Science.gov

Sample records for interactions symbiosis predator-prey

  1. Modelling the fear effect in predator-prey interactions.

    PubMed

    Wang, Xiaoying; Zanette, Liana; Zou, Xingfu

    2016-11-01

    A recent field manipulation on a terrestrial vertebrate showed that the fear of predators alone altered anti-predator defences to such an extent that it greatly reduced the reproduction of prey. Because fear can evidently affect the populations of terrestrial vertebrates, we proposed a predator-prey model incorporating the cost of fear into prey reproduction. Our mathematical analyses show that high levels of fear (or equivalently strong anti-predator responses) can stabilize the predator-prey system by excluding the existence of periodic solutions. However, relatively low levels of fear can induce multiple limit cycles via subcritical Hopf bifurcations, leading to a bi-stability phenomenon. Compared to classic predator-prey models which ignore the cost of fear where Hopf bifurcations are typically supercritical, Hopf bifurcations in our model can be both supercritical and subcritical by choosing different sets of parameters. We conducted numerical simulations to explore the relationships between fear effects and other biologically related parameters (e.g. birth/death rate of adult prey), which further demonstrate the impact that fear can have in predator-prey interactions. For example, we found that under the conditions of a Hopf bifurcation, an increase in the level of fear may alter the direction of Hopf bifurcation from supercritical to subcritical when the birth rate of prey increases accordingly. Our simulations also show that the prey is less sensitive in perceiving predation risk with increasing birth rate of prey or increasing death rate of predators, but demonstrate that animals will mount stronger anti-predator defences as the attack rate of predators increases.

  2. Role reversal in a predator-prey interaction.

    PubMed

    Sánchez-Garduño, Faustino; Miramontes, Pedro; Marquez-Lago, Tatiana T

    2014-10-01

    Predator-prey relationships are one of the most studied interactions in population ecology. However, little attention has been paid to the possibility of role exchange between species, despite firm field evidence of such phenomena in nature. In this paper, we build a mathematical model capable of reproducing the main phenomenological features of role reversal in a classical system and present results for both the temporal and spatio-temporal cases. We show that, depending on the choice of parameters, our role-reversal dynamical system exhibits excitable-like behaviour, generating waves of species' concentrations that propagate through space. Our findings fill a long-standing gap in modelling ecological interactions and can be applicable to better understanding ecological niche shifts and planning of sustainable ecosystems.

  3. Episodic disturbance events modify predator prey interactions in soft sediments

    NASA Astrophysics Data System (ADS)

    Eriksson, S. P.; Wennhage, H.; Norkko, J.; Norkko, A.

    2005-08-01

    Physical disturbance events are common in shallow soft-sediment habitats and can have significant effects on predator-prey interactions. While several studies have reported on predator aggregations following disturbance events, few studies have investigated the mechanisms and interactive effects of predation and physical disturbance on prey survival in shallow soft-sediment habitats. In this study the interactive effects of sediment resuspension and predation by two contrasting epibenthic predator species were tested on the survival of the amphipod Corophium volutator in a laboratory experiment. The shrimp Crangon crangon and juvenile plaice Pleuronectes platessa were used as predators, both numerical dominants in shallow soft sediments on the Swedish west coast. In addition we quantified epibenthic predator aggregation in the field following small-scale disturbances. In the laboratory, synergistic negative effects of predation and non-lethal disturbance on Corophium survival were found with both predator species, and rapid aggregation of several mobile epibenthic predator species following disturbance was demonstrated in the field. Abundances of C. crangon, the numerically dominant predator in the field, were doubled in disturbed patches within 2 min following disturbance. Our study emphasises the importance of considering episodic small-scale disturbances when interpreting predation effects and trophic interactions in shallow soft-sediment systems.

  4. Elevated CO2 affects predator-prey interactions through altered performance.

    PubMed

    Allan, Bridie J M; Domenici, Paolo; McCormick, Mark I; Watson, Sue-Ann; Munday, Philip L

    2013-01-01

    Recent research has shown that exposure to elevated carbon dioxide (CO2) affects how fishes perceive their environment, affecting behavioral and cognitive processes leading to increased prey mortality. However, it is unclear if increased mortality results from changes in the dynamics of predator-prey interactions or due to prey increasing activity levels. Here we demonstrate that ocean pCO2 projected to occur by 2100 significantly effects the interactions of a predator-prey pair of common reef fish: the planktivorous damselfish Pomacentrus amboinensis and the piscivorous dottyback Pseudochromis fuscus. Prey exposed to elevated CO2 (880 µatm) or a present-day control (440 µatm) interacted with similarly exposed predators in a cross-factored design. Predators had the lowest capture success when exposed to elevated CO2 and interacting with prey exposed to present-day CO2. Prey exposed to elevated CO2 had reduced escape distances and longer reaction distances compared to prey exposed to present-day CO2 conditions, but this was dependent on whether the prey was paired with a CO2 exposed predator or not. This suggests that the dynamics of predator-prey interactions under future CO2 environments will depend on the extent to which the interacting species are affected and can adapt to the adverse effects of elevated CO2.

  5. Elevated CO2 Affects Predator-Prey Interactions through Altered Performance

    PubMed Central

    Allan, Bridie J. M.; Domenici, Paolo; McCormick, Mark I.; Watson, Sue-Ann; Munday, Philip L.

    2013-01-01

    Recent research has shown that exposure to elevated carbon dioxide (CO2) affects how fishes perceive their environment, affecting behavioral and cognitive processes leading to increased prey mortality. However, it is unclear if increased mortality results from changes in the dynamics of predator-prey interactions or due to prey increasing activity levels. Here we demonstrate that ocean pCO2 projected to occur by 2100 significantly effects the interactions of a predator-prey pair of common reef fish: the planktivorous damselfish Pomacentrus amboinensis and the piscivorous dottyback Pseudochromis fuscus. Prey exposed to elevated CO2 (880 µatm) or a present-day control (440 µatm) interacted with similarly exposed predators in a cross-factored design. Predators had the lowest capture success when exposed to elevated CO2 and interacting with prey exposed to present-day CO2. Prey exposed to elevated CO2 had reduced escape distances and longer reaction distances compared to prey exposed to present-day CO2 conditions, but this was dependent on whether the prey was paired with a CO2 exposed predator or not. This suggests that the dynamics of predator-prey interactions under future CO2 environments will depend on the extent to which the interacting species are affected and can adapt to the adverse effects of elevated CO2. PMID:23484032

  6. Fluctuations and correlations in lattice models for predator-prey interaction.

    PubMed

    Mobilia, Mauro; Georgiev, Ivan T; Täuber, Uwe C

    2006-04-01

    Including spatial structure and stochastic noise invalidates the classical Lotka-Volterra picture of stable regular population cycles emerging in models for predator-prey interactions. Growth-limiting terms for the prey induce a continuous extinction threshold for the predator population whose critical properties are in the directed percolation universality class. We discuss the robustness of this scenario by considering an ecologically inspired stochastic lattice predator-prey model variant where the predation process includes next-nearest-neighbor interactions. We find that the corresponding stochastic model reproduces the above scenario in dimensions 1< d < or =4, in contrast with the mean-field theory, which predicts a first-order phase transition. However, the mean-field features are recovered upon allowing for nearest-neighbor particle exchange processes, provided these are sufficiently fast.

  7. Predator-prey interactions mediated by prey personality and predator hunting mode.

    PubMed

    Belgrad, Benjamin A; Griffen, Blaine D

    2016-04-13

    Predator-prey interactions are important drivers in structuring ecological communities. However, despite widespread acknowledgement that individual behaviours and predator species regulate ecological processes, studies have yet to incorporate individual behavioural variations in a multipredator system. We quantified a prevalent predator avoidance behaviour to examine the simultaneous roles of prey personality and predator hunting mode in governing predator-prey interactions. Mud crabs, Panopeus herbstii, reduce their activity levels and increase their refuge use in the presence of predator cues. We measured mud crab mortality and consistent individual variations in the strength of this predator avoidance behaviour in the presence of predatory blue crabs, Callinectes sapidus, and toadfish, Opsanus tau We found that prey personality and predator species significantly interacted to affect mortality with blue crabs primarily consuming bold mud crabs and toadfish preferentially selecting shy crabs. Additionally, the strength of the predator avoidance behaviour depended upon the predation risk from the predator species. Consequently, the personality composition of populations and predator hunting mode may be valuable predictors of both direct and indirect predator-prey interaction strength. These findings support theories postulating mechanisms for maintaining intraspecies diversity and have broad implications for community dynamics.

  8. Local genetic adaptation generates latitude-specific effects of warming on predator-prey interactions.

    PubMed

    De Block, Marjan; Pauwels, Kevin; Van Den Broeck, Maarten; De Meester, Luc; Stoks, Robby

    2013-03-01

    Temperature effects on predator-prey interactions are fundamental to better understand the effects of global warming. Previous studies never considered local adaptation of both predators and prey at different latitudes, and ignored the novel population combinations of the same predator-prey species system that may arise because of northward dispersal. We set up a common garden warming experiment to study predator-prey interactions between Ischnura elegans damselfly predators and Daphnia magna zooplankton prey from three source latitudes spanning >1500 km. Damselfly foraging rates showed thermal plasticity and strong latitudinal differences consistent with adaptation to local time constraints. Relative survival was higher at 24 °C than at 20 °C in southern Daphnia and higher at 20 °C than at 24 °C, in northern Daphnia indicating local thermal adaptation of the Daphnia prey. Yet, this thermal advantage disappeared when they were confronted with the damselfly predators of the same latitude, reflecting also a signal of local thermal adaptation in the damselfly predators. Our results further suggest the invasion success of northward moving predators as well as prey to be latitude-specific. We advocate the novel common garden experimental approach using predators and prey obtained from natural temperature gradients spanning the predicted temperature increase in the northern populations as a powerful approach to gain mechanistic insights into how community modules will be affected by global warming. It can be used as a space-for-time substitution to inform how predator-prey interaction may gradually evolve to long-term warming.

  9. Predator-prey interactions between shell-boring beetle larvae and rock-dwelling land snails.

    PubMed

    Baalbergen, Els; Helwerda, Renate; Schelfhorst, Rense; Castillo Cajas, Ruth F; van Moorsel, Coline H M; Kundrata, Robin; Welter-Schultes, Francisco W; Giokas, Sinos; Schilthuizen, Menno

    2014-01-01

    Drilus beetle larvae (Coleoptera: Elateridae) are specialized predators of land snails. Here, we describe various aspects of the predator-prey interactions between multiple Drilus species attacking multiple Albinaria (Gastropoda: Clausiliidae) species in Greece. We observe that Drilus species may be facultative or obligate Albinaria-specialists. We map geographically varying predation rates in Crete, where on average 24% of empty shells carry fatal Drilus bore holes. We also provide first-hand observations and video-footage of prey entry and exit strategies of the Drilus larvae, and evaluate the potential mutual evolutionary impacts. We find limited evidence for an effect of shell features and snail behavioral traits on inter- and intra-specifically differing predation rates. We also find that Drilus predators adjust their predation behavior based on specific shell traits of the prey. In conclusion, we suggest that, with these baseline data, this interesting predator-prey system will be available for further, detailed more evolutionary ecology studies.

  10. Predator-Prey Interactions between Shell-Boring Beetle Larvae and Rock-Dwelling Land Snails

    PubMed Central

    Castillo Cajas, Ruth F.; van Moorsel, Coline H. M.; Kundrata, Robin; Welter-Schultes, Francisco W.; Giokas, Sinos; Schilthuizen, Menno

    2014-01-01

    Drilus beetle larvae (Coleoptera: Elateridae) are specialized predators of land snails. Here, we describe various aspects of the predator-prey interactions between multiple Drilus species attacking multiple Albinaria (Gastropoda: Clausiliidae) species in Greece. We observe that Drilus species may be facultative or obligate Albinaria-specialists. We map geographically varying predation rates in Crete, where on average 24% of empty shells carry fatal Drilus bore holes. We also provide first-hand observations and video-footage of prey entry and exit strategies of the Drilus larvae, and evaluate the potential mutual evolutionary impacts. We find limited evidence for an effect of shell features and snail behavioral traits on inter- and intra-specifically differing predation rates. We also find that Drilus predators adjust their predation behavior based on specific shell traits of the prey. In conclusion, we suggest that, with these baseline data, this interesting predator-prey system will be available for further, detailed more evolutionary ecology studies. PMID:24964101

  11. Evolution of predator-prey interactions in ancient lakes: implications for coevolution in marine environments

    SciTech Connect

    Cohen, A.

    1985-01-01

    Highly generalized predator-prey interrelationships are a hallmark of most lacustrine ecosystems where accommodation to the physical environment plays the major role in determining organismal distributions. Since the vast majority of lakes are ephemeral on a geological and evolutionary times scale, dispersal, rather than organism interaction, appears to be the dominant selective theme in lacustrine species evolution. In a few, very long lasting lakes, notably modern Lakes Tanganyika (Africa) and Baikal (USSR) and ancient lakes of the Brazilian Rift (Cretaceous) and Snake River Plain (Tertiary), invertebrates and fish occur which demonstrate the development of intense biological accommodation in coevolving predator-prey interactions. Shell crushing experiments on 2 endemic Tanganyikan gastropods, Lavigeria nassa and Spekia zonata show them to be comparable to warm temperature marine species in terms of grow load strength: 1-2 orders of magnitude stronger than confamilial cosmopolitan species from more ephemeral lakes in the same region of Africa. Shell repair is commonly observed in these and other Tanganyikan endemic snails although it is exceedingly rare inmost other lakes. The study of these early stages of evolutionary processes and rates in coevolving predator-prey systems in isolated lacustrine microcosms has important implications for those paleontologists concerned with marine invertebrates. It may shed considerable light on the interpretation of such events as the marine Mesozoic Revolution.

  12. Community-wide distribution of predator-prey interaction strength in kelp forests.

    PubMed

    Sala, Enric; Graham, Michael H

    2002-03-19

    The strength of interactions between predators and their prey (interaction strength) varies enormously among species within ecological communities. Understanding the community-wide distribution of interaction strengths is vital, given that communities dominated by weak interactions may be more stable and resistant to invasion. In the oceans, previous studies have reported log-normal distributions of per capita interaction strength. We estimated the distribution of predator-prey interaction strengths within a subtidal speciose herbivore community (45 species). Laboratory experiments were used to determine maximum per capita interaction strengths for eight species of herbivores (including amphipods, isopods, gastropods, and sea urchins) that graze on giant kelp (Macrocystis pyrifera) microscopic stages. We found that maximum per capita interaction strength saturated as a function of individual herbivore biomass, likely caused by predator/prey size thresholds. Incorporating this nonlinearity, we predicted maximum per capita interaction strength for the remaining herbivore species. The resulting distribution of per capita interaction strengths was bimodal, in striking contrast to previous reports from other communities. Although small herbivores often had per capita interaction strengths similar to larger herbivores, their tendency to have greater densities in the field increased their potential impact as grazers. These results indicate that previous conclusions about the distributions of interaction strength in natural communities are not general, and that intermediate-sized predators can under realistic circumstances represent the most effective consumers in natural communities.

  13. Acoustic mimicry in a predator-prey interaction.

    PubMed

    Barber, Jesse R; Conner, William E

    2007-05-29

    Mimicry of visual warning signals is one of the keystone concepts in evolutionary biology and has received substantial research attention. By comparison, acoustic mimicry has never been rigorously tested. Visualizing bat-moth interactions with high-speed, infrared videography, we provide empirical evidence for acoustic mimicry in the ultrasonic warning sounds that tiger moths produce in response to echolocating bats. Two species of sound-producing tiger moths were offered successively to naïve, free-flying red and big brown bats. Noctuid and pyralid moth controls were also offered each night. All bats quickly learned to avoid the noxious tiger moths first offered to them, associating the warning sounds with bad taste. They then avoided the second sound-producing species regardless of whether it was chemically protected or not, verifying both Müllerian and Batesian mimicry in the acoustic modality. A subset of the red bats subsequently discovered the palatability of the Batesian mimic, demonstrating the powerful selective force these predators exert on mimetic resemblance. Given these results and the widespread presence of tiger moth species and other sound-producing insects that respond with ultrasonic clicks to bat attack, acoustic mimicry complexes are likely common components of the acoustic landscape.

  14. Reciprocal Behavioral Plasticity and Behavioral Types during Predator-Prey Interactions

    PubMed Central

    McGhee, Katie E.; Pintor, Lauren M.; Bell, Alison M.

    2014-01-01

    How predators and prey interact has important consequences for population dynamics and community stability. Here we explored how predator-prey interactions are simultaneously affected by reciprocal behavioral plasticity (i.e., plasticity in prey defenses countered by plasticity in predator offenses and vice versa) and consistent individual behavioral variation (i.e., behavioral types) within both predator and prey populations. We assessed the behavior of a predator species (northern pike) and a prey species (three-spined stickleback) during one-on-one encounters. We also measured additional behavioral and morphological traits in each species. Using structural equation modeling, we found that reciprocal behavioral plasticity as well as predator and prey behavioral types influenced how individuals behaved during an interaction. Thus, the progression and ultimate outcome of predator-prey interactions depend on both the dynamic behavioral feedback occurring during the encounter and the underlying behavioral type of each participant. We also examined whether predator behavioral type is underlain by differences in metabolism and organ size. We provide some of the first evidence that behavioral type is related to resting metabolic rate and size of a sensory organ (the eyes). Understanding the extent to which reciprocal behavioral plasticity and intraspecific behavioral variation influence the outcome of species interactions could provide insight into the maintenance of behavioral variation as well as community dynamics. PMID:24231533

  15. Reciprocal behavioral plasticity and behavioral types during predator-prey interactions.

    PubMed

    McGhee, Katie E; Pintor, Lauren M; Bell, Alison M

    2013-12-01

    How predators and prey interact has important consequences for population dynamics and community stability. Here we explored how predator-prey interactions are simultaneously affected by reciprocal behavioral plasticity (i.e., plasticity in prey defenses countered by plasticity in predator offenses and vice versa) and consistent individual behavioral variation (i.e., behavioral types) within both predator and prey populations. We assessed the behavior of a predator species (northern pike) and a prey species (three-spined stickleback) during one-on-one encounters. We also measured additional behavioral and morphological traits in each species. Using structural equation modeling, we found that reciprocal behavioral plasticity as well as predator and prey behavioral types influenced how individuals behaved during an interaction. Thus, the progression and ultimate outcome of predator-prey interactions depend on both the dynamic behavioral feedback occurring during the encounter and the underlying behavioral type of each participant. We also examined whether predator behavioral type is underlain by differences in metabolism and organ size. We provide some of the first evidence that behavioral type is related to resting metabolic rate and size of a sensory organ (the eyes). Understanding the extent to which reciprocal behavioral plasticity and intraspecific behavioral variation influence the outcome of species interactions could provide insight into the maintenance of behavioral variation as well as community dynamics.

  16. Reciprocal phenotypic plasticity in a predator-prey interaction between larval amphibians.

    PubMed

    Kishida, Osamu; Mizuta, Yuuki; Nishimura, Kinya

    2006-06-01

    In biological interactions, phenotypic change in interacting organisms induced by their interaction partners causes a substantial shift in some environmental factor of the partners, which may subsequently change their phenotype in response to that modified environmental factor. Few examples of such arms-race-like plastic responses, known as reciprocal phenotypic plasticity, have been identified in predator-prey interactions. We experimentally identified a reciprocal defensive plastic response of a prey species against a predator with a predaceous phenotype using a model system of close predator-prey interaction. Rana pirica tadpoles (the prey species) were reared with larvae of the salamander Hynobius retardatus (the predator species) having either a predaceous or a typical, nonpredaceous phenotype. The H. retardatus larvae with the predaceous phenotype, which is known to be induced by the presence of R. pirica tadpoles, induced a more defensive phenotype in the tadpoles than did larvae with the typical phenotype. The result suggests that the reciprocal phenotypic plasticity of R. pirica tadpoles is in response to a phenotype-specific signal under a close-signal recognition process.

  17. Thermal acclimation of interactions: differential responses to temperature change alter predator-prey relationship.

    PubMed

    Grigaltchik, Veronica S; Ward, Ashley J W; Seebacher, Frank

    2012-10-07

    Different species respond differently to environmental change so that species interactions cannot be predicted from single-species performance curves. We tested the hypothesis that interspecific difference in the capacity for thermal acclimation modulates predator-prey interactions. Acclimation of locomotor performance in a predator (Australian bass, Macquaria novemaculeata) was qualitatively different to that of its prey (eastern mosquitofish, Gambusia holbrooki). Warm (25°C) acclimated bass made more attacks than cold (15°C) acclimated fish regardless of acute test temperatures (10-30°C), and greater frequency of attacks was associated with increased prey capture success. However, the number of attacks declined at the highest test temperature (30°C). Interestingly, escape speeds of mosquitofish during predation trials were greater than burst speeds measured in a swimming arena, whereas attack speeds of bass were lower than burst speeds. As a result, escape speeds of mosquitofish were greater at warm temperatures (25°C and 30°C) than attack speeds of bass. The decline in the number of attacks and the increase in escape speed of prey means that predation pressure decreases at high temperatures. We show that differential thermal responses affect species interactions even at temperatures that are within thermal tolerance ranges. This thermal sensitivity of predator-prey interactions can be a mechanism by which global warming affects ecological communities.

  18. Predator prey interactions of Procambarus clarkii with aquatic macroinvertebrates in single and multiple prey systems

    NASA Astrophysics Data System (ADS)

    Correia, Alexandra Marçal; Bandeira, Nuno; Anastácio, Pedro Manuel

    2005-11-01

    Understanding the interspecific interactions of Procambarus clarkii with other aquatic macroinvertebrates will help to unveil the mechanisms and processes underlying biological invasiveness. The purpose of this study was to investigate predator-prey interactions of two ontogenic phases of P. clarkii with native and exotic species of aquatic macroinvertebrates at a single and multiple prey level. We performed laboratory experiments to determine the consumption and the behavioral responses of Chironomus riparius, Physa acuta and Corbicula fluminea to P. clarkii. The presence of P. clarkii significantly affected the abundance of C. riparius and P. acuta, but not of C. fluminea whether prey species were provided singly or simultaneously. The consumption of C. riparius by P. clarkii was higher than P. acuta for both crayfish sizes and situations (single/multiple prey systems) and C. fluminea was never consumed. Physa acuta was the only species that exhibited an anti-predator behavior to P. clarkii. Our results show that P. clarkii can have strong consumptive and trait effects on aquatic macroinvertebrate prey at a single and multiple prey level, resulting in differential impacts on different prey species. This study clarifies some aspects of the predator-prey interactions between P. clarkii and native as well as other exotic macroinvertebrate species that have invaded freshwater biocenosis worldwide.

  19. Predator-Prey Interactions Shape Thermal Patch Use in a Newt Larvae-Dragonfly Nymph Model

    PubMed Central

    Gvoždík, Lumír; Černická, Eva; Van Damme, Raoul

    2013-01-01

    Thermal quality and predation risk are considered important factors influencing habitat patch use in ectothermic prey. However, how the predator’s food requirement and the prey’s necessity to avoid predation interact with their respective thermoregulatory strategies remains poorly understood. The recently developed ‘thermal game model’ predicts that in the face of imminent predation, prey should divide their time equally among a range of thermal patches. In contrast, predators should concentrate their hunting activities towards warmer patches. In this study, we test these predictions in a laboratory setup and an artificial environment that mimics more natural conditions. In both cases, we scored thermal patch use of newt larvae (prey) and free-ranging dragonfly nymphs (predators). Similar effects were seen in both settings. The newt larvae spent less time in the warm patch if dragonfly nymphs were present. The patch use of the dragonfly nymphs did not change as a function of prey availability, even when the nymphs were starved prior to the experiment. Our behavioral observations partially corroborate predictions of the thermal game model. In line with asymmetric fitness pay-offs in predator-prey interactions (the ‘life-dinner’ principle), the prey’s thermal strategy is more sensitive to the presence of predators than vice versa. PMID:23755175

  20. Predator-prey interactions shape thermal patch use in a newt larvae-dragonfly nymph model.

    PubMed

    Gvoždík, Lumír; Černická, Eva; Van Damme, Raoul

    2014-01-01

    Thermal quality and predation risk are considered important factors influencing habitat patch use in ectothermic prey. However, how the predator's food requirement and the prey's necessity to avoid predation interact with their respective thermoregulatory strategies remains poorly understood. The recently developed 'thermal game model' predicts that in the face of imminent predation, prey should divide their time equally among a range of thermal patches. In contrast, predators should concentrate their hunting activities towards warmer patches. In this study, we test these predictions in a laboratory setup and an artificial environment that mimics more natural conditions. In both cases, we scored thermal patch use of newt larvae (prey) and free-ranging dragonfly nymphs (predators). Similar effects were seen in both settings. The newt larvae spent less time in the warm patch if dragonfly nymphs were present. The patch use of the dragonfly nymphs did not change as a function of prey availability, even when the nymphs were starved prior to the experiment. Our behavioral observations partially corroborate predictions of the thermal game model. In line with asymmetric fitness pay-offs in predator-prey interactions (the 'life-dinner' principle), the prey's thermal strategy is more sensitive to the presence of predators than vice versa.

  1. Finite-difference schemes for reaction-diffusion equations modeling predator-prey interactions in MATLAB.

    PubMed

    Garvie, Marcus R

    2007-04-01

    We present two finite-difference algorithms for studying the dynamics of spatially extended predator-prey interactions with the Holling type II functional response and logistic growth of the prey. The algorithms are stable and convergent provided the time step is below a (non-restrictive) critical value. This is advantageous as it is well-known that the dynamics of approximations of differential equations (DEs) can differ significantly from that of the underlying DEs themselves. This is particularly important for the spatially extended systems that are studied in this paper as they display a wide spectrum of ecologically relevant behavior, including chaos. Furthermore, there are implementational advantages of the methods. For example, due to the structure of the resulting linear systems, standard direct, and iterative solvers are guaranteed to converge. We also present the results of numerical experiments in one and two space dimensions and illustrate the simplicity of the numerical methods with short programs MATLAB: . Users can download, edit, and run the codes from http://www.uoguelph.ca/~mgarvie/, to investigate the key dynamical properties of spatially extended predator-prey interactions.

  2. Toxicity tests based on predator-prey and competitive interactions between freshwater macroinvertebrates

    SciTech Connect

    Taylor, E.J.; Blockwell, S.J.; Pascoe, D.

    1994-12-31

    Simple multi-species toxicity tests based on the predation of Daphnia magna Straus by Hydra oligactis (Pallas) and competition between Gammarus pulex (L.) and Asellus aquaticus (L.) were used to determine the effects of three reference chemicals. Criteria examined included functional responses; time to first captures; handling times (predator/prey systems) and co-existence and growth. The tests which proved most practicable and sensitive (lowest observed effects 0.1, 21, and 80 {micro}g/l for lindane, copper and 3,4 dichloroaniline, respectively) were: (1) predator-prey tests: determining changes in the size-structure of predated D. magna populations and (2) competition tests: measuring the feeding rate of G. pulex competing with A. aquaticus, using a bioassay based on the time-response analysis of the consumption of Artemia salina eggs. The concentration of a chemical which affected particular response criteria was fond to depend on the test system employed. Results of the tests indicated that effects were often not dose-related and that a given criterion could be variously affected by different test concentrations. The complex pattern of responses may be explained in terms of the differential sensitivity of the interacting species and perhaps subtle alteration in strategies. The sensitivity of the bioassay endpoints is compared to those of a range of single species tests, and their value for predicting the impact pollutants may have upon natural freshwater ecosystems is discussed.

  3. Environmental constraints upon locomotion and predator-prey interactions in aquatic organisms: an introduction.

    PubMed

    Domenici, P; Claireaux, G; McKenzie, D J

    2007-11-29

    Environmental constraints in aquatic habitats have become topics of concern to both the scientific community and the public at large. In particular, coastal and freshwater habitats are subject to dramatic variability in various environmental factors, as a result of both natural and anthropogenic processes. The protection and sustainable management of all aquatic habitats requires greater understanding of how environmental constraints influence aquatic organisms. Locomotion and predator-prey interactions are intimately linked and fundamental to the survival of mobile aquatic organisms. This paper summarizes the main points from the review and research articles which comprise the theme issue 'Environmental constraints upon locomotion and predator-prey interactions in aquatic organisms'. The articles explore how natural and anthropogenic factors can constrain these two fundamental activities in a diverse range of organisms from phytoplankton to marine mammals. Some major environmental constraints derive from the intrinsic properties of the fluid and are mechanical in nature, such as viscosity and flow regime. Other constraints derive from direct effects of factors, such as temperature, oxygen content of the water or turbidity, upon the mechanisms underlying the performance of locomotion and predator-prey interactions. The effect of these factors on performance at the tissue and organ level is reflected in constraints upon performance of the whole organism. All these constraints can influence behaviour. Ultimately, they can have an impact on ecological performance. One issue that requires particular attention is how factors such as temperature and oxygen can exert different constraints on the physiology and behaviour of different taxa and the ecological implications of this. Given the multiplicity of constraints, the complexity of their interactions, and the variety of biological levels at which they can act, there is a clear need for integration between the fields of

  4. Impact of cannibalism on predator-prey dynamics: size-structured interactions and apparent mutualism.

    PubMed

    Rudolf, Volker H W

    2008-06-01

    Direct and indirect interactions between two prey species can strongly alter the dynamics of predator-prey systems. Most predators are cannibalistic, and as a consequence, even systems with only one predator and one prey include two prey types: conspecifics and heterospecifics. The effects of the complex direct and indirect interactions that emerge in such cannibalistic systems are still poorly understood. This study examined how the indirect interaction between conspecific and heterospecific prey affects cannibalism and predation rates and how the direct interactions between both species indirectly alter the effect of the cannibalistic predator. I tested for these effects using larvae of the stream salamanders Eurycea cirrigera (prey) and Pseudotriton ruber (cannibalistic predator) by manipulating the relative densities of the conspecific and heterospecific prey in the presence and absence of the predator in experimental streams. The rates of cannibalism and heterospecific predation were proportional to the respective densities and negatively correlated, indicating a positive indirect interaction between conspecific and heterospecific prey, similar to "apparent mutualism." Direct interactions between prey species did not alter the effect of the predator. Although both types of prey showed a similar 30% reduction in night activity and switch in microhabitat use in response to the presence of the predator, cannibalism rates were three times higher than heterospecific predation rates irrespective of the relative densities of the two types of prey. Cumulative predation risks differed even more due to the 48% lower growth rate of conspecific prey. Detailed laboratory experiments suggest that the 3:1 difference in cannibalism and predation rate was due to the higher efficiency of heterospecific prey in escaping immediate attacks. However, no difference was observed when the predator was a closely related salamander species, Gyrinophilus porphyriticus, indicating that

  5. Predator-prey interaction between muricid gastropods and mussels under ocean acidification.

    PubMed

    Xu, X-Y; Yip, K R; Shin, P K S; Cheung, S G

    2017-01-11

    Predation of the muricid gastropod Thais clavigera on two-sized groups of the mussel Brachidontes variabilis was studied under three pCO2 levels, 380, 950, and 1250μatm. At 950μatm pCO2 level, the prey handling time decreased significantly and large-sized B. variabilis were preferred by T. clavigera. However, the prey consumption rate was independent of pCO2 levels, although the prey searching time increased significantly at elevated pCO2. These findings indicated that the predator-prey interaction between T. clavigera and B. variabilis was altered under ocean acidification, which will have a long-term impact on the population dynamics of the interacting species.

  6. Nonadditive impacts of temperature and basal resource availability on predator-prey interactions and phenotypes.

    PubMed

    Costa, Zacharia J; Kishida, Osamu

    2015-08-01

    Predicting the impacts of climate change on communities requires understanding how temperature affects predator-prey interactions under different biotic conditions. In cases of size-specific predation, environmental influences on the growth rate of one or both species can determine predation rates. For example, warming increases top-down control of food webs, although this depends on resource availability for prey, as increased resources may allow prey to reach a size refuge. Moreover, because the magnitude of inducible defenses depends on predation rates and resource availability for prey, temperature and resource levels also affect phenotypic plasticity. To examine these issues, we manipulated the presence/absence of predatory Hynobius retardatus salamander larvae and herbivorous Rana pirica tadpoles at two temperatures and three basal resource levels. and measured their morphology, behavior, growth and survival. Prior work has shown that both species express antagonistic plasticity against one another in which salamanders enlarge their gape width and tadpoles increase their body width to reach a size-refuge. We found that increased temperatures increased predation rates, although this was counteracted by high basal resource availability, which further decreased salamander growth. Surprisingly, salamanders caused tadpoles to grow larger and express more extreme defensive phenotypes as resource levels decreased under warming, most likely due to their increased risk of predation. Thus, temperature and resources influenced defensive phenotype expression and its impacts on predator and prey growth by affecting their interaction strength. Our results indicate that basal resource levels can modify the impacts of increased temperatures on predator-prey interactions and its consequences for food webs.

  7. Predator-prey interactions between blue crabs and ribbed mussels living in clumps

    NASA Astrophysics Data System (ADS)

    Lin, Junda

    1991-01-01

    Predator-prey interactions between blue crabs ( Callinectes sapidus) and ribbed mussels ( Geukensia demissa) were studied by manipulating different components of mussel clump structure in the laboratory to test their effects on the mussels' susceptibility to crab predation. Mussels with stronger attachment strength or those buried deeper in the sediment suffered lower mortality. Blue crabs showed no significant size selectivity when two size classes of mussles (30-40 and 50-60 mm in shell heights) were offered. When juvenile mussels were attached to adult conspecifics and completely buried in the centres of clumps as in the field, blue crabs did not actively search for them. The crabs, however, did consume juveniles as by-products when they preyed upon the adult mussels to which the juveniles were attached.

  8. Do Predators Always Win? Starfish versus Limpets: A Hands-On Activity Examining Predator-Prey Interactions

    ERIC Educational Resources Information Center

    Faria, Claudia; Boaventura, Diana; Galvao, Cecilia; Chagas, Isabel

    2011-01-01

    In this article we propose a hands-on experimental activity about predator-prey interactions that can be performed both in a research laboratory and in the classroom. The activity, which engages students in a real scientific experiment, can be explored not only to improve students' understanding about the diversity of anti-predator behaviors but…

  9. Probabilistic transition from unstable predator-prey interaction to stable coexistence of Dictyostelium discoideum and Escherichia coli.

    PubMed

    Kihara, Kumiko; Mori, Kotaro; Suzuki, Shingo; Hosoda, Kazufumi; Yamada, Akito; Matsuyama, Shin-ichi; Kashiwagi, Akiko; Yomo, Tetsuya

    2011-03-01

    Predator-prey interactions have been found at all levels within ecosystems. Despite their ecological ubiquity and importance, the process of transition to a stable coexistent state has been poorly verified experimentally. To investigate the stabilization process of predator-prey interactions, we previously constructed a reproducible experimental predator-prey system between Dictyostelium discoideum and Escherichia coli, and showed that the phenotypically changed E. coli contributed to stabilization of the system. In the present study, we focused on the transition to stable coexistence of both species after the phenotypic change in E. coli. Analysis of E. coli cells isolated from co-culture plates as single colony enabled us to readily identify the appearance of phenotypically changed E. coli that differed in colony morphology and growth rate. It was also demonstrated that two types of viscous colony, i.e., the dense-type and sparse-type, differing in spatial distribution of both species emerged probabilistically and all of the viscous colonies maintained stably were of the sparse-type. These results suggest that the phenotypically changed E. coli may produce two types of viscous colonies probabilistically. The difference in spatial distribution would affect localized interactions between both species and then cause probabilistic stabilization of predator-prey interactions.

  10. Waves affect predator-prey interactions between fish and benthic invertebrates.

    PubMed

    Gabel, Friederike; Stoll, Stefan; Fischer, Philipp; Pusch, Martin T; Garcia, Xavier-François

    2011-01-01

    Little is known about the effects of waves on predator-prey interactions in the littoral zones of freshwaters. We conducted a set of mesocosm experiments to study the differential effects of ship- and wind-induced waves on the foraging success of littoral fish on benthic invertebrates. Experiments were conducted in a wave tank with amphipods (Gammarus roeseli) as prey, and age-0 bream (Abramis brama, B0), age-0 and age-1 dace (Leuciscus leuciscus, D0 and D1) as predators. The number of gammarids suspended in the water column was higher in the wave treatments compared to a no-wave control treatment, especially during pulse waves mimicking ship-induced waves in comparison to continuous waves mimicking wind-induced waves. The resulting higher prey accessibility in the water column was differently exploited by the three types of predatory fish. D0 and D1 showed significantly higher foraging success in the pulse wave treatment than in the continuous and control treatments. The foraging success of D0 appears to be achieved more easily, since significantly higher swimming activity and more foraging attempts were recorded only for D1 under the wave treatments. In contrast, B0 consumed significantly fewer gammarids in both wave treatments than in the control. Hence, waves influenced predator-prey interactions differently depending on wave type and fish type. It is expected that regular exposure to ship-induced waves can alter littoral invertebrate and fish assemblages by increasing the predation risk for benthic invertebrates that are suspended in the water column, and by shifting fish community compositions towards species that benefit from waves.

  11. Predator/prey interaction between Pfiesteria piscicida and Rhodomonas mediated by a marine alpha proteobacterium.

    PubMed

    Alavi, M R

    2004-01-01

    The dinoflagellate Pfiesteria piscicida coexists with bacteria in aquatic environments and as such, may interact with them at the physiological level. This study was designed to investigate the influence of bacteria, present in a clonal culture of Pfiesteria piscicida, on the predator/prey relationship of this dinoflagellate with the alga Rhodomonas. A series of replenishment experiments with bacteria isolated from P. piscicida clonal culture and the bacteria-free P. piscicida derived from the same culture were carried out. In the presence of bacteria, the number of P. piscicida increased significantly when incubated with alga Rhodomonas. This enhanced growth was almost entirely due to the increased consumption rate of Rhodomonas by P. piscicida since in bacteria-free (axenic) cultures Rhodomonas were consumed at significantly reduced rates relative to cultures with bacteria. Subsequent replenishment experiments with individual bacterial isolates showed that a single isolate was responsible for the increased predation rate of P. piscicida. The presence or absence of this specific bacterium determined the outcome of the interaction between P. piscicida and Rhodomonas. Partial sequence analysis of the 16S rDNA of this isolate indicated that it was a novel marine alpha proteobacterium with sequence similarities to a Roseobacter sp. and a bacterium recently isolated from a toxic dinoflagellate Alexandrium sp.

  12. Stability analysis of predator-prey model on the case of aerosol-cloud-precipitation interactions

    NASA Astrophysics Data System (ADS)

    Sulistyowati, Rita; Kurniadi, Rizal; Srigutomo, Wahyu

    2015-09-01

    A preliminary study has been performed on the analysis of the stability of predator-prey models in the case of aerosol-cloud-precipitation interactions which initiated by Koren-Feingold. The model consists of two coupled non- linear differential equations describing the development of a population of cloud drop concentration and cloud depth for precipitation. Stability analysis of the models was conducted to understand the stability behavior of systems interactions. In this paper, the analysis focused on the model without delay. The first step was done by determining the equilibrium point of the model equations which yielded 1 non-trivial equilibrium point and 4 trivial equilibrium point. Nontrivial equilibrium point (0,0) associated with the steady state or the absence of precipitation while the non-trivial equilibrium point shows the oscillation behavior in the formation of precipitation. The next step is linearizing the equation around the equilibrium point and calculating of eigenvalues of Jacobian matrix. Evaluation of the eigen values of characteristic equation determined the type of stability. There are saddle node, star point, unstable node, stable node and center. The results of numerical computations was simulated in the form of phase portrait to support the theoretical calculation. Phase portraits show the characteristic of populations growth of cloud depth and drop cloud. In the next research, this analysis will compared to delay model to determine the effect of time delay on the equilibrium point of the system.

  13. Stability analysis of predator-prey model on the case of aerosol-cloud-precipitation interactions

    NASA Astrophysics Data System (ADS)

    Sulistyowati, Rita; Kurniadi, Rizal; Srigutomo, Wahyu

    2015-09-01

    A preliminary study has been performed on the analysis of the stability of predator-prey models in the case of aerosol-cloud-precipitation interactions which initiated by Koren-Feingold. The model consists of two coupled non-linear differential equations describing the development of a population of cloud drop concentration and cloud depth for precipitation. Stability analysis of the models was conducted to understand the stability behavior of systems interactions. In this paper, the analysis focused on the model without delay. The first step was done by determining the equilibrium point of the model equations which yielded 1 non-trivial equilibrium point and 4 trivial equilibrium point. Nontrivial equilibrium point (0,0) associated with the steady state or the absence of precipitation while the non-trivial equilibrium point shows the oscillation behavior in the formation of precipitation. The next step is linearizing the equation around the equilibrium point and calculating of eigenvalues of Jacobian matrix. Evaluation of the eigen values of characteristic equation determined the type of stability. There are saddle node, star point, unstable node, stable node and center. The results of numerical computations was simulated in the form of phase portrait to support the theoretical calculation. Phase portraits show the characteristic of populations growth of cloud depth and drop cloud. In the next research, this analysis will compared to delay model to determine the effect of time delay on the equilibrium point of the system.

  14. Predicting the effects of ocean acidification on predator-prey interactions: a conceptual framework based on coastal molluscs.

    PubMed

    Kroeker, Kristy J; Sanford, Eric; Jellison, Brittany M; Gaylord, Brian

    2014-06-01

    The influence of environmental change on species interactions will affect population dynamics and community structure in the future, but our current understanding of the outcomes of species interactions in a high-CO2 world is limited. Here, we draw upon emerging experimental research examining the effects of ocean acidification on coastal molluscs to provide hypotheses of the potential impacts of high-CO2 on predator-prey interactions. Coastal molluscs, such as oysters, mussels, and snails, allocate energy among defenses, growth, and reproduction. Ocean acidification increases the energetic costs of physiological processes such as acid-base regulation and calcification. Impacted molluscs can display complex and divergent patterns of energy allocation to defenses and growth that may influence predator-prey interactions; these include changes in shell properties, body size, tissue mass, immune function, or reproductive output. Ocean acidification has also been shown to induce complex changes in chemoreception, behavior, and inducible defenses, including altered cue detection and predator avoidance behaviors. Each of these responses may ultimately alter the susceptibility of coastal molluscs to predation through effects on predator handling time, satiation, and search time. While many of these effects may manifest as increases in per capita predation rates on coastal molluscs, the ultimate outcome of predator-prey interactions will also depend on how ocean acidification affects the specified predators, which also exhibit complex responses to ocean acidification. Changes in predator-prey interactions could have profound and unexplored consequences for the population dynamics of coastal molluscs in a high-CO2 ocean.

  15. Lagrangian studies of animal swimming and aquatic predator-prey interactions

    NASA Astrophysics Data System (ADS)

    Dabiri, John

    2008-03-01

    Experimental studies of animal swimming have been traditionally based on an Eulerian perspective in which the time-dependent flow field surrounding the animal is measured at fixed locations in space. The measured velocity field and its derivatives (e.g. vorticity) can, in principle, be used to deduce the forces, energetics, and fluid transport associated with locomotion in real fluids. However, achieving a connection between measurements of these Eulerian fields and the dynamics of locomotion has proven difficult in practice. We present the application of Lagrangian methods of flow analysis in which the time-dependent trajectories of individual tracer particles in the flow are measured experimentally and subsequently interrogated using dynamical systems tools in order to quantitatively resolve the dynamics of animal swimming. The Lagrangian methods are shown to be readily extended to time-dependent measurements in three spatial dimensions and to in situ field measurements using a recently developed self-contained underwater velocimetry apparatus (SCUVA). Case studies of jellyfish and other aquatic animals observed in the laboratory and in marine environments are used to illustrate the proposed approach. We also show that predator-prey interactions during jellyfish swimming can be addressed using the aforementioned Lagrangian methods in combination with the Maxey-Riley equations for inertial particles in fluid flow.

  16. Infrared tomographic PIV and 3D motion tracking system applied to aquatic predator-prey interaction

    NASA Astrophysics Data System (ADS)

    Adhikari, Deepak; Longmire, Ellen K.

    2013-02-01

    Infrared tomographic PIV and 3D motion tracking are combined to measure evolving volumetric velocity fields and organism trajectories during aquatic predator-prey interactions. The technique was used to study zebrafish foraging on both non-evasive and evasive prey species. Measurement volumes of 22.5 mm × 10.5 mm × 12 mm were reconstructed from images captured on a set of four high-speed cameras. To obtain accurate fluid velocity vectors within each volume, fish were first masked out using an automated visual hull method. Fish and prey locations were identified independently from the same image sets and tracked separately within the measurement volume. Experiments demonstrated that fish were not influenced by the infrared laser illumination or the tracer particles. Results showed that the zebrafish used different strategies, suction and ram feeding, for successful capture of non-evasive and evasive prey, respectively. The two strategies yielded different variations in fluid velocity between the fish mouth and the prey. In general, the results suggest that the local flow field, the direction of prey locomotion with respect to the predator and the relative accelerations and speeds of the predator and prey may all be significant in determining predation success.

  17. Effects of Endosulfan on Predator-Prey Interactions Between Catfish and Schistosoma Host Snails.

    PubMed

    Monde, Concillia; Syampungani, Stephen; Van den Brink, Paul J

    2016-08-01

    The effect of the pesticide endosulfan on predator-prey interactions between catfish and Schistosoma host snails was assessed in static tank experiments. Hybrid catfish (Clarias gariepinus × C. ngamensis) and Bulinus globosus were subjected to various endosulfan concentrations including an untreated control. The 48- and 96-h LC50 values for catfish were 1.0 and <0.5 µg/L, respectively, whereas the 48- and 96-h LC50 values for snails were 1137 and 810 µg/L. To assess sublethal effects on the feeding of the catfish on B. globosus, endosulfan concentrations between 0.03 and 1.0 µg/L were used. Predation was significantly greater (p < 0.001) in control tanks than in all other treatments. There was progressively decreasing predation with increasing toxicant concentration. Biological control of Schistosoma host snails using fish may be affected in endosulfan-polluted aquatic systems of Southern Africa because it has been found present at concentrations that are indicated to cause lethal effects on the evaluated hybrid catfish and to inhibit the predation of snails by this hybrid catfish.

  18. How moths escape bats: predicting outcomes of predator-prey interactions.

    PubMed

    Corcoran, Aaron J; Conner, William E

    2016-09-01

    What determines whether fleeing prey escape from attacking predators? To answer this question, biologists have developed mathematical models that incorporate attack geometries, pursuit and escape trajectories, and kinematics of predator and prey. These models have rarely been tested using data from actual predator-prey encounters. To address this problem, we recorded multi-camera infrared videography of bat-insect interactions in a large outdoor enclosure. We documented 235 attacks by four Myotis volans bats on a variety of moths. Bat and moth flight trajectories from 50 high-quality attacks were reconstructed in 3-D. Despite having higher maximum velocity, deceleration and overall turning ability, bats only captured evasive prey in 69 of 184 attacks (37.5%); bats captured nearly all moths not evading attack (50 of 51; 98%). Logistic regression indicated that prey radial acceleration and escape angle were the most important predictors of escape success (44 of 50 attacks correctly classified; 88%). We found partial support for the turning gambit mathematical model; however, it underestimated the escape threshold by 25% of prey velocity and did not account for prey escape angle. Whereas most prey escaping strikes flee away from predators, moths typically escaped chasing bats by turning with high radial acceleration toward 'safety zones' that flank the predator. This strategy may be widespread in prey engaged in chases. Based on these findings, we developed a novel geometrical model of predation. We discuss implications of this model for the co-evolution of predator and prey kinematics and pursuit and escape strategies.

  19. Not So Fast: Swimming Behavior of Sailfish during Predator-Prey Interactions using High-Speed Video and Accelerometry.

    PubMed

    Marras, Stefano; Noda, Takuji; Steffensen, John F; Svendsen, Morten B S; Krause, Jens; Wilson, Alexander D M; Kurvers, Ralf H J M; Herbert-Read, James; Boswell, Kevin M; Domenici, Paolo

    2015-10-01

    Billfishes are considered among the fastest swimmers in the oceans. Despite early estimates of extremely high speeds, more recent work showed that these predators (e.g., blue marlin) spend most of their time swimming slowly, rarely exceeding 2 m s(-1). Predator-prey interactions provide a context within which one may expect maximal speeds both by predators and prey. Beyond speed, however, an important component determining the outcome of predator-prey encounters is unsteady swimming (i.e., turning and accelerating). Although large predators are faster than their small prey, the latter show higher performance in unsteady swimming. To contrast the evading behaviors of their highly maneuverable prey, sailfish and other large aquatic predators possess morphological adaptations, such as elongated bills, which can be moved more rapidly than the whole body itself, facilitating capture of the prey. Therefore, it is an open question whether such supposedly very fast swimmers do use high-speed bursts when feeding on evasive prey, in addition to using their bill for slashing prey. Here, we measured the swimming behavior of sailfish by using high-frequency accelerometry and high-speed video observations during predator-prey interactions. These measurements allowed analyses of tail beat frequencies to estimate swimming speeds. Our results suggest that sailfish burst at speeds of about 7 m s(-1) and do not exceed swimming speeds of 10 m s(-1) during predator-prey interactions. These speeds are much lower than previous estimates. In addition, the oscillations of the bill during swimming with, and without, extension of the dorsal fin (i.e., the sail) were measured. We suggest that extension of the dorsal fin may allow sailfish to improve the control of the bill and minimize its yaw, hence preventing disturbance of the prey. Therefore, sailfish, like other large predators, may rely mainly on accuracy of movement and the use of the extensions of their bodies, rather than resorting

  20. Clay Caterpillar Whodunit: A Customizable Method for Studying Predator-Prey Interactions in the Field

    ERIC Educational Resources Information Center

    Curtis, Rachel; Klemens, Jeffrey A.; Agosta, Salvatore J.; Bartlow, Andrew W.; Wood, Steve; Carlson, Jason A.; Stratford, Jeffrey A.; Steele, Michael A.

    2013-01-01

    Predator-prey dynamics are an important concept in ecology, often serving as an introduction to the field of community ecology. However, these dynamics are difficult for students to observe directly. We describe a methodology that employs model caterpillars made of clay to estimate rates of predator attack on a prey species. This approach can be…

  1. Linking biomechanics and ecology through predator-prey interactions: flight performance of dragonflies and their prey.

    PubMed

    Combes, S A; Rundle, D E; Iwasaki, J M; Crall, J D

    2012-03-15

    Aerial predation is a highly complex, three-dimensional flight behavior that affects the individual fitness and population dynamics of both predator and prey. Most studies of predation adopt either an ecological approach in which capture or survival rates are quantified, or a biomechanical approach in which the physical interaction is studied in detail. In the present study, we show that combining these two approaches provides insight into the interaction between hunting dragonflies (Libellula cyanea) and their prey (Drosophila melanogaster) that neither type of study can provide on its own. We performed >2500 predation trials on nine dragonflies housed in an outdoor artificial habitat to identify sources of variability in capture success, and analyzed simultaneous predator-prey flight kinematics from 50 high-speed videos. The ecological approach revealed that capture success is affected by light intensity in some individuals but that prey density explains most of the variability in success rate. The biomechanical approach revealed that fruit flies rarely respond to approaching dragonflies with evasive maneuvers, and are rarely successful when they do. However, flies perform random turns during flight, whose characteristics differ between individuals, and these routine, erratic turns are responsible for more failed predation attempts than evasive maneuvers. By combining the two approaches, we were able to determine that the flies pursued by dragonflies when prey density is low fly more erratically, and that dragonflies are less successful at capturing them. This highlights the importance of considering the behavior of both participants, as well as their biomechanics and ecology, in developing a more integrative understanding of organismal interactions.

  2. Enhanced aphid abundance in spring desynchronizes predator-prey and plant-microorganism interactions.

    PubMed

    Fuchs, Benjamin; Breuer, Tatjana; Findling, Simone; Krischke, Markus; Mueller, Martin J; Holzschuh, Andrea; Krauss, Jochen

    2017-02-01

    Climate change leads to phenology shifts of many species. However, not all species shift in parallel, which can desynchronize interspecific interactions. Within trophic cascades, herbivores can be top-down controlled by predators or bottom-up controlled by host plant quality and host symbionts, such as plant-associated micro-organisms. Synchronization of trophic levels is required to prevent insect herbivore (pest) outbreaks. In a common garden experiment, we simulated an earlier arrival time (~2 weeks) of the aphid Rhopalosiphum padi on its host grass Lolium perenne by enhancing the aphid abundance during the colonization period. L. perenne was either uninfected or infected with the endophytic fungus Epichloë festucae var. lolii. The plant symbiotic fungus produces insect deterring alkaloids within the host grass. Throughout the season, we tested the effects of enhanced aphid abundance in spring on aphid predators (top-down) and grass-endophyte (bottom-up) responses. Higher aphid population sizes earlier in the season lead to overall higher aphid abundances, as predator occurrence was independent of aphid abundances on the pots. Nonetheless, after predator occurrence, aphids were controlled within 2 weeks on all pots. Possible bottom-up control of aphids by increased endophyte concentrations occurred time delayed after high herbivore abundances. Endophyte-derived alkaloid concentrations were not significantly affected by enhanced aphid abundance but increased throughout the season. We conclude that phenology shifts in an herbivorous species can desynchronize predator-prey and plant-microorganism interactions and might enhance the probability of pest outbreaks with climate change.

  3. Increased autumn rainfall disrupts predator-prey interactions in fragmented boreal forests.

    PubMed

    Terraube, Julien; Villers, Alexandre; Poudré, Léo; Varjonen, Rauno; Korpimäki, Erkki

    2016-07-02

    There is a pressing need to understand how changing climate interacts with land-use change to affect predator-prey interactions in fragmented landscapes. This is particularly true in boreal ecosystems facing fast climate change and intensification in forestry practices. Here, we investigated the relative influence of autumn climate and habitat quality on the food-storing behaviour of a generalist predator, the pygmy owl, using a unique data set of 15 850 prey items recorded in western Finland over 12 years. Our results highlighted strong effects of autumn climate (number of days with rainfall and with temperature <0 °C) on food-store composition. Increasing frequency of days with precipitation in autumn triggered a decrease in (i) total prey biomass stored, (ii) the number of bank voles (main prey) stored, and (iii) the scaled mass index of pygmy owls. Increasing proportions of old spruce forests strengthened the functional response of owls to variations in vole abundance and were more prone to switch from main prey to alternative prey (passerine birds) depending on local climate conditions. High-quality habitat may allow pygmy owls to buffer negative effects of inclement weather and cyclic variation in vole abundance. Additionally, our results evidenced sex-specific trends in body condition, as the scaled mass index of smaller males increased while the scaled mass index of larger females decreased over the study period, probably due to sex-specific foraging strategies and energy requirements. Long-term temporal stability in local vole abundance refutes the hypothesis of climate-driven change in vole abundance and suggests that rainier autumns could reduce the vulnerability of small mammals to predation by pygmy owls. As small rodents are key prey species for many predators in northern ecosystems, our findings raise concern about the impact of global change on boreal food webs through changes in main prey vulnerability.

  4. Predator-prey interactions in a changing world: humic stress disrupts predator threat evasion in copepods.

    PubMed

    Santonja, Mathieu; Minguez, Laetitia; Gessner, Mark O; Sperfeld, Erik

    2016-12-29

    Increasing inputs of colored dissolved organic matter (cDOM), which is mainly composed of humic substances (HS), are a widespread phenomenon of environmental change in aquatic ecosystems. This process of brownification alters the chemical conditions of the environment, but knowledge is lacking of whether elevated cDOM and HS levels interfere with the ability of prey species to evade chemical predator cues and thus affect predator-prey interactions. We assessed the effects of acute and prolonged exposure to HS at increasing concentrations on the ability of freshwater zooplankton to avoid predator threat (imposed by fish kairomones) in laboratory trials with two calanoid copepods (Eudiaptomus gracilis and Heterocope appendiculata). Populations of both species clearly avoided water containing fish kairomones. However, the avoidance behavior weakened with increasing HS concentration, suggesting that HS affected the ability of copepods to perceive or respond to the predator cue. The behavioral responses of the two copepod populations to increasing HS concentrations differed, with H. appendiculata being more sensitive than E. gracilis in an acute exposure scenario, whereas E. gracilis responded more strongly after prolonged exposure. Both showed similar physiological impairment after prolonged exposure, as revealed by their oxidative balance as a stress indicator, but mortality increased more strongly for H. appendiculata when the HS concentration increased. These results indicate that reduced predator threat evasion in the presence of cDOM could make copepods more susceptible to predation in future, with variation in the strength of responses among populations leading to changes in zooplankton communities and lake food-web structure.

  5. The interaction of spatial scale and predator-prey functional response

    USGS Publications Warehouse

    Blaine, T.W.; DeAngelis, D.L.

    1997-01-01

    Predator-prey models with a prey-dependent functional response have the property that the prey equilibrium value is determined only by predator characteristics. However, in observed natural systems (for instance, snail-periphyton interactions in streams) the equilibrium periphyton biomass has been shown experimentally to be influenced by both snail numbers and levels of available limiting nutrient in the water. Hypothesizing that the observed patchiness in periphyton in streams may be part of the explanation for the departure of behavior of the equilibrium biomasses from predictions of the prey-dependent response of the snail-periphyton system, we developed and analyzed a spatially-explicit model of periphyton in which snails were modeled as individuals in their movement and feeding, and periphyton was modeled as patches or spatial cells. Three different assumptions on snail movement were used: (1) random movement between spatial cells, (2) tracking by snails of local abundances of periphyton, and (3) delayed departure of snails from cells to reduce costs associated with movement. Of these assumptions, only the third strategy, based on an herbivore strategy of staying in one patch until local periphyton biomass concentration falls below a certain threshold amount, produced results in which both periphyton and snail biomass increased with nutrient input. Thus, if data are averaged spatially over the whole system, we expect that a ratio-dependent functional response may be observed if the herbivore behaves according to the third assumption. Both random movement and delayed cell departure had the result that spatial heterogeneity of periphyton increased with nutrient input.

  6. Patterns formations in a diffusive ratio-dependent predator-prey model of interacting populations

    NASA Astrophysics Data System (ADS)

    Camara, B. I.; Haque, M.; Mokrani, H.

    2016-11-01

    The present investigation deals with the analysis of the spatial pattern formation of a diffusive predator-prey system with ratio-dependent functional response involving the influence of intra-species competition among predators within two-dimensional space. The appropriate condition of Turing instability around the interior equilibrium point of the present model has been determined. The emergence of complex patterns in the diffusive predator-prey model is illustrated through numerical simulations. These results are based on the existence of bifurcations of higher codimension such as Turing-Hopf, Turing-Saddle-node, Turing-Transcritical bifurcation, and the codimension- 3 ​Turing-Takens-Bogdanov bifurcation. The paper concludes with discussions of our results in ecology.

  7. Interactive influence of biotic and abiotic cues on the plasticity of preferred body temperatures in a predator-prey system.

    PubMed

    Smolinský, Radovan; Gvoždík, Lumír

    2012-09-01

    The ability to modify phenotypes in response to heterogeneity of the thermal environment represents an important component of an ectotherm's non-genetic adaptive capacity. Despite considerable attention being dedicated to the study of thermally-induced developmental plasticity, whether or not interspecific interactions shape the plastic response in both a predator and its prey remains unknown. We tested several predictions about the joint influence of predator/prey scents and thermal conditions on the plasticity of preferred body temperatures (T (p)) in both actors of this interaction, using a dragonfly nymphs-newt larvae system. Dragonfly nymphs (Aeshna cyanea) and newt eggs (Ichthyosaura alpestris) were subjected to fluctuating cold and warm thermal regimes (7-12 and 12-22°C, respectively) and the presence/absence of a predator or prey chemical cues. Preferred body temperatures were measured in an aquatic thermal gradient (5-33°C) over a 24-h period. Newt T (p) increased with developmental temperature irrespective of the presence/absence of predator cues. In dragonflies, thermal reaction norms for T (p) were affected by the interaction between temperature and prey cues. Specifically, the presence of newt scents in cold regime lowered dragonfly T (p). We concluded that predator-prey interactions influenced thermally-induced plasticity of T (p) but not in a reciprocal fashion. The occurrence of frequency-dependent thermal plasticity may have broad implications for predator-prey population dynamics, the evolution of thermal biology traits, and the consequences of sustaining climate change within ecological communities.

  8. Spatial ecology of predator-prey interactions: corridors and patch shape influence seed predation.

    SciTech Connect

    J. L . Orrock; B. J. Danielson; M. J. Burns; D. J. Levey

    2003-02-03

    J.L. Orrock, B.J. Danielson, M.J. Burns, and D.J. Levey. 2003. Spatial ecology of predator-prey interactions: corridors and patch shape influence seed predation. Ecology, 84(10):2589-2599. Abstract: Corridors that connect patches of disjunct habitat may be promising tools for mediating the negative impacts of habitat fragmentation, but little is known about how corridors affect ecological interactions. In eight 12-ha experimental landscapes, we examined how corridors affect the impact of invertebrate, rodent, and avian seed predators on pokeweed, Phytolacca americana. Over 13 months in 2000 and 2001, we quantified the effects of patch shape, connectivity, and predator type on the number of seeds germinating in the field (germinants), seed removal, and the viability of remaining seeds. Corridors did not affect the number of P. americana germinants in experimental exclosures or the viability of seeds remaining in exclosures. However, corridors affected the removal of seeds in a predator-specific manner: invertebrates removed more seeds in unconnected patches, whereas rodents removed more seeds in connected patches. Seed removal by birds was similar in connected and unconnected patches. Total seed removal by all seed predators was not affected by corridors, because invertebrates removed more seeds where rodents removed fewer seeds, and vice versa. Overall, seed predation signi®cantly reduced the number and viability of remaining seeds, and reduced the number of germinants in 2000 but not in 2001. The abundance of naturally occurring P. americana plants in our experimental patches in 2000 decreased with increasing seed removal from exclosures but was not related to viability or germinants in 2000, suggesting that seed removal may shape the distribution and abundance of this species. Complementary patterns of seed removal by rodents and invertebrates suggest that corridors alter the effects of these predator taxa by changing the relative amounts of edge and core

  9. Revisiting the classics: considering nonconsumptive effects in textbook examples of predator-prey interactions.

    PubMed

    Peckarsky, Barbara L; Abrams, Peter A; Bolnick, Daniel I; Dill, Lawrence M; Grabowski, Jonathan H; Luttbeg, Barney; Orrock, John L; Peacor, Scott D; Preisser, Evan L; Schmitz, Oswald J; Trussell, Geoffrey C

    2008-09-01

    Predator effects on prey dynamics are conventionally studied by measuring changes in prey abundance attributed to consumption by predators. We revisit four classic examples of predator-prey systems often cited in textbooks and incorporate subsequent studies of nonconsumptive effects of predators (NCE), defined as changes in prey traits (e.g., behavior, growth, development) measured on an ecological time scale. Our review revealed that NCE were integral to explaining lynx-hare population dynamics in boreal forests, cascading effects of top predators in Wisconsin lakes, and cascading effects of killer whales and sea otters on kelp forests in nearshore marine habitats. The relative roles of consumption and NCE of wolves on moose and consequent indirect effects on plant communities of Isle Royale depended on climate oscillations. Nonconsumptive effects have not been explicitly tested to explain the link between planktonic alewives and the size structure of the zooplankton, nor have they been invoked to attribute keystone predator status in intertidal communities or elsewhere. We argue that both consumption and intimidation contribute to the total effects of keystone predators, and that characteristics of keystone consumers may differ from those of predators having predominantly NCE. Nonconsumptive effects are often considered as an afterthought to explain observations inconsistent with consumption-based theory. Consequently, NCE with the same sign as consumptive effects may be overlooked, even though they can affect the magnitude, rate, or scale of a prey response to predation and can have important management or conservation implications. Nonconsumptive effects may underlie other classic paradigms in ecology, such as delayed density dependence and predator-mediated prey coexistence. Revisiting classic studies enriches our understanding of predator-prey dynamics and provides compelling rationale for ramping up efforts to consider how NCE affect traditional predator-prey

  10. Turbulence, Temperature, and Turbidity: The Ecomechanics of Predator-Prey Interactions in Fishes.

    PubMed

    Higham, Timothy E; Stewart, William J; Wainwright, Peter C

    2015-07-01

    Successful feeding and escape behaviors in fishes emerge from precise integration of locomotion and feeding movements. Fishes inhabit a wide range of habitats, including still ponds, turbulent rivers, and wave-pounded shorelines, and these habitats vary in several physical variables that can strongly impact both predator and prey. Temperature, the conditions of ambient flow, and light regimes all have the potential to affect predator-prey encounters, yet the integration of these factors into our understanding of fish biomechanics is presently limited. We explore existing knowledge of kinematics, muscle function, hydrodynamics, and evolutionary morphology in order to generate a framework for understanding the ecomechanics of predator-prey encounters in fishes. We expect that, in the absence of behavioral compensation, a decrease in temperature below the optimum value will reduce the muscle power available both to predator and prey, thus compromising locomotor performance, suction-feeding mechanics of predators, and the escape responses of prey. Ambient flow, particularly turbulent flow, will also challenge predator and prey, perhaps resulting in faster attacks by predators to minimize mechanical instability, and a reduced responsiveness of prey to predator-generated flow. Reductions in visibility, caused by depth, turbidity, or diel fluctuations in light, will decrease distances at which either predator or prey detect each other, and generally place a greater emphasis on the role of mechanoreception both for predator and prey. We expect attack distances to be shortened when visibility is low. Ultimately, the variation in abiotic features of a fish's environment will affect locomotion and feeding performance of predators, and the ability of the prey to escape. The nature of these effects and how they impact predator-prey encounters stands as a major challenge for future students of the biomechanics of fish during feeding. Just as fishes show adaptations for capturing

  11. Feeling the heat: the effect of acute temperature changes on predator-prey interactions in coral reef fish.

    PubMed

    Allan, Bridie J M; Domenici, Paolo; Munday, Phillip L; McCormick, Mark I

    2015-01-01

    Recent studies demonstrate that the elevated temperatures predicted to occur by the end of the century can affect the physiological performance and behaviour of larval and juvenile fishes; however, little is known of the effect of these temperatures on ecological processes, such as predator-prey interactions. Here, we show that exposure to elevated temperatures significantly affected the predator-prey interactions of a pair of common reef fish, the planktivorous damselfish (Pomacentrus wardi) and the piscivorous dottyback (Pseudochromis fuscus). When predators exposed to elevated temperatures interacted with prey exposed in a similar manner, maximal attack speeds increased. This effect coupled with decreasing prey escape speeds and escape distances led to increased predation rates. Prey exposed to elevated temperatures also had decreased reaction distances and increased apparent looming threshold, suggesting that their sensory performance was affected. This occurred despite the increase in maximal attack speeds, which in other species has been shown to increase reaction distances. These results suggest that the escape performance of prey is sensitive to short-term increases in ambient temperature. As marine environments become more thermally variable in the future, our results demonstrate that some predators may become more successful, suggesting that there will be strong selection for the maintenance of maximal escape performance in prey. In the present era of rapid climate change, understanding how changes to individual performance influence the relationships between predators and their prey will be increasingly important in predicting the effects of climate change within ecosystems.

  12. Predator-prey interactions amongst Permo-Triassic terrestrial vertebrates as a deterministic factor influencing faunal collapse and turnover.

    PubMed

    Codron, J; Botha-Brink, J; Codron, D; Huttenlocker, A K; Angielczyk, K D

    2017-01-01

    Unlike modern mammalian communities, terrestrial Paleozoic and Mesozoic vertebrate systems were characterized by carnivore faunas that were as diverse as their herbivore faunas. The comparatively narrow food base available to carnivores in these paleosystems raises the possibility that predator-prey interactions contributed to unstable ecosystems by driving populations to extinction. Here, we develop a model of predator-prey interactions based on diversity, abundance and body size patterns observed in the Permo-Triassic vertebrate fossil record of the Karoo Basin, South Africa. Our simulations reflect empirical evidence that despite relatively high carnivore: herbivore species ratios, herbivore abundances were sufficient for carnivores to maintain required intake levels through most of the Karoo sequence. However, high mortality rates amongst herbivore populations, even accounting for birth rates of different-sized species, are predicted for assemblages immediately preceding the end-Guadalupian and end-Permian mass extinctions, as well as in the Middle Triassic when archosaurs replaced therapsids as the dominant terrestrial fauna. These results suggest that high rates of herbivore mortality could have played an important role in biodiversity declines leading up to each of these turnover events. Such declines would have made the systems especially vulnerable to subsequent stochastic events and environmental perturbations, culminating in large-scale extinctions.

  13. A modified predator-prey model for the interaction of police and gangs.

    PubMed

    Sooknanan, J; Bhatt, B; Comissiong, D M G

    2016-09-01

    A modified predator-prey model with transmissible disease in both the predator and prey species is proposed and analysed, with infected prey being more vulnerable to predation and infected predators hunting at a reduced rate. Here, the predators are the police and the prey the gang members. In this system, we examine whether police control of gangs is possible. The system is analysed with the help of stability analyses and numerical simulations. The system has five steady states-four of which involve no core gang members and one in which all the populations coexist. Thresholds are identified which determine when the predator and prey populations survive and when the disease remains endemic. For parameter values where the spread of disease among the police officers is greater than the death of the police officers, the diseased predator population survives, when it would otherwise become extinct.

  14. Predator-prey spatial game as a tool to understand the effects of protected areas on harvester-wildlife interactions.

    PubMed

    Tolon, Vincent; Martin, Jodie; Dray, Stéphane; Loison, Anne; Fischer, Claude; Baubet, Eric

    2012-03-01

    No-take reserves are sometimes implemented for sustainable population harvesting because they offer opportunities for animals to spatially avoid harvesters, whereas harvesters can benefit in return from the reserve spillover. Here, we used the framework of predator-prey spatial games to understand how protected areas shape spatial interactions between harvesters and target species and determine animal mortality. In these spatial games, the "predator" searches for "prey" and matches their habitat use, unless it meets spatial constraints offering the opportunity for prey to avoid the mortality source. However, such prey refuges could attract predators in the surroundings, which questions the potential benefits for prey. We located, in the Geneva Basin (France), hunting dogs and wild boar Sus scrofa L. during hunting seasons with global positioning systems and very-high-frequency collars. We quantified how the proximity of the reserve shaped the matching between both habitat uses using multivariate analyses and linked these patterns to animals' mortality with a Cox regression analysis. Results showed that habitat uses by both protagonists disassociated only when hunters were spatially constrained by the reserve. In response, hunters increased hunting efforts near the reserve boundary, which induced a higher risk exposure for animals settled over the reserve. The mortality of adult wild boar decreased near the reserve as the mismatch between both habitat uses increased. However the opposite pattern was determined for younger individuals that suffered from the high level of hunting close to the reserve. The predator-prey analogy was an accurate prediction of how the protected area modified spatial relationships between harvesters and target species. Prey-searching strategies adopted by hunters around reserves strongly impacted animal mortality and the efficiency of the protected area for this harvested species. Increasing reserve sizes and/or implementing buffer areas

  15. Effects of an infectious fungus, Batrachochytrium dendrobatidis, on amphibian predator-prey interactions.

    PubMed

    Han, Barbara A; Searle, Catherine L; Blaustein, Andrew R

    2011-02-02

    The effects of parasites and pathogens on host behaviors may be particularly important in predator-prey contexts, since few animal behaviors are more crucial for ensuring immediate survival than the avoidance of lethal predators in nature. We examined the effects of an emerging fungal pathogen of amphibians, Batrachochytrium dendrobatidis, on anti-predator behaviors of tadpoles of four frog species. We also investigated whether amphibian predators consumed infected prey, and whether B. dendrobatidis caused differences in predation rates among prey in laboratory feeding trials. We found differences in anti-predator behaviors among larvae of four amphibian species, and show that infected tadpoles of one species (Anaxyrus boreas) were more active and sought refuge more frequently when exposed to predator chemical cues. Salamander predators consumed infected and uninfected tadpoles of three other prey species at similar rates in feeding trials, and predation risk among prey was unaffected by B. dendrobatidis. Collectively, our results show that even sub-lethal exposure to B. dendrobatidis can alter fundamental anti-predator behaviors in some amphibian prey species, and suggest the unexplored possibility that indiscriminate predation between infected and uninfected prey (i.e., non-selective predation) could increase the prevalence of this widely distributed pathogen in amphibian populations. Because one of the most prominent types of predators in many amphibian systems is salamanders, and because salamanders are susceptible to B. dendrobatidis, our work suggests the importance of considering host susceptibility and behavioral changes that could arise from infection in both predators and prey.

