand its propagation beyond the limits of the commercial plantations and contribute to mitigating its impacts on socio-ecological systems. The present study was undertaken in the Moskow, São Domingos, and Malacacheta communities in the Moskow and Malacacheta Indigenous Lands (ILs) in the Serra da Lua region of Roraima State, in the northern Brazilian Amazon region. Interviews were conducted with a total of 94 indigenous individuals of both sexes, with ages between 18 and 76, and low levels of formal schooling, with an average time of permanence in the area of 21 years; some still spoke only their native languages. The interviews focused on their ecological knowledge of the invasive, non-native A. mangium and their uses of it. The informants affirmed that A. mangium negatively impacted the local fauna and flora, making their subsistence more difficult and altering their daily routines. Among the problems cited were alterations of water quality (71.3%), negative impacts on crops (60.6%), negative impacts on the equilibrium of the local fauna (52.1%), increased farm labor requirements (41.5%), and restriction of access to indigenous lands (23.4%). There were no significant differences between the opinions of men and women, nor between community leaders and nonleaders. Most of the interviewees (89%) felt that A. mangium had no positive importance for the local economy and saw no future prospects of beneficial use. The Wapichana and Macuxi informants felt that the invasion by A. mangium had caused negative effects on the natural environment and on community subsistence in the indigenous lands due to its rapid and unwanted propagation. The similarity between the opinions of men and women and between community leaders and nonleaders demonstrates the existence of knowledge that is well distributed among these communities and transmitted within their communities through social-cultural interactions.
Marazzi, Brigitte; Bronstein, Judith L.; Koptur, Suzanne
2013-01-01
Background Plants in over one hundred families in habitats worldwide bear extrafloral nectaries (EFNs). EFNs display a remarkable diversity of evolutionary origins, as well as diverse morphology and location on the plant. They secrete extrafloral nectar, a carbohydrate-rich food that attracts ants and other arthropods, many of which protect the plant in return. By fostering ecologically important protective mutualisms, EFNs play a significant role in structuring both plant and animal communities. And yet researchers are only now beginning to appreciate their importance and the range of ecological, evolutionary and morphological diversity that EFNs exhibit. Scope This Highlight features a series of papers that illustrate some of the newest directions in the study of EFNs. Here, we introduce this set of papers by providing an overview of current understanding and new insights on EFN diversity, ecology and evolution. We highlight major gaps in our current knowledge, and outline future research directions. Conclusions Our understanding of the roles EFNs play in plant biology is being revolutionized with the use of new tools from developmental biology and genomics, new modes of analysis allowing hypothesis-testing in large-scale phylogenetic frameworks, and new levels of inquiry extending to community-scale interaction networks. But many central questions remain unanswered; indeed, many have not yet been asked. Thus, the EFN puzzle remains an intriguing challenge for the future. PMID:23704115
The Case for Creative Abrasion: Experts Speak Out on Knowledge Management.
ERIC Educational Resources Information Center
Cowley-Durst, Barbara; Christensen, Hal D.; Degler, Duane; Weidner, Douglas; Feldstein, Michael
2001-01-01
Five knowledge management (KM) experts discuss answers to six fundamental issues of KM that address: a definition of knowledge and KM; relationship between business and KM; whether technology has helped the knowledge worker; relationship between learning, performance, knowledge, and community; the promise of knowledge ecology or ecosystem and…
Thwala, Melusi; Klaine, Stephen J; Musee, Ndeke
2016-07-01
The rising potential for the release of engineered nanoparticles (ENPs) into aquatic environments requires evaluation of risks to protect ecological health. The present review examines knowledge pertaining to the interactions of metal-based ENPs with aquatic higher plants, identifies information gaps, and raises considerations for future research to advance knowledge on the subject. The discussion focuses on ENPs' bioaccessibility; uptake, adsorption, translocation, and bioaccumulation; and toxicity effects on aquatic higher plants. An information deficit surrounds the uptake of ENPs and associated dynamics, because the influence of ENP characteristics and water quality conditions has not been well documented. Dissolution appears to be a key mechanism driving bioaccumulation of ENPs, whereas nanoparticulates often adsorb to plant surfaces with minimal internalization. However, few reports document the internalization of ENPs by plants; thus, the role of nanoparticulates' internalization in bioaccumulation and toxicity remains unclear, requiring further investigation. The toxicities of metal-based ENPs mainly have been associated with dissolution as a predominant mechanism, although nano toxicity has also been reported. To advance knowledge in this domain, future investigations need to integrate the influence of ENP characteristics and water physicochemical parameters, as their interplay determines ENP bioaccessibility and influences their risk to health of aquatic higher plants. Furthermore, harmonization of test protocols is recommended for fast tracking the generation of comparable data. Environ Toxicol Chem 2016;35:1677-1694. © 2016 SETAC. © 2016 SETAC.
The roles of amensalistic and commensalistic interactions in large ecological network stability
Mougi, Akihiko
2016-01-01
Ecological communities comprise diverse species and their interactions. Notably, ecological and evolutionary studies have revealed that reciprocal interactions such as predator–prey, competition, and mutualism, are key drivers of community dynamics. However, there is an argument that many species interactions are asymmetric, where one species unilaterally affects another species (amensalism or commensalism). This raises the unanswered question of what is the role of unilateral interactions in community dynamics. Here I use a theoretical approach to demonstrate that unilateral interactions greatly enhance community stability. The results suggested that amensalism and commensalism were more stabilizing than symmetrical interactions, such as competition and mutualism, but they were less stabilizing than an asymmetric antagonistic interaction. A mix of unilateral interactions increased stability. Furthermore, in communities with all interaction types, unilateral interactions tended to increase stability. This study suggests that unilateral interactions play a major role in maintaining communities, underlining the need to further investigate their roles in ecosystem dynamics. PMID:27406267
Cárcamo, P Francisco; Gaymer, Carlos F
2013-12-01
Marine protected areas are not established in an institutional and governance vacuum and managers should pay attention to the wider social-ecological system in which they are immersed. This article examines Islas Choros-Damas Marine Reserve, a small marine protected area located in a highly productive and biologically diverse coastal marine ecosystem in northern Chile, and the interactions between human, institutional, and ecological dimensions beyond those existing within its boundaries. Through documents analysis, surveys, and interviews, we described marine reserve implementation (governing system) and the social and natural ecosystem-to-be-governed. We analyzed the interactions and the connections between the marine reserve and other spatially explicit conservation and/or management measures existing in the area and influencing management outcomes and governance. A top-down approach with poor stakeholder involvement characterized the implementation process. The marine reserve is highly connected with other spatially explicit measures and with a wider social-ecological system through various ecological processes and socio-economic interactions. Current institutional interactions with positive effects on the management and governance are scarce, although several potential interactions may be developed. For the study area, any management action must recognize interferences from outside conditions and consider some of them (e.g., ecotourism management) as cross-cutting actions for the entire social-ecological system. We consider that institutional interactions and the development of social networks are opportunities to any collective effort aiming to improve governance of Islas Choros-Damas marine reserve. Communication of connections and interactions between marine protected areas and the wider social-ecological system (as described in this study) is proposed as a strategy to improve stakeholder participation in Chilean marine protected areas.
NASA Astrophysics Data System (ADS)
Cárcamo, P. Francisco; Gaymer, Carlos F.
2013-12-01
Marine protected areas are not established in an institutional and governance vacuum and managers should pay attention to the wider social-ecological system in which they are immersed. This article examines Islas Choros-Damas Marine Reserve, a small marine protected area located in a highly productive and biologically diverse coastal marine ecosystem in northern Chile, and the interactions between human, institutional, and ecological dimensions beyond those existing within its boundaries. Through documents analysis, surveys, and interviews, we described marine reserve implementation (governing system) and the social and natural ecosystem-to-be-governed. We analyzed the interactions and the connections between the marine reserve and other spatially explicit conservation and/or management measures existing in the area and influencing management outcomes and governance. A top-down approach with poor stakeholder involvement characterized the implementation process. The marine reserve is highly connected with other spatially explicit measures and with a wider social-ecological system through various ecological processes and socio-economic interactions. Current institutional interactions with positive effects on the management and governance are scarce, although several potential interactions may be developed. For the study area, any management action must recognize interferences from outside conditions and consider some of them (e.g., ecotourism management) as cross-cutting actions for the entire social-ecological system. We consider that institutional interactions and the development of social networks are opportunities to any collective effort aiming to improve governance of Islas Choros-Damas marine reserve. Communication of connections and interactions between marine protected areas and the wider social-ecological system (as described in this study) is proposed as a strategy to improve stakeholder participation in Chilean marine protected areas.
Saleem, Haneefa T; Surkan, Pamela J; Kerrigan, Deanna; Kennedy, Caitlin E
2016-01-01
Safer conception interventions can significantly reduce the risk of horizontal HIV transmission between HIV-serodiscordant partners. However, prior to implementing safer conception interventions, it is essential to understand potential barriers to their adoption so that strategies can be developed to overcome these barriers. This paper examines potential barriers to the adoption of safer conception strategies by HIV-affected couples in Iringa, Tanzania using an ecological framework. We interviewed 30 HIV-positive women, 30 HIV-positive men and 30 health providers engaged in delivering HIV-related services. We also conducted direct observations at five health facilities. Findings suggest that there are multiple barriers to safer conception that operate at the individual, relational, environmental, structural, and super-structural levels. The barriers to safer conception identified are complex and interact across these levels. Barriers at the individual level included antiretroviral adherence, knowledge of HIV status, knowledge and acceptability of safer conception strategies, and poor nutrition. At the relational level, unplanned pregnancies, non-disclosure of status, gendered power dynamics within relationships, and patient-provider interactions posed a threat to safer conception. HIV stigma and distance to health facilities were environmental barriers to safer conception. At the structural level there were multiple barriers to safer conception, including limited safer conception policy guidelines for people living with HIV (PLHIV), lack of health provider training in safer conception strategies and preconception counseling for PLHIV, limited resources, and lack of integration of HIV and sexual and reproductive health services. Poverty and gender norms were super-structural factors that influenced and reinforced barriers to safer conception, which influenced and operated across different levels of the framework. Multi-level interventions are needed to ensure adoption of safer conception strategies and reduce the risk of HIV transmission between partners within HIV-serodiscordant couples.
Squamation and ecology of thelodonts.
Ferrón, Humberto G; Botella, Héctor
2017-01-01
Thelodonts are an enigmatic group of Paleozoic jawless vertebrates that have been well studied from taxonomical, biostratigraphic and paleogeographic points of view, although our knowledge of their ecology and mode of life is still scant. Their bodies were covered by micrometric scales whose morphology, histology and the developmental process are extremely similar to those of extant sharks. Based on these similarities and on the well-recognized relationship between squamation and ecology in sharks, here we explore the ecological diversity and lifestyles of thelodonts. For this we use classic morphometrics and discriminant analysis to characterize the squamation patterns of a significant number of extant shark species whose ecology is well known. Multivariate analyses have defined a characteristic squamation pattern for each ecological group, thus establishing a comparative framework for inferring lifestyles in thelodonts. We then use this information to study the squamation of the currently described 147 species of thelodonts, known from both articulated and disarticulated remains. Discriminant analysis has allowed recognizing squamation patterns comparable to those of sharks and links them to specific ecological groups. Our results suggest a remarkable ecological diversity in thelodonts. A large number of them were probably demersal species inhabiting hard substrates, within caves and crevices in rocky environments or reefs, taking advantage of the flexibility provided by their micromeric squamations. Contrary to classical interpretations, only few thelodonts were placed among demersal species inhabiting sandy and muddy substrates. Schooling species with defensive scales against ectoparasites could be also abundant suggesting that social interactions and pressure of ectoparasites were present in vertebrates as early the Silurian. The presence of species showing scales suggestive of low to moderate speed and a lifestyle presumably associated with open water environments indicates adaptation of thelodonts to deep water habitats. Scale morphology suggests that some other thelodonts were strong-swimming pelagic species, most of them radiating during the Early Devonian in association with the Nekton Revolution.
Squamation and ecology of thelodonts
Botella, Héctor
2017-01-01
Thelodonts are an enigmatic group of Paleozoic jawless vertebrates that have been well studied from taxonomical, biostratigraphic and paleogeographic points of view, although our knowledge of their ecology and mode of life is still scant. Their bodies were covered by micrometric scales whose morphology, histology and the developmental process are extremely similar to those of extant sharks. Based on these similarities and on the well-recognized relationship between squamation and ecology in sharks, here we explore the ecological diversity and lifestyles of thelodonts. For this we use classic morphometrics and discriminant analysis to characterize the squamation patterns of a significant number of extant shark species whose ecology is well known. Multivariate analyses have defined a characteristic squamation pattern for each ecological group, thus establishing a comparative framework for inferring lifestyles in thelodonts. We then use this information to study the squamation of the currently described 147 species of thelodonts, known from both articulated and disarticulated remains. Discriminant analysis has allowed recognizing squamation patterns comparable to those of sharks and links them to specific ecological groups. Our results suggest a remarkable ecological diversity in thelodonts. A large number of them were probably demersal species inhabiting hard substrates, within caves and crevices in rocky environments or reefs, taking advantage of the flexibility provided by their micromeric squamations. Contrary to classical interpretations, only few thelodonts were placed among demersal species inhabiting sandy and muddy substrates. Schooling species with defensive scales against ectoparasites could be also abundant suggesting that social interactions and pressure of ectoparasites were present in vertebrates as early the Silurian. The presence of species showing scales suggestive of low to moderate speed and a lifestyle presumably associated with open water environments indicates adaptation of thelodonts to deep water habitats. Scale morphology suggests that some other thelodonts were strong-swimming pelagic species, most of them radiating during the Early Devonian in association with the Nekton Revolution. PMID:28241029
Cooke, Steven J.; Martins, Eduardo G; Struthers, Daniel P; Gutowsky, Lee F G; Powers, Michael H.; Doka, Susan E.; Dettmers, John M.; Crook, David A; Lucas, Martyn C.; Holbrook, Christopher; Krueger, Charles C.
2016-01-01
Freshwater fish move vertically and horizontally through the aquatic landscape for a variety of reasons, such as to find and exploit patchy resources or to locate essential habitats (e.g., for spawning). Inherent challenges exist with the assessment of fish populations because they are moving targets. We submit that quantifying and describing the spatial ecology of fish and their habitat is an important component of freshwater fishery assessment and management. With a growing number of tools available for studying the spatial ecology of fishes (e.g., telemetry, population genetics, hydroacoustics, otolith microchemistry, stable isotope analysis), new knowledge can now be generated and incorporated into biological assessment and fishery management. For example, knowing when, where, and how to deploy assessment gears is essential to inform, refine, or calibrate assessment protocols. Such information is also useful for quantifying or avoiding bycatch of imperiled species. Knowledge of habitat connectivity and usage can identify critically important migration corridors and habitats and can be used to improve our understanding of variables that influence spatial structuring of fish populations. Similarly, demographic processes are partly driven by the behavior of fish and mediated by environmental drivers. Information on these processes is critical to the development and application of realistic population dynamics models. Collectively, biological assessment, when informed by knowledge of spatial ecology, can provide managers with the ability to understand how and when fish and their habitats may be exposed to different threats. Naturally, this knowledge helps to better evaluate or develop strategies to protect the long-term viability of fishery production. Failure to understand the spatial ecology of fishes and to incorporate spatiotemporal data can bias population assessments and forecasts and potentially lead to ineffective or counterproductive management actions.
Cooke, Steven J; Martins, Eduardo G; Struthers, Daniel P; Gutowsky, Lee F G; Power, Michael; Doka, Susan E; Dettmers, John M; Crook, David A; Lucas, Martyn C; Holbrook, Christopher M; Krueger, Charles C
2016-04-01
Freshwater fish move vertically and horizontally through the aquatic landscape for a variety of reasons, such as to find and exploit patchy resources or to locate essential habitats (e.g., for spawning). Inherent challenges exist with the assessment of fish populations because they are moving targets. We submit that quantifying and describing the spatial ecology of fish and their habitat is an important component of freshwater fishery assessment and management. With a growing number of tools available for studying the spatial ecology of fishes (e.g., telemetry, population genetics, hydroacoustics, otolith microchemistry, stable isotope analysis), new knowledge can now be generated and incorporated into biological assessment and fishery management. For example, knowing when, where, and how to deploy assessment gears is essential to inform, refine, or calibrate assessment protocols. Such information is also useful for quantifying or avoiding bycatch of imperiled species. Knowledge of habitat connectivity and usage can identify critically important migration corridors and habitats and can be used to improve our understanding of variables that influence spatial structuring of fish populations. Similarly, demographic processes are partly driven by the behavior of fish and mediated by environmental drivers. Information on these processes is critical to the development and application of realistic population dynamics models. Collectively, biological assessment, when informed by knowledge of spatial ecology, can provide managers with the ability to understand how and when fish and their habitats may be exposed to different threats. Naturally, this knowledge helps to better evaluate or develop strategies to protect the long-term viability of fishery production. Failure to understand the spatial ecology of fishes and to incorporate spatiotemporal data can bias population assessments and forecasts and potentially lead to ineffective or counterproductive management actions.
NASA Astrophysics Data System (ADS)
Liampa, Vasiliki; Malandrakis, George N.; Papadopoulou, Penelope; Pnevmatikos, Dimitrios
2017-08-01
This study focused on the development and validation of a three-tier multiple-choice diagnostic instrument about the ecological footprint. Each question in the three-tier test comprised by; (a) the content tier, assessing content knowledge; (b) the reason tier, assessing explanatory knowledge; and (c) the confidence tier that differentiates lack of knowledge from misconception through the use of a certainty response index. Based on the literature, the propositional knowledge statements and the identified misconceptions of 97 student-teachers, a first version of the test was developed and subsequently administered to another group of 219 student-teachers from Primary and Early Childhood Education Departments. Due to the complexity of the ecological footprint concept, and that it is a newly introduced concept, unknown to the public, both groups have been previously exposed to relevant instruction. Experts in the field established face and content validity. The reliability, in terms of Cronbach's alpha, was found adequate (α = 0.839), and the test-retest reliability, as indicated by Pearson r, was also satisfactory (0.554). The mean performance of the students was 56.24% in total score, 59.75% in content tiers and 48.05% in reason tiers. A variety of concepts about the ecological footprint were also observed. The test can help educators to understand the alternative views that students hold about the ecological footprint concept and assist them in developing the concept through appropriately designed teaching methods and materials.
Teaching Ecological Principles as a Basis for Understanding Environmental Issues.
ERIC Educational Resources Information Center
Webb, Paul; Boltt, Gill
1989-01-01
Using case study data, determines high school pupils' and university students' (n=162) ability to predict possible outcomes of interactions between ecological populations . Results indicate the majority of respondents could predict interactive outcomes within a simple food web but not when the interaction involved multiple routes. (five…
Using JournalMap to improve ecological knowledge discovery and visualization
USDA-ARS?s Scientific Manuscript database
Background/Question/Methods Most of the ecological research conducted around the world is tied to specific places, however, that location information is locked up in the text and figures of scientific articles in myriad forms that are not easily searchable. While access to ecological literature ha...
ERIC Educational Resources Information Center
Pasricha, Anupama
2010-01-01
Sustainability is gaining importance because of heightened ecological challenges. The UN declared 2005-2014 as the decade of sustainable development encouraging educational institutions at all levels to nurture ecologically literate individuals. An ecologically literate person has the knowledge necessary to comprehend interrelatedness among…
Interdisciplinary Industrial Ecology Education: Recommendations for an Inclusive Pedagogical Model
ERIC Educational Resources Information Center
Sharma, Archana
2009-01-01
Industrial ecology education is being developed and delivered predominantly within the domains of engineering and management. Such an approach could prove somewhat limiting to the broader goal of developing industrial ecology as an integrated knowledge base inclusive of diverse disciplines, contributing to sustainable development. This paper…
Ecological Education in Rural China: Rediscovering Traditional Knowledge
ERIC Educational Resources Information Center
Liu, Yan
2008-01-01
This article has implications for the ecological sustainability crisis now looming in China and what this portends for the practice of education. Chemical agriculture, although improving agricultural production, harms ecological systems in rural communities. The author presents research on a group of intellectuals and social activists in 1…
2014-01-01
Background The Quilombola communities of Ipiranga and Gurugi, located in Atlantic Rainforest in Southern of Paraíba state, have stories that are interwoven throughout time. The practice of meliponicultura has been carried out for generations in these social groups and provides an elaborate ecological knowledge based on native stingless bees, the melliferous flora and the management techniques used. The traditional knowledge that Quilombola have of stingless bees is of utmost importance for the establishment of conservation strategies for many species. Methods To deepen study concerning the ecological knowledge of the beekeepers, the method of participant observation together with structured and semi-structured interviews was used, as well as the collection of entomological and botanical categories of bees and plants mentioned. With the aim of recording the knowledge related to meliponiculture previously exercised by the residents, the method of the oral story was employed. Results and discussion Results show that the informants sampled possess knowledge of twelve categories of stingless bees (Apidae: Meliponini), classified according to morphological, behavioral and ecological characteristics. Their management techniques are represented by the making of traditional cortiço and the melliferous flora is composed of many species predominant in the Atlantic Rainforest. From recording the memories and recollections of the individuals, it was observed that an intricate system of beliefs has permeated the keeping of uruçu bees (Melipona scutellaris) for generations. Conclusion According to management techniques used by beekeepers, the keeping of stingless bees in the communities is considered a traditional activity that is embedded within a network of ecological knowledge and beliefs accumulated by generations over time, and is undergoing a process of transformation that provides new meanings to such knowledge, as can be observed in the practices of young people. PMID:24410767
Democracy and environment as references for quadruple and quintuple helix innovation systems
NASA Astrophysics Data System (ADS)
Carayannis, Elias G.; Campbell, David F. J.; Orr, Barron J.
2015-04-01
The perspective of democracy and the ecological context define key references for knowledge production and innovation in innovation systems. Particularly under conditions of environmental change where enhancing the potential for adaptation is critical, this requires a closer look at ecological responsibility and sensitivity in the different innovation models and governance regimes. The "Quintuple Helix" innovation model is an approach that stresses the necessary socio-ecological transition of society and economy by adding an environment helix to an innovation system already made up of three (university-industry-government) or four (civil society relations) helices in a way that supports adaptation by incorporating global warming as both a challenge to and a driver of innovation. There is the proposition that knowledge production and innovation co-evolve with democracy (Carayannis and Campbell, 2014). In the Triple Helix model (Etzkowitz and Leydesdorff, 2000) the existence of a democracy does not appear to be necessary for knowledge production and innovation. However, the Quadruple Helix (Carayannis and Campbell, 2009, 2010 and 2014) is defined and represented by additional key attributes and components: "media-based and culture-based public", "civil society" and "arts, artistic research and arts-based innovation" (Bast, Carayannis and Campbell, 2015). Implications of this are that the fourth helix in the Quadruple Helix innovation systems brings in and represents the perspective of "dimension of democracy" or the "context of democracy" for knowledge in general and knowledge production and innovation in more particular. Within theories of democracy there is a competition between narrow and broader concepts of democracy (Campbell, 2013). This is particularly true when democracy is to be understood to transcend more substantially the narrow understanding of being primarily based on or being primarily rooted in government institutions (within a Triple Helix arrangement). Civil society, culture-based public, quality of democracy and sustainable development, however, demonstrate convincingly, what the rationales and requirements are for conceptualizing democracy broader. This appears to be necessary for a sustainable advancement of sustainable development. In a democracy, political pluralism is necessary. Political pluralism in a democracy co-evolves with pluralism, diversity and heterogeneity of knowledge, knowledge production and innovation ("Democracy of Knowledge") (Carayannis and Campbell, 2009). This encourages and drives creativity that furthermore drives innovation (Carayannis and Campbell, 2010). The Quintuple Helix extends the Quadruple Helix by aspects of "natural environments of society and economy", "social ecology" and the "socio-ecological transition" (Carayannis, Barth and Campbell, 2012). The Quintuple Helix re-defines the ecology to a frontier for knowledge production and innovation. The proposition to-be-tested is that this environmental context of society can also be better addressed in a democracy than in non-democracies. If this is the case, then democracy and ecological progress are tied to each other, laying the groundwork for an approach to innovations systems that can increase resilience and enhance the potential for adaptation to environmental change.
