Sample records for interactive computational tool

  1. A Computer Model for Red Blood Cell Chemistry

    DTIC Science & Technology

    1996-10-01

    5012. 13. ABSTRACT (Maximum 200 There is a growing need for interactive computational tools for medical education and research. The most exciting...paradigm for interactive education is simulation. Fluid Mod is a simulation based computational tool developed in the late sixties and early seventies at...to a modern Windows, object oriented interface. This development will provide students with a useful computational tool for learning . More important

  2. Evaluation of a computerized aid for creating human behavioral representations of human-computer interaction.

    PubMed

    Williams, Kent E; Voigt, Jeffrey R

    2004-01-01

    The research reported herein presents the results of an empirical evaluation that focused on the accuracy and reliability of cognitive models created using a computerized tool: the cognitive analysis tool for human-computer interaction (CAT-HCI). A sample of participants, expert in interacting with a newly developed tactical display for the U.S. Army's Bradley Fighting Vehicle, individually modeled their knowledge of 4 specific tasks employing the CAT-HCI tool. Measures of the accuracy and consistency of task models created by these task domain experts using the tool were compared with task models created by a double expert. The findings indicated a high degree of consistency and accuracy between the different "single experts" in the task domain in terms of the resultant models generated using the tool. Actual or potential applications of this research include assessing human-computer interaction complexity, determining the productivity of human-computer interfaces, and analyzing an interface design to determine whether methods can be automated.

  3. A Multiple-Sessions Interactive Computer-Based Learning Tool for Ability Cultivation in Circuit Simulation

    ERIC Educational Resources Information Center

    Xu, Q.; Lai, L. L.; Tse, N. C. F.; Ichiyanagi, K.

    2011-01-01

    An interactive computer-based learning tool with multiple sessions is proposed in this paper, which teaches students to think and helps them recognize the merits and limitations of simulation tools so as to improve their practical abilities in electrical circuit simulation based on the case of a power converter with progressive problems. The…

  4. The effect of introducing computers into an introductory physics problem-solving laboratory

    NASA Astrophysics Data System (ADS)

    McCullough, Laura Ellen

    2000-10-01

    Computers are appearing in every type of classroom across the country. Yet they often appear without benefit of studying their effects. The research that is available on computer use in classrooms has found mixed results, and often ignores the theoretical and instructional contexts of the computer in the classroom. The University of Minnesota's physics department employs a cooperative-group problem solving pedagogy, based on a cognitive apprenticeship instructional model, in its calculus-based introductory physics course. This study was designed to determine possible negative effects of introducing a computerized data-acquisition and analysis tool into this pedagogy as a problem-solving tool for students to use in laboratory. To determine the effects of the computer tool, two quasi-experimental treatment groups were selected. The computer-tool group (N = 170) used a tool, designed for this study (VideoTool), to collect and analyze motion data in the laboratory. The control group (N = 170) used traditional non-computer equipment (spark tapes and Polaroid(TM) film). The curriculum was kept as similar as possible for the two groups. During the ten week academic quarter, groups were examined for effects on performance on conceptual tests and grades, attitudes towards the laboratory and the laboratory tools, and behaviors within cooperative groups. Possible interactions with gender were also examined. Few differences were found between the control and computer-tool groups. The control group received slightly higher scores on one conceptual test, but this difference was not educationally significant. The computer-tool group had slightly more positive attitudes towards using the computer tool than their counterparts had towards the traditional tools. The computer-tool group also perceived that they spoke more frequently about physics misunderstandings, while the control group felt that they discussed equipment difficulties more often. This perceptual difference interacted with gender, with the men in the control group more likely to discuss equipment difficulties than any other group. Overall, the differences between the control and quasi-experimental groups were minimal. It was concluded that carefully replacing traditional data collection and analysis tools with a computer tool had no negative effects on achievement, attitude, group behavior, and did not interact with gender.