  16. Inducible offences affect predator-prey interactions and life-history plasticity in both predators and prey.

    PubMed

    Kishida, Osamu; Costa, Zacharia; Tezuka, Ayumi; Michimae, Hirofumi

    2014-07-01

    Phenotypic plasticity can have strong impacts on predator-prey interactions. Although much work has examined the effects of inducible defences, less understood is how inducible offences in predators affect predator-prey interactions and predator and prey phenotypes. Here, we examine the impacts of an inducible offence on the interactions and life histories of a cohort of predatory Hynobius retardatus salamander larvae and their prey, Rana pirica tadpoles. We examined larval (duration, survival) and post-metamorphic (size) traits of both species after manipulating the presence/absence of tadpoles and salamanders with offensive (broadened gape width) or non-offensive phenotypes in pond enclosures. Offensive phenotype salamanders reduced tadpole survival and metamorph emergence by 58% compared to tadpole-only treatments, and by over 30% compared to non-offensive phenotypes. Average time to metamorphosis of frogs was delayed by 30% in the presence of salamanders, although this was independent of salamander phenotype. Thus, offensive phenotype salamanders reduced the number of tadpoles remaining in the pond over time by reducing tadpole survival, not by altering patterns of metamorph emergence. Offensive phenotypes also caused tadpoles to metamorphose 19% larger than no salamander treatments and 6% larger than non-offensive phenotype treatments. Pooled across salamander treatments, tadpoles caused salamanders to reach metamorphosis faster and larger. Moreover, in the presence of tadpoles, offensive phenotype salamanders metamorphosed 25% faster and 5% larger than non-offensive phenotype salamanders, but in their absence, neither their size nor larval period differed from non-offensive phenotype individuals. To our knowledge, this study is the first to demonstrate that inducible offences in predators can have strong impacts on predator and prey phenotypes across multiple life stages. Since early metamorphosis at a larger size has potential fitness advantages, the impacts

  17. Evolution determines how global warming and pesticide exposure will shape predator-prey interactions with vector mosquitoes.

    PubMed

    Tran, Tam T; Janssens, Lizanne; Dinh, Khuong V; Op de Beeck, Lin; Stoks, Robby

    2016-07-01

    How evolution may mitigate the effects of global warming and pesticide exposure on predator-prey interactions is directly relevant for vector control. Using a space-for-time substitution approach, we addressed how 4°C warming and exposure to the pesticide endosulfan shape the predation on Culex pipiens mosquitoes by damselfly predators from replicated low- and high-latitude populations. Although warming was only lethal for the mosquitoes, it reduced predation rates on these prey. Possibly, under warming escape speeds of the mosquitoes increased more than the attack efficiency of the predators. Endosulfan imposed mortality and induced behavioral changes (including increased filtering and thrashing and a positional shift away from the bottom) in mosquito larvae. Although the pesticide was only lethal for the mosquitoes, it reduced predation rates by the low-latitude predators. This can be explained by the combination of the evolution of a faster life history and associated higher vulnerabilities to the pesticide (in terms of growth rate and lowered foraging activity) in the low-latitude predators and pesticide-induced survival selection in the mosquitoes. Our results suggest that predation rates on mosquitoes at the high latitude will be reduced under warming unless predators evolve toward the current low-latitude phenotype or low-latitude predators move poleward.

  18. Coevolution can reverse predator-prey cycles.

    PubMed

    Cortez, Michael H; Weitz, Joshua S

    2014-05-20

    A hallmark of Lotka-Volterra models, and other ecological models of predator-prey interactions, is that in predator-prey cycles, peaks in prey abundance precede peaks in predator abundance. Such models typically assume that species life history traits are fixed over ecologically relevant time scales. However, the coevolution of predator and prey traits has been shown to alter the community dynamics of natural systems, leading to novel dynamics including antiphase and cryptic cycles. Here, using an eco-coevolutionary model, we show that predator-prey coevolution can also drive population cycles where the opposite of canonical Lotka-Volterra oscillations occurs: predator peaks precede prey peaks. These reversed cycles arise when selection favors extreme phenotypes, predator offense is costly, and prey defense is effective against low-offense predators. We present multiple datasets from phage-cholera, mink-muskrat, and gyrfalcon-rock ptarmigan systems that exhibit reversed-peak ordering. Our results suggest that such cycles are a potential signature of predator-prey coevolution and reveal unique ways in which predator-prey coevolution can shape, and possibly reverse, community dynamics.

  19. Predator-prey interactions between Synbranchus marmoratus (Teleostei: Synbranchidae) and Hypsiboas pulchellus tadpoles (Amphibia: Hylidae): importance of lateral line in nocturnal predation and effects of fenitrothion exposure.

    PubMed

    Junges, Celina M; Lajmanovich, Rafael C; Peltzer, Paola M; Attademo, Andres M; Bassó, Agustín

    2010-11-01

    Environmental contaminants can disrupt interactions between aquatic species by altering community structure. We explored predator-prey interactions between marbled swamp juvenile eels (Synbranchus marmoratus; predator) and anuran tadpoles (Hypsiboas pulchellus; prey) in relation to two aspects: the importance of lateral line in the predator and whether the absence of light modifies predation rates; and the effect of a sub-lethal concentration of fenitrothion on both predator and prey. Eels were tested under two sensory conditions (lateral line intact and lateral line blocked by cobalt chloride) in dark conditions. Predation rates were evaluated using different treatments that combined predator and prey exposed or not to insecticide. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were also measured in muscle samples of eels and tadpoles to explore whether fenitrothion affects predator and prey differentially. Marbled swamp eels were more efficient in feeding on tadpoles during the night than during the day, showing that lateral line makes an important contribution to prey detection and capture. Regarding pesticide effects, short-term (6 h) exposure to an ecologically relevant fenitrothion dose of 2.5 mg L(-1) altered the predator-prey relationship by changing prey behaviour, reducing prey detection and therefore increasing tadpole survival. At this concentration, the outcome of the predator-prey relationship appears biased in favor of the exposed tadpoles, which were released from predation risk, despite their altered behaviour and the higher inhibition percentages of tail BChE (70%) and AChE (51%) than in control individuals. Our study involving these model species and agrochemicals demonstrates that fenitrothion affected the outcome of a predator-prey relationship. Further studies are needed, in these species and other native amphibians, to investigate the nature of the mechanisms responsible for the adverse effects of pesticides on

  20. a Numerical Study on Predator Prey Model

    NASA Astrophysics Data System (ADS)

    Laham, Mohamed Faris; Krishnarajah, Isthrinayagy; Jumaat, Abdul Kadir

    Stochastic spatial models are becoming a popular tool for understand the ecological and evolution of ecosystem problems. We consider the predator prey interactions in term of stochastic representation of this Lotka-Volterra model and explore the use of stochastic processes to extinction behavior of the interacting populations. Here, we present simulation of stochastic processes of continuous time Lotka-Volterra model. Euler method has been used to solve the predator prey system. The trajectory spiral graph has been plotted based on obtained solution to show the population cycle of predator as a function of time.

  1. Interaction between Coastal and Oceanic Ecosystems of the Western and Central Pacific Ocean through Predator-Prey Relationship Studies

    PubMed Central

    Allain, Valerie; Fernandez, Emilie; Hoyle, Simon D.; Caillot, Sylvain; Jurado-Molina, Jesus; Andréfouët, Serge; Nicol, Simon J.

    2012-01-01

    The Western and Central Pacific Ocean sustains the highest tuna production in the world. This province is also characterized by many islands and a complex bathymetry that induces specific current circulation patterns with the potential to create a high degree of interaction between coastal and oceanic ecosystems. Based on a large dataset of oceanic predator stomach contents, our study used generalized linear models to explore the coastal-oceanic system interaction by analyzing predator-prey relationship. We show that reef organisms are a frequent prey of oceanic predators. Predator species such as albacore (Thunnus alalunga) and yellowfin tuna (Thunnus albacares) frequently consume reef prey with higher probability of consumption closer to land and in the western part of the Pacific Ocean. For surface-caught-predators consuming reef prey, this prey type represents about one third of the diet of predators smaller than 50 cm. The proportion decreases with increasing fish size. For predators caught at depth and consuming reef prey, the proportion varies with predator species but generally represents less than 10%. The annual consumption of reef prey by the yellowfin tuna population was estimated at 0.8±0.40CV million tonnes or 2.17×1012±0.40CV individuals. This represents 6.1%±0.17CV in weight of their diet. Our analyses identify some of the patterns of coastal-oceanic ecosystem interactions at a large scale and provides an estimate of annual consumption of reef prey by oceanic predators. PMID:22615796

  2. Seasonal shifts in predator body size diversity and trophic interactions in size-structured predator-prey systems.

    PubMed

    Rudolf, Volker H W

    2012-05-01

    1. Theory suggests that the relationship between predator diversity and prey suppression should depend on variation in predator traits such as body size, which strongly influences the type and strength of species interactions. Prey species often face a range of different sized predators, and the composition of body sizes of predators can vary between communities and within communities across seasons. 2. Here, I test how variation in size structure of predator communities influences prey survival using seasonal changes in the size structure of a cannibalistic population as a model system. Laboratory and field experiments showed that although the per-capita consumption rates increased at higher predator-prey size ratios, mortality rates did not consistently increase with average size of cannibalistic predators. Instead, prey mortality peaked at the highest level of predator body size diversity. 3. Furthermore, observed prey mortality was significantly higher than predictions from the null model that assumed no indirect interactions between predator size classes, indicating that different sized predators were not substitutable but had more than additive effects. Higher predator body size diversity therefore increased prey mortality, despite the increased potential for behavioural interference and predation among predators demonstrated in additional laboratory experiments. 4. Thus, seasonal changes in the distribution of predator body sizes altered the strength of prey suppression not only through changes in mean predator size but also through changes in the size distribution of predators. In general, this indicates that variation (i.e. diversity) within a single trait, body size, can influence the strength of trophic interactions and emphasizes the importance of seasonal shifts in size structure of natural food webs for community dynamics.

  3. Predators, prey, and natural disasters attract ecologists.

    PubMed

    Mlot, C

    1993-08-27

    Some 2200 ecologists turned out for the 78th annual meeting of the Ecological Society of America (ESA), held in Madison, Wisconsin, 31 July to 4 August. Among the offerings: reports on the effect of dams and levees on large river ecology, predator-prey interactions, how parasites might control evolution, and the impact of clearcutting on soil organisms.

  4. Gyrokinetic turbulence cascade via predator-prey interactions between different scales

    SciTech Connect

    Kobayashi, Sumire Gurcan, Ozgur D.

    2015-05-15

    Gyrokinetic simulations in a closed fieldline geometry are presented to explore the physics of nonlinear transfer in plasma turbulence. As spontaneously formed zonal flows and small-scale turbulence demonstrate “predator-prey” dynamics, a particular cascade spectrum emerges. The electrostatic potential and the density spectra appear to be in good agreement with the simple theoretical prediction based on Charney-Hasegawa-Mima equation | ϕ{sup ~}{sub k} |{sup 2}∼| n{sup ~}{sub k} |{sup 2}∝k{sup −3}/(1+k{sup 2}){sup 2}, with the spectra becoming anisotropic at small scales. The results indicate that the disparate scale interactions, in particular, the refraction and shearing of larger scale eddies by the self-consistent zonal flows, dominate over local interactions, and contrary to the common wisdom, the comprehensive scaling relation is created even within the energy injection region.

  5. An ecological regime shift resulting from disrupted predator-prey interactions in Holocene Australia.

    PubMed

    Prowse, Thomas A A; Johnson, Christopher N; Bradshaw, Corey J A; Brook, Barry W

    2014-03-01

    The mass extinction events during human prehistory are striking examples of ecological regime shifts, the causes of which are still hotly debated. In Australia, human arrival approximately 50 thousand years ago was associated with the continental-scale extinction of numerous marsupial megafauna species and a permanent change in vegetation structure. An alternative stable state persisted until a second regime shift occurred during the late Holocene, when the largest two remaining marsupial carnivores, the thylacine and devil, disappeared from mainland Australia. These extinctions have been widely attributed to the human-assisted invasion of a competing predator, the dingo. In this unusual case, the simultaneous effects of human "intensification" (population growth and technological advances) and climate change (particularly increased ENSO variability) have been largely overlooked. We developed a dynamic model system capable of simulating the complex interactions between the main predators (humans, thylacines, devils, dingoes) and their marsupial prey (macropods), which we coupled with reconstructions of human population growth and climate change for late-Holocene Australia. Because the strength of important interspecific interactions cannot be estimated directly, we used detailed scenario testing and sensitivity analysis to identify robust model outcomes and investigate competing explanations for the Holocene regime shift. This approach identified human intensification as the most probable cause, while also demonstrating the potential importance of synergies with the effects of climate change. Our models indicate that the prehistoric impact of humans on Australian mammals was not limited to the late Pleistocene (i.e., the megafaunal extinctions) but extended into the late Holocene.

  6. Multicellular development in Myxococcus xanthus is stimulated by predator-prey interactions.

    PubMed

    Berleman, James E; Kirby, John R

    2007-08-01

    Myxococcus xanthus is a predatory bacterium that exhibits complex social behavior. The most pronounced behavior is the aggregation of cells into raised fruiting body structures in which cells differentiate into stress-resistant spores. In the laboratory, monocultures of M. xanthus at a very high density will reproducibly induce hundreds of randomly localized fruiting bodies when exposed to low nutrient availability and a solid surface. In this report, we analyze how M. xanthus fruiting body development proceeds in a coculture with suitable prey. Our analysis indicates that when prey bacteria are provided as a nutrient source, fruiting body aggregation is more organized, such that fruiting bodies form specifically after a step-down or loss of prey availability, whereas a step-up in prey availability inhibits fruiting body formation. This localization of aggregates occurs independently of the basal nutrient levels tested, indicating that starvation is not required for this process. Analysis of early developmental signaling relA and asgD mutants indicates that they are capable of forming fruiting body aggregates in the presence of prey, demonstrating that the stringent response and A-signal production are surprisingly not required for the initiation of fruiting behavior. However, these strains are still defective in differentiating to spores. We conclude that fruiting body formation does not occur exclusively in response to starvation and propose an alternative model in which multicellular development is driven by the interactions between M. xanthus cells and their cognate prey.

  7. Pulsed-resource dynamics constrain the evolution of predator-prey interactions.

    PubMed

    Friman, Ville-Petri; Laakso, Jouni

    2011-03-01

    Although temporal variability in the physical environment plays a major role in population fluctuations, little is known about how it drives the ecological and evolutionary dynamics of species interactions. We studied experimentally how extrinsic resource pulses affect evolutionary and ecological dynamics between the prey bacterium Serratia marcescens and the predatory protozoan Tetrahymena thermophila. Predation increased the frequency of defensive, nonpigmented prey types, which bore competitive costs in terms of reduced maximum growth rate, most in a constant-resource environment. Furthermore, the predator densities of the pulsed-resource environment regularly fluctuated above and below the mean predator densities of the constant environment. These results suggest that selection favored fast-growing competitor prey types over defensive but slower-growing prey types more often in the pulsed-resource environment (abundance of resources and low predation risk). As a result, the selection for prey defense fluctuated more in the pulsed-resource environment, leading to a weaker mean response in prey defense. At the ecological level, the evolution of prey defense weakened the relative strength of top-down regulation on prey community. This was more evident in the constant-resource environment, whereas the slow emergence of defensive prey types gradually decreased the amplitude of predator peaks in the pulsed-resource environment. Our study suggests that rapid evolution plays a smaller role in the ecological dynamics of communities dominated by resource pulses.

  8. Exponential Runge-Kutta integrators for modelling Predator-Prey interactions

    NASA Astrophysics Data System (ADS)

    Diele, F.; Marangi, C.; Ragni, S.

    2012-09-01

    Spatially explicit models consisting of reaction-diffusion partial differential equations are considered in order to model prey-predator interactions, since it is known that the role of spatial processes reveals of great interest in the study of the effects of habitat fragmentation on biodiversity. As almost all of the realistic models in biology, these models are nonlinear and their solution is not known in closed form. Our aim is approximating the solution itself by means of exponential Runge-Kutta integrators. Moreover, we apply the shift-and-invert Krylov approach in order to evaluate the entire functions needed for implementing the exponential method. This numerical procedure reveals to be very eff cient in avoiding numerical instability during the simulation, since it allows us to adopt high order in the accuracy. This work has received funding from the European Union's Seventh Framework Programme FP7/2007-2013, SPA.2010.1.1-04: "Stimulating the development of GMES services in specif c are", under grant agreement 263435, project title: Biodiversity Multi-Source Monitoring System:from Space To Species (BIOSOS) coordinated by CNR-ISSIA, Bari-Italy (http://www.biosos.eu).

  9. Incorporating anthropogenic effects into trophic ecology: predator-prey interactions in a human-dominated landscape.

    PubMed

    Dorresteijn, Ine; Schultner, Jannik; Nimmo, Dale G; Fischer, Joern; Hanspach, Jan; Kuemmerle, Tobias; Kehoe, Laura; Ritchie, Euan G

    2015-09-07

    Apex predators perform important functions that regulate ecosystems worldwide. However, little is known about how ecosystem regulation by predators is influenced by human activities. In particular, how important are top-down effects of predators relative to direct and indirect human-mediated bottom-up and top-down processes? Combining data on species' occurrence from camera traps and hunting records, we aimed to quantify the relative effects of top-down and bottom-up processes in shaping predator and prey distributions in a human-dominated landscape in Transylvania, Romania. By global standards this system is diverse, including apex predators (brown bear and wolf), mesopredators (red fox) and large herbivores (roe and red deer). Humans and free-ranging dogs represent additional predators in the system. Using structural equation modelling, we found that apex predators suppress lower trophic levels, especially herbivores. However, direct and indirect top-down effects of humans affected the ecosystem more strongly, influencing species at all trophic levels. Our study highlights the need to explicitly embed humans and their influences within trophic cascade theory. This will greatly expand our understanding of species interactions in human-modified landscapes, which compose the majority of the Earth's terrestrial surface.

  10. Ultrasonic predator-prey interactions in water-convergent evolution with insects and bats in air?

    PubMed

    Wilson, Maria; Wahlberg, Magnus; Surlykke, Annemarie; Madsen, Peter Teglberg

    2013-01-01

    Toothed whales and bats have independently evolved biosonar systems to navigate and locate and catch prey. Such active sensing allows them to operate in darkness, but with the potential cost of warning prey by the emission of intense ultrasonic signals. At least six orders of nocturnal insects have independently evolved ears sensitive to ultrasound and exhibit evasive maneuvers when exposed to bat calls. Among aquatic prey on the other hand, the ability to detect and avoid ultrasound emitting predators seems to be limited to only one subfamily of Clupeidae: the Alosinae (shad and menhaden). These differences are likely rooted in the different physical properties of air and water where cuticular mechanoreceptors have been adapted to serve as ultrasound sensitive ears, whereas ultrasound detection in water have called for sensory cells mechanically connected to highly specialized gas volumes that can oscillate at high frequencies. In addition, there are most likely differences in the risk of predation between insects and fish from echolocating predators. The selection pressure among insects for evolving ultrasound sensitive ears is high, because essentially all nocturnal predation on flying insects stems from echolocating bats. In the interaction between toothed whales and their prey the selection pressure seems weaker, because toothed whales are by no means the only marine predators placing a selection pressure on their prey to evolve specific means to detect and avoid them. Toothed whales can generate extremely intense sound pressure levels, and it has been suggested that they may use these to debilitate prey. Recent experiments, however, show that neither fish with swim bladders, nor squid are debilitated by such signals. This strongly suggests that the production of high amplitude ultrasonic clicks serve the function of improving the detection range of the toothed whale biosonar system rather than debilitation of prey.

  11. Pesticide impacts on predator-prey interactions across two levels of organisation.

    PubMed

    Rasmussen, Jes Jessen; Nørum, Ulrik; Jerris, Morten Rygaard; Wiberg-Larsen, Peter; Kristensen, Esben Astrup; Friberg, Nikolai

    2013-09-15

    In this study, we aimed to evaluate the effects of a short pulse exposure of the pyrethroid lambda-cyhalothrin (LC) on the predator and anti-predator behaviour of the same species; Gammarus pulex. Predator behaviour, at the level of the individual, was studied in indoor microcosms using video tracking equipment during simultaneous exposure of the predator (G. pulex) and its prey (Leuctra nigra) during 90 min exposure of 1, 6.6 or 62.1 ngL(-1) LC. During an initial 30 min of exposure, the predator and prey organisms were maintained physically separated, and the actual interaction was studied through the subsequent 60 min of exposure. The anti-predator behaviour of G. pulex (drift suppression in response to the presence of brown trout) was studied in outdoor stream channels during a 90 min pulse exposure to LC (7.4 or 79.5 ngL(-1)) with, or without, brown trout. Based on survival curves for L. nigra we found that the mortality rate for L. nigra significantly decreased during exposure to 6.6 and 62.1 ngL(-1) LC (P<0.05 and P<0.001, respectively). We found no significant effects suggesting that G. pulex was repelled by contaminated prey items (P>0.05). We found that the exposure of G. pulex to 7.4 and 79.5 ngL(-1) LC significantly increased drift (from ∼0% to ∼100% in both treatments; P<0.001) independent of the presence of brown trout (P<0.05). In other words, the natural anti-predator behaviour of G. pulex was overruled by the stress response to LC exposure increasing G. pulex predation risk from drift feeding brown trouts. Our results show that the anti-predator and predator behaviour of G. pulex were significantly changed during exposure to very low and environmentally realistic LC concentrations and exposure duration. The potential implications for the field scenario are discussed.

  12. Outrun or Outmaneuver: Predator-Prey Interactions as a Model System for Integrating Biomechanical Studies in a Broader Ecological and Evolutionary Context.

    PubMed

    Moore, Talia Y; Biewener, Andrew A

    2015-12-01

    Behavioral studies performed in natural habitats provide a context for the development of hypotheses and the design of experiments relevant both to biomechanics and to evolution. In particular, predator-prey interactions are a model system for integrative study because success or failure of predation has a direct effect on fitness and drives the evolution of specialized performance in both predator and prey. Although all predators share the goal of capturing prey, and all prey share the goal of survival, the behavior of predators and prey are diverse in nature. This article presents studies of some predator-prey interactions sharing common predation strategies that reveal general principles governing the behaviors of predator and prey, even in distantly related taxa. Studies of predator-prey interactions also reveal that maximal performance observed in a laboratory setting is not necessarily the performance that determines fitness. Thus, considering locomotion in the context of predation ecology can aid in evolutionarily relevant experimental design. Classification by strategy reveals that displaying unpredictable trajectories is a relevant anti-predator behavior in response to multiple predation strategies. A predator's perception and pursuit of prey can be affected indirectly by divergent locomotion of similar animals that share an ecosystem. Variation in speed and direction of locomotion that directly increases the unpredictability of a prey's trajectory can be increased through genetic mutation that affects locomotor patterns, musculoskeletal changes that affect maneuverability, and physical interactions between an animal and the environment. By considering the interconnectedness of ecology, physical constraints, and the evolutionary history of behavior, studies in biomechanics can be designed to inform each of these fields.

  13. Seasonal forcing and multi-year cycles in interacting populations: lessons from a predator-prey model.

    PubMed

    Taylor, Rachel A; Sherratt, Jonathan A; White, Andrew

    2013-12-01

    Many natural systems are subject to seasonal environmental change. As a consequence many species exhibit seasonal changes in their life history parameters--such as a peak in the birth rate in spring. It is important to understand how this seasonal forcing affects the population dynamics. The main way in which seasonal models have been studied is through a two dimensional bifurcation approach. We augment this bifurcation approach with extensive simulation in order to understand the potential solution behaviours for a predator-prey system with a seasonally forced prey growth rate. We consider separately how forcing influences the system when the unforced dynamics have either monotonic decay to the coexistence steady state, or oscillatory decay, or stable limit cycles. The range of behaviour the system can exhibit includes multi-year cycles of different periodicities, parameter ranges with coexisting multi-year cycles of the same or different period as well as quasi-periodicity and chaos. We show that the level of oscillation in the unforced system has a large effect on the range of behaviour when the system is seasonally forced. We discuss how the methods could be extended to understand the dynamics of a wide range of ecological and epidemiological systems that are subject to seasonal changes.

  14. Effects of warming on predator-prey interactions - a resource-based approach and a theoretical synthesis.

    PubMed

    Uszko, Wojciech; Diehl, Sebastian; Englund, Göran; Amarasekare, Priyanga

    2017-04-01

    We theoretically explore consequences of warming for predator-prey dynamics, broadening previous approaches in three ways: we include beyond-optimal temperatures, predators may have a type III functional response, and prey carrying capacity depends on explicitly modelled resources. Several robust patterns arise. The relationship between prey carrying capacity and temperature can range from near-independence to monotonically declining/increasing to hump-shaped. Predators persist in a U-shaped region in resource supply (=enrichment)-temperature space. Type II responses yield stable persistence in a U-shaped band inside this region, giving way to limit cycles with enrichment at all temperatures. In contrast, type III responses convey stability at intermediate temperatures and confine cycles to low and high temperatures. Warming-induced state shifts can be predicted from system trajectories crossing stability and persistence boundaries in enrichment-temperature space. Results of earlier studies with more restricted assumptions map onto this graph as special cases. Our approach thus provides a unifying framework for understanding warming effects on trophic dynamics.

  15. The Predator-Prey Relationship

    ERIC Educational Resources Information Center

    Mitchell, Charles W.

    1977-01-01

    Many children develop a mistaken attitude about the predator-prey relationship in the ecosystem. Fairy tales portray the predator as evil or worthless. This article attempts to clarify the role of the predator by giving numerous examples of the value of predators. (MA)

  16. Unusual predator-prey dynamics under reciprocal phenotypic plasticity.

    PubMed

    Mougi, Akihiko

    2012-07-21

    Recent theories and experiments have shown that plasticity, such as an inducible defense or an inducible offense in predator-prey interactions, strongly influences the stability of the population dynamics. However, such plastic adaptation has not been expected to cause unusual dynamics such as antiphase cycles, which occur in experimental predator-prey systems with evolutionary adaptation in the defensive trait of prey. Here I show that antiphase cycles and cryptic cycles (a large population fluctuation in one species with almost no change in the population of the other species) can occur in a predator-prey system when both member species can change their phenotypes through adaptive plasticity (inducible defenses and offenses). I consider a familiar type of predator-prey system in which both species can change their morphology or behavior through phenotypic plasticity. The plasticity, that is, the ability to change between distinct phenotypes, is assumed to occur so as to maximize their fitness. I examined how the reciprocal adaptive plasticity influences the population dynamics. The results show that unusual dynamics such as antiphase population cycles and cryptic cycles can occur when both species show inducible plasticity. The unusual dynamics are particularly likely to occur when the carrying capacity of the prey is small (the density dependence of the prey's growth is strong). The unusual predator-prey dynamics may be induced by phenotypic plasticity as long as the phenotypic change occurs to maximize fitness.

  17. Behavioral refuges and predator-prey coexistence.

    PubMed

    Křivan, Vlastimil

    2013-12-21

    The effects of a behavioral refuge caused either by the predator optimal foraging or prey adaptive antipredator behavior on the Gause predator-prey model are studied. It is shown that both of these mechanisms promote predator-prey coexistence either at an equilibrium, or along a limit cycle. Adaptive prey refuge use leads to hysteresis in prey antipredator behavior which allows predator-prey coexistence along a limit cycle. Similarly, optimal predator foraging leads to sigmoidal functional responses with a potential to stabilize predator-prey population dynamics at an equilibrium, or along a limit cycle.

  18. Predator-prey quasicycles from a path-integral formalism.

    PubMed

    Butler, Thomas; Reynolds, David

    2009-03-01

    The existence of beyond mean-field quasicycle oscillations in a simple spatial model of predator-prey interactions is derived from a path-integral formalism. The results agree substantially with those obtained from analysis of similar models using system size expansions of the master equation. In all of these analyses, the discrete nature of predator-prey populations and finite-size effects lead to persistent oscillations in time, but spatial patterns fail to form. The path-integral formalism goes beyond mean-field theory and provides a focus on individual realizations of the stochastic time evolution of population not captured in the standard master-equation approach.

  19. Potential impact of low-concentration silver nanoparticles on predator-prey interactions between predatory dragonfly nymphs and Daphnia magna as a prey.

    PubMed

    Pokhrel, Lok R; Dubey, Brajesh

    2012-07-17

    This study investigated the potential impacts of low-concentration citrate-coated silver nanoparticles (citrate-nAg; 2 μg L(-1) as total Ag) on the interactions of Daphnia magna Straus (as a prey) with the predatory dragonfly ( Anax junius : Odonata) nymph using the behavioral, survival, and reproductive end points. Four different toxicity bioassays were evaluated: (i) horizontal migration; (ii) vertical migration; (iii) 48 h survival; and (iv) 21 day reproduction; using four different treatment combinations: (i) Daphnia + citrate-nAg; (ii) Daphnia + predator; (iii) Daphnia + citrate-nAg + predator; and (iv) Daphnia only (control). Daphnia avoided the predators using the horizontal and vertical movements, indicating that Daphnia might have perceived a significant risk of predation. However, with citrate-nAg + predator treatment, Daphnia response did not differ from control in the vertical migration test, suggesting that Daphnia were unable to detect the presence of predator with citrate-nAg treatment and this may have potential implication on daphnids population structure owing to predation risk. The 48 h survival test showed a significant mortality of Daphnia individuals in the presence of predators, with or without citrate-nAg, in the test environment. Average reproduction of daphnids increased by 185% with low-concentration citrate-nAg treatment alone but was severely compromised in the presence of predators (decreased by 91.3%). Daphnia reproduction was slightly enhanced by approximately 128% with citrate-nAg + predator treatment. Potential mechanisms of these differential effects of low-concentration citrate-nAg, with or without predators, are discussed. Because silver dissolution was minimal, the observed toxicity could not be explained by dissolved Ag alone. These findings offer novel insights into how exposure to low-concentration silver nanoparticles could influence predator-prey interactions in the fresh water systems.

  20. The impact of environmental toxins on predator-prey dynamics.

    PubMed

    Huang, Qihua; Wang, Hao; Lewis, Mark A

    2015-08-07

    Predators and prey may be simultaneously exposed to environmental toxins, but one may be more susceptible than the other. To study the effects of environmental toxins on food web dynamics, we develop a toxin-dependent predator-prey model that combines both direct and indirect toxic effects on two trophic levels. The direct effects of toxins typically reduce organism abundance by increasing mortality or reducing fecundity. Such direct effects, therefore, alter both bottom-up food availability and top-down predatory ability. However, the indirect effects, when mediated through predator-prey interactions, may lead to counterintuitive effects. This study investigates how the balance of the classical predator-prey dynamics changes as a function of environmental toxin levels. While high toxin concentrations are shown to be harmful to both species, possibly leading to extirpation of both species, intermediate toxin concentrations may affect predators disproportionately through biomagnification, leading to reduced abundance of predators and increased abundance of the prey. This counterintuitive effect significantly increases biomass at the lower trophic level. Environmental toxins may also reduce population variability by preventing populations from fluctuating around a coexistence equilibrium. Finally, environmental toxins may induce bistable dynamics, in which different initial population levels produce different long-term outcomes. Since our toxin-dependent predator-prey model is general, the theory developed here not only provides a sound foundation for population or community effects of toxicity, but also could be used to help develop management strategies to preserve and restore the integrity of contaminated habitats.

  1. Predator-Prey Interactions are Context Dependent in a Grassland Plant-Grasshopper-Wolf Spider Food Chain.

    PubMed

    Laws, Angela N; Joern, Anthony

    2015-06-01

    Species interactions are often context dependent, where outcomes vary in response to one or more environmental factors. It remains unclear how abiotic conditions like temperature combine with biotic factors such as consumer density or food quality to affect resource availability or influence species interactions. Using the large grasshopper Melanoplus bivittatus (Say) and a common wolf spider [Rabidosa rabida (Walkenaer)], we conducted manipulative field experiments in tallgrass prairie to examine how spider-grasshopper interactions respond to manipulations of temperature, grasshopper density, and food quality. Grasshopper survival was density dependent, as were the effects of spider presence and food quality in context-dependent ways. In high grasshopper density treatments, predation resulted in increased grasshopper survival, likely as a result of reduced intraspecific competition in the presence of spiders. Spiders had no effect on grasshopper survival when grasshoppers were stocked at low densities. Effects of the experimental treatments were often interdependent so that effects were only observed when examined together with other treatments. The occurrence of trophic cascades was context dependent, where the effects of food quality and spider presence varied with temperature under high-density treatments. Temperature weakly affected the impact of spider presence on M. bivittatus survivorship when all treatments were considered simultaneously, but different context-dependent responses to spider presence and food quality were observed among the three temperature treatments under high-density conditions. Our results indicate that context-dependent species interactions are common and highlight the importance of understanding how key biotic and abiotic factors combine to influence species interactions.

  2. Half-soliton interaction of population taxis waves in predator-prey systems with pursuit and evasion.

    PubMed

    Tsyganov, M A; Biktashev, V N

    2004-09-01

    In this paper, we use numerical simulations to demonstrate a half-soliton interaction of waves in a mathematical model of a "prey-predator" system with taxis when of two colliding waves, one annihilates and the other continues to propagate. We show that this effect depends on the "ages" or, equivalently, "widths" of the colliding waves. In two spatial dimensions we demonstrate that the type of interaction, i.e., annihilation, quasisoliton, or half-soliton, depends not only on curvature and width of the colliding waves, but also on the angle of the collision. When conditions of collision are varying in such a way that only a part of a wave survives the collision, then "taxitons," compact pieces of solitary waves, may form, which can exist for a significant time.

  3. Probability of detecting marine predator-prey and species interactions using novel hybrid acoustic transmitter-receiver tags.

    PubMed

    Baker, Laurie L; Jonsen, Ian D; Mills Flemming, Joanna E; Lidgard, Damian C; Bowen, William D; Iverson, Sara J; Webber, Dale M

    2014-01-01

    Understanding the nature of inter-specific and conspecific interactions in the ocean is challenging because direct observation is usually impossible. The development of dual transmitter/receivers, Vemco Mobile Transceivers (VMT), and satellite-linked (e.g. GPS) tags provides a unique opportunity to better understand between and within species interactions in space and time. Quantifying the uncertainty associated with detecting a tagged animal, particularly under varying field conditions, is vital for making accurate biological inferences when using VMTs. We evaluated the detection efficiency of VMTs deployed on grey seals, Halichoerus grypus, off Sable Island (NS, Canada) in relation to environmental characteristics and seal behaviour using generalized linear models (GLM) to explore both post-processed detection data and summarized raw VMT data. When considering only post-processed detection data, only about half of expected detections were recorded at best even when two VMT-tagged seals were estimated to be within 50-200 m of one another. At a separation of 400 m, only about 15% of expected detections were recorded. In contrast, when incomplete transmissions from the summarized raw data were also considered, the ratio of complete transmission to complete and incomplete transmissions was about 70% for distances ranging from 50-1000 m, with a minimum of around 40% at 600 m and a maximum of about 85% at 50 m. Distance between seals, wind stress, and depth were the most important predictors of detection efficiency. Access to the raw VMT data allowed us to focus on the physical and environmental factors that limit a transceiver's ability to resolve a transmitter's identity.

  4. Plant structural complexity and mechanical defenses mediate predator-prey interactions in an odonate-bird system.

    PubMed

    Grof-Tisza, Patrick; LoPresti, Eric; Heath, Sacha K; Karban, Richard

    2017-03-01

    Habitat-forming species provide refuges for a variety of associating species; these refuges may mediate interactions between species differently depending on the functional traits of the habitat-forming species. We investigated refuge provisioning by plants with different functional traits for dragonfly and damselfly (Odonata: Anisoptera and Zygoptera) nymphs emerging from water bodies to molt into their adult stage. During this period, nymphs experience high levels of predation by birds. On the shores of a small pond, plants with mechanical defenses (e.g., thorns and prickles) and high structural complexity had higher abundances of odonate exuviae than nearby plants which lacked mechanical defenses and exhibited low structural complexity. To disentangle the relative effects of these two potentially important functional traits on nymph emergence-site preference and survival, we conducted two fully crossed factorial field experiments using artificial plants. Nymphs showed a strong preference for artificial plants with high structural complexity and to a lesser extent, mechanical defenses. Both functional traits increased nymph survival but through different mechanisms. We suggest that future investigations attempt to experimentally separate the elements contributing to structural complexity to elucidate the mechanistic underpinnings of refuge provisioning.

  5. The invisible fish: hydrodynamic constraints for predator-prey interaction in fossil fish Saurichthys compared to recent actinopterygians

    PubMed Central

    Kogan, Ilja; Pacholak, Steffen; Licht, Martin; Schneider, Jörg W.; Brücker, Christoph; Brandt, Sebastian

    2015-01-01

    ABSTRACT Recent pike-like predatory fishes attack prey animals by a quick strike out of rest or slow movement. This fast-start behaviour includes a preparatory, a propulsive and a final phase, and the latter is crucial for the success of the attack. To prevent prey from escape, predators tend to minimise the duration of the interaction and the disturbance caused to surrounding water in order to not be detected by the prey's lateral line sensory system. We compared the hydrodynamic properties of the earliest fossil representative of the pike-like morphotype, the Triassic actinopterygian Saurichthys, with several recent pike-like predators by means of computational fluid dynamics (CFD). Rainbow trout has been used as a control example of a fish with a generalist body shape. Our results show that flow disturbance produced by Saurichthys was low and similar to that of the recent forms Belone and Lepisosteus, thus indicative of an effective ambush predator. Drag coefficients are low for all these fishes, but also for trout, which is a good swimmer over longer distances but generates considerable disturbance of flow. Second-highest flow disturbance values are calculated for Esox, which compensates the large disturbance with its extremely high acceleration performance (i.e. attacks at high speeds) and the derived teleostean protrusible mouth that allows prey catching from longer distances compared to the other fishes. We show CFD modelling to be a useful tool for palaeobiological reconstruction of fossil fishes, as it allows quantification of impacts of body morphology on a hypothesised lifestyle. PMID:26603471

  6. Reciprocity in predator-prey interactions: exposure to defended prey and predation risk affects intermediate predator life history and morphology.

    PubMed

    Hammill, Edd; Beckerman, Andrew P

    2010-05-01

    A vast body of literature exists documenting the morphological, behavioural and life history changes that predators induce in prey. However, little attention has been paid to how these induced changes feed back and affect the predators' life history and morphology. Larvae of the phantom midge Chaoborus flavicans are intermediate predators in a food web with Daphnia pulex as the basal resource and planktivorous fish as the top predator. C. flavicans prey on D. pulex and are themselves prey for fish; as D. pulex induce morphological defences in the presence of C. flavicans this is an ideal system in which to evaluate the effects of defended prey and top predators on an intermediate consumer. We assessed the impact on C. flavicans life history and morphology of foraging on defended prey while also being exposed to the non-lethal presence of a top fish predator. We tested the basic hypothesis that the effects of defended prey will depend on the presence or absence of top predator predation risk. Feeding rate was significantly reduced and time to pupation was significantly increased by defended morph prey. Gut size, development time, fecundity, egg size and reproductive effort respond to fish chemical cues directly or significantly alter the relationship between a trait and body size. We found no significant interactions between prey morph and the non-lethal presence of a top predator, suggesting that the effects of these two biological factors were additive or singularly independent. Overall it appears that C. flavicans is able to substantially modify several aspects of its biology, and while some changes appear mere consequences of resource limitation others appear facultative in nature.

  7. Nonlinear dynamic analysis and characteristics diagnosis of seasonally perturbed predator-prey systems

    NASA Astrophysics Data System (ADS)

    Zhang, Huayong; Huang, Tousheng; Dai, Liming

    2015-05-01

    Predator-prey interaction widely exists in nature and the research on predator-prey systems is an important field in ecology. The nonlinear dynamic characteristics of a seasonally perturbed predator-prey system are studied in this research. To study the nonlinear characteristics affected by a wide variety of system parameters, the PR approach is employed and periodic, quasiperiodic, chaotic behaviors and the behaviors between period and quasiperiod are found in the system. Periodic-quasiperiodic-chaotic region diagrams are generated for analyzing the global characteristics of the predator-prey system with desired ranges of system parameters. The ecological significances of the dynamical characteristics are discussed and compared with the theoretical research results existing in the literature. The approach of this research demonstrates effectiveness and efficiency of PR method in analyzing the complex dynamical characteristics of nonlinear ecological systems.

  8. Disentangling mite predator-prey relationships by multiplex PCR.

    PubMed

    Pérez-Sayas, Consuelo; Pina, Tatiana; Gómez-Martínez, María A; Camañes, Gemma; Ibáñez-Gual, María V; Jaques, Josep A; Hurtado, Mónica A

    2015-11-01

    Gut content analysis using molecular techniques can help elucidate predator-prey relationships in situations in which other methodologies are not feasible, such as in the case of trophic interactions between minute species such as mites. We designed species-specific primers for a mite community occurring in Spanish citrus orchards comprising two herbivores, the Tetranychidae Tetranychus urticae and Panonychus citri, and six predatory mites belonging to the Phytoseiidae family; these predatory mites are considered to be these herbivores' main biological control agents. These primers were successfully multiplexed in a single PCR to test the range of predators feeding on each of the two prey species. We estimated prey DNA detectability success over time (DS50), which depended on the predator-prey combination and ranged from 0.2 to 18 h. These values were further used to weight prey detection in field samples to disentangle the predatory role played by the most abundant predators (i.e. Euseius stipulatus and Phytoseiulus persimilis). The corrected predation value for E. stipulatus was significantly higher than for P. persimilis. However, because this 1.5-fold difference was less than that observed regarding their sevenfold difference in abundance, we conclude that P. persimilis is the most effective predator in the system; it preyed on tetranychids almost five times more frequently than E. stipulatus did. The present results demonstrate that molecular tools are appropriate to unravel predator-prey interactions in tiny species such as mites, which include important agricultural pests and their predators.

  9. Direct identification of predator-prey dynamics in gyrokinetic simulations

    SciTech Connect

    Kobayashi, Sumire Gürcan, Özgür D; Diamond, Patrick H.

    2015-09-15

    The interaction between spontaneously formed zonal flows and small-scale turbulence in nonlinear gyrokinetic simulations is explored in a shearless closed field line geometry. It is found that when clear limit cycle oscillations prevail, the observed turbulent dynamics can be quantitatively captured by a simple Lotka-Volterra type predator-prey model. Fitting the time traces of full gyrokinetic simulations by such a reduced model allows extraction of the model coefficients. Scanning physical plasma parameters, such as collisionality and density gradient, it was observed that the effective growth rates of turbulence (i.e., the prey) remain roughly constant, in spite of the higher and varying level of primary mode linear growth rates. The effective growth rate that was extracted corresponds roughly to the zonal-flow-modified primary mode growth rate. It was also observed that the effective damping of zonal flows (i.e., the predator) in the parameter range, where clear predator-prey dynamics is observed, (i.e., near marginal stability) agrees with the collisional damping expected in these simulations. This implies that the Kelvin-Helmholtz-like instability may be negligible in this range. The results imply that when the tertiary instability plays a role, the dynamics becomes more complex than a simple Lotka-Volterra predator prey.

  10. Cannibalism in discrete-time predator-prey systems.

    PubMed

    Chow, Yunshyong; Jang, Sophia R-J

    2012-01-01

    In this study, we propose and investigate a two-stage population model with cannibalism. It is shown that cannibalism can destabilize and lower the magnitude of the interior steady state. However, it is proved that cannibalism has no effect on the persistence of the population. Based on this model, we study two systems of predator-prey interactions where the prey population is cannibalistic. A sufficient condition based on the nontrivial boundary steady state for which both populations can coexist is derived. It is found via numerical simulations that introduction of the predator population may either stabilize or destabilize the prey dynamics, depending on cannibalism coefficients and other vital parameters.

  11. Demographic stochasticity reduces the synchronizing effect of dispersal in predator-prey metapopulations.

    PubMed

    Simonis, Joseph L

    2012-07-01

    Dispersal may affect predator-prey metapopulations by rescuing local sink populations from extinction or by synchronizing population dynamics across the metapopulation, increasing the risk of regional extinction. Dispersal is likely influenced by demographic stochasticity, however, particularly because dispersal rates are often very low in metapopulations. Yet the effects of demographic stochasticity on predator-prey metapopulations are not well known. To that end, I constructed three models of a two-patch predator-prey system. The models constitute a hierarchy of complexity, allowing direct comparisons. Two models included demographic stochasticity (pure jump process [PJP] and stochastic differential equations [SDE]), and the third was deterministic (ordinary differential equations [ODE]). One stochastic model (PJP) treated population sizes as discrete, while the other (SDE) allowed population sizes to change continuously. Both stochastic models only produced synchronized predator-prey dynamics when dispersal was high for both trophic levels. Frequent dispersal by only predators or prey in the PJP and SDE spatially decoupled the trophic interaction, reducing synchrony of the non-dispersive species. Conversely, the ODE generated synchronized predator-prey dynamics across all dispersal rates, except when initial conditions produced anti-phase transients. These results indicate that demographic stochasticity strongly reduces the synchronizing effect of dispersal, which is ironic because demographic stochasticity is often invoked post hoc as a driver of extinctions in synchronized metapopulations.

  12. Effect of resource subsidies on predator-prey population dynamics: a mathematical model.

    PubMed

    Nevai, Andrew L; Van Gorder, Robert A

    2012-01-01

    The influence of a resource subsidy on predator-prey interactions is examined using a mathematical model. The model arises from the study of a biological system involving arctic foxes (predator), lemmings (prey), and seal carcasses (subsidy). In one version of the model, the predator, prey and subsidy all occur in the same location; in a second version, the predator moves between two patches, one containing only the prey and the other containing only the subsidy. Criteria for feasibility and stability of the different equilibrium states are studied both analytically and numerically. At small subsidy input rates, there is a minimum prey carrying capacity needed to support both predator and prey. At intermediate subsidy input rates, the predator and prey can always coexist. At high subsidy input rates, the prey cannot persist even at high carrying capacities. As predator movement increases, the dynamic stability of the predator-prey-subsidy interactions also increases.

  13. Predator-prey-substrate model of wastewater treatment in bioreactor system

    NASA Astrophysics Data System (ADS)

    Sadikin, Zubaidah; Salim, Normah; Allias, Razihan

    2013-04-01

    This paper analyses the mathematical model of the interaction between predator-prey and substrate that have been expressed as a system of nonlinear ordinary differential equations. This mathematical model can help to investigate the biological reaction of the interaction of predator-prey and substrate in biological wastewater treatment to improve the quality of water that flows out from the reactor. By using Monod Kinetics Growth Model, the steady state solutions have been obtained and their stability is determined as a function of the residence time.

  14. The effect of prey refuge in a patchy predator-prey system.

    PubMed

    Ma, Zhihui; Wang, Shufan; Li, Weide; Li, Zizhen

    2013-05-01

    In this work, we proposed a patchy predator-prey model with one patch as refuge and the other as open habitat, and incorporated prey refuge in the considered model explicitly. We applied an analytical approach to study the dynamic consequences of the simplest forms of refuge used by prey and the migration efficiency. The results have shown that the refuge used by prey and the migration efficiency play an important role in the dynamic consequences of the interacting populations and the equilibrium density of two interacting populations. This work also proposed a new approach which can incorporate prey refuge in predator-prey system explicitly.

  15. Predator-prey body size relationships when predators can consume prey larger than themselves.

    PubMed

    Nakazawa, Takefumi; Ohba, Shin-Ya; Ushio, Masayuki

    2013-06-23

    As predator-prey interactions are inherently size-dependent, predator and prey body sizes are key to understanding their feeding relationships. To describe predator-prey size relationships (PPSRs) when predators can consume prey larger than themselves, we conducted field observations targeting three aquatic hemipteran bugs, and assessed their body masses and those of their prey for each hunting event. The data revealed that their PPSR varied with predator size and species identity, although the use of the averaged sizes masked these effects. Specifically, two predators had slightly decreased predator-prey mass ratios (PPMRs) during growth, whereas the other predator specialized on particular sizes of prey, thereby showing a clear positive size-PPMR relationship. We discussed how these patterns could be different from fish predators swallowing smaller prey whole.

  16. Dynamics of Predator-Prey Metapopulations with Allee Effects.

    PubMed

    Fan, Meng; Wu, Ping; Feng, Zhilan; Swihart, Robert K

    2016-08-01

    Allee effects increasingly are recognized as influential determinants of population dynamics, especially in disturbed landscapes. We developed a predator-prey metapopulation model to study the impact of an Allee effect on predator-prey. The model incorporates habitat destruction and predators with imperfect information about prey distribution. Criteria are established for the existence and stability of equilibria, and the possible existence of a limit cycle is discussed. Numerical bifurcation analysis of the model is carried out to examine the impact of Allee effects as well as other key processes on trophic dynamics. Inclusion of Allee effects produces a richer array of dynamics than earlier models in which it was absent. When prey interacts with generalist predators, Allee effects operate synergistically to depress prey populations. Allee effects are more likely to depress occupancy levels when destruction of habitat patches is moderate; at severe levels of destruction, Allee effects are swamped by demographic effects of habitat loss. Stronger Allee effects correspond to lower thresholds of predator colonization rates at which prey become extinct. We discuss implications of our model for conservation of rare species as well as pest management via biocontrol.

  17. Role of seasonality on predator-prey-subsidy population dynamics.

    PubMed

    Levy, Dorian; Harrington, Heather A; Van Gorder, Robert A

    2016-05-07

    The role of seasonality on predator-prey interactions in the presence of a resource subsidy is examined using a system of non-autonomous ordinary differential equations (ODEs). The problem is motivated by the Arctic, inhabited by the ecological system of arctic foxes (predator), lemmings (prey), and seal carrion (subsidy). We construct two nonlinear, nonautonomous systems of ODEs named the Primary Model, and the n-Patch Model. The Primary Model considers spatial factors implicitly, and the n-Patch Model considers space explicitly as a "Stepping Stone" system. We establish the boundedness of the dynamics, as well as the necessity of sufficiently nutritional food for the survival of the predator. We investigate the importance of including the resource subsidy explicitly in the model, and the importance of accounting for predator mortality during migration. We find a variety of non-equilibrium dynamics for both systems, obtaining both limit cycles and chaotic oscillations. We were then able to discuss relevant implications for biologically interesting predator-prey systems including subsidy under seasonal effects. Notably, we can observe the extinction or persistence of a species when the corresponding autonomous system might predict the opposite.

  18. Along Came a Spider: Using Live Arthropods in a Predator-Prey Activity

    ERIC Educational Resources Information Center

    Richardson, Matthew L.; Hari, Janice

    2011-01-01

    We developed a predator-prey activity with eighth-grade students in which they used wolf spiders ("Lycosa carolinensis"), house crickets ("Acheta domestica"), and abiotic factors to address how (1) adaptations in predators and prey shape their interaction and (2) abiotic factors modify the interaction between predators and…

  19. A Computer Simulation for Demonstrating and Modelling Predator-Prey Oscillations.

    ERIC Educational Resources Information Center

    Lutterschmidt, William I.; Schaefer, Jacob F.

    1997-01-01

    Discusses a computer simulation designed as an educational tool for students to observe predator-prey oscillations and experimentally investigate how changes in life histories affect predator and prey densities. Provides hands-on interaction with such theories and with mathematical models. Available to any instructor for curriculum use. (AIM)

  20. Phase transitions in predator-prey systems

    NASA Astrophysics Data System (ADS)

    Nagano, Seido; Maeda, Yusuke

    2012-01-01

    The relationship between predator and prey plays an important role in ecosystem conservation. However, our understanding of the principles underlying the spatial distribution of predators and prey is still poor. Here we present a phase diagram of a predator-prey system and investigate the lattice formation in such a system. We show that the production of stable lattice structures depends on the limited diffusion or migration of prey as well as higher carrying capacity for the prey. In addition, when the prey's growth rate is lower than the birth rate of the predator, global prey lattice formation is initiated by microlattices at the center of prey spirals. The predator lattice is later formed in the predator spirals. But both lattice formations proceed together as the prey growth rate increases.

  1. How the Magnitude of Prey Genetic Variation Alters Predator-Prey Eco-Evolutionary Dynamics.

    PubMed

    Cortez, Michael H

    2016-09-01

    Evolution can alter the stability and dynamics of ecological communities; for example, prey evolution can drive cyclic dynamics in predator-prey systems that are not possible in the absence of evolution. However, it is unclear how the magnitude of additive genetic variation in the evolving species mediates those effects. In this study, I explore how the magnitude of prey additive genetic variation determines what effects prey evolution has on the dynamics and stability of predator-prey systems. I use linear stability analysis to decompose the stability of a general eco-evolutionary predator-prey model into components representing the stabilities of the ecological and evolutionary subsystems as well as the interactions between those subsystems. My results show that with low genetic variation, the cyclic dynamics and stability of the system are determined by the ecological subsystem. With increased genetic variation, disruptive selection always destabilizes stable communities, stabilizing selection can stabilize or destabilize communities, and prey evolution can alter predator-prey phase lags. Stability changes occur approximately when the magnitude of genetic variation balances the (in)stabilities of the ecological and evolutionary subsystems. I discuss the connections between my stability results and prior results from the theory of adaptive dynamics.

  2. Aerosol-cloud-precipitation system as a predator-prey problem.

    PubMed

    Koren, Ilan; Feingold, Graham

    2011-07-26

    We show that the aerosol-cloud-precipitation system exhibits characteristics of the predator-prey problem in the field of population dynamics. Both a detailed large eddy simulation of the dynamics and microphysics of a precipitating shallow boundary layer cloud system and a simpler model built upon basic physical principles, reproduce predator-prey behavior with rain acting as the predator and cloud as the prey. The aerosol is shown to modulate the predator-prey response. Steady-state solution to the proposed model shows the known existence of bistability in cloudiness. Three regimes are identified in the time-dependent solutions: (i) the weakly precipitating regime where cloud and rain coexist in a quasi steady state; (ii) the moderately drizzling regime where limit-cycle behavior in the cloud and rain fields is produced; and (iii) the heavily precipitating clouds where collapse of the boundary layer is predicted. The manifestation of predator-prey behavior in the aerosol-cloud-precipitation system is a further example of the self-organizing properties of the system and suggests that exploiting principles of population dynamics may help reduce complex aerosol-cloud-rain interactions to a more tractable problem.

  3. Ecological conditions affect evolutionary trajectory in a predator-prey system.

    PubMed

    Gallet, Romain; Tully, Thomas; Evans, Margaret E K

    2009-03-01

    The arms race of adaptation and counter adaptation in predator-prey interactions is a fascinating evolutionary dynamic with many consequences, including local adaptation and the promotion or maintenance of diversity. Although such antagonistic coevolution is suspected to be widespread in nature, experimental documentation of the process remains scant, and we have little understanding of the impact of ecological conditions. Here, we present evidence of predator-prey coevolution in a long-term experiment involving the predatory bacterium Bdellovibrio bacteriovorus and the prey Pseudomonas fluorescens, which has three morphs (SM, FS, and WS). Depending on experimentally applied disturbance regimes, the predator-prey system followed two distinct evolutionary trajectories, where the prey evolved to be either super-resistant to predation (SM morph) without counter-adaptation by the predator, or moderately resistant (FS morph), specialized to and coevolving with the predator. Although predation-resistant FS morphs suffer a cost of resistance, the evolution of extreme resistance to predation by the SM morph was apparently unconstrained by other traits (carrying capacity, growth rate). Thus we demonstrate empirically that ecological conditions can shape the evolutionary trajectory of a predator-prey system.

  4. Aerosol–cloud–precipitation system as a predator-prey problem

    PubMed Central

    Koren, Ilan; Feingold, Graham

    2011-01-01

    We show that the aerosol–cloud–precipitation system exhibits characteristics of the predator-prey problem in the field of population dynamics. Both a detailed large eddy simulation of the dynamics and microphysics of a precipitating shallow boundary layer cloud system and a simpler model built upon basic physical principles, reproduce predator-prey behavior with rain acting as the predator and cloud as the prey. The aerosol is shown to modulate the predator-prey response. Steady-state solution to the proposed model shows the known existence of bistability in cloudiness. Three regimes are identified in the time-dependent solutions: (i) the weakly precipitating regime where cloud and rain coexist in a quasi steady state; (ii) the moderately drizzling regime where limit-cycle behavior in the cloud and rain fields is produced; and (iii) the heavily precipitating clouds where collapse of the boundary layer is predicted. The manifestation of predator-prey behavior in the aerosol–cloud–precipitation system is a further example of the self-organizing properties of the system and suggests that exploiting principles of population dynamics may help reduce complex aerosol–cloud–rain interactions to a more tractable problem. PMID:21742979

  5. A non-autonomous stochastic predator-prey model.

    PubMed

    Buonocore, Aniello; Caputo, Luigia; Pirozzi, Enrica; Nobile, Amelia G

    2014-04-01

    The aim of this paper is to consider a non-autonomous predator-prey-like system, with a Gompertz growth law for the prey. By introducing random variations in both prey birth and predator death rates, a stochastic model for the predator-prey-like system in a random environment is proposed and investigated. The corresponding Fokker-Planck equation is solved to obtain the joint probability density for the prey and predator populations and the marginal probability densities. The asymptotic behavior of the predator-prey stochastic model is also analyzed.

  6. Moorea BIOCODE barcode library as a tool for understanding predator-prey interactions: insights into the diet of common predatory coral reef fishes

    NASA Astrophysics Data System (ADS)

    Leray, M.; Boehm, J. T.; Mills, S. C.; Meyer, C. P.

    2012-06-01

    Identifying species involved in consumer-resource interactions is one of the main limitations in the construction of food webs. DNA barcoding of prey items in predator guts provides a valuable tool for characterizing trophic interactions, but the method relies on the availability of reference sequences to which prey sequences can be matched. In this study, we demonstrate that the COI sequence library of the Moorea BIOCODE project, an ecosystem-level barcode initiative, enables the identification of a large proportion of semi-digested fish, crustacean and mollusks found in the guts of three Hawkfish and two Squirrelfish species. While most prey remains lacked diagnostic morphological characters, 94% of the prey found in 67 fishes had >98% sequence similarity with BIOCODE reference sequences. Using this species-level prey identification, we demonstrate how DNA barcoding can provide insights into resource partitioning, predator feeding behaviors and the consequences of predation on ecosystem function.

  7. Coupled predator-prey oscillations in a chaotic food web.

    PubMed

    Benincà, Elisa; Jöhnk, Klaus D; Heerkloss, Reinhard; Huisman, Jef

    2009-12-01

    Coupling of several predator-prey oscillations can generate intriguing patterns of synchronization and chaos. Theory predicts that prey species will fluctuate in phase if predator-prey cycles are coupled through generalist predators, whereas they will fluctuate in anti-phase if predator-prey cycles are coupled through competition between prey species. Here, we investigate predator-prey oscillations in a long-term experiment with a marine plankton community. Wavelet analysis of the species fluctuations reveals two predator-prey cycles that fluctuate largely in anti-phase. The phase angles point at strong competition between the phytoplankton species, but relatively little prey overlap among the zooplankton species. This food web architecture is consistent with the size structure of the plankton community, and generates highly dynamic food webs. Continued alternations in species dominance enable coexistence of the prey species through a non-equilibrium 'killing-the-winner' mechanism, as the system shifts back and forth between the two predator-prey cycles in a chaotic fashion.

  8. Trophic organisation and predator-prey interactions among commercially exploited demersal finfishes in the coastal waters of the southeastern Arabian Sea

    NASA Astrophysics Data System (ADS)

    Abdurahiman, K. P.; Nayak, T. H.; Zacharia, P. U.; Mohamed, K. S.

    2010-05-01

    Trophic interactions in commercially exploited demersal finfishes in the southeastern Arabian Sea of India were studied to understand trophic organization with emphasis on ontogenic diet shifts within the marine food web. In total, the contents of 4716 stomachs were examined from which 78 prey items were identified. Crustaceans and fishes were the major prey groups to most of the fishes. Based on cluster analysis of predator feeding similarities and ontogenic diet shift within each predator, four major trophic guilds and many sub-guilds were identified. The first guild 'detritus feeders' included all size groups of Cynoglossus macrostomus, Pampus argenteus, Leiognathus bindus and Priacanthus hamrur. Guild two, named 'Shrimp feeders', was the largest guild identified and included all size groups of Rhynchobatus djiddensis and Nemipterus mesoprion, medium and large Nemipterus japonicus, P. hamrur and Grammoplites suppositus, small and medium Otolithes cuvieri and small Lactarius lactarius. Guild three, named 'crab and squilla feeders', consisted of few predators. The fourth trophic guild, 'piscivores', was mainly made up of larger size groups of all predators and all size groups of Pseudorhombus arsius and Carcharhinus limbatus. The mean diet breadth and mean trophic level showed strong correlation with ontogenic diet shift. The mean trophic level varied from 2.2 ± 0.1 in large L. bindus to 4.6 ± 0.2 in large Epinephelus diacanthus and the diet breadth from 1.4 ± 0.3 in medium P. argenteus to 8.3 ± 0.2 in medium N. japonicus. Overall, the present study showed that predators in the ecosystem have a strong feeding preference for the sergestid shrimp Acetes indicus, penaeid shrimps, epibenthic crabs and detritus.

  9. Ecoepidemic predator-prey model with feeding satiation, prey herd behavior and abandoned infected prey.

    PubMed

    Kooi, Bob W; Venturino, Ezio

    2016-04-01

    In this paper we analyse a predator-prey model where the prey population shows group defense and the prey individuals are affected by a transmissible disease. The resulting model is of the Rosenzweig-MacArthur predator-prey type with an SI (susceptible-infected) disease in the prey. Modeling prey group defense leads to a square root dependence in the Holling type II functional for the predator-prey interaction term. The system dynamics is investigated using simulations, classical existence and asymptotic stability analysis and numerical bifurcation analysis. A number of bifurcations, such as transcritical and Hopf bifurcations which occur commonly in predator-prey systems will be found. Because of the square root interaction term there is non-uniqueness of the solution and a singularity where the prey population goes extinct in a finite time. This results in a collapse initiated by extinction of the healthy or susceptible prey and thereafter the other population(s). When also a positive attractor exists this leads to bistability similar to what is found in predator-prey models with a strong Allee effect. For the two-dimensional disease-free (i.e. the purely demographic) system the region in the parameter space where bistability occurs is marked by a global bifurcation. At this bifurcation a heteroclinic connection exists between saddle prey-only equilibrium points where a stable limit cycle together with its basin of attraction, are destructed. In a companion paper (Gimmelli et al., 2015) the same model was formulated and analysed in which the disease was not in the prey but in the predator. There we also observed this phenomenon. Here we extend its analysis using a phase portrait analysis. For the three-dimensional ecoepidemic predator-prey system where the prey is affected by the disease, also tangent bifurcations including a cusp bifurcation and a torus bifurcation of limit cycles occur. This leads to new complex dynamics. Continuation by varying one parameter

  10. Wave propagation in predator-prey systems

    NASA Astrophysics Data System (ADS)

    Fu, Sheng-Chen; Tsai, Je-Chiang

    2015-12-01

    In this paper, we study a class of predator-prey systems of reaction-diffusion type. Specifically, we are interested in the dynamical behaviour for the solution with the initial distribution where the prey species is at the level of the carrying capacity, and the density of the predator species has compact support, or exponentially small tails near x=+/- ∞ . Numerical evidence suggests that this will lead to the formation of a pair of diverging waves propagating outwards from the initial zone. Motivated by this phenomenon, we establish the existence of a family of travelling waves with the minimum speed. Unlike the previous studies, we do not use the shooting argument to show this. Instead, we apply an iteration process based on Berestycki et al 2005 (Math Comput. Modelling 50 1385-93) to construct a set of super/sub-solutions. Since the underlying system does not enjoy the comparison principle, such a set of super/sub-solutions is not based on travelling waves, and in fact the super/sub-solutions depend on each other. With the aid of the set of super/sub-solutions, we can construct the solution of the truncated problem on the finite interval, which, via the limiting argument, can in turn generate the wave solution. There are several advantages to this approach. First, it can remove the technical assumptions on the diffusivities of the species in the existing literature. Second, this approach is of PDE type, and hence it can shed some light on the spreading phenomenon indicated by numerical simulation. In fact, we can compute the spreading speed of the predator species for a class of biologically acceptable initial distributions. Third, this approach might be applied to the study of waves in non-cooperative systems (i.e. a system without a comparison principle).

  11. Evolution of dispersal in a predator-prey metacommunity.

    PubMed

    Pillai, Pradeep; Gonzalez, Andrew; Loreau, Michel

    2012-02-01

    Dispersal is crucial to allowing species inhabiting patchy or spatially subdivided habitats to persist globally despite the possibility of frequent local extinctions. Theoretical studies have repeatedly demonstrated that species that exhibit a regional metapopulation structure and are subject to increasing rates of local patch extinctions should experience strong selective pressures to disperse more rapidly despite the costs such increased dispersal would entail in terms of decreased local fitness. We extend these studies to consider how extinctions arising from predator-prey interactions affect the evolution of dispersal for species inhabiting a metacommunity. Specifically, we investigate how increasing a strong extinction-prone interaction between a predator and prey within local patches affects the evolution of each species' dispersal. We found that for the predator, as expected, evolutionarily stable strategy (ESS) dispersal rates increased monotonically in response to increasing local extinctions induced by strong predator top-down effects. Unexpectedly for the prey, however, ESS dispersal rates displayed a nonmonotonic response to increasing predator-induced extinction rates-actually decreasing for a significant range of values. These counterintuitive results arise from how extinctions resulting from trophic interactions play out at different spatial scales: interactions that increase extinction rates of both species locally can, at the same time, decrease the frequency of interaction between the prey and predator at the metacommunity scale.

  12. Matching allele dynamics and coevolution in a minimal predator prey replicator model

    NASA Astrophysics Data System (ADS)

    Sardanyés, Josep; Solé, Ricard V.

    2008-01-01

    A minimal Lotka Volterra type predator prey model describing coevolutionary traits among entities with a strength of interaction influenced by a pair of haploid diallelic loci is studied with a deterministic time continuous model. We show a Hopf bifurcation governing the transition from evolutionary stasis to periodic Red Queen dynamics. If predator genotypes differ in their predation efficiency the more efficient genotype asymptotically achieves lower stationary concentrations.

  13. Is there universal predator-prey dynamics at the laminar-turbulent phase transition?

    NASA Astrophysics Data System (ADS)

    Shih, Hong-Yan; Goldenfeld, Nigel

    2016-11-01

    Direct numerical simulation of pipe flow shows that transitional turbulence is dominated by two collective modes: a longitudinal mode for small-scale turbulent fluctuations whose anisotropy induces an emergent large-scale azimuthal mode (so-called zonal flow) that inhibits anisotropic Reynolds stress. This activation-inhibition interaction leads to stochastic predator-prey-like dynamics, from which it follows that the transition to turbulence belongs to the directed percolation universality class. Here we show how predator-prey dynamics arises by deriving phenomenologically an effective field theory of the transition from a coarse-graining of the Reynolds equation. The rigorous mapping between the conserved currents in Rayleigh-Benard convection (RBC), Taylor-Couette and pipe flows suggests that the zonal flow-turbulence scenario might occur in these systems, consistent with observations of zonal flows in two-dimensional RBC, and bursts of transitional turbulence in Couette flow that follow the critical scalings of directed percolation.

  14. Simulation and analysis of a model dinoflagellate predator-prey system

    NASA Astrophysics Data System (ADS)

    Mazzoleni, M. J.; Antonelli, T.; Coyne, K. J.; Rossi, L. F.

    2015-12-01

    This paper analyzes the dynamics of a model dinoflagellate predator-prey system and uses simulations to validate theoretical and experimental studies. A simple model for predator-prey interactions is derived by drawing upon analogies from chemical kinetics. This model is then modified to account for inefficiencies in predation. Simulation results are shown to closely match the model predictions. Additional simulations are then run which are based on experimental observations of predatory dinoflagellate behavior, and this study specifically investigates how the predatory dinoflagellate Karlodinium veneficum uses toxins to immobilize its prey and increase its feeding rate. These simulations account for complex dynamics that were not included in the basic models, and the results from these computational simulations closely match the experimentally observed predatory behavior of K. veneficum and reinforce the notion that predatory dinoflagellates utilize toxins to increase their feeding rate.

  15. Bayesian inference for functional response in a stochastic predator-prey system.

    PubMed

    Gilioli, Gianni; Pasquali, Sara; Ruggeri, Fabrizio

    2008-02-01

    We present a Bayesian method for functional response parameter estimation starting from time series of field data on predator-prey dynamics. Population dynamics is described by a system of stochastic differential equations in which behavioral stochasticities are represented by noise terms affecting each population as well as their interaction. We focus on the estimation of a behavioral parameter appearing in the functional response of predator to prey abundance when a small number of observations is available. To deal with small sample sizes, latent data are introduced between each pair of field observations and are considered as missing data. The method is applied to both simulated and observational data. The results obtained using different numbers of latent data are compared with those achieved following a frequentist approach. As a case study, we consider an acarine predator-prey system relevant to biological control problems.

  16. Predator-prey model for the self-organization of stochastic oscillators in dual populations

    NASA Astrophysics Data System (ADS)

    Moradi, Sara; Anderson, Johan; Gürcan, Ozgür D.