Ecological consequences of interactions between ants and honeydew-producing insects
Styrsky, John D; Eubanks, Micky D
2006-01-01
Interactions between ants and honeydew-producing hemipteran insects are abundant and widespread in arthropod food webs, yet their ecological consequences are very poorly known. Ant–hemipteran interactions have potentially broad ecological effects, because the presence of honeydew-producing hemipterans dramatically alters the abundance and predatory behaviour of ants on plants. We review several studies that investigate the consequences of ant–hemipteran interactions as ‘keystone interactions’ on arthropod communities and their host plants. Ant–hemipteran interactions have mostly negative effects on the local abundance and species richness of several guilds of herbivores and predators. In contrast, out of the 30 studies that document the effects of ant–hemipteran interactions on plants, the majority (73%) shows that plants actually benefit indirectly from these interactions. In these studies, increased predation or harassment of other, more damaging, herbivores by hemipteran-tending ants resulted in decreased plant damage and/or increased plant growth and reproduction. The ecological consequences of mutualistic interactions between honeydew-producing hemipterans and invasive ants relative to native ants have rarely been studied, but they may be of particular importance owing to the greater abundance, aggressiveness and extreme omnivory of invasive ants. We argue that ant–hemipteran interactions are largely overlooked and underappreciated interspecific interactions that have strong and pervasive effects on the communities in which they are embedded. PMID:17148245
Becoming ecological citizens: connecting people through performance art, food matter and practices
Roe, Emma; Buser, Michael
2016-01-01
Engaging the interest of Western citizens in the complex food connections that shape theirs’ and others’ personal wellbeing around issues such as food security and access is challenging. This article is critical of the food marketplace as the site for informing consumer behaviour and argues instead for arts-based participatory activities to support the performance of ecological citizens in non-commercial spaces. Following the ongoing methodological and conceptual fascination with performance, matter and practice in cultural food studies, we outline what the ecological citizen, formed through food’s agentive potential, does and could do. This is an ecological citizen, defined not in its traditional relation to the state but rather to the world of humans and non-humans whose lives are materially interconnected through nourishment. The article draws on the theories of Berlant, Latour, Bennett and Massumi. Our methodology is a collaborative arts-led research project that explored and juxtaposed diverse food practices with artist Paul Hurley, researchers, community partners, volunteers and participants in Bristol, UK. It centred on a 10-day exhibition where visitors were exposed to a series of interactive explorations with and about food. Our experience leads us to outline two steps for enacting ecological citizenship. The first step is to facilitate sensory experiences that enable the agential qualities of foodstuffs to shape knowledge making. The second is to create a space where people can perform, or relate differently, in unusual manners to food. Through participating in the project and visiting the exhibition, people were invited to respond not only as ‘ethical consumers’ but also as ‘ecological citizens’. This participatory approach to research can contribute to understandings of human-world entanglements. PMID:29708123
Deciphering microbial interactions in synthetic human gut microbiome communities.
Venturelli, Ophelia S; Carr, Alex C; Fisher, Garth; Hsu, Ryan H; Lau, Rebecca; Bowen, Benjamin P; Hromada, Susan; Northen, Trent; Arkin, Adam P
2018-06-21
The ecological forces that govern the assembly and stability of the human gut microbiota remain unresolved. We developed a generalizable model-guided framework to predict higher-dimensional consortia from time-resolved measurements of lower-order assemblages. This method was employed to decipher microbial interactions in a diverse human gut microbiome synthetic community. We show that pairwise interactions are major drivers of multi-species community dynamics, as opposed to higher-order interactions. The inferred ecological network exhibits a high proportion of negative and frequent positive interactions. Ecological drivers and responsive recipient species were discovered in the network. Our model demonstrated that a prevalent positive and negative interaction topology enables robust coexistence by implementing a negative feedback loop that balances disparities in monospecies fitness levels. We show that negative interactions could generate history-dependent responses of initial species proportions that frequently do not originate from bistability. Measurements of extracellular metabolites illuminated the metabolic capabilities of monospecies and potential molecular basis of microbial interactions. In sum, these methods defined the ecological roles of major human-associated intestinal species and illuminated design principles of microbial communities. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.
Toward a social-ecological theory of forest macrosystems for improved ecosystem management
Kleindl, William J.; Stoy, Paul C.; Binford, Michael W.; Desai, Ankur R.; Dietze, Michael C.; Schultz, Courtney A.; Starr, Gregory; Staudhammer, Christina; Wood, David J. A.
2018-01-01
The implications of cumulative land-use decisions and shifting climate on forests, require us to integrate our understanding of ecosystems, markets, policy, and resource management into a social-ecological system. Humans play a central role in macrosystem dynamics, which complicates ecological theories that do not explicitly include human interactions. These dynamics also impact ecological services and related markets, which challenges economic theory. Here, we use two forest macroscale management initiatives to develop a theoretical understanding of how management interacts with ecological functions and services at these scales and how the multiple large-scale management goals work either in consort or conflict with other forest functions and services. We suggest that calling upon theories developed for organismal ecology, ecosystem ecology, and ecological economics adds to our understanding of social-ecological macrosystems. To initiate progress, we propose future research questions to add rigor to macrosystem-scale studies: (1) What are the ecosystem functions that operate at macroscales, their necessary structural components, and how do we observe them? (2) How do systems at one scale respond if altered at another scale? (3) How do we both effectively measure these components and interactions, and communicate that information in a meaningful manner for policy and management across different scales?
Jones, Lisa C.; Schwinning, Susanne; Esque, Todd C.
2014-01-01
Increases in fire frequency are disrupting many ecological communities not historically subjected to fire. In the southwestern United States, the blackbrush (Coleogyne ramosissima) community is among the most threatened, often replaced by invasive annual grasses after fire. This long-lived shrub is vulnerable because it recruits sporadically, partially due to mast seeding and the absence of a seed bank. The goal of this study was to evaluate if shrub restoration can be enhanced by identifying and ameliorating recruitment limitations. Specifically, we tested the effect of encapsulating seeds in predation-deterring “seed balls.” We also tested the effects of nurse plants and mammalian exclusion cages on seedling emergence, growth, and survivorship. These experiments were conducted in a full-factorial design across three sites differing in elevation. Over 2 years, 13% of all planted seeds emerged and the effect of seed balls was overwhelmingly negative because of low emergence. Nurse plants had overall positive effects at Low Elevation, but negative effects at Mid- and High Elevation. Emergence and survival were highest in caged plots everywhere, and effect sizes increased with elevation. Interactions between the cage and the nurse plant treatments indicated that nurse plants tended to attract mammalian predators, lowering emergence and seedling survivorship, particularly at higher elevations. Findings conform to the stress-gradient hypothesis in that interactions among seedlings and mature plants shifted from facilitation to competition as environmental stress decreased with increasing elevation, suggesting that they are transferable to ecologically similar communities elsewhere. Knowledge of site-specific recruitment limitations can help minimize ineffective restoration efforts.
Primate dental ecology: How teeth respond to the environment.
Cuozzo, Frank P; Ungar, Peter S; Sauther, Michelle L
2012-06-01
Teeth are central for the study of ecology, as teeth are at the direct interface between an organism and its environment. Recent years have witnessed a rapid growth in the use of teeth to understand a broad range of topics in living and fossil primate biology. This in part reflects new techniques for assessing ways in which teeth respond to, and interact with, an organism's environment. Long-term studies of wild primate populations that integrate dental analyses have also provided a new context for understanding primate interactions with their environments. These new techniques and long-term field studies have allowed the development of a new perspective-dental ecology. We define dental ecology as the broad study of how teeth respond to, or interact with, the environment. This includes identifying patterns of dental pathology and tooth use-wear, as they reflect feeding ecology, behavior, and habitat variation, including areas impacted by anthropogenic disturbance, and how dental development can reflect environmental change and/or stress. The dental ecology approach, built on collaboration between dental experts and ecologists, holds the potential to provide an important theoretical and practical framework for inferring ecology and behavior of fossil forms, for assessing environmental change in living populations, and for understanding ways in which habitat impacts primate growth and development. This symposium issue brings together experts on dental morphology, growth and development, tooth wear and health, primate ecology, and paleontology, to explore the broad application of dental ecology to questions of how living and fossil primates interact with their environments. Copyright © 2012 Wiley Periodicals, Inc.
A social–ecological perspective for riverscape management in the Columbia River Basin
Hand, Brian K.; Flint, Courtney G.; Frissell, Chris A.; Muhlfeld, Clint C.; Devlin, Shawn P.; Kennedy, Brian P.; Crabtree, Robert L.; McKee, W. Arthur; Luikart, Gordon; Stanford, Jack A.
2018-01-01
Riverscapes are complex, landscape-scale mosaics of connected river and stream habitats embedded in diverse ecological and socioeconomic settings. Social–ecological interactions among stakeholders often complicate natural-resource conservation and management of riverscapes. The management challenges posed by the conservation and restoration of wild salmonid populations in the Columbia River Basin (CRB) of western North America are one such example. Because of their ecological, cultural, and socioeconomic importance, salmonids present a complex management landscape due to interacting environmental factors (eg climate change, invasive species) as well as socioeconomic and political factors (eg dams, hatcheries, land-use change, transboundary agreements). Many of the problems in the CRB can be linked to social–ecological interactions occurring within integrated ecological, human–social, and regional–climatic spheres. Future management and conservation of salmonid populations therefore depends on how well the issues are understood and whether they can be resolved through effective communication and collaboration among ecologists, social scientists, stakeholders, and policy makers.
Translocations as Experiments in the Ecological Resilience of an Asocial Mega-Herbivore
Linklater, Wayne L.; Gedir, Jay V.; Law, Peter R.; Swaisgood, Ron R.; Adcock, Keryn; du Preez, Pierre; Knight, Michael H.; Kerley, Graham I. H.
2012-01-01
Species translocations are remarkable experiments in evolutionary ecology, and increasingly critical to biodiversity conservation. Elaborate socio-ecological hypotheses for translocation success, based on theoretical fitness relationships, are untested and lead to complex uncertainty rather than parsimonious solutions. We used an extraordinary 89 reintroduction and 102 restocking events releasing 682 black rhinoceros (Diceros bicornis) to 81 reserves in southern Africa (1981–2005) to test the influence of interacting socio-ecological and individual characters on post-release survival. We predicted that the socio-ecological context should feature more prominently after restocking than reintroduction because released rhinoceros interact with resident conspecifics. Instead, an interaction between release cohort size and habitat quality explained reintroduction success but only individuals' ages explained restocking outcomes. Achieving translocation success for many species may not be as complicated as theory suggests. Black rhino, and similarly asocial generalist herbivores without substantial predators, are likely to be resilient to ecological challenges and robust candidates for crisis management in a changing world. PMID:22295100
Translocations as experiments in the ecological resilience of an asocial mega-herbivore.
Linklater, Wayne L; Gedir, Jay V; Law, Peter R; Swaisgood, Ron R; Adcock, Keryn; du Preez, Pierre; Knight, Michael H; Kerley, Graham I H
2012-01-01
Species translocations are remarkable experiments in evolutionary ecology, and increasingly critical to biodiversity conservation. Elaborate socio-ecological hypotheses for translocation success, based on theoretical fitness relationships, are untested and lead to complex uncertainty rather than parsimonious solutions. We used an extraordinary 89 reintroduction and 102 restocking events releasing 682 black rhinoceros (Diceros bicornis) to 81 reserves in southern Africa (1981-2005) to test the influence of interacting socio-ecological and individual characters on post-release survival. We predicted that the socio-ecological context should feature more prominently after restocking than reintroduction because released rhinoceros interact with resident conspecifics. Instead, an interaction between release cohort size and habitat quality explained reintroduction success but only individuals' ages explained restocking outcomes. Achieving translocation success for many species may not be as complicated as theory suggests. Black rhino, and similarly asocial generalist herbivores without substantial predators, are likely to be resilient to ecological challenges and robust candidates for crisis management in a changing world.
The importance of ecological memory for trophic rewilding as an ecosystem restoration approach.
Schweiger, Andreas H; Boulangeat, Isabelle; Conradi, Timo; Davis, Matt; Svenning, Jens-Christian
2018-06-06
Increasing human pressure on strongly defaunated ecosystems is characteristic of the Anthropocene and calls for proactive restoration approaches that promote self-sustaining, functioning ecosystems. However, the suitability of novel restoration concepts such as trophic rewilding is still under discussion given fragmentary empirical data and limited theory development. Here, we develop a theoretical framework that integrates the concept of 'ecological memory' into trophic rewilding. The ecological memory of an ecosystem is defined as an ecosystem's accumulated abiotic and biotic material and information legacies from past dynamics. By summarising existing knowledge about the ecological effects of megafauna extinction and rewilding across a large range of spatial and temporal scales, we identify two key drivers of ecosystem responses to trophic rewilding: (i) impact potential of (re)introduced megafauna, and (ii) ecological memory characterising the focal ecosystem. The impact potential of (re)introduced megafauna species can be estimated from species properties such as lifetime per capita engineering capacity, population density, home range size and niche overlap with resident species. The importance of ecological memory characterising the focal ecosystem depends on (i) the absolute time since megafauna loss, (ii) the speed of abiotic and biotic turnover, (iii) the strength of species interactions characterising the focal ecosystem, and (iv) the compensatory capacity of surrounding source ecosystems. These properties related to the focal and surrounding ecosystems mediate material and information legacies (its ecological memory) and modulate the net ecosystem impact of (re)introduced megafauna species. We provide practical advice about how to quantify all these properties while highlighting the strong link between ecological memory and historically contingent ecosystem trajectories. With this newly established ecological memory-rewilding framework, we hope to guide future empirical studies that investigate the ecological effects of trophic rewilding and other ecosystem-restoration approaches. The proposed integrated conceptual framework should also assist managers and decision makers to anticipate the possible trajectories of ecosystem dynamics after restoration actions and to weigh plausible alternatives. This will help practitioners to develop adaptive management strategies for trophic rewilding that could facilitate sustainable management of functioning ecosystems in an increasingly human-dominated world. © 2018 Cambridge Philosophical Society.
2013-01-01
Background The use of ethnoecological tools to evaluate possible damage and loss of biodiversity related to the populations of species under some degree of threat may represent a first step towards integrating the political management of natural resources and conservation strategies. From this perspective, this study investigates fishermen’s ecological knowledge about sea turtles and attitudes towards the conservation and bycatch in Ilhéus, Southern Bahia, Brazil. Methods Fishermen experts semi-structured interviews were performed using snowball sampling method. The interviews consisted of a series of questions relating to the fishermen’s profile, structure and work equipment, the local ecological knowledge of fishermen about sea turtles and bycatch, a projective test, attitudes towards turtle conservation and beliefs and taboos regarding turtles. Indicators for quantitative comparisons of respondents in terms of their broad knowledge and attitudes towards turtle conservation were created. Correlation analyses were made between indicators of knowledge and attitude as well as the relationship between education level and knowledge and attitudes. Results Thirty experts were interviewed for the study. The local ecological knowledge and attitudes of fishermen towards the conservation of sea turtles were respectively medium (0.43) and moderate (0.69) according to experts (based on Likert scale and Cronbach’s Alpha). Potential areas of spawning were reported from Barra Grande to Una covering the entire coast of Ilhéus. Methods for identifying the animal, behavior, and popular names were described by fishermen. The most recent captures of turtles were attributed to fishing line, but according to the respondents, lobster nets and shrimp traps are more likely to capture turtles. Knowledge and attitudes were weakly inversely correlated (r = −0.38, p = 0.04), and the education level of the respondent showed a positive correlation with positive attitudes towards turtle conservation (H = 8.33; p = 0.04). Life history, habitat, specific and exogenous taboos, beliefs and the use of hawksbill turtle to make glasses and other handcrafts are also reported in the study. Conclusions Monitoring of spawning areas, preservation of traditional practices, strategies to moderate the use of fishery resources and the local ecological knowledge/attitudes can provide data to improve the conservation practices and management of sea turtles. PMID:23448503
Braga, Heitor de Oliveira; Schiavetti, Alexandre
2013-03-01
The use of ethnoecological tools to evaluate possible damage and loss of biodiversity related to the populations of species under some degree of threat may represent a first step towards integrating the political management of natural resources and conservation strategies. From this perspective, this study investigates fishermen's ecological knowledge about sea turtles and attitudes towards the conservation and bycatch in Ilhéus, Southern Bahia, Brazil. Fishermen experts semi-structured interviews were performed using snowball sampling method. The interviews consisted of a series of questions relating to the fishermen's profile, structure and work equipment, the local ecological knowledge of fishermen about sea turtles and bycatch, a projective test, attitudes towards turtle conservation and beliefs and taboos regarding turtles. Indicators for quantitative comparisons of respondents in terms of their broad knowledge and attitudes towards turtle conservation were created. Correlation analyses were made between indicators of knowledge and attitude as well as the relationship between education level and knowledge and attitudes. Thirty experts were interviewed for the study. The local ecological knowledge and attitudes of fishermen towards the conservation of sea turtles were respectively medium (0.43) and moderate (0.69) according to experts (based on Likert scale and Cronbach's Alpha). Potential areas of spawning were reported from Barra Grande to Una covering the entire coast of Ilhéus. Methods for identifying the animal, behavior, and popular names were described by fishermen. The most recent captures of turtles were attributed to fishing line, but according to the respondents, lobster nets and shrimp traps are more likely to capture turtles. Knowledge and attitudes were weakly inversely correlated (r = -0.38, p = 0.04), and the education level of the respondent showed a positive correlation with positive attitudes towards turtle conservation (H = 8.33; p = 0.04). Life history, habitat, specific and exogenous taboos, beliefs and the use of hawksbill turtle to make glasses and other handcrafts are also reported in the study. Monitoring of spawning areas, preservation of traditional practices, strategies to moderate the use of fishery resources and the local ecological knowledge/attitudes can provide data to improve the conservation practices and management of sea turtles.
ERIC Educational Resources Information Center
Mueller, Michael P.; Tippins, Deborah J.
2010-01-01
This article is a philosophical analysis of van Eijck and Roth's ("2007") claim that science and traditional ecological knowledge (TEK) should be recalibrated because they are incommensurate, particular to the local contexts in which they are practical. In this view, science maintains an incommensurate status as if it is a…
Rodríguez-Castañeda, G; Brehm, G; Fiedler, K; Dyer, L A
2016-04-01
Ants are keystone predators in terrestrial trophic cascades. Addressing ants' roles in multitrophic interactions across regional gradients is important for understanding mechanisms behind range limits of species. We present four hypotheses of trophic dynamics occurring when ants are rare: first, there is a shift in predator communities; second, plants decrease investments in ant attraction and increase production of secondary metabolites; third, lower herbivory at high elevations allows plants to tolerate herbivory; and fourth, distribution of ant-plants can be limited based on ant abundance. Conducting experiments on multitrophic effects of ants across elevational gradients, and incorporating these results to ecological niche modeling (ENM) will improve our knowledge of the impacts of global change on ants, trophic interactions, and biodiversity. Copyright © 2016 Elsevier Inc. All rights reserved.
Oke, Krista B.; Westley, Peter A. H.; Moreau, Darek T. R.; Fleming, Ian A.
2013-01-01
Interspecific hybridization is a route for transgenes from genetically modified (GM) animals to invade wild populations, yet the ecological effects and potential risks that may emerge from such hybridization are unknown. Through experimental crosses, we demonstrate transmission of a growth hormone transgene via hybridization between a candidate for commercial aquaculture production, GM Atlantic salmon (Salmo salar) and closely related wild brown trout (Salmo trutta). Transgenic hybrids were viable and grew more rapidly than transgenic salmon and other non-transgenic crosses in hatchery-like conditions. In stream mesocosms designed to more closely emulate natural conditions, transgenic hybrids appeared to express competitive dominance and suppressed the growth of transgenic and non-transgenic (wild-type) salmon by 82 and 54 per cent, respectively. To the best of our knowledge, this is the first demonstration of environmental impacts of hybridization between a GM animal and a closely related species. These results provide empirical evidence of the first steps towards introgression of foreign transgenes into the genomes of new species and contribute to the growing evidence that transgenic animals have complex and context-specific interactions with wild populations. We suggest that interspecific hybridization be explicitly considered when assessing the environmental consequences should transgenic animals escape to nature. PMID:23720549
Miller, Haylea C; Wylie, Jason T; Kaksonen, Anna H; Sutton, David; Puzon, Geoffrey J
2018-03-06
Free living amoebae (FLA), including pathogenic Naegleria fowleri, can colonize and grow within pipe wall biofilms of drinking water distribution systems (DWDSs). Studies on the interactions between various FLA species in biofilms are limited. Understanding the interaction between FLA and the broader biofilm ecology could help better predict DWDS susceptibility to N. fowleri colonization. The aim of this study was to determine if N. fowleri and other FLAs ( Naegleria, Vermamoeba, Willaertia, and Vahlkampfia spp.) cocolonize DWDS biofilm. FLAs commonly isolated from DWDSs ( N. fowleri, V. vermiformis, and N. lovaniensis) were introduced into laboratory-scale biomonitors to determine the impact of these amoebae on N. fowleri's presence and viability. Over 18 months, a single viable amoebae ( N. fowleri, N. lovaniensis, or V. vermiformis) was detected in each biofilm sample, with the exception of N. lovaniensis and N. fowleri, which briefly cocolonized biofilm following their coinoculation. The analysis of biofilm and bulk water samples from operational DWDSs revealed a similar lack of cocolonization with a single FLA detected in 99% ( n = 242) of samples. Interestingly, various Naegleria spp. did colonize the same DWDS locations but at different times. This knowledge furthers the understanding of ecological factors which enable N. fowleri to colonize and survive within operational DWDSs and could aid water utilities to control its occurrence.
Raffa, Kenneth F
2014-01-01
Chemical signaling mediates nearly all aspects of species interactions. Our knowledge of these signals has progressed dramatically, and now includes good characterizations of the bioactivities, modes of action, biosynthesis, and genetic programming of numerous compounds affecting a wide range of species. A major challenge now is to integrate this information so as to better understand actual selective pressures under natural conditions, make meaningful predictions about how organisms and ecosystems will respond to a changing environment, and provide useful guidance to managers who must contend with difficult trade-offs among competing socioeconomic values. One approach is to place stronger emphasis on cross-scale interactions, an understanding of which can help us better connect pattern with process, and improve our ability to make mechanistically grounded predictions over large areas and time frames. The opportunity to achieve such progress has been heightened by the rapid development of new scientific and technological tools. There are significant difficulties, however: Attempts to extend arrays of lower-scale processes into higher scale functioning can generate overly diffuse patterns. Conversely, attempts to infer process from pattern can miss critically important lower-scale drivers in systems where their biological and statistical significance is negated after critical thresholds are breached. Chemical signaling in bark beetle - conifer interactions has been explored for several decades, including by the two pioneers after whom this award is named. The strong knowledge base developed by many researchers, the importance of bark beetles in ecosystem functioning, and the socioeconomic challenges they pose, establish these insects as an ideal model for studying chemical signaling within a cross-scale context. This report describes our recent work at three levels of scale: interactions of bacteria with host plant compounds and symbiotic fungi (tree level, biochemical time), relationships among inducible and constitutive defenses, population dynamics, and plastic host-selection behavior (stand level, ecological time), and climate-driven range expansion of a native eruptive species into semi-naïve and potentially naïve habitats (geographical level, evolutionary time). I approach this problem by focusing primarily on one chemical group, terpenes, by emphasizing the curvilinear and threshold-structured basis of most underlying relationships, and by focusing on the system's feedback structure, which can either buffer or amplify relationships across scales.
Characterizing the next-generation matrix and basic reproduction number in ecological epidemiology.
Roberts, M G; Heesterbeek, J A P
2013-03-01
We address the interaction of ecological processes, such as consumer-resource relationships and competition, and the epidemiology of infectious diseases spreading in ecosystems. Modelling such interactions seems essential to understand the dynamics of infectious agents in communities consisting of interacting host and non-host species. We show how the usual epidemiological next-generation matrix approach to characterize invasion into multi-host communities can be extended to calculate R₀, and how this relates to the ecological community matrix. We then present two simple examples to illustrate this approach. The first of these is a model of the rinderpest, wildebeest, grass interaction, where our inferred dynamics qualitatively matches the observed phenomena that occurred after the eradication of rinderpest from the Serengeti ecosystem in the 1980s. The second example is a prey-predator system, where both species are hosts of the same pathogen. It is shown that regions for the parameter values exist where the two host species are only able to coexist when the pathogen is present to mediate the ecological interaction.
Comparative analysis of marine ecosystems: workshop on predator-prey interactions.
Bailey, Kevin M; Ciannelli, Lorenzo; Hunsicker, Mary; Rindorf, Anna; Neuenfeldt, Stefan; Möllmann, Christian; Guichard, Frederic; Huse, Geir
2010-10-23
Climate and human influences on marine ecosystems are largely manifested by changes in predator-prey interactions. It follows that ecosystem-based management of the world's oceans requires a better understanding of food web relationships. An international workshop on predator-prey interactions in marine ecosystems was held at the Oregon State University, Corvallis, OR, USA on 16-18 March 2010. The meeting brought together scientists from diverse fields of expertise including theoretical ecology, animal behaviour, fish and seabird ecology, statistics, fisheries science and ecosystem modelling. The goals of the workshop were to critically examine the methods of scaling-up predator-prey interactions from local observations to systems, the role of shifting ecological processes with scale changes, and the complexity and organizational structure in trophic interactions.
An Ecological Approach Toward Prevention and Care of Victims of Domestic Minor Sex Trafficking.
Sanchez, Rosario V; Pacquiao, Dula F
Sex trafficking is a widespread form of human trafficking that exists globally. The forced sexual exploitation of young women for profit at the hands of traffickers is a human rights violation. Sex trafficking is a form of modern-day slavery where youths are sold as a commodity. It is difficult to determine the wide range of negative health outcomes associated with domestic minor sex trafficking due to the hidden nature of the crime and its lack of statistical data to determine prevalence. Viewing domestic minor sex trafficking through an ecological lens assists in the understanding of the multiple complex interactions between victims, their relationships, and environments that influence their health. Forensic nurses are poised as experts in the healthcare of vulnerable populations and possess the knowledge to understand that social determinants of vulnerability depend on the distinct setting or environment where victims of sex trafficking reside and how different factors affect their victimology, resilience, and well-being.