  5. A New Computational Tool for Understanding Light-Matter Interactions

    DTIC Science & Technology

    2016-02-11

    SECURITY CLASSIFICATION OF: Plasmonic resonance of a metallic nanostructure results from coherent motion of its conduction electrons driven by...Box 12211 Research Triangle Park, NC 27709-2211 Plasmonics , light-matter interaction, time-dependent density functional theory, modeling and...reviewed journals: Final Report: A New Computational Tool For Understanding Light-Matter Interactions Report Title Plasmonic resonance of a metallic

  6. Design of Intelligent Robot as A Tool for Teaching Media Based on Computer Interactive Learning and Computer Assisted Learning to Improve the Skill of University Student

    NASA Astrophysics Data System (ADS)

    Zuhrie, M. S.; Basuki, I.; Asto B, I. G. P.; Anifah, L.

    2018-01-01

    The focus of the research is the teaching module which incorporates manufacturing, planning mechanical designing, controlling system through microprocessor technology and maneuverability of the robot. Computer interactive and computer-assisted learning is strategies that emphasize the use of computers and learning aids (computer assisted learning) in teaching and learning activity. This research applied the 4-D model research and development. The model is suggested by Thiagarajan, et.al (1974). 4-D Model consists of four stages: Define Stage, Design Stage, Develop Stage, and Disseminate Stage. This research was conducted by applying the research design development with an objective to produce a tool of learning in the form of intelligent robot modules and kit based on Computer Interactive Learning and Computer Assisted Learning. From the data of the Indonesia Robot Contest during the period of 2009-2015, it can be seen that the modules that have been developed confirm the fourth stage of the research methods of development; disseminate method. The modules which have been developed for students guide students to produce Intelligent Robot Tool for Teaching Based on Computer Interactive Learning and Computer Assisted Learning. Results of students’ responses also showed a positive feedback to relate to the module of robotics and computer-based interactive learning.

  7. State College Scavenger: Evaluating the Perspectives of Mobile Computing Interactions within Community Spaces

    ERIC Educational Resources Information Center

    Hoffman, Blaine

    2013-01-01

    This work focuses on the impact of mobile computing on individuals' perspectives of places within their community. A technological intervention is designed and deployed to augment the user experience of visiting different locations around town, physically exploring them while also interacting with an online tool. The tool-supported activity serves…

  8. Molecules to maps: tools for visualization and interaction in support of computational biology.

    PubMed

    Kraemer, E T; Ferrin, T E

    1998-01-01

    The volume of data produced by genome projects, X-ray crystallography, NMR spectroscopy, and electron and confocal microscopy present the bioinformatics community with new challenges for analyzing, understanding, and exchanging this data. At the 1998 Pacific Symposium on Biocomputing, a track entitled 'Molecules to Maps: Tools for Visualization and Interaction in Computational Biology' provided tool developers and users with the opportunity to discuss advances in tools and techniques to assist scientists in evaluating, absorbing, navigating, and correlating this sea of information, through visualization and user interaction. In this paper we present these advances and discuss some of the challenges that remain to be solved.

  9. Assessment of Spacecraft Systems Integration Using the Electric Propulsion Interactions Code (EPIC)

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Kuharski, Robert A.; Mandell, Myron J.; Gardner, Barbara M.; Kauffman, William J. (Technical Monitor)

    2002-01-01

    SAIC is currently developing the Electric Propulsion Interactions Code 'EPIC', an interactive computer tool that allows the construction of a 3-D spacecraft model, and the assessment of interactions between its subsystems and the plume from an electric thruster. EPIC unites different computer tools to address the complexity associated with the interaction processes. This paper describes the overall architecture and capability of EPIC including the physics and algorithms that comprise its various components. Results from selected modeling efforts of different spacecraft-thruster systems are also presented.

  10. Visualization and Interaction in Research, Teaching, and Scientific Communication

    NASA Astrophysics Data System (ADS)

    Ammon, C. J.