    2015-12-01

    A predator-prey model of dual populations with stochastic oscillators is presented. A linear cross-coupling between the two populations is introduced following the coupling between the motions of a Wilberforce pendulum in two dimensions: one in the longitudinal and the other in torsional plain. Within each population a Kuramoto-type competition between the phases is assumed. Thus, the synchronization state of the whole system is controlled by these two types of competitions. The results of the numerical simulations show that by adding the linear cross-coupling interactions predator-prey oscillations between the two populations appear, which results in self-regulation of the system by a transfer of synchrony between the two populations. The model represents several important features of the dynamical interplay between the drift wave and zonal flow turbulence in magnetically confined plasmas, and a novel interpretation of the coupled dynamics of drift wave-zonal flow turbulence using synchronization of stochastic oscillator is discussed.

  17. Predator-prey model for the self-organization of stochastic oscillators in dual populations.

    PubMed

    Moradi, Sara; Anderson, Johan; Gürcan, Ozgür D

    2015-12-01

    A predator-prey model of dual populations with stochastic oscillators is presented. A linear cross-coupling between the two populations is introduced following the coupling between the motions of a Wilberforce pendulum in two dimensions: one in the longitudinal and the other in torsional plain. Within each population a Kuramoto-type competition between the phases is assumed. Thus, the synchronization state of the whole system is controlled by these two types of competitions. The results of the numerical simulations show that by adding the linear cross-coupling interactions predator-prey oscillations between the two populations appear, which results in self-regulation of the system by a transfer of synchrony between the two populations. The model represents several important features of the dynamical interplay between the drift wave and zonal flow turbulence in magnetically confined plasmas, and a novel interpretation of the coupled dynamics of drift wave-zonal flow turbulence using synchronization of stochastic oscillator is discussed.

  18. A fluid mechanical model for mixing in a plankton predator-prey system

    NASA Astrophysics Data System (ADS)

    Peng, J.; Dabiri, J. O.

    2009-04-01

    A Lagrangian method is developed to study mixing of small particles in open flows. Particle Lagrangian Coherent Structures (pLCS) are identified as transport barriers in the dynamical systems of particles. We apply this method to a planktonic predator-prey system in which moon jellyfish Aurelia aurita uses its body motion to generate fluid currents which carry their prey to the vicinity of their capture appendages. With the flow generated by the jellyfish experimentally measured and the dynamics of prey particles in the flow described by a modified Maxey-Riley equation, we use pLCS to identify the capture region in which prey can be captured. The properties of the capture region enable analysis of the effects of several physiological and mechanical parameters on the predator-prey interaction, such as prey size, escape force, predator perception, etc. The method provides a new methodology to study dynamics and mixing of small organisms in general.

  19. The stabilizing effects of genetic diversity on predator-prey dynamics.

    PubMed

    Steiner, Christopher F; Masse, Jordan

    2013-01-01

    Heterogeneity among prey in their susceptibility to predation is a potentially important stabilizer of predator-prey interactions, reducing the magnitude of population oscillations and enhancing total prey population abundance. When microevolutionary responses of prey populations occur at time scales comparable to population dynamics, adaptive responses in prey defense can, in theory, stabilize predator-prey dynamics and reduce top-down effects on prey abundance. While experiments have tested these predictions, less explored are the consequences of the evolution of prey phenotypes that can persist in both vulnerable and invulnerable classes. We tested this experimentally using a laboratory aquatic system composed of the rotifer Brachionus calyciflorus as a predator and the prey Synura petersenii, a colony-forming alga that exhibits genetic variation in its propensity to form colonies and colony size (larger colonies are a defense against predators). Prey populations of either low initial genetic diversity and low adaptive capacity or high initial genetic diversity and high adaptive capacity were crossed with predator presence and absence. Dynamics measured over the last 127 days of the 167-day experiment revealed no effects of initial prey genetic diversity on the average abundance or temporal variability of predator populations. However, genetic diversity and predator presence/absence interactively affected prey population abundance and stability; diversity of prey had no effects in the absence of predators but stabilized dynamics and increased total prey abundance in the presence of predators. The size structure of the genetically diverse prey populations diverged from single strain populations in the presence of predators, showing increases in colony size and in the relative abundance of cells found in colonies. Our work sheds light on the adaptive value of colony formation and supports the general view that genetic diversity and intraspecific trait variation of

  20. Using process algebra to develop predator-prey models of within-host parasite dynamics.

    PubMed

    McCaig, Chris; Fenton, Andy; Graham, Andrea; Shankland, Carron; Norman, Rachel

    2013-07-21

    As a first approximation of immune-mediated within-host parasite dynamics we can consider the immune response as a predator, with the parasite as its prey. In the ecological literature of predator-prey interactions there are a number of different functional responses used to describe how a predator reproduces in response to consuming prey. Until recently most of the models of the immune system that have taken a predator-prey approach have used simple mass action dynamics to capture the interaction between the immune response and the parasite. More recently Fenton and Perkins (2010) employed three of the most commonly used prey-dependent functional response terms from the ecological literature. In this paper we make use of a technique from computing science, process algebra, to develop mathematical models. The novelty of the process algebra approach is to allow stochastic models of the population (parasite and immune cells) to be developed from rules of individual cell behaviour. By using this approach in which individual cellular behaviour is captured we have derived a ratio-dependent response similar to that seen in the previous models of immune-mediated parasite dynamics, confirming that, whilst this type of term is controversial in ecological predator-prey models, it is appropriate for models of the immune system.

  1. Spatiotemporal dynamics of the epidemic transmission in a predator-prey system.

    PubMed

    Su, Min; Hui, Cang; Zhang, Yanyu; Li, Zizhen

    2008-11-01

    Epidemic transmission is one of the critical density-dependent mechanisms that affect species viability and dynamics. In a predator-prey system, epidemic transmission can strongly affect the success probability of hunting, especially for social animals. Predators, therefore, will suffer from the positive density-dependence, i.e., Allee effect, due to epidemic transmission in the population. The rate of species contacting the epidemic, especially for those endangered or invasive, has largely increased due to the habitat destruction caused by anthropogenic disturbance. Using ordinary differential equations and cellular automata, we here explored the epidemic transmission in a predator-prey system. Results show that a moderate Allee effect will destabilize the dynamics, but it is not true for the extreme Allee effect (weak or strong). The predator-prey dynamics amazingly stabilize by the extreme Allee effect. Predators suffer the most from the epidemic disease at moderate transmission probability. Counter-intuitively, habitat destruction will benefit the control of the epidemic disease. The demographic stochasticity dramatically influences the spatial distribution of the system. The spatial distribution changes from oil-bubble-like (due to local interaction) to aggregated spatially scattered points (due to local interaction and demographic stochasticity). It indicates the possibility of using human disturbance in habitat as a potential epidemic-control method in conservation.

  2. Effects of a disease affecting a predator on the dynamics of a predator-prey system.

    PubMed

    Auger, Pierre; McHich, Rachid; Chowdhury, Tanmay; Sallet, Gauthier; Tchuente, Maurice; Chattopadhyay, Joydev

    2009-06-07

    We study the effects of a disease affecting a predator on the dynamics of a predator-prey system. We couple an SIRS model applied to the predator population, to a Lotka-Volterra model. The SIRS model describes the spread of the disease in a predator population subdivided into susceptible, infected and removed individuals. The Lotka-Volterra model describes the predator-prey interactions. We consider two time scales, a fast one for the disease and a comparatively slow one for predator-prey interactions and for predator mortality. We use the classical "aggregation method" in order to obtain a reduced equivalent model. We show that there are two possible asymptotic behaviors: either the predator population dies out and the prey tends to its carrying capacity, or the predator and prey coexist. In this latter case, the predator population tends either to a "disease-free" or to a "disease-endemic" state. Moreover, the total predator density in the disease-endemic state is greater than the predator density in the "disease-free" equilibrium (DFE).

  3. Predator-prey oscillations can shift when diseases become endemic.

    PubMed

    Bate, Andrew M; Hilker, Frank M

    2013-01-07

    In epidemiology, knowing when a disease is endemic is important. This is usually done by finding the basic reproductive number, R(0), using equilibrium-based calculations. However, oscillatory dynamics are common in nature. Here, we model a disease with density dependent transmission in an oscillating predator-prey system. The condition for disease persistence in predator-prey cycles is based on the time-average density of the host and not the equilibrium density. Consequently, the time-averaged basic reproductive number R(0)¯ is what determines whether a disease is endemic, and not on the equilibrium-based basic reproductive number R(0)(*). These findings undermine any R(0) analysis based solely on steady states when predator-prey oscillations exist for density dependent diseases.

  4. Predator-Prey-Subsidy Population Dynamics on Stepping-Stone Domains.

    PubMed

    Shen, Lulan; Van Gorder, Robert A

    2017-03-16

    Predator-prey-subsidy dynamics on stepping-stone domains are examined using a variety of network configurations. Our problem is motivated by the interactions between arctic foxes (predator) and lemmings (prey) in the presence of seal carrion (subsidy) provided by polar bears. We use the n-Patch Model, which considers space explicitly as a "Stepping Stone" system. We consider the role that the carrying capacity, predator migration rate, input subsidy rate, predator mortality rate, and proportion of predators surviving migration play in the predator-prey-subsidy population dynamics. We find that for certain types of networks, added mobility will help predator populations, allowing them to survive or coexist when they would otherwise go extinct if confined to one location, while in other situations (such as when sparsely distributed nodes in the network have few resources available) the added mobility will hurt the predator population. We also find that a combination of favorable conditions for the prey and subsidy can lead to the formation of limit cycles (boom and bust dynamic) from stable equilibrium states. These modifications to the dynamics vary depending on the specific network structure employed, highlighting the fact that network structure can strongly influence the predator-prey-subsidy dynamics in stepping-stone domains.

  5. Bogdanov-Takens bifurcation in a predator-prey model

    NASA Astrophysics Data System (ADS)

    Liu, Zhihua; Magal, Pierre; Xiao, Dongmei

    2016-12-01

    In this paper, we investigate a class of predator-prey model with age structure and discuss whether the model can undergo Bogdanov-Takens bifurcation. The analysis is based on the normal form theory and the center manifold theory for semilinear equations with non-dense domain combined with integrated semigroup theory. Qualitative analysis indicates that there exist some parameter values such that this predator-prey model has an unique positive equilibrium which is Bogdanov-Takens singularity. Moreover, it is shown that under suitable small perturbation, the system undergoes the Bogdanov-Takens bifurcation in a small neighborhood of this positive equilibrium.

  6. Effects of uniform rotational flow on predator-prey system

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hee

    2012-12-01

    Rotational flow is often observed in lotic ecosystems, such as streams and rivers. For example, when an obstacle interrupts water flowing in a stream, energy dissipation and momentum transfer can result in the formation of rotational flow, or a vortex. In this study, I examined how rotational flow affects a predator-prey system by constructing a spatially explicit lattice model consisting of predators, prey, and plants. A predation relationship existed between the species. The species densities in the model were given as S (for predator), P (for prey), and G (for plant). A predator (prey) had a probability of giving birth to an offspring when it ate prey (plant). When a predator or prey was first introduced, or born, its health state was assigned an initial value of 20 that subsequently decreased by one with every time step. The predator (prey) was removed from the system when the health state decreased to less than zero. The degree of flow rotation was characterized by the variable, R. A higher R indicates a higher tendency that predators and prey move along circular paths. Plants were not affected by the flow because they were assumed to be attached to the streambed. Results showed that R positively affected both predator and prey survival, while its effect on plants was negligible. Flow rotation facilitated disturbances in individuals’ movements, which consequently strengthens the predator and prey relationship and prevents death from starvation. An increase in S accelerated the extinction of predators and prey.

  7. Predator interference and stability of predator-prey dynamics.

    PubMed

    Přibylová, Lenka; Berec, Luděk

    2015-08-01

    Predator interference, that is, a decline in the per predator consumption rate as predator density increases, is generally thought to promote predator-prey stability. Indeed, this has been demonstrated in many theoretical studies on predator-prey dynamics. In virtually all of these studies, the stabilization role is demonstrated as a weakening of the paradox of enrichment. With predator interference, stable limit cycles that appear as a result of environmental enrichment occur for higher values of the environmental carrying capacity of prey, and even a complete absence of the limit cycles can happen. Here we study predator-prey dynamics using the Rosenzweig-MacArthur-like model in which the Holling type II functional response has been replaced by a predator-dependent family which generalizes many of the commonly used descriptions of predator interference. By means of a bifurcation analysis we show that sufficiently strong predator interference may bring about another stabilizing mechanism. In particular, hysteresis combined with (dis)appearance of stable limit cycles imply abrupt increases in both the prey and predator densities and enhanced persistence and resilience of the predator-prey system. We encourage refitting the previously collected data on predator consumption rates as well as for conducting further predation experiments to see what functional response from the explored family is the most appropriate.

  8. Global stability of predator-prey system with alternative prey.

    PubMed

    Sahoo, Banshidhar

    2013-01-01

    A predator-prey model in presence of alternative prey is proposed. Existence and local stability conditions for interior equilibrium points are derived. Global stability conditions for interior equilibrium points are also found. Bifurcation analysis is done with respect to predator's searching rate and handling time. Bifurcation analysis confirms the existence of global stability in presence of alternative prey.

  9. Predator-prey systems depend on a prey refuge.

    PubMed

    Chivers, W J; Gladstone, W; Herbert, R D; Fuller, M M

    2014-11-07

    Models of near-exclusive predator-prey systems such as that of the Canadian lynx and snowshoe hare have included factors such as a second prey species, a Holling Type II predator response and climatic or seasonal effects to reproduce sub-sets of six signature patterns in the empirical data. We present an agent-based model which does not require the factors or constraints of previous models to reproduce all six patterns in persistent populations. Our parsimonious model represents a generalised predator and prey species with a small prey refuge. The lack of the constraints of previous models, considered to be important for those models, casts doubt on the current hypothesised mechanisms of exclusive predator-prey systems. The implication for management of the lynx, a protected species, is that maintenance of an heterogeneous environment offering natural refuge areas for the hare is the most important factor for the conservation of this species.

  10. Nash Equilibria in Noncooperative Predator-Prey Games

    SciTech Connect

    Ramos, Angel Manuel Roubicek, Tomas

    2007-09-15

    A noncooperative game governed by a distributed-parameter predator-prey system is considered, assuming that two players control initial conditions for predator and prey, respectively. Existence of a Nash equilibrium is shown under the condition that the desired population profiles and the environmental carrying capacity for the prey are sufficiently small. A conceptual approximation algorithm is proposed and analyzed. Finally, numerical simulations are performed, too.

  11. Red queen dynamics in specific predator-prey systems.

    PubMed

    Harris, Terence; Cai, Anna Q

    2015-10-01

    The dynamics of a predator-prey system are studied, with a comparison of discrete and continuous strategy spaces. For a [Formula: see text] system, the average strategies used in the discrete and continuous case are shown to be the same. It is further shown that the inclusion of constant prey switching in the discrete case can have a stabilising effect and reduce the number of available predator types through extinction.

  12. Spatial Patterns of a Predator-Prey System of Leslie Type with Time Delay.

    PubMed

    Wang, Caiyun; Chang, Lili; Liu, Huifeng

    2016-01-01

    Time delay due to maturation time, capturing time or other reasons widely exists in biological systems. In this paper, a predator-prey system of Leslie type with diffusion and time delay is studied based on mathematical analysis and numerical simulations. Conditions for both delay induced and diffusion induced Turing instability are obtained by using bifurcation theory. Furthermore, a series of numerical simulations are performed to illustrate the spatial patterns, which reveal the information of density changes of both prey and predator populations. The obtained results show that the interaction between diffusion and time delay may give rise to rich dynamics in ecosystems.

  13. Revisiting the Stability of Spatially Heterogeneous Predator-Prey Systems Under Eutrophication.

    PubMed

    Farkas, J Z; Morozov, A Yu; Arashkevich, E G; Nikishina, A

    2015-10-01

    We employ partial integro-differential equations to model trophic interaction in a spatially extended heterogeneous environment. Compared to classical reaction-diffusion models, this framework allows us to more realistically describe the situation where movement of individuals occurs on a faster time scale than on the demographic (population) time scale, and we cannot determine population growth based on local density. However, most of the results reported so far for such systems have only been verified numerically and for a particular choice of model functions, which obviously casts doubts about these findings. In this paper, we analyse a class of integro-differential predator-prey models with a highly mobile predator in a heterogeneous environment, and we reveal the main factors stabilizing such systems. In particular, we explore an ecologically relevant case of interactions in a highly eutrophic environment, where the prey carrying capacity can be formally set to 'infinity'. We investigate two main scenarios: (1) the spatial gradient of the growth rate is due to abiotic factors only, and (2) the local growth rate depends on the global density distribution across the environment (e.g. due to non-local self-shading). For an arbitrary spatial gradient of the prey growth rate, we analytically investigate the possibility of the predator-prey equilibrium in such systems and we explore the conditions of stability of this equilibrium. In particular, we demonstrate that for a Holling type I (linear) functional response, the predator can stabilize the system at low prey density even for an 'unlimited' carrying capacity. We conclude that the interplay between spatial heterogeneity in the prey growth and fast displacement of the predator across the habitat works as an efficient stabilizing mechanism. These results highlight the generality of the stabilization mechanisms we find in spatially structured predator-prey ecological systems in a heterogeneous environment.

  14. Potential Landscape and Probabilistic Flux of a Predator Prey Network

    PubMed Central

    Li, Chunhe; Wang, Erkang; Wang, Jin

    2011-01-01

    Predator-prey system, as an essential element of ecological dynamics, has been recently studied experimentally with synthetic biology. We developed a global probabilistic landscape and flux framework to explore a synthetic predator-prey network constructed with two Escherichia coli populations. We developed a self consistent mean field method to solve multidimensional problem and uncovered the potential landscape with Mexican hat ring valley shape for predator-prey oscillations. The landscape attracts the system down to the closed oscillation ring. The probability flux drives the coherent oscillations on the ring. Both the landscape and flux are essential for the stable and coherent oscillations. The landscape topography characterized by the barrier height from the top of Mexican hat to the closed ring valley provides a quantitative measure of global stability of system. The entropy production rate for the energy dissipation is less for smaller environmental fluctuations or perturbations. The global sensitivity analysis based on the landscape topography gives specific predictions for the effects of parameters on the stability and function of the system. This may provide some clues for the global stability, robustness, function and synthetic network design. PMID:21423576

  15. Potential landscape and probabilistic flux of a predator prey network.

    PubMed

    Li, Chunhe; Wang, Erkang; Wang, Jin

    2011-03-15

    Predator-prey system, as an essential element of ecological dynamics, has been recently studied experimentally with synthetic biology. We developed a global probabilistic landscape and flux framework to explore a synthetic predator-prey network constructed with two Escherichia coli populations. We developed a self consistent mean field method to solve multidimensional problem and uncovered the potential landscape with Mexican hat ring valley shape for predator-prey oscillations. The landscape attracts the system down to the closed oscillation ring. The probability flux drives the coherent oscillations on the ring. Both the landscape and flux are essential for the stable and coherent oscillations. The landscape topography characterized by the barrier height from the top of Mexican hat to the closed ring valley provides a quantitative measure of global stability of system. The entropy production rate for the energy dissipation is less for smaller environmental fluctuations or perturbations. The global sensitivity analysis based on the landscape topography gives specific predictions for the effects of parameters on the stability and function of the system. This may provide some clues for the global stability, robustness, function and synthetic network design.

  16. Role of Alternative Food in Controlling Chaotic Dynamics in a Predator-Prey Model with Disease in the Predator

    NASA Astrophysics Data System (ADS)

    Das, Krishna Pada; Bairagi, Nandadulal; Sen, Prabir

    It is generally, but not always, accepted that alternative food plays a stabilizing role in predator-prey interaction. Parasites, on the other hand, have the ability to change both the qualitative and quantitative dynamics of its host population. In recent times, researchers are showing growing interest in formulating models that integrate both the ecological and epidemiological aspects. The present paper deals with the effect of alternative food on a predator-prey system with disease in the predator population. We show that the system, in the absence of alternative food, exhibits different dynamics viz. stable coexistence, limit cycle oscillations, period-doubling bifurcation and chaos when infection rate is gradually increased. However, when predator consumes alternative food coupled with its focal prey, the system returns to regular oscillatory state from chaotic state through period-halving bifurcations. Our study shows that alternative food may have larger impact on the community structure and may increase population persistence.

  17. Impacts of biotic resource enrichment on a predator-prey population.

    PubMed

    Safuan, H M; Sidhu, H S; Jovanoski, Z; Towers, I N

    2013-10-01

    The environmental carrying capacity is usually assumed to be fixed quantity in the classical predator-prey population growth models. However, this assumption is not realistic as the environment generally varies with time. In a bid for greater realism, functional forms of carrying capacities have been widely applied to describe varying environments. Modelling carrying capacity as a state variable serves as another approach to capture the dynamical behavior between population and its environment. The proposed modified predator-prey model is based on the ratio-dependent models that have been utilized in the study of food chains. Using a simple non-linear system, the proposed model can be linked to an intra-guild predation model in which predator and prey share the same resource. Distinct from other models, we formulate the carrying capacity proportional to a biotic resource and both predator and prey species can directly alter the amount of resource available by interacting with it. Bifurcation and numerical analyses are presented to illustrate the system's dynamical behavior. Taking the enrichment parameter of the resource as the bifurcation parameter, a Hopf bifurcation is found for some parameter ranges, which generate solutions that posses limit cycle behavior.

  18. Generation of periodic waves by landscape features in cyclic predator-prey systems.

    PubMed Central

    Sherratt, J A; Lambin, X; Thomas, C J; Sherratt, T N

    2002-01-01

    The vast majority of models for spatial dynamics of natural populations assume a homogeneous physical environment. However, in practice, dispersing organisms may encounter landscape features that significantly inhibit their movement. We use mathematical modelling to investigate the effect of such landscape features on cyclic predator-prey populations. We show that when appropriate boundary conditions are applied at the edge of the obstacle, a pattern of periodic travelling waves develops, moving out and away from the obstacle. Depending on the assumptions of the model, these waves can take the form of roughly circular 'target patterns' or spirals. This is, to our knowledge, a new mechanism for periodic-wave generation in ecological systems and our results suggest that it may apply quite generally not only to cyclic predator-prey interactions, but also to populations that oscillate for other reasons. In particular, we suggest that it may provide an explanation for the observed pattern of travelling waves in the densities of field voles (Microtus agrestis) in Kielder Forest (Scotland-England border) and of red grouse (Lagopus lagopus scoticus) on Kerloch Moor (northeast Scotland), which in both cases move orthogonally to any large-scale obstacles to movement. Moreover, given that such obstacles to movement are the rule rather than the exception in real-world environments, our results suggest that complex spatio-temporal patterns such as periodic travelling waves are likely to be much more common in the natural world than has previously been assumed. PMID:11886619

  19. Predator-prey model for the self-organization of stochastic oscillators in dual populations

    NASA Astrophysics Data System (ADS)

    Moradi, Sara; Anderson, Johan; Gürcan, Ozgur D.

    A predator-prey model of dual populations with stochastic oscillators is presented. A linear cross-coupling between the two populations is introduced that follows the coupling between the motions of a Wilberforce pendulum in two dimensions: one in the longitudinal and the other in torsional plain. Within each population a Kuramoto type competition between the phases is assumed. Thus, the synchronization state of the whole system is controlled by these two types of competitions. The results of the numerical simulations show that by adding the linear cross-coupling interactions predator-prey oscillations between the two populations appear which results in self-regulation of the system by a transfer of synchrony between the two populations. The model represents several important features of the dynamical interplay between the drift wave and zonal flow turbulence in magnetically confined plasmas, and a novel interpretation of the coupled dynamics of drift wave-zonal flow turbulence using synchronization of stochastic oscillator is discussed. Sara Moradi has benefited from a mobility grant funded by the Belgian Federal Science Policy Office and the MSCA of the European Commission (FP7-PEOPLE-COFUND-2008 nº 246540).

  20. Variable prey development time suppresses predator-prey cycles and enhances stability.

    PubMed

    Cronin, James T; Reeve, John D; Xu, Dashun; Xiao, Mingqing; Stevens, Heidi N

    2016-03-01

    Although theoretical models have demonstrated that predator-prey population dynamics can depend critically on age (stage) structure and the duration and variability in development times of different life stages, experimental support for this theory is non-existent. We conducted an experiment with a host-parasitoid system to test the prediction that increased variability in the development time of the vulnerable host stage can promote interaction stability. Host-parasitoid microcosms were subjected to two treatments: Normal and High variance in the duration of the vulnerable host stage. In control and Normal-variance microcosms, hosts and parasitoids exhibited distinct population cycles. In contrast, insect abundances were 18-24% less variable in High- than Normal-variance microcosms. More significantly, periodicity in host-parasitoid population dynamics disappeared in the High-variance microcosms. Simulation models confirmed that stability in High-variance microcosms was sufficient to prevent extinction. We conclude that developmental variability is critical to predator-prey population dynamics and could be exploited in pest-management programs.

  1. Simple finite element methods for approximating predator-prey dynamics in two dimensions using MATLAB.

    PubMed

    Garvie, Marcus R; Burkardt, John; Morgan, Jeff

    2015-03-01

    We describe simple finite element schemes for approximating spatially extended predator-prey dynamics with the Holling type II functional response and logistic growth of the prey. The finite element schemes generalize 'Scheme 1' in the paper by Garvie (Bull Math Biol 69(3):931-956, 2007). We present user-friendly, open-source MATLAB code for implementing the finite element methods on arbitrary-shaped two-dimensional domains with Dirichlet, Neumann, Robin, mixed Robin-Neumann, mixed Dirichlet-Neumann, and Periodic boundary conditions. Users can download, edit, and run the codes from http://www.uoguelph.ca/~mgarvie/ . In addition to discussing the well posedness of the model equations, the results of numerical experiments are presented and demonstrate the crucial role that habitat shape, initial data, and the boundary conditions play in determining the spatiotemporal dynamics of predator-prey interactions. As most previous works on this problem have focussed on square domains with standard boundary conditions, our paper makes a significant contribution to the area.

  2. A multiple phenotype predator-prey model with mutation

    NASA Astrophysics Data System (ADS)

    Abernethy, Gavin M.; Mullan, Rory; Glass, David H.; McCartney, Mark

    2017-01-01

    An existing multiple phenotype predator-prey model is expanded to include mutation amongst the predator phenotypes. Two unimodal maps are used for the underlying dynamics of the prey. A predation strategy is also defined which differs for each of the predators in the model. Results show that the introduction of predator mutation enhances predator survival both in terms of the number of phenotypes and total population for a range of values of the predation rate. In general, the dominant predator phenotype is the one which is most focused on the prey phenotype with the largest population.

  3. Predator-prey system with strong Allee effect in prey.

    PubMed

    Wang, Jinfeng; Shi, Junping; Wei, Junjie

    2011-03-01

    Global bifurcation analysis of a class of general predator-prey models with a strong Allee effect in prey population is given in details. We show the existence of a point-to-point heteroclinic orbit loop, consider the Hopf bifurcation, and prove the existence/uniqueness and the nonexistence of limit cycle for appropriate range of parameters. For a unique parameter value, a threshold curve separates the overexploitation and coexistence (successful invasion of predator) regions of initial conditions. Our rigorous results justify some recent ecological observations, and practical ecological examples are used to demonstrate our theoretical work.

  4. Influence of edge on predator prey distribution and abundance

    NASA Astrophysics Data System (ADS)

    Ferguson, Steven H.

    2004-03-01

    I investigated the effect of spatial configuration on distribution and abundance of invertebrate trophic groups by counting soil arthropods under boxes (21 × 9.5 cm) arranged in six different patterns that varied in the amount of edge (137-305 cm). I predicted fewer individuals from the consumer trophic group (Collembola) in box groups with greater amount of edge. This prediction was based on the assumption that predators (mites, ants, spiders, centipedes) select edge during foraging and thereby reduce abundance of the less mobile consumer group under box patterns with greater edge. Consumer abundance (Collembola) was not correlated with amount of edge. Among the predator groups, mite, ant and centipede abundance related to the amount of edge of box groups. However, in contrast to predictions, abundance of these predators was negatively correlated with amount of edge in box patterns. All Collembola predators, with the exception of ants, were less clumped in distribution than Collembola. The results are inconsistent with the view that predators used box edges to predate the less mobile consumer trophic group. Alternative explanations for the spatial patterns other than predator-prey relations include (1) a negative relationship between edge and moisture, (2) a positive relationship between edge and detritus decomposition (i.e. mycelium as food for the consumer group), and (3) a negative relationship between edge and the interstices between adjacent boxes. Landscape patterns likely affect microclimate, food, and predator-prey relations and, therefore, future experimental designs need to control these factors individually to distinguish among alternative hypotheses.

  5. Spreading of families in cyclic predator-prey models

    NASA Astrophysics Data System (ADS)

    Ravasz, Mária; Szabó, György; Szolnoki, Attila

    2004-07-01

    We study the spreading of families in two-dimensional multispecies predator-prey systems, in which species cyclically dominate each other. In each time step randomly chosen individuals invade one of the nearest sites of the square lattice eliminating their prey. Initially all individuals get a family name which will be carried on by their descendants. Monte Carlo simulations show that the systems with several species (N=3,4,5) are asymptotically approaching the behavior of the voter model, i.e., the survival probability of families, the mean size of families, and the mean-square distance of descendants from their ancestor exhibits the same scaling behavior. The scaling behavior of the survival probability of families has a logarithmic correction. In case of the voter model this correction depends on the number of species, while cyclic predator-prey models behave like the voter model with infinite species. It is found that changing the rates of invasions does not change this asymptotic behavior. As an application a three-species system with a fourth-species intruder is also discussed.

  6. Unique coevolutionary dynamics in a predator-prey system.

    PubMed

    Mougi, Akihiko; Iwasa, Yoh

    2011-05-21

    In this paper, we study the predator-prey coevolutionary dynamics when a prey's defense and a predator's offense change in an adaptive manner, either by genetic evolution or phenotypic plasticity, or by behavioral choice. Results are: (1) The coevolutionary dynamics are more likely to be stable if the predator adapts faster than the prey. (2) The prey population size can be nearly constant but the predator population can show very large amplitude fluctuations. (3) Both populations may oscillate in antiphase. All of these are not observed when the handling time is short and the prey's density dependence is weak. (4) The population dynamics and the trait dynamics show resonance: the amplitude of the population fluctuation is the largest when the speed of adaptation is intermediate. These results may explain experimental studies with microorganisms.

  7. Predator-prey pursuit-evasion games in structurally complex environments.

    PubMed

    Morice, Sylvie; Pincebourde, Sylvain; Darboux, Frédéric; Kaiser, Wilfried; Casas, Jérôme

    2013-11-01

    terms of pursuit and escape distances, and (4) reduced the likelihood of secondary pursuits, after initial escape of the prey, to nearly zero. Thus, geometry of the habitat strongly modulates the rules of pursuit-evasion in predator-prey interactions in the wild.

  8. Cooperation can emerge in prisoner's dilemma from a multi-species predator prey replicator dynamic.

    PubMed

    Paulson, Elisabeth; Griffin, Christopher

    2016-08-01

    In this paper we study a generalized variation of the replicator dynamic that involves several species and sub-species that may interact. We show how this dynamic comes about from a specific finite-population model, but also show that one must take into consideration the dynamic nature of the population sizes (and hence proportions) in order to make the model complete. We provide expressions for these population dynamics to produce a kind of multi-replicator dynamic. We then use this replicator dynamic to show that cooperation can emerge as a stable behavior when two species each play prisoner's dilemma as their intra-species game and a form of zero-sum predator prey game as their inter-species game. General necessary and sufficient conditions for cooperation to emerge as stable are provided for a number of game classes. We also showed an example using Hawk-Dove where both species can converge to stable (asymmetric) mixed strategies.

  9. Predator-prey dynamics driven by feedback between functionally diverse trophic levels.

    PubMed

    Tirok, Katrin; Bauer, Barbara; Wirtz, Kai; Gaedke, Ursula

    2011-01-01

    Neglecting the naturally existing functional diversity of communities and the resulting potential to respond to altered conditions may strongly reduce the realism and predictive power of ecological models. We therefore propose and study a predator-prey model that describes mutual feedback via species shifts in both predator and prey, using a dynamic trait approach. Species compositions of the two trophic levels were described by mean functional traits--prey edibility and predator food-selectivity--and functional diversities by the variances. Altered edibility triggered shifts in food-selectivity so that consumers continuously respond to the present prey composition, and vice versa. This trait-mediated feedback mechanism resulted in a complex dynamic behavior with ongoing oscillations in the mean trait values, reflecting continuous reorganization of the trophic levels. The feedback was only possible if sufficient functional diversity was present in both trophic levels. Functional diversity was internally maintained on the prey level as no niche existed in our system, which was ideal under any composition of the predator level due to the trade-offs between edibility, growth and carrying capacity. The predators were only subject to one trade-off between food-selectivity and grazing ability and in the absence of immigration, one predator type became abundant, i.e., functional diversity declined to zero. In the lack of functional diversity the system showed the same dynamics as conventional models of predator-prey interactions ignoring the potential for shifts in species composition. This way, our study identified the crucial role of trade-offs and their shape in physiological and ecological traits for preserving diversity.

  10. Foraging and vulnerability traits modify predator-prey body mass allometry: freshwater macroinvertebrates as a case study.

    PubMed

    Klecka, Jan; Boukal, David S

    2013-09-01

    1. Predation is often size selective, but the role of other traits of the prey and predators in their interactions is little known. This hinders our understanding of the causal links between trophic interactions and the structure of animal communities. Better knowledge of trophic traits underlying predator-prey interactions is also needed to improve models attempting to predict food web structure and dynamics from known species traits. 2. We carried out laboratory experiments with common freshwater macroinvertebrate predators (diving beetles, dragonfly and damselfly larvae and water bugs) and their prey to assess how body size and traits related to foraging (microhabitat use, feeding mode and foraging mode) and to prey vulnerability (microhabitat use, activity and escape behaviour) affect predation strength. 3. The underlying predator-prey body mass allometry characterizing mean prey size and total predation pressure was modified by feeding mode of the predators (suctorial or chewing). Suctorial predators fed upon larger prey and had ˜3 times higher mass-specific predation rate than chewing predators of the same size and may thus have stronger effect on prey abundance. 4. Strength of individual trophic links, measured as mortality of the focal prey caused by the focal predator, was determined jointly by the predator and prey body mass and their foraging and vulnerability traits. In addition to the feeding mode, interactions between prey escape behaviour (slow or fast), prey activity (sedentary or active) and predator foraging mode (searching or ambush) strongly affected prey mortality. Searching predators was ineffective in capturing fast-escape prey in comparison with the remaining predator-prey combinations, while ambush predators caused higher mortality than searching predators and the difference was larger in active prey. 5. Our results imply that the inclusion of the commonly available qualitative data on foraging traits of predators and vulnerability traits

  11. Use of Cobra Lily (Darlingtonia californica) & Drosophila for Investigating Predator-Prey Relationships.

    ERIC Educational Resources Information Center

    Pratt, Carl R.

    1994-01-01

    Describes an experiment that uses the cobra lily (Darlingtonia californica) and fruit flies (Drosophila virilis) to investigate predator-prey relationships in a classroom laboratory. Suggestions for classroom extension of this experimental system are provided. (ZWH)

  12. Nonlinear functional response parameter estimation in a stochastic predator-prey model.

    PubMed

    Gilioli, Gianni; Pasquali, Sara; Ruggeri, Fabrizio

    2012-01-01

    Parameter estimation for the functional response of predator-prey systems is a critical methodological problem in population ecology. In this paper we consider a stochastic predator-prey system with non-linear Ivlev functional response and propose a method for model parameter estimation based on time series of field data. We tackle the problem of parameter estimation using a Bayesian approach relying on a Markov Chain Monte Carlo algorithm. The efficiency of the method is tested on a set of simulated data. Then, the method is applied to a predator-prey system of importance for Integrated Pest Management and biological control, the pest mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. The model is estimated on a dataset obtained from a field survey. Finally, the estimated model is used to forecast predator-prey dynamics in similar fields, with slightly different initial conditions.

  13. Behavioral response races, predator-prey shell games, ecology of fear, and patch use of pumas and their ungulate prey.

    PubMed

    Laundré, John W

    2010-10-01

    The predator-prey shell game predicts random movement of prey across the landscape, whereas the behavioral response race and landscape of fear models predict that there should be a negative relationship between the spatial distribution of a predator and its behaviorally active prey. Additionally, prey have imperfect information on the whereabouts of their predator, which the predator should incorporate in its patch use strategy. I used a one-predator-one-prey system, puma (Puma concolor)-mule deer (Odocoileus hemionus) to test the following predictions regarding predator-prey distribution and patch use by the predator. (1) Pumas will spend more time in high prey risk/low prey use habitat types, while deer will spend their time in low-risk habitats. Pumas should (2) select large forage patches more often, (3) remain in large patches longer, and (4) revisit individual large patches more often than individual smaller ones. I tested these predictions with an extensive telemetry data set collected over 16 years in a study area of patchy forested habitat. When active, pumas spent significantly less time in open areas of low intrinsic predation risk than did deer. Pumas used large patches more than expected, revisited individual large patches significantly more often than smaller ones, and stayed significantly longer in larger patches than in smaller ones. The results supported the prediction of a negative relationship in the spatial distribution of a predator and its prey and indicated that the predator is incorporating the prey's imperfect information about its presence. These results indicate a behavioral complexity on the landscape scale that can have far-reaching impacts on predator-prey interactions.

  14. Biocontrol in an impulsive predator-prey model.

    PubMed

    Terry, Alan J

    2014-10-01

    We study a model for biological pest control (or "biocontrol") in which a pest population is controlled by a program of periodic releases of a fixed yield of predators that prey on the pest. Releases are represented as impulsive increases in the predator population. Between releases, predator-pest dynamics evolve according to a predator-prey model with some fairly general properties: the pest population grows logistically in the absence of predation; the predator functional response is either of Beddington-DeAngelis type or Holling type II; the predator per capita birth rate is bounded above by a constant multiple of the predator functional response; and the predator per capita death rate is allowed to be decreasing in the predator functional response and increasing in the predator population, though the special case in which it is constant is permitted too. We prove that, when the predator functional response is of Beddington-DeAngelis type and the predators are not sufficiently voracious, then the biocontrol program will fail to reduce the pest population below a particular economic threshold, regardless of the frequency or yield of the releases. We prove also that our model possesses a pest-eradication solution, which is both locally and globally stable provided that predators are sufficiently voracious and that releases occur sufficiently often. We establish, curiously, that the pest-eradication solution can be locally stable whilst not being globally stable, the upshot of which is that, if we delay a biocontrol response to a new pest invasion, then this can change the outcome of the response from pest eradication to pest persistence. Finally, we state a number of specific examples for our model, and, for one of these examples, we corroborate parts of our analysis by numerical simulations.

  15. Predator-Prey Model for Haloes in Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.; Colwell, Joshua; Sremcevic, Miodrag; Madhusudhanan, Prasanna

    Particles in Saturn’s rings have a tripartite nature: (1) a broad distribution of fragments from the disruption of a previous moon that accrete into (2) transient aggregates, resembling piles of rubble, covered by a (3) regolith of smaller grains that result from collisions and meteoritic grinding. Evidence for this triple architecture of ring particles comes from a multitude of Cassini observations. In a number of ring locations (including Saturn’s F ring, the shepherded outer edges of rings A and B and at the locations of the strongest density waves) aggregation and dis-aggregation are operating now. ISS, VIMS, UVIS spectroscopy and occultations show haloes around the strongest density waves. Based on a predator-prey model for ring dynamics, we offer the following explanation: •Cyclic velocity changes cause the perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; •This forms a bright halo around the ILR, if the forcing is strong enough; •Surrounding particles diffuse back too slowly to erase the effect; they diffuse away to form the halo. The most rapid time scale is for forcing/aggregate growth/disaggregation; then irreversible regolith erosion; diffusion and/or ballistic transport; and slowest, meteoritic pollution/darkening. We observe both smaller and larger particles at perturbed regions. Straw, UVIS power spectral analysis, kittens and equinox objects show the prey (mass aggregates); while the haloes’ VIMS spectral signature, correlation length and excess variance are created by the predators (velocity dispersion) in regions stirred in the rings. Moon forcing triggers aggregation to create longer-lived aggregates that protect their interiors from meteoritic darkening and recycle the ring material to maintain the current purity of the rings. It also provides a mechanism for creation of new moons at resonance locations in the Roche zone, as proposed by Charnoz etal and

  16. Predator-Prey model for haloes in Saturn's A ring

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.; Bradley, E. Todd; Colwell, Joshua E.; Madhusudhanan, Prasanna; Sremcevic, Miodrag

    2013-04-01

    UVIS SOI reflectance spectra show bright 'haloes' around the locations of some of the strongest resonances in Saturn's A ring (Esposito etal 2005). UV spectra constrain the size and composition of the icy ring particles (Bradley etal 2010, 2012). The correspondence of IR, UV spectroscopy, HSP wavelet analysis indicate that we detect the same phenomenon. We investigate the Janus 2:1. 4:3, 5:3, 6:5 and Mimas 5:3 inner Lindblad resonances as well as at the Mimas 5:3 vertical resonance (bending wave location). Models of ring particle regolith evolution (Elliott and Esposito 2010) indicate the deeper regolith is made of older and purer ice. The strong resonances can cause streamline crowding (Lewis and Stewart 2005) which damps the interparticle velocity, allowing temporary clumps to grow, which in turn increase the velocity, eroding the clumps and releasing smaller particles and regolith (see the predator-prey model of Esposito etal 2012). This cyclic behavior, driven by the resonant perturbation from the moon, can yield collision velocities at particular azimuths greater than 1m/sec, sufficient to erode the aggregates (Blum 2006), exposing older, purer materials: In the perturbed region, collisions erode the regolith, removing smaller particles. The released regolith material settles in the less perturbed neighboring regions. Diffusion spreads these ring particles with smaller regolith into a 'halo'. Thus, the radial location of the strongest resonances can be where we find both large aggregates and disrupted fragments, in a balance maintained by the periodic moon forcing. If this stirring exposes older, and purer ice, the velocity threshold for eroding the aggregates can explain why only the strongest Lindblad resonances show haloes. Diffusion can explain the morphology of these haloes, although they are not well-resolved spatially by UVIS.

  17. Do predator-prey relationships on the river bed affect fine sediment ingress?

    NASA Astrophysics Data System (ADS)

    Mathers, Kate; Rice, Stephen; Wood, Paul

    2016-04-01

    Ecosystem engineers are organisms that alter their physical environment and thereby influence the flow of resources through ecosystems. In rivers, several ecosystem engineers are also important geomorphological agents that modify fluvial sediment dynamics. By altering channel morphology and bed material characteristics, such modifications can affect the availability of habitats for other organisms, with implications for ecosystem health and wider community composition. In this way geomorphological and ecological systems are intimately interconnected. This paper focuses on one element of this intricate abiotic-biotic coupling: the interaction between fine sediment ingress into the river bed and the predator-prey relationships of aquatic organisms living on and in the river bed. Signal crayfish (Pacifastacus leniusculus) have been shown to modify fine sediment fluxes in rivers, but their effect on fine sediment ingress into riverbeds remains unclear. Many macroinvertebrate taxa have adapted avoidance strategies to avoid predation by crayfish, with one example being the freshwater shrimp (Gammarus pulex) which relies on open interstitial spaces within subsurface sediments as a refuge from crayfish predation. Fine sedimentation that fills gravelly frameworks may preclude access to those spaces, therefore leaving freshwater shrimp susceptible to predation. Ex-situ experiments were conducted which sought to examine: i) if freshwater shrimps and signal crayfish, alone and in combination, influenced fine sediment infiltration rates; and ii) whether modifications to substratum composition, specifically the introduction of fine sediment, modified predator-prey interactions. The results demonstrate that crayfish are significant geomorphic agents and that fine sediment ingress rates were significantly enhanced in their presence compared to control conditions or the presence of only freshwater shrimps. The combination of both organisms (i.e. allowing the interaction between

  18. Human activity helps prey win the predator-prey space race.

    PubMed

    Muhly, Tyler B; Semeniuk, Christina; Massolo, Alessandro; Hickman, Laura; Musiani, Marco

    2011-03-02

    Predator-prey interactions, including between large mammalian wildlife species, can be represented as a "space race", where prey try to minimize and predators maximize spatial overlap. Human activity can also influence the distribution of wildlife species. In particular, high-human disturbance can displace large carnivore predators, a trait-mediated direct effect. Predator displacement by humans could then indirectly benefit prey species by reducing predation risk, a trait-mediated indirect effect of humans that spatially decouples predators from prey. The purpose of this research was to test the hypothesis that high-human activity was displacing predators and thus indirectly creating spatial refuge for prey species, helping prey win the "space race". We measured the occurrence of eleven large mammal species (including humans and cattle) at 43 camera traps deployed on roads and trails in southwest Alberta, Canada. We tested species co-occurrence at camera sites using hierarchical cluster and nonmetric multidimensional scaling (NMS) analyses; and tested whether human activity, food and/or habitat influenced predator and prey species counts at camera sites using regression tree analysis. Cluster and NMS analysis indicated that at camera sites humans co-occurred with prey species more than predator species and predator species had relatively low co-occurrence with prey species. Regression tree analysis indicated that prey species were three times more abundant on roads and trails with >32 humans/day. However, predators were less abundant on roads and trails that exceeded 18 humans/day. Our results support the hypothesis that high-human activity displaced predators but not prey species, creating spatial refuge from predation. High-human activity on roads and trails (i.e., >18 humans/day) has the potential to interfere with predator-prey interactions via trait-mediated direct and indirect effects. We urge scientist and managers to carefully consider and quantify the

  19. Form of an evolutionary tradeoff affects eco-evolutionary dynamics in a predator-prey system.

    PubMed

    Kasada, Minoru; Yamamichi, Masato; Yoshida, Takehito

    2014-11-11

    Evolution on a time scale similar to ecological dynamics has been increasingly recognized for the last three decades. Selection mediated by ecological interactions can change heritable phenotypic variation (i.e., evolution), and evolution of traits, in turn, can affect ecological interactions. Hence, ecological and evolutionary dynamics can be tightly linked and important to predict future dynamics, but our understanding of eco-evolutionary dynamics is still in its infancy and there is a significant gap between theoretical predictions and empirical tests. Empirical studies have demonstrated that the presence of genetic variation can dramatically change ecological dynamics, whereas theoretical studies predict that eco-evolutionary dynamics depend on the details of the genetic variation, such as the form of a tradeoff among genotypes, which can be more important than the presence or absence of the genetic variation. Using a predator-prey (rotifer-algal) experimental system in laboratory microcosms, we studied how different forms of a tradeoff between prey defense and growth affect eco-evolutionary dynamics. Our experimental results show for the first time to our knowledge that different forms of the tradeoff produce remarkably divergent eco-evolutionary dynamics, including near fixation, near extinction, and coexistence of algal genotypes, with quantitatively different population dynamics. A mathematical model, parameterized from completely independent experiments, explains the observed dynamics. The results suggest that knowing the details of heritable trait variation and covariation within a population is essential for understanding how evolution and ecology will interact and what form of eco-evolutionary dynamics will result.

  20. Predator-prey coevolution driven by size selective predation can cause anti-synchronized and cryptic population dynamics.

    PubMed

    Mougi, Akihiko

    2012-03-01

    Population dynamics and evolutionary dynamics can occur on similar time scales, and a coupling of these two processes can lead to novel population dynamics. Recent theoretical studies of coevolving predator-prey systems have concentrated more on the stability of such systems than on the characteristics of cycles when they are unstable. Here I explore the characteristics of the cycles that arise due to coevolution in a system in which prey can increase their ability to escape from predators by becoming either significantly larger or significantly smaller in trait value (i.e., a bidirectional trait axis). This is a reasonable model of body size evolution in some systems. The results show that antiphase population cycles and cryptic cycles (large population fluctuation in one species but almost no change in another species) can occur in the coevolutionary system but not systems where only a single species evolves. Previously, those dynamical patterns have only been theoretically shown to occur in single species evolutionary models and the coevolutionary model which do not involve a bi-directional axis of adaptation. These unusual dynamics may be observed in predator-prey interactions when the density dependence in the prey species is strong.

  1. Ecosystem-based management of predator-prey relationships: piscivorous birds and salmonids.

    PubMed

    Wiese, Francis K; Parrish, Julia K; Thompson, Christopher W; Maranto, Christina

    2008-04-01

    Predator-prey relationships are often altered as a result of human activities. Where prey are legally protected, conservation action may include lethal predator control. In the Columbia River basin (Pacific Northwest, USA and Canada), piscivorous predators have been implicated in contributing to a lack of recovery of several endangered anadromous salmonids (Oncorhynchus spp.), and lethal and nonlethal control programs have been instituted against both piscine and avian species. To determine the consequences of avian predation, we used a bioenergetics approach to estimate the consumption of salmonid smolts by waterbirds (Common Merganser, California and Ring-billed Gull, Caspian Tern, Double-crested Cormorant) found in the mid-Columbia River from April through August, 2002-2004. We used our model to explore several predator-prey scenarios, including the impact of historical bird abundance, and the effect of preserving vs. removing birds, on smolt abundance. Each year, <1% of the estimated available salmonid smolts (interannual range: 44,830-109,209; 95% CI = 38,000-137,000) were consumed, 85-98% away from dams. Current diet data combined with historical gull abundance at dams suggests that past smolt consumption may have been 1.5-3 times current numbers, depending on the assumed distribution of gulls along the reaches. After the majority (80%) of salmonid smolts have left the study area, birds switch their diet to predominantly juvenile northern pikeminnow (Ptychocheilus oregonensis), which as adults are significant native salmonid predators in the Columbia River. Our models suggest that one consequence of removing birds from the system may be increased pikeminnow abundance, which--even assuming 80% compensatory mortality in juvenile pikeminnow survival--would theoretically result in an annual average savings of just over 180,000 smolts, calculated over a decade. Practically, this suggests that smolt survival could be maximized by deterring birds from the river when

  2. Protection zone in a diffusive predator-prey model with Beddington-DeAngelis functional response.

    PubMed

    He, Xiao; Zheng, Sining

    2016-12-03

    In any reaction-diffusion system of predator-prey models, the population densities of species are determined by the interactions between them, together with the influences from the spatial environments surrounding them. Generally, the prey species would die out when their birth rate is too low, the habitat size is too small, the predator grows too fast, or the predation pressure is too high. To save the endangered prey species, some human interference is useful, such as creating a protection zone where the prey could cross the boundary freely but the predator is prohibited from entering. This paper studies the existence of positive steady states to a predator-prey model with reaction-diffusion terms, Beddington-DeAngelis type functional response and non-flux boundary conditions. It is shown that there is a threshold value [Formula: see text] which characterizes the refuge ability of prey such that the positivity of prey population can be ensured if either the prey's birth rate satisfies [Formula: see text] (no matter how large the predator's growth rate is) or the predator's growth rate satisfies [Formula: see text], while a protection zone [Formula: see text] is necessary for such positive solutions if [Formula: see text] with [Formula: see text] properly large. The more interesting finding is that there is another threshold value [Formula: see text], such that the positive solutions do exist for all [Formula: see text]. Letting [Formula: see text], we get the third threshold value [Formula: see text] such that if [Formula: see text], prey species could survive no matter how large the predator's growth rate is. In addition, we get the fourth threshold value [Formula: see text] for negative [Formula: see text] such that the system admits positive steady states if and only if [Formula: see text]. All these results match well with the mechanistic derivation for the B-D type functional response recently given by Geritz and Gyllenberg (J Theoret Biol 314:106-108, 2012

  3. Predator-prey interactions, resource depression and patch revisitation

    USGS Publications Warehouse

    Erwin, R.M.

    1989-01-01

    Generalist predators may be confronted by different types of prey in different patches: sedentary and conspicuous, cryptic (with or without refugia), conspicuous and nonsocial, or conspicuous and social. I argue that, where encounter rates with prey are of most importance, patch revisitation should be a profitable tactic where prey have short 'recovery' times (conspicuous, nonsocial prey), or where anti-predator response (e.g. shoaling) may increase conspicuousness. Predictions are made for how temporal changes in prey encounter rates should affect revisit schedules and feeding rates for the 4 different prey types.

  4. Predator-prey interactions, flight initiation distance and brain size.

    PubMed

    Møller, A P; Erritzøe, J

    2014-01-01

    Prey avoid being eaten by assessing the risk posed by approaching predators and responding accordingly. Such an assessment may result in prey-predator communication and signalling, which entail further monitoring of the predator by prey. An early antipredator response may provide potential prey with a selective advantage, although this benefit comes at the cost of disturbance in terms of lost foraging opportunities and increased energy expenditure. Therefore, it may pay prey to assess approaching predators and determine the likelihood of attack before fleeing. Given that many approaching potential predators are detected visually, we hypothesized that species with relatively large eyes would be able to detect an approaching predator from afar. Furthermore, we hypothesized that monitoring of predators by potential prey relies on evaluation through information processing by the brain. Therefore, species with relatively larger brains for their body size should be better able to monitor the intentions of a predator, delay flight for longer and hence have shorter flight initiation distances than species with smaller brains. Indeed, flight initiation distances increased with relative eye size and decreased with relative brain size in a comparative study of 107 species of birds. In addition, flight initiation distance increased independently with size of the cerebellum, which plays a key role in motor control. These results are consistent with cognitive monitoring as an antipredator behaviour that does not result in the fastest possible, but rather the least expensive escape flights. Therefore, antipredator behaviour may have coevolved with the size of sense organs, brains and compartments of the brain involved in responses to risk of predation.

  5. Predator-prey trophic relationships in response to organic management practices.

    PubMed

    Schmidt, Jason M; Barney, Sarah K; Williams, Mark A; Bessin, Ricardo T; Coolong, Timothy W; Harwood, James D

    2014-08-01

    A broad range of environmental conditions likely regulate predator-prey population dynamics and impact the structure of these communities. Central to understanding the interplay between predator and prey populations and their importance is characterizing the corresponding trophic interactions. Here, we use a well-documented molecular approach to examine the structure of the community of natural enemies preying upon the squash bug, Anasa tristis, a herbivorous cucurbit pest that severely hinders organic squash and pumpkin production in the United States. Primer pairs were designed to examine the effects of organic management practices on the strength of these trophic connections and link this metric to measures of the arthropod predator complex density and diversity within an experimental open-field context. Replicated plots of butternut squash were randomly assigned to three treatments and were sampled throughout a growing season. Row-cover treatments had significant negative effects on squash bug and predator communities. In total, 640 predators were tested for squash bug molecular gut-content, of which 11% were found to have preyed on squash bugs, but predation varied over the season between predator groups (coccinellids, geocorids, nabids, web-building spiders and hunting spiders). Through the linking of molecular gut-content analysis to changes in diversity and abundance, these data delineate the complexity of interaction pathways on a pest that limits the profitability of organic squash production.

  6. Flood disturbance and predator-prey effects on regional gradients in species diversity.

    PubMed

    Mori, Terutaka; Saitoh, Takashi

    2014-01-01

    The effects of both abiotic factors and biotic interactions among guilds (i.e., inter-guild effects) have been suggested to be important for understanding spatial variation in species diversity; however, compared to the abiotic effects, the processes by which the inter-guild effects are mediated have been little described. Hence, we investigated stream invertebrate assemblages on Hokkaido Island, Japan, and assessed how the processes of determining regional patterns in species diversity differed among guilds (collector-filterers, collector-gatherers/shredders, scrapers, and predators) by taking both inter-guild and abiotic effects into consideration using Bayesian networks. Collector-gatherers/shredders, collector-filterers, and predators exhibited significant regional gradients in taxonomic richness. Gradients in the former two guilds can be generated by variation in flood disturbance regardless of interactions with other guilds. The gradient in predator taxonomic richness was indirectly related to the disturbance and was directly generated by bottom-up effects through their prey (collector-gatherers/shredders and collector-filterers). We found that not only environmental factors, but also inter-guild effects may be essential for forming the regional gradient in predators, unlike those for collector-gatherers/shredders and collector-filterers. The processes underlying the regional variation in taxonomic richness of the three guilds are interpreted in terms of the "more individuals" hypothesis, facilitation, and predator-prey relationships.

  7. Predator prey oscillations in a simple cascade model of drift wave turbulence

    SciTech Connect

    Berionni, V.; Guercan, Oe. D.

    2011-11-15

    A reduced three shell limit of a simple cascade model of drift wave turbulence, which emphasizes nonlocal interactions with a large scale mode, is considered. It is shown to describe both the well known predator prey dynamics between the drift waves and zonal flows and to reduce to the standard three wave interaction equations. Here, this model is considered as a dynamical system whose characteristics are investigated. The analytical solutions for the purely nonlinear limit are given in terms of the Jacobi elliptic functions. An approximate analytical solution involving Jacobi elliptic functions and exponential growth is computed using scale separation for the case of unstable solutions that are observed when the energy injection rate is high. The fixed points of the system are determined, and the behavior around these fixed points is studied. The system is shown to display periodic solutions corresponding to limit cycle oscillations, apparently chaotic phase space orbits, as well as unstable solutions that grow slowly while oscillating rapidly. The period doubling route to transition to chaos is examined.

  8. L-shaped prey isocline in the Gause predator-prey experiments with a prey refuge.

    PubMed

    Křivan, Vlastimil; Priyadarshi, Anupam

    2015-04-07

    Predator and prey isoclines are estimated from data on yeast-protist population dynamics (Gause et al., 1936). Regression analysis shows that the prey isocline is best fitted by an L-shaped function that has a vertical and a horizontal part. The predator isocline is vertical. This shape of isoclines corresponds with the Lotka-Volterra and the Rosenzweig-MacArthur predator-prey models that assume a prey refuge. These results further support the idea that a prey refuge changes the prey isocline of predator-prey models from a horizontal to an L-shaped curve. Such a shape of the prey isocline effectively bounds amplitude of predator-prey oscillations, thus promotes species coexistence.

  9. Phase transition in predator-prey ecosystems and a connection to transitional turbulence

    NASA Astrophysics Data System (ADS)

    Shih, Hong-Yan; Goldenfeld, Nigel

    2015-03-01

    We suggest how the transition from laminar fluid flow to turbulence can be connected to the extinction phase transition in spatially-extended predator-prey systems. By measuring the statistics of spontaneous relaminarization, spatiotemporal intermittency and expanding turbulent puffs in hydrodynamics equations and mapping them to the corresponding states in the predator-prey model, the extinction event and the formation and propagation of spatial patterns in ecology can be interpreted as the instabilities in fluid systems. We also summarize the general phenomena of such predator-prey dynamics in a wide class of transitional turbulence systems such as magnetohydrodynamics. This work was partially supported by the National Science Foundation through Grant NSF-DMR-1044901.

  10. Climate-ecosystem change off southern California: Time-dependent seabird predator-prey numerical responses

    NASA Astrophysics Data System (ADS)

    Sydeman, William J.; Thompson, Sarah Ann; Santora, Jarrod A.; Koslow, J. Anthony; Goericke, Ralf; Ohman, Mark D.

    2015-02-01

    Climate change may increase both stratification and upwelling in marine ecosystems, but these processes may affect productivity in opposing or complementary ways. For the Southern California region of the California Current Ecosystem (CCE), we hypothesized that changes in stratification and upwelling have affected marine bird populations indirectly through changes in prey availability. To test this hypothesis, we derived trends and associations between stratification and upwelling, the relative abundance of potential prey including krill and forage fish, and seabirds based on the long-term, multi-disciplinary CalCOFI/CCE-LTER program. Over the period 1987 through 2011, spring and summer seabird density (all species combined) declined by ~2% per year, mostly in the northern sector of the study region. Krill showed variable trends with two species increasing and one deceasing, resulting in community reorganization. Nearshore forage fish, dominated by northern anchovy (Engraulis mordax) as well as offshore mesopelagic species, show declines in relative abundance over this period. The unidirectional decline in springtime seabird density is largely explained by declining nearshore fish abundance in the previous season (winter). Interannual variability in seabird density, especially in the 2000s, is explained by variability in krill abundance. Changes in the numerical responses of seabirds to prey abundance correspond to a putative ecosystem shift in 1998-1999 and support aspects of optimal foraging (diet) theory. Predator-prey interactions and numerical responses clearly explain aspects of the upper trophic level patterns of change in the pelagic ecosystem off southern California.

  11. Hopf and steady state bifurcation analysis in a ratio-dependent predator-prey model

    NASA Astrophysics Data System (ADS)

    Zhang, Lai; Liu, Jia; Banerjee, Malay

    2017-03-01

    In this paper, we perform spatiotemporal bifurcation analysis in a ratio-dependent predator-prey model and derive explicit conditions for the existence of non-constant steady states that emerge through steady state bifurcation from related constant steady states. These explicit conditions are numerically verified in details and further compared to those conditions ensuring Turing instability. We find that (1) Turing domain is identical to the parametric domain where there exists only steady state bifurcation, which implies that Turing patterns are stable non-constant steady states, but the opposite is not necessarily true; (2) In non-Turing domain, steady state bifurcation and Hopf bifurcation act in concert to determine the emergent spatial patterns, that is, non-constant steady state emerges through steady state bifurcation but it may be unstable if the destabilising effect of Hopf bifurcation counteracts the stabilising effect of diffusion, leading to non-stationary spatial patterns; (3) Coupling diffusion into an ODE model can significantly enrich population dynamics by inducing alternative non-constant steady states (four different states are observed, two stable and two unstable), in particular when diffusion interacts with different types of bifurcation; (4) Diffusion can promote species coexistence by saving species which otherwise goes to extinction in the absence of diffusion.

  12. Rank One Strange Attractors in Periodically Kicked Predator-Prey System with Time-Delay

    NASA Astrophysics Data System (ADS)

    Yang, Wenjie; Lin, Yiping; Dai, Yunxian; Zhao, Huitao

    2016-06-01

    This paper is devoted to the study of the problem of rank one strange attractor in a periodically kicked predator-prey system with time-delay. Our discussion is based on the theory of rank one maps formulated by Wang and Young. Firstly, we develop the rank one chaotic theory to delayed systems. It is shown that strange attractors occur when the delayed system undergoes a Hopf bifurcation and encounters an external periodic force. Then we use the theory to the periodically kicked predator-prey system with delay, deriving the conditions for Hopf bifurcation and rank one chaos along with the results of numerical simulations.

  13. Permanence of a predator-prey discrete system with Holling-IV functional response and distributed delays.

    PubMed

    Zhang, X; Wu, Z; Zhou, T

    2016-01-01

    A predator-prey discrete-time model with Holling-IV functional response and distributed delays is investigated in this paper. By using the comparison theorem of the difference equation and some analysis technique, some sufficient conditions are obtained for the permanence of the discrete predator-prey system. Two examples are given to illustrate the feasibility of the obtained result.

  14. Senses & Sensibility: Predator-Prey Experiments Reveal How Fish Perceive & Respond to Threats

    ERIC Educational Resources Information Center

    Jones, Jason; Holloway, Barbara; Ketcham, Elizabeth; Long, John

    2008-01-01

    The predator-prey relationship is one of the most recognizable and well-studied animal relationships. One of the more striking aspects of this relationship is the differential natural selection pressure placed on predators and their prey. This differential pressure results from differing costs of failure, the so-called life-dinner principle. If a…

  15. Predation of Notiophilus (Coleoptera: Carabidae) on Collembola as a Predator-Prey Teaching Model.

    ERIC Educational Resources Information Center

    Higgins, R. C.

    1982-01-01

    The carabid beetle (Notiophilus) preys readily on an easily-cultured collembolan in simple experimental conditions. Some features of this predator-prey system are outlined to emphasize its use in biology instruction. Experiments with another potential collembolan are described in the context of developing the method for more advanced studies.…

  16. Stability of equilibria of a predator-prey model of phenotype evolution.

    PubMed

    Cuadrado, Silvia

    2009-10-01

    We consider a selection mutation predator-prey model for the distribution of individuals with respect to an evolutionary trait. Local stability of the equilibria of this model is studied using the linearized stability principle and taking advantage of the (assumed) asymptotic stability of the equilibria of the resident population adopting an evolutionarily stable strategy.

  17. A mathematical ecogenetic predator-prey model where both populations are genetically distinguishable

    NASA Astrophysics Data System (ADS)

    Castellino, Luisa; Peretti, Sabrina; Rivoira, Stella; Venturino, Ezio

    2016-10-01

    A mathematical ecogenetic predator-prey model with both populations genetically distinguishable is introduced. Equilibria are investigated for feasibility and stability and are numerically found to be related via a transcritical bifurcation. These results are in line with parallel studies on related models. A sensitivity analysis in terms of pairs of model parameters is performed.

  18. The Macaroni Lab: A Directed Inquiry Project on Predator-Prey Relationships.

    ERIC Educational Resources Information Center

    Oyler, Michelle; Rivera, John; Roffol, Melanie; Gibson, David J.; Middleton, Beth A.; Mathis, Marilyn

    1999-01-01

    Presents a directed-inquiry activity to take students one step beyond observation of how living organisms capture prey. Uses a field lab based upon predator-prey relationships to enliven the teaching of food web concepts to non-science-major freshman undergraduates. Can also be used in teaching high school biology students through college science…

  19. Examining predator-prey body size, trophic level and body mass across marine and terrestrial mammals.

    PubMed

    Tucker, Marlee A; Rogers, Tracey L

    2014-12-22

    Predator-prey relationships and trophic levels are indicators of community structure, and are important for monitoring ecosystem changes. Mammals colonized the marine environment on seven separate occasions, which resulted in differences in species' physiology, morphology and behaviour. It is likely that these changes have had a major effect upon predator-prey relationships and trophic position; however, the effect of environment is yet to be clarified. We compiled a dataset, based on the literature, to explore the relationship between body mass, trophic level and predator-prey ratio across terrestrial (n = 51) and marine (n = 56) mammals. We did not find the expected positive relationship between trophic level and body mass, but we did find that marine carnivores sit 1.3 trophic levels higher than terrestrial carnivores. Also, marine mammals are largely carnivorous and have significantly larger predator-prey ratios compared with their terrestrial counterparts. We propose that primary productivity, and its availability, is important for mammalian trophic structure and body size. Also, energy flow and community structure in the marine environment are influenced by differences in energy efficiency and increased food web stability. Enhancing our knowledge of feeding ecology in mammals has the potential to provide insights into the structure and functioning of marine and terrestrial communities.

  20. Bionomic Exploitation of a Ratio-Dependent Predator-Prey System

    ERIC Educational Resources Information Center

    Maiti, Alakes; Patra, Bibek; Samanta, G. P.

    2008-01-01

    The present article deals with the problem of combined harvesting of a Michaelis-Menten-type ratio-dependent predator-prey system. The problem of determining the optimal harvest policy is solved by invoking Pontryagin's Maximum Principle. Dynamic optimization of the harvest policy is studied by taking the combined harvest effort as a dynamic…

  1. Global bifurcation analysis and pattern formation in homogeneous diffusive predator-prey systems

    NASA Astrophysics Data System (ADS)

    Wang, Jinfeng; Wei, Junjie; Shi, Junping

    2016-02-01

    The dynamics of a general diffusive predator-prey system is considered. Existence and nonexistence of non-constant positive steady state solutions are shown to identify the ranges of parameters of spatial pattern formation. Bifurcations of spatially homogeneous and nonhomogeneous periodic solutions as well as non-constant steady state solutions are studied.

  2. A detailed study of the Beddington-DeAngelis predator-prey model.

    PubMed

    Haque, Mainul

    2011-11-01

    The present investigation accounts for the influence of intra-specific competition among predators in the original Beddington-DeAngelis predator-prey model. We offer a detailed mathematical analysis of the model to describe some of the significant results that may be expected to arise from the interplay of deterministic and stochastic biological phenomena and processes. In particular, stability (local and global) and bifurcation (Saddle-node, Transcritical, Hopf-Andronov, Bogdanov-Takens) analysis of this model are conducted. Corresponding results from previous well known predator-prey models are compared with the current findings. Nevertheless, we also allow this model in stochastic environment with the influences of both, uncorrelated "white" noise and correlated "coloured" noise. This showing that competition among the predator population is beneficial for a number of predator-prey models by keeping them stable around its positive interior equilibrium (i.e. when both populations co-exist), under environmental stochasticity. Comparisons of these findings with the results of some earlier related investigations allow the general conclusion that predator intra-species competition benefits the predator-prey system under both deterministic and stochastic environments. Finally, an extended discussion of the ecological implications of the analytical and numerical results concludes the paper.

  3. A time delay predator-prey system with three-stage-structure.

    PubMed

    Gao, Qiaoqin; Jin, Zhen

    2014-01-01

    A predator-prey system was studied that has a discrete delay, stage-structure, and Beddington-DeAngelis functional response, where predator species has three stages, immature, mature, and old age stages. By using of Mawhin's continuous theorem of coincidence degree theory, a sufficient condition is obtained for the existence of a positive periodic solution.

  4. Adaptive behaviour and multiple equilibrium states in a predator-prey model.

    PubMed

    Pimenov, Alexander; Kelly, Thomas C; Korobeinikov, Andrei; O'Callaghan, Michael J A; Rachinskii, Dmitrii

    2015-05-01

    There is evidence that multiple stable equilibrium states are possible in real-life ecological systems. Phenomenological mathematical models which exhibit such properties can be constructed rather straightforwardly. For instance, for a predator-prey system this result can be achieved through the use of non-monotonic functional response for the predator. However, while formal formulation of such a model is not a problem, the biological justification for such functional responses and models is usually inconclusive. In this note, we explore a conjecture that a multitude of equilibrium states can be caused by an adaptation of animal behaviour to changes of environmental conditions. In order to verify this hypothesis, we consider a simple predator-prey model, which is a straightforward extension of the classic Lotka-Volterra predator-prey model. In this model, we made an intuitively transparent assumption that the prey can change a mode of behaviour in response to the pressure of predation, choosing either "safe" of "risky" (or "business as usual") behaviour. In order to avoid a situation where one of the modes gives an absolute advantage, we introduce the concept of the "cost of a policy" into the model. A simple conceptual two-dimensional predator-prey model, which is minimal with this property, and is not relying on odd functional responses, higher dimensionality or behaviour change for the predator, exhibits two stable co-existing equilibrium states with basins of attraction separated by a separatrix of a saddle point.

  5. Permanence of a stage-structured predator-prey system with a class of functional responses.

    PubMed

    Ma, Zhihui; Wang, Shufan; Wang, Wenting; Li, Zizhen

    2011-12-01

    A stage-structured predator-prey system incorporating a class of functional responses is presented in this article. By analyzing the system and using the standard comparison theorem, the sufficient conditions are derived for permanence of the system and non-permanence of predators.

  6. Deterministic and Stochastic Analysis of a Prey-Dependent Predator-Prey System

    ERIC Educational Resources Information Center

    Maiti, Alakes; Samanta, G. P.