Human Gut Microbiota: Toward an Ecology of Disease
Selber-Hnatiw, Susannah; Rukundo, Belise; Ahmadi, Masoumeh; Akoubi, Hayfa; Al-Bizri, Hend; Aliu, Adelekan F.; Ambeaghen, Tanyi U.; Avetisyan, Lilit; Bahar, Irmak; Baird, Alexandra; Begum, Fatema; Ben Soussan, Hélène; Blondeau-Éthier, Virginie; Bordaries, Roxane; Bramwell, Helene; Briggs, Alicia; Bui, Richard; Carnevale, Matthew; Chancharoen, Marisa; Chevassus, Talia; Choi, Jin H.; Coulombe, Karyne; Couvrette, Florence; D'Abreau, Samantha; Davies, Meghan; Desbiens, Marie-Pier; Di Maulo, Tamara; Di Paolo, Sean-Anthony; Do Ponte, Sabrina; dos Santos Ribeiro, Priscyla; Dubuc-Kanary, Laure-Anne; Duncan, Paola K.; Dupuis, Frédérique; El-Nounou, Sara; Eyangos, Christina N.; Ferguson, Natasha K.; Flores-Chinchilla, Nancy R.; Fotakis, Tanya; Gado Oumarou H D, Mariam; Georgiev, Metodi; Ghiassy, Seyedehnazanin; Glibetic, Natalija; Grégoire Bouchard, Julien; Hassan, Tazkia; Huseen, Iman; Ibuna Quilatan, Marlon-Francis; Iozzo, Tania; Islam, Safina; Jaunky, Dilan B.; Jeyasegaram, Aniththa; Johnston, Marc-André; Kahler, Matthew R.; Kaler, Kiranpreet; Kamani, Cedric; Karimian Rad, Hessam; Konidis, Elisavet; Konieczny, Filip; Kurianowicz, Sandra; Lamothe, Philippe; Legros, Karina; Leroux, Sebastien; Li, Jun; Lozano Rodriguez, Monica E.; Luponio-Yoffe, Sean; Maalouf, Yara; Mantha, Jessica; McCormick, Melissa; Mondragon, Pamela; Narayana, Thivaedee; Neretin, Elizaveta; Nguyen, Thi T. T.; Niu, Ian; Nkemazem, Romeo B.; O'Donovan, Martin; Oueis, Matthew; Paquette, Stevens; Patel, Nehal; Pecsi, Emily; Peters, Jackie; Pettorelli, Annie; Poirier, Cassandra; Pompa, Victoria R.; Rajen, Harshvardhan; Ralph, Reginald-Olivier; Rosales-Vasquez, Josué; Rubinshtein, Daria; Sakr, Surya; Sebai, Mohammad S.; Serravalle, Lisa; Sidibe, Fily; Sinnathurai, Ahnjana; Soho, Dominique; Sundarakrishnan, Adithi; Svistkova, Veronika; Ugbeye, Tsolaye E.; Vasconcelos, Megan S.; Vincelli, Michael; Voitovich, Olga; Vrabel, Pamela; Wang, Lu; Wasfi, Maryse; Zha, Cong Y.; Gamberi, Chiara
2017-01-01
Composed of trillions of individual microbes, the human gut microbiota has adapted to the uniquely diverse environments found in the human intestine. Quickly responding to the variances in the ingested food, the microbiota interacts with the host via reciprocal biochemical signaling to coordinate the exchange of nutrients and proper immune function. Host and microbiota function as a unit which guards its balance against invasion by potential pathogens and which undergoes natural selection. Disturbance of the microbiota composition, or dysbiosis, is often associated with human disease, indicating that, while there seems to be no unique optimal composition of the gut microbiota, a balanced community is crucial for human health. Emerging knowledge of the ecology of the microbiota-host synergy will have an impact on how we implement antibiotic treatment in therapeutics and prophylaxis and how we will consider alternative strategies of global remodeling of the microbiota such as fecal transplants. Here we examine the microbiota-human host relationship from the perspective of the microbial community dynamics. PMID:28769880
Williams, Jason D; Boyko, Christopher B
2016-10-01
Although climate change can cause extreme alterations to ecosystems, only limited research has investigated how altered physical conditions (e.g., warming, extreme temperature events, sea level rise, ocean acidification, and altered precipitation) influence species interactions. In particular, the interplay between host and parasites in such a changing world is in need of study. Our objective in organizing this symposium was to bring together researchers working on a wide variety of natural enemies (parasites, pathogens, and pests), to exchange knowledge on how aspects of global climate change may alter the distribution and ecology of these organisms and their hosts. It is our intention that the symposium and the resulting articles will foster more accurate modeling of and predictions about the impacts of climate change on the biology and ecology of natural enemies and their hosts. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Wehi, Priscilla M
2009-01-01
Traditional ecological knowledge (TEK) is central to indigenous worldviews and practices and is one of the most important contributions that indigenous people can bring to conservation management partnerships. However, researchers and managers may have difficulty accessing such knowledge, particularly where knowledge transmission has been damaged. A new methodological approach analyzes ancestral sayings from Maori oral traditions for ecological information about Phormium tenax, a plant with high cultural value that is a dominant component in many threatened wetland systems, and frequently used in restoration plantings in New Zealand. Maori ancestral sayings record an association with nectar-feeding native parrots that has only rarely been reported, as well as indications of important environmental parameters (rainfall and drought) for this species. These sayings provide evidence of indigenous management that has not been reported from interviews with elders, including evidence of fire use to create Phormium cultivations. TEK in Maori ancestral sayings imply landscape-scale processes in comparison to intensive, small-scale management methods often reported in interviews. TEK in ancestral sayings can be used to generate new scientific hypotheses, negotiate collaborative pathways, and identify ecological management strategies that support biodiversity retention. TEK can inform restoration ecology, historical ecology, and conservation management of species and ecosystems, especially where data from pollen records and archaeological artifacts are incomplete.
Differential invasion success of salmonids in southern Chile: patterns and hypotheses
Arismendi, Ivan; Penaluna, Brooke E.; Dunham, Jason B.; García de Leaniz, Carlos; Soto, Doris; Fleming, Ian A.; Gomez-Uchidam, Daniel; Gajardo, Gonzalo; Vargas, Pamela V.; León-Muñoz, Jorge
2014-01-01
Biological invasions create complex ecological and societal issues worldwide. Most of the knowledge about invasions comes only from successful invaders, but less is known about which processes determine the differential success of invasions. In this review, we develop a framework to identify the main dimensions driving the success and failure of invaders, including human influences, characteristics of the invader, and biotic interactions. We apply this framework by contrasting hypotheses and available evidence to explain variability in invasion success for 12 salmonids introduced to Chile. The success of Oncorhynchus mykiss and Salmo trutta seems to be influenced by a context-specific combination of their phenotypic plasticity, low ecosystem resistance, and propagule pressure. These well-established invaders may limit the success of subsequently introduced salmonids, with the possible exception of O. tshawytscha, which has a short freshwater residency and limited spatial overlap with trout. Although propagule pressure is high for O. kisutch and S. salar due to their intensive use in aquaculture, their lack of success in Chile may be explained by environmental resistance, including earlier spawning times than in their native ranges, and interactions with previously established and resident Rainbow Trout. Other salmonids have also failed to establish, and they exhibit a suite of ecological traits, environmental resistance, and limited propagule pressure that are variably associated with their lack of success. Collectively, understanding how the various drivers of invasion success interact may explain the differential success of invaders and provide key guidance for managing both positive and negative outcomes associated with their presence.
NASA Astrophysics Data System (ADS)
MA, S.; Huang, Y.; Stacy, M.; Jiang, J.; Sundi, N.; Ricciuto, D. M.; Hanson, P. J.; Luo, Y.; Saruta, V.
2017-12-01
Ecological forecasting is critical in various aspects of our coupled human-nature systems, such as disaster risk reduction, natural resource management and climate change mitigation. Novel advancements are in urgent need to deepen our understandings of ecosystem dynamics, boost the predictive capacity of ecology, and provide timely and effective information for decision-makers in a rapidly changing world. Our study presents a smart system - Ecological Platform for Assimilation of Data (EcoPAD) - which streamlines web request-response, data management, model execution, result storage and visualization. EcoPAD allows users to (i) estimate model parameters or state variables, (ii) quantify uncertainty of estimated parameters and projected states of ecosystems, (iii) evaluate model structures, (iv) assess sampling strategies, (v) conduct ecological forecasting, and (vi) detect ecosystem acclimation to climate change. One of the key innovations of the web-based EcoPAD is the automated near- or real-time forecasting of ecosystem dynamics with uncertainty fully quantified. The user friendly webpage enables non-modelers to explore their data for simulation and data assimilation. As a case study, we applied EcoPAD to the Spruce and Peatland Responses Under Climatic and Environmental Change Experiment (SPRUCE), a whole ecosystem warming and CO2 enrichment treatment project in the northern peatland, assimilated multiple data streams into a process based ecosystem model, enhanced timely feedback between modelers and experimenters, ultimately improved ecosystem forecasting and made better use of current knowledge. Built in a framework with flexible API, EcoPAD is easily portable and will benefit scientific communities, policy makers as well as the general public.
Teller, Amy S
2016-01-01
Climate change is expected to shift seasonality in Tanzania, while smallholder farmers' livelihoods and the economy rely upon the success of rainfed agriculture. However, we should not a priori assume doomsday climate vulnerability scenarios of drought and devastation in the rural global South nor, on the other hand, that farmers will optimally employ local knowledge for effective adaptation. Drawing from qualitative fieldwork in two Tanzanian communities, I question these grand narratives of devastation and local adaptive capacity and introduce an approach that brings inequality to the center. Poorer nations are most vulnerable to climate change, but they are not homogenous and neither are the smallholder farmers living within them. I present evidence on the crucial context-specific dimensions of socio-ecological vulnerability for these smallholder farmers-1) water resources and access to them; 2) agricultural knowledge, including farmers' own knowledge and their interactions with sources like government-run agricultural extension and NGOs; and 3) existing drought-coping strategies-and the heterogeneity among farmers across these dimensions. Ultimately, this case demonstrates how climate change can reproduce existing inequalities within nations by drawing upon how farmers currently respond to drought as evidence. I present the difficult and somewhat bleak contexts within which the farmers are coping, but also illustrate the agency that farmers exhibit in response to these conditions and the adaptive capacity they possess. Finally, I call for more sub-national research on climate and inequality by sociologists and draw connections among within-nation inequality, climate change, and agricultural development initiatives.
Aswani, Shankar
2010-01-01
When local resource users detect, understand, and respond to environmental change they can more effectively manage environmental resources. This article assesses these abilities among artisanal fishers in Roviana Lagoon, Solomon Islands. In a comparison of two villages, it documents local resource users’ abilities to monitor long-term ecological change occurring to seagrass meadows near their communities, their understandings of the drivers of change, and their conceptualizations of seagrass ecology. Local observations of ecological change are compared with historical aerial photography and IKONOS satellite images that show 56 years of actual changes in seagrass meadows from 1947 to 2003. Results suggest that villagers detect long-term changes in the spatial cover of rapidly expanding seagrass meadows. However, for seagrass meadows that showed no long-term expansion or contraction in spatial cover over one-third of respondents incorrectly assumed changes had occurred. Examples from a community-based management initiative designed around indigenous ecological knowledge and customary sea tenure governance show how local observations of ecological change shape marine resource use and practices which, in turn, can increase the management adaptability of indigenous or hybrid governance systems. PMID:20336296
Pollinators, pests, and predators: Recognizing ecological trade-offs in agroecosystems.
Saunders, Manu E; Peisley, Rebecca K; Rader, Romina; Luck, Gary W
2016-02-01
Ecological interactions between crops and wild animals frequently result in increases or declines in crop yield. Yet, positive and negative interactions have mostly been treated independently, owing partly to disciplinary silos in ecological and agricultural sciences. We advocate a new integrated research paradigm that explicitly recognizes cost-benefit trade-offs among animal activities and acknowledges that these activities occur within social-ecological contexts. Support for this paradigm is presented in an evidence-based conceptual model structured around five evidence statements highlighting emerging trends applicable to sustainable agriculture. The full range of benefits and costs associated with animal activities in agroecosystems cannot be quantified by focusing on single species groups, crops, or systems. Management of productive agroecosystems should sustain cycles of ecological interactions between crops and wild animals, not isolate these cycles from the system. Advancing this paradigm will therefore require integrated studies that determine net returns of animal activity in agroecosystems.
2011-01-01
Many European protected areas were legally created to preserve and maintain biological diversity, unique natural features and associated cultural heritage. Built over centuries as a result of geographical and historical factors interacting with human activity, these territories are reservoirs of resources, practices and knowledge that have been the essential basis of their creation. Under social and economical transformations several components of such areas tend to be affected and their protection status endangered. Carrying out ethnobotanical surveys and extensive field work using anthropological methodologies, particularly with key-informants, we report changes observed and perceived in two natural parks in Trás-os-Montes, Portugal, that affect local plant-use systems and consequently local knowledge. By means of informants' testimonies and of our own observation and experience we discuss the importance of local knowledge and of local communities' participation to protected areas design, management and maintenance. We confirm that local knowledge provides new insights and opportunities for sustainable and multipurpose use of resources and offers contemporary strategies for preserving cultural and ecological diversity, which are the main purposes and challenges of protected areas. To be successful it is absolutely necessary to make people active participants, not simply integrate and validate their knowledge and expertise. Local knowledge is also an interesting tool for educational and promotional programs. PMID:22112242
Construction and Validation of Textbook Analysis Grids for Ecology and Environmental Education
ERIC Educational Resources Information Center
Caravita, Silvia; Valente, Adriana; Luzi, Daniela; Pace, Paul; Valanides, Nicos; Khalil, Iman; Berthou, Guillemette; Kozan-Naumescu, Adrienne; Clement, Pierre
2008-01-01
Knowledge about ecology and environmental education (EE) constitutes a basic tool for promoting a sustainable future, and was a target area of the BIOHEAD-Citizen Project. School textbooks were considered as representative sources of evidence in terms of ecology and environmental education, and were used for comparison among the countries…
Writing to Learn Ecology: A Study of Three Populations of College Students
ERIC Educational Resources Information Center
Balgopal, Meena M.; Wallace, Alison M.; Dahlberg, Steven
2012-01-01
Being an ecologically literate citizen involves making decisions that are based on ecological knowledge and accepting responsibility for personal actions. Using writing-to-learn activities in college science courses, we asked students to consider personal dilemmas that they or others might have in response to how human choices can impact coastal…
Lars A. Brudvig; John L. Orrock; Ellen I. Damschen; Cathy D. Collins; Philip G. Hahn; W. Brett Mattingly; Joseph W. Veldman; Joan L. Walker
2014-01-01
Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions...
A striking profile: Soil ecological knowledge in restoration management and science
Mac A. Callaham; Charles C. Rhoades; Liam Heneghan
2008-01-01
Available evidence suggests that research in terrestrial restoration ecology has been dominated by the engineering and botanical sciences. Because restoration science is a relatively young discipline in ecology, the theoretical framework for this discipline is under development and new theoretical offerings appear regularly in the literature. In reviewing this...
SRS ecology: Environmental information document
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wike, L.D.; Shipley, R.W.; Bowers, J.A.
The purpose of this Document is to provide a source of ecological information based on the exiting knowledge gained from research conducted at the Savannah River Site. This document provides a summary and synthesis of ecological research in the three main ecosystem types found at SRS and information on the threatened and endangered species residing there.
ERIC Educational Resources Information Center
Sukhontapatipak, Chutamas; Srikosamatara, Sompoad
2012-01-01
Providing undergraduate biology students with ecological knowledge and environmental awareness is critical for developing professionalism in sustainable development. In addition to the cognitive and psychomotor development, outdoor ecological exercises combining place-based education and experiential learning can stimulate the affective domain of…
Discovering ecologically relevant knowledge from published studies through geosemantic searching
USDA-ARS?s Scientific Manuscript database
It is easier to search the globe for research on genes of a local plant or animal than to find local field research on that plant’s ecology. While internet applications can find the closest coffee shop, it is difficult to find where the nearest relevant research was conducted. As a result, ecologi...
ERIC Educational Resources Information Center
Carnabuci, Gianluca
2010-01-01
We show that the progress of technological knowledge is an inherently ecological process, wherein the growth rate of each technology domain depends on dynamics occurring in "other" technology domains. We identify two sources of ecological interdependence among technology domains. First, there are symbiotic interdependencies, implying…
Historical foundations and future directions in macrosystems ecology
Kevin C. Rose; Rose A. Graves; Winslow D. Hansen; Brian J. Harvey; Jiangxiao Qiu; Stephen A. Wood; Carly Ziter; Monica G. Turner; Wilfried Thuiller
2017-01-01
Macrosystems ecology is an effort to understand ecological processes and interactions at the broadest spatial scales and has potential to help solve globally important social and ecological challenges. It is important to understand the intellectual legacies underpinning macrosystems ecology: How the subdiscipline fits within, builds upon, differs from and...
Caveen, Alex J; Fitzsimmons, Clare; Pieraccini, Margherita; Dunn, Euan; Sweeting, Christopher J; Johnson, Magnus L; Bloomfield, Helen; Jones, Estelle V; Lightfoot, Paula; Gray, Tim S; Stead, Selina M; Polunin, Nicholas V C
2014-01-01
The North Sea is one of the most economically important seas in the world due to productive fisheries, extensive oil and gas fields, busy shipping routes, marine renewable energy development and recreational activity. Unsurprisingly, therefore, the use of marine protected areas (here defined widely to include fisheries closed areas and no-take marine reserves) in its management has generated considerable controversy-particularly with regards to the design of a regional ecologically coherent MPA network to meet international obligations. Drawing on three MPA processes currently occurring in the UK North Sea, we examine the real-world problems that make the designation of MPA networks challenging. The political problems include: disagreement among (and within) sectors over policy objectives and priorities, common access to fisheries resources at the EU level increasing the scale at which decisions have to be made and lack of an integrated strategy for implementing protected areas in the North Sea. The scientific problems include the patchy knowledge of benthic assemblages, limited knowledge of fishing gear-habitat interactions, and the increased risk of unforeseen externalities if human activity (predominantly fishing) is displaced from newly protected sites. Diverging stakeholder attitudes to these problems means that there is no consensus on what ecological coherence actually means. Ultimately, we caution against 'quick-fix' solutions that are based on advocacy and targets, as they create confusion and undermine trust in the planning process. We argue for a more pragmatic approach to marine protection that embraces the complexity of the social and political arena in which decisions are made.
From Genes to Ecosystems in Microbiology: Modeling Approaches and the Importance of Individuality
Kreft, Jan-Ulrich; Plugge, Caroline M.; Prats, Clara; Leveau, Johan H. J.; Zhang, Weiwen; Hellweger, Ferdi L.
2017-01-01
Models are important tools in microbial ecology. They can be used to advance understanding by helping to interpret observations and test hypotheses, and to predict the effects of ecosystem management actions or a different climate. Over the past decades, biological knowledge and ecosystem observations have advanced to the molecular and in particular gene level. However, microbial ecology models have changed less and a current challenge is to make them utilize the knowledge and observations at the genetic level. We review published models that explicitly consider genes and make predictions at the population or ecosystem level. The models can be grouped into three general approaches, i.e., metabolic flux, gene-centric and agent-based. We describe and contrast these approaches by applying them to a hypothetical ecosystem and discuss their strengths and weaknesses. An important distinguishing feature is how variation between individual cells (individuality) is handled. In microbial ecosystems, individual heterogeneity is generated by a number of mechanisms including stochastic interactions of molecules (e.g., gene expression), stochastic and deterministic cell division asymmetry, small-scale environmental heterogeneity, and differential transport in a heterogeneous environment. This heterogeneity can then be amplified and transferred to other cell properties by several mechanisms, including nutrient uptake, metabolism and growth, cell cycle asynchronicity and the effects of age and damage. For example, stochastic gene expression may lead to heterogeneity in nutrient uptake enzyme levels, which in turn results in heterogeneity in intracellular nutrient levels. Individuality can have important ecological consequences, including division of labor, bet hedging, aging and sub-optimality. Understanding the importance of individuality and the mechanism(s) underlying it for the specific microbial system and question investigated is essential for selecting the optimal modeling strategy. PMID:29230200
Can we manage for biological diversity in the absence of science?
Trauger, D.L.; Hall, R.J.
1995-01-01
Conservation of biological diversity is dependent on sound scientific information about underlying ecological processes. Current knowledge of the composition, distribution, abundance and life cycles of most species of plants and animals is incomplete, insufficient, unreliable, or nonexistent. Contemporary managers are also confronted with additional levels of complexity related to varying degrees of knowledge and understanding about interactions of species and ecosystems. Consequently, traditional species-oriented management schemes may have unintended consequences and ecosystem-oriented management initiatives may fail in the face of inadequate or fragmentary information on the structure, function, and dynamics of biotic communities and ecological systems. Nevertheless, resource managers must make decisions and manage based on the best biological information currently available. Adaptive resource management may represent a management paradigm that allows managers to learn something about the species or systems that they are managing while they are managing, but potential pitfalls lurk for such approaches. In addition to lack of control over the primary physical, chemical, and ecological processes, managers also lack control over social, economic, and political parameters affecting resource management options. Moreover, appropriate goals may be difficult to identify and criteria for determining success may be elusive. Some management responsibilities do not lend themselves to adaptive strategies. Finally, the lessons learned from adaptive management are usually obtained from a highly situational context that may limit applicability in a wider range of situations or undermine confidence that problems and solutions were properly diagnosed and addressed. Several scenarios are critically examined where adaptive management approaches may be inappropriate or ineffective and where management for biological diversity may be infeasible or inefficient without a sound scientific basis. Whereas some level of management must exist to meet agency responsibilities, more research is needed to conserve biological diversity.
An agent-based model for water management and planning in the Lake Naivasha basin, Kenya
NASA Astrophysics Data System (ADS)
van Oel, Pieter; Mulatu, Dawit; Odongo, Vincent; Onyando, Japheth; Becht, Robert; van der Veen, Anne
2013-04-01
A variety of human and natural processes influence the ecological and economic state of the Lake Naivasha basin. The ecological wealth and recent economic developments in the area are strongly connected to Lake Naivasha which supports a rich variety of flora, mammal and bird species. Many human activities depend on clean freshwater from the lake whereas recently the freshwater availability of good quality is seriously influenced by water abstractions and the use of fertilizers in agriculture. Management alternatives include those aiming at limiting water abstractions and fertilizer use. A possible way to achieve reduced use of water and fertilizers is the introduction of Payment for Environmental Services (PES) schemes. As the Lake Naivasha basin and its population have experienced increasing pressures various disputes and disagreements have arisen about the processes responsible for the problems experienced, and the effectively of management alternatives. Beside conflicts of interest and disagreements on responsibilities there are serious factual disagreements. To share scientific knowledge on the effects of the socio-ecological system processes on the Lake Naivasha basin, tools may be used that expose information at temporal and spatial scales that are meaningful to stakeholders. In this study we use a spatially-explicit agent-based modelling (ABM) approach to depict the interactions between socio-economic and natural subsystems for supporting a more sustainable governance of the river basin resources. Agents consider alternative livelihood strategies and decide to go for the one they perceive as likely to be most profitable. Agents may predict and sense the availability of resources and also can observe economic performance achieved by neighbouring agents. Results are presented at the basin and subbasin level to provide relevant knowledge to Water Resources Users Associations which are important collective forums for water management through which PES schemes are managed.
Population Genetics and Demography Unite Ecology and Evolution.
Lowe, Winsor H; Kovach, Ryan P; Allendorf, Fred W
2017-02-01
The interplay of ecology and evolution has been a rich area of research for decades. A surge of interest in this area was catalyzed by the observation that evolution by natural selection can operate at the same contemporary timescales as ecological dynamics. Specifically, recent eco-evolutionary research focuses on how rapid adaptation influences ecology, and vice versa. Evolution by non-adaptive forces also occurs quickly, with ecological consequences, but understanding the full scope of ecology-evolution (eco-evo) interactions requires explicitly addressing population-level processes - genetic and demographic. We show the strong ecological effects of non-adaptive evolutionary forces and, more broadly, the value of population-level research for gaining a mechanistic understanding of eco-evo interactions. The breadth of eco-evolutionary research should expand to incorporate the breadth of evolution itself. Copyright © 2016 Elsevier Ltd. All rights reserved.
Evolving Digital Ecological Networks
Wagner, Aaron P.; Ofria, Charles
2013-01-01
“It is hard to realize that the living world as we know it is just one among many possibilities” [1]. Evolving digital ecological networks are webs of interacting, self-replicating, and evolving computer programs (i.e., digital organisms) that experience the same major ecological interactions as biological organisms (e.g., competition, predation, parasitism, and mutualism). Despite being computational, these programs evolve quickly in an open-ended way, and starting from only one or two ancestral organisms, the formation of ecological networks can be observed in real-time by tracking interactions between the constantly evolving organism phenotypes. These phenotypes may be defined by combinations of logical computations (hereafter tasks) that digital organisms perform and by expressed behaviors that have evolved. The types and outcomes of interactions between phenotypes are determined by task overlap for logic-defined phenotypes and by responses to encounters in the case of behavioral phenotypes. Biologists use these evolving networks to study active and fundamental topics within evolutionary ecology (e.g., the extent to which the architecture of multispecies networks shape coevolutionary outcomes, and the processes involved). PMID:23533370
Lihoreau, Mathieu; Buhl, Jerome; Charleston, Michael A; Sword, Gregory A; Raubenheimer, David; Simpson, Stephen J
2015-03-01
Over recent years, modelling approaches from nutritional ecology (known as Nutritional Geometry) have been increasingly used to describe how animals and some other organisms select foods and eat them in appropriate amounts in order to maintain a balanced nutritional state maximising fitness. These nutritional strategies profoundly affect the physiology, behaviour and performance of individuals, which in turn impact their social interactions within groups and societies. Here, we present a conceptual framework to study the role of nutrition as a major ecological factor influencing the development and maintenance of social life. We first illustrate some of the mechanisms by which nutritional differences among individuals mediate social interactions in a broad range of species and ecological contexts. We then explain how studying individual- and collective-level nutrition in a common conceptual framework derived from Nutritional Geometry can bring new fundamental insights into the mechanisms and evolution of social interactions, using a combination of simulation models and manipulative experiments. © 2015 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.