    2017-12-01

    Modern computing provides many tools for exploring observations, numerical calculations, and theoretical relationships. The number of options is, in fact, almost overwhelming. But the choices provide those with modest programming skills opportunities to create unique views of scientific information and to develop deeper insights into their data, their computations, and the underlying theoretical data-model relationships. I present simple examples of using animation and human-computer interaction to explore scientific data and scientific-analysis approaches. I illustrate how valuable a little programming ability can free scientists from the constraints of existing tools and can facilitate the development of deeper appreciation data and models. I present examples from a suite of programming languages ranging from C to JavaScript including the Wolfram Language. JavaScript is valuable for sharing tools and insight (hopefully) with others because it is integrated into one of the most powerful communication tools in human history, the web browser. Although too much of that power is often spent on distracting advertisements, the underlying computation and graphics engines are efficient, flexible, and almost universally available in desktop and mobile computing platforms. Many are working to fulfill the browser's potential to become the most effective tool for interactive study. Open-source frameworks for visualizing everything from algorithms to data are available, but advance rapidly. One strategy for dealing with swiftly changing tools is to adopt common, open data formats that are easily adapted (often by framework or tool developers). I illustrate the use of animation and interaction in research and teaching with examples from earthquake seismology.

  11. The Impact of Computer Simulations as Interactive Demonstration Tools on the Performance of Grade 11 Learners in Electromagnetism

    ERIC Educational Resources Information Center

    Kotoka, Jonas; Kriek, Jeanne

    2014-01-01

    The impact of computer simulations on the performance of 65 grade 11 learners in electromagnetism in a South African high school in the Mpumalanga province is investigated. Learners did not use the simulations individually, but teachers used them as an interactive demonstration tool. Basic concepts in electromagnetism are difficult to understand…

  12. The Use of Interactive Computer Animations Based on POE as a Presentation Tool in Primary Science Teaching

    ERIC Educational Resources Information Center

    Akpinar, Ercan

    2014-01-01

    This study investigates the effects of using interactive computer animations based on predict-observe-explain (POE) as a presentation tool on primary school students' understanding of the static electricity concepts. A quasi-experimental pre-test/post-test control group design was utilized in this study. The experiment group consisted of 30…

  13. Examining the Effects of Field Dependence-Independence on Learners' Problem-Solving Performance and Interaction with a Computer Modeling Tool: Implications for the Design of Joint Cognitive Systems

    ERIC Educational Resources Information Center

    Angeli, Charoula

    2013-01-01

    An investigation was carried out to examine the effects of cognitive style on learners' performance and interaction during complex problem solving with a computer modeling tool. One hundred and nineteen undergraduates volunteered to participate in the study. Participants were first administered a test, and based on their test scores they were…

  14. A Framework for the Evaluation of CASE Tool Learnability in Educational Environments

    ERIC Educational Resources Information Center

    Senapathi, Mali

    2005-01-01

    The aim of the research is to derive a framework for the evaluation of Computer Aided Software Engineering (CASE) tool learnability in educational environments. Drawing from the literature of Human Computer Interaction and educational research, a framework for evaluating CASE tool learnability in educational environments is derived. The two main…

  15. Computer-Based Interaction Analysis with DEGREE Revisited

    ERIC Educational Resources Information Center

    Barros, B.; Verdejo, M. F.

    2016-01-01

    We review our research with "DEGREE" and analyse how our work has impacted the collaborative learning community since 2000. Our research is framed within the context of computer-based interaction analysis and the development of computer-supported collaborative learning (CSCL) tools. We identify some aspects of our work which have been…

  16. Computational Prediction of Protein-Protein Interactions

    PubMed Central

    Ehrenberger, Tobias; Cantley, Lewis C.; Yaffe, Michael B.