    2005-01-01

    This paper reports on studies of the deterministic and stochastic behaviours of a predator-prey system with prey-dependent response function. The first part of the paper deals with the deterministic analysis of uniform boundedness, permanence, stability and bifurcation. In the second part the reproductive and mortality factors of the prey and…

  7. A Time Delay Predator-Prey System with Three-Stage-Structure

    PubMed Central

    Gao, Qiaoqin; Jin, Zhen

    2014-01-01

    A predator-prey system was studied that has a discrete delay, stage-structure, and Beddington-DeAngelis functional response, where predator species has three stages, immature, mature, and old age stages. By using of Mawhin's continuous theorem of coincidence degree theory, a sufficient condition is obtained for the existence of a positive periodic solution. PMID:25143982

  8. Impacts of foraging facilitation among predators on predator-prey dynamics.

    PubMed

    Berec, Ludek

    2010-01-01

    Whereas impacts of predator interference on predator-prey dynamics have received considerable attention, the "inverse" process-foraging facilitation among predators-have not been explored yet. Here we show, via mathematical models, that impacts of foraging facilitation on predator-prey dynamics depend on the way this process is modeled. In particular, foraging facilitation destabilizes predator-prey dynamics when it affects the encounter rate between predators and prey. By contrast, it might have a stabilizing effect if the predator handling time of prey is affected. Foraging facilitation is an Allee effect mechanism among predators and we show that for many parameters, it gives rise to a demographic Allee effect or a critical predator density in need to be crossed for predators to persist. We explore also the effects of predator interference, to make the picture "symmetric" and complete. Predator interference is shown to stabilize predator-prey dynamics once its strength is not too high, and thus corroborates results of others. On the other hand, there is a wide range of model parameters for which predator interference gives rise to three co-occurring co-existence equilibria. Such a multi-equilibrial regime is rather robust as we observe it for all the functional response types we explore. This is a previously unreported phenomenon which we show cannot occur for the Beddington-DeAngelis functional response. An interesting topic for future research thus might be to seek for general conditions on predator functional responses that would produce multiple co-existence equilibria in a predator-prey model.

  9. Linear and Weakly Nonlinear Stability Analyses of Turing Patterns for Diffusive Predator-Prey Systems in Freshwater Marsh Landscapes.

    PubMed

    Zhang, Li; Zhang, Fan; Ruan, Shigui

    2017-03-01

    We study a diffusive predator-prey model describing the interactions of small fishes and their resource base (small invertebrates) in the fluctuating freshwater marsh landscapes of the Florida Everglades. The spatial model is described by a reaction-diffusion system with Beddington-DeAngelis functional response. Uniform bound, local and global asymptotic stability of the steady state of the PDE model under the no-flux boundary conditions are discussed in details. Sufficient conditions on the Turing (diffusion-driven) instability which induces spatial patterns in the model are derived via linear analysis. Existence of one-dimensional and two-dimensional spatial Turing patterns, including rhombic and hexagonal patterns, are established by weakly nonlinear analyses. These results provide theoretical explanations and numerical simulations of spatial dynamical behaviors of the wetland ecosystems of the Florida Everglades.

  10. Robustness of predator-prey models for confinement regime transitions in fusion plasmas

    SciTech Connect

    Zhu, H.; Chapman, S. C.; Dendy, R. O.

    2013-04-15

    Energy transport and confinement in tokamak fusion plasmas is usually determined by the coupled nonlinear interactions of small-scale drift turbulence and larger scale coherent nonlinear structures, such as zonal flows, together with free energy sources such as temperature gradients. Zero-dimensional models, designed to embody plausible physical narratives for these interactions, can help to identify the origin of enhanced energy confinement and of transitions between confinement regimes. A prime zero-dimensional paradigm is predator-prey or Lotka-Volterra. Here, we extend a successful three-variable (temperature gradient; microturbulence level; one class of coherent structure) model in this genre [M. A. Malkov and P. H. Diamond, Phys. Plasmas 16, 012504 (2009)], by adding a fourth variable representing a second class of coherent structure. This requires a fourth coupled nonlinear ordinary differential equation. We investigate the degree of invariance of the phenomenology generated by the model of Malkov and Diamond, given this additional physics. We study and compare the long-time behaviour of the three-equation and four-equation systems, their evolution towards the final state, and their attractive fixed points and limit cycles. We explore the sensitivity of paths to attractors. It is found that, for example, an attractive fixed point of the three-equation system can become a limit cycle of the four-equation system. Addressing these questions which we together refer to as 'robustness' for convenience is particularly important for models which, as here, generate sharp transitions in the values of system variables which may replicate some key features of confinement transitions. Our results help to establish the robustness of the zero-dimensional model approach to capturing observed confinement phenomenology in tokamak fusion plasmas.

  11. Predator-prey encounter and capture rates for plankton in turbulent environments

    NASA Astrophysics Data System (ADS)

    Pécseli, H. L.; Trulsen, J.; Fiksen, Ø.

    2012-08-01

    Turbulence plays an important role for predator-prey interactions in aquatic environments. In one sense turbulence benefits the predator by increasing its encounter rate with prey, but on the other hand it can benefit the prey by making them more difficult to catch. In the present study of this problem, a turbulent flow field is obtained by direct numerical solution of the Navier-Stokes equation. The analysis includes the effects of the turbulence on the encounter rate between passively moving predators and prey, and at the same time also models the capture probability depending on the relative turbulent motions of predator and prey. Analytical results for scaling laws for planktonic encounter and capture rates in turbulent environments are obtained in terms of the basic parameters for the problem, and the results are compared with related findings reported in the literature. For large values of the specific energy dissipation rates ɛ the turbulence reduces the capture probability significantly, in part also because the effective capture range reduces for increasing turbulence intensity. The results presented here predict the parameters for an optimum turbulence level for the predator capture rate. For enhanced turbulence levels sudden bursts in the space-time varying velocity field contribute to a noise level that can reduce the probability for capturing prey. We consider cases where the capture range of an organism is comparable to or smaller than the effective Kolmogorov length scale, as well as the opposite limit of larger capture ranges in the inertial range of the turbulence. The reference model assumes spherical interception volumes, but it is demonstrated that the results remain basically valid also for the case where these volumes are hemispherical or conical: the consequences of having a shape of the interception surface deviating from a sphere can be accounted for by an empirical scaling factor, which depends solely on the opening angle of the cone.

  12. Landscape heterogeneity shapes predation in a newly restored predator-prey system

    USGS Publications Warehouse

    Kauffman, M.J.; Varley, N.; Smith, D.W.; Stahler, D.R.; MacNulty, D.R.; Boyce, M.S.

    2007-01-01

    Because some native ungulates have lived without top predators for generations, it has been uncertain whether runaway predation would occur when predators are newly restored to these systems. We show that landscape features and vegetation, which influence predator detection and capture of prey, shape large-scale patterns of predation in a newly restored predator-prey system. We analysed the spatial distribution of wolf (Canis lupus) predation on elk (Cervus elaphus) on the Northern Range of Yellowstone National Park over 10 consecutive winters. The influence of wolf distribution on kill sites diminished over the course of this study, a result that was likely caused by territorial constraints on wolf distribution. In contrast, landscape factors strongly influenced kill sites, creating distinct hunting grounds and prey refugia. Elk in this newly restored predator-prey system should be able to mediate their risk of predation by movement and habitat selection across a heterogeneous risk landscape. ?? 2007 Blackwell Publishing Ltd/CNRS.

  13. Landscape heterogeneity shapes predation in a newly restored predator-prey system.

    PubMed

    Kauffman, Matthew J; Varley, Nathan; Smith, Douglas W; Stahler, Daniel R; MacNulty, Daniel R; Boyce, Mark S

    2007-08-01

    Because some native ungulates have lived without top predators for generations, it has been uncertain whether runaway predation would occur when predators are newly restored to these systems. We show that landscape features and vegetation, which influence predator detection and capture of prey, shape large-scale patterns of predation in a newly restored predator-prey system. We analysed the spatial distribution of wolf (Canis lupus) predation on elk (Cervus elaphus) on the Northern Range of Yellowstone National Park over 10 consecutive winters. The influence of wolf distribution on kill sites diminished over the course of this study, a result that was likely caused by territorial constraints on wolf distribution. In contrast, landscape factors strongly influenced kill sites, creating distinct hunting grounds and prey refugia. Elk in this newly restored predator-prey system should be able to mediate their risk of predation by movement and habitat selection across a heterogeneous risk landscape.

  14. Stability and delay in a three species predator-prey system

    NASA Astrophysics Data System (ADS)

    Kundu, Soumen; Maitra, Sarit

    2016-06-01

    In this article a multi-team delayed predator-prey model has been considered. There are two preys and one predator species in this model and the time delay appears for gestation of the predator. The essential mathematical features of the proposed model around the interior equilibrium point are studied in terms of local asymptotic stability by constructing a suitable Lyapunov functional and the condition for existence of Hopf-bifurcation is derived. By the assumption that the prey teams may help each other the effect of the rate of cooperation on the stability of the predator-prey model has been observed. Numerically a critical value for the delay parameter is obtained as a condition for Hopf-bifurcation.

  15. Existence of complex patterns in the Beddington-DeAngelis predator-prey model.

    PubMed

    Haque, Mainul

    2012-10-01

    The study of reaction-diffusion system constitutes some of the most fascinating developments of late twentieth century mathematics and biology. This article investigates complexity and chaos in the complex patterns dynamics of the original Beddington-DeAngelis predator-prey model which concerns the influence of intra species competition among predators. We investigate the emergence of complex patterns through reaction-diffusion equations in this system. We derive the conditions for the codimension-2 Turing-Hopf, Turing-Saddle-node, and Turing-Transcritical bifurcation, and the codimension-3 Turing-Takens-Bogdanov bifurcation. These bifurcations give rise to very complex patterns that have not been observed in previous predator-prey models. A large variety of different types of long-term behavior, including homogenous distributions and stationary spatial patterns are observed through extensive numerical simulations with experimentally-based parameter values. Finally, a discussion of the ecological implications of the analytical and numerical results concludes the paper.

  16. Intermediate fragmentation per se provides stable predator-prey metapopulation dynamics.

    PubMed

    Cooper, Jennifer K; Li, Jiqiu; Montagnes, David J S

    2012-08-01

    The extent to which a landscape is fragmented affects persistence of predator-prey dynamics. Increasing fragmentation concomitantly imposes conditions that stabilise and destabilise metapopulations. For the first time, we explicitly assessed the hypothesis that intermediate levels provide optimal conditions for stability. We examine four structural changes arising from increased fragmentation: increased fragment number; decreased fragment size; increased connectedness (corridors scaled to fragment); increased fragment heterogeneity (based on connectedness). Using the model predator-prey system (Didinium-Paramecium) we support our hypothesis, by examining replicated metapopulations dynamics at five fragmentation levels. Although both species became extinct without fragmentation, prey survived at low and high levels, and both survived at intermediate levels. By examining time to extinction, maximum abundances, and population asynchrony we conclude that fragmentation produces structural heterogeneity (independent of environmental heterogeneity), which influences stability. Our analysis suggests why some theoretical, field and microcosm studies present conflicting views of fragmentation effects on population persistence.

  17. Stability of a Beddington-DeAngelis type predator-prey model with trichotomous noises

    NASA Astrophysics Data System (ADS)

    Jin, Yanfei; Niu, Siyong

    2016-06-01

    The stability analysis of a Beddington-DeAngelis (B-D) type predator-prey model driven by symmetric trichotomous noises is presented in this paper. Using the Shapiro-Loginov formula, the first-order and second-order solution moments of the system are obtained. The moment stability conditions of the B-D predator-prey model are given by using Routh-Hurwitz criterion. It is found that the stabilities of the first-order and second-order solution moments depend on the noise intensities and correlation time of noise. The first-order and second-order moments are stable when the correlation time of noise is increased. That is, the trichotomous noise plays a constructive role in stabilizing the solution moment with regard to Gaussian white noise. Finally, some numerical results are performed to support the theoretical analyses.

  18. Stochastic Predator-Prey Dynamics of Transposons in the Human Genome.

    PubMed

    Xue, Chi; Goldenfeld, Nigel

    2016-11-11

    Transposable elements, or transposons, are DNA sequences that can jump from site to site in the genome during the life cycle of a cell, usually encoding the very enzymes which perform their excision. However, some transposons are parasitic, relying on the enzymes produced by the regular transposons. In this case, we show that a stochastic model, which takes into account the small copy numbers of the active transposons in a cell, predicts noise-induced predator-prey oscillations with a characteristic time scale that is much longer than the cell replication time, indicating that the state of the predator-prey oscillator is stored in the genome and transmitted to successive generations. Our work demonstrates the important role of the number fluctuations in the expression of mobile genetic elements, and shows explicitly how ecological concepts can be applied to the dynamics and fluctuations of living genomes.

  19. Stochastic Predator-Prey Dynamics of Transposons in the Human Genome

    NASA Astrophysics Data System (ADS)

    Xue, Chi; Goldenfeld, Nigel

    2016-11-01

    Transposable elements, or transposons, are DNA sequences that can jump from site to site in the genome during the life cycle of a cell, usually encoding the very enzymes which perform their excision. However, some transposons are parasitic, relying on the enzymes produced by the regular transposons. In this case, we show that a stochastic model, which takes into account the small copy numbers of the active transposons in a cell, predicts noise-induced predator-prey oscillations with a characteristic time scale that is much longer than the cell replication time, indicating that the state of the predator-prey oscillator is stored in the genome and transmitted to successive generations. Our work demonstrates the important role of the number fluctuations in the expression of mobile genetic elements, and shows explicitly how ecological concepts can be applied to the dynamics and fluctuations of living genomes.

  20. a Predator-Prey Model Based on the Fully Parallel Cellular Automata

    NASA Astrophysics Data System (ADS)

    He, Mingfeng; Ruan, Hongbo; Yu, Changliang

    We presented a predator-prey lattice model containing moveable wolves and sheep, which are characterized by Penna double bit strings. Sexual reproduction and child-care strategies are considered. To implement this model in an efficient way, we build a fully parallel Cellular Automata based on a new definition of the neighborhood. We show the roles played by the initial densities of the populations, the mutation rate and the linear size of the lattice in the evolution of this model.

  1. Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models

    NASA Astrophysics Data System (ADS)

    Ahmed, E.; El-Sayed, A. M. A.; El-Saka, H. A. A.

    2007-01-01

    In this paper we are concerned with the fractional-order predator-prey model and the fractional-order rabies model. Existence and uniqueness of solutions are proved. The stability of equilibrium points are studied. Numerical solutions of these models are given. An example is given where the equilibrium point is a centre for the integer order system but locally asymptotically stable for its fractional-order counterpart.

  2. Optimal Harvesting in an Age-Structured Predator-Prey Model

    SciTech Connect

    Fister, K. Renee Lenhart, Suzanne

    2006-06-15

    We investigate optimal harvesting control in a predator-prey model in which the prey population is represented by a first-order partial differential equation with age-structure and the predator population is represented by an ordinary differential equation in time. The controls are the proportions of the populations to be harvested, and the objective functional represents the profit from harvesting. The existence and uniqueness of the optimal control pair are established.

  3. Stability and Bifurcation in a State-Dependent Delayed Predator-Prey System

    NASA Astrophysics Data System (ADS)

    Hou, Aiyu; Guo, Shangjiang

    In this paper, we consider a class of predator-prey equations with state-dependent delayed feedback. Firstly, we investigate the local stability of the positive equilibrium and the existence of the Hopf bifurcation. Then we use perturbation methods to determine the sub/supercriticality of Hopf bifurcation and hence the stability of Hopf bifurcating periodic solutions. Finally, numerical simulations supporting our theoretical results are also provided.

  4. Effects of the heterogeneous landscape on a predator-prey system

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hee

    2010-01-01

    In order to understand how a heterogeneous landscape affects a predator-prey system, a spatially explicit lattice model consisting of predators, prey, grass, and landscape was constructed. The predators and preys randomly move on the lattice space and the grass grows in its neighboring site according to its growth probability. When predators and preys meet at the same site at the same time, a number of prey, equal to the number of predators are eaten. This rule was also applied to the relationship between the prey and grass. The predator (prey) could give birth to an offspring when it ate prey (grass), with a birth probability. When a predator or prey animal was initially introduced, or newly born, its health state was set at a given high value. This health state decreased by one with every time step. When the state of an animal decreased to less than zero, the animal died and was removed from the system. The heterogeneous landscape was characterized by parameter H, which controlled the heterogeneity according to the neutral model. The simulation results showed that H positively or negatively affected a predator’s survival, while its effect on prey and grass was less pronounced. The results can be understood by the disturbance of the balance between the prey and predator densities in the areas where the animals aggregated.

  5. Restructuring fundamental predator-prey models by recognising prey-dependent conversion efficiency and mortality rates.

    PubMed

    Li, Jiqiu; Montagnes, David J S

    2015-05-01

    Incorporating protozoa into population models (from simple predator-prey explorations to complex food web simulations) is of conceptual, ecological, and economic importance. From theoretical and empirical perspectives, we expose unappreciated complexity in the traditional predator-prey model structure and provide a parsimonious solution, especially for protistologists. We focus on how prey abundance alters two key components of models: predator conversion efficiency (e, the proportion of prey converted to predator, before mortality loss) and predator mortality (δ, the portion of the population lost though death). Using a well-established model system (Paramecium and Didinium), we collect data to parameterize a range of existing and novel population models that differ in the functional forms of e and δ. We then compare model simulations to an empirically obtained time-series of predator-prey population dynamics. The analysis indicates that prey-dependent e and δ should be considered when structuring population models and that both prey and predator biomass also vary with prey abundance. Both of these impact the ability of the model to predict population dynamics and, therefore, should be included in theoretical model evaluations and assessment of ecosystem dynamics associated with biomass flux.

  6. On a predator-prey system of Gause type.

    PubMed

    Hasík, Karel

    2010-01-01

    In this paper a Gause type model of interactions between predator and prey population is considered. We deal with the sufficient condition due to Kuang and Freedman in the generalized form including a kind of weight function. In a previous paper we proved that the existence of such weight function implies the uniqueness of limit cycle. In the present paper we give a new condition equivalent to the existence of a weight function (Theorem 4.4). As a consequence of our result, it is shown that some simple qualitative properties of the trophic function and the prey isocline ensure the uniqueness of limit cycle.

  7. Switching from simple to complex dynamics in a predator-prey-parasite model: An interplay between infection rate and incubation delay.

    PubMed

    Bairagi, N; Adak, D

    2016-07-01

    Parasites play a significant role in trophic interactions and can regulate both predator and prey populations. Mathematical models might be of great use in predicting different system dynamics because models have the potential to predict the system response due to different changes in system parameters. In this paper, we study a predator-prey-parasite (PPP) system where prey population is infected by some micro parasites and predator-prey interaction occurs following Leslie-Gower model with type II response function. Infection spreads following SI type epidemic model with standard incidence rate. The infection process is not instantaneous but mediated by a fixed incubation delay. We study the stability and instability of the endemic equilibrium point of the delay-induced PPP system with respect to two parameters, viz., the force of infection and the length of incubation delay under two cases: (i) the corresponding non-delayed system is stable and (ii) the corresponding non-delayed system is unstable. In the first case, the system populations coexist in stable state for all values of delay if the force of infection is low; or show oscillatory behavior when the force of infection is intermediate and the length of delay crosses some critical value. The system, however, exhibits very complicated dynamics if the force of infection is high, where the system is unstable in absence of delay. In this last case, the system shows oscillatory, stable or chaotic behavior depending on the length of delay.

  8. Model of naticid gastropod predator-prey coevolution

    SciTech Connect

    DeAngelis, D.L.; Kitchell, J.A.; Post, W.M.; Travis, C.C.

    1982-01-01

    Size change over evolutionary time between two interacting species, a predatory naticid gastropod and its bivalve prey, is analyzed. We show that two simultaneous, maximizing algorithms (the predator maximizes energy intake; the prey maximizes reproductive output) result in an endogenous, coevolutionary size increase, to a stable attracting point. In particular, we show that selection for delayed reproduction in a predatorpreay system that is highly size-selective due to the predatory strategy of cost-benefit prey selection, coupled with the relative allometries of cost (prey shell thickness) and benefit (prey biomass) with prey size, and the highly size-dependent probability of successful predation, lead to a coevolutionary size increase for both predator and prey, up to a limit condition dictated by predatory respiration costs. In the absence of predation, the prey species attains a smaller size than in the presence of predation. Addition of the predator results in a delay in the timing of reproduction by the prey, thereby facilitating a size response.

  9. Antagonistic evolution in an aposematic predator-prey signaling system.

    PubMed

    Speed, Michael P; Franks, Daniel W

    2014-10-01

    Warning signals within species, such as the bright colors of chemically defended animals, are usually considered mutualistic, monomorphic traits. Such a view is however increasingly at odds with the growing empirical literature, showing nontrivial levels of signal variation within prey populations. Key to understanding this variation, we argue, could be a recognition that toxicity levels frequently vary within populations because of environmental heterogeneity. Inequalities in defense may undermine mutualistic monomorphic signaling, causing evolutionary antagonism between loci that determine appearance of less well-defended and better defended prey forms within species. In this article, we apply a stochastic model of evolved phenotypic plasticity to the evolution of prey signals. We show that when toxicity levels vary, then antagonistic interactions can lead to evolutionary conflict between alleles at different signaling loci, causing signal evolution, "red queen-like" evolutionary chase, and one or more forms of signaling equilibria. A key prediction is that variation in the way that predators use information about toxicity levels in their attack behaviors profoundly affects the evolutionary characteristics of the prey signaling systems. Environmental variation is known to cause variation in many qualities that organisms signal; our approach may therefore have application to other signaling systems.

  10. Modelling the dynamics of traits involved in fighting-predators-prey system.

    PubMed

    Kooi, B W

    2015-12-01

    We study the dynamics of a predator-prey system where predators fight for captured prey besides searching for and handling (and digestion) of the prey. Fighting for prey is modelled by a continuous time hawk-dove game dynamics where the gain depends on the amount of disputed prey while the costs for fighting is constant per fighting event. The strategy of the predator-population is quantified by a trait being the proportion of the number of predator-individuals playing hawk tactics. The dynamics of the trait is described by two models of adaptation: the replicator dynamics (RD) and the adaptive dynamics (AD). In the RD-approach a variant individual with an adapted trait value changes the population's strategy, and consequently its trait value, only when its payoff is larger than the population average. In the AD-approach successful replacement of the resident population after invasion of a rare variant population with an adapted trait value is a step in a sequence changing the population's strategy, and hence its trait value. The main aim is to compare the consequences of the two adaptation models. In an equilibrium predator-prey system this will lead to convergence to a neutral singular strategy, while in the oscillatory system to a continuous singular strategy where in this endpoint the resident population is not invasible by any variant population. In equilibrium (low prey carrying capacity) RD and AD-approach give the same results, however not always in a periodically oscillating system (high prey carrying-capacity) where the trait is density-dependent. For low costs the predator population is monomorphic (only hawks) while for high costs dimorphic (hawks and doves). These results illustrate that intra-specific trait dynamics matters in predator-prey dynamics.

  11. Complex patterns in a space- and time-discrete predator-prey model with Beddington-DeAngelis functional response

    NASA Astrophysics Data System (ADS)

    Huang, Tousheng; Zhang, Huayong; Yang, Hongju; Wang, Ning; Zhang, Feifan

    2017-02-01

    The spatial pattern formation of predator-prey systems is an important issue widely concerned. In this research, we address this issue by developing a new space- and time-discrete predator-prey model, with predation relationship described by Beddington-DeAngelis functional response. The discrete model is given by a coupled map lattice, taking a nonlinear relationship between predator-prey "reaction" stage and dispersal stage. Through analysis of Turing instability and Hopf instability for the discrete model, the parametric conditions for pattern formation are determined. Numerical simulations reveal a surprising variety of spatiotemporal patterns, including regular and irregular patterns of spots, stripes, labyrinth, gaps, mosaics, spirals, circles, and many intermediate patterns in-between. These patterns cover a majority of predator-prey pattern types recorded in literature. Besides, the discrete model predicts the occurrence of spatiotemporal chaos, which is responsible for the formation of irregular patterns. This research demonstrates that the nonlinear mechanisms of the discrete model better capture the complexity of pattern formation of predator-prey systems.

  12. Stationary distribution and periodic solutions for stochastic Holling-Leslie predator-prey systems

    NASA Astrophysics Data System (ADS)

    Jiang, Daqing; Zuo, Wenjie; Hayat, Tasawar; Alsaedi, Ahmed

    2016-10-01

    The stochastic autonomous and periodic predator-prey systems with Holling and Leslie type functional response are investigated. For the autonomous system, we prove that there exists a unique stationary distribution, which is ergodic by constructing a suitable Lyapunov function under relatively small white noise. The result shows that, stationary distribution doesn't rely on the existence and the stability of the positive equilibrium in the undisturbed system. Furthermore, for the corresponding non-autonomous system, we show that there exists a positive periodic Markov process under relatively weaker condition. Finally, numerical simulations illustrate our theoretical results.

  13. The effects of impulsive harvest on a predator-prey system with distributed time delay

    NASA Astrophysics Data System (ADS)

    Guo, Hongjian; Chen, Lansun

    2009-05-01

    A kind of predator-prey system with distributed time delay and impulsive harvest is firstly presented and then the effects of impulsive harvest on the system are discussed by means of chain transform. By using the Floquet's theory and the comparison theorem of impulsive differential equation, the thresholds between permanence and extinction of each species are obtained as functions of model parameters. It is proved that the impulsive period and the proportion of the impulsive harvest will ultimately affect the fate of each species. Finally, the theoretical results obtained in this paper are confirmed by numerical simulations.

  14. A learning strategy for predator preying on edible and inedible prey.

    PubMed

    Tsoularis, A

    2007-01-01

    In this paper I propose a reinforcement learning model for a predator preying upon two types of prey, the unpalatable (noxious) models, and the palatable mimics. The latter type of prey resembles the models in appearance so as to derive some protection from the predator who must avoid the unpalatable models. Essentially the predator is treated as a learning automaton adopting a simple reinforcement learning strategy in order to increase its consumption of palatable prey and reduce the consumption of unpalatable ones. The populations of both mimics and models are assumed to grow logistically.

  15. Dynamics of the stochastic Leslie-Gower predator-prey system with randomized intrinsic growth rate

    NASA Astrophysics Data System (ADS)

    Zhao, Dianli; Yuan, Sanling

    2016-11-01

    This paper investigates the stochastic Leslie-Gower predator-prey system with randomized intrinsic growth rate. Existence of a unique global positive solution is proved firstly. Then we obtain the sufficient conditions for permanence in mean and almost sure extinction of the system. Furthermore, the stationary distribution is derived based on the positive equilibrium of the deterministic model, which shows the population is not only persistent but also convergent by time average under some assumptions. Finally, we illustrate our conclusions through two examples.

  16. A stage-structured predator-prey model with distributed maturation delay and harvesting.

    PubMed

    Al-Omari, J F M

    2015-01-01

    A stage-structured predator-prey system with distributed maturation delay and harvesting is investigated. General birth and death functions are used. The local stability of each feasible equilibria is discussed. By using the persistence theory, it is proven that the system is permanent if the coexistence equilibrium exists. By using Lyapunov functional and LaSalle invariant principle, it is shown that the trivial equilibrium is globally stable when the other equilibria are not feasible, and that the boundary equilibrium is globally stable if the coexistence equilibrium does not exist. Finally, sufficient conditions are derived for the global stability of the coexistence equilibrium.

  17. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge.

    PubMed

    Chang, Xiaoyuan; Wei, Junjie

    2013-08-01

    A diffusive predator-prey model with Holling type II functional response and the no-flux boundary condition incorporating a constant prey refuge is considered. Globally asymptotically stability of the positive equilibrium is obtained. Regarding the constant number of prey refuge m as a bifurcation parameter, by analyzing the distribution of the eigenvalues, the existence of Hopf bifurcation is given. Employing the center manifold theory and normal form method, an algorithm for determining the properties of the Hopf bifurcation is derived. Some numerical simulations for illustrating the analysis results are carried out.

  18. Global behaviour of a predator-prey like model with piecewise constant arguments.

    PubMed

    Kartal, Senol; Gurcan, Fuat

    2015-01-01

    The present study deals with the analysis of a predator-prey like model consisting of system of differential equations with piecewise constant arguments. A solution of the system with piecewise constant arguments leads to a system of difference equations which is examined to study boundedness, local and global asymptotic behaviour of the positive solutions. Using Schur-Cohn criterion and a Lyapunov function, we derive sufficient conditions under which the positive equilibrium point is local and global asymptotically stable. Moreover, we show numerically that periodic solutions arise as a consequence of Neimark-Sacker bifurcation of a limit cycle.

  19. Neimark-Sacker bifurcation of a two-dimensional discrete-time predator-prey model.

    PubMed

    Khan, A Q

    2016-01-01

    In this paper, we study the dynamics and bifurcation of a two-dimensional discrete-time predator-prey model in the closed first quadrant [Formula: see text]. The existence and local stability of the unique positive equilibrium of the model are analyzed algebraically. It is shown that the model can undergo a Neimark-Sacker bifurcation in a small neighborhood of the unique positive equilibrium and an invariant circle will appear. Some numerical simulations are presented to illustrate our theocratical results and numerically it is shown that the unique positive equilibrium of the system is globally asymptotically stable.

  20. Local Bifurcations and Optimal Theory in a Delayed Predator-Prey Model with Threshold Prey Harvesting

    NASA Astrophysics Data System (ADS)

    Tankam, Israel; Tchinda Mouofo, Plaire; Mendy, Abdoulaye; Lam, Mountaga; Tewa, Jean Jules; Bowong, Samuel

    2015-06-01

    We investigate the effects of time delay and piecewise-linear threshold policy harvesting for a delayed predator-prey model. It is the first time that Holling response function of type III and the present threshold policy harvesting are associated with time delay. The trajectories of our delayed system are bounded; the stability of each equilibrium is analyzed with and without delay; there are local bifurcations as saddle-node bifurcation and Hopf bifurcation; optimal harvesting is also investigated. Numerical simulations are provided in order to illustrate each result.

  1. Stabilization of unstable steady states of a continuous stirred tank bioreactor with predator-prey kinetics.

    PubMed

    Tabiś, Bolesław; Skoneczny, Szymon

    2013-07-20

    Nonlinear properties of a bioreactor with a developed microbiological predator-prey food chain are discussed. The presence of the predator microorganism completely changes the position and stability of the stationary states. A wide range of unstable steady states appears, associated with high amplitude oscillations of the state variables. Without automatic control such a system can only operate in transient states, with the yield undergoing periodic changes following the dynamics of the stable limit cycle. Technologically, this is undesirable. It has been shown that the oscillations can be removed by employing continuous P or PI controllers. Moreover, with a PI-controller, the predator can be eliminated from the system.

  2. An implementation of continuous genetic algorithm in parameter estimation of predator-prey model

    NASA Astrophysics Data System (ADS)

    Windarto

    2016-03-01

    Genetic algorithm is an optimization method based on the principles of genetics and natural selection in life organisms. The main components of this algorithm are chromosomes population (individuals population), parent selection, crossover to produce new offspring, and random mutation. In this paper, continuous genetic algorithm was implemented to estimate parameters in a predator-prey model of Lotka-Volterra type. For simplicity, all genetic algorithm parameters (selection rate and mutation rate) are set to be constant along implementation of the algorithm. It was found that by selecting suitable mutation rate, the algorithms can estimate these parameters well.

  3. Cancer immunoediting: A process driven by metabolic competition as a predator-prey-shared resource type model.

    PubMed

    Kareva, Irina; Berezovskaya, Faina

    2015-09-07

    It is a well-established fact that tumors up-regulate glucose consumption to meet increasing demands for rapidly available energy by upregulating a purely glycolytic mode of glucose metabolism. What is often neglected is that activated cytotoxic cells of the immune system, integral players in the carcinogenesis process, also come to rely on glycolysis as a primary mode of glucose metabolism. Moreover, while cancer cells can revert back to aerobic metabolism, rapidly proliferating cytotoxic lymphocytes are incapable of performing their function when adequate resources are lacking. Consequently, it is likely that in the tumor microenvironment there may exist competition for shared resources between cancer cells and the cells of the immune system, which may underlie much of tumor-immune dynamics. Proposed here is a model of tumor-immune-glucose interactions, formulated as a predator-prey-common resource type system. The outcome of these interactions ranges from tumor elimination, to tumor dormancy, to unrestrained tumor growth. It is also predicted that the process of tumor escape can be preceded by periods of oscillatory tumor growth. A detailed bifurcation analysis of three subsystems of the model suggest that oscillatory regimes are a result of competition for shared resource (glucose) between the predator (immune cells) and the prey (cancer cells). Existence of competition for nutrients between cancer and immune cells may provide additional mechanistic insight as to why the efficacy of many immunotherapies may be limited.

  4. A Rao-Blackwellized particle filter for joint parameter estimation and biomass tracking in a stochastic predator-prey system.

    PubMed

    Martín-Fernández, Laura; Gilioli, Gianni; Lanzarone, Ettore; Miguez, Joaquin; Pasquali, Sara; Ruggeri, Fabrizio; Ruiz, Diego P

    2014-06-01

    Functional response estimation and population tracking in predator-prey systems are critical problems in ecology. In this paper we consider a stochastic predator-prey system with a Lotka-Volterra functional response and propose a particle filtering method for: (a) estimating the behavioral parameter representing the rate of effective search per predator in the functional response and (b) forecasting the population biomass using field data. In particular, the proposed technique combines a sequential Monte Carlo sampling scheme for tracking the time-varying biomass with the analytical integration of the unknown behavioral parameter. In order to assess the performance of the method, we show results for both synthetic and observed data collected in an acarine predator-prey system, namely the pest mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis.

  5. Predator-prey dynamics stabilised by nonlinearity explain oscillations in dust-forming plasmas

    NASA Astrophysics Data System (ADS)

    Ross, A. E.; McKenzie, D. R.

    2016-04-01

    Dust-forming plasmas are ionised gases that generate particles from a precursor. In nature, dust-forming plasmas are found in flames, the interstellar medium and comet tails. In the laboratory, they are valuable in generating nanoparticles for medicine and electronics. Dust-forming plasmas exhibit a bizarre, even puzzling behaviour in which they oscillate with timescales of seconds to minutes. Here we show how the problem of understanding these oscillations may be cast as a predator-prey problem, with electrons as prey and particles as predators. The addition of a nonlinear loss term to the classic Lotka-Volterra equations used for describing the predator-prey problem in ecology not only stabilises the oscillations in the solutions for the populations of electrons and particles in the plasma but also explains the behaviour in more detail. The model explains the relative phase difference of the two populations, the way in which the frequency of the oscillations varies with the concentration of the precursor gas, and the oscillations of the light emission, determined by the populations of both species. Our results demonstrate the value of adopting an approach to a complex physical science problem that has been found successful in ecology, where complexity is always present.

  6. When is evolutionary branching in predator-prey systems possible with an explicit carrying capacity?

    PubMed

    Hoyle, Andrew; Bowers, Roger G

    2007-11-01

    In this study we use the theory of adaptive dynamics firstly to explore the differences in evolutionary behaviour of a generalist predator (or more specifically an omnivorous or intraguild predator) in a predator-prey model, with a Holling Type II functional response, when two distinct forms for the carrying capacity are used. The first of these involves the carrying capacity as an emergent property, whilst in the second it appears explicitly in the dynamics. The resultant effect this has on the intraspecific competition in each case is compared. Taking an identical trade-off in each case, we find that only with an emergent carrying capacity is evolutionary branching possible. Our study then concentrates solely on the case where the carrying capacity appears explicitly. Using the same model as above, but choosing alternate trade-offs, we find branching can occur with an explicit carrying capacity. Our investigation finishes by taking a more general functional response in an attempt to derive a condition for when branching can or cannot occur. For a predator-prey model, branching cannot occur if the functional response can be separated into two components, one a function of the population densities, X and Z, and the other a function of the evolving parameter z (traded off against the intrinsic growth rate), i.e. if F(z,X,Z) = F(1)(z)F(2)(X,Z). This search for evolutionary branching is motivated by its possible role in speciation.

  7. The impact of parasite manipulation and predator foraging behavior on predator-prey communities.

    PubMed

    Fenton, A; Rands, S A

    2006-11-01

    Parasites are known to directly affect their hosts at both the individual and population level. However, little is known about their more subtle, indirect effects and how these may affect population and community dynamics. In particular, trophically transmitted parasites may manipulate the behavior of intermediate hosts, fundamentally altering the pattern of contact between these individuals and their predators. Here, we develop a suite of population dynamic models to explore the impact of such behavioral modifications on the dynamics and structure of the predator-prey community. We show that, although such manipulations do not directly affect the persistence of the predator and prey populations, they can greatly alter the quantitative dynamics of the community, potentially resulting in high amplitude oscillations in abundance. We show that the precise impact of host manipulation depends greatly on the predator's functional response, which describes the predator's foraging efficiency under changing prey availabilities. Even if the parasite is rarely observed within the prey population, such manipulations extend beyond the direct impact on the intermediate host to affect the foraging success of the predator, with profound implications for the structure and stability of the predator-prey community.

  8. The Lotka-Volterra predator-prey model with foraging-predation risk trade-offs.

    PubMed

    Krivan, Vlastimil

    2007-11-01

    This article studies the effects of adaptive changes in predator and/or prey activities on the Lotka-Volterra predator-prey population dynamics. The model assumes the classical foraging-predation risk trade-offs: increased activity increases population growth rate, but it also increases mortality rate. The model considers three scenarios: prey only are adaptive, predators only are adaptive, and both species are adaptive. Under all these scenarios, the neutral stability of the classical Lotka-Volterra model is partially lost because the amplitude of maximum oscillation in species numbers is bounded, and the bound is independent of the initial population numbers. Moreover, if both prey and predators behave adaptively, the neutral stability can be completely lost, and a globally stable equilibrium would appear. This is because prey and/or predator switching leads to a piecewise constant prey (predator) isocline with a vertical (horizontal) part that limits the amplitude of oscillations in prey and predator numbers, exactly as suggested by Rosenzweig and MacArthur in their seminal work on graphical stability analysis of predator-prey systems. Prey and predator activities in a long-term run are calculated explicitly. This article shows that predictions based on short-term behavioral experiments may not correspond to long-term predictions when population dynamics are considered.

  9. Predator-prey models with component Allee effect for predator reproduction.

    PubMed

    Terry, Alan J

    2015-12-01

    We present four predator-prey models with component Allee effect for predator reproduction. Using numerical simulation results for our models, we describe how the customary definitions of component and demographic Allee effects, which work well for single species models, can be extended to predators in predator-prey models by assuming that the prey population is held fixed. We also find that when the prey population is not held fixed, then these customary definitions may lead to conceptual problems. After this discussion of definitions, we explore our four models, analytically and numerically. Each of our models has a fixed point that represents predator extinction, which is always locally stable. We prove that the predator will always die out either if the initial predator population is sufficiently small or if the initial prey population is sufficiently small. Through numerical simulations, we explore co-existence fixed points. In addition, we demonstrate, by simulation, the existence of a stable limit cycle in one of our models. Finally, we derive analytical conditions for a co-existence trapping region in three of our models, and show that the fourth model cannot possess a particular kind of co-existence trapping region. We punctuate our results with comments on their real-world implications; in particular, we mention the possibility of prey resurgence from mortality events, and the possibility of failure in a biological pest control program.

  10. Effects of the prey refuge distribution on a predator-prey system

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hee; Kwon, Ohsung; Song, Hark-Soo

    2016-03-01

    The existence of prey refuges in a predator-prey system is known to be strongly related to the ecosystem's stability. In this study, we explored how the prey refuge distribution affects the predator-prey system. To do so, we constructed a spatial lattice model to simulate an integrative predator (wolf) - prey (rabbit) - plant (grass) relationship. When a wolf (rabbit) encountered a rabbit (grass), the wolf (rabbit) tended to move to the rabbit (grass) for foraging while the rabbit tended to escape from the wolf. These behaviors were mathematically described by the degrees of willingness for hunting ( H) and escaping ( E). Initially, n refuges for prey were heterogeneously distributed in the lattice space. The heterogeneity was characterized as variable A. Higher values of A equate to higher aggregation in the refuge. We investigated the mean population density for different values of H, E, and A. To simply characterize the refuge distribution effect, we built an H-E grid map containing the population density for each species. Then, we counted the number of grids, N, with a population density ≥ 0.25. Simulation results showed that an appropriate value of A positively affected prey survival while values of A were too high had a negative effect on prey survival. The results were explained by using the trade-off between the staying time of the prey in the refuge and the cluster size of the refuge.

  11. Spatial dynamics in a predator-prey model with Beddington-DeAngelis functional response.

    PubMed

    Zhang, Xiao-Chong; Sun, Gui-Quan; Jin, Zhen

    2012-02-01

    In this paper spatial dynamics of the Beddington-DeAngelis predator-prey model is investigated. We analyze the linear stability and obtain the condition of Turing instability of this model. Moreover, we deduce the amplitude equations and determine the stability of different patterns. In Turing space, we found that this model has coexistence of H(0) hexagon patterns and stripe patterns, H(π) hexagon patterns, and H(0) hexagon patterns. To better describe the real ecosystem, we consider the ecosystem as an open system and take the environmental noise into account. It is found that noise can decrease the number of the patterns and make the patterns more regular. What is more, noise can induce two kinds of typical pattern transitions. One is from the H(π) hexagon patterns to the regular stripe patterns, and the other is from the coexistence of H(0) hexagon patterns and stripe patterns to the regular stripe patterns. The obtained results enrich the finding in the Beddington-DeAngelis predator-prey model well.

  12. Predator-prey relationships in a Mediterranean vertebrate system: Bonelli's eagles, rabbits and partridges.

    PubMed

    Moleón, Marcos; Sánchez-Zapata, José A; Gil-Sánchez, José M; Ballesteros-Duperón, Elena; Barea-Azcón, José M; Virgós, Emilio

    2012-03-01

    How predators impact on prey population dynamics is still an unsolved issue for most wild predator-prey communities. When considering vertebrates, important concerns constrain a comprehensive understanding of the functioning of predator-prey relationships worldwide; e.g. studies simultaneously quantifying 'functional' and 'numerical responses' (i.e., the 'total response') are rare. The functional, the numerical, and the resulting total response (i.e., how the predator per capita intake, the population of predators and the total of prey eaten by the total predators vary with prey densities) are fundamental as they reveal the predator's ability to regulate prey population dynamics. Here, we used a multi-spatio-temporal scale approach to simultaneously explore the functional and numerical responses of a territorial predator (Bonelli's eagle Hieraaetus fasciatus) to its two main prey species (the rabbit Oryctolagus cuniculus and the red-legged partridge Alectoris rufa) during the breeding period in a Mediterranean system of south Spain. Bonelli's eagle responded functionally, but not numerically, to rabbit/partridge density changes. Type II, non-regulatory, functional responses (typical of specialist predators) offered the best fitting models for both prey. In the absence of a numerical response, Bonelli's eagle role as a regulating factor of rabbit and partridge populations seems to be weak in our study area. Simple (prey density-dependent) functional response models may well describe the short-term variation in a territorial predator's consumption rate in complex ecosystems.

  13. Dynamics of additional food provided predator-prey system with mutually interfering predators.

    PubMed

    Prasad, B S R V; Banerjee, Malay; Srinivasu, P D N

    2013-11-01

    Use of additional/alternative food source to predators is one of the widely recognised practices in the field of biological control. Both theoretical and experimental works point out that quality and quantity of additional food play a vital role in the controllability of the pest. Theoretical studies carried out previously in this direction indicate that incorporating mutual interference between predators can stabilise the system. Experimental evidence also point out that mutual interference between predators can affect the outcome of the biological control programs. In this article dynamics of additional food provided predator-prey system in the presence of mutual interference between predators has been studied. The mutual interference between predators is modelled using Beddington-DeAngelis type functional response. The system analysis highlights the role of mutual interference on the success of biological control programs when predators are provided with additional food. The model results indicate the possibility of stable coexistence of predators with low prey population levels. This is in contrast to classical predator-prey models wherein this stable co-existence at low prey population levels is not possible. This study classifies the characteristics of biological control agents and additional food (of suitable quality and quantity), permitting the eco-managers to enhance the success rate of biological control programs.

  14. Seasonally Varying Predation Behavior and Climate Shifts Are Predicted to Affect Predator-Prey Cycles.

    PubMed

    Tyson, Rebecca; Lutscher, Frithjof

    2016-11-01

    The functional response of some predator species changes from a pattern characteristic for a generalist to that for a specialist according to seasonally varying prey availability. Current theory does not address the dynamic consequences of this phenomenon. Since season length correlates strongly with altitude and latitude and is predicted to change under future climate scenarios, including this phenomenon in theoretical models seems essential for correct prediction of future ecosystem dynamics. We develop and analyze a two-season model for the great horned owl (Bubo virginialis) and snowshoe hare (Lepus americanus). These species form a predator-prey system in which the generalist to specialist shift in predation pattern has been documented empirically. We study the qualitative behavior of this predator-prey model community as summer season length changes. We find that relatively small changes in summer season length can have a profound impact on the system. In particular, when the predator has sufficient alternative resources available during the summer season, it can drive the prey to extinction, there can be coexisting stable states, and there can be stable large-amplitude limit cycles coexisting with a stable steady state. Our results illustrate that the impacts of global change on local ecosystems can be driven by internal system dynamics and can potentially have catastrophic consequences.

  15. Spatiotemporal patterns provoked by environmental variability in a predator-prey model.

    PubMed

    Fras, Maja; Gosak, Marko

    2013-12-01

    The emergence of spatiotemporal patterns in the distribution of species is one of the most striking phenomena in ecology and nonlinear science. Since it is known that spatial inhomogeneities can significantly affect the dynamics of ecological populations, in the present paper we investigate the impact of environmental variability on the formation of patterns in a spatially extended predator-prey model. In particular, we utilize a predator-prey system with a Holling III functional response and introduce random spatial variations of the kinetic parameter signifying the intrinsic growth rate of the prey, reflecting the impact of a heterogeneous environment. Our results reveal that in the proximity of the Hopf bifurcation environmental variability is able to provoke pattern formation, whereby the coherence of the patterns exhibits a resonance-like dependence on the variability strength. Furthermore, we show that the phenomenon can only be observed if the spatial heterogeneities exhibit large enough regions with high growth rates of the prey. Our findings thus indicate that variability could be an essential pattern formation mechanism of the populations.

  16. Parametric analysis of a predator-prey system stabilized by a top predator.

    PubMed

    Morozov, Andrew Y; Li, Bai-Lian

    2006-08-01

    We present a complete parametric analysis of a predator-prey system influenced by a top predator. We study ecosystems with abundant nutrient supply for the prey where the prey multiplication can be considered as proportional to its density. The main questions we examine are the following: (1) Can the top predator stabilize such a system at low densities of prey? (2) What possible dynamic behaviors can occur? (3) Under which conditions can the top predation result in the system stabilization? We use a system of two nonlinear ordinary differential equations with the density of the top predator as a parameter. The model is investigated with methods of qualitative theory of ODEs and the theory of bifurcations. The existence of 12 qualitatively different types of dynamics and complex structure of the parametric space are demonstrated. Our studies of phase portraits and parametric diagrams show that a top predator can be an important factor leading to stabilization of the predator-prey system with abundant nutrient supply. Although the model here is applied to the plankton communities with fish (or carnivorous zooplankton) as the top trophic level, the general form of the equations allows applications of our results to other ecological systems.

  17. A predator-prey model with generic birth and death rates for the predator.

    PubMed

    Terry, Alan J

    2014-02-01

    We propose and study a predator-prey model in which the predator has a Holling type II functional response and generic per capita birth and death rates. Given that prey consumption provides the energy for predator activity, and that the predator functional response represents the prey consumption rate per predator, we assume that the per capita birth and death rates for the predator are, respectively, increasing and decreasing functions of the predator functional response. These functions are monotonic, but not necessarily strictly monotonic, for all values of the argument. In particular, we allow the possibility that the predator birth rate is zero for all sufficiently small values of the predator functional response, reflecting the idea that a certain level of energy intake is needed before a predator can reproduce. Our analysis reveals that the model exhibits the behaviours typically found in predator-prey models - extinction of the predator population, convergence to a periodic orbit, or convergence to a co-existence fixed point. For a specific example, in which the predator birth and death rates are constant for all sufficiently small or large values of the predator functional response, we corroborate our analysis with numerical simulations. In the unlikely case where these birth and death rates equal the same constant for all sufficiently large values of the predator functional response, the model is capable of structurally unstable behaviour, with a small change in the initial conditions leading to a more pronounced change in the long-term dynamics.

  18. Predator-prey dynamics stabilised by nonlinearity explain oscillations in dust-forming plasmas

    PubMed Central

    Ross, A. E.; McKenzie, D. R.

    2016-01-01

    Dust-forming plasmas are ionised gases that generate particles from a precursor. In nature, dust-forming plasmas are found in flames, the interstellar medium and comet tails. In the laboratory, they are valuable in generating nanoparticles for medicine and electronics. Dust-forming plasmas exhibit a bizarre, even puzzling behaviour in which they oscillate with timescales of seconds to minutes. Here we show how the problem of understanding these oscillations may be cast as a predator-prey problem, with electrons as prey and particles as predators. The addition of a nonlinear loss term to the classic Lotka-Volterra equations used for describing the predator-prey problem in ecology not only stabilises the oscillations in the solutions for the populations of electrons and particles in the plasma but also explains the behaviour in more detail. The model explains the relative phase difference of the two populations, the way in which the frequency of the oscillations varies with the concentration of the precursor gas, and the oscillations of the light emission, determined by the populations of both species. Our results demonstrate the value of adopting an approach to a complex physical science problem that has been found successful in ecology, where complexity is always present. PMID:27046237

  19. The scaling of locomotor performance in predator-prey encounters: from fish to killer whales.

    PubMed

    Domenici, P

    2001-12-01

    During predator-prey encounters, a high locomotor performance in unsteady manoeuvres (i.e. acceleration, turning) is desirable for both predators and prey. While speed increases with size in fish and other aquatic vertebrates in continuous swimming, the speed achieved within a given time, a relevant parameter in predator-prey encounters, is size independent. In addition, most parameters indicating high performance in unsteady swimming decrease with size. Both theoretical considerations and data on acceleration suggest a decrease with body size. Small turning radii and high turning rates are indices of maneuverability in space and in time, respectively. Maneuverability decreases with body length, as minimum turning radii and maximum turning rates increase and decrease with body length, respectively. In addition, the scaling of linear performance in fish locomotion may be modulated by turning behaviour, which is an essential component of the escape response. In angelfish, for example, the speed of large fish is inversely related to their turning angle, i.e. fish escaping at large turning angles show lower speed than fish escaping at small turning angles. The scaling of unsteady locomotor performance makes it difficult for large aquatic vertebrates to capture elusive prey by using whole-body attacks, since the overall maneuverability and acceleration of small prey is likely to be superior to that of large predators. Feeding strategies in vertebrate predators can be related to the predator-prey length ratios. At prey-predator ratios higher than approximately 10(-2), vertebrate predators are particulate feeders, while at smaller ratios, they tend to be filter feeders. At intermediate ratios, large aquatic predators may use a variety of feeding methods that aid, or do not involve, whole body attacks. Among these are bubble curtains used by humpback whales to trap fish schools, and tail-slapping of fish by delphinids. Tail slapping by killer whales is discussed as an

  20. Bifurcation and chaos in a discrete-time predator-prey system of Holling and Leslie type

    NASA Astrophysics Data System (ADS)

    Hu, Dongpo; Cao, Hongjun

    2015-05-01

    A discrete-time predator-prey system of Holling and Leslie type with a constant-yield prey harvesting obtained by the forward Euler scheme is studied in detail. The conditions of existence for flip bifurcation and Hopf bifurcation are derived by using the center manifold theorem and bifurcation theory. Numerical simulations including bifurcation diagrams, maximum Lyapunov exponents, phase portraits display new and rich nonlinear dynamical behaviors. More specifically, when the integral step size is chosen as a bifurcation parameter, this paper presents the finding of period- 1, 2, 11, 17, 19, 22 orbits, attracting invariant cycles, and chaotic attractors of the discrete-time predator-prey system of Holling and Leslie type with a constant-yield prey harvesting. These results demonstrate that the integral step size plays a vital role to the local and global stability of the discrete-time predator-prey system with the Holling and Leslie type after the original continuous-time predator-prey system is discretized.

  1. Responses of many-species predator-prey systems to perturbations

    NASA Astrophysics Data System (ADS)

    Esmaily, Shadi; Pleimling, Michel

    2015-03-01

    We study the responses of many-species predator-prey systems, both in the well-mixed case as well as on a two-dimensional lattice, to permanent and transient perturbations. In the case of a weak transient perturbation the system returns to the original steady state, whereas a permanent perturbation pushes the system into a new steady state. Using Monte Carlo simulations, we monitor the approach to stationarity after a perturbation through a variety of quantities, as for example time-dependent particle densities and correlation functions. Different types of perturbations are studied, ranging from a change in reaction rates to the injection of additional individuals into the system, the latter perturbation mimicking immigration. This work is supported by the US National Science Foundation through Grant DMR-1205309.

  2. Moment stability for a predator-prey model with parametric dichotomous noises

    NASA Astrophysics Data System (ADS)

    Jin, Yan-Fei

    2015-06-01

    In this paper, we investigate the solution moment stability for a Harrison-type predator-prey model with parametric dichotomous noises. Using the Shapiro-Loginov formula, the equations for the first-order and second-order moments are obtained and the corresponding stable conditions are given. It is found that the solution moment stability depends on the noise intensity and correlation time of noise. The first-order and second-order moments become unstable with the decrease of correlation time. That is, the dichotomous noise can improve the solution moment stability with respect to Gaussian white noise. Finally, some numerical results are presented to verify the theoretical analyses. Project supported by the National Natural Science Foundation of China (Grant No. 11272051).

  3. Monitoring in a predator-prey systems via a class of high order observer design.

    PubMed

    Mata-Machuca, Juan Luis; Martínez-Guerra, Rafael; Aguilar-López, Ricardo

    2010-04-01

    The goal of this work is the monitoring of the corresponding species in a class of predator-prey systems, this issue is important from the ecology point of view to analyze the population dynamics. The above is done via a nonlinear observer design which contains on its structure a high order polynomial form of the estimation error. A theoretical frame is provided in order to show the convergence characteristics of the proposed observer, where it can be concluded that the performance of the observer is improved as the order of the polynomial is high. The proposed methodology is applied to a class of Lotka-Volterra systems with two and three species. Finally, numerical simulations present the performance of the proposed observer.

  4. Pursuit-evasion predator-prey waves in two spatial dimensions.

    PubMed

    Biktashev, V N; Brindley, J; Holden, A V; Tsyganov, M A

    2004-12-01

    We consider a spatially distributed population dynamics model with excitable predator-prey kinetics, where species propagate in space due to their taxis with respect to each other's gradient in addition to, or instead of, their diffusive spread. Earlier, we have described new phenomena in this model in one spatial dimension, not found in analogous systems without taxis: reflecting and self-splitting waves. Here we identify new phenomena in two spatial dimensions: unusual patterns of meander of spirals, partial reflection of waves, swelling wave tips, attachment of free wave ends to wave backs, and as a result, a novel mechanism of self-supporting complicated spatiotemporal activity, unknown in reaction-diffusion population models.

  5. Dynamic analysis of a fractional order delayed predator-prey system with harvesting.

    PubMed

    Song, Ping; Zhao, Hongyong; Zhang, Xuebing

    2016-06-01

    In the study, we consider a fractional order delayed predator-prey system with harvesting terms. Our discussion is divided into two cases. Without harvesting, we investigate the stability of the model, as well as deriving some criteria by analyzing the associated characteristic equation. With harvesting, we investigate the dynamics of the system from the aspect of local stability and analyze the influence of harvesting to prey and predator. Finally, numerical simulations are presented to verify our theoretical results. In addition, using numerical simulations, we investigate the effects of fractional order and harvesting terms on dynamic behavior. Our numerical results show that fractional order can affect not only the stability of the system without harvesting terms, but also the switching times from stability to instability and to stability. The harvesting can convert the equilibrium point, the stability and the stability switching times.

  6. Oscillations for a delayed predator-prey model with Hassell-Varley-type functional response.

    PubMed

    Xu, Changjin; Li, Peiluan

    2015-04-01

    In this paper, a delayed predator-prey model with Hassell-Varley-type functional response is investigated. By choosing the delay as a bifurcation parameter and analyzing the locations on the complex plane of the roots of the associated characteristic equation, the existence of a bifurcation parameter point is determined. It is found that a Hopf bifurcation occurs when the parameter τ passes through a series of critical values. The direction and the stability of Hopf bifurcation periodic solutions are determined by using the normal form theory and the center manifold theorem due to Faria and Maglhalaes (1995). In addition, using a global Hopf bifurcation result of Wu (1998) for functional differential equations, we show the global existence of periodic solutions. Some numerical simulations are presented to substantiate the analytical results. Finally, some biological explanations and the main conclusions are included.

  7. Stationary distribution and periodic solution for stochastic predator-prey systems with nonlinear predator harvesting

    NASA Astrophysics Data System (ADS)

    Zuo, Wenjie; Jiang, Daqing

    2016-07-01

    In this paper, we investigate the dynamics of the stochastic autonomous and non-autonomous predator-prey systems with nonlinear predator harvesting respectively. For the autonomous system, we first give the existence of the global positive solution. Then, in the case of persistence, we prove that there exists a unique stationary distribution and it has ergodicity by constructing a suitable Lyapunov function. The result shows that, the relatively weaker white noise will strengthen the stability of the system, but the stronger white noise will result in the extinction of one or two species. Particularly, for the non-autonomous periodic system, we show that there exists at least one nontrivial positive periodic solution according to the theory of Khasminskii. Finally, numerical simulations illustrate our theoretical results.

  8. The diffusive Lotka-Volterra predator-prey system with delay.

    PubMed

    Al Noufaey, K S; Marchant, T R; Edwards, M P

    2015-12-01

    Semi-analytical solutions for the diffusive Lotka-Volterra predator-prey system with delay are considered in one and two-dimensional domains. The Galerkin method is applied, which approximates the spatial structure of both the predator and prey populations. This approach is used to obtain a lower-order, ordinary differential delay equation model for the system of governing delay partial differential equations. Steady-state and transient solutions and the region of parameter space, in which Hopf bifurcations occur, are all found. In some cases simple linear expressions are found as approximations, to describe steady-state solutions and the Hopf parameter regions. An asymptotic analysis for the periodic solution near the Hopf bifurcation point is performed for the one-dimensional domain. An excellent agreement is shown in comparisons between semi-analytical and numerical solutions of the governing equations.

  9. Integrated Pest Management in a Predator-Prey System with Allee Effects.

    PubMed

    Costa, M I S; dos Anjos, L

    2015-08-01

    A commonly used biocontrol strategy to control invasive pests with Allee effects consists of the deliberate introduction of natural enemies. To enhance the effectiveness of this strategy, several tactics of control of invasive species (e.g., mass-trapping, manual removal of individuals, and pesticide spraying) are combined so as to impair pest outbreaks. This combination of strategies to control pest species dynamics are usually named integrated pest management (IPM). In this work, we devise a predator-prey dynamical model in order to assess the influence of the intensity of chemical killing on the success of an IPM. The biological and mathematical framework presented in this study can also be analyzed in the light of species conservation and food web dynamics theory.

  10. Dynamics of stochastic predator-prey models with Holling II functional response

    NASA Astrophysics Data System (ADS)

    Liu, Qun; Zu, Li; Jiang, Daqing

    2016-08-01

    In this paper, we consider the dynamics of stochastic predator-prey models with Holling II functional response. For the stochastic systems, we firstly establish sufficient conditions for the existence of the globally positive solutions. Then we investigate the asymptotic moment estimations of the positive solutions and study the ultimately bounded in the mean of them. Thirdly, by constructing some suitable Lyapunov functions, we verify that there are unique stationary distributions and they are ergodic. The obtained results show that the systems still retain some stability in the sense of weak stability provided that the intensity of the white noise is relatively small. Finally, some numerical simulations are introduced to illustrate our main results.

  11. On the dynamics of a generalized predator-prey system with Z-type control.

    PubMed

    Lacitignola, Deborah; Diele, Fasma; Marangi, Carmela; Provenzale, Antonello

    2016-10-01

    We apply the Z-control approach to a generalized predator-prey system and consider the specific case of indirect control of the prey population. We derive the associated Z-controlled model and investigate its properties from the point of view of the dynamical systems theory. The key role of the design parameter λ for the successful application of the method is stressed and related to specific dynamical properties of the Z-controlled model. Critical values of the design parameter are also found, delimiting the λ-range for the effectiveness of the Z-method. Analytical results are then numerically validated by the means of two ecological models: the classical Lotka-Volterra model and a model related to a case study of the wolf-wild boar dynamics in the Alta Murgia National Park. Investigations on these models also highlight how the Z-control method acts in respect to different dynamical regimes of the uncontrolled model.

  12. Bifurcations in a Seasonally Forced Predator-Prey Model with Generalized Holling Type IV Functional Response

    NASA Astrophysics Data System (ADS)

    Ren, Jingli; Li, Xueping

    A seasonally forced predator-prey system with generalized Holling type IV functional response is considered in this paper. The influence of seasonal forcing on the system is investigated via numerical bifurcation analysis. Bifurcation diagrams for periodic solutions of periods one and two, containing bifurcation curves of codimension one and bifurcation points of codimension two, are obtained by means of a continuation technique, corresponding to different bifurcation cases of the unforced system illustrated in five bifurcation diagrams. The seasonally forced model exhibits more complex dynamics than the unforced one, such as stable and unstable periodic solutions of various periods, stable and unstable quasiperiodic solutions, and chaotic motions through torus destruction or cascade of period doublings. Finally, some phase portraits and corresponding Poincaré map portraits are given to illustrate these different types of solutions.

  13. Cannibalistic Predator-Prey Model with Disease in Predator — A Delay Model

    NASA Astrophysics Data System (ADS)

    Biswas, Santosh; Samanta, Sudip; Chattopadhyay, Joydev

    In this paper, we propose and analyze a cannibalistic predator-prey model with a transmissible disease in the predator population. The disease can be transmitted through contacts with infected individuals as well as the cannibalism of an infected predator. We also consider incubation delay in disease transmission, where the incubation period represents the time in which the infectious agent develops in the host. Local stability analysis of the system around the biologically feasible equilibria is studied. Bifurcation analysis of the system around interior equilibrium is also studied. Applying the normal form theory and central manifold theorem, the direction of Hopf bifurcation, the stability and the period of bifurcating periodic solutions are derived. Under appropriate conditions, the permanence of the system with time delay is proved. Our results suggest that incubation delay destabilizes the system and can produce chaos. We also observe that cannibalism can control disease and population oscillations. Extensive numerical simulations are performed to support our analytical results.

  14. An impulsive predator-prey model with disease in the prey for integrated pest management

    NASA Astrophysics Data System (ADS)

    Shi, Ruiqing; Chen, Lansun

    2010-02-01

    In this paper, an impulsive predator-prey model with disease in the prey is investigated for the purpose of integrated pest management. In the first part of the main results, we get the sufficient condition for the global stability of the susceptible pest-eradication periodic solution. This means if the release amount of infective prey and predator satisfy the condition, then the pest will be doomed. In the second part of the main results, we also get the sufficient condition for the permanence of the system. This means if the release amount of infective prey and predator satisfy the condition, then the prey and the predator will coexist. In the last section, we interpret our mathematical results. We also point out some possible future work.

  15. Does mutual interference always stabilize predator-prey dynamics? A comparison of models.

    PubMed

    Arditi, Roger; Callois, Jean-Marc; Tyutyunov, Yuri; Jost, Christian

    2004-11-01

    Based on a qualitative analysis of ODE systems, the dynamic properties of alternative predator-prey models with predator-dependent functional response have been compared in order to study the role that predator interference plays in the stabilisation of trophic systems. The models considered for interference have different mathematical expressions and different conceptual foundations. Despite these differences, they give essentially the same qualitative results: when interference is low, increasing it has a positive effect on asymptotic stability and thus on the resilience of the biological system. When it is high, it is the contrary (with logistic prey growth, increasing the interference parameter ensures stability but leads to very small predator densities). Possible consequences on the evolution of the interference level in real ecosystems are discussed.

  16. Internally driven alternation of functional traits in a multispecies predator-prey system.

    PubMed

    Tirok, Katrin; Gaedke, Ursula

    2010-06-01

    The individual functional traits of different species play a key role for ecosystem function in aquatic and terrestrial systems. We modeled a multispecies predator-prey system with functionally different predator and prey species based on observations of the community dynamics of ciliates and their algal prey in Lake Constance. The model accounted for differences in predator feeding preferences and prey susceptibility to predation, and for the respective trade-offs. A low food demand of the predator was connected to a high food selectivity, and a high growth rate of the prey was connected to a high vulnerability to grazing. The data and the model did not show standard uniform predator-prey cycles, but revealed both complex dynamics and a coexistence of predator and prey at high biomass levels. These dynamics resulted from internally driven alternations in species densities and involved compensatory dynamics between functionally different species. Functional diversity allowed for ongoing adaptation of the predator and prey communities to changing environmental conditions such as food composition and grazing pressure. The trade-offs determined whether compensatory or synchronous dynamics occurred which influence the variability at the community level. Compensatory dynamics were promoted by a joint carrying capacity linking the different prey species which is particularly relevant at high prey biomasses, i.e., when grazers are less efficient. In contrast, synchronization was enhanced by the coupling of the different predator and prey species via common feeding links, e.g., by a high grazing pressure of a nonselective predator. The communities had to be functionally diverse in terms of their trade-offs and their traits to yield compensatory dynamics. Rather similar predator species tended to cycle synchronously, whereas profoundly different species did not coexist. Compensatory dynamics at the community level thus required intermediately strong tradeoffs for functional

  17. Nonlinear effect of dispersal rate on spatial synchrony of predator-prey cycles.

    PubMed

    Fox, Jeremy W; Legault, Geoffrey; Legault, Geoff; Vasseur, David A; Einarson, Jodie A

    2013-01-01

    Spatially-separated populations often exhibit positively correlated fluctuations in abundance and other population variables, a phenomenon known as spatial synchrony. Generation and maintenance of synchrony requires forces that rapidly restore synchrony in the face of desynchronizing forces such as demographic and environmental stochasticity. One such force is dispersal, which couples local populations together, thereby synchronizing them. Theory predicts that average spatial synchrony can be a nonlinear function of dispersal rate, but the form of the dispersal rate-synchrony relationship has never been quantified for any system. Theory also predicts that in the presence of demographic and environmental stochasticity, realized levels of synchrony can exhibit high variability around the average, so that ecologically-identical metapopulations might exhibit very different levels of synchrony. We quantified the dispersal rate-synchrony relationship using a model system of protist predator-prey cycles in pairs of laboratory microcosms linked by different rates of dispersal. Paired predator-prey cycles initially were anti-synchronous, and were subject to demographic stochasticity and spatially-uncorrelated temperature fluctuations, challenging the ability of dispersal to rapidly synchronize them. Mean synchrony of prey cycles was a nonlinear, saturating function of dispersal rate. Even extremely low rates of dispersal (<0.4% per prey generation) were capable of rapidly bringing initially anti-synchronous cycles into synchrony. Consistent with theory, ecologically-identical replicates exhibited very different levels of prey synchrony, especially at low to intermediate dispersal rates. Our results suggest that even the very low rates of dispersal observed in many natural systems are sufficient to generate and maintain synchrony of cyclic population dynamics, at least when environments are not too spatially heterogeneous.

  18. Enhanced understanding of predator-prey relationships using molecular methods to identify predator species, individual and sex.

    PubMed

    Mumma, Matthew A; Soulliere, Colleen E; Mahoney, Shane P; Waits, Lisette P

    2014-01-01

    Predator species identification is an important step in understanding predator-prey interactions, but predator identifications using kill site observations are often unreliable. We used molecular tools to analyse predator saliva, scat and hair from caribou calf kills in Newfoundland, Canada to identify the predator species, individual and sex. We sampled DNA from 32 carcasses using cotton swabs to collect predator saliva. We used fragment length analysis and sequencing of mitochondrial DNA to distinguish between coyote, black bear, Canada lynx and red fox and used nuclear DNA microsatellite analysis to identify individuals. We compared predator species detected using molecular tools to those assigned via field observations at each kill. We identified a predator species at 94% of carcasses using molecular methods, while observational methods assigned a predator species to 62.5% of kills. Molecular methods attributed 66.7% of kills to coyote and 33.3% to black bear, while observations assigned 40%, 45%, 10% and 5% to coyote, bear, lynx and fox, respectively. Individual identification was successful at 70% of kills where a predator species was identified. Only one individual was identified at each kill, but some individuals were found at multiple kills. Predator sex was predominantly male. We demonstrate the first large-scale evaluation of predator species, individual and sex identification using molecular techniques to extract DNA from swabs of wild prey carcasses. Our results indicate that kill site swabs (i) can be highly successful in identifying the predator species and individual responsible; and (ii) serve to inform and complement traditional methods.

  19. A Comparison of the Seasonal Movements of Tiger Sharks and Green Turtles Provides Insight into Their Predator-Prey Relationship

    PubMed Central

    Fitzpatrick, Richard; Thums, Michele; Bell, Ian; Meekan, Mark G.; Stevens, John D.; Barnett, Adam

    2012-01-01

    During the reproductive season, sea turtles use a restricted area in the vicinity of their nesting beaches, making them vulnerable to predation. At Raine Island (Australia), the highest density green turtle Chelonia mydas rookery in the world, tiger sharks Galeocerdo cuvier have been observed to feed on green turtles, and it has been suggested that they may specialise on such air-breathing prey. However there is little information with which to examine this hypothesis. We compared the spatial and temporal components of movement behaviour of these two potentially interacting species in order to provide insight into the predator-prey relationship. Specifically, we tested the hypothesis that tiger shark movements are more concentrated at Raine Island during the green turtle nesting season than outside the turtle nesting season when turtles are not concentrated at Raine Island. Turtles showed area-restricted search behaviour around Raine Island for ∼3–4 months during the nesting period (November–February). This was followed by direct movement (transit) to putative foraging grounds mostly in the Torres Straight where they switched to area-restricted search mode again, and remained resident for the remainder of the deployment (53–304 days). In contrast, tiger sharks displayed high spatial and temporal variation in movement behaviour which was not closely linked to the movement behaviour of green turtles or recognised turtle foraging grounds. On average, tiger sharks were concentrated around Raine Island throughout the year. While information on diet is required to determine whether tiger sharks are turtle specialists our results support the hypothesis that they target this predictable and plentiful prey during turtle nesting season, but they might not focus on this less predictable food source outside the nesting season. PMID:23284819

  20. The roles of predator maturation delay and functional response in determining the periodicity of predator-prey cycles.

    PubMed

    Wang, Hao; Nagy, John D; Gilg, Olivier; Kuang, Yang

    2009-09-01

    Population cycles in small mammals have attracted the attention of several generations of theoretical and experimental biologists and continue to generate controversy. Top-down and bottom-up trophic regulations are two recent competing hypotheses. The principal purpose of this paper is to explore the relative contributions of a variety of ecological factors to predator-prey population cycles. Here we suggest that for some species - collared lemmings, snowshoe hares and moose in particular - maturation delay of predators and the functional response of predation appear to be the primary determinants. Our study suggests that maturation delay alone almost completely determines the cycle period, whereas the functional response greatly affects its amplitude and even its existence. These results are obtained from sensitivity analysis of all parameters in a mathematical model of the lemming-stoat delayed system, which is an extension of Gilg's model. Our result may also explain why lemmings have a 4-year cycle whereas snowshoe hares have a 10-year cycle. Our parameterized model supports and extends May's assertion that time delay impacts cycle period and amplitude. Furthermore, if maturation periods of predators are too short or too long, or the functional response resembles Holling Type I, then population cycles do not appear; however, suitable intermediate predator maturation periods and suitable functional responses can generate population cycles for both prey and predators. These results seem to explain why some populations are cyclic whereas others are not. Finally, we find parameterizations of our model that generate a 38-year population cycle consistent with the putative cycles of the moose-wolf interactions on Isle Royale, Michigan.