Metabolomics in chemical ecology.
Kuhlisch, Constanze; Pohnert, Georg
2015-07-01
Chemical ecology elucidates the nature and role of natural products as mediators of organismal interactions. The emerging techniques that can be summarized under the concept of metabolomics provide new opportunities to study such environmentally relevant signaling molecules. Especially comparative tools in metabolomics enable the identification of compounds that are regulated during interaction situations and that might play a role as e.g. pheromones, allelochemicals or in induced and activated defenses. This approach helps overcoming limitations of traditional bioassay-guided structure elucidation approaches. But the power of metabolomics is not limited to the comparison of metabolic profiles of interacting partners. Especially the link to other -omics techniques helps to unravel not only the compounds in question but the entire biosynthetic and genetic re-wiring, required for an ecological response. This review comprehensively highlights successful applications of metabolomics in chemical ecology and discusses existing limitations of these novel techniques. It focuses on recent developments in comparative metabolomics and discusses the use of metabolomics in the systems biology of organismal interactions. It also outlines the potential of large metabolomics initiatives for model organisms in the field of chemical ecology.
Rodrigues, Aurélie P; Santos, Lúcia H M L M; Oliva-Teles, Maria Teresa; Delerue-Matos, Cristina; Guimarães, Laura
2014-11-01
Concurrent exposure of estuarine organisms to man-made and natural stressors has become a common occurrence. Numerous interactions of multiple stressors causing synergistic or antagonistic effects have been described. However, limited information is available on combined effects of emerging pharmaceuticals and natural stressors. This study investigated the joint effects of the antidepressant sertraline and salinity on Carcinus maenas. To improve knowledge about interactive effects and potential vulnerability, experiments were performed with organisms from two estuaries with differing histories of exposure to environmental contamination. Biomarkers related to mode of action of sertraline were employed to assess effects of environmentally realistic concentrations of sertraline at two salinity levels. Synergism and antagonism were identified for biomarkers of cholinergic neurotransmission, energy production, anti-oxidant defences and oxidative damage. Different interactions were found for the two study sites highlighting the need to account for differences in tolerance of local ecological receptors in risk evaluations. Copyright © 2014 Elsevier B.V. All rights reserved.
Animals in a bacterial world, a new imperative for the life sciences
McFall-Ngai, Margaret; Hadfield, Michael G.; Bosch, Thomas C. G.; Carey, Hannah V.; Domazet-Lošo, Tomislav; Douglas, Angela E.; Dubilier, Nicole; Eberl, Gerard; Fukami, Tadashi; Gilbert, Scott F.; Hentschel, Ute; King, Nicole; Kjelleberg, Staffan; Knoll, Andrew H.; Kremer, Natacha; Mazmanian, Sarkis K.; Metcalf, Jessica L.; Nealson, Kenneth; Pierce, Naomi E.; Rawls, John F.; Reid, Ann; Ruby, Edward G.; Rumpho, Mary; Sanders, Jon G.; Tautz, Diethard; Wernegreen, Jennifer J.
2013-01-01
In the last two decades, the widespread application of genetic and genomic approaches has revealed a bacterial world astonishing in its ubiquity and diversity. This review examines how a growing knowledge of the vast range of animal–bacterial interactions, whether in shared ecosystems or intimate symbioses, is fundamentally altering our understanding of animal biology. Specifically, we highlight recent technological and intellectual advances that have changed our thinking about five questions: how have bacteria facilitated the origin and evolution of animals; how do animals and bacteria affect each other’s genomes; how does normal animal development depend on bacterial partners; how is homeostasis maintained between animals and their symbionts; and how can ecological approaches deepen our understanding of the multiple levels of animal–bacterial interaction. As answers to these fundamental questions emerge, all biologists will be challenged to broaden their appreciation of these interactions and to include investigations of the relationships between and among bacteria and their animal partners as we seek a better understanding of the natural world. PMID:23391737
Vanysacker, L.; Denis, C.; Declerck, P.; Piasecka, A.; Vankelecom, I. F. J.
2013-01-01
Since many years, membrane biofouling has been described as the Achilles heel of membrane fouling. In the present study, an ecological assay was performed using model systems with increasing complexity: a monospecies assay using Pseudomonas aeruginosa or Escherichia coli separately, a duospecies assay using both microorganisms, and a multispecies assay using activated sludge with or without spiked P. aeruginosa. The microbial adhesion and biofilm formation were evaluated in terms of bacterial cell densities, species richness, and bacterial community composition on polyvinyldifluoride, polyethylene, and polysulfone membranes. The data show that biofouling formation was strongly influenced by the kind of microorganism, the interactions between the organisms, and the changes in environmental conditions whereas the membrane effect was less important. The findings obtained in this study suggest that more knowledge in species composition and microbial interactions is needed in order to understand the complex biofouling process. This is the first report describing the microbial interactions with a membrane during the biofouling development. PMID:23986906
Differences among Major Taxa in the Extent of Ecological Knowledge across Four Major Ecosystems
Fisher, Rebecca; Knowlton, Nancy; Brainard, Russell E.; Caley, M. Julian
2011-01-01
Existing knowledge shapes our understanding of ecosystems and is critical for ecosystem-based management of the world's natural resources. Typically this knowledge is biased among taxa, with some taxa far better studied than others, but the extent of this bias is poorly known. In conjunction with the publically available World Registry of Marine Species database (WoRMS) and one of the world's premier electronic scientific literature databases (Web of Science®), a text mining approach is used to examine the distribution of existing ecological knowledge among taxa in coral reef, mangrove, seagrass and kelp bed ecosystems. We found that for each of these ecosystems, most research has been limited to a few groups of organisms. While this bias clearly reflects the perceived importance of some taxa as commercially or ecologically valuable, the relative lack of research of other taxonomic groups highlights the problem that some key taxa and associated ecosystem processes they affect may be poorly understood or completely ignored. The approach outlined here could be applied to any type of ecosystem for analyzing previous research effort and identifying knowledge gaps in order to improve ecosystem-based conservation and management. PMID:22073172
Host-Microbiome Interaction and Cancer: Potential Application in Precision Medicine
Contreras, Alejandra V.; Cocom-Chan, Benjamin; Hernandez-Montes, Georgina; Portillo-Bobadilla, Tobias; Resendis-Antonio, Osbaldo
2016-01-01
It has been experimentally shown that host-microbial interaction plays a major role in shaping the wellness or disease of the human body. Microorganisms coexisting in human tissues provide a variety of benefits that contribute to proper functional activity in the host through the modulation of fundamental processes such as signal transduction, immunity and metabolism. The unbalance of this microbial profile, or dysbiosis, has been correlated with the genesis and evolution of complex diseases such as cancer. Although this latter disease has been thoroughly studied using different high-throughput (HT) technologies, its heterogeneous nature makes its understanding and proper treatment in patients a remaining challenge in clinical settings. Notably, given the outstanding role of host-microbiome interactions, the ecological interactions with microorganisms have become a new significant aspect in the systems that can contribute to the diagnosis and potential treatment of solid cancers. As a part of expanding precision medicine in the area of cancer research, efforts aimed at effective treatments for various kinds of cancer based on the knowledge of genetics, biology of the disease and host-microbiome interactions might improve the prediction of disease risk and implement potential microbiota-directed therapeutics. In this review, we present the state of the art of sequencing and metabolome technologies, computational methods and schemes in systems biology that have addressed recent breakthroughs of uncovering relationships or associations between microorganisms and cancer. Together, microbiome studies extend the horizon of new personalized treatments against cancer from the perspective of precision medicine through a synergistic strategy integrating clinical knowledge, HT data, bioinformatics, and systems biology. PMID:28018236
Foundations of translational ecology
Enquist, Carolyn A. F.; Jackson, Stephen T.; Garfin, Gregg M.; Davis, Frank W.; Gerber, Leah R.; Littell, Jeremy; Tank, Jennifer L.; Terando, Adam; Wall, Tamara U.; Halpern, Benjamin S.; Morelli, Toni L.; Hiers, J. Kevin; McNie, Elizabeth; Stephenson, Nathan L.; Williamson, Matthew A.; Woodhouse, Connie A.; Yung, Laurie; Brunson, Mark W.; Hall, Kimberly R.; Hallett, Lauren M.; Lawson, Dawn M.; Moritz, Max A.; Nydick, Koren R.; Pairis, Amber; Ray, Andrea J.; Regan, Claudia M.; Safford, Hugh D.; Schwartz, Mark W.; Shaw, M. Rebecca
2017-01-01
Ecologists who specialize in translational ecology (TE) seek to link ecological knowledge to decision making by integrating ecological science with the full complement of social dimensions that underlie today's complex environmental issues. TE is motivated by a search for outcomes that directly serve the needs of natural resource managers and decision makers. This objective distinguishes it from both basic and applied ecological research and, as a practice, it deliberately extends research beyond theory or opportunistic applications. TE is uniquely positioned to address complex issues through interdisciplinary team approaches and integrated scientist–practitioner partnerships. The creativity and context‐specific knowledge of resource managers, practitioners, and decision makers inform and enrich the scientific process and help shape use‐driven, actionable science. Moreover, addressing research questions that arise from on‐the‐ground management issues – as opposed to the top‐down or expert‐oriented perspectives of traditional science – can foster the high levels of trust and commitment that are critical for long‐term, sustained engagement between partners.
NASA Astrophysics Data System (ADS)
Roberts, Lisa Elisabeth N.
Current policy and research have led the field of science education towards a model of "science as practice." In the past decade, several research programs on model-based reasoning practices in education have articulated key dimensions of practice, including constructing and defending models, comparing models to empirical data, using representations to identify patterns in data and use those as inscriptions to buttress arguments. This study presents a detailed case of how the use of a physical microcosm and children's self-directed representations of an ecosystem constrained and afforded student sense-making in an urban elementary classroom. The case analyzed the experiences of a 10-year old fifth grade student, Jorge, and the variation in his expressed understanding of ecosystems as he interacted with academic tasks, along with models and representations, to design, observe and explain an ecological microcosm. The study used a conceptual framework that brings together theories of situated cognition and Doyle's work on academic task to explain how and why Jorge's perception and communication of dimensions of ecosystem structure, function, and behavior appear to "come in and out of focus," influenced by the affordances of the tools and resources available, the academic task as given by the teacher, and Jorge's own experiences and knowledge of phenomena related to ecosystems. Findings from this study suggest that elementary students' ability or inability to address particular ecological concepts in a given task relate less to gaps in their understanding and more to the structure of academic tasks and learning contexts. The process of a student interacting with curriculum follows a dynamic trajectory and leads to emergent outcomes. As a result of the complex interactions of task, tools, and his own interests and agency, Jorge's attunement to the role of water in ecosystems comes in and out of focus throughout the unit. The instructional constraint of needing to integrate the FOSS Water Cycle curriculum into the Bottle Biology Project became an affordance for Jorge to ask questions, observe, and theorize about the role of water and the water cycle in an ecosystem. The practice of modeling a closed ecosystem made salient to Jorge the boundaries of a system and the conservation of water within that system. The closed ecosystem model also presented constraints to students' sense making about the role of interactions when students lack domain knowledge in ecology. Relying on students' own talk, photographs and representations as explanations of phenomena in the Bio Bottle, without establishing norms of representational conventions and communication, resulted in missed opportunities for Jorge to reinforce his sense making during the activity and to develop conventions of scientific representation. Findings from this study can be used to inform the design and implementation of learning environments and curricular activities for elementary and middle school students that address all three dimensions of the Next Generation Science Standards: a) developing conceptual understanding of key concepts in the domain of ecology, b) the cross-cutting concept of systems, and c) multiple practices that ecologists use in developing and evaluating models that explain ecosystem structures, functions, and change over time.
Ecology and evolution of plant–pollinator interactions
Mitchell, Randall J.; Irwin, Rebecca E.; Flanagan, Rebecca J.; Karron, Jeffrey D.
2009-01-01
Background Some of the most exciting advances in pollination biology have resulted from interdisciplinary research combining ecological and evolutionary perspectives. For example, these two approaches have been essential for understanding the functional ecology of floral traits, the dynamics of pollen transport, competition for pollinator services, and patterns of specialization and generalization in plant–pollinator interactions. However, as research in these and other areas has progressed, many pollination biologists have become more specialized in their research interests, focusing their attention on either evolutionary or ecological questions. We believe that the continuing vigour of a synthetic and interdisciplinary field like pollination biology depends on renewed connections between ecological and evolutionary approaches. Scope In this Viewpoint paper we highlight the application of ecological and evolutionary approaches to two themes in pollination biology: (1) links between pollinator behaviour and plant mating systems, and (2) generalization and specialization in pollination systems. We also describe how mathematical models and synthetic analyses have broadened our understanding of pollination biology, especially in human-modified landscapes. We conclude with several suggestions that we hope will stimulate future research. This Viewpoint also serves as the introduction to this Special Issue on the Ecology and Evolution of Plant–Pollinator Interactions. These papers provide inspiring examples of the synergy between evolutionary and ecological approaches, and offer glimpses of great accomplishments yet to come. PMID:19482881
Ecology and evolution of plant-pollinator interactions.
Mitchell, Randall J; Irwin, Rebecca E; Flanagan, Rebecca J; Karron, Jeffrey D
2009-06-01
Some of the most exciting advances in pollination biology have resulted from interdisciplinary research combining ecological and evolutionary perspectives. For example, these two approaches have been essential for understanding the functional ecology of floral traits, the dynamics of pollen transport, competition for pollinator services, and patterns of specialization and generalization in plant-pollinator interactions. However, as research in these and other areas has progressed, many pollination biologists have become more specialized in their research interests, focusing their attention on either evolutionary or ecological questions. We believe that the continuing vigour of a synthetic and interdisciplinary field like pollination biology depends on renewed connections between ecological and evolutionary approaches. In this Viewpoint paper we highlight the application of ecological and evolutionary approaches to two themes in pollination biology: (1) links between pollinator behaviour and plant mating systems, and (2) generalization and specialization in pollination systems. We also describe how mathematical models and synthetic analyses have broadened our understanding of pollination biology, especially in human-modified landscapes. We conclude with several suggestions that we hope will stimulate future research. This Viewpoint also serves as the introduction to this Special Issue on the Ecology and Evolution of Plant-Pollinator Interactions. These papers provide inspiring examples of the synergy between evolutionary and ecological approaches, and offer glimpses of great accomplishments yet to come.
Arnaiz-Schmitz, C; Schmitz, M F; Herrero-Jáuregui, C; Gutiérrez-Angonese, J; Pineda, F D; Montes, C
2018-01-15
Socio-ecological systems maintain reciprocal interactions between biophysical and socioeconomic structures. As a result of these interactions key essential services for society emerge. Urban expansion is a direct driver of land change and cause serious shifts in socio-ecological relationships and the associated lifestyles. The framework of rural-urban gradients has proved to be a powerful tool for ecological research about urban influences on ecosystems and on sociological issues related to social welfare. However, to date there has not been an attempt to achieve a classification of municipalities in rural-urban gradients based on socio-ecological interactions. In this paper, we developed a methodological approach that allows identifying and classifying a set of socio-ecological network configurations in the Region of Madrid, a highly dynamic cultural landscape considered one of the European hotspots in urban development. According to their socio-ecological links, the integrated model detects four groups of municipalities, ordered along a rural-urban gradient, characterized by their degree of biophysical and socioeconomic coupling and different indicators of landscape structure and social welfare. We propose the developed model as a useful tool to improve environmental management schemes and land planning from a socio-ecological perspective, especially in territories subject to intense urban transformations and loss of rurality. Copyright © 2017 Elsevier B.V. All rights reserved.
Hydrology and Conservation Ecology
NASA Astrophysics Data System (ADS)
Narayanan, M.
2006-12-01
Responses to change in the behavior of ecological systems are largely governed by interactions at different levels. Research is essential and is to be necessarily designed to gain insights into various interactions at the community level. Sustainable resource management is only possible if conservation of biodiversity can be accomplished by properly using the knowledge discovered. It is well known that the United States Department of Agriculture provides technical information, resources, and data necessary to assist the researchers in addressing their conservation needs. Conservation aims to protect, preserve and conserve the earth's natural resources. These include, but not limited to the conservation of soil, water, minerals, air, plants and all living beings. The United States Department of Agriculture also encourages farmers and ranchers to voluntarily address threats to soil and water. Protection of wetlands and wildlife habitat has been on the radar screen of conservation experts for a very long time. The main objective has always been to help farmers and landowners conform and comply with federal and state environmental laws. During the implementation phase, farmers should be encouraged to make beneficial, cost-effective changes to methods of irrigation systems. In some cases, the hydrologic regime of the project area can be thought of as principally an issue of river flow regimes for floodplain forests. In this presentation, the author tries to focus on the impact of hydrology and conservation ecology on global warming. He also discusses the impact of hydrology and conservation ecology global air concerns such as greenhouse gas concentrations in the atmosphere. References: Chow, V. T, D. R. Maidment, and L. W. Mays. 1988. Applied Hydrology. McGraw-Hill, Inc. U.S. Soil Conservation Service. Technical Release 55: Urban Hydrology for Small Watersheds. USDA (U.S. Department of Agriculture). June 1986. Lehner, B. and P. Döll (2004). Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology 296/1-4. 1-22. http://www.wcc.nrcs.usda.gov http://www.ceh-nerc.ac.uk http://www.usda.gov
A critique of the historical-fire-regime concept in conservation.
Freeman, Johanna; Kobziar, Leda; Rose, Elizabeth White; Cropper, Wendell
2017-10-01
Prescribed fire is widely accepted as a conservation tool because fire is essential to the maintenance of native biodiversity in many terrestrial communities. Approaches to this land-management technique vary greatly among continents, and sharing knowledge internationally can inform application of prescribed fire worldwide. In North America, decisions about how and when to apply prescribed fire are typically based on the historical-fire-regime concept (HFRC), which holds that replicating the pattern of fires ignited by lightning or preindustrial humans best promotes native species in fire-prone regions. The HFRC rests on 3 assumptions: it is possible to infer historical fire regimes accurately; fire-suppressed communities are ecologically degraded; and reinstating historical fire regimes is the best course of action despite the global shift toward novel abiotic and biotic conditions. We examined the underpinnings of these assumptions by conducting a literature review on the use of historical fire regimes to inform the application of prescribed fire. We found that the practice of inferring historical fire regimes for entire regions or ecosystems often entails substantial uncertainty and can yield equivocal results; ecological outcomes of fire suppression are complex and may not equate to degradation, depending on the ecosystem and context; and habitat fragmentation, invasive species, and other modern factors can interact with fire to produce novel and in some cases negative ecological outcomes. It is therefore unlikely that all 3 assumptions will be fully upheld for any landscape in which prescribed fire is being applied. Although the HFRC is a valuable starting point, it should not be viewed as the sole basis for developing prescribed fire programs. Rather, fire prescriptions should also account for other specific, measurable ecological parameters on a case-by-case basis. To best achieve conservation goals, researchers should seek to understand contemporary fire-biota interactions across trophic levels, functional groups, spatial and temporal scales, and management contexts. © 2017 Society for Conservation Biology.
A review of metabolic potential of human gut microbiome in human nutrition.
Yadav, Monika; Verma, Manoj Kumar; Chauhan, Nar Singh
2018-03-01
The human gut contains a plethora of microbes, providing a platform for metabolic interaction between the host and microbiota. Metabolites produced by the gut microbiota act as a link between gut microbiota and its host. These metabolites act as messengers having the capacity to alter the gut microbiota. Recent advances in the characterization of the gut microbiota and its symbiotic relationship with the host have provided a platform to decode metabolic interactions. The human gut microbiota, a crucial component for dietary metabolism, is shaped by the genetic, epigenetic and dietary factors. The metabolic potential of gut microbiota explains its significance in host health and diseases. The knowledge of interactions between microbiota and host metabolism, as well as modification of microbial ecology, is really beneficial to have effective therapeutic treatments for many diet-related diseases in near future. This review cumulates the information to map the role of human gut microbiota in dietary component metabolism, the role of gut microbes derived metabolites in human health and host-microbe metabolic interactions in health and diseases.
Summer School in Deep Ecology.
ERIC Educational Resources Information Center
Macmillan, Catherine Hume
1995-01-01
Describes one teacher's experiences at the Institute for Deep Ecology Education (IDEE) Summer School in Applied Deep Ecology. Reviews the program offered and the focus on interactive, experiential activities. (LZ)
Computational approaches to predict bacteriophage–host relationships
Edwards, Robert A.; McNair, Katelyn; Faust, Karoline; Raes, Jeroen; Dutilh, Bas E.
2015-01-01
Metagenomics has changed the face of virus discovery by enabling the accurate identification of viral genome sequences without requiring isolation of the viruses. As a result, metagenomic virus discovery leaves the first and most fundamental question about any novel virus unanswered: What host does the virus infect? The diversity of the global virosphere and the volumes of data obtained in metagenomic sequencing projects demand computational tools for virus–host prediction. We focus on bacteriophages (phages, viruses that infect bacteria), the most abundant and diverse group of viruses found in environmental metagenomes. By analyzing 820 phages with annotated hosts, we review and assess the predictive power of in silico phage–host signals. Sequence homology approaches are the most effective at identifying known phage–host pairs. Compositional and abundance-based methods contain significant signal for phage–host classification, providing opportunities for analyzing the unknowns in viral metagenomes. Together, these computational approaches further our knowledge of the interactions between phages and their hosts. Importantly, we find that all reviewed signals significantly link phages to their hosts, illustrating how current knowledge and insights about the interaction mechanisms and ecology of coevolving phages and bacteria can be exploited to predict phage–host relationships, with potential relevance for medical and industrial applications. PMID:26657537
Bhatnagar, Srijak; Eisen, Jonathan A.; Kopp, Artyom
2011-01-01
Drosophila melanogaster is emerging as an important model of non-pathogenic host–microbe interactions. The genetic and experimental tractability of Drosophila has led to significant gains in our understanding of animal–microbial symbiosis. However, the full implications of these results cannot be appreciated without the knowledge of the microbial communities associated with natural Drosophila populations. In particular, it is not clear whether laboratory cultures can serve as an accurate model of host–microbe interactions that occur in the wild, or those that have occurred over evolutionary time. To fill this gap, we characterized natural bacterial communities associated with 14 species of Drosophila and related genera collected from distant geographic locations. To represent the ecological diversity of Drosophilids, examined species included fruit-, flower-, mushroom-, and cactus-feeders. In parallel, wild host populations were compared to laboratory strains, and controlled experiments were performed to assess the importance of host species and diet in shaping bacterial microbiome composition. We find that Drosophilid flies have taxonomically restricted bacterial communities, with 85% of the natural bacterial microbiome composed of only four bacterial families. The dominant bacterial taxa are widespread and found in many different host species despite the taxonomic, ecological, and geographic diversity of their hosts. Both natural surveys and laboratory experiments indicate that host diet plays a major role in shaping the Drosophila bacterial microbiome. Despite this, the internal bacterial microbiome represents only a highly reduced subset of the external bacterial communities, suggesting that the host exercises some level of control over the bacteria that inhabit its digestive tract. Finally, we show that laboratory strains provide only a limited model of natural host–microbe interactions. Bacterial taxa used in experimental studies are rare or absent in wild Drosophila populations, while the most abundant associates of natural Drosophila populations are rare in the lab. PMID:21966276
Pathogen evolution across the agro-ecological interface: implications for disease management.
Burdon, Jeremy J; Thrall, Peter H
2008-02-01
Infectious disease is a major causal factor in the demography of human, plant and animal populations. While it is generally accepted in medical, veterinary and agricultural contexts that variation in host resistance and pathogen virulence and aggressiveness is of central importance to understanding patterns of infection, there has been remarkably little effort to directly investigate causal links between population genetic structure and disease dynamics, and even less work on factors influencing host-pathogen coevolution. The lack of empirical evidence is particularly surprising, given the potential for such variation to not only affect disease dynamics and prevalence, but also when or where new diseases or pathotypes emerge. Increasingly, this lack of knowledge has led to calls for an integrated approach to disease management, incorporating both ecological and evolutionary processes. Here, we argue that plant pathogens occurring in agro-ecosystems represent one clear example where the application of evolutionary principles to disease management would be of great benefit, as well as providing model systems for advancing our ability to generalize about the long-term coevolutionary dynamics of host-pathogen systems. We suggest that this is particularly the case given that agro-ecological host-pathogen interactions represent a diversity of situations ranging from those that only involve agricultural crops through to those that also include weedy crop relatives or even unrelated native plant communities. We begin by examining some of the criteria that are important in determining involvement in agricultural pathogen evolution by noncrop plants. Throughout we use empirical examples to illustrate the fact that different processes may dominate in different systems, and suggest that consideration of life history and spatial structure are central to understanding dynamics and direction of the interaction. We then discuss the implications that such interactions have for disease management in agro-ecosystems and how we can influence those outcomes. Finally, we identify several major gaps where future research could increase our ability to utilize evolutionary principles in managing disease in agro-ecosystems.