    2015-01-01

    The prediction of protein-protein interactions and kinase-specific phosphorylation sites on individual proteins is critical for correctly placing proteins within signaling pathways and networks. The importance of this type of annotation continues to increase with the continued explosion of genomic and proteomic data, particularly with emerging data categorizing posttranslational modifications on a large scale. A variety of computational tools are available for this purpose. In this chapter, we review the general methodologies for these types of computational predictions and present a detailed user-focused tutorial of one such method and computational tool, Scansite, which is freely available to the entire scientific community over the Internet. PMID:25859943

  17. COINGRAD; Control Oriented Interactive Graphical Analysis and Design.

    ERIC Educational Resources Information Center

    Volz, Richard A.; And Others

    The computer is currently a vital tool in engineering analysis and design. With the introduction of moderately priced graphics terminals, it will become even more important in the future as rapid graphic interaction between the engineer and the computer becomes more feasible in computer-aided design (CAD). To provide a vehicle for introducing…

  18. Relationships among Learning Styles and Motivation with Computer-Aided Instruction in an Agronomy Course

    ERIC Educational Resources Information Center

    McAndrews, Gina M.; Mullen, Russell E.; Chadwick, Scott A.

    2005-01-01

    Multi-media learning tools were developed to enhance student learning for an introductory agronomy course at Iowa State University. During fall 2002, the new interactive computer program, called Computer Interactive Multimedia Program for Learning Enhancement (CIMPLE) was incorporated into the teaching, learning, and assessment processes of the…

  19. Modeling of Tool-Tissue Interactions for Computer-Based Surgical Simulation: A Literature Review

    PubMed Central

    Misra, Sarthak; Ramesh, K. T.; Okamura, Allison M.

    2009-01-01

    Surgical simulators present a safe and potentially effective method for surgical training, and can also be used in robot-assisted surgery for pre- and intra-operative planning. Accurate modeling of the interaction between surgical instruments and organs has been recognized as a key requirement in the development of high-fidelity surgical simulators. Researchers have attempted to model tool-tissue interactions in a wide variety of ways, which can be broadly classified as (1) linear elasticity-based, (2) nonlinear (hyperelastic) elasticity-based finite element (FE) methods, and (3) other techniques that not based on FE methods or continuum mechanics. Realistic modeling of organ deformation requires populating the model with real tissue data (which are difficult to acquire in vivo) and simulating organ response in real time (which is computationally expensive). Further, it is challenging to account for connective tissue supporting the organ, friction, and topological changes resulting from tool-tissue interactions during invasive surgical procedures. Overcoming such obstacles will not only help us to model tool-tissue interactions in real time, but also enable realistic force feedback to the user during surgical simulation. This review paper classifies the existing research on tool-tissue interactions for surgical simulators specifically based on the modeling techniques employed and the kind of surgical operation being simulated, in order to inform and motivate future research on improved tool-tissue interaction models. PMID:20119508

  20. The Benefits & Drawbacks of Integrating Cloud Computing and Interactive Whiteboards in Teacher Preparation

    ERIC Educational Resources Information Center

    Blue, Elfreda; Tirotta, Rose

    2011-01-01

    Twenty-first century technology has changed the way tools are used to support and enhance learning and instruction. Cloud computing and interactive white boards, make it possible for learners to interact, simulate, collaborate, and document learning experiences and real world problem-solving. This article discusses how various technologies (blogs,…

  1. Sign Language for K-8 Mathematics by 3D Interactive Animation

    ERIC Educational Resources Information Center

    Adamo-Villani, Nicoletta; Doublestein, John; Martin, Zachary

    2005-01-01

    We present a new highly interactive computer animation tool to increase the mathematical skills of deaf children. We aim at increasing the effectiveness of (hearing) parents in teaching arithmetic to their deaf children, and the opportunity of deaf children to learn arithmetic via interactive media. Using state-of-the-art computer animation…