  1. A comparison of the seasonal movements of tiger sharks and green turtles provides insight into their predator-prey relationship.

    PubMed

    Fitzpatrick, Richard; Thums, Michele; Bell, Ian; Meekan, Mark G; Stevens, John D; Barnett, Adam

    2012-01-01

    During the reproductive season, sea turtles use a restricted area in the vicinity of their nesting beaches, making them vulnerable to predation. At Raine Island (Australia), the highest density green turtle Chelonia mydas rookery in the world, tiger sharks Galeocerdo cuvier have been observed to feed on green turtles, and it has been suggested that they may specialise on such air-breathing prey. However there is little information with which to examine this hypothesis. We compared the spatial and temporal components of movement behaviour of these two potentially interacting species in order to provide insight into the predator-prey relationship. Specifically, we tested the hypothesis that tiger shark movements are more concentrated at Raine Island during the green turtle nesting season than outside the turtle nesting season when turtles are not concentrated at Raine Island. Turtles showed area-restricted search behaviour around Raine Island for ∼3-4 months during the nesting period (November-February). This was followed by direct movement (transit) to putative foraging grounds mostly in the Torres Straight where they switched to area-restricted search mode again, and remained resident for the remainder of the deployment (53-304 days). In contrast, tiger sharks displayed high spatial and temporal variation in movement behaviour which was not closely linked to the movement behaviour of green turtles or recognised turtle foraging grounds. On average, tiger sharks were concentrated around Raine Island throughout the year. While information on diet is required to determine whether tiger sharks are turtle specialists our results support the hypothesis that they target this predictable and plentiful prey during turtle nesting season, but they might not focus on this less predictable food source outside the nesting season.

  2. Inconstancy in predator/prey ratios in Quaternary large mammal communities of Italy, with an appraisal of mechanisms

    NASA Astrophysics Data System (ADS)

    Raia, Pasquale; Meloro, Carlo; Barbera, Carmela

    2007-03-01

    Constancy in predator/prey ratio (PPR) is a controversial issue in ecological research. Published reports support both constancy and inconstancy of the ratio in animal communities. Only a few studies, however, specifically address its course through time. Here we study the course of predator/prey ratio in communities of large Plio-Pleistocene mammals in Italy. After controlling for taphonomic biases, we find strong support for PPR inconstancy through time. Extinction, dispersal events, and differences in body size trends between predators and their prey were found to affect the ratio, which was distributed almost bimodally. We suggest that this stepwise dynamic in PPR indicates changes in ecosystem functioning. Prey richness was controlled by predation when PPR was high and by resources when PPR was low.

  3. Differential effects of mercury on activity and swimming endurance in a model aquatic predator-prey system

    SciTech Connect

    Benton, M.J.; Carlson, J.K.; Benson, W.H.

    1994-12-31

    In addition to direct effects of contaminants on organisms, populations and communities, there may also be indirect or secondary effects related to altered behavior. This study examined the effects of mercury exposure on locomotory behavior in a model predator-prey system of largemouth bass (Micropterus salmoides) and fathead minnows (Pimephales promelas). At both low and high mercury concentrations, there was a significant effect of exposure on unforced activity and swimming endurance in fathead minnows. At all tested mercury concentrations, activity and endurance also were both positively correlated to body length. However, largemouth bass unforced activity and swimming endurance were not affected by exposure to low mercury concentrations. In light of these differential locomotory effects at environmentally relevant mercury concentrations, the potential impact on aquatic predator-prey systems will be discussed.

  4. Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis

    NASA Astrophysics Data System (ADS)

    Wu, Sainan; Shi, Junping; Wu, Boying

    2016-04-01

    This paper proves the global existence and boundedness of solutions to a general reaction-diffusion predator-prey system with prey-taxis defined on a smooth bounded domain with no-flux boundary condition. The result holds for domains in arbitrary spatial dimension and small prey-taxis sensitivity coefficient. This paper also proves the existence of a global attractor and the uniform persistence of the system under some additional conditions. Applications to models from ecology and chemotaxis are discussed.

  5. Spatiotemporal Patterns of a Predator-Prey System with an Allee Effect and Holling Type III Functional Response

    NASA Astrophysics Data System (ADS)

    Li, Yuanyuan; Wang, Jinfeng

    A diffusive Gause type predator-prey system with Allee effect in prey growth and Holling type III response subject to Neumann boundary conditions is investigated. Existence of nonconstant positive steady state solutions is proved by Leray-Schauder degree theory and bifurcation theory. Global stability of the positive equilibrium of the system is also investigated. Moreover, bifurcations of spatially homogeneous and nonhomogeneous periodic solutions are analyzed. Our rigorous results justify some recent ecological observations.

  6. Dynamic behavior of positive solutions for a leslie predator-prey system with mutual interference and feedback controls.

    PubMed

    Zhang, Cong; Huang, Nan-jing; Deng, Chuan-xian

    2014-01-01

    We consider a Leslie predator-prey system with mutual interference and feedback controls. For general nonautonomous case, by using differential inequality theory and constructing a suitable Lyapunov functional, we obtain some sufficient conditions which guarantee the permanence and the global attractivity of the system. For the periodic case, we obtain some sufficient conditions which guarantee the existence, uniqueness, and stability of a positive periodic solution.

  7. Using predator-prey theory to predict outcomes of broadscale experiments to reduce apparent competition.

    PubMed

    Serrouya, Robert; Wittmann, Meike J; McLellan, Bruce N; Wittmer, Heiko U; Boutin, Stan

    2015-05-01

    Apparent competition is an important process influencing many ecological communities. We used predator-prey theory to predict outcomes of ecosystem experiments aimed at mitigating apparent competition by reducing primary prey. Simulations predicted declines in secondary prey following reductions in primary prey because predators consumed more secondary prey until predator numbers responded to reduced prey densities. Losses were exacerbated by a higher carrying capacity of primary prey and a longer lag time of the predator's numerical response, but a gradual reduction in primary prey was less detrimental to the secondary prey. We compared predictions against two field experiments where endangered woodland caribou (Rangifer tarandus caribou) were victims of apparent competition. First, when deer (Odocoileus sp.) declined suddenly following a severe winter, cougar (Puma concolor) declined with a 1-2-year lag, yet in the interim more caribou were killed by cougars, and caribou populations declined by 40%. Second, when moose (Alces alces) were gradually reduced using a management experiment, wolf (Canis lupus) populations declined but did not shift consumption to caribou, and the largest caribou subpopulation stabilized. The observed contrasting outcomes of sudden versus gradual declines in primary prey supported theoretical predictions. Combining theory with field studies clarified how to manage communities to mitigate endangerment caused by apparent competition that affects many taxa.

  8. Biomagnification and polychlorinated biphenyl congener distribution in an aquatic predator-prey, host-parasite system.

    PubMed

    Persson, Maria E; Larsson, Per; Stenroth, Patrik

    2007-05-01

    Biomagnification and polychlorinated biphenyl (PCB) congener distribution was examined in a predator-prey, host-parasite system, in which Atlantic salmon (Salmo salar) preyed upon sprat (Sprattus sprattus). Eubothrium crassum was an intestinal parasite in salmon that also "preyed upon" sprat, because the parasites gained access to foodstuffs via the host (salmon) gut. Salmon contained significantly higher concentrations of total PCBs compared to both parasites and prey (sprat), but no difference in PCB concentration was found between sprat and E. crassum. Salmon biomagnified several PCB congeners from their diet (sprat), whereas parasites did not, despite the fact that both salmon and their parasites ingested the same prey. Differences in nutrient uptake mechanisms between the host and their parasites, in addition to the lack of a gastrointestinal tract in the cestode, may explain the lack of biomagnification in E. crassum. No difference was found in PCB congener distribution between parasites, salmon, and sprat, and none of the animal types showed a preference for accumulating more or less lipophilic congeners (congeners with a high or low octanol/water partition coefficient [K(ow)]). Biomagnification factors for individual congeners in salmon did not increase with K(ow); rather, they were constant, as shown by a linear relationship for congener concentration in prey and predator.

  9. Absence of Frequent Herpesvirus Transmission in a Nonhuman Primate Predator-Prey System in the Wild

    PubMed Central

    Murthy, Sripriya; Couacy-Hymann, Emmanuel; Metzger, Sonja; Nowak, Kathrin; De Nys, Helene; Boesch, Christophe; Wittig, Roman; Jarvis, Michael A.; Leendertz, Fabian H.

    2013-01-01

    Emergence of viruses into the human population by transmission from nonhuman primates (NHPs) represents a serious potential threat to human health that is primarily associated with the increased bushmeat trade. Transmission of RNA viruses across primate species appears to be relatively frequent. In contrast, DNA viruses appear to be largely host specific, suggesting low transmission potential. Herein, we use a primate predator-prey system to study the risk of herpesvirus transmission between different primate species in the wild. The system was comprised of western chimpanzees (Pan troglodytes verus) and their primary (western red colobus, Piliocolobus badius badius) and secondary (black-and-white colobus, Colobus polykomos) prey monkey species. NHP species were frequently observed to be coinfected with multiple beta- and gammaherpesviruses (including new cytomegalo- and rhadinoviruses). However, despite frequent exposure of chimpanzees to blood, organs, and bones of their herpesvirus-infected monkey prey, there was no evidence for cross-species herpesvirus transmission. These findings suggest that interspecies transmission of NHP beta- and gammaherpesviruses is, at most, a rare event in the wild. PMID:23885068

  10. Density-dependent dispersal and relative dispersal affect the stability of predator-prey metacommunities.

    PubMed

    Hauzy, Céline; Gauduchon, Mathias; Hulot, Florence D; Loreau, Michel

    2010-10-07

    Although density-dependent dispersal and relative dispersal (the difference in dispersal rates between species) have been documented in natural systems, their effects on the stability of metacommunities are poorly understood. Here we investigate the effects of intra- and interspecific density-dependent dispersal on the regional stability in a predator-prey metacommunity model. We show that, when the dynamics of the populations reach equilibrium, the stability of the metacommunity is not affected by density-dependent dispersal. However, the regional stability, measured as the regional variability or the persistence, can be modified by density-dependent dispersal when local populations fluctuate over time. Moreover these effects depend on the relative dispersal of the predator and the prey. Regional stability is modified through changes in spatial synchrony. Interspecific density-dependent dispersal always desynchronizses local dynamics, whereas intraspecific density-dependent dispersal may either synchronize or desynchronize it depending on dispersal rates. Moreover, intra- and interspecific density-dependent dispersal strengthen the top-down control of the prey by the predator at intermediate dispersal rates. As a consequence the regional stability of the metacommunity is increased at intermediate dispersal rates. Our results show that density-dependent dispersal and relative dispersal of species are keys to understanding the response of ecosystems to fragmentation.

  11. Adaptive evolution of foraging-related traits in a predator-prey community.

    PubMed

    Zu, Jian; Mimura, Masayasu; Takeuchi, Yasuhiro

    2011-01-07

    In this paper, with the method of adaptive dynamics and geometric technique, we investigate the adaptive evolution of foraging-related phenotypic traits in a predator-prey community with trade-off structure. Specialization on one prey type is assumed to go at the expense of specialization on another. First, we identify the ecological and evolutionary conditions that allow for evolutionary branching in predator phenotype. Generally, if there is a small switching cost near the singular strategy, then this singular strategy is an evolutionary branching point, in which predator population will change from monomorphism to dimorphism. Second, we find that if the trade-off curve is globally convex, predator population eventually branches into two extreme specialists, each completely specializing on a particular prey species. However, if the trade-off curve is concave-convex-concave, after branching in predator phenotype, the two predator species will evolve to an evolutionarily stable dimorphism at which they can continue to coexist. The analysis reveals that an attractive dimorphism will always be evolutionarily stable and that no further branching is possible under this model.

  12. Comparing the effects of rapid evolution and phenotypic plasticity on predator-prey dynamics.

    PubMed

    Yamamichi, Masato; Yoshida, Takehito; Sasaki, Akira

    2011-09-01

    Ecologists have increasingly focused on how rapid adaptive trait changes can affect population dynamics. Rapid adaptation can result from either rapid evolution or phenotypic plasticity, but their effects on population dynamics are seldom compared directly. Here we examine theoretically the effects of rapid evolution and phenotypic plasticity of antipredatory defense on predator-prey dynamics. Our analyses reveal that phenotypic plasticity tends to stabilize population dynamics more strongly than rapid evolution. It is therefore important to know the mechanism by which phenotypic variation is generated for predicting the dynamics of rapidly adapting populations. We next examine an advantage of a phenotypically plastic prey genotype over the polymorphism of specialist prey genotypes. Numerical analyses reveal that the plastic genotype, if there is a small cost for maintaining it, cannot coexist with the pairs of specialist counterparts unless the system has a limit cycle. Furthermore, for the plastic genotype to replace specialist genotypes, a forced environmental fluctuation is critical in a broad parameter range. When these results are combined, the plastic genotype enjoys an advantage with population oscillations, but plasticity tends to lose its advantage by stabilizing the oscillations. This dilemma leads to an interesting intermittent limit cycle with the changing frequency of phenotypic plasticity.

  13. On the Gause predator-prey model with a refuge: a fresh look at the history.

    PubMed

    Křivan, Vlastimil

    2011-04-07

    This article re-analyses a prey-predator model with a refuge introduced by one of the founders of population ecology Gause and his co-workers to explain discrepancies between their observations and predictions of the Lotka-Volterra prey-predator model. They replaced the linear functional response used by Lotka and Volterra by a saturating functional response with a discontinuity at a critical prey density. At concentrations below this critical density prey were effectively in a refuge while at a higher densities they were available to predators. Thus, their functional response was of the Holling type III. They analyzed this model and predicted existence of a limit cycle in predator-prey dynamics. In this article I show that their model is ill posed, because trajectories are not well defined. Using the Filippov method, I define and analyze solutions of the Gause model. I show that depending on parameter values, there are three possibilities: (1) trajectories converge to a limit cycle, as predicted by Gause, (2) trajectories converge to an equilibrium, or (3) the prey population escapes predator control and grows to infinity.

  14. Absence of frequent herpesvirus transmission in a nonhuman primate predator-prey system in the wild.

    PubMed

    Murthy, Sripriya; Couacy-Hymann, Emmanuel; Metzger, Sonja; Nowak, Kathrin; De Nys, Helene; Boesch, Christophe; Wittig, Roman; Jarvis, Michael A; Leendertz, Fabian H; Ehlers, Bernhard

    2013-10-01

    Emergence of viruses into the human population by transmission from nonhuman primates (NHPs) represents a serious potential threat to human health that is primarily associated with the increased bushmeat trade. Transmission of RNA viruses across primate species appears to be relatively frequent. In contrast, DNA viruses appear to be largely host specific, suggesting low transmission potential. Herein, we use a primate predator-prey system to study the risk of herpesvirus transmission between different primate species in the wild. The system was comprised of western chimpanzees (Pan troglodytes verus) and their primary (western red colobus, Piliocolobus badius badius) and secondary (black-and-white colobus, Colobus polykomos) prey monkey species. NHP species were frequently observed to be coinfected with multiple beta- and gammaherpesviruses (including new cytomegalo- and rhadinoviruses). However, despite frequent exposure of chimpanzees to blood, organs, and bones of their herpesvirus-infected monkey prey, there was no evidence for cross-species herpesvirus transmission. These findings suggest that interspecies transmission of NHP beta- and gammaherpesviruses is, at most, a rare event in the wild.

  15. Transmission dynamics of resistant bacteria in a predator-prey system.

    PubMed

    Gao, Xubin; Pan, Qiuhui; He, Mingfeng

    2015-01-01

    This paper discusses the impact on human health caused by the addition of antibiotics in the feed of food animals. We use the established transmission rule of resistant bacteria and combine it with a predator-prey system to determine a differential equations model. The equations have three steady equilibrium points corresponding to three population dynamics states under the influence of resistant bacteria. In order to quantitatively analyze the stability of the equilibrium points, we focused on the basic reproduction numbers. Then, both the local and global stability of the equilibrium points were quantitatively analyzed by using essential mathematical methods. Numerical results are provided to relate our model properties to some interesting biological cases. Finally, we discuss the effect of the two main parameters of the model, the proportion of antibiotics added to feed and the predation rate, and estimate the human health impacts related to the amount of feed antibiotics used. We further propose an approach for the prevention of the large-scale spread of resistant bacteria and illustrate the necessity of controlling the amount of in-feed antibiotics used.

  16. Effects of additional food in a delayed predator-prey model.

    PubMed

    Sahoo, Banshidhar; Poria, Swarup

    2015-03-01

    We examine the effects of supplying additional food to predator in a gestation delay induced predator-prey system with habitat complexity. Additional food works in favor of predator growth in our model. Presence of additional food reduces the predatory attack rate to prey in the model. Supplying additional food we can control predator population. Taking time delay as bifurcation parameter the stability of the coexisting equilibrium point is analyzed. Hopf bifurcation analysis is done with respect to time delay in presence of additional food. The direction of Hopf bifurcations and the stability of bifurcated periodic solutions are determined by applying the normal form theory and the center manifold theorem. The qualitative dynamical behavior of the model is simulated using experimental parameter values. It is observed that fluctuations of the population size can be controlled either by supplying additional food suitably or by increasing the degree of habitat complexity. It is pointed out that Hopf bifurcation occurs in the system when the delay crosses some critical value. This critical value of delay strongly depends on quality and quantity of supplied additional food. Therefore, the variation of predator population significantly effects the dynamics of the model. Model results are compared with experimental results and biological implications of the analytical findings are discussed in the conclusion section.

  17. On the selection of ordinary differential equation models with application to predator-prey dynamical models.

    PubMed

    Zhang, Xinyu; Cao, Jiguo; Carroll, Raymond J

    2015-03-01

    We consider model selection and estimation in a context where there are competing ordinary differential equation (ODE) models, and all the models are special cases of a "full" model. We propose a computationally inexpensive approach that employs statistical estimation of the full model, followed by a combination of a least squares approximation (LSA) and the adaptive Lasso. We show the resulting method, here called the LSA method, to be an (asymptotically) oracle model selection method. The finite sample performance of the proposed LSA method is investigated with Monte Carlo simulations, in which we examine the percentage of selecting true ODE models, the efficiency of the parameter estimation compared to simply using the full and true models, and coverage probabilities of the estimated confidence intervals for ODE parameters, all of which have satisfactory performances. Our method is also demonstrated by selecting the best predator-prey ODE to model a lynx and hare population dynamical system among some well-known and biologically interpretable ODE models.

  18. On basins of attraction for a predator-prey model via meshless approximation

    NASA Astrophysics Data System (ADS)

    Francomano, Elisa; Hilker, Frank M.; Paliaga, Marta; Venturino, Ezio

    2016-10-01

    In this work an epidemiological predator-prey model is studied. It analyzes the spread of an infectious disease with frequency-dependent and vertical transmission within the predator population. In particular we consider social predators, i.e. they cooperate in groups to hunt. The result is a three-dimensional system in which the predator population is divided into susceptible and infected individuals. Studying the dynamical system and bifurcation diagrams, a scenario was identified in which the model shows multistability but the domain of attraction of one equilibrium point can be so small that it is almost the point itself. From a biological point of view it is important to analyze this effect in order to understand under which conditions the population goes extinct or survives. Thus we present a study to analyze the basins of attraction of the stable equilibrium points. This paper addresses the question of finding the point lying on the surface which partitions the phase plane. Therefore a meshless approach has been adopted to produce an approximation of the separatrix manifold.

  19. A Bayesian estimation of a stochastic predator-prey model of economic fluctuations

    NASA Astrophysics Data System (ADS)

    Dibeh, Ghassan; Luchinsky, Dmitry G.; Luchinskaya, Daria D.; Smelyanskiy, Vadim N.

    2007-06-01

    In this paper, we develop a Bayesian framework for the empirical estimation of the parameters of one of the best known nonlinear models of the business cycle: The Marx-inspired model of a growth cycle introduced by R. M. Goodwin. The model predicts a series of closed cycles representing the dynamics of labor's share and the employment rate in the capitalist economy. The Bayesian framework is used to empirically estimate a modified Goodwin model. The original model is extended in two ways. First, we allow for exogenous periodic variations of the otherwise steady growth rates of the labor force and productivity per worker. Second, we allow for stochastic variations of those parameters. The resultant modified Goodwin model is a stochastic predator-prey model with periodic forcing. The model is then estimated using a newly developed Bayesian estimation method on data sets representing growth cycles in France and Italy during the years 1960-2005. Results show that inference of the parameters of the stochastic Goodwin model can be achieved. The comparison of the dynamics of the Goodwin model with the inferred values of parameters demonstrates quantitative agreement with the growth cycle empirical data.

  20. Phase diagram of a cyclic predator-prey model with neutral-pair exchange.

    PubMed

    Guisoni, Nara C; Loscar, Ernesto S; Girardi, Mauricio

    2013-08-01

    In this paper we obtain the phase diagram of a four-species predator-prey lattice model by using the proposed gradient method. We consider cyclic transitions between consecutive states, representing invasion or predation, and allowed the exchange between neighboring neutral pairs. By applying a gradient in the invasion rate parameter one can see, in the same simulation, the presence of two symmetric absorbing phases, composed by neutral pairs, and an active phase that includes all four species. In this sense, the study of a single-valued interface and its fluctuations give the critical point of the irreversible phase transition and the corresponding universality classes. Also, the consideration of a multivalued interface and its fluctuations bring the percolation threshold. We show that the model presents two lines of irreversible first-order phase transition between the two absorbing phases and the active phase. Depending on the value of the system parameters, these lines can converge into a triple point, which is the beginning of a first-order irreversible line between the two absorbing phases, or end in two critical points belonging to the directed percolation universality class. Standard simulations for some characteristic values of the parameters confirm the order of the transitions as determined by the gradient method. Besides, below the triple point the model presents two standard percolation lines in the active phase and above a first-order percolation transition as already found in other similar models.

  1. A predator-prey model with diseases in both prey and predator

    NASA Astrophysics Data System (ADS)

    Gao, Xubin; Pan, Qiuhui; He, Mingfeng; Kang, Yibin

    2013-12-01

    In this paper, we present and analyze a predator-prey model, in which both predator and prey can be infected. Each of the predator and prey is divided into two categories, susceptible and infected. The epidemics cannot be transmitted between prey and predator by predation. The predation ability of susceptible predators is stronger than infected ones. Likewise, it is more difficult to catch a susceptible prey than an infected one. And the diseases cannot be hereditary in both of the predator and prey populations. Based on the assumptions above, we find that there are six equilibrium points in this model. Using the base reproduction number, we discuss the stability of the equilibrium points qualitatively. Then both of the local and global stabilities of the equilibrium points are analyzed quantitatively by mathematical methods. We provide numerical results to discuss some interesting biological cases that our model exhibits. Lastly, we discuss how the infectious rates affect the stability, and how the other parameters work in the five possible cases within this model.

  2. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis.

    PubMed

    Bonfante, Paola; Genre, Andrea

    2010-07-27

    Mycorrhizal fungi are a heterogeneous group of diverse fungal taxa, associated with the roots of over 90% of all plant species. Recently, state-of-the-art molecular and genetic tools, coupled to high-throughput sequencing and advanced microscopy, have led to the genome and transcriptome analysis of several symbionts. Signalling pathways between plants and fungi have now been described and the identification of several novel nutrient transporters has revealed some of the cellular processes that underlie symbiosis. Thus, the contributions of each partner in a mycorrhizal association are starting to be unravelled. This new knowledge is now available for use in agricultural practices.

  3. Testing predator-prey theory using broad-scale manipulations and independent validation.

    PubMed

    Serrouya, Robert; McLellan, Bruce N; Boutin, Stan

    2015-11-01

    A robust test of ecological theory is to gauge the predictive accuracy of general relationships parameterized from multiple systems but applied to a new area. To address this goal, we used an ecosystem-level experiment to test predator-prey theory by manipulating prey abundance to determine whether predation was density dependent, density independent, compensatory or depensatory (inversely density dependent) on prey populations. Understanding the nature of predation is of primary importance in community ecology because it establishes whether predation has little effect on prey abundance (compensatory), whether it promotes coexistence (density dependent) and reduces the equilibrium of prey (density independent) or whether it can be destabilizing (depensatory). We used theoretical predictions consisting of functional and numerical equations parameterized independently from meta-analyses on wolves (Canis lupus) and moose (Alces alces), but applied to our specific wolf-moose system. Predictions were tested by experimentally reducing moose abundance across 6500 km(2) as a novel way of evaluating the nature of predation. Depensatory predation of wolves on moose was the best explanation of the population dynamic - a mechanism that has been hypothesized to occur but has rarely been evaluated. Adding locally obtained kill rates and numerical estimates to the independent data provided no benefit to model predictions, suggesting that the theory was robust to local variation. These findings have critical implications for any organism that is preyed upon but that also has, or will be, subject to increased human exploitation or perturbations from environmental change. If depensatory predation is not accounted for in harvest models, predicted yields will be excessive and lead to further population decline.

  4. Predator-Prey Model for Haloes in Saturn’s Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.; Madhusudhanan, P.; Colwell, J. E.; Bradley, E.; Sremcevic, M.

    2013-10-01

    Particles in Saturn’s rings have a tripartite nature: (1) a broad distribution of fragments from the disruption of a previous moon that accrete into (2) transient aggregates, resembling piles of rubble, covered by a (3) regolith of smaller grains that result from collisions and meteoritic grinding. Evidence for this triple architecture of ring particles comes from a multitude of Cassini observations. In a number of ring locations (including Saturn’s F ring, the shepherded outer edges of rings A and B and at the locations of the strongest density waves) aggregation and dis-aggregation are operating now. ISS, VIMS, UVIS spectroscopy and occultations show haloes around the strongest density waves. Based on a predator-prey model for ring dynamics, we offer the following explanation: 1. Cyclic velocity changes cause the perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; 2. This forms a bright halo around the ILR, if the forcing is strong enough; 3. Surrounding particles diffuse back too slowly to erase the effect; they diffuse away to form the halo. The most rapid time scale is for forcing/aggregate growth/disaggregation; then irreversible regolith erosion; diffusion and/or ballistic transport; and slowest, meteoritic pollution/darkening. We observe both smaller and larger particles at perturbed regions. Straw, UVIS power spectral analysis, kittens and equinox objects show the prey (mass aggregates); while the haloes’ VIMS spectral signature, correlation length and excess variance are created by the predators (velocity dispersion) in regions stirred in the rings. Moon forcing triggers aggregation to create longer-lived aggregates that protect their interiors from meteoritic darkening and recycle the ring material to maintain the current purity of the rings. It also provides a mechanism for creation of new moons at resonance locations in the Roche zone, as proposed by Charnoz etal and

  5. Discovering the Power of Individual-Based Modelling in Teaching and Learning: The Study of a Predator-Prey System

    NASA Astrophysics Data System (ADS)

    Ginovart, Marta

    2014-08-01

    The general aim is to promote the use of individual-based models (biological agent-based models) in teaching and learning contexts in life sciences and to make their progressive incorporation into academic curricula easier, complementing other existing modelling strategies more frequently used in the classroom. Modelling activities for the study of a predator-prey system for a mathematics classroom in the first year of an undergraduate program in biosystems engineering have been designed and implemented. These activities were designed to put two modelling approaches side by side, an individual-based model and a set of ordinary differential equations. In order to organize and display this, a system with wolves and sheep in a confined domain was considered and studied. With the teaching material elaborated and a computer to perform the numerical resolutions involved and the corresponding individual-based simulations, the students answered questions and completed exercises to achieve the learning goals set. Students' responses regarding the modelling of biological systems and these two distinct methodologies applied to the study of a predator-prey system were collected via questionnaires, open-ended queries and face-to-face dialogues. Taking into account the positive responses of the students when they were doing these activities, it was clear that using a discrete individual-based model to deal with a predator-prey system jointly with a set of ordinary differential equations enriches the understanding of the modelling process, adds new insights and opens novel perspectives of what can be done with computational models versus other models. The complementary views given by the two modelling approaches were very well assessed by students.

  6. Role of zonal flow predator-prey oscillations in triggering the transition to H-mode confinement.

    PubMed

    Schmitz, L; Zeng, L; Rhodes, T L; Hillesheim, J C; Doyle, E J; Groebner, R J; Peebles, W A; Burrell, K H; Wang, G

    2012-04-13

    Direct evidence of zonal flow (ZF) predator-prey oscillations and the synergistic roles of ZF- and equilibrium E×B flow shear in triggering the low- to high-confinement (L- to H-mode) transition in the DIII-D tokamak is presented. Periodic turbulence suppression is first observed in a narrow layer at and just inside the separatrix when the shearing rate transiently exceeds the turbulence decorrelation rate. The final transition to H mode with sustained turbulence and transport reduction is controlled by equilibrium E×B shear due to the increasing ion pressure gradient.

  7. Global Hopf Bifurcation on Two-Delays Leslie-Gower Predator-Prey System with a Prey Refuge

    PubMed Central

    Liu, Qingsong; Lin, Yiping; Cao, Jingnan

    2014-01-01

    A modified Leslie-Gower predator-prey system with two delays is investigated. By choosing τ1 and τ2 as bifurcation parameters, we show that the Hopf bifurcations occur when time delay crosses some critical values. Moreover, we derive the equation describing the flow on the center manifold; then we give the formula for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions. Numerical simulations are carried out to illustrate the theoretical results and chaotic behaviors are observed. Finally, using a global Hopf bifurcation theorem for functional differential equations, we show the global existence of the periodic solutions. PMID:24803953

  8. Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy.

    PubMed

    Xiao, Qizhen; Dai, Binxiang

    2015-10-01

    In this paper, we analyze a general predator-prey model with state feedback impulsive harvesting strategies in which the prey species displays a strong Allee effect. We firstly show the existence of order-1 heteroclinic cycle and order-1 positive periodic solutions by using the geometric theory of differential equations for the unperturbed system. Based on the theory of rotated vector fields, the order-1 positive periodic solutions and heteroclinic bifurcation are studied for the perturbed system. Finally, some numerical simulations are provided to illustrate our main results. All the results indicate that the harvesting rate should be maintained at a reasonable range to keep the sustainable development of ecological systems.

  9. Global hopf bifurcation on two-delays leslie-gower predator-prey system with a prey refuge.

    PubMed

    Liu, Qingsong; Lin, Yiping; Cao, Jingnan

    2014-01-01

    A modified Leslie-Gower predator-prey system with two delays is investigated. By choosing τ 1 and τ 2 as bifurcation parameters, we show that the Hopf bifurcations occur when time delay crosses some critical values. Moreover, we derive the equation describing the flow on the center manifold; then we give the formula for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions. Numerical simulations are carried out to illustrate the theoretical results and chaotic behaviors are observed. Finally, using a global Hopf bifurcation theorem for functional differential equations, we show the global existence of the periodic solutions.

  10. Multiple periodic solutions of a delayed predator-prey model with non-monotonic functional response and stage structure.

    PubMed

    Liu, Yingyuan; Zhang, Xiaolan; Zhou, Tiejun

    2014-01-01

    The paper studies a periodic and delayed predator-prey system with non-monotonic functional responses and stage structure. In the system, both the predator and prey are divided into immature individuals and mature individuals by two fixed ages. It is assumed that the immature predators cannot attack preys, and the case of the mature predators attacking the immature preys is also ignored. Based on Mawhin's coincidence degree, sufficient conditions are obtained for the existence of two positive periodic solutions of the system. An example is presented to illustrate the feasibility of the main results.

  11. Dynamic of a delayed predator-prey model with birth pulse and impulsive harvesting in a polluted environment

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohong; Jia, Jianwen

    2015-03-01

    In this paper, we propose a delayed predator-prey model with birth pulse and impulsive harvesting in a polluted environment. Existence conditions of the predator-extinction periodic solution are derived by developing the discrete dynamical system, which is determined by the stroboscopic map. Further, we discuss the global attractivity of predator-extinction periodic solution and permanence of the system, and obtain the threshold conditions. The results provide a dependable theoretical strategies to protect population from extinction in a polluted environment. Finally, the numerical simulations are presented for verifying the theoretical conclusions.

  12. A predator-prey model for moon-triggered clumping in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.; Albers, Nicole; Meinke, Bonnie K.; Sremčević, Miodrag; Madhusudhanan, Prasanna; Colwell, Joshua E.; Jerousek, Richard G.

    2012-01-01

    UVIS occultation data show clumping in Saturn's F ring and at the B ring outer edge, indicating aggregation and disaggregation at these locations that are perturbed by Prometheus and by Mimas. The inferred timescales range from hours to months. Occultation profiles of the edge show wide variability, indicating perturbations by local mass aggregations. Structure near the B ring edge is seen in power spectral analysis at scales 200-2000 m. Similar structure is also seen at the strongest density waves, with significance increasing with resonance strength. For the B ring outer edge, the strongest structure is seen at longitudes 90° and 270° relative to Mimas. This indicates a direct relation between the moon and the ring clumping. We propose that the collective behavior of the ring particles resembles a predator-prey system: the mean aggregate size is the prey, which feeds the velocity dispersion; conversely, increasing dispersion breaks up the aggregates. Moons may trigger clumping by streamline crowding, which reduces the relative velocity, leading to more aggregation and more clumping. Disaggregation may follow from disruptive collisions or tidal shedding as the clumps stir the relative velocity. For realistic values of the parameters this yields a limit cycle behavior, as for the ecology of foxes and hares or the "boom-bust" economic cycle. Solving for the long-term behavior of this forced system gives a periodic response at the perturbing frequency, with a phase lag roughly consistent with the UVIS occultation measurements. We conclude that the agitation by the moons in the F ring and at the B ring outer edge drives aggregation and disaggregation in the forcing frame. This agitation of the ring material may also allow fortuitous formation of solid objects from the temporary clumps, via stochastic processes like compaction, adhesion, sintering or reorganization that drives the denser parts of the aggregate to the center or ejects the lighter elements. Any of

  13. Ants and Antlions: The Impact of Ecology, Coevolution and Learning on an Insect Predator-Prey Relationship.

    PubMed

    Hollis, Karen L

    2016-12-06

    A behavioural ecological approach to the relationship between pit-digging larval antlions and their common prey, ants, provides yet another example of how the specific ecological niche that species inhabit imposes selection pressures leading to unique behavioural adaptations. Antlions rely on multiple strategies to capture prey with a minimal expenditure of energy and extraordinary efficiency while ants employ several different strategies for avoiding capture, including rescue of trapped nestmates. Importantly, both ants and antlions rely heavily on their capacity for learning, a tool that sometimes is overlooked in predator-prey relationships, leading to the implicit assumption that behavioural adaptations are the result of fixed, hard-wired responses. Nonetheless, like hard-wired responses, learned behaviour, too, is uniquely adapted to the ecological niche, a reminder that the expression of associative learning is species-specific. Beyond the study of ants and antlions, per se, this particular predator-prey relationship reveals the important role that the capacity to learn plays in coevolutionary arms races.

  14. Non-random spatial coupling induces desynchronization, chaos and multistability in a predator-prey-resource system.

    PubMed

    Suzuki, Kenta; Yoshida, Takehito

    2012-05-07

    The metacommunity perspective has attracted much attention recently, but the understanding of how dispersal between local communities alters their ecological dynamics is still limited, especially regarding the effect of non-random, unequal dispersal of organisms. This is a study of a three-trophic-level (predator-prey-resource) system that is connected by different manners of dispersal. The model is based on a well-studied experimental system cultured in chemostats (continuous flow-through culture), which consists of rotifer predator, algal prey and nutrient. In the model, nutrient dispersal can give rise to multistability when the two systems are connected by nutrient dispersal, whereas three-trophic-level systems tend to show a rich dynamical behavior, e.g. antisynchronous or asynchronous oscillations including chaos. Although the existence of multistability was already known in two-trophic-level (predator-prey) systems, it was confined to a small range of dispersal rate. In contrast, the multistability in the three-trophic-level system is found in a broader range of dispersal rate. The results suggest that, in three-trophic-level systems, the dispersal of nutrient not only alters population dynamics of local systems but can also cause regime shifts such as a transition to different oscillation phases.

  15. Time optimal control of an additional food provided predator-prey system with applications to pest management and biological conservation.

    PubMed

    Srinivasu, P D N; Prasad, B S R V

    2010-04-01

    Use of additional food has been widely recognized by experimental scientists as one of the important tools for biological control such as species conservation and pest management. The quality and quantity of additional food supplied to the predators is known to play a vital role in the controllability of the system. The present study is continuation of a previous work that highlights the importance of quality and quantity of the additional food in the dynamics of a predator-prey system in the context of biological control. In this article the controllability of the predator-prey system is analyzed by considering inverse of quality of the additional food as the control variable. Control strategies are offered to steer the system from a given initial state to a required terminal state in a minimum time by formulating Mayer problem of optimal control. It is observed that an optimal strategy is a combination of bang-bang controls and could involve multiple switches. Properties of optimal paths are derived using necessary conditions for Mayer problem. In the light of the results evolved in this work it is possible to eradicate the prey from the eco-system in the minimum time by providing the predator with high quality additional food, which is relevant in the pest management. In the perspective of biological conservation this study highlights the possibilities to drive the state to an admissible interior equilibrium (irrespective of its stability nature) of the system in a minimum time.

  16. Something old, something new: auxin and strigolactone interact in the ancient mycorrhizal symbiosis.

    PubMed

    Foo, Eloise

    2013-04-01

    Arbuscular mycorrhizal symbiosis, formed between more than 80% of land plants and fungi from the phylum Glomeromycota, is an ancient association that is believed to have evolved as plants moved onto land more than 400 mya. Similarly ancient, the plant hormones auxin and strigolactone are thought to have been present in the plant lineage since before the divergence of the bryophytes in the case of auxin and before the colonisation of land in the case of strigolactones. The discovery of auxin in the 1930s predates the discovery of strigolactones as a plant hormone in 2008 by over 70 y. Recent studies in pea suggest that these two signals may interact to regulate mycorrhizal symbiosis. Furthermore, the first quantitative studies are presented that show that low auxin content of the root is correlated with low strigolactone production, an interaction that has implications for how these plant hormones regulate several developmental programs including shoot branching, secondary growth and root development. With recent advances in our understanding of auxin and strigolactone biosynthesis, together with the discovery of the fungal signals that activate the plant host, the stage is set for real breakthroughs in our understanding of the interactions between plant and fungal signals in mycorrhizal symbiosis.

  17. Detecting predation and scavenging by DNA gut-content analysis: a case study using a soil insect predator-prey system.

    PubMed

    Juen, Anita; Traugott, Michael

    2005-01-01

    White grubs (larvae of Coleoptera: Scarabaeidae) are abundant in below-ground systems and can cause considerable damage to a wide variety of crops by feeding on roots. White grub populations may be controlled by natural enemies, but the predator guild of the European species is barely known. Trophic interactions within soil food webs are difficult to study with conventional methods. Therefore, a polymerase chain reaction (PCR)-based approach was developed to investigate, for the first time, a soil insect predator-prey system. Can, however, highly sensitive detection methods identify carrion prey in predators, as has been shown for fresh prey? Fresh Melolontha melolontha (L.) larvae and 1- to 9-day-old carcasses were presented to Poecilus versicolor Sturm larvae. Mitochondrial cytochrome oxidase subunit I fragments of the prey, 175, 327 and 387 bp long, were detectable in 50% of the predators 32 h after feeding. Detectability decreased to 18% when a 585 bp sequence was amplified. Meal size and digestion capacity of individual predators had no influence on prey detection. Although prey consumption was negatively correlated with cadaver age, carrion prey could be detected by PCR as efficiently as fresh prey irrespective of carrion age. This is the first proof that PCR-based techniques are highly efficient and sensitive, both in fresh and carrion prey detection. Thus, if active predation has to be distinguished from scavenging, then additional approaches are needed to interpret the picture of prey choice derived by highly sensitive detection methods.

  18. Predator hunting mode and habitat domain alter nonconsumptive effects in predator-prey interactions.

    PubMed

    Preisser, Evan L; Orrock, John L; Schmitz, Oswald J

    2007-11-01

    Predators can affect prey populations through changes in traits that reduce predation risk. These trait changes (nonconsumptive effects, NCEs) can be energetically costly and cause reduced prey activity, growth, fecundity, and survival. The strength of nonconsumptive effects may vary with two functional characteristics of predators: hunting mode (actively hunting, sit-and-pursue, sit-and-wait) and habitat domain (the ability to pursue prey via relocation in space; can be narrow or broad). Specifically, cues from fairly stationary sit-and-wait and sit-and-pursue predators should be more indicative of imminent predation risk, and thereby evoke stronger NCEs, compared to cues from widely ranging actively hunting predators. Using a meta-analysis of 193 published papers, we found that cues from sit-and-pursue predators evoked stronger NCEs than cues from actively hunting predators. Predator habitat domain was less indicative of NCE strength, perhaps because habitat domain provides less reliable information regarding imminent risk to prey than does predator hunting mode. Given the importance of NCEs in determining the dynamics of prey communities, our findings suggest that predator characteristics may be used to predict how changing predator communities translate into changes in prey. Such knowledge may prove particularly useful given rates of local predator change due to habitat fragmentation and the introduction of novel predators.

  19. Evolutionary diversification of TTX-resistant sodium channels in a predator-prey interaction.

    PubMed

    Geffeney, Shana L; Fujimoto, Esther; Brodie, Edmund D; Brodie, Edmund D; Ruben, Peter C

    2005-04-07

    Understanding the molecular genetic basis of adaptations provides incomparable insight into the genetic mechanisms by which evolutionary diversification takes place. Whether the evolution of common traits in different lineages proceeds by similar or unique mutations, and the degree to which phenotypic evolution is controlled by changes in gene regulation as opposed to gene function, are fundamental questions in evolutionary biology that require such an understanding of genetic mechanisms. Here we identify novel changes in the molecular structure of a sodium channel expressed in snake skeletal muscle, tsNa(V)1.4, that are responsible for differences in tetrodotoxin (TTX) resistance among garter snake populations coevolving with toxic newts. By the functional expression of tsNa(V)1.4, we show how differences in the amino-acid sequence of the channel affect TTX binding and impart different levels of resistance in four snake populations. These results indicate that the evolution of a physiological trait has occurred through a series of unique functional changes in a gene that is otherwise highly conserved among vertebrates.

  20. Predator-prey interactions in the plankton: larval fish feeding on evasive copepods

    PubMed Central

    Jackson, James M.; Lenz, Petra H.

    2016-01-01

    Capture success and prey selectivity were investigated in clownfish Amphiprion ocellaris larvae using videography. Three prey types were tested using developmental stages (nauplii, copepodites and adults) of the copepod Parvocalanus crassirostris. Predatory abilities improved rapidly between days 1 and 14 post-hatch. Initially, capture success was limited to nauplii with few attacks on larger stages. Captures of copepodites were first observed at 3 dph, and of adults at 8 dph. Consistent strikes at the larger prey were observed on the day prior to successful captures (2 dph for copepodites, 7 dph for adults). Difference in capture success between nauplii and adults at 8 dph was an order of magnitude. Differences in capture success among prey types persisted but decreased to three-fold by 14 dph. Younger A. ocellaris attacked nauplii preferentially and avoided adult prey. Strike selectivity declined with age, and no selectivity was observed after 10 dph. However, numerically 50% of the ingested prey were still nauplii at 14 dph under the experimental conditions. PMID:27658849

  1. Predator-prey interactions in the plankton: larval fish feeding on evasive copepods

    NASA Astrophysics Data System (ADS)

    Jackson, James M.; Lenz, Petra H.

    2016-09-01

    Capture success and prey selectivity were investigated in clownfish Amphiprion ocellaris larvae using videography. Three prey types were tested using developmental stages (nauplii, copepodites and adults) of the copepod Parvocalanus crassirostris. Predatory abilities improved rapidly between days 1 and 14 post-hatch. Initially, capture success was limited to nauplii with few attacks on larger stages. Captures of copepodites were first observed at 3 dph, and of adults at 8 dph. Consistent strikes at the larger prey were observed on the day prior to successful captures (2 dph for copepodites, 7 dph for adults). Difference in capture success between nauplii and adults at 8 dph was an order of magnitude. Differences in capture success among prey types persisted but decreased to three-fold by 14 dph. Younger A. ocellaris attacked nauplii preferentially and avoided adult prey. Strike selectivity declined with age, and no selectivity was observed after 10 dph. However, numerically 50% of the ingested prey were still nauplii at 14 dph under the experimental conditions.

  2. Predator-prey interactions in the plankton: larval fish feeding on evasive copepods.

    PubMed

    Jackson, James M; Lenz, Petra H

    2016-09-23

    Capture success and prey selectivity were investigated in clownfish Amphiprion ocellaris larvae using videography. Three prey types were tested using developmental stages (nauplii, copepodites and adults) of the copepod Parvocalanus crassirostris. Predatory abilities improved rapidly between days 1 and 14 post-hatch. Initially, capture success was limited to nauplii with few attacks on larger stages. Captures of copepodites were first observed at 3 dph, and of adults at 8 dph. Consistent strikes at the larger prey were observed on the day prior to successful captures (2 dph for copepodites, 7 dph for adults). Difference in capture success between nauplii and adults at 8 dph was an order of magnitude. Differences in capture success among prey types persisted but decreased to three-fold by 14 dph. Younger A. ocellaris attacked nauplii preferentially and avoided adult prey. Strike selectivity declined with age, and no selectivity was observed after 10 dph. However, numerically 50% of the ingested prey were still nauplii at 14 dph under the experimental conditions.

  3. Mammalian predator-prey interaction in a fragmented landscape: weasels and voles.

    PubMed

    Haapakoski, Marko; Sundell, Janne; Ylönen, Hannu

    2013-12-01

    The relationship between predators and prey is thought to change due to habitat loss and fragmentation, but patterns regarding the direction of the effect are lacking. The common prediction is that specialized predators, often more dependent on a certain habitat type, should be more vulnerable to habitat loss compared to generalist predators, but actual fragmentation effects are unknown. If a predator is small and vulnerable to predation by other larger predators through intra-guild predation, habitat fragmentation will similarly affect both the prey and the small predator. In this case, the predator is predicted to behave similarly to the prey and avoid open and risky areas. We studied a specialist predator's, the least weasel, Mustela nivalis nivalis, spacing behavior and hunting efficiency on bank voles, Myodes glareolus, in an experimentally fragmented habitat. The habitat consisted of either one large habitat patch (non-fragmented) or four small habitat patches (fragmented) with the same total area. The study was replicated in summer and autumn during a year with high avian predation risk for both voles and weasels. As predicted, weasels under radio-surveillance killed more voles in the non-fragmented habitat which also provided cover from avian predators during their prey search. However, this was only during autumn, when the killing rate was also generally high due to cold weather. The movement areas were the same for both sexes and both fragmentation treatments, but weasels of both sexes were more prone to take risks in crossing the open matrix in the fragmented treatment. Our results support the hypothesis that habitat fragmentation may increase the persistence of specialist predator and prey populations if predators are limited in the same habitat as their prey and they share the same risk from avian predation.

  4. Visual illusions in predator-prey interactions: birds find moving patterned prey harder to catch.

    PubMed

    Hämäläinen, Liisa; Valkonen, Janne; Mappes, Johanna; Rojas, Bibiana

    2015-09-01

    Several antipredator strategies are related to prey colouration. Some colour patterns can create visual illusions during movement (such as motion dazzle), making it difficult for a predator to capture moving prey successfully. Experimental evidence about motion dazzle, however, is still very scarce and comes only from studies using human predators capturing moving prey items in computer games. We tested a motion dazzle effect using for the first time natural predators (wild great tits, Parus major). We used artificial prey items bearing three different colour patterns: uniform brown (control), black with elongated yellow pattern and black with interrupted yellow pattern. The last two resembled colour patterns of the aposematic, polymorphic dart-poison frog Dendrobates tinctorius. We specifically tested whether an elongated colour pattern could create visual illusions when combined with straight movement. Our results, however, do not support this hypothesis. We found no differences in the number of successful attacks towards prey items with different patterns (elongated/interrupted) moving linearly. Nevertheless, both prey types were significantly more difficult to catch compared to the uniform brown prey, indicating that both colour patterns could provide some benefit for a moving individual. Surprisingly, no effect of background (complex vs. plain) was found. This is the first experiment with moving prey showing that some colour patterns can affect avian predators' ability to capture moving prey, but the mechanisms lowering the capture rate are still poorly understood.

  5. Predator-prey interactions and community structure: chironomids, mosquitoes and copepods in Heliconia imbricata (Musaceae).

    PubMed

    Naeem, Shahid

    1988-11-01

    Evidence from both field observations and experimental work indicates that predation by larvae of a midge, Pentaneura n. sp. (Chironomidae), causes the low densities of mosquito larvae (Culicidae) found in the water filled bracts of Heliconia imbricata (Musaceae), microhabitats typically colonized by mosquitoes. This predation affects 2 species of mosquitoes, Wyeomyia pseudopecten, a resident species, and Trichoprosopon digitatum, a non-resident species. Predation keeps resident mosquito densities low while completely excluding the nonresident mosquito from the habitat. Both these effects of predation depend on the presence of an abundant alternative prey, an undescribed species of harpacticoid copepod found in the bracts. These copepod prey sustain chironomids when resident mosquito densities are low, permiting predator densities to remain high enough to exclude the non-resident mosquito. I discuss the evolutionary and ecological implications of predation structuring communities.

  6. Sperm whale predator-prey interactions involve chasing and buzzing, but no acoustic stunning

    PubMed Central

    Fais, A.; Johnson, M.; Wilson, M.; Aguilar Soto, N.; Madsen, P. T.

    2016-01-01

    The sperm whale carries a hypertrophied nose that generates powerful clicks for long-range echolocation. However, it remains a conundrum how this bizarrely shaped apex predator catches its prey. Several hypotheses have been advanced to propose both active and passive means to acquire prey, including acoustic debilitation of prey with very powerful clicks. Here we test these hypotheses by using sound and movement recording tags in a fine-scale study of buzz sequences to relate the acoustic behaviour of sperm whales with changes in acceleration in their head region during prey capture attempts. We show that in the terminal buzz phase, sperm whales reduce inter-click intervals and estimated source levels by 1–2 orders of magnitude. As a result, received levels at the prey are more than an order of magnitude below levels required for debilitation, precluding acoustic stunning to facilitate prey capture. Rather, buzzing involves high-frequency, low amplitude clicks well suited to provide high-resolution biosonar updates during the last stages of capture. The high temporal resolution helps to guide motor patterns during occasionally prolonged chases in which prey are eventually subdued with the aid of fast jaw movements and/or buccal suction as indicated by acceleration transients (jerks) near the end of buzzes. PMID:27340122

  7. [Metabolism and interaction of C and N in the arbuscular mycorrhizal symbiosis].

    PubMed

    Li, Yuan-Jing; Liu, Zhi-Lei; He, Xing-Yuan; Tian, Chun-Jie

    2014-03-01

    The arbuscular mycorrhiza (AM) is the symbiont formed by the host plant and the arbuscular mycorrhizal fungi (AMF). The transfer and metabolism of C and N in the symbiosis plays an important role in keeping nutrient balance and resource reallocation between the host plant and the fungi. The carbohydrates produced by plant photosynthesis are transferred to the fungi, where they are metabolized as materials and energy used for fungal spore germination, mycelium growth and uptake of nitrogen and other nutrients. At the same time, N is transferred and reallocated from the fungi to the host plant, where the final released ammonium is used for plant growth. Accordingly, we reviewed the current progress in C and N transfer and metabolism in the AM symbiosis, and the crosstalk between them as well as some key issues to elucidate the mechanism of the interaction between C and N transport in the symbiosis, so as to provide the theory foundation for the application of AM in sustainable agriculture and ecosystem.

  8. A plasma source driven predator-prey like mechanism as a potential cause of spiraling intermittencies in linear plasma devices

    SciTech Connect

    Reiser, D.; Ohno, N.; Tanaka, H.; Vela, L.

    2014-03-15

    Three-dimensional global drift fluid simulations are carried out to analyze coherent plasma structures appearing in the NAGDIS-II linear device (nagoya divertor plasma Simulator-II). The numerical simulations reproduce several features of the intermittent spiraling structures observed, for instance, statistical properties, rotation frequency, and the frequency of plasma expulsion. The detailed inspection of the three-dimensional plasma dynamics allows to identify the key mechanism behind the formation of these intermittent events. The resistive coupling between electron pressure and parallel electric field in the plasma source region gives rise to a quasilinear predator-prey like dynamics where the axisymmetric mode represents the prey and the spiraling structure with low azimuthal mode number represents the predator. This interpretation is confirmed by a reduced one-dimensional quasilinear model derived on the basis of the findings in the full three-dimensional simulations. The dominant dynamics reveals certain similarities to the classical Lotka-Volterra cycle.

  9. Bifurcation analysis and dimension reduction of a predator-prey model for the L-H transition

    SciTech Connect

    Dam, Magnus; Brøns, Morten; Juul Rasmussen, Jens; Naulin, Volker; Xu, Guosheng

    2013-10-15

    The L-H transition denotes a shift to an improved confinement state of a toroidal plasma in a fusion reactor. A model of the L-H transition is required to simulate the time dependence of tokamak discharges that include the L-H transition. A 3-ODE predator-prey type model of the L-H transition is investigated with bifurcation theory of dynamical systems. The analysis shows that the model contains three types of transitions: an oscillating transition, a sharp transition with hysteresis, and a smooth transition. The model is recognized as a slow-fast system. A reduced 2-ODE model consisting of the full model restricted to the flow on the critical manifold is found to contain all the same dynamics as the full model. This means that all the dynamics in the system is essentially 2-dimensional, and a minimal model of the L-H transition could be a 2-ODE model.

  10. The effect of colored noise on spatiotemporal dynamics of biological invasion in a diffusive predator-prey system.

    PubMed

    Wang, Wenting; Li, Wenlong; Li, Zizhen; Zhang, Hui

    2011-04-01

    Spatiotemporal dynamics of a predator-prey system is considered under the assumption that the predator is sensitive to colored noise. Mathematically, the model consists of two coupled diffusion-reactions. By means of extensive numerical simulations, the complex invasion pattern formations of the system are identified. The results show that a geographical invasion emerges without regional persistence when the intensity of colored noise is small. Remarkably, as the noise intensity increases, the species spreads via a patchy invasion only when the system is affected by red noise. Meanwhile, the relationship between local stability and global invasion is also considered. The predator, which becomes extinct in the system without diffusion, could invade locally when the system is affected by white noise. However, the local invasion is not followed by geographical spread.

  11. Threshold of coexistence and critical behavior of a predator-prey stochastic model in a fractal landscape

    NASA Astrophysics Data System (ADS)

    Argolo, C.; Barros, P.; Tomé, T.; Arashiro, E.; Gleria, Iram; Lyra, M. L.

    2016-08-01

    We investigate a stochastic lattice model describing a predator-prey system in a fractal scale-free landscape, mimicked by the fractal Sierpinski carpet. We determine the threshold of species coexistence, that is, the critical phase boundary related to the transition between an active state, where both species coexist and an absorbing state where one of the species is extinct. We show that the predators must live longer in order to persist in a fractal habitat. We further performed a finite-size scaling analysis in the vicinity of the absorbing-state phase transition to compute a set of stationary and dynamical critical exponents. Our results indicate that the transition belongs to the directed percolation universality class exhibited by the usual contact process model on the same fractal landscape.

  12. Predicting prey population dynamics from kill rate, predation rate and predator-prey ratios in three wolf-ungulate systems.

    PubMed

    Vucetich, John A; Hebblewhite, Mark; Smith, Douglas W; Peterson, Rolf O

    2011-11-01

    1. Predation rate (PR) and kill rate are both fundamental statistics for understanding predation. However, relatively little is known about how these statistics relate to one another and how they relate to prey population dynamics. We assess these relationships across three systems where wolf-prey dynamics have been observed for 41 years (Isle Royale), 19 years (Banff) and 12 years (Yellowstone). 2. To provide context for this empirical assessment, we developed theoretical predictions of the relationship between kill rate and PR under a broad range of predator-prey models including predator-dependent, ratio-dependent and Lotka-Volterra dynamics. 3. The theoretical predictions indicate that kill rate can be related to PR in a variety of diverse ways (e.g. positive, negative, unrelated) that depend on the nature of predator-prey dynamics (e.g. structure of the functional response). These simulations also suggested that the ratio of predator-to-prey is a good predictor of prey growth rate. That result motivated us to assess the empirical relationship between the ratio and prey growth rate for each of the three study sites. 4. The empirical relationships indicate that PR is not well predicted by kill rate, but is better predicted by the ratio of predator-to-prey. Kill rate is also a poor predictor of prey growth rate. However, PR and ratio of predator-to-prey each explained significant portions of variation in prey growth rate for two of the three study sites. 5. Our analyses offer two general insights. First, Isle Royale, Banff and Yellowstone are similar insomuch as they all include wolves preying on large ungulates. However, they also differ in species diversity of predator and prey communities, exploitation by humans and the role of dispersal. Even with the benefit of our analysis, it remains difficult to judge whether to be more impressed by the similarities or differences. This difficulty nicely illustrates a fundamental property of ecological

  13. Role of quantity of additional food to predators as a control in predator-prey systems with relevance to pest management and biological conservation.

    PubMed

    Srinivasu, P D N; Prasad, B S R V

    2011-10-01

    Necessity to understand the role of additional food as a tool in biological control programs is being increasingly felt, particularly due to its eco-friendly nature. A thorough mathematical analysis in this direction revealed the vital role of quality and quantity of the additional food in the controllability of the predator-prey systems. In this article controllability of the additional food--provided predator-prey system is studied from perspectives of pest eradication and biological conservation. Time optimal paths have been constructed to drive the state of the system to a desired terminal state by choosing quantity of the additional food as control variable. The theory developed in this article has been illustrated by solving problems related to pest eradication and biological conservation.

  14. Food-Web Structure in Relation to Environmental Gradients and Predator-Prey Ratios in Tank-Bromeliad Ecosystems

    PubMed Central

    Dézerald, Olivier; Leroy, Céline; Corbara, Bruno; Carrias, Jean-François; Pélozuelo, Laurent; Dejean, Alain; Céréghino, Régis

    2013-01-01

    Little is known of how linkage patterns between species change along environmental gradients. The small, spatially discrete food webs inhabiting tank-bromeliads provide an excellent opportunity to analyse patterns of community diversity and food-web topology (connectance, linkage density, nestedness) in relation to key environmental variables (habitat size, detrital resource, incident radiation) and predators:prey ratios. We sampled 365 bromeliads in a wide range of understorey environments in French Guiana and used gut contents of invertebrates to draw the corresponding 365 connectance webs. At the bromeliad scale, habitat size (water volume) determined the number of species that constitute food-web nodes, the proportion of predators, and food-web topology. The number of species as well as the proportion of predators within bromeliads declined from open to forested habitats, where the volume of water collected by bromeliads was generally lower because of rainfall interception by the canopy. A core group of microorganisms and generalist detritivores remained relatively constant across environments. This suggests that (i) a highly-connected core ensures food-web stability and key ecosystem functions across environments, and (ii) larger deviations in food-web structures can be expected following disturbance if detritivores share traits that determine responses to environmental changes. While linkage density and nestedness were lower in bromeliads in the forest than in open areas, experiments are needed to confirm a trend for lower food-web stability in the understorey of primary forests. PMID:23977128

  15. From Cues to Signals: Evolution of Interspecific Communication via Aposematism and Mimicry in a Predator-Prey System

    PubMed Central

    Lehmann, Kenna D. S.; Goldman, Brian W.; Dworkin, Ian; Bryson, David M.; Wagner, Aaron P.

    2014-01-01

    Current theory suggests that many signaling systems evolved from preexisting cues. In aposematic systems, prey warning signals benefit both predator and prey. When the signal is highly beneficial, a third species often evolves to mimic the toxic species, exploiting the signaling system for its own protection. We investigated the evolutionary dynamics of predator cue utilization and prey signaling in a digital predator-prey system in which prey could evolve to alter their appearance to mimic poison-free or poisonous prey. In predators, we observed rapid evolution of cue recognition (i.e. active behavioral responses) when presented with sufficiently poisonous prey. In addition, active signaling (i.e. mimicry) evolved in prey under all conditions that led to cue utilization. Thus we show that despite imperfect and dishonest signaling, given a high cost of consuming poisonous prey, complex systems of interspecific communication can evolve via predator cue recognition and prey signal manipulation. This provides evidence supporting hypotheses that cues may serve as stepping-stones in the evolution of more advanced communication and signaling systems that incorporate information about the environment. PMID:24614755

  16. Food-web structure in relation to environmental gradients and predator-prey ratios in tank-bromeliad ecosystems.

    PubMed

    Dézerald, Olivier; Leroy, Céline; Corbara, Bruno; Carrias, Jean-François; Pélozuelo, Laurent; Dejean, Alain; Céréghino, Régis

    2013-01-01

    Little is known of how linkage patterns between species change along environmental gradients. The small, spatially discrete food webs inhabiting tank-bromeliads provide an excellent opportunity to analyse patterns of community diversity and food-web topology (connectance, linkage density, nestedness) in relation to key environmental variables (habitat size, detrital resource, incident radiation) and predators:prey ratios. We sampled 365 bromeliads in a wide range of understorey environments in French Guiana and used gut contents of invertebrates to draw the corresponding 365 connectance webs. At the bromeliad scale, habitat size (water volume) determined the number of species that constitute food-web nodes, the proportion of predators, and food-web topology. The number of species as well as the proportion of predators within bromeliads declined from open to forested habitats, where the volume of water collected by bromeliads was generally lower because of rainfall interception by the canopy. A core group of microorganisms and generalist detritivores remained relatively constant across environments. This suggests that (i) a highly-connected core ensures food-web stability and key ecosystem functions across environments, and (ii) larger deviations in food-web structures can be expected following disturbance if detritivores share traits that determine responses to environmental changes. While linkage density and nestedness were lower in bromeliads in the forest than in open areas, experiments are needed to confirm a trend for lower food-web stability in the understorey of primary forests.

  17. Impairment of O-antigen production confers resistance to grazing in a model amoeba-cyanobacterium predator-prey system.

    PubMed

    Simkovsky, Ryan; Daniels, Emy F; Tang, Karen; Huynh, Stacey C; Golden, Susan S; Brahamsha, Bianca

    2012-10-09

    The grazing activity of predators on photosynthetic organisms is a major mechanism of mortality and population restructuring in natural environments. Grazing is also one of the primary difficulties in growing cyanobacteria and other microalgae in large, open ponds for the production of biofuels, as contaminants destroy valuable biomass and prevent stable, continuous production of biofuel crops. To address this problem, we have isolated a heterolobosean amoeba, HGG1, that grazes upon unicellular and filamentous freshwater cyanobacterial species. We have established a model predator-prey system using this amoeba and Synechococcus elongatus PCC 7942. Application of amoebae to a library of mutants of S. elongatus led to the identification of a grazer-resistant knockout mutant of the wzm ABC O-antigen transporter gene, SynPCC7942_1126. Mutations in three other genes involved in O-antigen synthesis and transport also prevented the expression of O-antigen and conferred resistance to HGG1. Complementation of these rough mutants returned O-antigen expression and susceptibility to amoebae. Rough mutants are easily identifiable by appearance, are capable of autoflocculation, and do not display growth defects under standard laboratory growth conditions, all of which are desired traits for a biofuel production strain. Thus, preventing the production of O-antigen is a pathway for producing resistance to grazing by certain amoebae.

  18. A predator-prey model with a holling type I functional response including a predator mutual interference

    USGS Publications Warehouse

    Seo, G.; DeAngelis, D.L.

    2011-01-01

    The most widely used functional response in describing predator-prey relationships is the Holling type II functional response, where per capita predation is a smooth, increasing, and saturating function of prey density. Beddington and DeAngelis modified the Holling type II response to include interference of predators that increases with predator density. Here we introduce a predator-interference term into a Holling type I functional response. We explain the ecological rationale for the response and note that the phase plane configuration of the predator and prey isoclines differs greatly from that of the Beddington-DeAngelis response; for example, in having three possible interior equilibria rather than one. In fact, this new functional response seems to be quite unique. We used analytical and numerical methods to show that the resulting system shows a much richer dynamical behavior than the Beddington-DeAngelis response, or other typically used functional responses. For example, cyclic-fold, saddle-fold, homoclinic saddle connection, and multiple crossing bifurcations can all occur. We then use a smooth approximation to the Holling type I functional response with predator mutual interference to show that these dynamical properties do not result from the lack of smoothness, but rather from subtle differences in the functional responses. ?? 2011 Springer Science+Business Media, LLC.

  19. A density dependent delayed predator-prey model with Beddington-DeAngelis type function response incorporating a prey refuge

    NASA Astrophysics Data System (ADS)

    Tripathi, Jai Prakash; Abbas, Syed; Thakur, Manoj

    2015-05-01

    This paper describes a predator-prey model incorporating a prey refuge. The feeding rate of consumers (predators) per consumer (i.e. functional response) is considered to be of Beddington-DeAngelis type. The Beddington-DeAngelis functional response is similar to the Holling-type II functional response but contains an extra term describing mutual interference by predators. We investigate the role of prey refuge and degree of mutual interference among predators in the dynamics of system. The dynamics of the system is discussed mainly from the point of view of permanence and stability. We obtain conditions that affect the persistence of the system. Local and global asymptotic stability of various equilibrium solutions is explored to understand the dynamics of the model system. The global asymptotic stability of positive interior equilibrium solution is established using suitable Lyapunov functional. The dynamical behaviour of the delayed system is further analyzed through incorporating discrete type gestation delay of predator. It is found that Hopf bifurcation occurs when the delay parameter τ crosses some critical value. The analytical results found in the paper are illustrated with the help of numerical examples.

  20. Bifurcation of Codimension 3 in a Predator-Prey System of Leslie Type with Simplified Holling Type IV Functional Response

    NASA Astrophysics Data System (ADS)

    Huang, Jicai; Xia, Xiaojing; Zhang, Xinan; Ruan, Shigui

    It was shown in [Li & Xiao, 2007] that in a predator-prey model of Leslie type with simplified Holling type IV functional response some complex bifurcations can occur simultaneously for some values of parameters, such as codimension 1 subcritical Hopf bifurcation and codimension 2 Bogdanov-Takens bifurcation. In this paper, we show that for the same model there exists a unique degenerate positive equilibrium which is a degenerate Bogdanov-Takens singularity (focus case) of codimension 3 for other values of parameters. We prove that the model exhibits degenerate focus type Bogdanov-Takens bifurcation of codimension 3 around the unique degenerate positive equilibrium. Numerical simulations, including the coexistence of three hyperbolic positive equilibria, two limit cycles, bistability states (one stable equilibrium and one stable limit cycle, or two stable equilibria), tristability states (two stable equilibria and one stable limit cycle), a stable limit cycle enclosing a homoclinic loop, a homoclinic loop enclosing an unstable limit cycle, or a stable limit cycle enclosing three unstable hyperbolic positive equilibria for various parameter values, confirm the theoretical results.

  1. From cues to signals: evolution of interspecific communication via aposematism and mimicry in a predator-prey system.

    PubMed

    Lehmann, Kenna D S; Goldman, Brian W; Dworkin, Ian; Bryson, David M; Wagner, Aaron P

    2014-01-01

    Current theory suggests that many signaling systems evolved from preexisting cues. In aposematic systems, prey warning signals benefit both predator and prey. When the signal is highly beneficial, a third species often evolves to mimic the toxic species, exploiting the signaling system for its own protection. We investigated the evolutionary dynamics of predator cue utilization and prey signaling in a digital predator-prey system in which prey could evolve to alter their appearance to mimic poison-free or poisonous prey. In predators, we observed rapid evolution of cue recognition (i.e. active behavioral responses) when presented with sufficiently poisonous prey. In addition, active signaling (i.e. mimicry) evolved in prey under all conditions that led to cue utilization. Thus we show that despite imperfect and dishonest signaling, given a high cost of consuming poisonous prey, complex systems of interspecific communication can evolve via predator cue recognition and prey signal manipulation. This provides evidence supporting hypotheses that cues may serve as stepping-stones in the evolution of more advanced communication and signaling systems that incorporate information about the environment.

  2. Theoretical study and control optimization of an integrated pest management predator-prey model with power growth rate.

    PubMed

    Sun, Kaibiao; Zhang, Tonghua; Tian, Yuan

    2016-09-01

    This work presents a pest control predator-prey model, where rate of change in prey density follows a scaling law with exponent less than one and the control is by an integrated management strategy. The aim is to investigate the change in system dynamics and determine a pest control level with minimum control price. First, the dynamics of the proposed model without control is investigated by taking the exponent as an index parameter. And then, to determine the frequency of spraying chemical pesticide and yield releases of the predator, the existence of the order-1 periodic orbit of the control system is discussed in cases. Furthermore, to ensure a certain robustness of the adopted control, i.e., for an inaccurately detected species density or a deviation, the control system could be stabilized at the order-1 periodic orbit, the stability of the order-1 periodic orbit is verified by an stability criterion for a general semi-continuous dynamical system. In addition, to minimize the total cost input in pest control, an optimization problem is formulated and the optimum pest control level is obtained. At last, the numerical simulations with a specific model are carried out to complement the theoretical results.