Šalamún, Peter; Hanzelová, Vladimíra; Miklisová, Dana; Šestinová, Oľga; Findoráková, Lenka; Kováčik, Peter
2017-08-15
Better understanding of interactions among belowground and aboveground components in biotopes may improve our knowledge about soil ecosystem, and is necessary in environment assessment using indigenous soil organisms. In this study, we proposed that in disturbed biotopes, vegetation play important role in the buffering of contamination impact on soil communities and decrease the ecological pressure on soil biota. To assess the effects of these interactions we compared nematode communities, known for their bioindication abilities, from four types of disturbed and undisturbed biotopes (coniferous forest, permanent grassland, agricultural field, clearings), where the main stress agent was represented by long-term acidic industrial emissions containing heavy metals (As, Cd, Cu, and Pb). To understand the ecological interactions taking place in studied biotopes, we studied abiotic factors (soil properties) and biotic factors (vegetation, nematode communities). Except significant increase in metals total and mobile concentrations in disturbed biotopes soil, we found acidification of soil horizon, mainly in the clearings (pH=3.68), due to SO 2 precipitation. These factors has caused in clearings degradation of native phytocoenoses and decrease in decomposition rate characterized by high amount of organic matter (C ox =4.29%). Nematodes reacts to these conditions by shifts in trophic structure (bacteriovores to fungal feeders), increase in c-p 2 genera (Aphelenchoides, Acrobeloides, and Cephalobus), absence of sensitive groups (c-p 3-5, omnivores, predators), and decrease in ecological indices (SI, MI, MI2-5, H'). Similar contamination was found in forest biotope, but the nematodes composition indicates more suitable conditions; more complex community structure (presence of sensitive trophic and higher c-p groups), higher abundance and indices values, comparable with less stressed field and grassland biotopes. As showed our results, the vegetation undoubtedly plays an important role not only as a resource of services indispensable for the ecosystem, but also as a significant buffer of negative impacts acting within. Copyright © 2017 Elsevier B.V. All rights reserved.
Synthesis: Ecological Impacts of Forest Vegetation Management
Jerry L. Michael; M. Hermy
2002-01-01
Ecological impacts of forest vegetation management are highly complex with many interactions. Interactions are bounded on the one hand by hierarchical levels from genes to species to ecosystems and on the other hand by the tools used and the intensity of management applied to each level of possible interactions. Some impacts are easy to measure, but impacts become more...
Mei, Ran; Narihiro, Takashi; Bocher, Benjamin T. W.; Yamaguchi, Takashi; Liu, Wen-Tso
2016-01-01
Upflow anaerobic sludge blanket (UASB) reactor has served as an effective process to treat industrial wastewater such as purified terephthalic acid (PTA) wastewater. For optimal UASB performance, balanced ecological interactions between syntrophs, methanogens, and fermenters are critical. However, much of the interactions remain unclear because UASB have been studied at a “macro”-level perspective of the reactor ecosystem. In reality, such reactors are composed of a suite of granules, each forming individual micro-ecosystems treating wastewater. Thus, typical approaches may be oversimplifying the complexity of the microbial ecology and granular development. To identify critical microbial interactions at both macro- and micro- level ecosystem ecology, we perform community and network analyses on 300 PTA–degrading granules from a lab-scale UASB reactor and two full-scale reactors. Based on MiSeq-based 16S rRNA gene sequencing of individual granules, different granule-types co-exist in both full-scale reactors regardless of granule size and reactor sampling depth, suggesting that distinct microbial interactions occur in different granules throughout the reactor. In addition, we identify novel networks of syntrophic metabolic interactions in different granules, perhaps caused by distinct thermodynamic conditions. Moreover, unseen methanogenic relationships (e.g. “Candidatus Aminicenantes” and Methanosaeta) are observed in UASB reactors. In total, we discover unexpected microbial interactions in granular micro-ecosystems supporting UASB ecology and treatment through a unique single-granule level approach. PMID:27936088
2010-10-01
Evolution in invasive plants : implications for biological control. Trends in Ecology & Evolution . 19:417-422. Newingham, B.A. and R.M. Callaway...2008. Soil ecological interactions of spotted knapweed and native plant species. M.S. Thesis. Colorado State University. Fort Collins, CO...weapons and exotic plant invasions. NSF workshop on ecology and biochemical interactions , Lima. Peru. May. Keynote presentation. Callaway, R.M
2012-09-01
ecological processes involve the invasion of non-native (exotic) species (USEPA 1999). Through direct biotic interactions (predation and competition) and...indirect interactions ( ecological engineering and habitat modification), invasive species can disrupt the natural population dynamics of native...species (USEPA 1999). Invasives can include noxious plants (i.e., plants that are listed by a state because of their unfavorable economic or ecological
Scrambled eggs: mechanical forces as ecological factors in early development.
Moore, Steven W
2003-01-01
Many ecological interactions involve, at some level, mechanical forces and the movements or structural deformations they produce. Although the most familiar examples involve the functional morphology of adult structures, all life history stages (not just the adults) are subject to the laws of physics. Moreover, the success of every lineage depends on the success of every life history stage (again, not just the adults). Therefore, insights gained by using mechanical engineering principles and techniques to study ecological interactions between gametes, embryos, larvae, and their environment are essential to a well-rounded understanding of development, ecology, and evolution. Here I draw on examples from the literature and my own research to illustrate ways in which mechanical forces in the environment shape development. These include mechanical forces acting as selective factors (e.g., when coral gamete size and shape interact with turbulent water flow to determine fertilization success) and as developmental cues (e.g., when plant growth responds to gravity or bone growth responds to mechanical loading). I also examine the opposite cause-and-effect relationship by considering examples in which the development of organisms impacts ecologically relevant mechanical forces. Finally, I discuss the potential for ecological pattern formation as a result of feedback loops created by such bidirectional interactions between developmental processes and mechanical forces in the environment.
Ecological suicide in microbes.
Ratzke, Christoph; Denk, Jonas; Gore, Jeff
2018-05-01
The growth and survival of organisms often depend on interactions between them. In many cases, these interactions are positive and caused by a cooperative modification of the environment. Examples are the cooperative breakdown of complex nutrients in microbes or the construction of elaborate architectures in social insects, in which the individual profits from the collective actions of her peers. However, organisms can similarly display negative interactions by changing the environment in ways that are detrimental for them, for example by resource depletion or the production of toxic byproducts. Here we find an extreme type of negative interactions, in which Paenibacillus sp. bacteria modify the environmental pH to such a degree that it leads to a rapid extinction of the whole population, a phenomenon that we call ecological suicide. Modification of the pH is more pronounced at higher population densities, and thus ecological suicide is more likely to occur with increasing bacterial density. Correspondingly, promoting bacterial growth can drive populations extinct whereas inhibiting bacterial growth by the addition of harmful substances-such as antibiotics-can rescue them. Moreover, ecological suicide can cause oscillatory dynamics, even in single-species populations. We found ecological suicide in a wide variety of microbes, suggesting that it could have an important role in microbial ecology and evolution.
Zamudio, Fernando; Bello-Baltazar, Eduardo; Estrada-Lugo, Erin I J
2013-05-24
New kinds of knowledge, usage patterns and management strategies of natural resources emerge in local communities as a way of coping with uncertainty in a changing world. Studying how human groups adapt and create new livelihoods strategies are important research topics for creating policies in natural resources management. Here, we study the adoption and development of lagartos (Crocodylus moreletii) commercial hunting by Mayan people from a communal land in Quintana Roo state. Two questions guided our work: how did the Mayan learn to hunt lagartos? And how, and in what context, did knowledge and management practices emerge? We believe that social structures, knowledge and preexisting skills facilitate the hunting learning process, but lagarto ecological knowledge and organizational practice were developed in a "learning by doing" process. We conducted free, semi-structured and in-depth interviews over 17 prestigious lagartos hunters who reconstructed the activity through oral history. Then, we analyzed the sources of information and routes of learning and investigated the role of previous knowledge and social organization in the development of this novel activity. Finally, we discussed the emergence of hunting in relation to the characteristic of natural resource and the tenure system. Lagarto hunting for skin selling was a short-term activity, which represented an alternative source of money for some Mayans known as lagarteros. They acquired different types of knowledge and skills through various sources of experience (individual practice, or from foreign hunters and other Mayan hunters). The developed management system involved a set of local knowledge about lagartos ecology and a social organization structure that was then articulated in the formation of "working groups" with particular hunting locations (rumbos and trabajaderos), rotation strategies and collaboration among them. Access rules and regulations identified were in an incipient state of development and were little documented. In agreement to the hypothesis proposed, the Mayan used multiple learning paths to develop a new activity: the lagarto hunting. On the one hand, they used their traditional social organization structure as well as their culturally inherited knowledge. On the other hand, they acquired new ecological knowledge of the species in a learning-by-doing process, together with the use of other sources of external information.The formation of working groups, the exchange of information and the administration of hunting locations are similar to other productive activities and livelihood practiced by these Mayan. Skills such as preparing skins and lagartos ecological knowledge were acquired by foreign hunters and during hunting practice, respectively. We detected a feedback between local ecological knowledge and social organization, which in turn promoted the emergence of Mayan hunting management practices.
2013-01-01
Background New kinds of knowledge, usage patterns and management strategies of natural resources emerge in local communities as a way of coping with uncertainty in a changing world. Studying how human groups adapt and create new livelihoods strategies are important research topics for creating policies in natural resources management. Here, we study the adoption and development of lagartos (Crocodylus moreletii) commercial hunting by Mayan people from a communal land in Quintana Roo state. Two questions guided our work: how did the Mayan learn to hunt lagartos? And how, and in what context, did knowledge and management practices emerge? We believe that social structures, knowledge and preexisting skills facilitate the hunting learning process, but lagarto ecological knowledge and organizational practice were developed in a “learning by doing” process. Methods We conducted free, semi-structured and in-depth interviews over 17 prestigious lagartos hunters who reconstructed the activity through oral history. Then, we analyzed the sources of information and routes of learning and investigated the role of previous knowledge and social organization in the development of this novel activity. Finally, we discussed the emergence of hunting in relation to the characteristic of natural resource and the tenure system. Results Lagarto hunting for skin selling was a short-term activity, which represented an alternative source of money for some Mayans known as lagarteros. They acquired different types of knowledge and skills through various sources of experience (individual practice, or from foreign hunters and other Mayan hunters). The developed management system involved a set of local knowledge about lagartos ecology and a social organization structure that was then articulated in the formation of “working groups” with particular hunting locations (rumbos and trabajaderos), rotation strategies and collaboration among them. Access rules and regulations identified were in an incipient state of development and were little documented. Conclusions In agreement to the hypothesis proposed, the Mayan used multiple learning paths to develop a new activity: the lagarto hunting. On the one hand, they used their traditional social organization structure as well as their culturally inherited knowledge. On the other hand, they acquired new ecological knowledge of the species in a learning-by-doing process, together with the use of other sources of external information. The formation of working groups, the exchange of information and the administration of hunting locations are similar to other productive activities and livelihood practiced by these Mayan. Skills such as preparing skins and lagartos ecological knowledge were acquired by foreign hunters and during hunting practice, respectively. We detected a feedback between local ecological knowledge and social organization, which in turn promoted the emergence of Mayan hunting management practices. PMID:23706104
[Construction and evaluation of ecological network in Poyang Lake Eco-economic Zone, China.
Chen, Xiao Ping; Chen, Wen Bo
2016-05-01
Large-scale ecological patches play an important role in regional biodiversity conservation. However, with the rapid progress of China's urbanization, human disturbance on the environment is becoming stronger. Large-scale ecological patches will degrade not only in quantity, but also in quality, threatening the connections among them due to isolation and seriously affecting the biodiversity protection. Taking Poyang Lake Eco-economic Zone as a case, this paper established the potential ecological corridors by minimum cost model and GIS technique taking the impacts of landscape types, slope and human disturbance into consideration. Then, based on gravity quantitative model, we analyzed the intensity of ecological interactions between patches, and the potential ecological corridors were divided into two classes for sake of protection. Finally, the important ecological nodes and breaking points were identified, and the structure of the potential ecological network was analyzed. The results showed that forest and cropland were the main landscape types of ecological corridor composition, interaction between ecological patches differed obviously and the structure of the composed regional ecological network was complex with high connectivity and closure. It might provide a scientific basis for the protection of biodiversity and ecological network optimization in Poyang Lake Eco-economic Zone.
Durning, Steven J; Artino, Anthony R
2011-01-01
Situativity theory refers to theoretical frameworks which argue that knowledge, thinking, and learning are situated (or located) in experience. The importance of context to these theories is paramount, including the unique contribution of the environment to knowledge, thinking, and learning; indeed, they argue that knowledge, thinking, and learning cannot be separated from (they are dependent upon) context. Situativity theory includes situated cognition, situated learning, ecological psychology, and distributed cognition. In this Guide, we first outline key tenets of situativity theory and then compare situativity theory to information processing theory; we suspect that the reader may be quite familiar with the latter, which has prevailed in medical education research. Contrasting situativity theory with information processing theory also serves to highlight some unique potential contributions of situativity theory to work in medical education. Further, we discuss each of these situativity theories and then relate the theories to the clinical context. Examples and illustrations for each of the theories are used throughout. We will conclude with some potential considerations for future exploration. Some implications of situativity theory include: a new way of approaching knowledge and how experience and the environment impact knowledge, thinking, and learning; recognizing that the situativity framework can be a useful tool to "diagnose" the teaching or clinical event; the notion that increasing individual responsibility and participation in a community (i.e., increasing "belonging") is essential to learning; understanding that the teaching and clinical environment can be complex (i.e., non-linear and multi-level); recognizing that explicit attention to how participants in a group interact with each other (not only with the teacher) and how the associated learning artifacts, such as computers, can meaningfully impact learning.
Ferguson, Michael A.D.; Messier, François
1997-01-01
Aboriginal peoples want their ecological knowledge used in the management of wildlife populations. To accomplish this, management agencies will need regional summaries of aboriginal knowledge about long-term changes in the distribution and abundance of wildlife populations and ecological factors that influence those changes. Between 1983 and 1994, we developed a method for collecting Inuit knowledge about historical changes in a caribou (Rangifer tarandus) population on southern Baffin Island from c. 1900 to 1994. Advice from Inuit allowed us to collect and interpret their oral knowledge in culturally appropriate ways. Local Hunters and Trappers Associations (HTAs) and other Inuit identified potential informants to maximize the spatial and temporal scope of the study. In the final interview protocol, each informant (i) established his biographical map and time line, (ii) described changes in caribou distribution and density during his life, and (iii) discussed ecological factors that may have caused changes in caribou populations. Personal and parental observations of caribou distribution and abundance were reliable and precise. Inuit who had hunted caribou during periods of scarcity provided more extensive information than those hunters who had hunted mainly ringed seals (Phoca hispida); nevertheless, seal hunters provided information about coastal areas where caribou densities were insufficient for the needs of caribou hunters. The wording of our questions influenced the reliability of informants' answers; leading questions were especially problematic. We used only information that we considered reliable after analyzing the wording of both questions and answers from translated transcripts. This analysis may have excluded some reliable information because informants tended to understate certainty in their recollections. We tried to retain the accuracy and precision inherent in Inuit oral traditions; comparisons of information from several informants and comparisons with published and archival historical reports indicate that we retained these qualities of Inuit knowledge.
Challenging the paradigms of deep-sea ecology.
Danovaro, Roberto; Snelgrove, Paul V R; Tyler, Paul
2014-08-01
Deep-sea ecosystems represent Earth's major ecological research frontier. Focusing on seafloor ecosystems, we demonstrate how new technologies underpin discoveries that challenge major ecological hypotheses and paradigms, illuminating new deep-sea geosphere-biosphere interactions. We now recognize greater habitat complexity, new ecological interactions and the importance of 'dark energy', and chemosynthetic production in fuelling biodiversity. We also acknowledge functional hotspots that contradict a food-poor, metabolically inactive, and minor component of global carbon cycles. Symbioses appear widespread, revealing novel adaptations. Populations show complex spatial structure and evolutionary histories. These new findings redefine deep-sea ecology and the role of Earth's largest biome in global biosphere functioning. Indeed, deep-sea exploration can open new perspectives in ecological research to help mitigate exploitation impacts. Copyright © 2014 Elsevier Ltd. All rights reserved.
Population genetics and demography unite ecology and evolution
Lowe, Winsor H.; Kovach, Ryan; Allendorf, Fred W.
2017-01-01
The interplay of ecology and evolution has been a rich area of research for decades. A surge of interest in this area was catalyzed by the observation that evolution by natural selection can operate at the same contemporary timescales as ecological dynamics. Specifically, recent eco-evolutionary research focuses on how rapid adaptation influences ecology, and vice versa. Evolution by non-adaptive forces also occurs quickly, with ecological consequences, but understanding the full scope of ecology–evolution (eco–evo) interactions requires explicitly addressing population-level processes – genetic and demographic. We show the strong ecological effects of non-adaptive evolutionary forces and, more broadly, the value of population-level research for gaining a mechanistic understanding of eco–evo interactions. The breadth of eco-evolutionary research should expand to incorporate the breadth of evolution itself.
NASA Astrophysics Data System (ADS)
Peterson, K.
2017-12-01
Worldview, Lifeway and Science - Communities that are tied to the land or water for their livelihood, and for whom subsistence guides their cultural lifeway, have knowledges that inform their interactions with the environment. These frameworks, sometimes called Traditional Ecological Knowledges (TEK), are based on generations of observations made and shared within lived life-environmental systems, and are tied to practitioners' broader worldviews. Subsistence communities, including Native American tribes, are well aware of the crises caused by climate change impacts. These communities are working on ways to integrate knowledge from their ancient ways with current observations and methods from Western science to implement appropriate adaptation and resilience measures. In the delta region of south Louisiana, the communities hold worldviews that blend TEK, climate science and faith-derived concepts. It is not incongruent for the communities to intertwine conversations from complex and diverse sources, including the academy, to inform their adaptation measures and their imagined solutions. Drawing on over twenty years of work with local communities, science organizations and faith institutions of the lower bayou region of Louisiana, the presenter will address the complexity of traditional communities' work with diverse sources of knowledge to guide local decision-making and to assist outside partners to more effectively address challenges associated with climate change.
Prior knowledge-based approach for associating ...
Evaluating the potential human health and/or ecological risks associated with exposures to complex chemical mixtures in the ambient environment is one of the central challenges of chemical safety assessment and environmental protection. There is a need for approaches that can help to integrate chemical monitoring and bio-effects data to evaluate risks associated with chemicals present in the environment. We used prior knowledge about chemical-gene interactions to develop a knowledge assembly model for detected chemicals at five locations near two wastewater treatment plants. The assembly model was used to generate hypotheses about the biological impacts of the chemicals at each location. The hypotheses were tested using empirical hepatic gene expression data from fathead minnows exposed for 12 d at each location. Empirical gene expression data was also mapped to the assembly models to statistically evaluate the likelihood of a chemical contributing to the observed biological responses. The prior knowledge approach was able reasonably hypothesize the biological impacts at one site but not the other. Chemicals most likely contributing to the observed biological responses were identified at each location. Despite limitations to the approach, knowledge assembly models have strong potential for associating chemical occurrence with potential biological effects and providing a foundation for hypothesis generation to guide research and/or monitoring efforts relat
Barlow, Jos; Ewers, Robert M; Anderson, Liana; Aragao, Luiz E O C; Baker, Tim R; Boyd, Emily; Feldpausch, Ted R; Gloor, Emanuel; Hall, Anthony; Malhi, Yadvinder; Milliken, William; Mulligan, Mark; Parry, Luke; Pennington, Toby; Peres, Carlos A; Phillips, Oliver L; Roman-Cuesta, Rosa Maria; Tobias, Joseph A; Gardner, Toby A
2011-05-01
Developing high-quality scientific research will be most effective if research communities with diverse skills and interests are able to share information and knowledge, are aware of the major challenges across disciplines, and can exploit economies of scale to provide robust answers and better inform policy. We evaluate opportunities and challenges facing the development of a more interactive research environment by developing an interdisciplinary synthesis of research on a single geographic region. We focus on the Amazon as it is of enormous regional and global environmental importance and faces a highly uncertain future. To take stock of existing knowledge and provide a framework for analysis we present a set of mini-reviews from fourteen different areas of research, encompassing taxonomy, biodiversity, biogeography, vegetation dynamics, landscape ecology, earth-atmosphere interactions, ecosystem processes, fire, deforestation dynamics, hydrology, hunting, conservation planning, livelihoods, and payments for ecosystem services. Each review highlights the current state of knowledge and identifies research priorities, including major challenges and opportunities. We show that while substantial progress is being made across many areas of scientific research, our understanding of specific issues is often dependent on knowledge from other disciplines. Accelerating the acquisition of reliable and contextualized knowledge about the fate of complex pristine and modified ecosystems is partly dependent on our ability to exploit economies of scale in shared resources and technical expertise, recognise and make explicit interconnections and feedbacks among sub-disciplines, increase the temporal and spatial scale of existing studies, and improve the dissemination of scientific findings to policy makers and society at large. Enhancing interaction among research efforts is vital if we are to make the most of limited funds and overcome the challenges posed by addressing large-scale interdisciplinary questions. Bringing together a diverse scientific community with a single geographic focus can help increase awareness of research questions both within and among disciplines, and reveal the opportunities that may exist for advancing acquisition of reliable knowledge. This approach could be useful for a variety of globally important scientific questions. © 2010 The Authors. Biological Reviews © 2010 Cambridge Philosophical Society.
Stopover ecology of neotropical migrants in central Veracruz, México
Ernesto Ruelas Inzunza; Stephen W. Hoffman; Laurie J. Goodrich
2005-01-01
Available information on the ecology of neotropical migrants during the winter season and especially during migration is far behind the existing knowledge of birds during the breeding season. This paper presents a stopover ecology case study. We document the occurrence of species, outline the prevailing weather patterns during spring and fall migration seasons, and...
Data Explorations in Ecology: Salt Pollution as a Case Study for Teaching Data Literacy
ERIC Educational Resources Information Center
Harris, Cornelia; Berkowitz, Alan R.; Alvarado, Angelita
2012-01-01
Does working with first- and second-hand ecological data improve students' knowledge of ecological ideas, motivation and engagement in science, data exploration, and citizenship skills (students' ability to make informed decisions)? We have been exploring this question with high school science teachers in New York State for the past year using a…
Narragansett, RI Lab--Office of Research and Development
The EPA-ORD laboratory in Narragansett, RI is a recognized leader in scientific knowledge and expertise concerning the ecology of oceans, estuaries, and water-sheds, and the effects of human activities on that ecology.
Human Ecology: Persistence and Change.
ERIC Educational Resources Information Center
Hawley, Amos H.
1981-01-01
Demonstrates the relevance of ecology to sociological research and discusses some of the theoretical perspectives embodied in ecology. Examines ecology's emphasis upon the population rather than the individual as the unit of observation and on organizations as products of the interaction of population and environment. (DB)
Fisher, Charles K.; Mehta, Pankaj
2014-01-01
Human associated microbial communities exert tremendous influence over human health and disease. With modern metagenomic sequencing methods it is now possible to follow the relative abundance of microbes in a community over time. These microbial communities exhibit rich ecological dynamics and an important goal of microbial ecology is to infer the ecological interactions between species directly from sequence data. Any algorithm for inferring ecological interactions must overcome three major obstacles: 1) a correlation between the abundances of two species does not imply that those species are interacting, 2) the sum constraint on the relative abundances obtained from metagenomic studies makes it difficult to infer the parameters in timeseries models, and 3) errors due to experimental uncertainty, or mis-assignment of sequencing reads into operational taxonomic units, bias inferences of species interactions due to a statistical problem called “errors-in-variables”. Here we introduce an approach, Learning Interactions from MIcrobial Time Series (LIMITS), that overcomes these obstacles. LIMITS uses sparse linear regression with boostrap aggregation to infer a discrete-time Lotka-Volterra model for microbial dynamics. We tested LIMITS on synthetic data and showed that it could reliably infer the topology of the inter-species ecological interactions. We then used LIMITS to characterize the species interactions in the gut microbiomes of two individuals and found that the interaction networks varied significantly between individuals. Furthermore, we found that the interaction networks of the two individuals are dominated by distinct “keystone species”, Bacteroides fragilis and Bacteroided stercosis, that have a disproportionate influence on the structure of the gut microbiome even though they are only found in moderate abundance. Based on our results, we hypothesize that the abundances of certain keystone species may be responsible for individuality in the human gut microbiome. PMID:25054627
Improving plant bioaccumulation science through consistent reporting of experimental data.
Fantke, Peter; Arnot, Jon A; Doucette, William J
2016-10-01
Experimental data and models for plant bioaccumulation of organic contaminants play a crucial role for assessing the potential human and ecological risks associated with chemical use. Plants are receptor organisms and direct or indirect vectors for chemical exposures to all other organisms. As new experimental data are generated they are used to improve our understanding of plant-chemical interactions that in turn allows for the development of better scientific knowledge and conceptual and predictive models. The interrelationship between experimental data and model development is an ongoing, never-ending process needed to advance our ability to provide reliable quality information that can be used in various contexts including regulatory risk assessment. However, relatively few standard experimental protocols for generating plant bioaccumulation data are currently available and because of inconsistent data collection and reporting requirements, the information generated is often less useful than it could be for direct applications in chemical assessments and for model development and refinement. We review existing testing guidelines, common data reporting practices, and provide recommendations for revising testing guidelines and reporting requirements to improve bioaccumulation knowledge and models. This analysis provides a list of experimental parameters that will help to develop high quality datasets and support modeling tools for assessing bioaccumulation of organic chemicals in plants and ultimately addressing uncertainty in ecological and human health risk assessments. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Towards understanding human ecology in nursing practice: a concept analysis].