  2. Sig2BioPAX: Java tool for converting flat files to BioPAX Level 3 format.

    PubMed

    Webb, Ryan L; Ma'ayan, Avi

    2011-03-21

    The World Wide Web plays a critical role in enabling molecular, cell, systems and computational biologists to exchange, search, visualize, integrate, and analyze experimental data. Such efforts can be further enhanced through the development of semantic web concepts. The semantic web idea is to enable machines to understand data through the development of protocol free data exchange formats such as Resource Description Framework (RDF) and the Web Ontology Language (OWL). These standards provide formal descriptors of objects, object properties and their relationships within a specific knowledge domain. However, the overhead of converting datasets typically stored in data tables such as Excel, text or PDF into RDF or OWL formats is not trivial for non-specialists and as such produces a barrier to seamless data exchange between researchers, databases and analysis tools. This problem is particularly of importance in the field of network systems biology where biochemical interactions between genes and their protein products are abstracted to networks. For the purpose of converting biochemical interactions into the BioPAX format, which is the leading standard developed by the computational systems biology community, we developed an open-source command line tool that takes as input tabular data describing different types of molecular biochemical interactions. The tool converts such interactions into the BioPAX level 3 OWL format. We used the tool to convert several existing and new mammalian networks of protein interactions, signalling pathways, and transcriptional regulatory networks into BioPAX. Some of these networks were deposited into PathwayCommons, a repository for consolidating and organizing biochemical networks. The software tool Sig2BioPAX is a resource that enables experimental and computational systems biologists to contribute their identified networks and pathways of molecular interactions for integration and reuse with the rest of the research community.

  3. Computer Assisted Learning for Biomedical Engineering Education: Tools

    DTIC Science & Technology

    2001-10-25

    COMPUTER ASSISTED LEARNING FOR BIOMEDICAL ENGINEERING EDUCATION : TOOLS Ayhan ÝSTANBULLU1 Ýnan GÜLER2 1 Department of Electronic...of Technical Education , Gazi University, 06500 Ankara, Türkiye Abstract- Interactive multimedia learning environment is being proposed...Assisted Learning (CAL) are given and some tools used in this area are explained. Together with the developments in the area of distance education

  4. Artwork Interactive Design System (AIDS) program description

    NASA Technical Reports Server (NTRS)

    Johnson, B. T.; Taylor, J. F.

    1976-01-01

    An artwork interactive design system is described which provides the microelectronic circuit designer/engineer a tool to perform circuit design, automatic layout modification, standard cell design, and artwork verification at a graphics computer terminal using a graphics tablet at the designer/computer interface.

  5. Interactive Computer-Based Testing.

    ERIC Educational Resources Information Center

    Franklin, Stephen; Marasco, Joseph

    1977-01-01

    Discusses the use of the Interactive Computer-based Testing (ICBT) in university-level science courses as an effective and economical educational tool. The authors discuss: (1) major objectives to ICBT; (2) advantages and pitfalls of the student use of ICBT; and (3) future prospects of ICBT. (HM)

  6. Using an Interactive Computer Program to Communicate With the Wilderness Visitor

    Treesearch

    David W. Harmon

    1992-01-01

    The Bureau of Land Management, Oregon State Office, identified a need for a tool to communicate with wilderness visitors, managers, and decisionmakers regarding wilderness values and existing resource information in 87 wilderness study areas. An interactive computer program was developed using a portable Macintosh computer, a touch screen monitor, and laser disk player...

  7. Beyond information access: Support for complex cognitive activities in public health informatics tools.

    PubMed

    Sedig, Kamran; Parsons, Paul; Dittmer, Mark; Ola, Oluwakemi

    2012-01-01

    Public health professionals work with a variety of information sources to carry out their everyday activities. In recent years, interactive computational tools have become deeply embedded in such activities. Unlike the early days of computational tool use, the potential of tools nowadays is not limited to simply providing access to information; rather, they can act as powerful mediators of human-information discourse, enabling rich interaction with public health information. If public health informatics tools are designed and used properly, they can facilitate, enhance, and support the performance of complex cognitive activities that are essential to public health informatics, such as problem solving, forecasting, sense-making, and planning. However, the effective design and evaluation of public health informatics tools requires an understanding of the cognitive and perceptual issues pertaining to how humans work and think with information to perform such activities. This paper draws on research that has examined some of the relevant issues, including interaction design, complex cognition, and visual representations, to offer some human-centered design and evaluation considerations for public health informatics tools.