  3. Consequences of a Refuge for the Predator-Prey Dynamics of a Wolf-Elk System in Banff National Park, Alberta, Canada

    PubMed Central

    Goldberg, Joshua F.; Hebblewhite, Mark; Bardsley, John

    2014-01-01

    Refugia can affect predator-prey dynamics via movements between refuge and non-refuge areas. We examine the influence of a refuge on population dynamics in a large mammal predator-prey system. Wolves (Canis lupus) have recolonized much of their former range in North America, and as a result, ungulate prey have exploited refugia to reduce predation risk with unknown impacts on wolf-prey dynamics. We examined the influence of a refuge on elk (Cervus elaphus) and wolf population dynamics in Banff National Park. Elk occupy the Banff townsite with little predation, whereas elk in the adjoining Bow Valley experience higher wolf predation. The Banff refuge may influence Bow Valley predator-prey dynamics through source-sink movements. To test this hypothesis, we used 26 years of wolf and elk population counts and the Delayed Rejection Adaptive Metropolis Markov chain Monte Carlo method to fit five predator-prey models: 1) with no source-sink movements, 2) with elk density-dependent dispersal from the refuge to the non-refuge, 3) with elk predation risk avoidance movements from the non-refuge to the refuge, 4) with differential movement rates between refuge and non-refuge, and 5) with short-term, source-sink wolf movements. Model 1 provided the best fit of the data, as measured by Akaike Information Criterion (AIC). In the top model, Banff and Bow Valley elk had median growth rates of 0.08 and 0.03 (95% credibility intervals [CIs]: 0.027–0.186 and 0.001–0.143), respectively, Banff had a median carrying capacity of 630 elk (95% CI: 471.9–2676.9), Bow Valley elk had a median wolf encounter rate of 0.02 (95% CI: 0.013–0.030), and wolves had a median death rate of 0.23 (95% CI: 0.146–0.335) and a median conversion efficiency of 0.07 (95% CI: 0.031–0.124). We found little evidence for potential source-sink movements influencing the predator-prey dynamics of this system. This result suggests that the refuge was isolated from the non-refuge. PMID:24670632

  4. Consequences of a refuge for the predator-prey dynamics of a wolf-elk system in Banff National Park, Alberta, Canada.

    PubMed

    Goldberg, Joshua F; Hebblewhite, Mark; Bardsley, John

    2014-01-01

    Refugia can affect predator-prey dynamics via movements between refuge and non-refuge areas. We examine the influence of a refuge on population dynamics in a large mammal predator-prey system. Wolves (Canis lupus) have recolonized much of their former range in North America, and as a result, ungulate prey have exploited refugia to reduce predation risk with unknown impacts on wolf-prey dynamics. We examined the influence of a refuge on elk (Cervus elaphus) and wolf population dynamics in Banff National Park. Elk occupy the Banff townsite with little predation, whereas elk in the adjoining Bow Valley experience higher wolf predation. The Banff refuge may influence Bow Valley predator-prey dynamics through source-sink movements. To test this hypothesis, we used 26 years of wolf and elk population counts and the Delayed Rejection Adaptive Metropolis Markov chain Monte Carlo method to fit five predator-prey models: 1) with no source-sink movements, 2) with elk density-dependent dispersal from the refuge to the non-refuge, 3) with elk predation risk avoidance movements from the non-refuge to the refuge, 4) with differential movement rates between refuge and non-refuge, and 5) with short-term, source-sink wolf movements. Model 1 provided the best fit of the data, as measured by Akaike Information Criterion (AIC). In the top model, Banff and Bow Valley elk had median growth rates of 0.08 and 0.03 (95% credibility intervals [CIs]: 0.027-0.186 and 0.001-0.143), respectively, Banff had a median carrying capacity of 630 elk (95% CI: 471.9-2676.9), Bow Valley elk had a median wolf encounter rate of 0.02 (95% CI: 0.013-0.030), and wolves had a median death rate of 0.23 (95% CI: 0.146-0.335) and a median conversion efficiency of 0.07 (95% CI: 0.031-0.124). We found little evidence for potential source-sink movements influencing the predator-prey dynamics of this system. This result suggests that the refuge was isolated from the non-refuge.

  5. Impact and Influence of the Natural Vibrio-Squid Symbiosis in Understanding Bacterial–Animal Interactions

    PubMed Central

    Mandel, Mark J.; Dunn, Anne K.

    2016-01-01

    Animals are colonized by bacteria, and in many cases partners have co-evolved to perform mutually beneficial functions. An exciting and ongoing legacy of the past decade has been an expansion of technology to enable study of natural associations in situ/in vivo. As a result, more symbioses are being examined, and additional details are being revealed for well-studied systems with a focus on the interactions between partners in the native context. With this framing, we review recent literature from the Vibrio fischeri–Euprymna scolopes symbiosis and focus on key studies that have had an impact on understanding bacteria–animal interactions broadly. This is not intended to be a comprehensive review of the system, but rather to focus on particular studies that have excelled at moving from pattern to process in facilitating an understanding of the molecular basis to intriguing observations in the field of host–microbe interactions. In this review we discuss the following topics: processes regulating strain and species specificity; bacterial signaling to host morphogenesis; multiple roles for nitric oxide; flagellar motility and chemotaxis; and efforts to understand unannotated and poorly annotated genes. Overall these studies demonstrate how functional approaches in vivo in a tractable system have provided valuable insight into general principles of microbe–host interactions. PMID:28018314

  6. Impact and Influence of the Natural Vibrio-Squid Symbiosis in Understanding Bacterial-Animal Interactions.

    PubMed

    Mandel, Mark J; Dunn, Anne K

    2016-01-01

    Animals are colonized by bacteria, and in many cases partners have co-evolved to perform mutually beneficial functions. An exciting and ongoing legacy of the past decade has been an expansion of technology to enable study of natural associations in situ/in vivo. As a result, more symbioses are being examined, and additional details are being revealed for well-studied systems with a focus on the interactions between partners in the native context. With this framing, we review recent literature from the Vibrio fischeri-Euprymna scolopes symbiosis and focus on key studies that have had an impact on understanding bacteria-animal interactions broadly. This is not intended to be a comprehensive review of the system, but rather to focus on particular studies that have excelled at moving from pattern to process in facilitating an understanding of the molecular basis to intriguing observations in the field of host-microbe interactions. In this review we discuss the following topics: processes regulating strain and species specificity; bacterial signaling to host morphogenesis; multiple roles for nitric oxide; flagellar motility and chemotaxis; and efforts to understand unannotated and poorly annotated genes. Overall these studies demonstrate how functional approaches in vivo in a tractable system have provided valuable insight into general principles of microbe-host interactions.

  7. Relative importance of evolutionary dynamics depends on the composition of microbial predator-prey community.

    PubMed

    Friman, Ville-Petri; Dupont, Alessandra; Bass, David; Murrell, David J; Bell, Thomas

    2016-06-01

    Community dynamics are often studied in subsets of pairwise interactions. Scaling pairwise interactions back to the community level is, however, problematic because one given interaction might not reflect ecological and evolutionary outcomes of other functionally similar species interactions or capture the emergent eco-evolutionary dynamics arising only in more complex communities. Here we studied this experimentally by exposing Pseudomonas fluorescens SBW25 prey bacterium to four different protist predators (Tetrahymena pyriformis, Tetrahymena vorax, Chilomonas paramecium and Acanthamoeba polyphaga) in all possible single-predator, two-predator and four-predator communities for hundreds of prey generations covering both ecological and evolutionary timescales. We found that only T. pyriformis selected for prey defence in single-predator communities. Although T. pyriformis selection was constrained in the presence of the intraguild predator, T. vorax, T. pyriformis selection led to evolution of specialised prey defence strategies in the presence of C. paramecium or A. polyphaga. At the ecological level, adapted prey populations were phenotypically more diverse, less stable and less productive compared with non-adapted prey populations. These results suggest that predator community composition affects the relative importance of ecological and evolutionary processes and can crucially determine when rapid evolution has the potential to change ecological properties of microbial communities.

  8. Bifurcation analysis of a discrete-time ratio-dependent predator-prey model with Allee Effect

    NASA Astrophysics Data System (ADS)

    Cheng, Lifang; Cao, Hongjun

    2016-09-01

    A discrete-time predator-prey model with Allee effect is investigated in this paper. We consider the strong and the weak Allee effect (the population growth rate is negative and positive at low population density, respectively). From the stability analysis and the bifurcation diagrams, we get that the model with Allee effect (strong or weak) growth function and the model with logistic growth function have somewhat similar bifurcation structures. If the predator growth rate is smaller than its death rate, two species cannot coexist due to having no interior fixed points. When the predator growth rate is greater than its death rate and other parameters are fixed, the model can have two interior fixed points. One is always unstable, and the stability of the other is determined by the integral step size, which decides the species coexistence or not in some extent. If we increase the value of the integral step size, then the bifurcated period doubled orbits or invariant circle orbits may arise. So the numbers of the prey and the predator deviate from one stable state and then circulate along the period orbits or quasi-period orbits. When the integral step size is increased to a critical value, chaotic orbits may appear with many uncertain period-windows, which means that the numbers of prey and predator will be chaotic. In terms of bifurcation diagrams and phase portraits, we know that the complexity degree of the model with strong Allee effect decreases, which is related to the fact that the persistence of species can be determined by the initial species densities.

  9. The influence of dispersal on a predator-prey system with two habitats.

    PubMed

    Gramlich, P; Plitzko, S J; Rudolf, L; Drossel, B; Gross, T

    2016-06-07

    Dispersal between different habitats influences the dynamics and stability of populations considerably. Furthermore, these effects depend on the local interactions of a population with other species. Here, we perform a general and comprehensive study of the simplest possible system that includes dispersal and local interactions, namely a 2-patch 2-species system. We evaluate the impact of dispersal on stability and on the occurrence of bifurcations, including pattern forming bifurcations that lead to spatial heterogeneity, in 19 different classes of models with the help of the generalized modelling approach. We find that dispersal often destabilizes equilibria, but it can stabilize them if it increases population losses. If dispersal is nonrandom, i.e. if emigration or immigration rates depend on population densities, the correlation of stability with dispersal rates is positive in part of the models. We also find that many systems show all four types of bifurcations and that antisynchronous oscillations occur mostly with nonrandom dispersal.

  10. Collective behavior and predation success in a predator-prey model inspired by hunting bats.

    PubMed

    Lin, Yuan; Abaid, Nicole

    2013-12-01

    We establish an agent-based model to study the impact of prey behavior on the hunting success of predators. The predators and prey are modeled as self-propelled particles moving in a three-dimensional domain and subject to specific sensing abilities and behavioral rules inspired by bat hunting. The predators randomly search for prey. The prey either align velocity directions with peers, defined as "interacting" prey, or swarm "independently" of peer presence; both types of prey are subject to additive noise. In a simulation study, we find that interacting prey using low noise have the maximum predation avoidance because they form localized large groups, while they suffer high predation as noise increases due to the formation of broadly dispersed small groups. Independent prey, which are likely to be uniformly distributed in the domain, have higher predation risk under a low noise regime as they traverse larger spatial extents. These effects are enhanced in large prey populations, which exhibit more ordered collective behavior or more uniform spatial distribution as they are interacting or independent, respectively.

  11. Collective behavior and predation success in a predator-prey model inspired by hunting bats

    NASA Astrophysics Data System (ADS)

    Lin, Yuan; Abaid, Nicole

    2013-12-01

    We establish an agent-based model to study the impact of prey behavior on the hunting success of predators. The predators and prey are modeled as self-propelled particles moving in a three-dimensional domain and subject to specific sensing abilities and behavioral rules inspired by bat hunting. The predators randomly search for prey. The prey either align velocity directions with peers, defined as "interacting" prey, or swarm "independently" of peer presence; both types of prey are subject to additive noise. In a simulation study, we find that interacting prey using low noise have the maximum predation avoidance because they form localized large groups, while they suffer high predation as noise increases due to the formation of broadly dispersed small groups. Independent prey, which are likely to be uniformly distributed in the domain, have higher predation risk under a low noise regime as they traverse larger spatial extents. These effects are enhanced in large prey populations, which exhibit more ordered collective behavior or more uniform spatial distribution as they are interacting or independent, respectively.

  12. Environmental fluctuations restrict eco-evolutionary dynamics in predator-prey system.

    PubMed

    Hiltunen, Teppo; Ayan, Gökçe B; Becks, Lutz

    2015-06-07

    Environmental fluctuations, species interactions and rapid evolution are all predicted to affect community structure and their temporal dynamics. Although the effects of the abiotic environment and prey evolution on ecological community dynamics have been studied separately, these factors can also have interactive effects. Here we used bacteria-ciliate microcosm experiments to test for eco-evolutionary dynamics in fluctuating environments. Specifically, we followed population dynamics and a prey defence trait over time when populations were exposed to regular changes of bottom-up or top-down stressors, or combinations of these. We found that the rate of evolution of a defence trait was significantly lower in fluctuating compared with stable environments, and that the defence trait evolved to lower levels when two environmental stressors changed recurrently. The latter suggests that top-down and bottom-up changes can have additive effects constraining evolutionary response within populations. The differences in evolutionary trajectories are explained by fluctuations in population sizes of the prey and the predator, which continuously alter the supply of mutations in the prey and strength of selection through predation. Thus, it may be necessary to adopt an eco-evolutionary perspective on studies concerning the evolution of traits mediating species interactions.

  13. Designing symbiosis.

    PubMed

    Hosoda, Kazufumi; Yomo, Tetsuya

    2011-01-01

    Organisms rarely live as isolated species and usually show symbiosis in nature. As natural selection is not simple in symbiosis, the establishment and development of symbiosis is still unclear. Insight can be gained by not only retracing the history of well-developed natural symbiotic relationships, but also by observing the development of nascent symbiosis. By using synthetic symbiosis composed of two previously noninteracting populations, we can observe the establishment and its development. We have recently simulated the establishment of nascent symbiosis using two genetically engineered auxotrophic strains of Escherichia coli. One strain, 10 h after mixing with the partner strain, began to oversupply metabolites essential for the partner's growth, eventually leading to continual growth of both strains. Transcriptome analysis revealed that the oversupply was accompanied by global metabolic changes. This study demonstrated that an organism has the potential to adapt to the first encounter with another organism to establish symbiosis.

  14. Stability of ecosystem: global properties of a general predator-prey model.

    PubMed

    Korobeinikov, Andrei

    2009-12-01

    Establishing the conditions for the stability of ecosystems and for stable coexistence of interacting populations is a problem of the highest priority in mathematical biology. This problem is usually considered under specific assumptions made regarding the functional forms of non-linear feedbacks. However, there is growing understanding that this approach has a number of major deficiencies. The most important of these is that the precise forms of the functional responses involved in the model are unknown in detail, and we can hardly expect that these will be known in feasible future. In this paper, we consider the dynamics of two species with interaction of consumer-supplier (prey-predator) type. This model generalizes a variety of models of population dynamics, including a range of prey-predator models, SIR and SIRS epidemic models, chemostat models, etc. We assume that the functional responses that are usually included in such models are given by unspecified functions. Using the direct Lyapunov method, we derive the conditions which ensure global asymptotic stability of this general model. It is remarkable that these conditions impose much weaker constraints on the system properties than that are usually assumed. We also identify the parameter that allows us to distinguish between existence and non-existence of the coexisting steady state.

  15. Altered Carbohydrates Allocation by Associated Bacteria-fungi Interactions in a Bark Beetle-microbe Symbiosis.

    PubMed

    Zhou, Fangyuan; Lou, Qiaozhe; Wang, Bo; Xu, Letian; Cheng, Chihang; Lu, Min; Sun, Jianghua

    2016-02-03

    Insect-microbe interaction is a key area of research in multiplayer symbiosis, yet little is known about the role of microbe-microbe interactions in insect-microbe symbioses. The red turpentine beetle (RTB) has destroyed millions of healthy pines in China and forms context-dependent relationships with associated fungi. The adult-associated fungus Leptographium procerum have played key roles in RTB colonization. However, common fungal associates (L. procerum and Ophiostoma minus) with RTB larvae compete for carbohydrates. Here, we report that dominant bacteria associated with RTB larvae buffer the competition by inhibiting the growth and D-glucose consumption of O. minus. However, they didn't inhibit the growth of L. procerum and forced this fungus to consume D-pinitol before consuming D-glucose, even though D-glucose was available and a better carbon source not only for L. procerum but also for RTB larvae and associated bacteria. This suggests the most frequently isolated bacteria associated with RTB larvae could affect fungal growth and the sequence of carbohydrate consumption. Thus, this regulates carbohydrate allocation in the RTB larva-microbe community, which may in turn benefit RTB larvae development. We also discuss the mechanism of carbohydrate allocation in the RTB larva-microbe community, and its potential contribution to the maintenance of a symbiotic community.

  16. Altered Carbohydrates Allocation by Associated Bacteria-fungi Interactions in a Bark Beetle-microbe Symbiosis

    PubMed Central

    Zhou, Fangyuan; Lou, Qiaozhe; Wang, Bo; Xu, Letian; Cheng, Chihang; Lu, Min; Sun, Jianghua

    2016-01-01

    Insect-microbe interaction is a key area of research in multiplayer symbiosis, yet little is known about the role of microbe-microbe interactions in insect-microbe symbioses. The red turpentine beetle (RTB) has destroyed millions of healthy pines in China and forms context-dependent relationships with associated fungi. The adult-associated fungus Leptographium procerum have played key roles in RTB colonization. However, common fungal associates (L. procerum and Ophiostoma minus) with RTB larvae compete for carbohydrates. Here, we report that dominant bacteria associated with RTB larvae buffer the competition by inhibiting the growth and D-glucose consumption of O. minus. However, they didn’t inhibit the growth of L. procerum and forced this fungus to consume D-pinitol before consuming D-glucose, even though D-glucose was available and a better carbon source not only for L. procerum but also for RTB larvae and associated bacteria. This suggests the most frequently isolated bacteria associated with RTB larvae could affect fungal growth and the sequence of carbohydrate consumption. Thus, this regulates carbohydrate allocation in the RTB larva-microbe community, which may in turn benefit RTB larvae development. We also discuss the mechanism of carbohydrate allocation in the RTB larva-microbe community, and its potential contribution to the maintenance of a symbiotic community. PMID:26839264

  17. The limits of adaptation: humans and the predator-prey arms race.

    PubMed

    Vermeij, Geerat J

    2012-07-01

    In the history of life, species have adapted to their consumers by evolving a wide variety of defenses. By contrast, animal species harvested in the wild by humans have not adapted structurally. Nonhuman predators have high failure rates at one or more stages of an attack, indicating that victim species have spatial refuges or phenotypic defenses that permit further functional improvement. A new compilation confirms that species in the wild cannot achieve immunity from human predation with structural defenses. The only remaining options are to become undesirable or to live in or escape to places where harvesting by people is curtailed. Escalation between prey defenses and predators' weapons may be restricted under human dominance to interactions involving those low-level predators that have benefited from human overexploitation of top consumers.

  18. Mechanisms of adaptation in a predator-prey arms race: TTX-resistant sodium channels.

    PubMed

    Geffeney, Shana; Brodie, Edmund D; Ruben, Peter C; Brodie, Edmund D

    2002-08-23

    Populations of the garter snake Thamnophis sirtalis have evolved geographically variable resistance to tetrodotoxin (TTX) in a coevolutionary arms race with their toxic prey, newts of the genus Taricha. Here, we identify a physiological mechanism, the expression of TTX-resistant sodium channels in skeletal muscle, responsible for adaptive diversification in whole-animal resistance. Both individual and population differences in the ability of skeletal muscle fibers to function in the presence of TTX correlate closely with whole-animal measures of TTX resistance. Demonstration of individual variation in an essential physiological function responsible for the adaptive differences among populations is a step toward linking the selective consequences of coevolutionary interactions to geographic and phylogenetic patterns of diversity.

  19. Temperature-altered predator-prey dynamics in freshwater ponds in Arctic Greenland

    NASA Astrophysics Data System (ADS)

    Culler, L. E.; Ayres, M.

    2011-12-01

    Temperature sets the pace of many biological processes including species interactions. Describing the response of terrestrial and aquatic habitats to climate warming therefore requires studies of cross-trophic level dynamics. I use freshwater pond ecosystems in Arctic Greenland to study how the thermal environment shapes interactions between predators and their prey. This system is of interest because warming trends are notable, freshwaters are responding rapidly and dynamically to changes in temperature, and the biology of freshwaters is intimately linked to the terrestrial environment. My focal species are the Arctic mosquito (Diptera: Culicidae, Aedes nigripes) and its invertebrate predator, a predaceous diving beetle (Coleoptera: Dytiscidae, Colymbetes dolabratus). Both species develop as larvae in snow-melt ponds in May and June. I used experimental and observational studies to test effects of temperature on larval mosquito growth rates and predation rates by C. dolabratus. Results indicate strong effects of temperature on growth rate and development time but weak effects of temperature on consumption of mosquitoes by their predators. Incorporation of measured temperature response functions into a mosquito demographic model will elucidate how mosquito population dynamics in Arctic Greenland may change with temperature. For example, warming increases growth rate and decreases development time of mosquito larvae, which shortens the time larvae are exposed to predation. Additionally, decreased development time leads to an earlier mosquito emergence, with potential consequences for the health of wildlife. Evaluation of this model will reveal the importance of considering cross-trophic level dynamics when predicting mosquito population response to warming. Future studies will address interesting properties emerging from modeling, such as how shorter development time affects adult size and fitness, and connecting results to terrestrial systems in Arctic Greenland.

  20. Nonlinearities Lead to Qualitative Differences in Population Dynamics of Predator-Prey Systems

    PubMed Central

    Ameixa, Olga M. C. C.; Messelink, Gerben J.; Kindlmann, Pavel

    2013-01-01

    Since typically there are many predators feeding on most herbivores in natural communities, understanding multiple predator effects is critical for both community and applied ecology. Experiments of multiple predator effects on prey populations are extremely demanding, as the number of treatments and the amount of labour associated with these experiments increases exponentially with the number of species in question. Therefore, researchers tend to vary only presence/absence of the species and use only one (supposedly realistic) combination of their numbers in experiments. However, nonlinearities in density dependence, functional responses, interactions between natural enemies etc. are typical for such systems, and nonlinear models of population dynamics generally predict qualitatively different results, if initial absolute densities of the species studied differ, even if their relative densities are maintained. Therefore, testing combinations of natural enemies without varying their densities may not be sufficient. Here we test this prediction experimentally. We show that the population dynamics of a system consisting of 2 natural enemies (aphid predator Adalia bipunctata (L.), and aphid parasitoid, Aphidius colemani Viereck) and their shared prey (peach aphid, Myzus persicae Sulzer) are strongly affected by the absolute initial densities of the species in question. Even if their relative densities are kept constant, the natural enemy species or combination thereof that most effectively suppresses the prey may depend on the absolute initial densities used in the experiment. Future empirical studies of multiple predator – one prey interactions should therefore use a two-dimensional array of initial densities of the studied species. Varying only combinations of natural enemies without varying their densities is not sufficient and can lead to misleading results. PMID:23638107

  1. Arsenic rich Himalayan hot spring metagenomics reveal genetically novel predator-prey genotypes.

    PubMed

    Sangwan, Naseer; Lambert, Carey; Sharma, Anukriti; Gupta, Vipin; Khurana, Paramjit; Khurana, Jitendra P; Sockett, R Elizabeth; Gilbert, Jack A; Lal, Rup

    2015-12-01

    Bdellovibrio bacteriovorus are small Deltaproteobacteria that invade, kill and assimilate their prey. Metagenomic assembly analysis of the microbial mats of an arsenic rich, hot spring was performed to describe the genotypes of the predator Bdellovibrio and the ecogenetically adapted taxa Enterobacter. The microbial mats were enriched with Bdellovibrio (1.3%) and several Gram-negative bacteria including Bordetella (16%), Enterobacter (6.8%), Burkholderia (4.8%), Acinetobacter (2.3%) and Yersinia (1%). A high-quality (47 contigs, 25X coverage; 3.5 Mbp) draft genome of Bdellovibrio (strain ArHS; Arsenic Hot Spring) was reassembled, which lacked the marker gene Bd0108 associated with the usual method of prey interaction and invasion for this genus, while maintaining genes coding for the hydrolytic enzymes necessary for prey assimilation. By filtering microbial mat samples (< 0.45 μm) to enrich for small predatory cell sizes, we observed Bdellovibrio-like cells attached side-on to E. coli through electron microscopy. Furthermore, a draft pan-genome of the dominant potential host taxon, Enterobacter cloacae ArHS (4.8 Mb), along with three of its viral genotypes (n = 3; 42 kb, 49 kb and 50 kb), was assembled. These data were further used to analyse the population level evolutionary dynamics (taxonomical and functional) of reconstructed genotypes.

  2. Optimal harvesting for a predator-prey agent-based model using difference equations.

    PubMed

    Oremland, Matthew; Laubenbacher, Reinhard

    2015-03-01

    In this paper, a method known as Pareto optimization is applied in the solution of a multi-objective optimization problem. The system in question is an agent-based model (ABM) wherein global dynamics emerge from local interactions. A system of discrete mathematical equations is formulated in order to capture the dynamics of the ABM; while the original model is built up analytically from the rules of the model, the paper shows how minor changes to the ABM rule set can have a substantial effect on model dynamics. To address this issue, we introduce parameters into the equation model that track such changes. The equation model is amenable to mathematical theory—we show how stability analysis can be performed and validated using ABM data. We then reduce the equation model to a simpler version and implement changes to allow controls from the ABM to be tested using the equations. Cohen's weighted κ is proposed as a measure of similarity between the equation model and the ABM, particularly with respect to the optimization problem. The reduced equation model is used to solve a multi-objective optimization problem via a technique known as Pareto optimization, a heuristic evolutionary algorithm. Results show that the equation model is a good fit for ABM data; Pareto optimization provides a suite of solutions to the multi-objective optimization problem that can be implemented directly in the ABM.

  3. Identification of gene interactions in fungal-plant symbiosis through discrete dynamical system modelling.

    PubMed

    Angeles, J G C; Ouyang, Z; Aguirre, A M; Lammers, P J; Song, M

    2009-09-01

    Fungal-plant root associations involve nutrient exchanges, between the partners and the soil, particularly phosphate, that benefit both organisms. Discrete dynamical system (DDS) models are reconstructed to capture gene regulation in the arbuscular mycorrhizae Glomus versiforme-Medicago trunculata root symbiosis. Previously published time-course gene expression data derived from various days post-inoculation were clustered to identify genes co-regulated in mycorrhizal roots. Uncolonised roots grown with high phosphate provide a key nutritional control condition. First-order linear DDS models were created using a data-driven method to fit to the observed gene expression data. The result of the modelling constitutes active gene interactions in the regulatory network of the plant root at 8, 15, 22, 31 and 36 days post-inoculation. These genes are involved in basic metabolism, development, oxidative stress and defense pathways, and show consistent dynamic behaviours in the model. The functions of previously unannotated genes were further elucidated from the developed system maps.

  4. Delay-Induced Triple-Zero Bifurcation in a Delayed Leslie-Type Predator-Prey Model with Additive Allee Effect

    NASA Astrophysics Data System (ADS)

    Jiang, Jiao; Song, Yongli; Yu, Pei

    2016-06-01

    In this paper, a Leslie-type predator-prey model with ratio-dependent functional response and Allee effect on prey is considered. We first study the existence of the multiple positive equilibria and their stability. Then we investigate the effect of delay on the distribution of the roots of characteristic equation and obtain the conditions for the occurrence of simple-zero, double-zero and triple-zero singularities. The formulations for calculating the normal form of the triple-zero bifurcation of the delay differential equations are derived. We show that, under certain conditions on the parameters, the system exhibits homoclinic orbit, heteroclinic orbit and periodic orbit.

  5. Are common symbiosis genes required for endophytic rice-rhizobial interactions?

    PubMed

    Chen, Caiyan; Zhu, Hongyan

    2013-09-01

    Legume plants are able to establish root nodule symbioses with nitrogen-fixing bacteria, called rhizobia. Recent studies revealed that the root nodule symbiosis has co-opted the signaling pathway that mediates the ancestral mycorrhizal symbiosis that occurs in most land plants. Despite being unable to induce nodulation, rhizobia have been shown to be able to infect and colonize the roots of non-legumes such as rice. One fascinating question is whether establishment of such associations requires the common symbiosis (Sym) genes that are essential for infection of plant cells by mycorrhizal fungi and rhizobia in legumes. Here, we demonstrated that the common Sym genes are not required for endophytic colonization of rice roots by nitrogen-fixing rhizobia.

  6. Neo-Symbiosis: The Next Stage in the Evolution of Human Information Interaction.

    SciTech Connect

    Griffith, Douglas; Greitzer, Frank L.

    2008-12-01

    In his 1960 paper Man-Machine Symbiosis, Licklider predicted that human brains and computing machines will be coupled in a tight partnership that will think as no human brain has ever thought and process data in a way not approached by the information-handling machines we know today. Today we are on the threshold of resurrecting the vision of symbiosis. While Licklider’s original vision suggested a co-equal relationship, here we discuss an updated vision, neo-symbiosis, in which the human holds a superordinate position in an intelligent human-computer collaborative environment. This paper was originally published as a journal article and is being published as a chapter in an upcoming book series, Advances in Novel Approaches in Cognitive Informatics and Natural Intelligence.

  7. Schoolyard Symbiosis.

    ERIC Educational Resources Information Center

    Allard, David W.

    1996-01-01

    Discusses different types of symbiosis--mutualism, commensalism, and parasitism--and examples of each type including lichens, legumes, mistletoe, and epiphytes. Describes how teachers can use these examples in the study of symbiosis which allows teachers to focus on many basic concepts in evolution, cell biology, ecology, and other fields of…

  8. Stability and Hopf Bifurcation of a Delayed Density-Dependent Predator-Prey System with Beddington-DeAngelis Functional Response

    NASA Astrophysics Data System (ADS)

    Li, Haiyin; Meng, Gang; She, Zhikun

    In this paper, we investigate the stability and Hopf bifurcation of a delayed density-dependent predator-prey system with Beddington-DeAngelis functional response, where not only the prey density dependence but also the predator density dependence are considered such that the studied predator-prey system conforms to the realistically biological environment. We start with the geometric criterion introduced by Beretta and Kuang [2002] and then investigate the stability of the positive equilibrium and the stability switches of the system with respect to the delay parameter τ. Especially, we generalize the geometric criterion in [Beretta & Kuang, 2002] by introducing the condition (i‧) which can be assured by the condition (H2‧), and adopting the technique of lifting to define the function S˜n(τ) for alternatively determining stability switches at the zeroes of S˜n(τ)s. Afterwards, by the Poincaré normal form for Hopf bifurcation in [Kuznetsov, 1998] and the bifurcation formulae in [Hassard et al., 1981], we qualitatively analyze the properties for the occurring Hopf bifurcations of the system (3). Finally, an example with numerical simulations is given to illustrate the obtained results.

  9. Reconsidering the importance of the past in predator-prey models: both numerical and functional responses depend on delayed prey densities.

    PubMed

    Li, Jiqiu; Fenton, Andy; Kettley, Lee; Roberts, Phillip; Montagnes, David J S

    2013-10-07

    We propose that delayed predator-prey models may provide superficially acceptable predictions for spurious reasons. Through experimentation and modelling, we offer a new approach: using a model experimental predator-prey system (the ciliates Didinium and Paramecium), we determine the influence of past-prey abundance at a fixed delay (approx. one generation) on both functional and numerical responses (i.e. the influence of present : past-prey abundance on ingestion and growth, respectively). We reveal a nonlinear influence of past-prey abundance on both responses, with the two responding differently. Including these responses in a model indicated that delay in the numerical response drives population oscillations, supporting the accepted (but untested) notion that reproduction, not feeding, is highly dependent on the past. We next indicate how delays impact short- and long-term population dynamics. Critically, we show that although superficially the standard (parsimonious) approach to modelling can reasonably fit independently obtained time-series data, it does so by relying on biologically unrealistic parameter values. By contrast, including our fully parametrized delayed density dependence provides a better fit, offering insights into underlying mechanisms. We therefore present a new approach to explore time-series data and a revised framework for further theoretical studies.

  10. Nutrient-rich plankton communities stabilized via predator-prey interactions: revisiting the role of vertical heterogeneity.

    PubMed

    Morozov, Andrew; Arashkevich, Elena; Nikishina, Anastasia; Solovyev, Konstantin

    2011-06-01

    Self-regulation of population dynamics in nutrient-rich (eutrophic) ecosystems has been a fascinating topic for decades in ecological literature. Simple theoretical models predict population oscillations of large amplitudes in such systems, those predictions often being at odds with reality. Plankton communities possess a particular combination of two important properties, making them unique among ecosystems with eutrophication. These are: (i) the existence of a pronounced spatial gradient of the prey growth rate (through light attenuation with depth) and (ii) the presence of fast-moving predator (zooplankton) capable of quick adjustment of grazing load in vertical direction throughout the whole habitat. Surprisingly, the interplay of those factors is rarely taken into account while analysing stability of nutrient-rich plankton communities. In this paper, we construct generic plankton models (based on integro-differential equations) incorporating the light attenuation in the water column as well as food-searching behaviour of zooplankton. We found that the interplay between the two factors would stabilize a system at low species densities even for an 'unlimited' nutrient stock (infinite system's carrying capacity). Different possible scenarios of stabilization have been found. Since both the vertical gradient of light and the active food search by zooplankton in the column are common characteristics of real plankton communities, we suggest that the obtained mechanism of self-regulation is rather generic in nature. We argue that taking into account this mechanism would be important for understanding the dynamics of nutrient-rich low-chlorophyll ocean systems as well as major causes of non-seasonal plankton blooms.

  11. Interrupting peptidoglycan deacetylation during Bdellovibrio predator-prey interaction prevents ultimate destruction of prey wall, liberating bacterial-ghosts

    PubMed Central

    Lambert, Carey; Lerner, Thomas R.; Bui, Nhat Khai; Somers, Hannah; Aizawa, Shin-Ichi; Liddell, Susan; Clark, Ana; Vollmer, Waldemar; Lovering, Andrew L.; Sockett, R. Elizabeth

    2016-01-01

    The peptidoglycan wall, located in the periplasm between the inner and outer membranes of the cell envelope in Gram-negative bacteria, maintains cell shape and endows osmotic robustness. Predatory Bdellovibrio bacteria invade the periplasm of other bacterial prey cells, usually crossing the peptidoglycan layer, forming transient structures called bdelloplasts within which the predators replicate. Prey peptidoglycan remains intact for several hours, but is modified and then degraded by escaping predators. Here we show predation is altered by deleting two Bdellovibrio N-acetylglucosamine (GlcNAc) deacetylases, one of which we show to have a unique two domain structure with a novel regulatory”plug”. Deleting the deacetylases limits peptidoglycan degradation and rounded prey cell “ghosts” persist after mutant-predator exit. Mutant predators can replicate unusually in the periplasmic region between the peptidoglycan wall and the outer membrane rather than between wall and inner-membrane, yet still obtain nutrients from the prey cytoplasm. Deleting two further genes encoding DacB/PBP4 family proteins, known to decrosslink and round prey peptidoglycan, results in a quadruple mutant Bdellovibrio which leaves prey-shaped ghosts upon predation. The resultant bacterial ghosts contain cytoplasmic membrane within bacteria-shaped peptidoglycan surrounded by outer membrane material which could have promise as “bacterial skeletons” for housing artificial chromosomes. PMID:27211869

  12. Saltational symbiosis.

    PubMed

    Sapp, Jan

    2010-09-01

    Symbiosis has long been associated with saltational evolutionary change in contradistinction to gradual Darwinian evolution based on gene mutations and recombination between individuals of a species, as well as with super-organismal views of the individual in contrast to the classical one-genome: one organism conception. Though they have often been dismissed, and overshadowed by Darwinian theory, suggestions that symbiosis and lateral gene transfer are fundamental mechanisms of evolutionary innovation are borne out today by molecular phylogenetic research. It is time to treat these processes as central principles of evolution.

  13. Validating a 0D predator-prey model for LH Transition with its 1D-2D supersets: effects of heating and fueling on Hysteresis and transition dynamics

    NASA Astrophysics Data System (ADS)

    Malkov, Mikhail; Diamond, Patrick; Miki, Kazuhiro

    2013-10-01

    The LH transition crucially depends on the heat and particle deposition, transport and electric field shear suppression. Despite the inhomogeneity of these phenomena, a popular 0D predator-prey model seems to capture the essential transition dynamics, including the limit cycle pre-H-mode oscillations (or I-mode). However, its predictions regarding hysteresis are inconclusive. This is understandable at least because of the known deep fuel lowering of the transition threshold. The readily available fueling devices are the edge neutral penetration and an internal deposition via the supersonic molecular beam injection (SMBI). This suggests a minimal extension of the 0D model by using bi-modal particle distributions. To formulate this extension accurately, a step-by-step comparison with a 1D treatment is required. Fortunately a suitable 1D numerical model has been recently developed specifically for the LH transition studies. In this work, we use the 1D model for the following purposes. First, we explore fueling effects as occurring both by edge neutral penetration, and internal deposition (SMBI) at a finite depth within the separatrix. Second, as the 0D model responds positively to the oscillating heating power, we include a periodic repetitive SMBI firing. Supported by the US DoE.

  14. Pattern formation, long-term transients, and the Turing-Hopf bifurcation in a space- and time-discrete predator-prey system.

    PubMed

    Rodrigues, Luiz Alberto Díaz; Mistro, Diomar Cristina; Petrovskii, Sergei

    2011-08-01

    Understanding of population dynamics in a fragmented habitat is an issue of considerable importance. A natural modelling framework for these systems is spatially discrete. In this paper, we consider a predator-prey system that is discrete both in space and time, and is described by a Coupled Map Lattice (CML). The prey growth is assumed to be affected by a weak Allee effect and the predator dynamics includes intra-specific competition. We first reveal the bifurcation structure of the corresponding non-spatial system. We then obtain the conditions of diffusive instability on the lattice. In order to reveal the properties of the emerging patterns, we perform extensive numerical simulations. We pay a special attention to the system properties in a vicinity of the Turing-Hopf bifurcation, which is widely regarded as a mechanism of pattern formation and spatiotemporal chaos in space-continuous systems. Counter-intuitively, we obtain that the spatial patterns arising in the CML are more typically stationary, even when the local dynamics is oscillatory. We also obtain that, for some parameter values, the system's dynamics is dominated by long-term transients, so that the asymptotical stationary pattern arises as a sudden transition between two different patterns. Finally, we argue that our findings may have important ecological implications.

  15. Uniqueness of limit cycles and multiple attractors in a Gause-type predator-prey model with nonmonotonic functional response and Allee effect on prey.

    PubMed

    González-Olivares, Eduardo; González-Yañez, Betsabé; Mena-Lorca, Jaime; Flores, Jose D

    2013-04-01

    The main purpose of this work is to analyze a Gause type predator-prey model in which two ecological phenomena are considered: the Allee effect affecting the prey growth function and the formation of group defence by prey in order to avoid the predation. We prove the existence of a separatrix curves in the phase plane, determined by the stable manifold of the equilibrium point associated to the Allee effect, implying that the solutions are highly sensitive to the initial conditions. Trajectories starting at one side of this separatrix curve have the equilibrium point (0,0) as their ω-limit, while trajectories starting at the other side will approach to one of the following three attractors: a stable limit cycle, a stable coexistence point or the stable equilibrium point (K,0) in which the predators disappear and prey attains their carrying capacity. We obtain conditions on the parameter values for the existence of one or two positive hyperbolic equilibrium points and the existence of a limit cycle surrounding one of them. Both ecological processes under study, namely the nonmonotonic functional response and the Allee effect on prey, exert a strong influence on the system dynamics, resulting in multiple domains of attraction. Using Liapunov quantities we demonstrate the uniqueness of limit cycle, which constitutes one of the main differences with the model where the Allee effect is not considered. Computer simulations are also given in support of the conclusions.

  16. Multiple limit cycles in a Gause type predator-prey model with Holling type III functional response and Allee effect on prey.

    PubMed

    González-Olivares, Eduardo; Rojas-Palma, Alejandro

    2011-06-01

    This work aims to examine the global behavior of a Gause type predator-prey model considering two aspects: (i) the functional response is Holling type III and, (ii) the prey growth is affected by the Allee effect. We prove the origin of the system is an attractor equilibrium point for all parameter values. It has also been shown that it is the ω-limit of a wide set of trajectories of the system, due to the existence of a separatrix curve determined by the stable manifold of the equilibrium point (m,0), which is associated to the Allee effect on prey. When a weak Allee effect on the prey is assumed, an important result is obtained, involving the existence of two limit cycles surrounding a unique positive equilibrium point: the innermost cycle is unstable and the outermost stable. This property, not yet reported in models considering a sigmoid functional response, is an important aspect for ecologists to acknowledge as regards the kind of tristability shown here: (1) the origin; (2) an interior equilibrium; and (3) a limit cycle of large amplitude. These models have undoubtedly been rather sensitive to disturbances and require careful management in applied conservation and renewable resource contexts.

  17. Neo-Symbiosis: The Next Stage in the Evolution of Human Information Interaction

    SciTech Connect

    Griffith, Douglas; Greitzer, Frank L.

    2008-03-01

    We re-address the vision of human-computer symbiosis expressed by J. C. R. Licklider nearly a half-century ago, when he wrote: “The hope is that in not too many years, human brains and computing machines will be coupled together very tightly, and that the resulting partnership will think as no human brain has ever thought and process data in a way not approached by the information-handling machines we know today.” (Licklider, 1960). Unfortunately, little progress was made toward this vision over four decades following Licklider’s challenge, despite significant advancements in the fields of human factors and computer science. Licklider’s vision was largely forgotten. However, recent advances in information science and technology, psychology, and neuroscience have rekindled the potential of making the Licklider’s vision a reality. This paper provides a historical context for and updates the vision, and it argues that such a vision is needed as a unifying framework for advancing IS&T.

  18. The detectability half-life in arthropod predator-prey research: what it is, why we need it, how to measure it, and how to use it.

    PubMed

    Greenstone, Matthew H; Payton, Mark E; Weber, Donald C; Simmons, Alvin M

    2014-08-01

    Molecular gut-content analysis enables detection of arthropod predation with minimal disruption of ecosystem processes. Most assays produce only qualitative results, with each predator testing either positive or negative for target prey remains. Nevertheless, they have yielded important insights into community processes. For example, they have confirmed the long-hypothesized role of generalist predators in retarding early-season build-up of pest populations prior to the arrival of more specialized predators and parasitoids and documented the ubiquity of secondary and intraguild predation. However, raw qualitative gut-content data cannot be used to assess the relative impact of different predator taxa on prey population dynamics: they must first be weighted by the relative detectability periods for molecular prey remains for each predator-prey combination. If this is not carried out, interpretations of predator impact will be biased towards those with the longest detectabilities. We review the challenges in determining detectability half-lives, including unstated assumptions that have often been ignored in the performance of feeding trials. We also show how detectability half-lives can be used to properly weight assay data to rank predators by their importance in prey population suppression, and how sets of half-lives can be used to test hypotheses concerning predator ecology and physiology. We use data from 32 publications, comprising 97 half-lives, to generate and test hypotheses on taxonomic differences in detectability half-lives and discuss the possible role of the detectability half-life in interpreting qPCR and next-generation sequencing data.

  19. Mandible-Powered Escape Jumps in Trap-Jaw Ants Increase Survival Rates during Predator-Prey Encounters

    PubMed Central

    Larabee, Fredrick J.; Suarez, Andrew V.

    2015-01-01

    Animals use a variety of escape mechanisms to increase the probability of surviving predatory attacks. Antipredator defenses can be elaborate, making their evolutionary origin unclear. Trap-jaw ants are known for their rapid and powerful predatory mandible strikes, and some species have been observed to direct those strikes at the substrate, thereby launching themselves into the air away from a potential threat. This potential escape mechanism has never been examined in a natural context. We studied the use of mandible-powered jumping in Odontomachus brunneus during their interactions with a common ant predator: pit-building antlions. We observed that while trap-jaw ant workers escaped from antlion pits by running in about half of interactions, in 15% of interactions they escaped by mandible-powered jumping. To test whether escape jumps improved individual survival, we experimentally prevented workers from jumping and measured their escape rate. Workers with unrestrained mandibles escaped from antlion pits significantly more frequently than workers with restrained mandibles. Our results indicate that some trap-jaw ant species can use mandible-powered jumps to escape from common predators. These results also provide a charismatic example of evolutionary co-option, where a trait that evolved for one function (predation) has been co-opted for another (defense). PMID:25970637

  20. Gr and hp-1 tomato mutants unveil unprecedented interactions between arbuscular mycorrhizal symbiosis and fruit ripening

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The roots of plants interact with soil mycorrhizal fungi to facilitate soil nutrient acquisition by the plant and carbon transfer to the fungus. Here we use tomato fruit ripening mutations to demonstrate that this root interaction communicates with and supports genetic mechanisms associated with th...

  1. A single predator charging a herd of prey: effects of self volume and predator-prey decision-making

    NASA Astrophysics Data System (ADS)

    Schwarzl, Maria; Godec, Aljaz; Oshanin, Gleb; Metzler, Ralf

    2016-06-01

    We study the degree of success of a single predator hunting a herd of prey on a two-dimensional square lattice landscape. We explicitly consider the self volume of the prey restraining their dynamics on the lattice. The movement of both predator and prey is chosen to include an intelligent, decision making step based on their respective sighting ranges, the radius in which they can detect the other species (prey cannot recognise each other besides the self volume interaction): after spotting each other the motion of prey and predator turns from a nearest neighbour random walk into directed escape or chase, respectively. We consider a large range of prey densities and sighting ranges and compute the mean first passage time for a predator to catch a prey as well as characterise the effective dynamics of the hunted prey. We find that the prey's sighting range dominates their life expectancy and the predator profits more from a bad eyesight of the prey than from his own good eye sight. We characterise the dynamics in terms of the mean distance between the predator and the nearest prey. It turns out that effectively the dynamics of this distance coordinate can be captured in terms of a simple Ornstein-Uhlenbeck picture. Reducing the many-body problem to a simple two-body problem by imagining predator and nearest prey to be connected by an effective Hookean bond, all features of the model such as prey density and sighting ranges merge into the effective binding constant.

  2. Geographic divergence in a species-rich symbiosis: interactions between monterey pines and ectomycorrhizal fungi.

    PubMed

    Hoeksema, Jason D; Hernandez, Jesus Vargas; Rogers, Deborah L; Mendoza, Luciana Luna; Thompson, John N

    2012-10-01

    A key problem in evolutionary biology is to understand how multispecific networks are reshaped by evolutionary and coevolutionary processes as they spread across contrasting environments. To address this problem, we need studies that explicitly evaluate the multispecific guild structure of coevolutionary processes and some of their key outcomes such as local adaptation. We evaluated geographic variation in interactions between most extant native populations of Monterey pine (Pinus radiata) and the associated resistant-propagule community (RPC) of ectomycorrhizal (EM) fungi, using a reciprocal cross-inoculation experiment with all factorial combinations of plant genotypes and soils with fungal guilds from each population. Our results suggest that the pine populations have diverged in community composition of their RPC fungi, and have also diverged genetically in several traits related to interactions of seedlings with particular EM fungi, growth, and biomass allocation. Patterns of genetic variation among pine populations for compatibility with EM fungi differed for the three dominant species of EM fungi, suggesting that Monterey pines can evolve differently in their compatibility with different symbiont species.

  3. "Prey Play": Learning about Predators and Prey through an Interactive, Role-Play Game

    ERIC Educational Resources Information Center

    Deaton, Cynthia C. M.; Dodd, Kristen; Drennon, Katherine; Nagle, Jack

    2012-01-01

    "Prey Play" is an interactive role-play activity that provides fifth-grade students with opportunities to examine predator-prey interactions. This four-part, role-play activity allows students to take on the role of a predator and prey as they reflect on the behaviors animals exhibit as they collect food and interact with one another, as well as…

  4. Symbiosis in eukaryotic evolution.

    PubMed

    López-García, Purificación; Eme, Laura; Moreira, David

    2017-02-28

    Fifty years ago, Lynn Margulis, inspiring in early twentieth-century ideas that put forward a symbiotic origin for some eukaryotic organelles, proposed a unified theory for the origin of the eukaryotic cell based on symbiosis as evolutionary mechanism. Margulis was profoundly aware of the importance of symbiosis in the natural microbial world and anticipated the evolutionary significance that integrated cooperative interactions might have as mechanism to increase cellular complexity. Today, we have started fully appreciating the vast extent of microbial diversity and the importance of syntrophic metabolic cooperation in natural ecosystems, especially in sediments and microbial mats. Also, not only the symbiogenetic origin of mitochondria and chloroplasts has been clearly demonstrated, but improvement in phylogenomic methods combined with recent discoveries of archaeal lineages more closely related to eukaryotes further support the symbiogenetic origin of the eukaryotic cell. Margulis left us in legacy the idea of 'eukaryogenesis by symbiogenesis'. Although this has been largely verified, when, where, and specifically how eukaryotic cells evolved are yet unclear. Here, we shortly review current knowledge about symbiotic interactions in the microbial world and their evolutionary impact, the status of eukaryogenetic models and the current challenges and perspectives ahead to reconstruct the evolutionary path to eukaryotes.

  5. How Symbiosis Creates Diversity

    ERIC Educational Resources Information Center

    Lord, Joshua

    2010-01-01

    Diversity in habitats on Earth is astounding--whether on land or in the sea--and this is in part due to symbiosis. The lesson described in this article helps students understand how symbiosis affects different organisms through a fun and engaging game where they match hosts and symbionts based on their respective needs. This 45-minute lesson is…

  6. Nonconsumptive Predator-Prey Interactions: Sensitivity of the Detritivore Sinella curviseta (Collembola: Entomobryidae) to Cues of Predation Risk From the Spider Pardosa milvina (Araneae: Lycosidae).

    PubMed

    Sitvarin, Michael I; Romanchek, Christian; Rypstra, Ann L

    2015-04-01

    Predators can affect prey indirectly when prey respond to cues indicating a risk of predation by altering activity levels. Changes in prey behavior may cascade through the food web to influence ecosystem function. The response of the collembolan Sinella curviseta Brook (Collembola: Entomobryidae) to cues indicating predation risk (necromones and cues from the wolf spider Pardosa milvina (Hentz) (Araneae: Lycosidae)) was tested. Additionally, necromones and predator cues were paired in a conditioning experiment to determine whether the collembolan could form learned associations. Although collembolans did not alter activity levels in response to predator cues, numerous aspects of behavior differed in the presence of necromones. There was no detectable conditioned response to predator cues after pairing with necromones. These results provide insight into how collembolans perceive and respond to predation threats that vary in information content. Previously detected indirect impacts of predator cues on ecosystem function are likely due to changes in prey other than activity level.

  7. Mutualistic and antagonistic trophic interactions in canola: the role of aphids in shaping pest and predator populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aphids have important effects on the abundance and occurrence of tending ants, predators, and pests in agronomic systems, and DNA-based gut content analysis can aid in establishing predator-prey interactions. The purpose of this study was to determine how the presence of aphids, ants, and pest indiv...

  8. Importance of Thin Plankton Layers in Hawaiian Food Web Interactions: Research Spanning from Physical Circulation to Spinner Dolphins

    DTIC Science & Technology

    2009-09-30

    Wursig, B. Using active acoustics to compare predator - prey behavior of two marine mammal species. Invited Contribution to Special Issue...DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Importance of Thin Plankton Layers in Hawaiian Food...Importance Of Thin Plankton Layers In Hawaiian Food Web Interactions: Research Spanning From Physical Circulation To Spinner Dolphins 5a. CONTRACT NUMBER

  9. Computer symbiosis: Emergence of symbiotic behavior through evolution

    SciTech Connect

    Ikegami, Takashi; Kaneko, Kunihiko

    1989-01-01

    Symbiosis is altruistic cooperation between distinct species. It is one of the most effective evolutionary processes, but its dynamics are not well understood as yet. A simple model of symbiosis is introduced, where we consider interactions between hosts and parasites and also mutations of hosts and parasites. It is found that a symbiotic state emerges for a suitable range of mutation rates. The symbiotic state is not static, but dynamically oscillates. Harmful parasites violating symbiosis appear periodically, but are rapidly extinguished by hosts and other parasites, and the symbiotic state is recovered. The emergence of ''Tit for Tat'' strategy to maintain symbiosis is discussed. 4 figs.

  10. Dynamic Map: Representation of interactions between robots

    SciTech Connect

    Zanardi, C.

    1996-12-31

    As robotics applications become more complex, the need for tools to analyze and explain interactions between robots has become more acute. We introduce the concept of Dynamic Map (DM), which can serve as a generic tool to analyze interactions between robots or with their environment. We show that this concept can be applied to different kinds of applications, like a predator-prey situation, or collision avoidance.

  11. Interactions of biotic and abiotic environmental factors in an ectomycorrhizal symbiosis, and the potential for selection mosaics

    PubMed Central

    Piculell, Bridget J; Hoeksema, Jason D; Thompson, John N

    2008-01-01

    Background Geographic selection mosaics, in which species exert different evolutionary impacts on each other in different environments, may drive diversification in coevolving species. We studied the potential for geographic selection mosaics in plant-mycorrhizal interactions by testing whether the interaction between bishop pine (Pinus muricata D. Don) and one of its common ectomycorrhizal fungi (Rhizopogon occidentalis Zeller and Dodge) varies in outcome, when different combinations of plant and fungal genotypes are tested under a range of different abiotic and biotic conditions. Results We used a 2 × 2 × 2 × 2 factorial experiment to test the main and interactive effects of plant lineage (two maternal seed families), fungal lineage (two spore collections), soil type (lab mix or field soil), and non-mycorrhizal microbes (with or without) on the performance of plants and fungi. Ecological outcomes, as assessed by plant and fungal performance, varied widely across experimental environments, including interactions between plant or fungal lineages and soil environmental factors. Conclusion These results show the potential for selection mosaics in plant-mycorrhizal interactions, and indicate that these interactions are likely to coevolve in different ways in different environments, even when initially the genotypes of the interacting species are the same across all environments. Hence, selection mosaics may be equally as effective as genetic differences among populations in driving divergent coevolution among populations of interacting species. PMID:18507825

  12. Survival through Symbiosis.

    ERIC Educational Resources Information Center

    Abdi, S. Wali

    1992-01-01

    Describes symbiosis and its significance in the day-to-day lives of plants and animals. Gives specific examples of mutualism, commensalism, and parasitism in the relationships among fungus and plant roots, animals and bacteria, birds and animals, fish, and predator and prey. (MDH)

  13. Symbiosis-mediated outbreaks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Symbiosis simply means "living together" and in its narrowest form can mean two species deriving mutual benefit from the association. Recent studies have made evident that insect associations with microorganisms can range the gamut from casual associations to obligate or context-dependent mutualisms...

  14. Assessment of agglomeration, co-sedimentation and trophic transfer of titanium dioxide nanoparticles in a laboratory-scale predator-prey model system

    NASA Astrophysics Data System (ADS)

    Gupta, Govind Sharan; Kumar, Ashutosh; Shanker, Rishi; Dhawan, Alok

    2016-08-01

    Nano titanium dioxide (nTiO2) is the most abundantly released engineered nanomaterial (ENM) in aquatic environments. Therefore, it is prudent to assess its fate and its effects on lower trophic-level organisms in the aquatic food chain. A predator-and-prey-based laboratory microcosm was established using Paramecium caudatum and Escherichia coli to evaluate the effects of nTiO2. The surface interaction of nTiO2 with E. coli significantly increased after the addition of Paramecium into the microcosm. This interaction favoured the hetero-agglomeration and co-sedimentation of nTiO2. The extent of nTiO2 agglomeration under experimental conditions was as follows: combined E. coli and Paramecium > Paramecium only > E. coli only > without E. coli or Paramecium. An increase in nTiO2 internalisation in Paramecium cells was also observed in the presence or absence of E. coli cells. These interactions and nTiO2 internalisation in Paramecium cells induced statistically significant (p < 0.05) effects on growth and the bacterial ingestion rate at 24 h. These findings provide new insights into the fate of nTiO2 in the presence of bacterial-ciliate interactions in the aquatic environment.

  15. Assessment of agglomeration, co-sedimentation and trophic transfer of titanium dioxide nanoparticles in a laboratory-scale predator-prey model system.

    PubMed

    Gupta, Govind Sharan; Kumar, Ashutosh; Shanker, Rishi; Dhawan, Alok

    2016-08-17

    Nano titanium dioxide (nTiO2) is the most abundantly released engineered nanomaterial (ENM) in aquatic environments. Therefore, it is prudent to assess its fate and its effects on lower trophic-level organisms in the aquatic food chain. A predator-and-prey-based laboratory microcosm was established using Paramecium caudatum and Escherichia coli to evaluate the effects of nTiO2. The surface interaction of nTiO2 with E. coli significantly increased after the addition of Paramecium into the microcosm. This interaction favoured the hetero-agglomeration and co-sedimentation of nTiO2. The extent of nTiO2 agglomeration under experimental conditions was as follows: combined E. coli and Paramecium > Paramecium only > E. coli only > without E. coli or Paramecium. An increase in nTiO2 internalisation in Paramecium cells was also observed in the presence or absence of E. coli cells. These interactions and nTiO2 internalisation in Paramecium cells induced statistically significant (p < 0.05) effects on growth and the bacterial ingestion rate at 24 h. These findings provide new insights into the fate of nTiO2 in the presence of bacterial-ciliate interactions in the aquatic environment.

  16. On the spatial dynamics and oscillatory behavior of a predator-prey model based on cellular automata and local particle swarm optimization.

    PubMed

    Molina, Mario Martínez; Moreno-Armendáriz, Marco A; Carlos Seck Tuoh Mora, Juan

    2013-11-07

    A two-dimensional lattice model based on Cellular Automata theory and swarm intelligence is used to study the spatial and population dynamics of a theoretical ecosystem. It is found that the social interactions among predators provoke the formation of clusters, and that by increasing the mobility of predators the model enters into an oscillatory behavior.

  17. Assessment of agglomeration, co-sedimentation and trophic transfer of titanium dioxide nanoparticles in a laboratory-scale predator-prey model system

    PubMed Central

    Gupta, Govind Sharan; Kumar, Ashutosh; Shanker, Rishi; Dhawan, Alok

    2016-01-01

    Nano titanium dioxide (nTiO2) is the most abundantly released engineered nanomaterial (ENM) in aquatic environments. Therefore, it is prudent to assess its fate and its effects on lower trophic-level organisms in the aquatic food chain. A predator-and-prey-based laboratory microcosm was established using Paramecium caudatum and Escherichia coli to evaluate the effects of nTiO2. The surface interaction of nTiO2 with E. coli significantly increased after the addition of Paramecium into the microcosm. This interaction favoured the hetero-agglomeration and co-sedimentation of nTiO2. The extent of nTiO2 agglomeration under experimental conditions was as follows: combined E. coli and Paramecium > Paramecium only > E. coli only > without E. coli or Paramecium. An increase in nTiO2 internalisation in Paramecium cells was also observed in the presence or absence of E. coli cells. These interactions and nTiO2 internalisation in Paramecium cells induced statistically significant (p < 0.05) effects on growth and the bacterial ingestion rate at 24 h. These findings provide new insights into the fate of nTiO2 in the presence of bacterial-ciliate interactions in the aquatic environment. PMID:27530102

  18. Application of a novel method PCR-ligase detection reaction for tracking predator-prey trophic links in insect-resistant GM rice ecosystem.

    PubMed

    Li, Kai; Tian, Junce; Wang, Qinxi; Chen, Qiang; Chen, Mao; Wang, Huan; Zhou, Yuxun; Peng, Yufa; Xiao, Junhua; Ye, Gongyin

    2011-11-01

    Insect-resistant genetically modified (IRGM) rice is on the verge of commercial release in China, however, its potential non-target effect on non-target insect natural enemies remains controversial. Tracking trophic interactions between predators and preys in IRGM rice ecosystem can provide new insights into better understanding of the ecological risks of IRGM rice. In the present study, a novel method based on ligase detection reaction (LDR), PCR-LDR was introduced to track 15 prey species in the gut of a predaceous spider Pirata subpiraticus, a dominant natural enemy in rice field. Our results indicated that PCR-LDR could provide high specificity and sensitivity in tracking prey-predator interactions in rice ecosystems. PCR-LDR could detect as little as 1,000 th of DNA mixture. Reliable detection of DNA samples of prey species using PCR-LDR could be significantly affected by digestion time and prey species. In the analysis of 200 field-collected P. subpiraticus and 105 field-collected Tetragnatha maxillosa individuals using PCR-LDR, prey remains were identified in 78.3 and 74.3% of the individuals, respectively, from which significant predation differences between the two spider species were observed. Predation behavior of the spider species was not significantly different between Bt and non-Bt control rice lines. These results indicated that PCR-LDR can be used as an important tool for ecological studies, especially on the interactions between predators and preys in IRGM rice or other similar ecosystems.

  19. Deadly competition and life-saving predation: the potential for alternative stable states in a stage-structured predator-prey system.

    PubMed

    Toscano, Benjamin J; Rombado, Bianca R; Rudolf, Volker H W

    2016-08-31

    Predators often undergo complete ontogenetic diet shifts, engaging in resource competition with species that become their prey during later developmental stages. Theory posits that this mix of stage-specific competition and predation, termed life-history intraguild predation (LHIGP), can lead to alternative stable states. In one state, prey exclude predators through competition (i.e. juvenile competitive bottleneck), while in the alternative, adult predators control prey density to limit competition and foster coexistence. Nevertheless, the interactions leading to these states have not been demonstrated in an empirical LHIGP system. To address this gap, we manipulated densities of cannibalistic adult cyclopoid copepods (Mesocyclops edax) and their cladoceran prey (Daphnia pulex) in a response-surface design and measured the maturation and survival of juvenile copepods (nauplii). We found that Daphnia reduced and even precluded both nauplii maturation and survival through depletion of a shared food resource. As predicted, adult copepods enhanced nauplii maturation and survival through Daphnia consumption, yet this positive effect was dependent on the relative abundance of Daphnia as well as the absolute density of adult copepods. Adult copepods reduced nauplii survival through cannibalism at low Daphnia densities and at the highest copepod density. This work demonstrates that predation can relax a strong juvenile competitive bottleneck in freshwater zooplankton, though cannibalism can reduce predator recruitment. Thus, our results highlight a key role for cannibalism in LHIGP dynamics and provide evidence for the interactions that drive alternative stable states in such systems.

  20. Molecular diagnosis of a previously unreported predator-prey association in coffee: Karnyothrips flavipes Jones (Thysanoptera: Phlaeothripidae) predation on the coffee berry borer

    NASA Astrophysics Data System (ADS)

    Jaramillo, Juliana; Chapman, Eric G.; Vega, Fernando E.; Harwood, James D.

    2010-03-01

    The coffee berry borer, Hypothenemus hampei, is the most important pest of coffee throughout the world, causing losses estimated at US 500 million/year. The thrips Karnyothrips flavipes was observed for the first time feeding on immature stages of H. hampei in April 2008 from samples collected in the Kisii area of Western Kenya. Since the trophic interactions between H. hampei and K. flavipes are carried out entirely within the coffee berry, and because thrips feed by liquid ingestion, we used molecular gut-content analysis to confirm the potential role of K. flavipes as a predator of H. hampei in an organic coffee production system. Species-specific COI primers designed for H. hampei were shown to have a high degree of specificity for H. hampei DNA and did not produce any PCR product from DNA templates of the other insects associated with the coffee agroecosystems. In total, 3,327 K. flavipes emerged from 17,792 H. hampei-infested berries collected from the field between April and September 2008. Throughout the season, 8.3% of K. flavipes tested positive for H. hampei DNA, although at times this figure approached 50%. Prey availability was significantly correlated with prey consumption, thus indicating the potential impact on H. hampei populations.

  1. Molecular diagnosis of a previously unreported predator-prey association in coffee: Karnyothrips flavipes Jones (Thysanoptera: Phlaeothripidae) predation on the coffee berry borer.

    PubMed

    Jaramillo, Juliana; Chapman, Eric G; Vega, Fernando E; Harwood, James D

    2010-03-01

    The coffee berry borer, Hypothenemus hampei, is the most important pest of coffee throughout the world, causing losses estimated at US $500 million/year. The thrips Karnyothrips flavipes was observed for the first time feeding on immature stages of H. hampei in April 2008 from samples collected in the Kisii area of Western Kenya. Since the trophic interactions between H. hampei and K. flavipes are carried out entirely within the coffee berry, and because thrips feed by liquid ingestion, we used molecular gut-content analysis to confirm the potential role of K. flavipes as a predator of H. hampei in an organic coffee production system. Species-specific COI primers designed for H. hampei were shown to have a high degree of specificity for H. hampei DNA and did not produce any PCR product from DNA templates of the other insects associated with the coffee agroecosystems. In total, 3,327 K. flavipes emerged from 17,792 H. hampei-infested berries collected from the field between April and September 2008. Throughout the season, 8.3% of K. flavipes tested positive for H. hampei DNA, although at times this figure approached 50%. Prey availability was significantly correlated with prey consumption, thus indicating the potential impact on H. hampei populations.

  2. A multispecies statistical age-structured model to assess predator-prey balance: application to an intensively managed Lake Michigan pelagic fish community

    USGS Publications Warehouse

    Tsehaye, Iyob; Jones, Michael L.; Bence, James R.; Brenden, Travis O.; Madenjian, Charles P.; Warner, David M.

    2014-01-01

    Using a Bayesian model fitting approach, we developed a multispecies statistical catch-at-age model to assess trade-offs between predatory demands and prey productivities, focusing on the Lake Michigan pelagic fish community. We assessed these trade-offs in terms of predation mortalities and productivities of alewife (Alosa pseudoharengus) and rainbow smelt (Osmerus mordax) and functional responses of salmonines. Our predation mortality estimates suggest that salmonine consumption has been a major driver of historical fluctuations in prey abundance, with sharp declines in alewife abundance in the 1980s and 2000s coinciding with estimated increases in predation mortalities. While Chinook salmon (Oncorhynchus tshawytscha) were food limited during periods of low alewife abundance, other salmonines appeared to maintain a (near) maximum per-predator consumption across all observed prey densities, suggesting that feedback mechanisms are unlikely to help maintain a balance between predator consumption and prey productivity in Lake Michigan. This study demonstrates that a multispecies modeling approach that combines stock assessment methods with explicit consideration of predator–prey interactions could provide the basis for tactical decision-making from a broader ecosystem perspective.

  3. Computer symbiosis-emergence of symbiotic behavior through evolution

    NASA Astrophysics Data System (ADS)

    Ikegami, Takashi; Kaneko, Kunihiko

    1990-06-01

    Symbiosis is cooperation between distinct species. It is one of the most effective evolutionary processes, but its dynamics are not well understood as yet. A simple model of symbiosis is introduced, in which we consider interactions between hosts and parasites and also mutations of hosts and parasites. The interactions and mutations form a dynamical system on the populations of hosts and parasites. It is found that a symbiotic state emerges for a suitable range of mutation rates. The symbiotic state is not static, but dynamically oscillates. Harmful parasites violating symbiosis appear periodically, but are rapidly extinguished by hosts and other parasites, and the symbiotic state is recovered. The relation between these phenomena and “TIT for TAT” strategy to maintain symbiosis is discussed.

  4. Predator-prey relations and competition for food between age-0 lake trout and slimy sculpins in the Apostle Island region of Lake Superior

    USGS Publications Warehouse

    Hudson, Patrick L.; Savino, Jacqueline F.; Bronte, Charles R.

    1995-01-01

    Slimy sculpins (Cottus cognatus) are an important component of the fish community on reefs and adjacent nursery areas of the Great Lakes and overlap spatially with age-0 lake trout (Salvelinus namaycush). Important interactions between these fishes are possible during the lake trout's first year of life, which could include predation on each other's eggs and larvae, and competition for food resources. We investigated the diets of age-0 lake trout and slimy sculpins on a lake trout spawning reef (Gull Island Shoal) and adjacent nursery area (near Michigan Island) in the Apostle Island region of western Lake Superior during June through September from 1988 through 1991. Organisms in stomachs of 511 lake trout and 562 sculpins were identified and counted. Of the 11 major food types found in age-0 lake trout stomachs from both areas, Mysis was the dominant food item (mean volume in stomachs = 68%) and occurred in about 3/4 of the fish analyzed. Copepods, cladocerans, chironomid pupae, fish, and Bythotrephes were also common in the diet (frequency of occurrence > 4%). Diets of lake trout were more diverse on the reef than on the nursery area where Mysis dominated the diet. Slimy sculpins were only found in lake trout greater than 50 mm. Mysis was an important food item of slimy sculpins over the reef but not over the nursery area, where Diporeia was by far the most important taxon. A variety ofben-thic invertebrates (Asellus, chironomids, benthic copepods, and snails) comprised the bulk of the sculpin diet over the reef. Sculpins also ate lake trout eggs in November. Based on cluster analysis, diets were most similar over the reef where both consumed Mysis, calanoid copepods and chironomid pupae. Diets diverged over the nursery areas where sculpins were strictly benthic feeders and lake trout maintained their planktonic diet. In Lake Superior, where lake trout recruitment through natural reproduction has become well established, the coexistence of the two

  5. The Rhizobium-plant symbiosis.

    PubMed Central

    van Rhijn, P; Vanderleyden, J

    1995-01-01

    Rhizobium, Bradyrhizobium, and Azorhizobium species are able to elicit the formation of unique structures, called nodules, on the roots or stems of the leguminous host. In these nodules, the rhizobia convert atmospheric N2 into ammonia for the plant. To establish this symbiosis, signals are produced early in the interaction between plant and rhizobia and they elicit discrete responses by the two symbiotic partners. First, transcription of the bacterial nodulation (nod) genes is under control of the NodD regulatory protein, which is activated by specific plant signals, flavonoids, present in the root exudates. In return, the nod-encoded enzymes are involved in the synthesis and excretion of specific lipooligosaccharides, which are able to trigger on the host plant the organogenic program leading to the formation of nodules. An overview of the organization, regulation, and function of the nod genes and their participation in the determination of the host specificity is presented. PMID:7708010

  6. Predation: Prey plumage adaptation against falcon attack.

    PubMed

    Palleroni, Alberto; Miller, Cory T; Hauser, Marc; Marler, Peter

    2005-04-21

    Several plumage types are found in feral pigeons (Columba livia), but one type imparts a clear survival advantage during attacks by the swiftest of all predators--the peregrine falcon (Falco peregrinus). Here we use quantitative field observations and experiments to demonstrate both the selective nature of the falcon's choice of prey and the effect of plumage coloration on the survival of feral pigeons. This plumage colour is an independently heritable trait that is likely to be an antipredator adaptation against high-speed attacks in open air space.