Huynh, Truc; Alderson, Marie
2010-06-01
Human ecology is an umbrella concept encompassing several social, physical, and cultural elements existing in the individual's external environment. The pragmatic utility method was used to analyze the "human ecology" concept in order to ascertain the conceptual fit with nursing epistemology and to promote its use by nurses in clinical practice. Relevant articles for the review were retrieved from the MEDLINE, CINAHL, PsycINFO, and CSA databases using the terms "human ecology," "environment," "nursing," and "ecology." Data analysis revealed that human ecology is perceived as a theoretical perspective designating a complex, multilayered, and multidimensional system, one that comprises individuals and their reciprocal interactions with their global environments and the subsequent impact of these interactions upon their health. Human ecology preconditions include the individuals, their environments, and their transactions. Attributes of this concept encompass the characteristics of an open system (e.g., interdependence, reciprocal).
The interactions of ants with their biotic environment.
Chomicki, Guillaume; Renner, Susanne S
2017-03-15
This s pecial feature results from the symposium 'Ants 2016: ant interactions with their biotic environments' held in Munich in May 2016 and deals with the interactions between ants and other insects, plants, microbes and fungi, studied at micro- and macroevolutionary levels with a wide range of approaches, from field ecology to next-generation sequencing, chemical ecology and molecular genetics. In this paper, we review key aspects of these biotic interactions to provide background information for the papers of this s pecial feature After listing the major types of biotic interactions that ants engage in, we present a brief overview of ant/ant communication, ant/plant interactions, ant/fungus symbioses, and recent insights about ants and their endosymbionts. Using a large molecular clock-dated Formicidae phylogeny, we map the evolutionary origins of different ant clades' interactions with plants, fungi and hemiptera. Ants' biotic interactions provide ideal systems to address fundamental ecological and evolutionary questions about mutualism, coevolution, adaptation and animal communication. © 2017 The Author(s).
The interactions of ants with their biotic environment
Renner, Susanne S.
2017-01-01
This special feature results from the symposium ‘Ants 2016: ant interactions with their biotic environments’ held in Munich in May 2016 and deals with the interactions between ants and other insects, plants, microbes and fungi, studied at micro- and macroevolutionary levels with a wide range of approaches, from field ecology to next-generation sequencing, chemical ecology and molecular genetics. In this paper, we review key aspects of these biotic interactions to provide background information for the papers of this special feature. After listing the major types of biotic interactions that ants engage in, we present a brief overview of ant/ant communication, ant/plant interactions, ant/fungus symbioses, and recent insights about ants and their endosymbionts. Using a large molecular clock-dated Formicidae phylogeny, we map the evolutionary origins of different ant clades' interactions with plants, fungi and hemiptera. Ants' biotic interactions provide ideal systems to address fundamental ecological and evolutionary questions about mutualism, coevolution, adaptation and animal communication. PMID:28298352
Taylor, Kimberly A.; Short, A.
2009-01-01
Integrating science into resource management activities is a goal of the CALFED Bay-Delta Program, a multi-agency effort to address water supply reliability, ecological condition, drinking water quality, and levees in the Sacramento-San Joaquin Delta of northern California. Under CALFED, many different strategies were used to integrate science, including interaction between the research and management communities, public dialogues about scientific work, and peer review. This paper explores ways science was (and was not) integrated into CALFED's management actions and decision systems through three narratives describing different patterns of scientific integration and application in CALFED. Though a collaborative process and certain organizational conditions may be necessary for developing new understandings of the system of interest, we find that those factors are not sufficient for translating that knowledge into management actions and decision systems. We suggest that the application of knowledge may be facilitated or hindered by (1) differences in the objectives, approaches, and cultures of scientists operating in the research community and those operating in the management community and (2) other factors external to the collaborative process and organization.
Volcano ecology: Disturbance characteristics and assembly of biological communities
USDA-ARS?s Scientific Manuscript database
Volcanic eruptions are powerful expressions of Earth’s geophysical forces which have shaped and influenced ecological systems since the earliest days of life. The study of the interactions of volcanoes and ecosystems, termed volcano ecology, focuses on the ecological responses of organisms and biolo...
Training hydrologists to be ecohydrologists and play a leading role in environmental problem solving
NASA Astrophysics Data System (ADS)
McClain, M. E.; Chícharo, L.; Fohrer, N.; Gaviño Novillo, M.; Windhorst, W.; Zalewski, M.
2012-06-01
Ecohydrology is a relatively new and rapidly growing subject area in the hydrology curriculum. It is a trans-disciplinary science derived from the larger earth systems science movement and examining mutual interactions of the hydrological cycle and ecosystems. It is also an applied science focused on problem solving and providing sound guidance to catchment-scale integrated land and water resources management. The principle spheres of ecohydrology include (i) climate-soil-vegetation-groundwater interactions at the land surface with special implications for land use, food production and climate change; (ii) riparian runoff, flooding, and flow regime dynamics in river corridors with special implications for water supply, water quality, and inland fisheries; and (iii) fluvial and groundwater inputs to lakes/reservoirs, estuaries, and coastal zones with special implications for water quality and fisheries. We propose an educational vision focused on the development of professional and personal competencies to impart a depth of scientific knowledge in the theory and practice of ecohydrology and a breadth of cross-cutting knowledge and skills to enable ecohydrologists to effectively collaborate with associated scientists and communicate results to resource managers, policy-makers, and other stakeholders. In-depth knowledge in hydrology, ecology, and biogeochemistry is emphasized, as well as technical skills in data collection, modeling, and statistical analysis. Cross-cutting knowledge is framed in the context of integrated water resources management. Personal competencies to be fostered in educational programs include creative thinking, cooperation, communication, and leadership. We consider a life-long learning context but highlight the importance of master's level training in the professional formation of ecohydrologists.
Training hydrologists to be ecohydrologists and play a leading role in environmental problem solving
NASA Astrophysics Data System (ADS)
McClain, M. E.; Chícharo, L.; Fohrer, N.; Gaviño Novillo, M.; Windhorst, W.; Zalewski, M.
2012-02-01
Ecohydrology is a relatively new and rapidly growing subject area in the hydrology curriculum. It is a trans-disciplinary science derived from the larger earth systems science movement and examining mutual interactions of the hydrological cycle and ecosystems. It is also an applied science focused on problem solving and providing sound guidance to catchment-scale integrated land and water resources management. The principle spheres of ecohydrology include (i) climate-soil-vegetation-groundwater interactions at the land surface with special implications for land use, food production and climate change; (ii) riparian runoff, flooding, and flow regime dynamics in river corridors with special implications for water supply, water quality, and inland fisheries; and (iii) fluvial and groundwater inputs to lakes/reservoirs, estuaries, and coastal zones with special implications for water quality and fisheries. We propose an educational vision focused on the development of professional and personal competencies to impart a depth of scientific knowledge in the theory and practice of ecohydrology and a breadth of cross-cutting knowledge and skills to enable ecohydrologists to effectively collaborate with associated scientists and communicate results to resource managers, policy-makers, and other stakeholders. In-depth knowledge in hydrology, ecology, and biogeochemistry is emphasized, as well as technical skills in data collection, modeling, and statistical analysis. Cross-cutting knowledge is framed in the context of integrated water resources management. Personal competencies to be fostered in educational programs include creative thinking, cooperation, communication, and leadership. We consider a life-long learning context but highlight the importance of master's level training in the professional formation of ecohydrologists.
The Natural Provenance: Ecoliteracy in Higher Education in Mississippi
ERIC Educational Resources Information Center
Hammond, Sarah Wheeless; Herron, Sherry S.
2012-01-01
Researchers suggest there is an increasing apathy in the study of natural history in academic settings and in the scientific community. However, most studies of environmental knowledge do not address knowledge of local flora and fauna; they are concerned with the knowledge of environmental issues or broad ecological knowledge. Ecoliteracy…
Social-ecological resilience and geomorphic systems
NASA Astrophysics Data System (ADS)
Chaffin, Brian C.; Scown, Murray
2018-03-01
Governance of coupled social-ecological systems (SESs) and the underlying geomorphic processes that structure and alter Earth's surface is a key challenge for global sustainability amid the increasing uncertainty and change that defines the Anthropocene. Social-ecological resilience as a concept of scientific inquiry has contributed to new understandings of the dynamics of change in SESs, increasing our ability to contextualize and implement governance in these systems. Often, however, the importance of geomorphic change and geomorphological knowledge is somewhat missing from processes employed to inform SES governance. In this contribution, we argue that geomorphology and social-ecological resilience research should be integrated to improve governance toward sustainability. We first provide definitions of engineering, ecological, community, and social-ecological resilience and then explore the use of these concepts within and alongside geomorphology in the literature. While ecological studies often consider geomorphology as an important factor influencing the resilience of ecosystems and geomorphological studies often consider the engineering resilience of geomorphic systems of interest, very few studies define and employ a social-ecological resilience framing and explicitly link the concept to geomorphic systems. We present five key concepts-scale, feedbacks, state or regime, thresholds and regime shifts, and humans as part of the system-which we believe can help explicitly link important aspects of social-ecological resilience inquiry and geomorphological inquiry in order to strengthen the impact of both lines of research. Finally, we discuss how these five concepts might be used to integrate social-ecological resilience and geomorphology to better understand change in, and inform governance of, SESs. To compound these dynamics of resilience, complex systems are nested and cross-scale interactions from smaller and larger scales relative to the system of interest can play formative roles during periods of collapse and reorganization. Large- and small-scale disturbances as well as large-scale system memory/capacity and small-scale innovation can have significant impacts on the trajectory of a reorganizing system (Gunderson and Holling, 2002; Chaffin and Gunderson, 2016). Attempts to measure the property of ecological resilience across complex systems amounts to attempts to measure the persistence of system-controlling variables, including processes, parameters, and important feedbacks, when the system is exposed to varying degrees of disturbance (Folke, 2016).
An empirical comparison of knowledge and skill in the context of traditional ecological knowledge.
Kightley, Eric P; Reyes-García, Victoria; Demps, Kathryn; Magtanong, Ruth V; Ramenzoni, Victoria C; Thampy, Gayatri; Gueze, Maximilien; Stepp, John Richard
2013-10-16
We test whether traditional ecological knowledge (TEK) about how to make an item predicts a person's skill at making it among the Tsimane' (Bolivia). The rationale for this research is that the failure to distinguish between knowledge and skill might account for some of the conflicting results about the relationships between TEK, human health, and economic development. We test the association between a commonly-used measure of individual knowledge (cultural consensus analysis) about how to make an arrow or a bag and a measure of individual skill at making these items, using ordinary least-squares regression. The study consists of 43 participants from 3 villages. We find no association between our measures of knowledge and skill (core model, p > 0.5, R2 = .132). While we cannot rule out the possibility of a real association between these phenomena, we interpret our findings as support for the claim that researchers should distinguish between methods to measure knowledge and skill when studying trends in TEK.
Local Knowledge and Conservation of Seagrasses in the Tamil Nadu State of India
2011-01-01
Local knowledge systems are not considered in the conservation of fragile seagrass marine ecosystems. In fact, little is known about the utility of seagrasses in local coastal communities. This is intriguing given that some local communities rely on seagrasses to sustain their livelihoods and have relocated their villages to areas with a rich diversity and abundance of seagrasses. The purpose of this study is to assist in conservation efforts regarding seagrasses through identifying Traditional Ecological Knowledge (TEK) from local knowledge systems of seagrasses from 40 coastal communities along the eastern coast of India. We explore the assemblage of scientific and local traditional knowledge concerning the 1. classification of seagrasses (comparing scientific and traditional classification systems), 2. utility of seagrasses, 3. Traditional Ecological Knowledge (TEK) of seagrasses, and 4. current conservation efforts for seagrass ecosystems. Our results indicate that local knowledge systems consist of a complex classification of seagrass diversity that considers the role of seagrasses in the marine ecosystem. This fine-scaled ethno-classification gives rise to five times the number of taxa (10 species = 50 local ethnotaxa), each with a unique role in the ecosystem and utility within coastal communities, including the use of seagrasses for medicine (e.g., treatment of heart conditions, seasickness, etc.), food (nutritious seeds), fertilizer (nutrient rich biomass) and livestock feed (goats and sheep). Local communities are concerned about the loss of seagrass diversity and have considerable local knowledge that is valuable for conservation and restoration plans. This study serves as a case study example of the depth and breadth of local knowledge systems for a particular ecosystem that is in peril. Key words: local health and nutrition, traditional ecological knowledge (TEK), conservation and natural resources management, consensus, ethnomedicine, ethnotaxa, cultural heritage PMID:22112297
Brooker, Rohan M.; Feeney, William E.; White, James R.; Manassa, Rachel P.; Johansen, Jacob L.; Dixson, Danielle L.
2017-01-01
The impacts of human activities on the natural world are becoming increasingly apparent, with rapid development and exploitation occurring at the expense of habitat quality and biodiversity. Declines are especially concerning in the oceans, which hold intrinsic value due to their biological uniqueness as well as their substantial sociological and economic importance. Here, we review the literature and investigate whether incorporation of knowledge from the fields of animal behaviour and behavioural ecology may improve the effectiveness of conservation initiatives in marine systems. In particular, we consider (1) how knowledge of larval behaviour and ecology may be used to inform the design of marine protected areas, (2) how protecting species that hold specific ecological niches may be of particular importance for maximizing the preservation of biodiversity, (3) how current harvesting techniques may be inadvertently skewing the behavioural phenotypes of stock populations and whether changes to current practices may lessen this skew and reinforce population persistence, and (4) how understanding the behavioural and physiological responses of species to a changing environment may provide essential insights into areas of particular vulnerability for prioritized conservation attention. The complex nature of conservation programmes inherently results in interdisciplinary responses, and the incorporation of knowledge from the fields of animal behaviour and behavioural ecology may increase our ability to stem the loss of biodiversity in marine environments. PMID:29104297
Brooker, Rohan M; Feeney, William E; White, James R; Manassa, Rachel P; Johansen, Jacob L; Dixson, Danielle L
2016-10-01
The impacts of human activities on the natural world are becoming increasingly apparent, with rapid development and exploitation occurring at the expense of habitat quality and biodiversity. Declines are especially concerning in the oceans, which hold intrinsic value due to their biological uniqueness as well as their substantial sociological and economic importance. Here, we review the literature and investigate whether incorporation of knowledge from the fields of animal behaviour and behavioural ecology may improve the effectiveness of conservation initiatives in marine systems. In particular, we consider (1) how knowledge of larval behaviour and ecology may be used to inform the design of marine protected areas, (2) how protecting species that hold specific ecological niches may be of particular importance for maximizing the preservation of biodiversity, (3) how current harvesting techniques may be inadvertently skewing the behavioural phenotypes of stock populations and whether changes to current practices may lessen this skew and reinforce population persistence, and (4) how understanding the behavioural and physiological responses of species to a changing environment may provide essential insights into areas of particular vulnerability for prioritized conservation attention. The complex nature of conservation programmes inherently results in interdisciplinary responses, and the incorporation of knowledge from the fields of animal behaviour and behavioural ecology may increase our ability to stem the loss of biodiversity in marine environments.
Cumulative impact assessment: Application of a methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witmer, G.W.; Bain, M.B.; Irving, J.S.
We expanded upon the Federal Energy Regulatory Commission's (FERC) Cluster Impact Assessment Procedure (CIAP) to provide a practical methodology for assessing potential cumulative impacts from multiple hydroelectric projects within a river basin. The objectives in designing the methodology were to allow the evaluation of a large number of combinations of proposed projects and to minimize constraints on the use of ecological knowledge for planning and regulating hydroelectric development at the river basin level. Interactive workshops and evaluative matrices were used to identify preferred development scenarios in the Snohomish (Washington) and Salmon (Idaho) River Basins. Although the methodology achieved its basicmore » objectives, some difficulties were encountered. These revolved around issues of (1) data quality and quantity, (2) alternatives analysis, (3) determination of project interactions, (4) determination of cumulative impact thresholds, and (5) the use of evaluative techniques to express degrees of impact. 8 refs., 1 fig., 2 tabs.« less
Controls on O2 Production in Cyanobacterial Mats and Implications for Earth's Oxygenation
NASA Astrophysics Data System (ADS)
Dick, Gregory J.; Grim, Sharon L.; Klatt, Judith M.
2018-05-01
Cyanobacterial mats are widely assumed to have been globally significant hot spots of biogeochemistry and evolution during the Archean and Proterozoic, but little is known about their quantitative contributions to global primary productivity or Earth's oxygenation. Modern systems show that mat biogeochemistry is the outcome of concerted activities and intimate interactions between various microbial metabolisms. Emerging knowledge of the regulation of oxygenic and sulfide-driven anoxygenic photosynthesis by versatile cyanobacteria, and their interactions with sulfur-oxidizing bacteria and sulfate-reducing bacteria, highlights how ecological and geochemical processes can control O2 production in cyanobacterial mats in unexpected ways. This review explores such biological controls on O2 production. We argue that the intertwined effects of light availability, redox geochemistry, regulation and competition of microbial metabolisms, and biogeochemical feedbacks result in emergent properties of cyanobacterial mat communities that are all critical yet largely overlooked mechanisms to potentially explain the protracted nature of Earth's oxygenation.
Framework for Building Collaborative Research Environment
Devarakonda, Ranjeet; Palanisamy, Giriprakash; San Gil, Inigo
2014-10-25
Wide range of expertise and technologies are the key to solving some global problems. Semantic web technology can revolutionize the nature of how scientific knowledge is produced and shared. The semantic web is all about enabling machine-machine readability instead of a routine human-human interaction. Carefully structured data, as in machine readable data is the key to enabling these interactions. Drupal is an example of one such toolset that can render all the functionalities of Semantic Web technology right out of the box. Drupal’s content management system automatically stores the data in a structured format enabling it to be machine. Withinmore » this paper, we will discuss how Drupal promotes collaboration in a research setting such as Oak Ridge National Laboratory (ORNL) and Long Term Ecological Research Center (LTER) and how it is effectively using the Semantic Web in achieving this.« less
NASA Astrophysics Data System (ADS)
Hashimoto-Martell, Erin A.; McNeill, Katherine L.; Hoffman, Emily M.
2012-10-01
This study explores the impact of an urban ecology program on participating middle school students' understanding of science and pro-environmental attitudes and behaviors. We gathered pre and post survey data from four classes and found significant gains in scientific knowledge, but no significant changes in student beliefs regarding the environment. We interviewed 12 students to better understand their beliefs. Although student responses showed they had learned discrete content knowledge, they lacked any ecological understanding of the environment and had mixed perceptions of the course's relevance in their lives. Students reported doing pro-environmental behaviors, but overwhelmingly contributed such actions to influences other than the urban ecology course. Analyses indicated a disconnect between the course, the environment, and the impact on the students' lives. Consequently, this suggests the importance of recognizing the implications of context, culture, and identity development of urban youth. Perhaps by providing explicit connections and skills in urban environmental programs through engaging students in environmental scientific investigations that stem from their own issues and questions can increase student engagement, motivation, and self-efficacy of environmental issues.
NASA Astrophysics Data System (ADS)
Poppe, Michaela; Zitek, Andreas; Böck, Kerstin; Scheikl, Sigrid; Heidenreich, Andrea; Kurz-Aigner, Roman; Schrittwieser, Martin; Muhar, Susanne
2015-04-01
Environmental literacy is the knowledge necessary to understand the environment as an ecological system. It comprises the insight in the impact of human behaviour on the natural world and the disposition and motivation to apply ones knowledge, skills and insight in order to make environmentally beneficial decisions as rational citizen. The United Nations Environmental Programme states that young people will face major challenges in providing sufficient water and food, generating energy and adapting to climate change in future. Dealing with these challenges will require a major contribution from science and technology. But even more important, it is an issue of education to transfer the required system understanding as a basis to take informed decisions. In this way an education towards environmental literacy contributes significantly to the personal, social, and professional lives of young people, plays therefore a central role in young person`s "preparedness for life", and is a major prerequisite for sustainable development. For the purpose of developing new and engaging forms of learning, "Sparkling Science" projects are funded by the Federal Ministry of Science, Research and Economy in Austria. These projects target at integrating science with school learning by involving young people into scientific research. Within the Sparkling Science Projects "FlussAu:WOW" and" "Traisen.w3" scientists work together with 15-18-year-old students of an Austrian High School over four years. The projects aim to assess and evaluate crucial functions and processes of riverine landscapes particularly considering the floodplain area in near natural and anthropogenically changed landscapes. Within the first project "FlussAu:WOW" (2012-2014), students and scientists elaborated on indicators for assessing and evaluating the ecological functionality of floodplains and rivers. In a case study in the "Traisen.w3" project (2014-2016), scientists and students will focus at the catchment level of the river Traisen in Lower Austria and investigate ecological and cultural ecosystem services in these river landscapes. From the second year on (2014), students are going to develop qualitative causal models on processes in river floodplain systems by means of the learning software "DynaLearn". It is an engaging, interactive, hierarchically structured learning environment that was developed within the EU-FP7 project "DynaLearn" (http://www.dynalearn.eu) to capture and simulate cause-effect relationships across disciplines and scales. Students work in small groups and are forced to think about processes and interactions of hydrological, biological, ecological, spatial and societal elements. Within this setting the collaborative problem solving competency is necessary to develop by sharing knowledge, understanding and different perspectives. The students start with building their own causal models, perform simulations and develop scenarios for the development of the catchment. Thus the students' understanding of environmental processes in river landscapes is advanced. As an important benefit, scientists learn about viewpoints and conceptions young people have on their environment. Formative evaluations of the effectiveness of different methods of collaboration between scientists and students will be conducted during the whole project. The results of the motivation questionnaires and pre- and mid-tests clearly highlighted the potential of the multi-modal collaboration approach to be used to communicate essential knowledge and skills in environmental understanding.
Habitat classification modeling with incomplete data: Pushing the habitat envelope
Zarnetske, P.L.; Edwards, T.C.; Moisen, Gretchen G.
2007-01-01
Habitat classification models (HCMs) are invaluable tools for species conservation, land-use planning, reserve design, and metapopulation assessments, particularly at broad spatial scales. However, species occurrence data are often lacking and typically limited to presence points at broad scales. This lack of absence data precludes the use of many statistical techniques for HCMs. One option is to generate pseudo-absence points so that the many available statistical modeling tools can be used. Traditional techniques generate pseudoabsence points at random across broadly defined species ranges, often failing to include biological knowledge concerning the species-habitat relationship. We incorporated biological knowledge of the species-habitat relationship into pseudo-absence points by creating habitat envelopes that constrain the region from which points were randomly selected. We define a habitat envelope as an ecological representation of a species, or species feature's (e.g., nest) observed distribution (i.e., realized niche) based on a single attribute, or the spatial intersection of multiple attributes. We created HCMs for Northern Goshawk (Accipiter gentilis atricapillus) nest habitat during the breeding season across Utah forests with extant nest presence points and ecologically based pseudo-absence points using logistic regression. Predictor variables were derived from 30-m USDA Landfire and 250-m Forest Inventory and Analysis (FIA) map products. These habitat-envelope-based models were then compared to null envelope models which use traditional practices for generating pseudo-absences. Models were assessed for fit and predictive capability using metrics such as kappa, thresholdindependent receiver operating characteristic (ROC) plots, adjusted deviance (Dadj2), and cross-validation, and were also assessed for ecological relevance. For all cases, habitat envelope-based models outperformed null envelope models and were more ecologically relevant, suggesting that incorporating biological knowledge into pseudo-absence point generation is a powerful tool for species habitat assessments. Furthermore, given some a priori knowledge of the species-habitat relationship, ecologically based pseudo-absence points can be applied to any species, ecosystem, data resolution, and spatial extent. ?? 2007 by the Ecological Society of America.
Larry K. Holzworth; Ray W. Brown
1999-01-01
The seven papers in this proceedings address the current state of knowledge and application of ecological restoration in the Western United States. They provide an overview of: rangeland revegetation lessons as they apply to ecological restoration today; USDI National Park Service, USDA Natural Resources Conservation Service, and Forest Service restoration strategies...
Ecological effects of large fires on US landscapes: benefit or catastrophe?
Robert E. Keane; James K. Agee; Peter Fule; Jon E. Keeley; Carl Key; Stanley G. Kitchen; Richard Miller; Lisa A. Schulte
2008-01-01
The perception is that today's large fires are an ecological catastrophe because they burn vast areas with high intensities and severities. However, little is known of the ecological impacts of large fires on both historical and contemporary landscapes. The present paper presents a review of the current knowledge of the effects of large fires in the United States...
Thomas P. Albright; Hao Chen; Lijun Chen; Qinfeng Guo
2010-01-01
Knowledge of the ecological niches of invasive species in native and introduced ranges can inform management as well as ecological and evolutionary theory. Here, we identified and compared factors associated with the distribution of an invasive tree, Ailanthus altissima, in both its native Chinese and introduced US ranges and predicted potential US...