  8. MOLNs: A CLOUD PLATFORM FOR INTERACTIVE, REPRODUCIBLE, AND SCALABLE SPATIAL STOCHASTIC COMPUTATIONAL EXPERIMENTS IN SYSTEMS BIOLOGY USING PyURDME.

    PubMed

    Drawert, Brian; Trogdon, Michael; Toor, Salman; Petzold, Linda; Hellander, Andreas

    2016-01-01

    Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments.

  9. Graphics Flutter Analysis Methods, an interactive computing system at Lockheed-California Company

    NASA Technical Reports Server (NTRS)

    Radovcich, N. A.

    1975-01-01

    An interactive computer graphics system, Graphics Flutter Analysis Methods (GFAM), was developed to complement FAMAS, a matrix-oriented batch computing system, and other computer programs in performing complex numerical calculations using a fully integrated data management system. GFAM has many of the matrix operation capabilities found in FAMAS, but on a smaller scale, and is utilized when the analysis requires a high degree of interaction between the engineer and computer, and schedule constraints exclude the use of batch entry programs. Applications of GFAM to a variety of preliminary design, development design, and project modification programs suggest that interactive flutter analysis using matrix representations is a feasible and cost effective computing tool.

  10. DECONV-TOOL: An IDL based deconvolution software package

    NASA Technical Reports Server (NTRS)

    Varosi, F.; Landsman, W. B.

    1992-01-01

    There are a variety of algorithms for deconvolution of blurred images, each having its own criteria or statistic to be optimized in order to estimate the original image data. Using the Interactive Data Language (IDL), we have implemented the Maximum Likelihood, Maximum Entropy, Maximum Residual Likelihood, and sigma-CLEAN algorithms in a unified environment called DeConv_Tool. Most of the algorithms have as their goal the optimization of statistics such as standard deviation and mean of residuals. Shannon entropy, log-likelihood, and chi-square of the residual auto-correlation are computed by DeConv_Tool for the purpose of determining the performance and convergence of any particular method and comparisons between methods. DeConv_Tool allows interactive monitoring of the statistics and the deconvolved image during computation. The final results, and optionally, the intermediate results, are stored in a structure convenient for comparison between methods and review of the deconvolution computation. The routines comprising DeConv_Tool are available via anonymous FTP through the IDL Astronomy User's Library.

  11. Computational Tools and Facilities for the Next-Generation Analysis and Design Environment

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1997-01-01

    This document contains presentations from the joint UVA/NASA Workshop on Computational Tools and Facilities for the Next-Generation Analysis and Design Environment held at the Virginia Consortium of Engineering and Science Universities in Hampton, Virginia on September 17-18, 1996. The presentations focused on the computational tools and facilities for analysis and design of engineering systems, including, real-time simulations, immersive systems, collaborative engineering environment, Web-based tools and interactive media for technical training. Workshop attendees represented NASA, commercial software developers, the aerospace industry, government labs, and academia. The workshop objectives were to assess the level of maturity of a number of computational tools and facilities and their potential for application to the next-generation integrated design environment.

  12. PLASMAP: an interactive computational tool for storage, retrieval and device-independent graphic display of conventional restriction maps.

    PubMed Central

    Stone, B N; Griesinger, G L; Modelevsky, J L

    1984-01-01

    We describe an interactive computational tool, PLASMAP, which allows the user to electronically store, retrieve, and display circular restriction maps. PLASMAP permits users to construct libraries of plasmid restriction maps as a set of files which may be edited in the laboratory at any time. The display feature of PLASMAP quickly generates device-independent, artist-quality, full-color or monochrome, hard copies or CRT screens of complex, conventional circular restriction maps. PMID:6320096