  7. Evolutionary Diversification of Prey and Predator Species Facilitated by Asymmetric Interactions.

    PubMed

    Zu, Jian; Wang, Jinliang; Huang, Gang

    We investigate the influence of asymmetric interactions on coevolutionary dynamics of a predator-prey system by using the theory of adaptive dynamics. We assume that the defense ability of prey and the attack ability of predators all can adaptively evolve, either caused by phenotypic plasticity or by behavioral choice, but there are certain costs in terms of their growth rate or death rate. The coevolutionary model is constructed from a deterministic approximation of random mutation-selection process. To sum up, if prey's trade-off curve is globally weakly concave, then five outcomes of coevolution are demonstrated, which depend on the intensity and shape of asymmetric predator-prey interactions and predator's trade-off shape. Firstly, we find that if there is a weakly decelerating cost and a weakly accelerating benefit for predator species, then evolutionary branching in the predator species may occur, but after branching further coevolution may lead to extinction of the predator species with a larger trait value. However, if there is a weakly accelerating cost and a weakly accelerating benefit for predator species, then evolutionary branching in the predator species is also possible and after branching the dimorphic predator can evolutionarily stably coexist with a monomorphic prey species. Secondly, if the asymmetric interactions become a little strong, then prey and predators will evolve to an evolutionarily stable equilibrium, at which they can stably coexist on a long-term timescale of evolution. Thirdly, if there is a weakly accelerating cost and a relatively strongly accelerating benefit for prey species, then evolutionary branching in the prey species is possible and the finally coevolutionary outcome contains a dimorphic prey and a monomorphic predator species. Fourthly, if the asymmetric interactions become more stronger, then predator-prey coevolution may lead to cycles in both traits and equilibrium population densities. The Red Queen dynamic is a

  8. Evolutionary Diversification of Prey and Predator Species Facilitated by Asymmetric Interactions

    PubMed Central

    Zu, Jian; Wang, Jinliang; Huang, Gang

    2016-01-01

    We investigate the influence of asymmetric interactions on coevolutionary dynamics of a predator-prey system by using the theory of adaptive dynamics. We assume that the defense ability of prey and the attack ability of predators all can adaptively evolve, either caused by phenotypic plasticity or by behavioral choice, but there are certain costs in terms of their growth rate or death rate. The coevolutionary model is constructed from a deterministic approximation of random mutation-selection process. To sum up, if prey’s trade-off curve is globally weakly concave, then five outcomes of coevolution are demonstrated, which depend on the intensity and shape of asymmetric predator-prey interactions and predator’s trade-off shape. Firstly, we find that if there is a weakly decelerating cost and a weakly accelerating benefit for predator species, then evolutionary branching in the predator species may occur, but after branching further coevolution may lead to extinction of the predator species with a larger trait value. However, if there is a weakly accelerating cost and a weakly accelerating benefit for predator species, then evolutionary branching in the predator species is also possible and after branching the dimorphic predator can evolutionarily stably coexist with a monomorphic prey species. Secondly, if the asymmetric interactions become a little strong, then prey and predators will evolve to an evolutionarily stable equilibrium, at which they can stably coexist on a long-term timescale of evolution. Thirdly, if there is a weakly accelerating cost and a relatively strongly accelerating benefit for prey species, then evolutionary branching in the prey species is possible and the finally coevolutionary outcome contains a dimorphic prey and a monomorphic predator species. Fourthly, if the asymmetric interactions become more stronger, then predator-prey coevolution may lead to cycles in both traits and equilibrium population densities. The Red Queen dynamic is a

  9. Study of cnidarian-algal symbiosis in the "omics" age.

    PubMed

    Meyer, Eli; Weis, Virginia M

    2012-08-01

    The symbiotic associations between cnidarians and dinoflagellate algae (Symbiodinium) support productive and diverse ecosystems in coral reefs. Many aspects of this association, including the mechanistic basis of host-symbiont recognition and metabolic interaction, remain poorly understood. The first completed genome sequence for a symbiotic anthozoan is now available (the coral Acropora digitifera), and extensive expressed sequence tag resources are available for a variety of other symbiotic corals and anemones. These resources make it possible to profile gene expression, protein abundance, and protein localization associated with the symbiotic state. Here we review the history of "omics" studies of cnidarian-algal symbiosis and the current availability of sequence resources for corals and anemones, identifying genes putatively involved in symbiosis across 10 anthozoan species. The public availability of candidate symbiosis-associated genes leaves the field of cnidarian-algal symbiosis poised for in-depth comparative studies of sequence diversity and gene expression and for targeted functional studies of genes associated with symbiosis. Reviewing the progress to date suggests directions for future investigations of cnidarian-algal symbiosis that include (i) sequencing of Symbiodinium, (ii) proteomic analysis of the symbiosome membrane complex, (iii) glycomic analysis of Symbiodinium cell surfaces, and (iv) expression profiling of the gastrodermal cells hosting Symbiodinium.

  10. Expanding genomics of mycorrhizal symbiosis

    DOE PAGES

    Kuo, Alan; Kohler, Annegret; Martin, Francis M.; ...

    2014-11-04

    The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolvemore » through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism.« less

  11. Expanding genomics of mycorrhizal symbiosis

    SciTech Connect

    Kuo, Alan; Kohler, Annegret; Martin, Francis M.; Grigoriev, Igor V.

    2014-11-04

    The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolve through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism.

  12. Expanding genomics of mycorrhizal symbiosis

    PubMed Central

    Kuo, Alan; Kohler, Annegret; Martin, Francis M.; Grigoriev, Igor V.

    2014-01-01

    The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolve through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism. PMID:25408690

  13. Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato.

    PubMed

    López-Ráez, Juan A; Charnikhova, Tatsiana; Fernández, Ivan; Bouwmeester, Harro; Pozo, Maria J

    2011-02-15

    Strigolactones are a new class of plant hormones emerging as important signals in the control of plant architecture. In addition, they are key elements in plant communication with several rhizosphere organisms. Strigolactones are exuded into the soil, where they act as host detection signals for arbuscular mycorrhizal (AM) fungi, but also as germination stimulants for root parasitic plant seeds. Under phosphate limiting conditions, plants up-regulate the secretion of strigolactones into the rhizosphere to promote the formation of AM symbiosis. Using tomato as a model plant, we have recently shown that AM symbiosis induces changes in transcriptional and hormonal profiles. Using the same model system, here we analytically demonstrate, using liquid chromatography-tandem mass spectrometry, that strigolactone production is also significantly reduced upon AM symbiosis. Considering the dual role of the strigolactones in the rhizosphere as signals for AM fungi and parasitic plants, we discuss the potential implications of these changes in the plant interaction with both organisms.

  14. Mastering ectomycorrhizal symbiosis: the impact of carbohydrates.

    PubMed

    Nehls, Uwe

    2008-01-01

    Mycorrhiza formation is the consequence of a mutualistic interaction between certain soil fungi and plant roots that helps to overcome nutritional limitations faced by the respective partners. In symbiosis, fungi contribute to tree nutrition by means of mineral weathering and mobilization of nutrients from organic matter, and obtain plant-derived carbohydrates as a response. Support with easily degradable carbohydrates seems to be the driving force for fungi to undergo this type of interaction. As a consequence, the fungal hexose uptake capacity is strongly increased in Hartig net hyphae of the model fungi Amanita muscaria and Laccaria bicolor. Next to fast carbohydrate uptake and metabolism, storage carbohydrates are of special interest. In functional A. muscaria ectomycorrhizas, expression and activity of proteins involved in trehalose biosynthesis is mainly localized in hyphae of the Hartig net, indicating an important function of trehalose in generation of a strong carbon sink by fungal hyphae. In symbiosis, fungal partners receive up to approximately 19 times more carbohydrates from their hosts than normal leakage of the root system would cause, resulting in a strong carbohydrate demand of infected roots and, as a consequence, a more efficient plant photosynthesis. To avoid fungal parasitism, the plant seems to have developed mechanisms to control carbohydrate drain towards the fungal partner and link it to the fungus-derived mineral nutrition. In this contribution, current knowledge on fungal strategies to obtain carbohydrates from its host and plant strategies to enable, but also to control and restrict (under certain conditions), carbon transfer are summarized.

  15. Evolution of symbiosis with resource allocation from fecundity to survival.

    PubMed

    Fukui, Shin

    2014-05-01

    Symbiosis is one of the most fundamental relationships between or among organisms and includes parasitism (which has negative effects on the fitness of the interacting partner), commensalism (no effect), and mutualism (positive effects). The effects of these interactions are usually assumed to influence a single component of a species' fitness, either survival or fecundity, even though in reality the interaction can simultaneously affect both of these components. I used a dual lattice model to investigate the process of evolution of mutualistic symbiosis in the presence of interactive effects on both survival and fecundity. I demonstrate that a positive effect on survival and a negative effect on fecundity are key to the establishment of mutualism. Furthermore, both the parasitic and the mutualistic behaviour must carry large costs for mutualism to evolve. This helps develop a new understanding of symbiosis as a function of resource allocation, in which resources are shifted from fecundity to survival. The simultaneous establishment of mutualism from parasitism never occurs in two species, but can do so in one of the species as long as the partner still behaves parasitically. This suggests that one of the altruistic behaviours in a mutualistic unit consisting of two species must originate as a parasitic behaviour.

  16. Evolution of symbiosis with resource allocation from fecundity to survival

    NASA Astrophysics Data System (ADS)

    Fukui, Shin

    2014-05-01

    Symbiosis is one of the most fundamental relationships between or among organisms and includes parasitism (which has negative effects on the fitness of the interacting partner), commensalism (no effect), and mutualism (positive effects). The effects of these interactions are usually assumed to influence a single component of a species' fitness, either survival or fecundity, even though in reality the interaction can simultaneously affect both of these components. I used a dual lattice model to investigate the process of evolution of mutualistic symbiosis in the presence of interactive effects on both survival and fecundity. I demonstrate that a positive effect on survival and a negative effect on fecundity are key to the establishment of mutualism. Furthermore, both the parasitic and the mutualistic behaviour must carry large costs for mutualism to evolve. This helps develop a new understanding of symbiosis as a function of resource allocation, in which resources are shifted from fecundity to survival. The simultaneous establishment of mutualism from parasitism never occurs in two species, but can do so in one of the species as long as the partner still behaves parasitically. This suggests that one of the altruistic behaviours in a mutualistic unit consisting of two species must originate as a parasitic behaviour.

  17. PtSRR1, a putative Pisolithus tinctorius symbiosis related receptor gene is expressed during the first hours of mycorrhizal interaction with Castanea sativa roots

    PubMed Central

    Acioli-Santos, B.; Malosso, E.; Calzavara-Silva, C.E.; Lima, C.E.P.; Figueiredo, A.; Sebastiana, M.; Pais, M.S.

    2009-01-01

    PtSRR1 EST was previously identified in the first hours of Pisolithus tinctorius and Castanea sativa interaction. QRT-PCR confirmed PtSRR1 early expression and in silico preliminary translated peptide analysis indicated a strong probability that PtSRR1 be a transmembrane protein. These data stimulate the PtSRR1 gene research during ectomycorrhiza formation. PMID:24031360

  18. Brain-Computer Symbiosis

    PubMed Central

    Schalk, Gerwin

    2009-01-01

    The theoretical groundwork of the 1930’s and 1940’s and the technical advance of computers in the following decades provided the basis for dramatic increases in human efficiency. While computers continue to evolve, and we can still expect increasing benefits from their use, the interface between humans and computers has begun to present a serious impediment to full realization of the potential payoff. This article is about the theoretical and practical possibility that direct communication between the brain and the computer can be used to overcome this impediment by improving or augmenting conventional forms of human communication. It is about the opportunity that the limitations of our body’s input and output capacities can be overcome using direct interaction with the brain, and it discusses the assumptions, possible limitations, and implications of a technology that I anticipate will be a major source of pervasive changes in the coming decades. PMID:18310804

  19. Coral Reef Genomics: Developing tools for functional genomics ofcoral symbiosis

    SciTech Connect

    Schwarz, Jodi; Brokstein, Peter; Manohar, Chitra; Coffroth, MaryAlice; Szmant, Alina; Medina, Monica

    2005-03-01

    Symbioses between cnidarians and dinoflagellates in the genus Symbiodinium are widespread in the marine environment. The importance of this symbiosis to reef-building corals and reef nutrient and carbon cycles is well documented, but little is known about the mechanisms by which the partners establish and regulate the symbiosis. Because the dinoflagellate symbionts live inside the cells of their host coral, the interactions between the partners occur on cellular and molecular levels, as each partner alters the expression of genes and proteins to facilitate the partnership. These interactions can examined using high-throughput techniques that allow thousands of genes to be examined simultaneously. We are developing the groundwork so that we can use DNA microarray profiling to identify genes involved in the Montastraea faveolata and Acropora palmata symbioses. Here we report results from the initial steps in this microarray initiative, that is, the construction of cDNA libraries from 4 of 16 target stages, sequencing of 3450 cDNA clones to generate Expressed Sequenced Tags (ESTs), and annotation of the ESTs to identify candidate genes to include in the microarrays. An understanding of how the coral-dinoflagellate symbiosis is regulated will have implications for atmospheric and ocean sciences, conservation biology, the study and diagnosis of coral bleaching and disease, and comparative studies of animal-protest interactions.

  20. Cell Biology of Cnidarian-Dinoflagellate Symbiosis

    PubMed Central

    Allemand, Denis; Weis, Virginia M.

    2012-01-01

    Summary: The symbiosis between cnidarians (e.g., corals or sea anemones) and intracellular dinoflagellate algae of the genus Symbiodinium is of immense ecological importance. In particular, this symbiosis promotes the growth and survival of reef corals in nutrient-poor tropical waters; indeed, coral reefs could not exist without this symbiosis. However, our fundamental understanding of the cnidarian-dinoflagellate symbiosis and of its links to coral calcification remains poor. Here we review what we currently know about the cell biology of cnidarian-dinoflagellate symbiosis. In doing so, we aim to refocus attention on fundamental cellular aspects that have been somewhat neglected since the early to mid-1980s, when a more ecological approach began to dominate. We review the four major processes that we believe underlie the various phases of establishment and persistence in the cnidarian/coral-dinoflagellate symbiosis: (i) recognition and phagocytosis, (ii) regulation of host-symbiont biomass, (iii) metabolic exchange and nutrient trafficking, and (iv) calcification. Where appropriate, we draw upon examples from a range of cnidarian-alga symbioses, including the symbiosis between green Hydra and its intracellular chlorophyte symbiont, which has considerable potential to inform our understanding of the cnidarian-dinoflagellate symbiosis. Ultimately, we provide a comprehensive overview of the history of the field, its current status, and where it should be going in the future. PMID:22688813

  1. Sensory Information and Encounter Rates of Interacting Species

    PubMed Central

    Hein, Andrew M.; McKinley, Scott A.

    2013-01-01

    Most motile organisms use sensory cues when searching for resources, mates, or prey. The searcher measures sensory data and adjusts its search behavior based on those data. Yet, classical models of species encounter rates assume that searchers move independently of their targets. This assumption leads to the familiar mass action-like encounter rate kinetics typically used in modeling species interactions. Here we show that this common approach can mischaracterize encounter rate kinetics if searchers use sensory information to search actively for targets. We use the example of predator-prey interactions to illustrate that predators capable of long-distance directional sensing can encounter prey at a rate proportional to prey density to the power (where is the dimension of the environment) when prey density is low. Similar anomalous encounter rate functions emerge even when predators pursue prey using only noisy, directionless signals. Thus, in both the high-information extreme of long-distance directional sensing, and the low-information extreme of noisy non-directional sensing, encounter rate kinetics differ qualitatively from those derived by classic theory of species interactions. Using a standard model of predator-prey population dynamics, we show that the new encounter rate kinetics derived here can change the outcome of species interactions. Our results demonstrate how the use of sensory information can alter the rates and outcomes of physical interactions in biological systems. PMID:23966847

  2. A novel reef coral symbiosis

    NASA Astrophysics Data System (ADS)

    Pantos, O.; Bythell, J. C.

    2010-09-01

    Reef building corals form close associations with unicellular microalgae, fungi, bacteria and archaea, some of which are symbiotic and which together form the coral holobiont. Associations with multicellular eukaryotes such as polychaete worms, bivalves and sponges are not generally considered to be symbiotic as the host responds to their presence by forming physical barriers with an active growth edge in the exoskeleton isolating the invader and, at a subcellular level, activating innate immune responses such as melanin deposition. This study describes a novel symbiosis between a newly described hydrozoan ( Zanclea margaritae sp. nov.) and the reef building coral Acropora muricata (= A. formosa), with the hydrozoan hydrorhiza ramifying throughout the coral tissues with no evidence of isolation or activation of the immune systems of the host. The hydrorhiza lacks a perisarc, which is typical of symbiotic species of this and related genera, including species that associate with other cnidarians such as octocorals. The symbiosis was observed at all sites investigated from two distant locations on the Great Barrier Reef, Australia, and appears to be host species specific, being found only in A. muricata and in none of 30 other species investigated at these sites. Not all colonies of A. muricata host the hydrozoans and both the prevalence within the coral population (mean = 66%) and density of emergent hydrozoan hydranths on the surface of the coral (mean = 4.3 cm-2, but up to 52 cm-2) vary between sites. The form of the symbiosis in terms of the mutualism-parasitism continuum is not known, although the hydrozoan possesses large stenotele nematocysts, which may be important for defence from predators and protozoan pathogens. This finding expands the known A. muricata holobiont and the association must be taken into account in future when determining the corals’ abilities to defend against predators and withstand stress.

  3. Personality psychology's comeback and its emerging symbiosis with social psychology.

    PubMed

    Swann, William B; Seyle, Conor

    2005-02-01

    Psychology's early allegiance to behaviorism and experimental methods led many to disparage personality approaches throughout much of last century. Doubts about personality psychology's viability culminated in Mischel's assertion that measures of personality account for modest amounts of variance in behavior. In the years immediately following this critique, interest in personality research waned and many psychology departments dropped their training programs in personality. Throughout the past two decades, however, personality psychology has enjoyed a resurgence. The authors discuss several possible explanations for personality's comeback and then describe the emergence of a promising symbiosis between personality psychology and its sister discipline, social psychology. The article concludes by noting that although this emerging symbiosis is likely to continue bearing considerable theoretical fruit, the traditional distinction between personal, situational, and interactional determinants of behavior continues to be useful within appropriate contexts.

  4. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation.

    PubMed

    Göhre, Vera; Paszkowski, Uta

    2006-05-01

    High concentrations of heavy metals (HM) in the soil have detrimental effects on ecosystems and are a risk to human health as they can enter the food chain via agricultural products or contaminated drinking water. Phytoremediation, a sustainable and inexpensive technology based on the removal of pollutants from the environment by plants, is becoming an increasingly important objective in plant research. However, as phytoremediation is a slow process, improvement of efficiency and thus increased stabilization or removal of HMs from soils is an important goal. Arbuscular mycorrhizal (AM) fungi provide an attractive system to advance plant-based environmental clean-up. During symbiotic interaction the hyphal network functionally extends the root system of their hosts. Thus, plants in symbiosis with AM fungi have the potential to take up HM from an enlarged soil volume. In this review, we summarize current knowledge about the contribution of the AM symbiosis to phytoremediation of heavy metals.

  5. Phosphorus and Nitrogen Regulate Arbuscular Mycorrhizal Symbiosis in Petunia hybrida

    PubMed Central

    Nouri, Eva; Breuillin-Sessoms, Florence; Feller, Urs; Reinhardt, Didier

    2014-01-01

    Phosphorus and nitrogen are essential nutrient elements that are needed by plants in large amounts. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. On the other hand, these nutrients influence root colonization by mycorrhizal fungi and symbiotic functioning. This represents a feedback mechanism that allows plants to control the fungal symbiont depending on nutrient requirements and supply. Elevated phosphorus supply has previously been shown to exert strong inhibition of arbuscular mycorrhizal development. Here, we address to what extent inhibition by phosphorus is influenced by other nutritional pathways in the interaction between Petunia hybrida and R. irregularis. We show that phosphorus and nitrogen are the major nutritional determinants of the interaction. Interestingly, the symbiosis-promoting effect of nitrogen starvation dominantly overruled the suppressive effect of high phosphorus nutrition onto arbuscular mycorrhiza, suggesting that plants promote the symbiosis as long as they are limited by one of the two major nutrients. Our results also show that in a given pair of symbiotic partners (Petunia hybrida and R. irregularis), the entire range from mutually symbiotic to parasitic can be observed depending on the nutritional conditions. Taken together, these results reveal complex nutritional feedback mechanisms in the control of root colonization by arbuscular mycorrhizal fungi. PMID:24608923

  6. Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida.

    PubMed

    Nouri, Eva; Breuillin-Sessoms, Florence; Feller, Urs; Reinhardt, Didier

    2014-01-01

    Phosphorus and nitrogen are essential nutrient elements that are needed by plants in large amounts. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. On the other hand, these nutrients influence root colonization by mycorrhizal fungi and symbiotic functioning. This represents a feedback mechanism that allows plants to control the fungal symbiont depending on nutrient requirements and supply. Elevated phosphorus supply has previously been shown to exert strong inhibition of arbuscular mycorrhizal development. Here, we address to what extent inhibition by phosphorus is influenced by other nutritional pathways in the interaction between Petunia hybrida and R. irregularis. We show that phosphorus and nitrogen are the major nutritional determinants of the interaction. Interestingly, the symbiosis-promoting effect of nitrogen starvation dominantly overruled the suppressive effect of high phosphorus nutrition onto arbuscular mycorrhiza, suggesting that plants promote the symbiosis as long as they are limited by one of the two major nutrients. Our results also show that in a given pair of symbiotic partners (Petunia hybrida and R. irregularis), the entire range from mutually symbiotic to parasitic can be observed depending on the nutritional conditions. Taken together, these results reveal complex nutritional feedback mechanisms in the control of root colonization by arbuscular mycorrhizal fungi.

  7. Metabolic symbiosis at the origin of eukaryotes.

    PubMed

    López-Garćia, P; Moreira, D

    1999-03-01

    Thirty years after Margulis revived the endosymbiosis theory for the origin of mitochondria and chloroplasts, two novel symbiosis hypotheses for the origin of eukaryotes have been put forward. Both propose that eukaryotes arose through metabolic symbiosis (syntrophy) between eubacteria and methanogenic Archaea. They also propose that this was mediated by interspecies hydrogen transfer and that, initially, mitochondria were anaerobic. These hypotheses explain the mosaic character of eukaryotes (i.e. an archaeal-like genetic machinery and a eubacterial-like metabolism), as well as distinct eukaryotic characteristics (which are proposed to be products of symbiosis). Combined data from comparative genomics, microbial ecology and the fossil record should help to test their validity.

  8. Shoot- and root-borne cytokinin influences arbuscular mycorrhizal symbiosis.

    PubMed

    Cosme, Marco; Ramireddy, Eswarayya; Franken, Philipp; Schmülling, Thomas; Wurst, Susanne

    2016-10-01

    The arbuscular mycorrhizal (AM) symbiosis is functionally important for the nutrition and growth of most terrestrial plants. Nearly all phytohormones are employed by plants to regulate the symbiosis with AM fungi, but the regulatory role of cytokinin (CK) is not well understood. Here, we used transgenic tobacco (Nicotiana tabacum) with a root-specific or constitutive expression of CK-degrading CKX genes and the corresponding wild-type to investigate whether a lowered content of CK in roots or in both roots and shoots influences the interaction with the AM fungus Rhizophagus irregularis. Our data indicates that shoot CK has a positive impact on AM fungal development in roots and on the root transcript level of an AM-responsive phosphate transporter gene (NtPT4). A reduced CK content in roots caused shoot and root growth depression following AM colonization, while neither the uptake of phosphorus or nitrogen nor the root transcript levels of NtPT4 were significantly affected. This suggests that root CK may restrict the C availability from the roots to the fungus thus averting parasitism by AM fungi. Taken together, our study indicates that shoot- and root-borne CK have distinct roles in AM symbiosis. We propose a model illustrating how plants may employ CK to regulate nutrient exchange with the ubiquitous AM fungi.

  9. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis

    SciTech Connect

    Martin, F.; Aerts, A.; Ahren, D.; Brun, A.; Danchin, E. G. J.; Duchaussoy, F.; Gibon, J.; Kohler, A.; Lindquist, E.; Peresa, V.; Salamov, A.; Shapiro, H. J.; Wuyts, J.; Blaudez, D.; Buee, M.; Brokstein, P.; Canback, B.; Cohen, D.; Courty, P. E.; Coutinho, P. M.; Delaruelle, C.; Detter, J. C.; Deveau, A.; DiFazio, S.; Duplessis, S.; Fraissinet-Tachet, L.; Lucic, E.; Frey-Klett, P.; Fourrey, C.; Feussner, I.; Gay, G.; Grimwood, J.; Hoegger, P. J.; Jain, P.; Kilaru, S.; Labbe, J.; Lin, Y. C.; Legue, V.; Le Tacon, F.; Marmeisse, R.; Melayah, D.; Montanini, B.; Muratet, M.; Nehls, U.; Niculita-Hirzel, H.; Secq, M. P. Oudot-Le; Peter, M.; Quesneville, H.; Rajashekar, B.; Reich, M.; Rouhier, N.; Schmutz, J.; Yin, T.; Chalot, M.; Henrissat, B.; Kues, U.; Lucas, S.; Van de Peer, Y.; Podila, G. K.; Polle, A.; Pukkila, P. J.; Richardson, P. M.; Rouze, P.; Sanders, I. R.; Stajich, J. E.; Tunlid, A.; Tuskan, G.; Grigoriev, I. V.

    2007-08-10

    Mycorrhizal symbioses the union of roots and soil fungi are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants 1, 2. Boreal, temperate and montane forests all depend on ectomycorrhizae1. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-megabase genome assembly contains 20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features, most notably a battery of effector-type small secreted proteins (SSPs) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific SSPs probably have a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell wall polysaccharides, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem to perform vital functions in the carbon and nitrogen cycles that are

  10. Laser microdissection and its application to analyze gene expression in arbuscular mycorrhizal symbiosis.

    PubMed

    Gomez, S Karen; Harrison, Maria J

    2009-05-01

    Phosphorus is essential for plant growth, and in many soils phosphorus availability limits crop production. Most plants in natural ecosystems obtain phosphorus via a symbiotic partnership with arbuscular mycorrhizal (AM) fungi. While the significance of these associations is apparent, their molecular basis is poorly understood. Consequently, the potential to harness the mycorrhizal symbiosis to improve phosphorus nutrition in agriculture is not realized. Transcript profiling has recently been used to investigate gene expression changes that accompany development of the AM symbiosis. While these approaches have enabled the identification of AM-symbiosis-associated genes, they have generally involved the use of RNA from whole mycorrhizal roots. Laser microdissection techniques allow the dissection and capture of individual cells from a tissue. RNA can then be isolated from these samples and cell-type specific gene expression information can be obtained. This technology has been applied to obtain cells from plants and more recently to study plant-microbe interactions. The latter techniques, particularly those developed for root-microbe interactions, are of relevance to plant-parasitic weed research. Here, laser microdissection, its use in plant biology and in particular plant-microbe interactions are discussed. An overview of the AM symbiosis is then provided, with a focus on recent advances in understanding development of the arbuscule-cortical cell interface. Finally, the recent applications of laser microdissection for analyses of AM symbiosis are discussed.

  11. Rhizobium-legume symbiosis shares an exocytotic pathway required for arbuscule formation.

    PubMed

    Ivanov, Sergey; Fedorova, Elena E; Limpens, Erik; De Mita, Stephane; Genre, Andrea; Bonfante, Paola; Bisseling, Ton

    2012-05-22

    Endosymbiotic interactions are characterized by the formation of specialized membrane compartments, by the host in which the microbes are hosted, in an intracellular manner. Two well-studied examples, which are of major agricultural and ecological importance, are the widespread arbuscular mycorrhizal symbiosis and the Rhizobium-legume symbiosis. In both symbioses, the specialized host membrane that surrounds the microbes forms a symbiotic interface, which facilitates the exchange of, for example, nutrients in a controlled manner and, therefore, forms the heart of endosymbiosis. Despite their key importance, the molecular and cellular mechanisms underlying the formation of these membrane interfaces are largely unknown. Recent studies strongly suggest that the Rhizobium-legume symbiosis coopted a signaling pathway, including receptor, from the more ancient arbuscular mycorrhizal symbiosis to form a symbiotic interface. Here, we show that two highly homologous exocytotic vesicle-associated membrane proteins (VAMPs) are required for formation of the symbiotic membrane interface in both interactions. Silencing of these Medicago VAMP72 genes has a minor effect on nonsymbiotic plant development and nodule formation. However, it blocks symbiosome as well as arbuscule formation, whereas root colonization by the microbes is not affected. Identification of these VAMP72s as common symbiotic regulators in exocytotic vesicle trafficking suggests that the ancient exocytotic pathway forming the periarbuscular membrane compartment has also been coopted in the Rhizobium-legume symbiosis.

  12. Impact of simulated microgravity on the normal developmental time line of an animal-bacteria symbiosis.

    PubMed

    Foster, Jamie S; Khodadad, Christina L M; Ahrendt, Steven R; Parrish, Mirina L

    2013-01-01

    The microgravity environment during space flight imposes numerous adverse effects on animal and microbial physiology. It is unclear, however, how microgravity impacts those cellular interactions between mutualistic microbes and their hosts. Here, we used the symbiosis between the host squid Euprymna scolopes and its luminescent bacterium Vibrio fischeri as a model system. We examined the impact of simulated microgravity on the timeline of bacteria-induced development in the host light organ, the site of the symbiosis. To simulate the microgravity environment, host squid and symbiosis-competent bacteria were incubated together in high-aspect ratio rotating wall vessel bioreactors and examined throughout the early stages of the bacteria-induced morphogenesis. The host innate immune response was suppressed under simulated microgravity; however, there was an acceleration of bacteria-induced apoptosis and regression in the host tissues. These results suggest that the space flight environment may alter the cellular interactions between animal hosts and their natural healthy microbiome.

  13. Spatial games with cyclic interactions: the response of empty sites

    NASA Astrophysics Data System (ADS)

    Brown, Bart; Pleimling, Michel

    2015-03-01

    Predator-prey models of the May-Leonard family employ empty sites in a spatial setting as an intermediate step in the reproduction process. This requirement makes the number and arrangement of empty sites important to the formation of space-time patterns. We study the density of empty sites in a stochastic predator-prey model in which the species compete in a cyclic way in two dimensions. In some cases systems of this type quickly form domains of neutral species after which all predation, and therefore, reproduction occur near the interface of competing domains. Using Monte Carlo simulations we investigate the relationship of this density of empty sites to the time-dependent domain length. We further explore the dynamics by introducing perturbations to the interaction rates of the system after which we measure the perturbed density, i.e. the response of empty sites, as the system relaxes. A dynamical scaling behavior is observed in the response of empty sites. This work is supported by the US National Science Foundation through Grant DMR-1205309.

  14. Differential spatio-temporal expression of carotenoid cleavage dioxygenases regulates apocarotenoid fluxes during AM symbiosis.

    PubMed

    López-Ráez, Juan A; Fernández, Iván; García, Juan M; Berrio, Estefanía; Bonfante, Paola; Walter, Michael H; Pozo, María J

    2015-01-01

    Apocarotenoids are a class of compounds that play important roles in nature. In recent years, a prominent role for these compounds in arbuscular mycorrhizal (AM) symbiosis has been shown. They are derived from carotenoids by the action of the carotenoid cleavage dioxygenase (CCD) enzyme family. In the present study, using tomato as a model, the spatio-temporal expression pattern of the CCD genes during AM symbiosis establishment and functioning was investigated. In addition, the levels of the apocarotenoids strigolactones (SLs), C13 α-ionol and C14 mycorradicin (C13/C14) derivatives were analyzed. The results suggest an increase in SLs promoted by the presence of the AM fungus at the early stages of the interaction, which correlated with an induction of the SL biosynthesis gene SlCCD7. At later stages, induction of SlCCD7 and SlCCD1 expression in arbusculated cells promoted the production of C13/C14 apocarotenoid derivatives. We show here that the biosynthesis of apocarotenoids during AM symbiosis is finely regulated throughout the entire process at the gene expression level, and that CCD7 constitutes a key player in this regulation. Once the symbiosis is established, apocarotenoid flux would be turned towards the production of C13/C14 derivatives, thus reducing SL biosynthesis and maintaining a functional symbiosis.

  15. DELLA proteins regulate expression of a subset of AM symbiosis-induced genes in Medicago truncatula.

    PubMed

    Floss, Daniela S; Lévesque-Tremblay, Véronique; Park, Hee-Jin; Harrison, Maria J

    2016-01-01

    The majority of the vascular flowering plants form symbiotic associations with fungi from the phylum Glomeromycota through which both partners gain access to nutrients, either mineral nutrients in the case of the plant, or carbon, in the case of the fungus. (1) The association develops in the roots and requires substantial remodeling of the root cortical cells where branched fungal hyphae, called arbuscules, are housed in a new membrane-bound apoplastic compartment. (2) Nutrient exchange between the symbionts occurs over this interface and its development and maintenance is critical for symbiosis. Previously, we showed that DELLA proteins, which are well known as repressors of gibberellic acid signaling, also regulate development of AM symbiosis and are necessary to enable arbuscule development. (3) Furthermore, constitutive overexpression of a dominant DELLA protein (della1-Δ18) is sufficient to induce transcripts of several AM symbiosis-induced genes, even in the absence of the fungal symbiont. (4) Here we further extend this approach and identify AM symbiosis genes that respond transcriptionally to constitutive expression of a dominant DELLA protein and also genes that do respond to this treatment. Additionally, we demonstrate that DELLAs interact with REQUIRED FOR ARBUSCULE DEVELOPMENT 1 (RAD1) which further extends our knowledge of GRAS factor complexes that have the potential to regulate gene expression during AM symbiosis.

  16. Ocean acidification alters fish-jellyfish symbiosis.

    PubMed

    Nagelkerken, Ivan; Pitt, Kylie A; Rutte, Melchior D; Geertsma, Robbert C

    2016-06-29

    Symbiotic relationships are common in nature, and are important for individual fitness and sustaining species populations. Global change is rapidly altering environmental conditions, but, with the exception of coral-microalgae interactions, we know little of how this will affect symbiotic relationships. We here test how the effects of ocean acidification, from rising anthropogenic CO2 emissions, may alter symbiotic interactions between juvenile fish and their jellyfish hosts. Fishes treated with elevated seawater CO2 concentrations, as forecast for the end of the century on a business-as-usual greenhouse gas emission scenario, were negatively affected in their behaviour. The total time that fish (yellowtail scad) spent close to their jellyfish host in a choice arena where they could see and smell their host was approximately three times shorter under future compared with ambient CO2 conditions. Likewise, the mean number of attempts to associate with jellyfish was almost three times lower in CO2-treated compared with control fish, while only 63% (high CO2) versus 86% (control) of all individuals tested initiated an association at all. By contrast, none of three fish species tested were attracted solely to jellyfish olfactory cues under present-day CO2 conditions, suggesting that the altered fish-jellyfish association is not driven by negative effects of ocean acidification on olfaction. Because shelter is not widely available in the open water column and larvae of many (and often commercially important) pelagic species associate with jellyfish for protection against predators, modification of the fish-jellyfish symbiosis might lead to higher mortality and alter species population dynamics, and potentially have flow-on effects for their fisheries.

  17. Stability of complex food webs: resilience, resistance and the average interaction strength.

    PubMed

    Vallina, Sergio M; Le Quéré, Corinne

    2011-03-07

    In the face of stochastic climatic perturbations, the overall stability of an ecosystem will be determined by the balance between its resilience and its resistance, but their relative importance is still unknown. Using aquatic food web models we study ecosystem stability as a function of food web complexity. We measured three dynamical stability properties: resilience, resistance, and variability. Specifically, we evaluate how a decrease in the strength of predator-prey interactions with food web complexity, reflecting a decrease in predation efficiency with the number of prey per predator, affects the overall stability of the ecosystem. We find that in mass conservative ecosystems, a lower interaction strength slows down the mass cycling rate in the system and this increases its resistance to perturbations of the growth rate of primary producers. Furthermore, we show that the overall stability of the food webs is mostly given by their resistance, and not by their resilience. Resilience and resistance display opposite trends, although they are shown not to be simply opposite concepts but rather independent properties. The ecological implication is that weaker predator-prey interactions in closed ecosystems can stabilize food web dynamics by increasing its resistance to climatic perturbations.

  18. Predator-prey relationships among larval dragonflies, salamanders, and frogs.

    PubMed

    Caldwell, J P; Thorp, J H; Jervey, T O

    1980-09-01

    Tadpoles of the barking tree frog, Hyla gratiosa, are abundant in spring and summer in some ponds and Carolina bays on the Savannah River Plant near Aiken, South Carolina. To determine how these tadpoles survive in the presence of predaceous salamander larvae, Ambystoma talpoideum, and larvae of an aeshnid dragonfly, Anax junius, we determined fields densities and sizes of the predators and the prey and conducted predation experiments in the laboratory. Tadpoles rapidly grow to a size not captured by Ambystoma, although Anax larvae can capture slightly larger tadpoles. Differing habitat preferences among the tadpoles and the two predator species probably aid in reducing predation pressure. Preliminary work indicates that the tadpoles may have an immobility response to an attack by a predator. In addition, the smallest, most vulnerable tadpoles have a distinctive color pattern which may function to disrupt the body outline and make them indiscernable to predators.

  19. Bifurcations and dynamics of a discrete predator-prey system.

    PubMed

    Asheghi, Rasoul

    2014-01-01

    In this paper, we study the dynamics behaviour of a stratum of plant-herbivore which is modelled through the following F(x, y)=(f(x, y), g(x, y)) two-dimensional map with four parameters defined by [Formula: see text] where x ≥ 0, y ≥ 0, and the real parameters a, b, r, k are all positive. We will focus on the case a ≠ b. We study the stability of fixed points and do the analysis of the period-doubling and the Neimark-Sacker bifurcations in a standard way.

  20. The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice.

    PubMed

    Miyata, Kana; Kozaki, Toshinori; Kouzai, Yusuke; Ozawa, Kenjirou; Ishii, Kazuo; Asamizu, Erika; Okabe, Yoshihiro; Umehara, Yosuke; Miyamoto, Ayano; Kobae, Yoshihiro; Akiyama, Kohki; Kaku, Hanae; Nishizawa, Yoko; Shibuya, Naoto; Nakagawa, Tomomi

    2014-11-01

    Plants are constantly exposed to threats from pathogenic microbes and thus developed an innate immune system to protect themselves. On the other hand, many plants also have the ability to establish endosymbiosis with beneficial microbes such as arbuscular mycorrhizal (AM) fungi or rhizobial bacteria, which improves the growth of host plants. How plants evolved these systems managing such opposite plant-microbe interactions is unclear. We show here that knockout (KO) mutants of OsCERK1, a rice receptor kinase essential for chitin signaling, were impaired not only for chitin-triggered defense responses but also for AM symbiosis, indicating the bifunctionality of OsCERK1 in defense and symbiosis. On the other hand, a KO mutant of OsCEBiP, which forms a receptor complex with OsCERK1 and is essential for chitin-triggered immunity, established mycorrhizal symbiosis normally. Therefore, OsCERK1 but not chitin-triggered immunity is required for AM symbiosis. Furthermore, experiments with chimeric receptors showed that the kinase domains of OsCERK1 and homologs from non-leguminous, mycorrhizal plants could trigger nodulation signaling in legume-rhizobium interactions as the kinase domain of Nod factor receptor1 (NFR1), which is essential for triggering the nodulation program in leguminous plants, did. Because leguminous plants are believed to have developed the rhizobial symbiosis on the basis of AM symbiosis, our results suggest that the symbiotic function of ancestral CERK1 in AM symbiosis enabled the molecular evolution to leguminous NFR1 and resulted in the establishment of legume-rhizobia symbiosis. These results also suggest that OsCERK1 and homologs serve as a molecular switch that activates defense or symbiotic responses depending on the infecting microbes.

  1. Heritable symbiosis: The advantages and perils of an evolutionary rabbit hole.

    PubMed

    Bennett, Gordon M; Moran, Nancy A

    2015-08-18

    Many eukaryotes have obligate associations with microorganisms that are transmitted directly between generations. A model for heritable symbiosis is the association of aphids, a clade of sap-feeding insects, and Buchnera aphidicola, a gammaproteobacterium that colonized an aphid ancestor 150 million years ago and persists in almost all 5,000 aphid species. Symbiont acquisition enables evolutionary and ecological expansion; aphids are one of many insect groups that would not exist without heritable symbiosis. Receiving less attention are potential negative ramifications of symbiotic alliances. In the short run, symbionts impose metabolic costs. Over evolutionary time, hosts evolve dependence beyond the original benefits of the symbiosis. Symbiotic partners enter into an evolutionary spiral that leads to irreversible codependence and associated risks. Host adaptations to symbiosis (e.g., immune-system modification) may impose vulnerabilities. Symbiont genomes also continuously accumulate deleterious mutations, limiting their beneficial contributions and environmental tolerance. Finally, the fitness interests of obligate heritable symbionts are distinct from those of their hosts, leading to selfish tendencies. Thus, genes underlying the host-symbiont interface are predicted to follow a coevolutionary arms race, as observed for genes governing host-pathogen interactions. On the macroevolutionary scale, the rapid evolution of interacting symbiont and host genes is predicted to accelerate host speciation rates by generating genetic incompatibilities. However, degeneration of symbiont genomes may ultimately limit the ecological range of host species, potentially increasing extinction risk. Recent results for the aphid-Buchnera symbiosis and related systems illustrate that, whereas heritable symbiosis can expand ecological range and spur diversification, it also presents potential perils.

  2. Heritable symbiosis: The advantages and perils of an evolutionary rabbit hole

    PubMed Central

    Bennett, Gordon M.; Moran, Nancy A.

    2015-01-01

    Many eukaryotes have obligate associations with microorganisms that are transmitted directly between generations. A model for heritable symbiosis is the association of aphids, a clade of sap-feeding insects, and Buchnera aphidicola, a gammaproteobacterium that colonized an aphid ancestor 150 million years ago and persists in almost all 5,000 aphid species. Symbiont acquisition enables evolutionary and ecological expansion; aphids are one of many insect groups that would not exist without heritable symbiosis. Receiving less attention are potential negative ramifications of symbiotic alliances. In the short run, symbionts impose metabolic costs. Over evolutionary time, hosts evolve dependence beyond the original benefits of the symbiosis. Symbiotic partners enter into an evolutionary spiral that leads to irreversible codependence and associated risks. Host adaptations to symbiosis (e.g., immune-system modification) may impose vulnerabilities. Symbiont genomes also continuously accumulate deleterious mutations, limiting their beneficial contributions and environmental tolerance. Finally, the fitness interests of obligate heritable symbionts are distinct from those of their hosts, leading to selfish tendencies. Thus, genes underlying the host–symbiont interface are predicted to follow a coevolutionary arms race, as observed for genes governing host–pathogen interactions. On the macroevolutionary scale, the rapid evolution of interacting symbiont and host genes is predicted to accelerate host speciation rates by generating genetic incompatibilities. However, degeneration of symbiont genomes may ultimately limit the ecological range of host species, potentially increasing extinction risk. Recent results for the aphid–Buchnera symbiosis and related systems illustrate that, whereas heritable symbiosis can expand ecological range and spur diversification, it also presents potential perils. PMID:25713367

  3. Bacterial Leaf Symbiosis in Angiosperms: Host Specificity without Co-Speciation

    PubMed Central

    Lemaire, Benny; Vandamme, Peter; Merckx, Vincent; Smets, Erik; Dessein, Steven

    2011-01-01

    Bacterial leaf symbiosis is a unique and intimate interaction between bacteria and flowering plants, in which endosymbionts are organized in specialized leaf structures. Previously, bacterial leaf symbiosis has been described as a cyclic and obligate interaction in which the endosymbionts are vertically transmitted between plant generations and lack autonomous growth. Theoretically this allows for co-speciation between leaf nodulated plants and their endosymbionts. We sequenced the nodulated Burkholderia endosymbionts of 54 plant species from known leaf nodulated angiosperm genera, i.e. Ardisia, Pavetta, Psychotria and Sericanthe. Phylogenetic reconstruction of bacterial leaf symbionts and closely related free-living bacteria indicates the occurrence of multiple horizontal transfers of bacteria from the environment to leaf nodulated plant species. This rejects the hypothesis of a long co-speciation process between the bacterial endosymbionts and their host plants. Our results indicate a recent evolutionary process towards a stable and host specific interaction confirming the proposed maternal transmission mode of the endosymbionts through the seeds. Divergence estimates provide evidence for a relatively recent origin of bacterial leaf symbiosis, dating back to the Miocene (5–23 Mya). This geological epoch was characterized by cool and arid conditions, which may have triggered the origin of bacterial leaf symbiosis. PMID:21915326

  4. The paradox of enrichment in phytoplankton by induced competitive interactions.

    PubMed

    Tubay, Jerrold M; Ito, Hiromu; Uehara, Takashi; Kakishima, Satoshi; Morita, Satoru; Togashi, Tatsuya; Tainaka, Kei-ichi; Niraula, Mohan P; Casareto, Beatriz E; Suzuki, Yoshimi; Yoshimura, Jin

    2013-10-03

    The biodiversity loss of phytoplankton with eutrophication has been reported in many aquatic ecosystems, e.g., water pollution and red tides. This phenomenon seems similar, but different from the paradox of enrichment via trophic interactions, e.g., predator-prey systems. We here propose the paradox of enrichment by induced competitive interactions using multiple contact process (a lattice Lotka-Volterra competition model). Simulation results demonstrate how eutrophication invokes more competitions in a competitive ecosystem resulting in the loss of phytoplankton diversity in ecological time. The paradox is enhanced under local interactions, indicating that the limited dispersal of phytoplankton reduces interspecific competition greatly. Thus, the paradox of enrichment appears when eutrophication destroys an ecosystem either by elevated interspecific competition within a trophic level and/or destabilization by trophic interactions. Unless eutrophication due to human activities is ceased, the world's aquatic ecosystems will be at risk.

  5. CERBERUS and NSP1 of Lotus japonicus are common symbiosis genes that modulate arbuscular mycorrhiza development.

    PubMed

    Takeda, Naoya; Tsuzuki, Syusaku; Suzaki, Takuya; Parniske, Martin; Kawaguchi, Masayoshi

    2013-10-01

    Arbuscular mycorrhizal symbiosis (AMS) and root nodule symbiosis (RNS) are mutualistic plant-microbe interactions that confer nutritional benefits to both partners. Leguminous plants possess a common genetic system for intracellular symbiosis with AM fungi and with rhizobia. Here we show that CERBERUS and NSP1, which respectively encode an E3 ubiquitin ligase and a GRAS transcriptional regulator and which have previously only been implicated in RNS, are involved in AM fungal infection in Lotus japonicus. Hyphal elongation along the longitudinal axis of the root was reduced in the cerberus mutant, giving rise to a lower colonization level. Knockout of NSP1 decreased the frequency of plants colonized by AM fungi or rhizobia. CERBERUS and NSP1 showed different patterns of expression in response to infection with symbiotic microbes. A low constitutive level of CERBERUS expression was observed in the root and an increased level of NSP1 expression was detected in arbuscule-containing cells. Induction of AM marker gene was triggered in both cerberus and nsp1 mutants by infection with symbiotic microbes; however, the mutants showed a weaker induction of marker gene expression than the wild type, mirroring their lower level of colonization. The common symbiosis genes are believed to act in an early signaling pathway for recognition of symbionts and for triggering early symbiotic responses. Our quantitative analysis of symbiotic phenotypes revealed developmental defects of the novel common symbiosis mutants in both symbioses, which demonstrates that common symbiosis mechanisms also contribute to a range of functions at later or different stages of symbiont infection.

  6. Plant hormones as signals in arbuscular mycorrhizal symbiosis.

    PubMed

    Miransari, Mohammad; Abrishamchi, A; Khoshbakht, K; Niknam, V

    2014-06-01

    Arbuscular mycorrhizal (AM) fungi are non-specific symbionts developing mutual and beneficial symbiosis with most terrestrial plants. Because of the obligatory nature of the symbiosis, the presence of the host plant during the onset and proceeding of symbiosis is necessary. However, AM fungal spores are able to germinate in the absence of the host plant. The fungi detect the presence of the host plant through some signal communications. Among the signal molecules, which can affect mycorrhizal symbiosis are plant hormones, which may positively or adversely affect the symbiosis. In this review article, some of the most recent findings regarding the signaling effects of plant hormones, on mycorrhizal fungal symbiosis are reviewed. This may be useful for the production of plants, which are more responsive to mycorrhizal symbiosis under stress.

  7. Unethical and Deadly Symbiosis in Higher Education

    ERIC Educational Resources Information Center

    Crumbley, D. Larry; Flinn, Ronald; Reichelt, Kenneth J.

    2012-01-01

    As administrators are pressured to increase retention rates in accounting departments, and higher education in general, a deadly symbiosis is occurring. Most students and parents only wish for high grades, so year after year many educators engage in unethical grade inflation and course work deflation. Since administrators use the students to audit…

  8. Radiation Fields in Blazars - a Possible Extension of the Small Scale Symbiosis (Disk/Jet) into a Large Scale (Dust/Dust) Symbiosis

    NASA Astrophysics Data System (ADS)

    Donea, Alina-C.; Protheroe, Raymond J.

    In blazar models both protons and electrons may be efficiently accelerated in jets and produce γ-rays. Here we discuss the interactions of these γ-rays with different radiation fields. The external radiation fields within a few parsecs from the black hole involved in such interactions could be the direct radiation from the accretion disk coupled with the jet, the infrared radiation from a dusty torus, and the emission line radiation from the broad line region surrounding the accretion disk. The optical thickness for absorption of γ-ray photons in the external radiation fields is analysed for blazars and quasars. Based on the unification theory of active galactic nuclei we briefly review the evidence for the existence of small scale dust tori in blazars/FR I. We propose that the existing jet-accretion disk symbiosis extrapolates to a large scale symbiosis between other important dusty constituents of the blazar/FR I family.

  9. Diminished exoproteome of Frankia spp. in culture and symbiosis.

    PubMed

    Mastronunzio, J E; Huang, Y; Benson, D R

    2009-11-01

    Frankia species are the most geographically widespread gram-positive plant symbionts, carrying out N(2) fixation in root nodules of trees and woody shrubs called actinorhizal plants. Taking advantage of the sequencing of three Frankia genomes, proteomics techniques were used to investigate the population of extracellular proteins (the exoproteome) from Frankia, some of which potentially mediate host-microbe interactions. Initial two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of culture supernatants indicated that cytoplasmic proteins appeared in supernatants as cells aged, likely because older hyphae lyse in this slow-growing filamentous actinomycete. Using liquid chromatography coupled to tandem mass spectrometry to identify peptides, 38 proteins were identified in the culture supernatant of Frankia sp. strain CcI3, but only three had predicted export signal peptides. In symbiotic cells, 42 signal peptide-containing proteins were detected from strain CcI3 in Casuarina cunninghamiana and Casuarina glauca root nodules, while 73 and 53 putative secreted proteins containing signal peptides were identified from Frankia strains in field-collected root nodules of Alnus incana and Elaeagnus angustifolia, respectively. Solute-binding proteins were the most commonly identified secreted proteins in symbiosis, particularly those predicted to bind branched-chain amino acids and peptides. These direct proteomics results complement a previous bioinformatics study that predicted few secreted hydrolytic enzymes in the Frankia proteome and provide direct evidence that the symbiosis succeeds partly, if not largely, because of a benign relationship.

  10. Hydrodynamic interaction of swimming organisms in an inertial regime

    NASA Astrophysics Data System (ADS)

    Li, Gaojin; Ostace, Anca; Ardekani, Arezoo M.

    2016-11-01

    We numerically investigate the hydrodynamic interaction of swimming organisms at small to intermediate Reynolds number regimes, i.e., Re˜O (0.1 -100 ) , where inertial effects are important. The hydrodynamic interaction of swimming organisms in this regime is significantly different from the Stokes regime for microorganisms, as well as the high Reynolds number flows for fish and birds, which involves strong flow separation and detached vortex structures. Using an archetypal swimmer model, called a "squirmer," we find that the inertial effects change the contact time and dispersion dynamics of a pair of pusher swimmers, and trigger hydrodynamic attraction for two pullers. These results are potentially important in investigating predator-prey interactions, sexual reproduction, and the encounter rate of marine organisms such as copepods, ctenophora, and larvae.

  11. Hydrodynamic interaction of swimming organisms in an inertial regime.

    PubMed

    Li, Gaojin; Ostace, Anca; Ardekani, Arezoo M

    2016-11-01

    We numerically investigate the hydrodynamic interaction of swimming organisms at small to intermediate Reynolds number regimes, i.e., Re∼O(0.1-100), where inertial effects are important. The hydrodynamic interaction of swimming organisms in this regime is significantly different from the Stokes regime for microorganisms, as well as the high Reynolds number flows for fish and birds, which involves strong flow separation and detached vortex structures. Using an archetypal swimmer model, called a "squirmer," we find that the inertial effects change the contact time and dispersion dynamics of a pair of pusher swimmers, and trigger hydrodynamic attraction for two pullers. These results are potentially important in investigating predator-prey interactions, sexual reproduction, and the encounter rate of marine organisms such as copepods, ctenophora, and larvae.

  12. Getting What Is Served? Feeding Ecology Influencing Parasite-Host Interactions in Invasive Round Goby Neogobius melanostomus

    PubMed Central

    Emde, Sebastian; Kochmann, Judith; Kuhn, Thomas; Plath, Martin; Klimpel, Sven

    2014-01-01

    Freshwater ecosystems are increasingly impacted by alien invasive species which have the potential to alter various ecological interactions like predator-prey and host-parasite relationships. Here, we simultaneously examined predator-prey interactions and parasitization patterns of the highly invasive round goby (Neogobius melanostomus) in the rivers Rhine and Main in Germany. A total of 350 N. melanostomus were sampled between June and October 2011. Gut content analysis revealed a broad prey spectrum, partly reflecting temporal and local differences in prey availability. For the major food type (amphipods), species compositions were determined. Amphipod fauna consisted entirely of non-native species and was dominated by Dikerogammarus villosus in the Main and Echinogammarus trichiatus in the Rhine. However, the availability of amphipod species in the field did not reflect their relative abundance in gut contents of N. melanostomus. Only two metazoan parasites, the nematode Raphidascaris acus and the acanthocephalan Pomphorhynchus sp., were isolated from N. melanostomus in all months, whereas unionid glochidia were only detected in June and October in fish from the Main. To analyse infection pathways, we examined 17,356 amphipods and found Pomphorhynchus sp. larvae only in D. villosus in the river Rhine at a prevalence of 0.15%. Dikerogammarus villosus represented the most important amphipod prey for N. melanostomus in both rivers but parasite intensities differed between rivers, suggesting that final hosts (large predatory fishes) may influence host-parasite dynamics of N. melanostomus in its introduced range. PMID:25338158

  13. Getting at the "what" and the "how" in symbiosis.

    PubMed

    Newton, Irene L G

    2017-02-01

    Symbioses are ubiquitous and have had a tremendous impact on the evolution of life on the planet. Indeed, endosymbiosis lead to the generation of the first eukaryotic cell and from that point onwards, eukaryotes have interacted with the other domains of life, sometimes forming persistent and necessary relationships that span generations. However, because the majority of hosts and symbionts are not easily manipulated, the intricate details of these symbioses, an understanding of the molecular underpinnings of these interactions, have not been elucidated. It is difficult to ask questions about the details of a host-microbe symbiosis if either member cannot be cultured, genetically manipulated, or even housed in a laboratory. Several technological advances in recent years may address these difficulties, making it easier for researchers to ask mechanistic questions in symbiotic systems.

  14. Lipid metabolic changes in an early divergent fungus govern the establishment of a mutualistic symbiosis with endobacteria

    PubMed Central

    Lastovetsky, Olga A.; Gaspar, Maria L.; Mondo, Stephen J.; LaButti, Kurt M.; Sandor, Laura; Grigoriev, Igor V.; Pawlowska, Teresa E.

    2016-01-01

    The recent accumulation of newly discovered fungal–bacterial mutualisms challenges the paradigm that fungi and bacteria are natural antagonists. To understand the mechanisms that govern the establishment and maintenance over evolutionary time of mutualisms between fungi and bacteria, we studied a symbiosis of the fungus Rhizopus microsporus (Mucoromycotina) and its Burkholderia endobacteria. We found that nonhost R. microsporus, as well as other mucoralean fungi, interact antagonistically with endobacteria derived from the host and are not invaded by them. Comparison of gene expression profiles of host and nonhost fungi during interaction with endobacteria revealed dramatic changes in expression of lipid metabolic genes in the host. Analysis of the host lipidome confirmed that symbiosis establishment was accompanied by specific changes in the fungal lipid profile. Diacylglycerol kinase (DGK) activity was important for these lipid metabolic changes, as its inhibition altered the fungal lipid profile and caused a shift in the host–bacterial interaction into an antagonism. We conclude that adjustments in host lipid metabolism during symbiosis establishment, mediated by DGKs, are required for the mutualistic outcome of the Rhizopus–Burkholderia symbiosis. In addition, the neutral and phospholipid profiles of R. microsporus provide important insights into lipid metabolism in an understudied group of oleaginous Mucoromycotina. Lastly, our study revealed that the DGKs involved in the symbiosis form a previously uncharacterized clade of DGK domain proteins. PMID:27956601

  15. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato.

    PubMed

    Ruiz-Lozano, Juan Manuel; Aroca, Ricardo; Zamarreño, Ángel María; Molina, Sonia; Andreo-Jiménez, Beatriz; Porcel, Rosa; García-Mina, José María; Ruyter-Spira, Carolien; López-Ráez, Juan Antonio

    2016-02-01

    Arbuscular mycorrhizal (AM) symbiosis alleviates drought stress in plants. However, the intimate mechanisms involved, as well as its effect on the production of signalling molecules associated with the host plant-AM fungus interaction remains largely unknown. In the present work, the effects of drought on lettuce and tomato plant performance and hormone levels were investigated in non-AM and AM plants. Three different water regimes were applied, and their effects were analysed over time. AM plants showed an improved growth rate and efficiency of photosystem II than non-AM plants under drought from very early stages of plant colonization. The levels of the phytohormone abscisic acid, as well as the expression of the corresponding marker genes, were influenced by drought stress in non-AM and AM plants. The levels of strigolactones and the expression of corresponding marker genes were affected by both AM symbiosis and drought. The results suggest that AM symbiosis alleviates drought stress by altering the hormonal profiles and affecting plant physiology in the host plant. In addition, a correlation between AM root colonization, strigolactone levels and drought severity is shown, suggesting that under these unfavourable conditions, plants might increase strigolactone production in order to promote symbiosis establishment to cope with the stress.

  16. Speciation by Symbiosis: the Microbiome and Behavior

    PubMed Central

    Shropshire, J. Dylan

    2016-01-01

    ABSTRACT Species are fundamental units of comparison in biology. The newly discovered importance and ubiquity of host-associated microorganisms are now stimulating work on the roles that microbes can play in animal speciation. We previously synthesized the literature and advanced concepts of speciation by symbiosis with notable attention to hybrid sterility and lethality. Here, we review recent studies and relevant data on microbes as players in host behavior and behavioral isolation, emphasizing the patterns seen in these analyses and highlighting areas worthy of additional exploration. We conclude that the role of microbial symbionts in behavior and speciation is gaining exciting traction and that the holobiont and hologenome concepts afford an evolving intellectual framework to promote research and intellectual exchange between disciplines such as behavior, microbiology, genetics, symbiosis, and speciation. Given the increasing centrality of microbiology in macroscopic life, microbial symbiosis is arguably the most neglected aspect of animal and plant speciation, and studying it should yield a better understanding of the origin of species. PMID:27034284

  17. Speciation by Symbiosis: the Microbiome and Behavior.

    PubMed

    Shropshire, J Dylan; Bordenstein, Seth R

    2016-03-31

    Species are fundamental units of comparison in biology. The newly discovered importance and ubiquity of host-associated microorganisms are now stimulating work on the roles that microbes can play in animal speciation. We previously synthesized the literature and advanced concepts of speciation by symbiosis with notable attention to hybrid sterility and lethality. Here, we review recent studies and relevant data on microbes as players in host behavior and behavioral isolation, emphasizing the patterns seen in these analyses and highlighting areas worthy of additional exploration. We conclude that the role of microbial symbionts in behavior and speciation is gaining exciting traction and that the holobiont and hologenome concepts afford an evolving intellectual framework to promote research and intellectual exchange between disciplines such as behavior, microbiology, genetics, symbiosis, and speciation. Given the increasing centrality of microbiology in macroscopic life, microbial symbiosis is arguably the most neglected aspect of animal and plant speciation, and studying it should yield a better understanding of the origin of species.

  18. Long-distance transport of signals during symbiosis

    PubMed Central

    Xie, Zhi-Ping; Illana, Antonio

    2011-01-01

    Legumes enter nodule symbioses with nitrogen-fixing bacteria (rhizobia), whereas most flowering plants establish symbiotic associations with arbuscular mycorrhizal (AM) fungi. Once first steps of symbiosis are initiated, nodule formation and mycorrhization in legumes is negatively controlled by a shoot-derived inhibitor (SDI), a phenomenon termed autoregulation. According to current views, autoregulation of nodulation and mycorrhization in legumes is regulated in a similar way. CLE peptides induced in response to rhizobial nodulation signals (Nod factors) have been proposed to represent the ascending long-distance signals to the shoot. Although not proven yet, these CLE peptides are likely perceived by leucine-rich repeat (LRR) autoregulation receptor kinases in the shoot. Autoregulation of mycorrhization in non-legumes is reminiscent to the phenomenon of “systemic acquired resistance” in plant-pathogen interactions. PMID:21455020

  19. Symbiosis within Symbiosis: Evolving Nitrogen-Fixing Legume Symbionts.

    PubMed

    Remigi, Philippe; Zhu, Jun; Young, J Peter W; Masson-Boivin, Catherine

    2016-01-01

    Bacterial accessory genes are genomic symbionts with an evolutionary history and future that is different from that of their hosts. Packages of accessory genes move from strain to strain and confer important adaptations, such as interaction with eukaryotes. The ability to fix nitrogen with legumes is a remarkable example of a complex trait spread by horizontal transfer of a few key symbiotic genes, converting soil bacteria into legume symbionts. Rhizobia belong to hundreds of species restricted to a dozen genera of the Alphaproteobacteria and Betaproteobacteria, suggesting infrequent successful transfer between genera but frequent successful transfer within genera. Here we review the genetic and environmental conditions and selective forces that have shaped evolution of this complex symbiotic trait.

  20. Interactive effects of warming, eutrophication and size structure: impacts on biodiversity and food-web structure.

    PubMed

    Binzer, Amrei; Guill, Christian; Rall, Björn C; Brose, Ulrich

    2016-01-01

    Warming and eutrophication are two of the most important global change stressors for natural ecosystems, but their interaction is poorly understood. We used a dynamic model of complex, size-structured food webs to assess interactive effects on diversity and network structure. We found antagonistic impacts: Warming increases diversity in eutrophic systems and decreases it in oligotrophic systems. These effects interact with the community size structure: Communities of similarly sized species such as parasitoid-host systems are stabilized by warming and destabilized by eutrophication, whereas the diversity of size-structured predator-prey networks decreases strongly with warming, but decreases only weakly with eutrophication. Nonrandom extinction risks for generalists and specialists lead to higher connectance in networks without size structure and lower connectance in size-structured communities. Overall, our results unravel interactive impacts of warming and eutrophication and suggest that size structure may serve as an important proxy for predicting the community sensitivity to these global change stressors.

  1. A spatial theory for characterizing predator-multiprey interactions in heterogeneous landscapes.

    PubMed

    Fortin, Daniel; Buono, Pietro-Luciano; Schmitz, Oswald J; Courbin, Nicolas; Losier, Chrystel; St-Laurent, Martin-Hugues; Drapeau, Pierre; Heppell, Sandra; Dussault, Claude; Brodeur, Vincent; Mainguy, Julien

    2015-08-07

    Trophic interactions in multiprey systems can be largely determined by prey distributions. Yet, classic predator-prey models assume spatially homogeneous interactions between predators and prey. We developed a spatially informed theory that predicts how habitat heterogeneity alters the landscape-scale distribution of mortality risk of prey from predation, and hence the nature of predator interactions in multiprey systems. The theoretical model is a spatially explicit, multiprey functional response in which species-specific advection-diffusion models account for the response of individual prey to habitat edges. The model demonstrates that distinct responses of alternative prey species can alter the consequences of conspecific aggregation, from increasing safety to increasing predation risk. Observations of threatened boreal caribou, moose and grey wolf interacting over 378 181 km(2) of human-managed boreal forest support this principle. This empirically supported theory demonstrates how distinct responses of apparent competitors to landscape heterogeneity, including to human disturbances, can reverse density dependence in fitness correlates.

  2. Structural basis for regulation of rhizobial nodulation and symbiosis gene expression by the regulatory protein NolR.

    PubMed

    Lee, Soon Goo; Krishnan, Hari B; Jez, Joseph M

    2014-04-29

    The symbiosis between rhizobial microbes and host plants involves the coordinated expression of multiple genes, which leads to nodule formation and nitrogen fixation. As part of the transcriptional machinery for nodulation and symbiosis across a range of Rhizobium, NolR serves as a global regulatory protein. Here, we present the X-ray crystal structures of NolR in the unliganded form and complexed with two different 22-base pair (bp) double-stranded operator sequences (oligos AT and AA). Structural and biochemical analysis of NolR reveals protein-DNA interactions with an asymmetric operator site and defines a mechanism for conformational switching of a key residue (Gln56) to accommodate variation in target DNA sequences from diverse rhizobial genes for nodulation and symbiosis. This conformational switching alters the energetic contributions to DNA binding without changes in affinity for the target sequence. Two possible models for the role of NolR in the regulation of different nodulation and symbiosis genes are proposed. To our knowledge, these studies provide the first structural insight on the regulation of genes involved in the agriculturally and ecologically important symbiosis of microbes and plants that leads to nodule formation and nitrogen fixation.

  3. [Signal exchange between plants and Arbuscular Mycorrhizae fungi during the early stage of symbiosis - A review].

    PubMed

    Duan, Qianqian; Yang, Xiaohong; Huang, Xianzhi

    2015-07-04

    Much is known about Arbuscular Mycorrhizae (AM), an important component of the ecosystem, whereas little is known about the signal exchange that allows mutual recognition and reprograming for the anticipated physical interaction. This review addresses the latest advances of signal exchange between plants and AM, including signal substances and their function, related genes and regulation function in the early stage of plant-fungal symbiosis.

  4. The Impact of Nitrogen Limitation and Mycorrhizal Symbiosis on Aspen Tree Growth and Development

    SciTech Connect

    Tran, Bich Thi Ngoc

    2014-08-18

    Nitrogen deficiency is the most common and widespread nutritional deficiency affecting plants worldwide. Ectromycorrhizal symbiosis involves the beneficial interaction of plants with soil fungi and plays a critical role in nutrient cycling, including the uptake of nitrogen from the environment. The main goal of this study is to understand how limiting nitrogen in the presence or absence of an ectomycorrhizal fungi, Laccaria bicolor, affects the health of aspen trees, Populus temuloides.

  5. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change

    USGS Publications Warehouse

    McCluney, Kevin E.; Belnap, Jayne; Collins, Scott L.; González, Angélica L.; Hagen, Elizabeth M.; Holland, J. Nathaniel; Kotler, Burt P.; Maestre, Fernando T.; Smith, Stanley D.; Wolf, Blair O.

    2012-01-01

    Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts

  6. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change.

    PubMed

    McCluney, Kevin E; Belnap, Jayne; Collins, Scott L; González, Angélica L; Hagen, Elizabeth M; Nathaniel Holland, J; Kotler, Burt P; Maestre, Fernando T; Smith, Stanley D; Wolf, Blair O

    2012-08-01

    Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts

  7. Interaction strengths in balanced carbon cycles and the absence of a relation between ecosystem complexity and stability.

    PubMed

    Neutel, Anje-Margriet; Thorne, Michael A S

    2014-06-01

    The strength of interactions is crucial to the stability of ecological networks. However, the patterns of interaction strengths in mathematical models of ecosystems have not yet been based upon independent observations of balanced material fluxes. Here we analyse two Antarctic ecosystems for which the interaction strengths are obtained: (1) directly, from independently measured material fluxes, (2) for the complete ecosystem and (3) with a close match between species and 'trophic groups'. We analyse the role of recycling, predation and competition and find that ecosystem stability can be estimated by the strengths of the shortest positive and negative predator-prey feedbacks in the network. We show the generality of our explanation with another 21 observed food webs, comparing random-type parameterisations of interaction strengths with empirical ones. Our results show how functional relationships dominate over average-network topology. They make clear that the classic complexity-instability paradox is essentially an artificial interaction-strength result.

  8. Biogeography of a defensive symbiosis

    PubMed Central

    Kaltenpoth, Martin; Roeser-Mueller, Kerstin; Stubblefield, J. William; Seger, Jon; Strohm, Erhard

    2014-01-01

    Mutualistic microorganisms play important roles in nutrition, reproduction and defense of many insects, yet the factors contributing to their maintenance and dispersal remain unknown in most cases. Theory suggests that collaboration can be maintained by repeated interaction of the same partners (partner fidelity) or by selective discrimination against non-cooperative partners (partner choice). In the defensive mutualism between solitary beewolf wasps and their antibiotic-producing Streptomyces bacteria, partner choice by host control of vertical symbiont transmission reinforces partner fidelity and has helped to maintain this highly specific association since it originated in the late Cretaceous. However, co-phylogenetic and biogeographic analyses suggest that there has also been considerable horizontal transmission of the symbionts. While the beewolves clearly have a paleotropic or palearctic origin, with later colonization of the nearctic and neotropics via Beringia and the Aves ridge, respectively, the bacteria show only weak geographical clustering, implying global dispersal or vicariance within the confines of an otherwise apparently exclusive symbiotic relationship. We discuss several hypotheses that may explain these patterns. Future studies investigating the occurrence of beewolf symbionts in the environment could yield broadly applicable insights into the relative impact of animal-vectored and free-living dispersal on the distribution of microorganisms in nature. PMID:26479018

  9. Network analysis of eight industrial symbiosis systems

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Zheng, Hongmei; Shi, Han; Yu, Xiangyi; Liu, Gengyuan; Su, Meirong; Li, Yating; Chai, Yingying

    2016-06-01

    Industrial symbiosis is the quintessential characteristic of an eco-industrial park. To divide parks into different types, previous studies mostly focused on qualitative judgments, and failed to use metrics to conduct quantitative research on the internal structural or functional characteristics of a park. To analyze a park's structural attributes, a range of metrics from network analysis have been applied, but few researchers have compared two or more symbioses using multiple metrics. In this study, we used two metrics (density and network degree centralization) to compare the degrees of completeness and dependence of eight diverse but representative industrial symbiosis networks. Through the combination of the two metrics, we divided the networks into three types: weak completeness, and two forms of strong completeness, namely "anchor tenant" mutualism and "equality-oriented" mutualism. The results showed that the networks with a weak degree of completeness were sparse and had few connections among nodes; for "anchor tenant" mutualism, the degree of completeness was relatively high, but the affiliated members were too dependent on core members; and the members in "equality-oriented" mutualism had equal roles, with diverse and flexible symbiotic paths. These results revealed some of the systems' internal structure and how different structures influenced the exchanges of materials, energy, and knowledge among members of a system, thereby providing insights into threats that may destabilize the network. Based on this analysis, we provide examples of the advantages and effectiveness of recent improvement projects in a typical Chinese eco-industrial park (Shandong Lubei).

  10. Microfungal "weeds" in the leafcutter ant symbiosis.

    PubMed

    Rodrigues, A; Bacci, M; Mueller, U G; Ortiz, A; Pagnocca, F C

    2008-11-01

    Leafcutter ants (Formicidae: tribe Attini) are well-known insects that cultivate basidiomycete fungi (Agaricales: Lepiotaceae) as their principal food. Fungus gardens are monocultures of a single cultivar strain, but they also harbor a diverse assemblage of additional microbes with largely unknown roles in the symbiosis. Cultivar-attacking microfungi in the genus Escovopsis are specialized parasites found only in association with attine gardens. Evolutionary theory predicts that the low genetic diversity in monocultures should render ant gardens susceptible to a wide range of diseases, and additional parasites with roles similar to that of Escovopsis are expected to exist. We profiled the diversity of cultivable microfungi found in 37 nests from ten Acromyrmex species from Southern Brazil and compared this diversity to published surveys. Our study revealed a total of 85 microfungal strains. Fusarium oxysporum and Escovopsis were the predominant species in the surveyed gardens, infecting 40.5% and 27% of the nests, respectively. No specific relationship existed regarding microfungal species and ant-host species, ant substrate preference (dicot versus grass) or nesting habit. Molecular data indicated high genetic diversity among Escovopsis isolates. In contrast to the garden parasite, F. oxysporum strains are not specific parasites of the cultivated fungus because strains isolated from attine gardens have similar counterparts found in the environment. Overall, the survey indicates that saprophytic microfungi are prevalent in South American leafcutter ants. We discuss the antagonistic potential of these microorganisms as "weeds" in the ant-fungus symbiosis.