Lihoreau, Mathieu; Buhl, Jerome; Charleston, Michael A; Sword, Gregory A; Raubenheimer, David; Simpson, Stephen J
2015-01-01
Over recent years, modelling approaches from nutritional ecology (known as Nutritional Geometry) have been increasingly used to describe how animals and some other organisms select foods and eat them in appropriate amounts in order to maintain a balanced nutritional state maximising fitness. These nutritional strategies profoundly affect the physiology, behaviour and performance of individuals, which in turn impact their social interactions within groups and societies. Here, we present a conceptual framework to study the role of nutrition as a major ecological factor influencing the development and maintenance of social life. We first illustrate some of the mechanisms by which nutritional differences among individuals mediate social interactions in a broad range of species and ecological contexts. We then explain how studying individual- and collective-level nutrition in a common conceptual framework derived from Nutritional Geometry can bring new fundamental insights into the mechanisms and evolution of social interactions, using a combination of simulation models and manipulative experiments. PMID:25586099
Esteve-Gassent, Maria D.; Castro-Arellano, Ivan; Feria-Arroyo, Teresa P.; Patino, Ramiro; Li, Andrew Y.; Medina, Raul F.; Pérez de León, Adalberto A.; Rodríguez-Vivas, Roger Iván
2016-01-01
Emerging and re-emerging tick-borne diseases threaten public health and the wellbeing of domestic animals and wildlife globally. The adoption of an evolutionary ecology framework aimed to diminish the impact of tick-borne diseases needs to be part of strategies to protect human and animal populations. We present a review of current knowledge on the adaptation of ticks to their environment, and the impact that global change could have on their geographic distribution in North America. Environmental pressures will affect tick population genetics by selecting genotypes able to withstand new and changing environments and by altering the connectivity and isolation of several tick populations. Research in these areas is particularly lacking in the southern US and most of Mexico with knowledge gaps on the ecology of these diseases, including a void in the identity of reservoir hosts for several tick-borne pathogens. Additionally, the way in which anthropogenic changes to landscapes may influence tick-borne disease ecology remains to be fully understood. Enhanced knowledge in these areas is needed in order to implement effective and sustainable integrated tick management strategies. We propose to refocus ecology studies with emphasis on metacommunity-based approaches to enable a holistic perspective addressing whole pathogen and host assemblages. Network analyses could be used to develop mechanistic models involving multi host-pathogen communities. An increase in our understanding of the ecology of tick-borne diseases across their geographic distribution will aid in the design of effective area-wide tick control strategies aimed to diminish the burden of pathogens transmitted by ticks. PMID:27062414
Rooting Theories of Plant Community Ecology in Microbial Interactions
Bever, James D.; Dickie, Ian A.; Facelli, Evelina; Facelli, Jose M.; Klironomos, John; Moora, Mari; Rillig, Matthias C.; Stock, William D.; Tibbett, Mark; Zobel, Martin
2010-01-01
Predominant frameworks for understanding plant ecology have an aboveground bias that neglects soil micro-organisms. This is inconsistent with recent work illustrating the importance of soil microbes in terrestrial ecology. Microbial effects have been incorporated into plant community dynamics using ideas of niche modification and plant-soil community feedbacks. Here, we expand and integrate qualitative conceptual models of plant niche and feedback to explore implications of microbial interactions for understanding plant community ecology. At the same time we review the empirical evidence for these processes. We also consider common mycorrhizal networks, and suggest these are best interpreted within the feedback framework. Finally, we apply our integrated model of niche and feedback to understanding plant coexistence, monodominance, and invasion ecology. PMID:20557974
Wisz, Mary Susanne; Pottier, Julien; Kissling, W Daniel; Pellissier, Loïc; Lenoir, Jonathan; Damgaard, Christian F; Dormann, Carsten F; Forchhammer, Mads C; Grytnes, John-Arvid; Guisan, Antoine; Heikkinen, Risto K; Høye, Toke T; Kühn, Ingolf; Luoto, Miska; Maiorano, Luigi; Nilsson, Marie-Charlotte; Normand, Signe; Öckinger, Erik; Schmidt, Niels M; Termansen, Mette; Timmermann, Allan; Wardle, David A; Aastrup, Peter; Svenning, Jens-Christian
2013-02-01
Predicting which species will occur together in the future, and where, remains one of the greatest challenges in ecology, and requires a sound understanding of how the abiotic and biotic environments interact with dispersal processes and history across scales. Biotic interactions and their dynamics influence species' relationships to climate, and this also has important implications for predicting future distributions of species. It is already well accepted that biotic interactions shape species' spatial distributions at local spatial extents, but the role of these interactions beyond local extents (e.g. 10 km(2) to global extents) are usually dismissed as unimportant. In this review we consolidate evidence for how biotic interactions shape species distributions beyond local extents and review methods for integrating biotic interactions into species distribution modelling tools. Drawing upon evidence from contemporary and palaeoecological studies of individual species ranges, functional groups, and species richness patterns, we show that biotic interactions have clearly left their mark on species distributions and realised assemblages of species across all spatial extents. We demonstrate this with examples from within and across trophic groups. A range of species distribution modelling tools is available to quantify species environmental relationships and predict species occurrence, such as: (i) integrating pairwise dependencies, (ii) using integrative predictors, and (iii) hybridising species distribution models (SDMs) with dynamic models. These methods have typically only been applied to interacting pairs of species at a single time, require a priori ecological knowledge about which species interact, and due to data paucity must assume that biotic interactions are constant in space and time. To better inform the future development of these models across spatial scales, we call for accelerated collection of spatially and temporally explicit species data. Ideally, these data should be sampled to reflect variation in the underlying environment across large spatial extents, and at fine spatial resolution. Simplified ecosystems where there are relatively few interacting species and sometimes a wealth of existing ecosystem monitoring data (e.g. arctic, alpine or island habitats) offer settings where the development of modelling tools that account for biotic interactions may be less difficult than elsewhere. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.
Jones, Adam G
2008-04-25
Rapid human-induced changes in the environment at local, regional and global scales appear to be contributing to population declines and extinctions, resulting in an unprecedented biodiversity crisis. Although in the short term populations can respond ecologically to environmental alterations, in the face of persistent change populations must evolve or become extinct. Existing models of evolution and extinction in changing environments focus only on single species, even though the dynamics of extinction almost certainly depend upon the nature of species interactions. Here, I use a model of quantitative trait evolution in a two-species community to show that negative ecological interactions, such as predation and competition, can produce unexpected results regarding time to extinction. Under some circumstances, negative interactions can be expected to hasten the extinction of species declining in numbers. However, under other circumstances, negative interactions can actually increase times to extinction. This effect occurs across a wide range of parameter values and can be substantial, in some cases allowing a population to persist for 40 percent longer than it would in the absence of the species interaction. This theoretical study indicates that negative species interactions can have unexpected positive effects on times to extinction. Consequently, detailed studies of selection and demographics will be necessary to predict the consequences of species interactions in changing environments for any particular ecological community.
Analysing ecological networks of species interactions.
Delmas, Eva; Besson, Mathilde; Brice, Marie-Hélène; Burkle, Laura A; Dalla Riva, Giulio V; Fortin, Marie-Josée; Gravel, Dominique; Guimarães, Paulo R; Hembry, David H; Newman, Erica A; Olesen, Jens M; Pires, Mathias M; Yeakel, Justin D; Poisot, Timothée
2018-06-20
Network approaches to ecological questions have been increasingly used, particularly in recent decades. The abstraction of ecological systems - such as communities - through networks of interactions between their components indeed provides a way to summarize this information with single objects. The methodological framework derived from graph theory also provides numerous approaches and measures to analyze these objects and can offer new perspectives on established ecological theories as well as tools to address new challenges. However, prior to using these methods to test ecological hypotheses, it is necessary that we understand, adapt, and use them in ways that both allow us to deliver their full potential and account for their limitations. Here, we attempt to increase the accessibility of network approaches by providing a review of the tools that have been developed so far, with - what we believe to be - their appropriate uses and potential limitations. This is not an exhaustive review of all methods and metrics, but rather, an overview of tools that are robust, informative, and ecologically sound. After providing a brief presentation of species interaction networks and how to build them in order to summarize ecological information of different types, we then classify methods and metrics by the types of ecological questions that they can be used to answer from global to local scales, including methods for hypothesis testing and future perspectives. Specifically, we show how the organization of species interactions in a community yields different network structures (e.g., more or less dense, modular or nested), how different measures can be used to describe and quantify these emerging structures, and how to compare communities based on these differences in structures. Within networks, we illustrate metrics that can be used to describe and compare the functional and dynamic roles of species based on their position in the network and the organization of their interactions as well as associated new methods to test the significance of these results. Lastly, we describe potential fruitful avenues for new methodological developments to address novel ecological questions. © 2018 Cambridge Philosophical Society.
The plant pathology of native plant restoration
USDA-ARS?s Scientific Manuscript database
Restoration of ecologically degraded sites will benefit from the convergence of knowledge drawn from such disparate and often compartmentalized (and heretofore not widely considered) areas of research as soil microbial ecology, plant pathology and agronomy. Restoration following biological control w...
Integrating soil ecological knowledge into restoration management
M.A. Callaham
2008-01-01
The variability in the type of ecosystem degradation andthe specificity of restoration goals can challenge restorationistsâability to generalize about approaches that leadto restoration success. The discipline of soil ecology, whichemphasizes both soil organisms and ecosystem processes,
Of Maggots Murder: Forensic Entomology in the Classroom.
ERIC Educational Resources Information Center
Carloye, Lisa
2003-01-01
Presents a hands-on lesson in biology in which students evaluate the evidence from four death scenarios. Students use knowledge of ecological principles, specifically ecological succession, and insect biology. Recommends three web sites related to the subject. (SOE)
Bennett, Victoria A.; Doerr, Veronica A. J.; Doerr, Erik D.; Manning, Adrian D.; Lindenmayer, David B.; Yoon, Hwan-Jin
2013-01-01
Habitat restoration can play an important role in recovering functioning ecosystems and improving biodiversity. Restoration may be particularly important in improving habitat prior to species reintroductions. We reintroduced seven brown treecreeper (Climacteris picumnus) social groups into two nature reserves in the Australian Capital Territory in south-eastern Australia. This study provided a unique opportunity to understand the interactions between restoration ecology, behavioural ecology and habitat ecology. We examined how experimental restoration treatments (addition of coarse woody debris, variations in ground vegetation cover and nest box installation) influenced the behaviour and microhabitat use of radio-tracked individuals to evaluate the success of restoration treatments. The addition of coarse woody debris benefited the brown treecreeper through increasing the probability of foraging on a log or on the ground. This demonstrated the value of using behaviour as a bio-indicator for restoration success. Based on previous research, we predicted that variations in levels of ground vegetation cover would influence behaviour and substrate use, particularly that brown treecreepers would choose sites with sparse ground cover because this allows better access to food and better vigilance for predators. However, there was little effect of this treatment, which was likely influenced by the limited overall use of the ground layer. There was also little effect of nest boxes on behaviour or substrate use. These results somewhat confound our understanding of the species based on research from extant populations. Our results also have a significant impact regarding using existing knowledge on a species to inform how it will respond to reintroduction and habitat restoration. This study also places great emphasis on the value of applying an experimental framework to ecological restoration, particularly when reintroductions produce unexpected outcomes. PMID:23349923
Camponogara, Silviamar; Ramos, Flávia Regina Sousa; Kirchhof, Ana Lucia Cardoso
2009-01-01
The article aims to analyze the interface of reflexivity, knowledge and ecologic awareness in the context of hospital work, based on data collected in a qualitative case study carried out at a public hospital. Field observation data and interviews are discussed in the light of sociologic and philosophic references. Workers expressed the interface between knowledge and action, in which there is a cycle of lack of knowledge, automatism in the actions and lack of environmental awareness, posing limits to individual awareness and to responsibility towards environmental preservation. Increased debate and education, including the environmental issue, are needed in the context of hospital work. Although hospital work is reflexively affected by the environmental problem, that does not guarantee the reorientation of practices and responsible action towards the environment.
Linking a Conceptual Framework on Systems Thinking with Experiential Knowledge
ERIC Educational Resources Information Center
Garavito-Bermúdez, Diana; Lundholm, Cecilia; Crona, Beatrice
2016-01-01
This paper addresses a systemic approach for the study of fishers' ecological knowledge in order to describe fishers' ways of knowing and dealing with complexity in ecosystems, and discusses how knowledge is generated through, e.g. apprenticeship, experiential knowledge, and testing of hypotheses. The description and analysis of fishers'…
NASA Astrophysics Data System (ADS)
Jackson-Ricketts, J.; Hines, E.; Ruiz-Cooley, R. I.; Costa, D. P.
2016-02-01
The Irrawaddy dolphin is a coastal and freshwater cetacean patchily distributed from eastern India to West Papua, Indonesia. Little is known about its ecology, limiting capacity for successful conservation. As recently as 2008, the IUCN altered its listing from Data Deficient to Vulnerable. We present a study design to obtain five key features of imperiled species ecology that we believe can be widely applied: current knowledge, abundance, diet, habitat, and potential interaction with humans. Current knowledge was determined with a literature review and discussion with experts. Between 2008 and 2014, we collected sightings, environment, and human use data along zig-zag transect lines. Distance 6 software was employed to estimate abundance from sightings and a hurdle model was performed to investigate relationships between dolphins and the environment. We determined the relative density of types of human use within the study area (e.g. consumptive such as fishing and non-consumptive such as recreation), assessed the relationship between human use and environment, and examined the overlap of dolphin habitat with human high-use areas. We studied diet and foraging history using stable isotopes of carbon and nitrogen in skin (n=22) and teeth (n=27) of stranded dolphins and muscle samples of cephalopods (2 species), crustaceans (2 species), and fish (8 species). Data from soft tissues was used to investigate the proportional contribution of each prey type to diet using a Bayesian mixing model, while we examined growth layer groups in teeth to assess ontogenetic diet variation using protected analysis of variance. This study is the first such comprehensive study on this species and contributes to general knowledge about the species, provides information that is relevant to conservation, and can serve as a template for future studies on little-known, threatened species.
Firmo, Angélica M S; Tognella, Mônica M P; Có, Walter L O; Barboza, Raynner R D; Alves, Rômulo R N
2011-11-16
Lethargic Crab Disease (LCD) has caused significant mortalities in the population of Ucides cordatus crabs in the Mucuri estuary in Bahia State, Brazil, and has brought social and economic problems to many crab-harvesting communities that depend on this natural resource. The present work examined the perceptions of members of a Brazilian crab harvesting community concerning environmental changes and the Lethargic Crab Disease. Field work was undertaken during the period between January and April/2009, with weekly or biweekly field excursions during which open and semi-structured interviews were held with local residents in the municipality of Mucuri, Bahia State, Brazil. A total of 23 individuals were interviewed, all of whom had at least 20 years of crab-collecting experience in the study region. Key-informants (more experienced crab harvesters) were selected among the interviewees using the "native specialist" criterion. According to the collectors, LCD reached the Mucuri mangroves between 2004 and 2005, decimating almost all crab population in the area, and in 2007, 2008 and 2009 high mortalities of U. cordatus were again observed as a result of recurrences of this disease in the region. In addition to LCD, crabs were also suffering great stock reductions due to habitat degradation caused by deforestation, landfills, sewage effluents, domestic and industrial wastes and the introduction of exotic fish in the Mucuri River estuary. The harvesting community was found to have significant ecological knowledge about the functioning of mangrove swamp ecology, the biology of crabs, and the mass mortality that directly affected the economy of this community, and this information was largely in accordance with scientific knowledge. The study of traditional knowledge makes it possible to better understand human interactions with the environment and aids in the elaboration of appropriate strategies for natural resource conservation.
Tuki Ayllpanchik (our beautiful land): Indigenous ecology and farming in the Peruvian highlands
NASA Astrophysics Data System (ADS)
Sumida Huaman, Elizabeth
2016-12-01
Based on ethnographic research with an Indigenous community in Junín, Peru, and involving over 21 participants, this article explores the link between Indigenous lands, environmental knowledge, cultural practices, and education. Drawing from traditional ecological knowledge and nature-mediated education, Indigenous community spaces as vital learning spaces are highlighted. Through the lens of family and community-scale farming, this article also discusses critical perspectives on Indigenous agricultural traditions, lessons in subsistence farming, food and notions of success for students, and globalisation. Finally, an argument is made for educational development to acknowledge the breadth of Indigenous ecological issues, to prioritize Indigenous lands, languages, and cultural practices, and to support collaborative research that underscores Indigenous epistemologies.
Physics education students’ cognitive and affective domains toward ecological phenomena
NASA Astrophysics Data System (ADS)
Napitupulu, N. D.; Munandar, A.; Redjeki, S.; Tjasyono, B.
2018-05-01
Environmental education is become prominent in dealing with natural phenomena that occur nowadays. Studying environmental physics will lead students to have conceptual understanding which are importent in enhancing attitudes toward ecological phenomena that link directry to cognitive and affective domains. This research focused on the the relationship of cognitive and affective domains toward ecological phenomena. Thirty-seven Physics Education students participated in this study and validated sources of data were collected to eksplore students’ conceptual understanding as cognitive domain and to investigate students’ attitudes as affective domain. The percentage of cognitive outcome and affective outcome are explore. The features of such approaches to environmental learning are discussion through analysis of contribution of cognitive to develop the attitude ecological as affective outcome. The result shows that cognitive domains do not contribute significantly to affective domain toward ecological henomena as an issue trend in Central Sulawesi although students had passed Environmental Physics instruction for two semester. In fact, inferior knowledge in a way actually contributes to the attitude domain caused by the prior knowledge that students have as ombo as a Kaili local wisdom.
Miller, Richard F.; Chambers, Jeanne C.; Pyke, David A.; Pierson, Fred B.; Williams, C. Jason
2013-01-01
This review synthesizes the state of knowledge on fire effects on vegetation and soils in semi-arid ecosystems in the Great Basin Region, including the central and northern Great Basin and Range, Columbia River Basin, and the Snake River Plain. We summarize available literature related to: (1) the effects of environmental gradients, ecological site, and vegetation characteristics on resilience to disturbance and resistance to invasive species; (2) the effects of fire on individual plant species and communities, biological soil crusts, seed banks, soil nutrients, and hydrology; and (3) the role of fire severity, fire versus fire surrogate treatments, and post-fire grazing in determining ecosystem response. From this, we identify knowledge gaps and present a framework for predicting plant successional trajectories following wild and prescribed fires and fire surrogate treatments. Possibly the three most important ecological site characteristics that influence a site’s resilience (ability of the ecological site to recover from disturbance) and resistance to invasive species are soil temperature/moisture regimes and the composition and structure of vegetation on the ecological site just prior to the disturbance event.
Life as a sober citizen: Aldo Leopold's Wildlife Ecology 118
NASA Astrophysics Data System (ADS)
Theiss, Nancy Stearns
This historic case study addressed the issue of the lack of citizen action toward environmentally responsible behavior. Although there have been studies regarding components of environmental responsible behavior [ERB], there has been little focus on historic models of exemplary figures of ERB. This study examined one of the first conservation courses in the United States, Wildlife Ecology 118, taught by Aldo Leopold (1887--1948) for 13 years at the University of Wisconsin. Today, Aldo Leopold is recognized as an exemplary conservationist whose land ethic is cited as providing the ecological approach needed for understanding the complex issues of modern society. The researcher conjectured that examination of one of the first environmental education courses could support and strengthen environmental education practices by providing a heuristic perspective. The researcher used two different strategies for analysis of the case. For Research Question One---"What were Leopold's teaching strategies in Wildlife Ecology 118?"---the researcher used methods of comparative historical analysis. The researcher examined the learning outcomes that Leopold used in Wildlife Ecology 118 and compared them against a rubric of the Four Strands for Environmental Education (North American Association for Environmental Education [NAAEE], 1999). The Four Strands for Environmental Education are the current teaching strategies used by educators. The results indicated that Wildlife Ecology 118 scored high in Knowledge of Processes and Systems and Environmental Problem Solving strands. Leopold relied on historic case examples and animal biographies to build stories that engaged students. Field trips gave students practical experience for environmental knowledge with special emphasis on phenology. For Research Question Two---"What was the context of the lessons in Wildlife Ecology 118?"---the researcher used environmental history methods for analysis. Context provided the knowledge and understanding of Leopold's choices for developing lessons that he thought would engage students to become environmentally responsible citizens. The contexts were grouped into four categories: (a) work and research related, (b) professional development, (c) leisure and, (d) public service. There were five themes that emerged from the course contexts: (a) case histories, (b) animal biographies, (c) phenology application, (d) food chains, and (e) ecosystems. The results of the study indicated that Wildlife Ecology 118 ranks high in areas of environmental problem solving and knowledge of processes and systems. Both of the areas are often difficult for educators to incorporate in their lessons. Through case histories, animal biographies, phenology, ecological diagrams, ecosystem comparisons and field trips, Leopold provides many examples that can be easily updated and used in current classroom practices, both in K--12 and college levels.
NASA Astrophysics Data System (ADS)
Rodil, Iván F.; Jaramillo, Eduardo; Acuña, Emilio; Manzano, Mario; Velasquez, Carlos
2016-02-01
Earthquakes and tsunamis are large physical disturbances frequently striking the coast of Chile with dramatic effects on intertidal habitats. Armouring structures built as societal responses to beach erosion and shoreline retreat are also responsible of coastal squeeze and habitat loss. The ecological implications of interactions between coastal armouring and earthquakes have recently started to be studied for beach ecosystems. How long interactive impacts persist is still unclear because monitoring after disturbance generally extends for a few months. During five years after the Maule earthquake (South Central Chile, February 27th 2010) we monitored the variability in population abundances of the most common crustacean inhabitants of different beach zones (i.e. upper, medium, and lower intertidal) at two armoured (one concrete seawall and one rocky revetment) and one unarmoured sites along the sandy beach of Llico. Beach morphology changed after the earthquake-mediated uplift, restoring upper- and mid-shore armoured levels that were rapidly colonized by typical crustacean species. However, post-earthquake increasing human activities affected the colonization process of sandy beach crustaceans in front of the seawall. Lower-shore crab Emerita analoga was the less affected by armouring structures, and it was the only crustacean species present at the three sites before and after the earthquake. This study shows that field sampling carried out promptly after major disturbances, and monitoring of the affected sites long after the disturbance is gone are effective approaches to increase the knowledge on the interactive effects of large-scale natural phenomena and artificial defences on beach ecology.
Tribal Science Priorities - TEK
Traditional Ecological Knowledge (TEK) is the accumulated knowledge American Indians and Native Alaskans have about their environment. It's important for scientific research, but is threatened by environmental change. EPA should support its development.
Terhorst, Casey P; Lennon, Jay T; Lau, Jennifer A
2014-06-22
Evolution can occur on ecological time-scales, affecting community and ecosystem processes. However, the importance of evolutionary change relative to ecological processes remains largely unknown. Here, we analyse data from a long-term experiment in which we allowed plant populations to evolve for three generations in dry or wet soils and used a reciprocal transplant to compare the ecological effect of drought and the effect of plant evolutionary responses to drought on soil microbial communities and nutrient availability. Plants that evolved under drought tended to support higher bacterial and fungal richness, and increased fungal : bacterial ratios in the soil. Overall, the magnitudes of ecological and evolutionary effects on microbial communities were similar; however, the strength and direction of these effects depended on the context in which they were measured. For example, plants that evolved in dry environments increased bacterial abundance in dry contemporary environments, but decreased bacterial abundance in wet contemporary environments. Our results suggest that interactions between recent evolutionary history and ecological context affect both the direction and magnitude of plant effects on soil microbes. Consequently, an eco-evolutionary perspective is required to fully understand plant-microbe interactions.
ERIC Educational Resources Information Center
Zembylas, Michalinos
2007-01-01
The purpose of this paper is to offer some theoretical as well as empirical examples that describe the interrelations between pedagogical content knowledge (PCK) and emotional knowledge in teaching and learning. The argument put forward is that there is a need to expand current conceptions of PCK and acknowledge the role of emotional knowledge. It…
ERIC Educational Resources Information Center
Pipp-Siegel, Sandra; Foltz, Carol
1997-01-01
Two studies tested whether 12- and 24-month olds' self-knowledge differed from their knowledge of others (mother or inanimate object), or whether toddlers' knowledge of persons (self and mother) differed from knowledge of objects. Results showed that 12-month olds were more sensitive than older toddlers to perceptual features of objects. Data were…
Application of Mechanistic Toxicology Data to Ecological Risk Assessments
The ongoing evolution of knowledge and tools in the areas of molecular biology, bioinformatics, and systems biology holds significant promise for reducing uncertainties associated with ecological risk assessment. As our understanding of the mechanistic basis of responses of organ...
Commentary: Addressing Double Binds in Educating for an Ecologically Sustainable Future.
ERIC Educational Resources Information Center
Bowers, Chet A.
2001-01-01
Contrary to computer advocates' globalism = empowerment rhetoric, the dominant globalization pattern involves relentless commodification of knowledge, skills, and interdependent relationships. Few consider the ecological implications of commodifying (digitizing) leisure, education, health care, or communications. Posing community regeneration…
An abyssal mobilome: viruses, plasmids and vesicles from deep-sea hydrothermal vents.