  13. An interactive computer lab of the galvanic cell for students in biochemistry.

    PubMed

    Ahlstrand, Emma; Buetti-Dinh, Antoine; Friedman, Ran

    2018-01-01

    We describe an interactive module that can be used to teach basic concepts in electrochemistry and thermodynamics to first year natural science students. The module is used together with an experimental laboratory and improves the students' understanding of thermodynamic quantities such as Δ r G, Δ r H, and Δ r S that are calculated but not directly measured in the lab. We also discuss how new technologies can substitute some parts of experimental chemistry courses, and improve accessibility to course material. Cloud computing platforms such as CoCalc facilitate the distribution of computer codes and allow students to access and apply interactive course tools beyond the course's scope. Despite some limitations imposed by cloud computing, the students appreciated the approach and the enhanced opportunities to discuss study questions with their classmates and instructor as facilitated by the interactive tools. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):58-65, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.

  14. Informed public choices for low-carbon electricity portfolios using a computer decision tool.

    PubMed

    Mayer, Lauren A Fleishman; Bruine de Bruin, Wändi; Morgan, M Granger

    2014-04-01

    Reducing CO2 emissions from the electricity sector will likely require policies that encourage the widespread deployment of a diverse mix of low-carbon electricity generation technologies. Public discourse informs such policies. To make informed decisions and to productively engage in public discourse, citizens need to understand the trade-offs between electricity technologies proposed for widespread deployment. Building on previous paper-and-pencil studies, we developed a computer tool that aimed to help nonexperts make informed decisions about the challenges faced in achieving a low-carbon energy future. We report on an initial usability study of this interactive computer tool. After providing participants with comparative and balanced information about 10 electricity technologies, we asked them to design a low-carbon electricity portfolio. Participants used the interactive computer tool, which constrained portfolio designs to be realistic and yield low CO2 emissions. As they changed their portfolios, the tool updated information about projected CO2 emissions, electricity costs, and specific environmental impacts. As in the previous paper-and-pencil studies, most participants designed diverse portfolios that included energy efficiency, nuclear, coal with carbon capture and sequestration, natural gas, and wind. Our results suggest that participants understood the tool and used it consistently. The tool may be downloaded from http://cedmcenter.org/tools-for-cedm/informing-the-public-about-low-carbon-technologies/ .

  15. Chips: A Tool for Developing Software Interfaces Interactively.

    ERIC Educational Resources Information Center

    Cunningham, Robert E.; And Others

    This report provides a detailed description of Chips, an interactive tool for developing software employing graphical/computer interfaces on Xerox Lisp machines. It is noted that Chips, which is implemented as a collection of customizable classes, provides the programmer with a rich graphical interface for the creation of rich graphical…

  16. From Presentation to Interaction: New Goals for Online Learning Technologies

    ERIC Educational Resources Information Center

    Tu, Chih-Hsiung

    2005-01-01

    Educators have used online technology in the past as information presentation tools and information storage tools to support learning. Researchers identify online technologies with large capacities and capabilities to enhance human learning in an interactive fashion. Online learning technology should move away from the use of computer technology…

  17. Factors Influencing Adoption of Ubiquitous Internet amongst Students

    ERIC Educational Resources Information Center

    Juned, Mohammad; Adil, Mohd

    2015-01-01

    Weiser's (1991) conceptualisation of a world wherein human's interaction with computer technology would no longer be limited to conventional input and output devices, has now been translated into a reality with human's constant interaction with multiple interconnected computers and sensors embedded in rooms, furniture, clothes, tools, and other…

  18. Common features of microRNA target prediction tools

    PubMed Central

    Peterson, Sarah M.; Thompson, Jeffrey A.; Ufkin, Melanie L.; Sathyanarayana, Pradeep; Liaw, Lucy; Congdon, Clare Bates