  11. Transcriptomic Analysis of Sinorhizobium meliloti and Medicago truncatula Symbiosis Using Nitrogen Fixation-Deficient Nodules.

    PubMed

    Lang, Claus; Long, Sharon R

    2015-08-01

    The bacterium Sinorhizobium meliloti interacts symbiotically with legume plant hosts such as Medicago truncatula to form nitrogen-fixing root nodules. During symbiosis, plant and bacterial cells differentiate in a coordinated manner, resulting in specialized plant cells that contain nitrogen-fixing bacteroids. Both plant and bacterial genes are required at each developmental stage of symbiosis. We analyzed gene expression in nodules formed by wild-type bacteria on six plant mutants with defects in nitrogen fixation. We observed differential expression of 482 S. meliloti genes with functions in cell envelope homeostasis, cell division, stress response, energy metabolism, and nitrogen fixation. We simultaneously analyzed gene expression in M. truncatula and observed differential regulation of host processes that may trigger bacteroid differentiation and control bacterial infection. Our analyses of developmentally arrested plant mutants indicate that plants use distinct means to control bacterial infection during early and late symbiotic stages.

  12. Oak root response to ectomycorrhizal symbiosis establishment: RNA-Seq derived transcript identification and expression profiling.

    PubMed

    Sebastiana, Mónica; Vieira, Bruno; Lino-Neto, Teresa; Monteiro, Filipa; Figueiredo, Andreia; Sousa, Lisete; Pais, Maria Salomé; Tavares, Rui; Paulo, Octávio S

    2014-01-01

    Ectomycorrhizal symbiosis is essential for the life and health of trees in temperate and boreal forests where it plays a major role in nutrient cycling and in functioning of the forest ecosystem. Trees with ectomycorrhizal root tips are more tolerant to environmental stresses, such as drought, and biotic stresses such as root pathogens. Detailed information on these molecular processes is essential for the understanding of symbiotic tissue development in order to optimize the benefits of this natural phenomenon. Next generation sequencing tools allow the analysis of non model ectomycorrhizal plant-fungal interactions that can contribute to find the "symbiosis toolkits" and better define the role of each partner in the mutualistic interaction. By using 454 pyrosequencing we compared ectomycorrhizal cork oak roots with non-symbiotic roots. From the two cDNA libraries sequenced, over 2 million reads were obtained that generated 19,552 cork oak root unique transcripts. A total of 2238 transcripts were found to be differentially expressed when ECM roots were compared with non-symbiotic roots. Identification of up- and down-regulated gens in ectomycorrhizal roots lead to a number of insights into the molecular mechanisms governing this important symbiosis. In cork oak roots, ectomycorrhizal colonization resulted in extensive cell wall remodelling, activation of the secretory pathway, alterations in flavonoid biosynthesis, and expression of genes involved in the recognition of fungal effectors. In addition, we identified genes with putative roles in symbiotic processes such as nutrient exchange with the fungal partner, lateral root formation or root hair decay. These findings provide a global overview of the transcriptome of an ectomycorrhizal host root, and constitute a foundation for future studies on the molecular events controlling this important symbiosis.

  13. Oak Root Response to Ectomycorrhizal Symbiosis Establishment: RNA-Seq Derived Transcript Identification and Expression Profiling

    PubMed Central

    Lino-Neto, Teresa; Monteiro, Filipa; Figueiredo, Andreia; Sousa, Lisete; Pais, Maria Salomé; Tavares, Rui; Paulo, Octávio S.

    2014-01-01

    Ectomycorrhizal symbiosis is essential for the life and health of trees in temperate and boreal forests where it plays a major role in nutrient cycling and in functioning of the forest ecosystem. Trees with ectomycorrhizal root tips are more tolerant to environmental stresses, such as drought, and biotic stresses such as root pathogens. Detailed information on these molecular processes is essential for the understanding of symbiotic tissue development in order to optimize the benefits of this natural phenomenon. Next generation sequencing tools allow the analysis of non model ectomycorrhizal plant-fungal interactions that can contribute to find the “symbiosis toolkits” and better define the role of each partner in the mutualistic interaction. By using 454 pyrosequencing we compared ectomycorrhizal cork oak roots with non-symbiotic roots. From the two cDNA libraries sequenced, over 2 million reads were obtained that generated 19552 cork oak root unique transcripts. A total of 2238 transcripts were found to be differentially expressed when ECM roots were compared with non-symbiotic roots. Identification of up- and down-regulated gens in ectomycorrhizal roots lead to a number of insights into the molecular mechanisms governing this important symbiosis. In cork oak roots, ectomycorrhizal colonization resulted in extensive cell wall remodelling, activation of the secretory pathway, alterations in flavonoid biosynthesis, and expression of genes involved in the recognition of fungal effectors. In addition, we identified genes with putative roles in symbiotic processes such as nutrient exchange with the fungal partner, lateral root formation or root hair decay. These findings provide a global overview of the transcriptome of an ectomycorrhizal host root, and constitute a foundation for future studies on the molecular events controlling this important symbiosis. PMID:24859293

  14. Reciprocal Trophic Interactions and Transmission of Blood Parasites between Mosquitoes and Frogs

    PubMed Central

    Ferguson, Laura V.; Smith, Todd G.

    2012-01-01

    The relationship between mosquitoes and their amphibian hosts is a unique, reciprocal trophic interaction. Instead of a one-way, predator-prey relationship, there is a cyclical dance of avoidance and attraction. This has prompted spatial and temporal synchrony between organisms, reflected in emergence time of mosquitoes in the spring and choice of habitat for oviposition. Frog-feeding mosquitoes also possess different sensory apparatuses than do their mammal-feeding counterparts. The reciprocal nature of this relationship is exploited by various blood parasites that use mechanical, salivary or trophic transmission to pass from mosquitoes to frogs. It is important to investigate the involvement of mosquitoes, frogs and parasites in this interaction in order to understand the consequences of anthropogenic actions, such as implementing biocontrol efforts against mosquitoes, and to determine potential causes of the global decline of amphibian species. PMID:26466534

  15. Interactive effects of ocean acidification and rising sea temperatures alter predation rate and predator selectivity in reef fish communities.

    PubMed

    Ferrari, Maud C O; Munday, Philip L; Rummer, Jodie L; McCormick, Mark I; Corkill, Katherine; Watson, Sue-Ann; Allan, Bridie J M; Meekan, Mark G; Chivers, Douglas P

    2015-05-01

    Ocean warming and acidification are serious threats to marine life. While each stressor alone has been studied in detail, their combined effects on the outcome of ecological interactions are poorly understood. We measured predation rates and predator selectivity of two closely related species of damselfish exposed to a predatory dottyback. We found temperature and CO2 interacted synergistically on overall predation rate, but antagonistically on predator selectivity. Notably, elevated CO2 or temperature alone reversed predator selectivity, but the interaction between the two stressors cancelled selectivity. Routine metabolic rates of the two prey showed strong species differences in tolerance to CO2 and not temperature, but these differences did not correlate with recorded mortality. This highlights the difficulty of linking species-level physiological tolerance to resulting ecological outcomes. This study is the first to document both synergistic and antagonistic effects of elevated CO2 and temperature on a crucial ecological process like predator-prey dynamics.

  16. Brassinosteroids Regulate Root Growth, Development, and Symbiosis.

    PubMed

    Wei, Zhuoyun; Li, Jia

    2016-01-04

    Brassinosteroids (BRs) are natural plant hormones critical for growth and development. BR deficient or signaling mutants show significantly shortened root phenotypes. However, for a long time, it was thought that these phenotypes were solely caused by reduced cell elongation in the mutant roots. Functions of BRs in regulating root development have been largely neglected. Nonetheless, recent detailed analyses, revealed that BRs are not only involved in root cell elongation but are also involved in many aspects of root development, such as maintenance of meristem size, root hair formation, lateral root initiation, gravitropic response, mycorrhiza formation, and nodulation in legume species. In this review, current findings on the functions of BRs in mediating root growth, development, and symbiosis are discussed.

  17. Symbiosis and the origin of eukaryotic motility

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Hinkle, G.

    1991-01-01

    Ongoing work to test the hypothesis of the origin of eukaryotic cell organelles by microbial symbioses is discussed. Because of the widespread acceptance of the serial endosymbiotic theory (SET) of the origin of plastids and mitochondria, the idea of the symbiotic origin of the centrioles and axonemes for spirochete bacteria motility symbiosis was tested. Intracellular microtubular systems are purported to derive from symbiotic associations between ancestral eukaryotic cells and motile bacteria. Four lines of approach to this problem are being pursued: (1) cloning the gene of a tubulin-like protein discovered in Spirocheata bajacaliforniesis; (2) seeking axoneme proteins in spirochets by antibody cross-reaction; (3) attempting to cultivate larger, free-living spirochetes; and (4) studying in detail spirochetes (e.g., Cristispira) symbiotic with marine animals. Other aspects of the investigation are presented.

  18. Fungal and algal gene expression in early developmental stages of lichen-symbiosis.

    PubMed

    Joneson, Suzanne; Armaleo, Daniele; Lutzoni, François

    2011-01-01

    How plants and microbes recognize each other and interact to form long-lasting relationships remains one of the central questions in cellular communication. The symbiosis between the filamentous fungus Cladonia grayi and the single-celled green alga Asterochloris sp. was used to determine fungal and algal genes upregulated in vitro in early lichen development. cDNA libraries of upregulated genes were created with suppression subtractive hybridization in the first two stages of lichen development. Quantitative PCR subsequently was used to verify the expression level of 41 and 33 candidate fungal and algal genes respectively. Induced fungal genes showed significant matches to genes putatively encoding proteins involved in self and non-self recognition, lipid metabolism, and negative regulation of glucose repressible genes, as well as to a putative d-arabitol reductase and two dioxygenases. Upregulated algal genes included a chitinase-like protein, an amino acid metabolism protein, a dynein-related protein and a protein arginine methyltransferase. These results also provided the first evidence that extracellular communication without cellular contact can occur between lichen symbionts. Many genes showing slight variation in expression appear to direct the development of the lichen symbiosis. The results of this study highlight future avenues of investigation into the molecular biology of lichen symbiosis.

  19. Hydrogen peroxide-regulated genes in the Medicago truncatula-Sinorhizobium meliloti symbiosis.

    PubMed

    Andrio, Emilie; Marino, Daniel; Marmeys, Anthony; de Segonzac, Marion Dunoyer; Damiani, Isabelle; Genre, Andrea; Huguet, Stéphanie; Frendo, Pierre; Puppo, Alain; Pauly, Nicolas

    2013-04-01

    Reactive oxygen species (ROS), particularly hydrogen peroxide (H(2)O(2)), play an important role in signalling in various cellular processes. The involvement of H(2)O(2) in the Medicago truncatula-Sinorhizobium meliloti symbiotic interaction raises questions about its effect on gene expression. A transcriptome analysis was performed on inoculated roots of M. truncatula in which ROS production was inhibited with diphenylene iodonium (DPI). In total, 301 genes potentially regulated by ROS content were identified 2 d after inoculation. These genes included MtSpk1, which encodes a putative protein kinase and is induced by exogenous H(2)O(2) treatment. MtSpk1 gene expression was also induced by nodulation factor treatment. MtSpk1 transcription was observed in infected root hair cells, nodule primordia and the infection zone of mature nodules. Analysis with a fluorescent protein probe specific for H(2)O(2) showed that MtSpk1 expression and H(2)O(2) were similarly distributed in the nodule infection zone. Finally, the establishment of symbiosis was impaired by MtSpk1 downregulation with an artificial micro-RNA. Several genes regulated by H(2)O(2) during the establishment of rhizobial symbiosis were identified. The involvement of MtSpk1 in the establishment of the symbiosis is proposed.

  20. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants.

    PubMed

    Aroca, Ricardo; Ruiz-Lozano, Juan Manuel; Zamarreño, Angel María; Paz, José Antonio; García-Mina, José María; Pozo, María José; López-Ráez, Juan Antonio

    2013-01-01

    Arbuscular mycorrhizal (AM) symbiosis can alleviate salt stress in plants. However the intimate mechanisms involved, as well as the effect of salinity on the production of signalling molecules associated to the host plant-AM fungus interaction remains largely unknown. In the present work, we have investigated the effects of salinity on lettuce plant performance and production of strigolactones, and assessed its influence on mycorrhizal root colonization. Three different salt concentrations were applied to mycorrhizal and non-mycorrhizal plants, and their effects, over time, analyzed. Plant biomass, stomatal conductance, efficiency of photosystem II, as well as ABA content and strigolactone production were assessed. The expression of ABA biosynthesis genes was also analyzed. AM plants showed improved growth rates and a better performance of physiological parameters such as stomatal conductance and efficiency of photosystem II than non-mycorrhizal plants under salt stress since very early stages - 3 weeks - of plant colonization. Moreover, ABA levels were lower in those plants, suggesting that they were less stressed than non-colonized plants. On the other hand, we show that both AM symbiosis and salinity influence strigolactone production, although in a different way in AM and non-AM plants. The results suggest that AM symbiosis alleviates salt stress by altering the hormonal profiles and affecting plant physiology in the host plant. Moreover, a correlation between strigolactone production, ABA content, AM root colonization and salinity level is shown. We propose here that under these unfavourable conditions, plants increase strigolactone production in order to promote symbiosis establishment to cope with salt stress.

  1. Assess suitability of hydroaeroponic culture to establish tripartite symbiosis between different AMF species, beans, and rhizobia

    PubMed Central

    Tajini, Fatma; Suriyakup, Porntip; Vailhe, Hélène; Jansa, Jan; Drevon, Jean-Jacques

    2009-01-01

    Background Like other species of the Phaseoleae tribe, common bean (Phaseolus vulgaris L.) has the potential to establish symbiosis with rhizobia and to fix the atmospheric dinitrogen (N2) for its N nutrition. Common bean has also the potential to establish symbiosis with arbuscular mycorrhizal fungi (AMF) that improves the uptake of low mobile nutrients such as phosphorus, from the soil. Both rhizobial and mycorrhizal symbioses can act synergistically in benefits on plant. Results The tripartite symbiosis of common bean with rhizobia and arbuscular mycorrhizal fungi (AMF) was assessed in hydroaeroponic culture with common bean (Phaseolus vulgaris L.), by comparing the effects of three fungi spp. on growth, nodulation and mycorrhization of the roots under sufficient versus deficient P supplies, after transfer from initial sand culture. Although Glomus intraradices Schenck & Smith colonized intensely the roots of common bean in both sand and hydroaeroponic cultures, Gigaspora rosea Nicolson & Schenck only established well under sand culture conditions, and no root-colonization was found with Acaulospora mellea Spain & Schenck under either culture conditions. Interestingly, mycorrhization by Glomus was also obtained by contact with mycorrhized Stylosanthes guianensis (Aubl.) sw in sand culture under deficient P before transfer into hydroaeroponic culture. The effect of bean genotype on both rhizobial and mycorrhizal symbioses with Glomus was subsequently assessed with the common bean recombinant inbreed line 7, 28, 83, 115 and 147, and the cultivar Flamingo. Significant differences among colonization and nodulation of the roots and growth among genotypes were found. Conclusion The hydroaeroponic culture is a valuable tool for further scrutinizing the physiological interactions and nutrient partitioning within the tripartite symbiosis. PMID:19534785

  2. The Genome of Laccaria Bi color Provides Insights into Mycorrhizal Symbiosis

    SciTech Connect

    Martin, F; Aerts, A.; Ahren, D; Brun, A; Duchaussoy, F; Gibon, J; Kohler, A; Lindquist, E; Pereda, V; Salamov, A.; Shapiro, HJ; Wuyts, J; Blaudez, D; Buee, M; Brokstein, P; Canbeck, B; Cohen, D; Courty, PE; Coutinho, PM; Danchin, E; Delaruelle, C; Detter, J C; Deveau, A; DiFazio, Stephen P; Duplessis, S; Fraissinet-Tachet, L; Lucic, E; Frey-Klett, P; Fourrey, C; Feussner, I; Gay, G; Grimwood, Jane; Hoegger, P J; Jain, P; Kilaru, S; Labbe, J; Lin, Y C; Legue, V; Le Tacon, F; Marmeisse, R; Melayah, D; Montanini, B; Muratet, M; Nehls, U; Niculita-Hirzel, H; Oudot-Le Secq, M P; Peter, M; Quesneville, H; Rajashekar, B; Reich, M; Rouhler, N; Schmutz, Jeremy; Yin, Tongming; Chalot, M; Henrissat, B; Kues, U; Lucas, S; Van de Peer, Y; Podila, G; Polle, A; Pukkila, P J; Richardson, P M; Rouze, P; Sanders, I R; Stajich, J E; Tunlid, A; Tuskan, Gerald A; Grigoriev, I.

    2008-01-01

    Mycorrhizal symbioses the union of roots and soil fungi are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants1,2. Boreal, temperate and montane forests all depend on ectomycorrhizae1. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-megabase genome assembly contains 20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features, most notably a battery of effector-type small secreted proteins (SSPs) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific SSPs probably have a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell wall polysaccharides, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem to perform vital functions in the carbon and

  3. NIN Is Involved in the Regulation of Arbuscular Mycorrhizal Symbiosis.

    PubMed

    Guillotin, Bruno; Couzigou, Jean-Malo; Combier, Jean-Philippe

    2016-01-01

    Arbuscular mycorrhizal (AM) symbiosis is an intimate and ancient symbiosis found between most of terrestrial plants and fungi from the Glomeromycota family. Later during evolution, the establishment of the nodulation between legume plants and soil bacteria known as rhizobia, involved several genes of the signaling pathway previously implicated for AM symbiosis. For the past years, the identification of the genes belonging to this Common Symbiotic Signaling Pathway have been mostly done on nodulation. Among the different genes already well identified as required for nodulation, we focused our attention on the involvement of Nodule Inception (NIN) in AM symbiosis. We show here that NIN expression is induced during AM symbiosis, and that the Medicago truncatula nin mutant is less colonized than the wild-type M. truncatula strain. Moreover, nin mutant displays a defect in the ability to be infected by the fungus Rhizophagus irregularis. This work brings a new evidence of the common genes involved in overlapping signaling pathways of both nodulation and in AM symbiosis.

  4. NIN Is Involved in the Regulation of Arbuscular Mycorrhizal Symbiosis

    PubMed Central

    Guillotin, Bruno; Couzigou, Jean-Malo; Combier, Jean-Philippe

    2016-01-01

    Arbuscular mycorrhizal (AM) symbiosis is an intimate and ancient symbiosis found between most of terrestrial plants and fungi from the Glomeromycota family. Later during evolution, the establishment of the nodulation between legume plants and soil bacteria known as rhizobia, involved several genes of the signaling pathway previously implicated for AM symbiosis. For the past years, the identification of the genes belonging to this Common Symbiotic Signaling Pathway have been mostly done on nodulation. Among the different genes already well identified as required for nodulation, we focused our attention on the involvement of Nodule Inception (NIN) in AM symbiosis. We show here that NIN expression is induced during AM symbiosis, and that the Medicago truncatula nin mutant is less colonized than the wild-type M. truncatula strain. Moreover, nin mutant displays a defect in the ability to be infected by the fungus Rhizophagus irregularis. This work brings a new evidence of the common genes involved in overlapping signaling pathways of both nodulation and in AM symbiosis. PMID:27899928

  5. Determinant factors of industrial symbiosis: greening Pasir Gudang industrial park

    NASA Astrophysics Data System (ADS)

    Teh, B. T.; Ho, C. S.; Matsuoka, Y.; Chau, L. W.; Gomi, K.

    2014-02-01

    Green industry has been identified as an important element in attaining greater sustainability. It calls for harmonizing robust economic growth with environment protection. Industries, particularly in developing and transitional nations such as Malaysia, are in need of a reform. Many experts and international organizations suggest the concept of industrial symbiosis. Mainly, there are successful cases of industrial symbiosis practices around the world. However, there are numerous cases of failure too. As industrial symbiosis is an emerging new approach, with a short history of two decades, a lot of researches are generally focused on narrow context and technical details. There is a lack of concerted efforts to look into the drivers and barriers of industrial symbiosis across different cases. This paper aims to examine the factors influencing the development of industrial symbiosis from various countries to supports such networks to evolve in Pasir Gudang. The findings show institution, law and regulation, finance, awareness and capacity building, technology, research and development, information, collaboration, market, geography proximity, environmental issues and industry structure affect the formation of industrial symbiosis.

  6. Arbuscular mycorrhizal symbiosis can mitigate the negative effects of night warming on physiological traits of Medicago truncatula L.

    PubMed

    Hu, Yajun; Wu, Songlin; Sun, Yuqing; Li, Tao; Zhang, Xin; Chen, Caiyan; Lin, Ge; Chen, Baodong

    2015-02-01

    Elevated night temperature, one of the main climate warming scenarios, can have profound effects on plant growth and metabolism. However, little attention has been paid to the potential role of mycorrhizal associations in plant responses to night warming, although it is well known that symbiotic fungi can protect host plants against various environmental stresses. In the present study, physiological traits of Medicago truncatula L. in association with the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis were investigated under simulated night warming. A constant increase in night temperature of 1.53 °C significantly reduced plant shoot and root biomass, flower and seed number, leaf sugar concentration, and shoot Zn and root P concentrations. However, the AM association essentially mitigated these negative effects of night warming by improving plant growth, especially through increased root biomass, root to shoot ratio, and shoot Zn and root P concentrations. A significant interaction was observed between R. irregularis inoculation and night warming in influencing both root sucrose concentration and expression of sucrose synthase (SusS) genes, suggesting that AM symbiosis and increased night temperature jointly regulated plant sugar metabolism. Night warming stimulated AM fungal colonization but did not influence arbuscule abundance, symbiosis-related plant or fungal gene expression, or growth of extraradical mycelium, indicating little effect of night warming on the development or functioning of AM symbiosis. These findings highlight the importance of mycorrhizal symbiosis in assisting plant resilience to climate warming.

  7. Menthol-induced bleaching rapidly and effectively provides experimental aposymbiotic sea anemones (Aiptasia sp.) for symbiosis investigations.

    PubMed

    Matthews, Jennifer L; Sproles, Ashley E; Oakley, Clinton A; Grossman, Arthur R; Weis, Virginia M; Davy, Simon K

    2016-02-01

    Experimental manipulation of the symbiosis between cnidarians and photosynthetic dinoflagellates (Symbiodinium spp.) is crucial to advancing the understanding of the cellular mechanisms involved in host-symbiont interactions, and overall coral reef ecology. The anemone Aiptasia sp. is a model for cnidarian-dinoflagellate symbiosis, and notably it can be rendered aposymbiotic (i.e. dinoflagellate-free) and re-infected with a range of Symbiodinium types. Various methods exist for generating aposymbiotic hosts; however, they can be hugely time consuming and not wholly effective. Here, we optimise a method using menthol for production of aposymbiotic Aiptasia. The menthol treatment produced aposymbiotic hosts within just 4 weeks (97-100% symbiont loss), and the condition was maintained long after treatment when anemones were held under a standard light:dark cycle. The ability of Aiptasia to form a stable symbiosis appeared to be unaffected by menthol exposure, as demonstrated by successful re-establishment of the symbiosis when anemones were experimentally re-infected. Furthermore, there was no significant impact on photosynthetic or respiratory performance of re-infected anemones.

  8. OakContigDF159.1, a reference library for studying differential gene expression in Quercus robur during controlled biotic interactions: use for quantitative transcriptomic profiling of oak roots in ectomycorrhizal symbiosis.

    PubMed

    Tarkka, Mika T; Herrmann, Sylvie; Wubet, Tesfaye; Feldhahn, Lasse; Recht, Sabine; Kurth, Florence; Mailänder, Sarah; Bönn, Markus; Neef, Maren; Angay, Oguzhan; Bacht, Michael; Graf, Marcel; Maboreke, Hazel; Fleischmann, Frank; Grams, Thorsten E E; Ruess, Liliane; Schädler, Martin; Brandl, Roland; Scheu, Stefan; Schrey, Silvia D; Grosse, Ivo; Buscot, François

    2013-07-01

    Oaks (Quercus spp.), which are major forest trees in the northern hemisphere, host many biotic interactions, but molecular investigation of these interactions is limited by fragmentary genome data. To date, only 75 oak expressed sequence tags (ESTs) have been characterized in ectomycorrhizal (EM) symbioses. We synthesized seven beneficial and detrimental biotic interactions between microorganisms and animals and a clone (DF159) of Quercus robur. Sixteen 454 and eight Illumina cDNA libraries from leaves and roots were prepared and merged to establish a reference for RNA-Seq transcriptomic analysis of oak EMs with Piloderma croceum. Using the Mimicking Intelligent Read Assembly (MIRA) and Trinity assembler, the OakContigDF159.1 hybrid assembly, containing 65 712 contigs with a mean length of 1003 bp, was constructed, giving broad coverage of metabolic pathways. This allowed us to identify 3018 oak contigs that were differentially expressed in EMs, with genes encoding proline-rich cell wall proteins and ethylene signalling-related transcription factors showing up-regulation while auxin and defence-related genes were down-regulated. In addition to the first report of remorin expression in EMs, the extensive coverage provided by the study permitted detection of differential regulation within large gene families (nitrogen, phosphorus and sugar transporters, aquaporins). This might indicate specific mechanisms of genome regulation in oak EMs compared with other trees.

  9. A novel type of thioredoxin dedicated to symbiosis in legumes.

    PubMed

    Alkhalfioui, Fatima; Renard, Michelle; Frendo, Pierre; Keichinger, Corinne; Meyer, Yves; Gelhaye, Eric; Hirasawa, Masakazu; Knaff, David B; Ritzenthaler, Christophe; Montrichard, Françoise

    2008-09-01

    Thioredoxins (Trxs) constitute a family of small proteins in plants. This family has been extensively characterized in Arabidopsis (Arabidopsis thaliana), which contains six different Trx types: f, m, x, and y in chloroplasts, o in mitochondria, and h mainly in cytosol. A detailed study of this family in the model legume Medicago truncatula, realized here, has established the existence of two isoforms that do not belong to any of the types previously described. As no possible orthologs were further found in either rice (Oryza sativa) or poplar (Populus spp.), these novel isoforms may be specific for legumes. Nevertheless, on the basis of protein sequence and gene structure, they are both related to Trxs m and probably have evolved from Trxs m after the divergence of the higher plant families. They have redox potential values similar to those of the classical Trxs, and one of them can act as a substrate for the M. truncatula NADP-Trx reductase A. However, they differ from classical Trxs in that they possess an atypical putative catalytic site and lack disulfide reductase activity with insulin. Another important feature is the presence in both proteins of an N-terminal extension containing a putative signal peptide that targets them to the endoplasmic reticulum, as demonstrated by their transient expression in fusion with the green fluorescent protein in M. truncatula or Nicotiana benthamiana leaves. According to their pattern of expression, these novel isoforms function specifically in symbiotic interactions in legumes. They were therefore given the name of Trxs s, s for symbiosis.

  10. Trusted Autonomy and Cognitive Cyber Symbiosis: Open Challenges.

    PubMed

    Abbass, Hussein A; Petraki, Eleni; Merrick, Kathryn; Harvey, John; Barlow, Michael

    This paper considers two emerging interdisciplinary, but related topics that are likely to create tipping points in advancing the engineering and science areas. Trusted Autonomy (TA) is a field of research that focuses on understanding and designing the interaction space between two entities each of which exhibits a level of autonomy. These entities can be humans, machines, or a mix of the two. Cognitive Cyber Symbiosis (CoCyS) is a cloud that uses humans and machines for decision-making. In CoCyS, human-machine teams are viewed as a network with each node comprising humans (as computational machines) or computers. CoCyS focuses on the architecture and interface of a Trusted Autonomous System. This paper examines these two concepts and seeks to remove ambiguity by introducing formal definitions for these concepts. It then discusses open challenges for TA and CoCyS, that is, whether a team made of humans and machines can work in fluid, seamless harmony.

  11. Ant-plants and fungi: a new threeway symbiosis.

    PubMed

    Defossez, Emmanuel; Selosse, Marc-André; Dubois, Marie-Pierre; Mondolot, Laurence; Faccio, Antonella; Djieto-Lordon, Champlain; McKey, Doyle; Blatrix, Rumsaïs

    2009-06-01

    Symbioses between plants and fungi, fungi and ants, and ants and plants all play important roles in ecosystems. Symbioses involving all three partners appear to be rare. Here, we describe a novel tripartite symbiosis in which ants and a fungus inhabit domatia of an ant-plant, and present evidence that such interactions are widespread. We investigated 139 individuals of the African ant-plant Leonardoxa africana for occurrence of fungus. Behaviour of mutualist ants toward the fungus within domatia was observed using a video camera fitted with an endoscope. Fungi were identified by sequencing a fragment of their ribosomal DNA. Fungi were always present in domatia occupied by mutualist ants but never in domatia occupied by opportunistic or parasitic ants. Ants appear to favour the propagation, removal and maintenance of the fungus. Similar fungi were associated with other ant-plants in Cameroon. All belong to the ascomycete order Chaetothyriales; those from L. africana formed a monophyletic clade. These new plant-ant-fungus associations seem to be specific, as demonstrated within Leonardoxa and as suggested by fungal phyletic identities. Such tripartite associations are widespread in African ant-plants but have long been overlooked. Taking fungal partners into account will greatly enhance our understanding of symbiotic ant-plant mutualisms.

  12. Stars and symbiosis: microRNA- and microRNA*-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis.

    PubMed

    Devers, Emanuel A; Branscheid, Anja; May, Patrick; Krajinski, Franziska

    2011-08-01

    The majority of plants are able to form the arbuscular mycorrhizal (AM) symbiosis in association with AM fungi. During symbiosis development, plant cells undergo a complex reprogramming resulting in profound morphological and physiological changes. MicroRNAs (miRNAs) are important components of the regulatory network of plant cells. To unravel the impact of miRNAs and miRNA-mediated mRNA cleavage on root cell reprogramming during AM symbiosis, we carried out high-throughput (Illumina) sequencing of small RNAs and degradome tags of Medicago truncatula roots. This led to the annotation of 243 novel miRNAs. An increased accumulation of several novel and conserved miRNAs in mycorrhizal roots suggest a role of these miRNAs during AM symbiosis. The degradome analysis led to the identification of 185 root transcripts as mature miRNA and also miRNA*-mediated mRNA cleavage targets. Several of the identified miRNA targets are known to be involved in root symbioses. In summary, the increased accumulation of specific miRNAs and the miRNA-mediated cleavage of symbiosis-relevant genes indicate that miRNAs are an important part of the regulatory network leading to symbiosis development.

  13. Academia-industry symbiosis in organic chemistry.

    PubMed

    Michaudel, Quentin; Ishihara, Yoshihiro; Baran, Phil S

    2015-03-17

    Collaboration between academia and industry is a growing phenomenon within the chemistry community. These sectors have long held strong ties since academia traditionally trains the future scientists of the corporate world, but the recent drastic decrease of public funding is motivating the academic world to seek more private grants. This concept of industrial "sponsoring" is not new, and in the past, some companies granted substantial amounts of money per annum to various academic institutions in exchange for prime access to all their scientific discoveries and inventions. However, academic and industrial interests were not always aligned, and therefore the investment has become increasingly difficult to justify from industry's point of view. With fluctuating macroeconomic factors, this type of unrestricted grant has become more rare and has been largely replaced by smaller and more focused partnerships. In our view, forging a partnership with industry can be a golden opportunity for both parties and can represent a true symbiosis. This type of project-specific collaboration is engendered by industry's desire to access very specific academic expertise that is required for the development of new technologies at the forefront of science. Since financial pressures do not allow companies to spend the time to acquire this expertise and even less to explore fundamental research, partnering with an academic laboratory whose research is related to the problem gives them a viable alternative. From an academic standpoint, it represents the perfect occasion to apply "pure science" research concepts to solve problems that benefit humanity. Moreover, it offers a unique opportunity for students to face challenges from the "real world" at an early stage of their career. Although not every problem in industry can be solved by research developments in academia, we argue that there is significant scientific overlap between these two seemingly disparate groups, thereby presenting an

  14. Academia–Industry Symbiosis in Organic Chemistry

    PubMed Central

    2015-01-01

    Conspectus Collaboration between academia and industry is a growing phenomenon within the chemistry community. These sectors have long held strong ties since academia traditionally trains the future scientists of the corporate world, but the recent drastic decrease of public funding is motivating the academic world to seek more private grants. This concept of industrial “sponsoring” is not new, and in the past, some companies granted substantial amounts of money per annum to various academic institutions in exchange for prime access to all their scientific discoveries and inventions. However, academic and industrial interests were not always aligned, and therefore the investment has become increasingly difficult to justify from industry’s point of view. With fluctuating macroeconomic factors, this type of unrestricted grant has become more rare and has been largely replaced by smaller and more focused partnerships. In our view, forging a partnership with industry can be a golden opportunity for both parties and can represent a true symbiosis. This type of project-specific collaboration is engendered by industry’s desire to access very specific academic expertise that is required for the development of new technologies at the forefront of science. Since financial pressures do not allow companies to spend the time to acquire this expertise and even less to explore fundamental research, partnering with an academic laboratory whose research is related to the problem gives them a viable alternative. From an academic standpoint, it represents the perfect occasion to apply “pure science” research concepts to solve problems that benefit humanity. Moreover, it offers a unique opportunity for students to face challenges from the “real world” at an early stage of their career. Although not every problem in industry can be solved by research developments in academia, we argue that there is significant scientific overlap between these two seemingly disparate

  15. Immunosuppression during Rhizobium-legume symbiosis.

    PubMed

    Luo, Li; Lu, Dawei

    2014-01-01

    Rhizobium infects host legumes to elicit new plant organs, nodules where dinitrogen is fixed as ammonia that can be directly utilized by plants. The nodulation factor (NF) produced by Rhizobium is one of the determinant signals for rhizobial infection and nodule development. Recently, it was found to suppress the innate immunity on host and nonhost plants as well as its analogs, chitins. Therefore, NF can be recognized as a microbe/pathogen-associated molecular pattern (M/PAMP) like chitin to induce the M/PAMP triggered susceptibility (M/PTS) of host plants to rhizobia. Whether the NF signaling pathway is directly associated with the innate immunity is not clear till now. In fact, other MAMPs such as lipopolysaccharide (LPS), exopolysaccharide (EPS) and cyclic-β-glucan, together with type III secretion system (T3SS) effectors are also required for rhizobial infection or survival in leguminous nodule cells. Interestingly, most of them play similarly negative roles in the innate immunity of host plants, though their signaling is not completely elucidated. Taken together, we believe that the local immunosuppression on host plants induced by Rhizobium is essential for the establishment of their symbiosis.

  16. Phylogeny, genomics, and symbiosis of Photobacterium.

    PubMed

    Urbanczyk, Henryk; Ast, Jennifer C; Dunlap, Paul V

    2011-03-01

    Photobacterium comprises several species in Vibrionaceae, a large family of Gram-negative, facultatively aerobic, bacteria that commonly associate with marine animals. Members of the genus are widely distributed in the marine environment and occur in seawater, surfaces, and intestines of marine animals, marine sediments and saline lake water, and light organs of fish. Seven Photobacterium species are luminous via the activity of the lux genes, luxCDABEG. Much recent progress has been made on the phylogeny, genomics, and symbiosis of Photobacterium. Phylogenetic analysis demonstrates a robust separation between Photobacterium and its close relatives, Aliivibrio and Vibrio, and reveals the presence of two well-supported clades. Clade 1 contains luminous and symbiotic species and one species with no luminous members, and Clade 2 contains mostly nonluminous species. The genomes of Photobacterium are similar in size, structure, and organization to other members of Vibrionaceae, with two chromosomes of unequal size and multiple rrn operons. Many species of marine fish form bioluminescent symbioses with three Photobacterium species: Photobacterium kishitanii, Photobacterium leiognathi, and Photobacterium mandapamensis. These associations are highly, but not strictly species specific, and they do not exhibit symbiont-host codivergence. Environmental congruence instead of host selection might explain the patterns of symbiont-host affiliation observed from nature.

  17. Bacterial communities associated with the lichen symbiosis.

    PubMed

    Bates, Scott T; Cropsey, Garrett W G; Caporaso, J Gregory; Knight, Rob; Fierer, Noah

    2011-02-01

    Lichens are commonly described as a mutualistic symbiosis between fungi and "algae" (Chlorophyta or Cyanobacteria); however, they also have internal bacterial communities. Recent research suggests that lichen-associated microbes are an integral component of lichen thalli and that the classical view of this symbiotic relationship should be expanded to include bacteria. However, we still have a limited understanding of the phylogenetic structure of these communities and their variability across lichen species. To address these knowledge gaps, we used bar-coded pyrosequencing to survey the bacterial communities associated with lichens. Bacterial sequences obtained from four lichen species at multiple locations on rock outcrops suggested that each lichen species harbored a distinct community and that all communities were dominated by Alphaproteobacteria. Across all samples, we recovered numerous bacterial phylotypes that were closely related to sequences isolated from lichens in prior investigations, including those from a lichen-associated Rhizobiales lineage (LAR1; putative N(2) fixers). LAR1-related phylotypes were relatively abundant and were found in all four lichen species, and many sequences closely related to other known N(2) fixers (e.g., Azospirillum, Bradyrhizobium, and Frankia) were recovered. Our findings confirm the presence of highly structured bacterial communities within lichens and provide additional evidence that these bacteria may serve distinct functional roles within lichen symbioses.

  18. The fine line between mutualism and parasitism: complex effects in a cleaning symbiosis demonstrated by multiple field experiments.

    PubMed

    Brown, Bryan L; Creed, Robert P; Skelton, James; Rollins, Mark A; Farrell, Kaitlin J

    2012-09-01

    Ecological theory and observational evidence suggest that symbiotic interactions such as cleaning symbioses can shift from mutualism to parasitism. However, field experimental evidence documenting these shifts has never been reported for a cleaning symbiosis. Here, we demonstrate shifts in a freshwater cleaning symbiosis in a system involving crayfish and branchiobdellid annelids. Branchiobdellids have been shown to benefit their hosts under some conditions by cleaning material from host crayfish's gill filaments. The system is uniquely suited as an experimental model for symbiosis due to ease of manipulation and ubiquity of the organisms. In three field experiments, we manipulated densities of worms on host crayfish and measured host growth in field enclosures. In all cases, the experiments revealed shifts from mutualism to parasitism: host crayfish growth was highest at intermediate densities of branchiobdellid symbionts, while high symbiont densities led to growth that was lower or not significantly different from 0-worm controls. Growth responses were consistent even though the three experiments involved different crayfish and worm species and were performed at different locations. Results also closely conformed to a previous laboratory experiment using the same system. The mechanism for these shifts appears to be that branchiobdellids switched from cleaning host gills at intermediate densities of worms to consuming host gill tissue at high densities. These outcomes clearly demonstrate shifts along a symbiosis continuum with the maximum benefits to the host at intermediate symbiont densities. At high symbiont densities, benefits to the host disappear, and there is some evidence for a weak parasitism. These are the first field experimental results to demonstrate such shifts in a cleaning symbiosis.

  19. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis.

    PubMed

    Floss, Daniela S; Levy, Julien G; Lévesque-Tremblay, Véronique; Pumplin, Nathan; Harrison, Maria J

    2013-12-17

    Most flowering plants are able to form endosymbioses with arbuscular mycorrhizal fungi. In this mutualistic association, the fungus colonizes the root cortex and establishes elaborately branched hyphae, called arbuscules, within the cortical cells. Arbuscule development requires the cellular reorganization of both symbionts, and the resulting symbiotic interface functions in nutrient exchange. A plant symbiosis signaling pathway controls the development of the symbiosis. Several components of the pathway have been identified, but transcriptional regulators that control downstream pathways for arbuscule formation are still unknown. Here we show that DELLA proteins, which are repressors of gibberellic acid (GA) signaling and function at the nexus of several signaling pathways, are required for arbuscule formation. Arbuscule formation is severely impaired in a Medicago truncatula Mtdella1/Mtdella2 double mutant; GA treatment of wild-type roots phenocopies the della double mutant, and a dominant DELLA protein (della1-Δ18) enables arbuscule formation in the presence of GA. Ectopic expression of della1-Δ18 suggests that DELLA activity in the vascular tissue and endodermis is sufficient to enable arbuscule formation in the inner cortical cells. In addition, expression of della1-Δ18 restores arbuscule formation in the symbiosis signaling pathway mutant cyclops/ipd3, indicating an intersection between DELLA and symbiosis signaling for arbuscule formation. GA signaling also influences arbuscule formation in monocots, and a Green Revolution wheat variety carrying dominant DELLA alleles shows enhanced colonization but a limited growth response to arbuscular mycorrhizal symbiosis.

  20. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis

    PubMed Central

    Floss, Daniela S.; Levy, Julien G.; Lévesque-Tremblay, Véronique; Pumplin, Nathan; Harrison, Maria J.

    2013-01-01

    Most flowering plants are able to form endosymbioses with arbuscular mycorrhizal fungi. In this mutualistic association, the fungus colonizes the root cortex and establishes elaborately branched hyphae, called arbuscules, within the cortical cells. Arbuscule development requires the cellular reorganization of both symbionts, and the resulting symbiotic interface functions in nutrient exchange. A plant symbiosis signaling pathway controls the development of the symbiosis. Several components of the pathway have been identified, but transcriptional regulators that control downstream pathways for arbuscule formation are still unknown. Here we show that DELLA proteins, which are repressors of gibberellic acid (GA) signaling and function at the nexus of several signaling pathways, are required for arbuscule formation. Arbuscule formation is severely impaired in a Medicago truncatula Mtdella1/Mtdella2 double mutant; GA treatment of wild-type roots phenocopies the della double mutant, and a dominant DELLA protein (della1-Δ18) enables arbuscule formation in the presence of GA. Ectopic expression of della1-Δ18 suggests that DELLA activity in the vascular tissue and endodermis is sufficient to enable arbuscule formation in the inner cortical cells. In addition, expression of della1-Δ18 restores arbuscule formation in the symbiosis signaling pathway mutant cyclops/ipd3, indicating an intersection between DELLA and symbiosis signaling for arbuscule formation. GA signaling also influences arbuscule formation in monocots, and a Green Revolution wheat variety carrying dominant DELLA alleles shows enhanced colonization but a limited growth response to arbuscular mycorrhizal symbiosis. PMID:24297892

  1. An antimicrobial peptide essential for bacterial survival in the nitrogen-fixing symbiosis.

    PubMed

    Kim, Minsoo; Chen, Yuhui; Xi, Jiejun; Waters, Christopher; Chen, Rujin; Wang, Dong

    2015-12-08

    In the nitrogen-fixing symbiosis between legume hosts and rhizobia, the bacteria are engulfed by a plant cell membrane to become intracellular organelles. In the model legume Medicago truncatula, internalization and differentiation of Sinorhizobium (also known as Ensifer) meliloti is a prerequisite for nitrogen fixation. The host mechanisms that ensure the long-term survival of differentiating intracellular bacteria (bacteroids) in this unusual association are unclear. The M. truncatula defective nitrogen fixation4 (dnf4) mutant is unable to form a productive symbiosis, even though late symbiotic marker genes are expressed in mutant nodules. We discovered that in the dnf4 mutant, bacteroids can apparently differentiate, but they fail to persist within host cells in the process. We found that the DNF4 gene encodes NCR211, a member of the family of nodule-specific cysteine-rich (NCR) peptides. The phenotype of dnf4 suggests that NCR211 acts to promote the intracellular survival of differentiating bacteroids. The greatest expression of DNF4 was observed in the nodule interzone II-III, where bacteroids undergo differentiation. A translational fusion of DNF4 with GFP localizes to the peribacteroid space, and synthetic NCR211 prevents free-living S. meliloti from forming colonies, in contrast to mock controls, suggesting that DNF4 may interact with bacteroids directly or indirectly for its function. Our findings indicate that a successful symbiosis requires host effectors that not only induce bacterial differentiation, but also that maintain intracellular bacteroids during the host-symbiont interaction. The discovery of NCR211 peptides that maintain bacterial survival inside host cells has important implications for improving legume crops.

  2. An antimicrobial peptide essential for bacterial survival in the nitrogen-fixing symbiosis

    PubMed Central

    Kim, Minsoo; Chen, Yuhui; Xi, Jiejun; Waters, Christopher; Chen, Rujin; Wang, Dong

    2015-01-01

    In the nitrogen-fixing symbiosis between legume hosts and rhizobia, the bacteria are engulfed by a plant cell membrane to become intracellular organelles. In the model legume Medicago truncatula, internalization and differentiation of Sinorhizobium (also known as Ensifer) meliloti is a prerequisite for nitrogen fixation. The host mechanisms that ensure the long-term survival of differentiating intracellular bacteria (bacteroids) in this unusual association are unclear. The M. truncatula defective nitrogen fixation4 (dnf4) mutant is unable to form a productive symbiosis, even though late symbiotic marker genes are expressed in mutant nodules. We discovered that in the dnf4 mutant, bacteroids can apparently differentiate, but they fail to persist within host cells in the process. We found that the DNF4 gene encodes NCR211, a member of the family of nodule-specific cysteine-rich (NCR) peptides. The phenotype of dnf4 suggests that NCR211 acts to promote the intracellular survival of differentiating bacteroids. The greatest expression of DNF4 was observed in the nodule interzone II-III, where bacteroids undergo differentiation. A translational fusion of DNF4 with GFP localizes to the peribacteroid space, and synthetic NCR211 prevents free-living S. meliloti from forming colonies, in contrast to mock controls, suggesting that DNF4 may interact with bacteroids directly or indirectly for its function. Our findings indicate that a successful symbiosis requires host effectors that not only induce bacterial differentiation, but also that maintain intracellular bacteroids during the host–symbiont interaction. The discovery of NCR211 peptides that maintain bacterial survival inside host cells has important implications for improving legume crops. PMID:26598690

  3. The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling.

    PubMed

    Zhang, Xiaowei; Dong, Wentao; Sun, Jongho; Feng, Feng; Deng, Yiwen; He, Zuhua; Oldroyd, Giles E D; Wang, Ertao

    2015-01-01

    The establishment of symbiotic interactions between mycorrhizal fungi, rhizobial bacteria and their legume hosts involves a common symbiosis signalling pathway. This signalling pathway is activated by Nod factors produced by rhizobia and these are recognised by the Nod factor receptors NFR1/LYK3 and NFR5/NFP. Mycorrhizal fungi produce lipochitooligosaccharides (LCOs) similar to Nod factors, as well as short-chain chitin oligomers (CO4/5), implying commonalities in signalling during mycorrhizal and rhizobial associations. Here we show that NFR1/LYK3, but not NFR5/NFP, is required for the establishment of the mycorrhizal interaction in legumes. NFR1/LYK3 is necessary for the recognition of mycorrhizal fungi and the activation of the symbiosis signalling pathway leading to induction of calcium oscillations and gene expression. Chitin oligosaccharides also act as microbe associated molecular patterns that promote plant immunity via similar LysM receptor-like kinases. CERK1 in rice has the highest homology to NFR1 and we show that this gene is also necessary for the establishment of the mycorrhizal interaction as well as for resistance to the rice blast fungus. Our results demonstrate that NFR1/LYK3/OsCERK1 represents a common receptor for chitooligosaccharide-based signals produced by mycorrhizal fungi, rhizobial bacteria (in legumes) and fungal pathogens. It would appear that mycorrhizal recognition has been conserved in multiple receptors across plant species, but additional diversification in certain plant species has defined other signals that this class of receptors can perceive.

  4. [LEGUME-RHIZOBIUM SYMBIOSIS PROTEOMICS: ACHIEVEMENTS AND PERSPECTIVES].

    PubMed

    Kondratiuk, Iu Iu; Mamenko, P M; Kots, S Ya

    2015-01-01

    The present review contains results of proteomic researches of legume-rhizobium symbiosis. The technical difficulties associated with the methods of obtaining protein extracts from symbiotic structures and ways of overcoming them were discussed. The changes of protein synthesis under formation and functioning of symbiotic structures were shown. Special attention has been given to the importance of proteomic studies of plant-microbe structures in the formation of adaptation strategies under adverse environmental conditions. The technical and conceptual perspectives of legume-rhizobium symbiosis proteomics were shown.

  5. The Leopoldina international symposium on parasitism, commensalism and symbiosis--common themes, different outcome.

    PubMed

    Gross, Roy; Hacker, Jörg; Goebel, Werner

    2003-03-01

    The development of new methods, including genomics, which can even be applied to unculturable microorganisms, has significantly increased our knowledge about bacterial pathogenesis and symbiosis and, in consequence, is profoundly modifying our views on the evolution and the genetic and physiological basis of bacteria-host interactions. The presentations at this symposium revealed conceptual links between bacterial pathogenesis and symbiosis. The close co-operation of experts in both fields will result in significant synergy and new insights into basic mechanisms of bacteria-host interactions and their evolution. The meeting provided fascinating news about the genetic and metabolic consequences that the change in their lifestyle had for bacteria that developed from free-living to permanent host-associated organisms exemplified by intracellular pathogens or symbionts. In addition, surprising similarities but also striking differences between the strategies involved in the establishment of a symbiotic versus a parasitic lifestyle can be noted. In the long run, the characterization of such differences might lead to lifestyle prediction or to an evaluation of the pathogenic potential of newly isolated bacteria via the definition of genetic and/or metabolic signatures characteristic for pathogenic or symbiotic organisms. Moreover, it is expected that these investigations will lead to new strategies for the treatment or prevention of bacterial infections, or the avoidance of pathogen transmission.

  6. Mapping carbon fate during bleaching in a model cnidarian symbiosis: the application of (13) C metabolomics.

    PubMed

    Hillyer, Katie E; Dias, Daniel A; Lutz, Adrian; Roessner, Ute; Davy, Simon K

    2017-03-08

    Coral bleaching is a major threat to the persistence of coral reefs. Yet we lack detailed knowledge of the metabolic interactions that determine symbiosis function and bleaching-induced change. We mapped autotrophic carbon fate within the free metabolite pools of both partners of a model cnidarian-dinoflagellate symbiosis (Aiptasia-Symbiodinium) during exposure to thermal stress via the stable isotope tracer ((13) C bicarbonate), coupled to GC-MS. Symbiont photodamage and pronounced bleaching coincided with substantial increases in the turnover of non(13) C-labelled pools in the dinoflagellate (lipid and starch store catabolism). However, (13) C enrichment of multiple compounds associated with ongoing carbon fixation and de novo biosynthesis pathways was maintained (glucose, fatty acid and lipogenesis intermediates). Minimal change was also observed in host pools of (13) C-enriched glucose (a major symbiont-derived mobile product). However, host pathways downstream showed altered carbon fate and/or pool composition, with accumulation of compatible solutes and nonenzymic antioxidant precursors. In hospite symbionts continue to provide mobile products to the host, but at a significant cost to themselves, necessitating the mobilization of energy stores. These data highlight the need to further elucidate the role of metabolic interactions between symbiotic partners, during the process of thermal acclimation and coral bleaching.

  7. Occurrence of a specific dual symbiosis in the excretory organ of geographically distant Nautiloids populations.

    PubMed

    Pernice, Mathieu; Boucher-Rodoni, Renata

    2012-10-01

    Nautilus is one of the most intriguing of all sea creatures, sharing morphological similarities with the extinct forms of coiled cephalopods that evolved since the Cambrian (542-488 mya). Further, bacterial symbioses found in their excretory organ are of particular interest as they provide a great opportunity to investigate the influence of host-microbe interactions upon the origin and evolution of an innovative nitrogen excretory system. To establish the potential of Nautilus excretory organ as a new symbiotic system, it is, however, necessary to assess the specificity of this symbiosis and whether it is consistent within the different species of present-day Nautiloids. By addressing the phylogeny and distribution of bacterial symbionts in three Nautilus populations separated by more than 6000 km (N. pompilius from Philippines and Vanuatu, and N. macromphalus from New Caledonia), this study confirms the specificity of this dual symbiosis involving the presence of betaproteobacteria and spirochaete symbionts on a very wide geographical area. Overall, this work sheds further light on Nautiloids excretory organ as an innovative system of interaction between bacteria and cephalopods.

  8. Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis.

    PubMed

    Hao, X; Taghavi, S; Xie, P; Orbach, M J; Alwathnani, H A; Rensing, C; Wei, G

    2014-01-01

    Legumes are important for nitrogen cycling in the environment and agriculture due to the ability of nitrogen fixation by rhizobia. In this review, we introduce an important and potential role of legume-rhizobia symbiosis in aiding phytoremediation of some metal contaminated soils as various legumes have been found to be the dominant plant species in metal contaminated areas. Resistant rhizobia used for phytoremediation could act on metals directly by chelation, precipitation, transformation, biosorption and accumulation. Moreover, the plant growth promoting (PGP) traits of rhizobia including nitrogen fixation, phosphorus solubilization, phytohormone synthesis, siderophore release, and production of ACC deaminase and the volatile compounds of acetoin and 2, 3-butanediol may facilitate legume growth while lessening metal toxicity. The benefits of using legumes inoculated with naturally resistant rhizobia or recombinant rhizobia with enhanced resistance, as well as co-inoculation with other plant growth promoting bacteria (PGPB) are discussed. However, the legume-rhizobia symbiosis appears to be sensitive to metals, and the effect of metal toxicity on the interaction between legumes and rhizobia is not clear. Therefore, to obtain the maximum benefits from legumes assisted by rhizobia for phytoremediation of metals, it is critical to have a good understanding of interactions between PGP traits, the symbiotic plant-rhizobia relationship and metals.

  9. Preventing overexploitation in a mutualism: partner regulation in the crayfish-branchiobdellid symbiosis.

    PubMed

    Farrell, Kaitlin J; Creed, Robert P; Brown, Bryan L

    2014-02-01

    For a symbiosis to be a mutualism, benefits received must exceed costs incurred for both partners. Partners can prevent costly overexploitation through behaviors that moderate interactions with the other symbiont. In a symbiosis between crayfish and branchiobdellidan annelids, the worms can increase crayfish survival and growth by removing fouling material from the gills. However, overexploitation by the worms is possible and results in damage to host gills. We used behavioral observations to assess the degree to which two species of crayfish (Cambarus chasmodactylus and Orconectes cristavarius) use grooming to moderate their interaction with branchiobdellids. We found that grooming could effectively reduce worm numbers, and the proportion of total grooming directed at worms differed between crayfish species and as a function of worm number. O. cristavarius increased grooming in response to the addition of a single worm, while C. chasmodactylus only increased grooming in response to ten worms. These differences in the number of worms that trigger grooming behavior reflect differences between crayfish species in field settings. We also assessed whether antibacterial compounds in circulating crayfish hemolymph could limit bacterial gill fouling. O. cristavarius hemolymph inhibited some test bacteria more effectively than C. chasmodactylus did. Differences in the antibacterial properties of crayfish hemolymph may therefore help explain differences in both worm-directed grooming and worm loads in the field. We conclude that crayfish can use grooming to reduce worm numbers, which could lower the potential for gill damage, and that the level of grooming varies between crayfish species.

  10. Genomic analysis reveals key aspects of prokaryotic symbiosis in the phototrophic consortium “Chlorochromatium aggregatum”

    PubMed Central

    2013-01-01

    Background ‘Chlorochromatium aggregatum’ is a phototrophic consortium, a symbiosis that may represent the highest degree of mutual interdependence between two unrelated bacteria not associated with a eukaryotic host. ‘Chlorochromatium aggregatum’ is a motile, barrel-shaped aggregate formed from a single cell of ‘Candidatus Symbiobacter mobilis”, a polarly flagellated, non-pigmented, heterotrophic bacterium, which is surrounded by approximately 15 epibiont cells of Chlorobium chlorochromatii, a non-motile photolithoautotrophic green sulfur bacterium. Results We analyzed the complete genome sequences of both organisms to understand the basis for this symbiosis. Chl. chlorochromatii has acquired relatively few symbiosis-specific genes; most acquired genes are predicted to modify the cell wall or function in cell-cell adhesion. In striking contrast, ‘Ca. S. mobilis’ appears to have undergone massive gene loss, is probably no longer capable of independent growth, and thus may only reproduce when consortia divide. A detailed model for the energetic and metabolic bases of the dependency of ‘Ca. S. mobilis’ on Chl. chlorochromatii is described. Conclusions Genomic analyses suggest that three types of interactions lead to a highly sophisticated relationship between these two organisms. Firstly, extensive metabolic exchange, involving carbon, nitrogen, and sulfur sources as well as vitamins, occurs from the epibiont to the central bacterium. Secondly, ‘Ca. S. mobilis’ can sense and move towards light and sulfide, resources that only directly benefit the epibiont. Thirdly, electron cycling mechanisms, particularly those mediated by quinones and potentially involving shared protonmotive force, could provide an important basis for energy exchange in this and other symbiotic relationships. PMID:24267588

  11. Food web persistence is enhanced by non-trophic interactions.

    PubMed

    Hammill, Edd; Kratina, Pavel; Vos, Matthijs; Petchey, Owen L; Anholt, Bradley R

    2015-06-01

    The strength of interspecific interactions is often proposed to affect food web stability, with weaker interactions increasing the persistence of species, and food webs as a whole. However, the mechanisms that modify interaction strengths, and their effects on food web persistence are not fully understood. Using food webs containing different combinations of predator, prey, and nonprey species, we investigated how predation risk of susceptible prey is affected by the presence of species not directly trophically linked to either predators or prey. We predicted that indirect alterations to the strength of trophic interactions translate to changes in persistence time of extinction-prone species. We assembled interaction webs of protist consumers and turbellarian predators with eight different combinations of prey, predators and nonprey species, and recorded abundances for over 130 prey generations. Persistence of predation-susceptible species was increased by the presence of nonprey. Furthermore, multiple nonprey species acted synergistically to increase prey persistence, such that persistence was greater than would be predicted from the dynamics of simpler food webs. We also found evidence suggesting increased food web complexity may weaken interspecific competition, increasing persistence of poorer competitors. Our results demonstrate that persistence times in complex food webs cannot be predicted from the dynamics of simplified systems, and that species not directly involved in consumptive interactions likely play key roles in maintaining persistence. Global species diversity is currently declining at an unprecedented rate and our findings reveal that concurrent loss of species that modify trophic interactions may have unpredictable consequences for food web stability.

  12. Signaling events during initiation of arbuscular mycorrhizal symbiosis.

    PubMed

    Schmitz, Alexa M; Harrison, Maria J

    2014-03-01

    Under nutrient-limiting conditions, plants will enter into symbiosis with arbuscular mycorrhizal (AM) fungi for the enhancement of mineral nutrient acquisition from the surrounding soil. AM fungi live in close, intracellular association with plant roots where they transfer phosphate and nitrogen to the plant in exchange for carbon. They are obligate fungi, relying on their host as their only carbon source. Much has been discovered in the last decade concerning the signaling events during initiation of the AM symbiosis, including the identification of signaling molecules generated by both partners. This signaling occurs through symbiosis-specific gene products in the host plant, which are indispensable for normal AM development. At the same time, plants have adapted complex mechanisms for avoiding infection by pathogenic fungi, including an innate immune response to general microbial molecules, such as chitin present in fungal cell walls. How it is that AM fungal colonization is maintained without eliciting a defensive response from the host is still uncertain. In this review, we present a summary of the molecular signals and their elicited responses during initiation of the AM symbiosis, including plant immune responses and their suppression.

  13. Quorum sensing in the squid-Vibrio symbiosis.

    PubMed

    Verma, Subhash C; Miyashiro, Tim

    2013-08-07

    Quorum sensing is an intercellular form of communication that bacteria use to coordinate group behaviors such as biofilm formation and the production of antibiotics and virulence factors. The term quorum sensing was originally coined to describe the mechanism underlying the onset of luminescence production in cultures of the marine bacterium Vibrio fischeri. Luminescence and, more generally, quorum sensing are important for V. fischeri to form a mutualistic symbiosis with the Hawaiian bobtail squid, Euprymna scolopes. The symbiosis is established when V. fischeri cells migrate via flagella-based motility from the surrounding seawater into a specialized structure injuvenile squid called the light organ. The cells grow to high cell densities within the light organ where the infection persists over the lifetime of the animal. A hallmark of a successful symbiosis is the luminescence produced by V. fischeri that camouflages the squid at night by eliminating its shadow within the water column. While the regulatory networks governing quorum sensing are critical for properly regulating V. fischeri luminescence within the squid light organ, they also regulate luminescence-independent processes during symbiosis. In this review, we discuss the quorum-sensing network of V. fischeri and highlight its impact at various stages during host colonization.

  14. Transgenerational effects of plant sex and arbuscular mycorrhizal symbiosis.

    PubMed

    Varga, Sandra; Vega-Frutis, Rocío; Kytöviita, Minna-Maarit

    2013-08-01

    In gynodioecious plants, females are predicted to produce more and/or better offspring than hermaphrodites in order to be maintained in the same population. In the field, the roots of both sexes are usually colonized by arbuscular mycorrhizal (AM) fungi. Transgenerational effects of mycorrhizal symbiosis are largely unknown, although theoretically expected. We examined the maternal and paternal effects of AM fungal symbiosis and host sex on seed production and posterior seedling performance in Geranium sylvaticum, a gynodioecious plant. We hand-pollinated cloned females and hermaphrodites in symbiosis with AM fungi or in nonmycorrhizal conditions and measured seed number and mass, and seedling survival and growth in a glasshouse experiment. Females produced more seeds than hermaphrodites, but the seeds did not germinate, survive or grow better. Mycorrhizal plants were larger, but did not produce more seeds than nonmycorrhizal plants. Transgenerational parental effects of AM fungi were verified in seedling performance. This is the first study to show transgenerational mycorrhiza-mediated parental effects in a gynodioecious species. Mycorrhizal symbiosis affects plant fitness mainly through female functions with enduring effects on the next generation.

  15. Is the evolution of the coral-algal symbiosis linked to fluctuations in seawater magnesium concentrations?

    NASA Astrophysics Data System (ADS)

    Giri, S.; Devlin, Q.; Swart, P. K.

    2014-12-01

    While Scleractinia first appear in shallow tropical seas during the Mid-Triassic, it is unclear when and why these corals established their symbiosis with a dinoflagellate alga (Symbiodinium microadriaticum). The development of this symbiosis was a major evolutionary innovation for corals, which was not previously observed in other coral taxa (Rugosa and Tabulata) and likely contributed to the rise of Scleractinia as the dominant reef builders. Inarguably, this symbiotic relationship is linked to increased calcification rates but dinoflagellate symbioses are also very common in non-calcifying marine invertebrates making it unclear whether the coral host or algal symbiont drives the establishment of this symbiosis. Recently, it has been suggested that the establishment of the coral-algal symbiosis is symbiont driven by the fluctuation of the Mg/Ca ratio of seawater at the beginning of the Mesozoic. Scleractinia precipitate aragonitic skeletons further suggesting they evolved in seawater with a high Mg/Ca ratio and that their mineralogy is linked to their environment. In order to determine how seawater chemistry influences host-symbiont interactions, we grew Pocillopora damicornis in seawater with elevated calcium and magnesium concentrations. Growth rates are higher than the control treatment when the Mg2+ concentration is increased by 200 ppm but are not significantly different than the control treatment when the Ca2+ concentration is increased by 200 ppm, suggesting that calcification is linked to the Mg2+ concentration of seawater. Growth rates are not, however, related to in-hospite symbiont density, which is similar in the control, +200 ppm Ca2+ and +200 ppm Mg2+ treatments. This similarity in symbiont density between treatments suggests that even when the chemistry of the surrounding seawater fluctuates, with respect to Ca2+ and Mg2+ ions, the coral host provides a stable environment in which the symbionts can reside. This preliminary work has implications for

  16. The first thousand days - intestinal microbiology of early life: establishing a symbiosis.

    PubMed

    Wopereis, Harm; Oozeer, Raish; Knipping, Karen; Belzer, Clara; Knol, Jan

    2014-08-01

    The development of the intestinal microbiota in the first years of life is a dynamic process significantly influenced by early-life nutrition. Pioneer bacteria colonizing the infant intestinal tract and the gradual diversification to a stable climax ecosystem plays a crucial role in establishing host-microbe interactions essential for optimal symbiosis. This colonization process and establishment of symbiosis may profoundly influence health throughout life. Recent developments in microbiologic cultivation-independent methods allow a detailed view of the key players and factors involved in this process and may further elucidate their roles in a healthy gut and immune maturation. Aberrant patterns may lead to identifying key microbial signatures involved in developing immunologic diseases into adulthood, such as asthma and atopic diseases. The central role of early-life nutrition in the developmental human microbiota, immunity, and metabolism offers promising strategies for prevention and treatment of such diseases. This review provides an overview of the development of the intestinal microbiota, its bidirectional relationship with the immune system, and its role in impacting health and disease, with emphasis on allergy, in early life.

  17. The genome of Aiptasia, a sea anemone model for coral symbiosis.

    PubMed

    Baumgarten, Sebastian; Simakov, Oleg; Esherick, Lisl Y; Liew, Yi Jin; Lehnert, Erik M; Michell, Craig T; Li, Yong; Hambleton, Elizabeth A; Guse, Annika; Oates, Matt E; Gough, Julian; Weis, Virginia M; Aranda, Manuel; Pringle, John R; Voolstra, Christian R

    2015-09-22

    The most diverse marine ecosystems, coral reefs, depend upon a functional symbiosis between a cnidarian animal host (the coral) and intracellular photosynthetic dinoflagellate algae. The molecular and cellular mechanisms underlying this endosymbiosis are not well understood, in part because of the difficulties of experimental work with corals. The small sea anemone Aiptasia provides a tractable laboratory model for investigating these mechanisms. Here we report on the assembly and analysis of the Aiptasia genome, which will provide a foundation for future studies and has revealed several features that may be key to understanding the evolution and function of the endosymbiosis. These features include genomic rearrangements and taxonomically restricted genes that may be functionally related to the symbiosis, aspects of host dependence on alga-derived nutrients, a novel and expanded cnidarian-specific family of putative pattern-recognition receptors that might be involved in the animal-algal interactions, and extensive lineage-specific horizontal gene transfer. Extensive integration of genes of prokaryotic origin, including genes for antimicrobial peptides, presumably reflects an intimate association of the animal-algal pair also with its prokaryotic microbiome.

  18. Fungal symbiosis and precipitation alter traits and dune building by the ecosystem engineer, Ammophila breviligulata.

    PubMed

    Emery, Sarah M; Bell-Dereske, Lukas; Rudgers, Jennifer A

    2015-04-01

    Ecosystem engineer species influence their community and ecosystem by creating or altering the physical structure of habitats. The function of ecosystem engineers is variable and can depend on both abiotic and biotic factors. Here we make use of a primary successional system to evaluate the direct and interactive effects of climate change (precipitation) and fungal endophyte symbiosis on population traits and ecosystem function of the ecosystem engineering grass species, Ammophila breviligulata. We manipulated endophyte presence in A. breviligulata in combination with rain-out shelters and rainfall additions in a factorial field experiment established in 2010 on Lake Michigan sand dunes. We monitored plant traits, survival, growth, and sexual reproduction of A. breviligulata from 2010-2013, and quantified ecosystem engineering as the sand accumulation rate. Presence of the endophyte in A. breviligulata increased vegetative growth by up to 19%, and reduced sexual reproduction by up to 46% across all precipitation treatments. Precipitation was a less significant factor than endophyte colonization for A. breviligulata growth. Reduced precipitation increased average leaf number per tiller but had no other effects on plant traits. Changes in A. breviligulata traits corresponded to increases in sand accumulation in plots with the endophyte as well as in plots with reduced precipitation. Sand accumulation is a key ecosystem function in these primary successional habitats, and so microbial symbiosis in this ecosystem engineer could lead to direct effects on the value of these dune habitats for humans.

  19. Advancing the science of microbial symbiosis to support invasive species management: a case study on Phragmites in the Great Lakes

    PubMed Central

    Kowalski, Kurt P.; Bacon, Charles; Bickford, Wesley; Braun, Heather; Clay, Keith; Leduc-Lapierre, Michèle; Lillard, Elizabeth; McCormick, Melissa K.; Nelson, Eric; Torres, Monica; White, James; Wilcox, Douglas A.

    2015-01-01

    A growing body of literature supports microbial symbiosis as a foundational principle for the competitive success of invasive plant species. Further exploration of the relationships between invasive species and their associated microbiomes, as well as the interactions with the microbiomes of native species, can lead to key new insights into invasive success and potentially new and effective control approaches. In this manuscript, we review microbial relationships with plants, outline steps necessary to develop invasive species control strategies that are based on those relationships, and use the invasive plant species Phragmites australis (common reed) as an example of how development of microbial-based control strategies can be enhanced using a collective impact approach. The proposed science agenda, developed by the Collaborative for Microbial Symbiosis and Phragmites Management, contains a foundation of sequential steps and mutually-reinforcing tasks to guide the development of microbial-based control strategies for Phragmites and other invasive species. Just as the science of plant-microbial symbiosis can be transferred for use in other invasive species, so too can the model of collective impact be applied to other avenues of research and management. PMID:25745417

  20. Aeschynomene evenia, a model plant for studying the molecular genetics of the nod-independent rhizobium-legume symbiosis.

    PubMed

    Arrighi, Jean-François; Cartieaux, Fabienne; Brown, Spencer C; Rodier-Goud, Marguerite; Boursot, Marc; Fardoux, Joel; Patrel, Delphine; Gully, Djamel; Fabre, Sandrine; Chaintreuil, Clémence; Giraud, Eric

    2012-07-01

    Research on the nitrogen-fixing symbiosis has been focused, thus far, on two model legumes, Medicago truncatula and Lotus japonicus, which use a sophisticated infection process involving infection thread formation. However, in 25% of the legumes, the bacterial entry occurs more simply in an intercellular fashion. Among them, some Aeschynomene spp. are nodulated by photosynthetic Bradyrhizobium spp. that do not produce Nod factors. This interaction is believed to represent a living testimony of the ancestral state of the rhizobium-legume symbiosis. To decipher the mechanisms of this Nod-independent process, we propose Aeschynomene evenia as a model legume because it presents all the characteristics required for genetic and molecular analysis. It is a short-perennial and autogamous species, with a diploid and relatively small genome (2n=20; 460 Mb/1C). A. evenia 'IRFL6945' is nodulated by the well-characterized photosynthetic Bradyrhizobium sp. strain ORS278 and is efficiently transformed by Agrobacterium rhizogenes. Aeschynomene evenia is genetically homozygous but polymorphic accessions were found. A manual hybridization procedure has been set up, allowing directed crosses. Therefore, it should be relatively straightforward to unravel the molecular determinants of the Nod-independent process in A. evenia. This should shed new light on the evolution of rhizobium-legume symbiosis and could have important agronomic implications.