Lossouarn, Julien; Dupont, Samuel; Gorlas, Aurore; Mercier, Coraline; Bienvenu, Nadege; Marguet, Evelyne; Forterre, Patrick; Geslin, Claire
2015-12-01
Mobile genetic elements (MGEs) such as viruses, plasmids, vesicles, gene transfer agents (GTAs), transposons and transpovirions, which collectively represent the mobilome, interact with cellular organisms from all three domains of life, including those thriving in the most extreme environments. While efforts have been made to better understand deep-sea vent microbial ecology, our knowledge of the mobilome associated with prokaryotes inhabiting deep-sea hydrothermal vents remains limited. Here we focus on the abyssal mobilome by reviewing accumulating data on viruses, plasmids and vesicles associated with thermophilic and hyperthermophilic Bacteria and Archaea present in deep-sea hydrothermal vents. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Kalinda, Chester; Chimbari, Moses; Mukaratirwa, Samson
2017-01-13
Climate change has been predicted to increase the global mean temperature and to alter the ecological interactions among organisms. These changes may play critical roles in influencing the life history traits of the intermediate hosts (IHs). This review focused on studies and disease models that evaluate the potential effect of temperature rise on the ecology of IH snails and the development of parasites within them. The main focus was on IH snails of schistosome parasites that cause schistosomiasis in humans. A literature search was conducted on Google Scholar, EBSCOhost and PubMed databases using predefined medical subject heading terms, Boolean operators and truncation symbols in combinations with direct key words. The final synthesis included nineteen published articles. The studies reviewed indicated that temperature rise may alter the distribution, optimal conditions for breeding, growth and survival of IH snails which may eventually increase the spread and/or transmission of schistosomiasis. The literature also confirmed that the life history traits of IH snails and their interaction with the schistosome parasites are affected by temperature and hence a change in climate may have profound outcomes on the population size of snails, parasite density and disease epidemiology. We concluded that understanding the impact of temperature on the growth, fecundity and survival of IH snails may broaden the knowledge on the possible effects of climate change and hence inform schistosomiasis control programmes.
Experimental evidence of chemical defence mechanisms in Antarctic bryozoans.
Figuerola, Blanca; Angulo-Preckler, Carlos; Núñez-Pons, Laura; Moles, Juan; Sala-Comorera, Laura; García-Aljaro, Cristina; Blanch, Anicet R; Avila, Conxita
2017-08-01
Bryozoans are among the most abundant and diverse members of the Antarctic benthos, however the role of bioactive metabolites in ecological interactions has been scarcely studied. To extend our knowledge about the chemical ecology of Antarctic bryozoans, crude ether extracts (EE) and butanol extracts (BE) obtained from two Antarctic common species (Cornucopina pectogemma and Nematoflustra flagellata), were tested for antibacterial and repellent activities. The extracts were screened for quorum quenching and antibacterial activities against four Antarctic bacterial strains (Bacillus aquimaris, Micrococcus sp., Oceanobacillus sp. and Paracoccus sp.). The Antarctic amphipod Cheirimedon femoratus and the sea star Odontaster validus were selected as sympatric predators to perform anti-predatory and substrate preference assays. No quorum quenching activity was detected in any of the extracts, while all EE exhibited growth inhibition towards at least one bacterium strain. Although the species were not repellent against the sea star, they caused repellence to the amphipods in both extracts, suggesting that defence activities against predation derive from both lipophilic and hydrophilic metabolites. In the substrate preference assays, one EE and one BE deriving from different specimens of the species C. pectogemma were active. This study reveals intraspecific variability of chemical defences and supports the fact that chemically mediated interactions are common in Antarctic bryozoans as means of protection against fouling and predation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Climate change and human health: a One Health approach.
Patz, Jonathan A; Hahn, Micah B
2013-01-01
Climate change adds complexity and uncertainty to human health issues such as emerging infectious diseases, food security, and national sustainability planning that intensify the importance of interdisciplinary and collaborative research. Collaboration between veterinary, medical, and public health professionals to understand the ecological interactions and reactions to flux in a system can facilitate clearer understanding of climate change impacts on environmental, animal, and human health. Here we present a brief introduction to climate science and projections for the next century and a review of current knowledge on the impacts of climate-driven environmental change on human health. We then turn to the links between ecological and evolutionary responses to climate change and health. The literature on climate impacts on biological systems is rich in both content and historical data, but the connections between these changes and human health is less understood. We discuss five mechanisms by which climate changes impacts on biological systems will be felt by the human population: Modifications in Vector, Reservoir, and Pathogen Lifecycles; Diseases of Domestic and Wild Animals and Plants; Disruption of Synchrony Between Interacting Species; Trophic Cascades; and Alteration or Destruction of Habitat. Each species responds to environmental changes differently, and in order to predict the movement of disease through ecosystems, we have to rely on expertise from the fields of veterinary, medical, and public health, and these health professionals must take into account the dynamic nature of ecosystems in a changing climate.
Microbial Surface Colonization and Biofilm Development in Marine Environments
2015-01-01
SUMMARY Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration. PMID:26700108
Microbial Surface Colonization and Biofilm Development in Marine Environments.
Dang, Hongyue; Lovell, Charles R
2016-03-01
Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Thomas A. Spies; David B. Lindenmayer; A. Malcolm Gill; Scott L. Stephens; James K. Agee
2012-01-01
Conserving biodiversity in fire-prone forest ecosystems is challenging for several reasons including differing and incomplete conceptual models of fire-related ecological processes, major gaps in ecological and management knowledge, high variability in fire behavior and ecological responses to fires, altered fire regimes as a result of land-use history and climate...
Learning about Bird Species on the Primary Level
ERIC Educational Resources Information Center
Randler, Christoph
2009-01-01
Animal species identification is often emphasized as a basic prerequisite for an understanding of ecology because ecological interactions are based on interactions between species at least as it is taught on the school level. Therefore, training identification skills or using identification books seems a worthwhile task in biology education, and…
Situations, Interaction, Process and Affordances: An Ecological Psychology Perspective.
ERIC Educational Resources Information Center
Young, Michael F.; DePalma, Andrew; Garrett, Steven
2002-01-01
From an ecological psychology perspective, a full analysis of any learning context must acknowledge the complex nonlinear dynamics that unfold as an intentionally-driven learner interacts with a technology-based purposefully designed learning environment. A full situation model would need to incorporate constraints from the environment and also…
The Relationship Between Consciousness, Interaction, and Language Learning.
ERIC Educational Resources Information Center
van Lier, Leo
1998-01-01
Examines the relationship between consciousness, language learning, and social interaction from an ecological perspective. Argues that consciousness and language are integral parts of the human ecology, that is, they can be defined in terms of social activity and relationships among people, as well as in terms of mental operations or cerebral…
Using LANDIS II to study the effects of global change in Siberia
Eric J. Gustafson; Brian R. Sturtevant; Anatoly Z. Shvidenko; Robert M. Scheller
2010-01-01
Landscape dynamics are characterized by complex interactions among multiple disturbance regimes, anthropogenic use and management, and the mosaic of diverse ecological conditions. LANDIS-IT is a landscape forest succession and disturbance model that independently simulates multiple ecological and disturbance processes, accounting for complex interactions to predict...
NASA Astrophysics Data System (ADS)
Legault, Louise M. R.
1999-11-01
Developments in the Quebec educational system enabled us to evaluate the impact of a new educational environmental program (EEP) on a group of children enrolled in this program for the first time (i.e., the experimental group). This EEP comprised a formal curriculum and environmental activities. A control group of children was enrolled in schools where environmental issues were confined to the natural sciences subject. The goals of this study were threefold. The first goal was to evaluate the impact of an EEP on children's and parents' ecological knowledge, attitudes, motivation, and behaviors. The second goal was to investigate if a motivational model of ecological behaviors observed in adult populations could be replicated with children. Part of this goal also included the comparison of path analyses results across experimental conditions, independently for children and parents. The third goal was to identify more clearly what specific children's characteristics influenced parents' ecological attitudes and motivation. Included in this goal was the investigation of possible differences in the strength of associations between constructs in paths analyses conducted in the experimental and control groups of parents. Results suggested that children in the experimental group were more likely to ask teachers and parents for ecological information and presented a more self-determined motivational profile. Additional analyses revealed that children enrolled in an EEP performed ecological behaviors less for extrinsic motives. Level of knowledge, other attitudes and behavioral measures did not differ significantly between the two groups. Parents of children in the experimental group reported lower levels of satisfaction towards the environment and were more likely to get information on ecological issues and strategies from children. No other significant differences between groups of parents were found. Path analyses results suggested that parents' perceptions of children's provision of autonomy support and of ecological information, as well as, joint child/parent involvement in ecological activities favored parents' ecological attitudes and motivation. These results were consistent across the experimental and the control groups. Future studies are necessary to identify optimal intervention strategies devised to foster in people a sense of personal responsibility and self-determination that may propel them into action.
On the road: workable solutions to the problems of roads and highways
Mary M. Rowland
2004-01-01
Fourteen authors, ranging from transportation specialists to ecologists, have collaborated to write this very useful compendium describing the newly minted discipline of "road ecology." The authors state that road ecology "uses the science of ecology and landscape ecology to explore, understand, and address the interactions of roads and vehicles with...
Landscape ecology: what is the state of science?
Monica G. Turner
2005-01-01
Landscape ecology focuses on the reciprocal interactions between spatial pattern and ecological processes, and it is well integrated with ecology. The field has grown rapidly over the past 15 years. The persistent influence of land-use history and natural disturbance on contemporary ecosystems has become apparent Development of pattern metrics has largely stabilized,...
Industrial ecology: reflections on a colloquium.
Ausubel, J H
1992-01-01
Industrial ecology is the network of all industrial processes as they may interact with each other and live off each other, not only in the economic sense, but also in the sense of direct use of each other's material and energy wastes and products. This paper, which reflects upon the papers and discussions at the National Academy of Sciences Colloquium on Industrial Ecology on May 20-21, 1991, is structured around 10 questions. Do sociotechnical systems have long-range environmental goals? How is the concept of industrial ecology useful and timely? What are environmental technologies? Is there a systematic way to choose among alternatives for improving the ecology of technologies? What are ways to measure performance with respect to industrial ecology? What are the sources and rates of innovation in environmental technologies? How is the market economy performing with respect to industrial ecology? What will be the effect of the ecological modernization of the developed nations of the North on the developing countries of the South? How can creative interaction on environmental issues be fostered among diverse social groups? How must research and education change? PMID:11607273
Eco-evolutionary feedbacks drive species interactions
Andrade-Domínguez, Andrés; Salazar, Emmanuel; del Carmen Vargas-Lagunas, María; Kolter, Roberto; Encarnación, Sergio
2014-01-01
In the biosphere, many species live in close proximity and can thus interact in many different ways. Such interactions are dynamic and fall along a continuum between antagonism and cooperation. Because interspecies interactions are the key to understanding biological communities, it is important to know how species interactions arise and evolve. Here, we show that the feedback between ecological and evolutionary processes has a fundamental role in the emergence and dynamics of species interaction. Using a two-species artificial community, we demonstrate that ecological processes and rapid evolution interact to influence the dynamics of the symbiosis between a eukaryote (Saccharomyces cerevisiae) and a bacterium (Rhizobium etli). The simplicity of our experimental design enables an explicit statement of causality. The niche-constructing activities of the fungus were the key ecological process: it allowed the establishment of a commensal relationship that switched to ammensalism and provided the selective conditions necessary for the adaptive evolution of the bacteria. In this latter state, the bacterial population radiates into more than five genotypes that vary with respect to nutrient transport, metabolic strategies and global regulation. Evolutionary diversification of the bacterial populations has strong effects on the community; the nature of interaction subsequently switches from ammensalism to antagonism where bacteria promote yeast extinction. Our results demonstrate the importance of the evolution-to-ecology pathway in the persistence of interactions and the stability of communities. Thus, eco-evolutionary dynamics have the potential to transform the structure and functioning of ecosystems. Our results suggest that these dynamics should be considered to improve our understanding of beneficial and detrimental host–microbe interactions. PMID:24304674
Integrating theory into disturbance interaction experiments to better inform ecosystem management.
Foster, Claire N; Sato, Chloe F; Lindenmayer, David B; Barton, Philip S
2016-04-01
Managing multiple, interacting disturbances is a key challenge to biodiversity conservation, and one that will only increase as global change drivers continue to alter disturbance regimes. Theoretical studies have highlighted the importance of a mechanistic understanding of stressor interactions for improving the prediction and management of interactive effects. However, many conservation studies are not designed or interpreted in the context of theory and instead focus on case-specific management questions. This is a problem as it means that few studies test the relationships highlighted in theoretical models as being important for ecological management. We explore the extent of this problem among studies of interacting disturbances by reviewing recent experimental studies of the interaction between fire and grazing in terrestrial ecosystems. Interactions between fire and grazing can occur via a number of pathways; one disturbance can modify the other's likelihood, intensity or spatial distribution, or one disturbance can alter the other's impacts on individual organisms. The strength of such interactions will vary depending on disturbance attributes (e.g. size or intensity), and this variation is likely to be nonlinear. We show that few experiments testing fire-grazing interactions are able to identify the mechanistic pathway driving an observed interaction, and most are unable to detect nonlinear effects. We demonstrate how these limitations compromise the ability of experimental studies to effectively inform ecological management. We propose a series of adjustments to the design of disturbance interaction experiments that would enable tests of key theoretical pathways and provide the deeper ecological understanding necessary for effective management. Such considerations are relevant to studies of a broad range of ecological interactions and are critical to informing the management of disturbance regimes in the context of accelerating global change. © 2015 John Wiley & Sons Ltd.
Studying the neurobiology of human social interaction: Making the case for ecological validity.
Hogenelst, Koen; Schoevers, Robert A; aan het Rot, Marije
2015-01-01
With this commentary we make the case for an increased focus on the ecological validity of the measures used to assess aspects of human social functioning. Impairments in social functioning are seen in many types of psychopathology, negatively affecting the lives of psychiatric patients and those around them. Yet the neurobiology underlying abnormal social interaction remains unclear. As an example of human social neuroscience research with relevance to biological psychiatry and clinical psychopharmacology, this commentary discusses published experimental studies involving manipulation of the human brain serotonin system that included assessments of social behavior. To date, these studies have mostly been laboratory-based and included computer tasks, observations by others, or single-administration self-report measures. Most laboratory measures used so far inform about the role of serotonin in aspects of social interaction, but the relevance for real-life interaction is often unclear. Few studies have used naturalistic assessments in real life. We suggest several laboratory methods with high ecological validity as well as ecological momentary assessment, which involves intensive repeated measures in naturalistic settings. In sum, this commentary intends to stimulate experimental research on the neurobiology of human social interaction as it occurs in real life.
Community-level consequences of cannibalism.
Ohlberger, Jan; Langangen, Oystein; Stenseth, Nils C; Vøllestad, L Asbjørn
2012-12-01
Ecological interactions determine the structure and dynamics of communities and their responses to the environment. Understanding the community-level effects of ecological interactions, such as intra- and interspecifc competition, predation, and cannibalism, is therefore central to ecological theory and ecosystem management. Here, we investigate the community-level consequences of cannibalism in populations with density-dependent maturation and reproduction. We model a stage-structured consumer population with an ontogenetic diet shift to analyze how cannibalism alters the conditions for the invasion and persistence of stage-specific predators and competitors. Our results demonstrate that cannibalistic interactions can facilitate coexistence with other species at both trophic levels. This effect of cannibalism critically depends on the food dependence of the demographic processes. The underlying mechanism is a cannibalism-induced shift in the biomass distribution between the consumer life stages. These findings suggest that cannibalism may alter the structure of ecological communities through its effects on species coexistence.
Competition for vitamin B1 (thiamin) structures numerous ecological interactions.
Kraft, Clifford E; Angert, Esther R
2017-06-01
Thiamin (vitamin B1) is a cofactor required for essential biochemical reactions in all living organisms, yet free thiamin is scarce in the environment. The diversity of biochemical pathways involved in the acquisition, degradation, and synthesis of thiamin indicates that organisms have evolved numerous ecological strategies for meeting this nutritional requirement. In this review we synthesize information from multiple disciplines to show how the complex biochemistry of thiamin influences ecological outcomes of interactions between organisms in environments ranging from the open ocean and the Australian outback to the gastrointestinal tract of animals. We highlight population and ecosystem responses to the availability or absence of thiamin. These include widespread mortality of fishes, birds, and mammals, as well as the thiamin-dependent regulation of ocean productivity. Overall, we portray thiamin biochemistry as the foundation for molecularly mediated ecological interactions that influence survival and abundance of a vast array of organisms.
Martin, Thomas E.; Auer, Sonya K.
2013-01-01
Climate change can modify ecological interactions, but whether it can have cascading effects throughout ecological networks of multiple interacting species remains poorly studied. Climate-driven alterations in the intensity of plant–herbivore interactions may have particularly profound effects on the larger community because plants provide habitat for a wide diversity of organisms. Here we show that changes in vegetation over the last 21 years, due to climate effects on plant–herbivore interactions, have consequences for songbird nest site overlap and breeding success. Browsing-induced reductions in the availability of preferred nesting sites for two of three ground nesting songbirds led to increasing overlap in nest site characteristics among all three bird species with increasingly negative consequences for reproductive success over the long term. These results demonstrate that changes in the vegetation community from effects of climate change on plant–herbivore interactions can cause subtle shifts in ecological interactions that have critical demographic ramifications for other species in the larger community.
Essential elements of ecological literacy and the pathways to achieve it: Perspectives of ecologists
NASA Astrophysics Data System (ADS)
McBride, Brooke Baldauf
2011-12-01
National assessments have led many to conclude that the level of ecological literacy among the general population in the United States is too low to enable effective social responses to current environmental challenges. However, the actual meaning of ecological literacy varies considerably between academic fields and has been a topic of intensive deliberation for several decades. Within the field of ecology in particular, a driving purpose behind this ongoing discussion has been to advance a complete, pedagogy-guiding, and broadly applicable framework for ecological literacy, allowing for the establishment of guidelines and tools for assessing educational achievement; yet, a widely accepted framework does not currently exist. What is ecological literacy and how can it be achieved? Through an extensive review of the literature, I traced the evolution of the related concepts of environmental literacy, ecological literacy, and ecoliteracy, and compared and contrasted the numerous proposed frameworks across multiple dimensions of affect, knowledge, skills, and behavior. In addition to characterizing the overall discourse, this analysis facilitated close examination of where we have been, where we are, and where we might be headed with respect to these vital conversations. To explore current perspectives on the topic, I analyzed the open-ended responses of more than 1,000 ecologists and other environmental scientists on the nature of ecological literacy and how it may be achieved. Factor analysis revealed the presence of six common dimensions underlying respondents' views of ecological literacy (cycles and webs, ecosystem services, negative human impacts, critical thinking/application, nature of ecological science, and biogeography) and five common dimensions for how to achieve it (education by mass media, formal/traditional education, financial incentive, participatory/interactive education, and communication/outreach by scientists). Based on these results, I proposed a framework for ecological literacy that, ideally, will provide guidance for the development of updated ecology curricula and assessment tools, a foundation for discussion of alignment between K-12 and higher education, and a mechanism for creating greater synergy between formal and informal learning environments. Further, to assess the impacts of innovative graduate programs designed to train ecologists in promoting ecological literacy, I analyzed pre- and post-fellowship surveys completed by participants in an ecologically focused K-12 outreach program at The University of Montana, as well as the broader impacts of a set of similar programs across the country. These highly beneficial programs are urgently needed to ensure that future leaders of the scientific enterprise are well-equipped with the tools to effectively communicate their science with diverse audiences well beyond their scientific peers. Indeed, ecologists and other natural and social scientists who study the environment have multiple roles to play in promoting a modern vision of ecological literacy in society today.
Ecological periodic tables: in principle and practice (in OIKOS)
“Science is organized knowledge.” Immanuel Kant (1724–1804) Ecological periodic tables are an information organizing system with categorical habitat types as elements and predictably recurring (periodic) properties of a target biotic community, such as its relative species rich...
A systematic review of US rangeland social science
USDA-ARS?s Scientific Manuscript database
Rangeland science aims to create knowledge to sustain rangeland social-ecological systems over the long term. Range science has made substantial progress on understanding ecological dynamics of rangeland systems and the management practices that sustain them, and these findings have been systematica...
Schinegger, Rafaela; Palt, Martin; Segurado, Pedro; Schmutz, Stefan
2016-12-15
This work addresses human stressors and their impacts on fish assemblages at pan-European scale by analysing single and multiple stressors and their interactions. Based on an extensive dataset with 3105 fish sampling sites, patterns of stressors, their combination and nature of interactions, i.e. synergistic, antagonistic and additive were investigated. Geographical distribution and patterns of seven human stressor variables, belonging to four stressor groups (hydrological-, morphological-, water quality- and connectivity stressors), were examined, considering both single and multiple stressor combinations. To quantify the stressors' ecological impact, a set of 22 fish metrics for various fish assemblage types (headwaters, medium gradient rivers, lowland rivers and Mediterranean streams) was analysed by comparing their observed and expected response to different stressors, both acting individually and in combination. Overall, investigated fish sampling sites are affected by 15 different stressor combinations, including 4 stressors acting individually and 11 combinations of two or more stressors; up to 4 stressor groups per fish sampling site occur. Stressor-response analysis shows divergent results among different stressor categories, even though a general trend of decreasing ecological integrity with increasing stressor quantity can be observed. Fish metrics based on density of species 'intolerant to water quality degradation' and 'intolerant to oxygen depletion" responded best to single and multiple stressors and their interactions. Interactions of stressors were additive (40%), synergistic (30%) or antagonistic (30%), emphasizing the importance to consider interactions in multi-stressor analyses. While antagonistic effects are only observed in headwaters and medium-gradient rivers, synergistic effects increase from headwaters over medium gradient rivers and Mediterranean streams to large lowland rivers. The knowledge gained in this work provides a basis for advanced investigations in European river basins and helps prioritizing further restoration and management actions. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
[Applications of stable isotope analysis in the trophic ecology studies of cephalopods].
Li, Yun-Kai; Gong, Yi; Chen, Xin-Jun
2014-05-01
Cephalopods play an important role in marine food webs, however, knowledge about their complex life history, especially their feeding ecology, remains limited. With the rapidly increasing use of stable isotope analysis (SIA) in ecology, it becomes a powerful tool and complement of traditional methods for investigating the trophic ecology and migration patterns of invertebrates. Here, after summarizing the current methods for trophic ecology investigation of cephalopods, applications of SIA in studying the trophic ecology of cephalopods were reviewed, including the key issues such as standardization of available tissues for SIA analyzing, diet shift and migration patterns of cephalopods, with the aim of advancing its application in the biology of cephalopods in the future.
Interactions between temperature and nutrients across levels of ecological organization.
Cross, Wyatt F; Hood, James M; Benstead, Jonathan P; Huryn, Alexander D; Nelson, Daniel
2015-03-01
Temperature and nutrient availability play key roles in controlling the pathways and rates at which energy and materials move through ecosystems. These factors have also changed dramatically on Earth over the past century as human activities have intensified. Although significant effort has been devoted to understanding the role of temperature and nutrients in isolation, less is known about how these two factors interact to influence ecological processes. Recent advances in ecological stoichiometry and metabolic ecology provide a useful framework for making progress in this area, but conceptual synthesis and review are needed to help catalyze additional research. Here, we examine known and potential interactions between temperature and nutrients from a variety of physiological, community, and ecosystem perspectives. We first review patterns at the level of the individual, focusing on four traits--growth, respiration, body size, and elemental content--that should theoretically govern how temperature and nutrients interact to influence higher levels of biological organization. We next explore the interactive effects of temperature and nutrients on populations, communities, and food webs by synthesizing information related to community size spectra, biomass distributions, and elemental composition. We use metabolic theory to make predictions about how population-level secondary production should respond to interactions between temperature and resource supply, setting up qualitative predictions about the flows of energy and materials through metazoan food webs. Last, we examine how temperature-nutrient interactions influence processes at the whole-ecosystem level, focusing on apparent vs. intrinsic activation energies of ecosystem processes, how to represent temperature-nutrient interactions in ecosystem models, and patterns with respect to nutrient uptake and organic matter decomposition. We conclude that a better understanding of interactions between temperature and nutrients will be critical for developing realistic predictions about ecological responses to multiple, simultaneous drivers of global change, including climate warming and elevated nutrient supply. © 2014 John Wiley & Sons Ltd.
Friman, Ville-Petri; Dupont, Alessandra; Bass, David; Murrell, David J; Bell, Thomas
2016-06-01
Community dynamics are often studied in subsets of pairwise interactions. Scaling pairwise interactions back to the community level is, however, problematic because one given interaction might not reflect ecological and evolutionary outcomes of other functionally similar species interactions or capture the emergent eco-evolutionary dynamics arising only in more complex communities. Here we studied this experimentally by exposing Pseudomonas fluorescens SBW25 prey bacterium to four different protist predators (Tetrahymena pyriformis, Tetrahymena vorax, Chilomonas paramecium and Acanthamoeba polyphaga) in all possible single-predator, two-predator and four-predator communities for hundreds of prey generations covering both ecological and evolutionary timescales. We found that only T. pyriformis selected for prey defence in single-predator communities. Although T. pyriformis selection was constrained in the presence of the intraguild predator, T. vorax, T. pyriformis selection led to evolution of specialised prey defence strategies in the presence of C. paramecium or A. polyphaga. At the ecological level, adapted prey populations were phenotypically more diverse, less stable and less productive compared with non-adapted prey populations. These results suggest that predator community composition affects the relative importance of ecological and evolutionary processes and can crucially determine when rapid evolution has the potential to change ecological properties of microbial communities.