    2014-01-01

    The human genome encodes for over 1800 microRNAs (miRNAs), which are short non-coding RNA molecules that function to regulate gene expression post-transcriptionally. Due to the potential for one miRNA to target multiple gene transcripts, miRNAs are recognized as a major mechanism to regulate gene expression and mRNA translation. Computational prediction of miRNA targets is a critical initial step in identifying miRNA:mRNA target interactions for experimental validation. The available tools for miRNA target prediction encompass a range of different computational approaches, from the modeling of physical interactions to the incorporation of machine learning. This review provides an overview of the major computational approaches to miRNA target prediction. Our discussion highlights three tools for their ease of use, reliance on relatively updated versions of miRBase, and range of capabilities, and these are DIANA-microT-CDS, miRanda-mirSVR, and TargetScan. In comparison across all miRNA target prediction tools, four main aspects of the miRNA:mRNA target interaction emerge as common features on which most target prediction is based: seed match, conservation, free energy, and site accessibility. This review explains these features and identifies how they are incorporated into currently available target prediction tools. MiRNA target prediction is a dynamic field with increasing attention on development of new analysis tools. This review attempts to provide a comprehensive assessment of these tools in a manner that is accessible across disciplines. Understanding the basis of these prediction methodologies will aid in user selection of the appropriate tools and interpretation of the tool output. PMID:24600468

  19. Common features of microRNA target prediction tools.

    PubMed

    Peterson, Sarah M; Thompson, Jeffrey A; Ufkin, Melanie L; Sathyanarayana, Pradeep; Liaw, Lucy; Congdon, Clare Bates

    2014-01-01

    The human genome encodes for over 1800 microRNAs (miRNAs), which are short non-coding RNA molecules that function to regulate gene expression post-transcriptionally. Due to the potential for one miRNA to target multiple gene transcripts, miRNAs are recognized as a major mechanism to regulate gene expression and mRNA translation. Computational prediction of miRNA targets is a critical initial step in identifying miRNA:mRNA target interactions for experimental validation. The available tools for miRNA target prediction encompass a range of different computational approaches, from the modeling of physical interactions to the incorporation of machine learning. This review provides an overview of the major computational approaches to miRNA target prediction. Our discussion highlights three tools for their ease of use, reliance on relatively updated versions of miRBase, and range of capabilities, and these are DIANA-microT-CDS, miRanda-mirSVR, and TargetScan. In comparison across all miRNA target prediction tools, four main aspects of the miRNA:mRNA target interaction emerge as common features on which most target prediction is based: seed match, conservation, free energy, and site accessibility. This review explains these features and identifies how they are incorporated into currently available target prediction tools. MiRNA target prediction is a dynamic field with increasing attention on development of new analysis tools. This review attempts to provide a comprehensive assessment of these tools in a manner that is accessible across disciplines. Understanding the basis of these prediction methodologies will aid in user selection of the appropriate tools and interpretation of the tool output.

  20. The Use of Interactive Computer Animations Based on POE as a Presentation Tool in Primary Science Teaching

    NASA Astrophysics Data System (ADS)

    Akpınar, Ercan

    2014-08-01

    This study investigates the effects of using interactive computer animations based on predict-observe-explain (POE) as a presentation tool on primary school students' understanding of the static electricity concepts. A quasi-experimental pre-test/post-test control group design was utilized in this study. The experiment group consisted of 30 students, and the control group of 27 students. The control group received normal instruction in which the teacher provided instruction by means of lecture, discussion and homework. Whereas in the experiment group, dynamic and interactive animations based on POE were used as a presentation tool. Data collection tools used in the study were static electricity concept test and open-ended questions. The static electricity concept test was used as pre-test before the implementation, as post-test at the end of the implementation and as delay test approximately 6 weeks after the implementation. Open-ended questions were used at the end of the implementation and approximately 6 weeks after the implementation. Results indicated that the interactive animations used as presentation tools were more effective on the students' understanding of static electricity concepts compared to normal instruction.

  1. MOLNs: A CLOUD PLATFORM FOR INTERACTIVE, REPRODUCIBLE, AND SCALABLE SPATIAL STOCHASTIC COMPUTATIONAL EXPERIMENTS IN SYSTEMS BIOLOGY USING PyURDME

    PubMed Central

    Drawert, Brian; Trogdon, Michael; Toor, Salman; Petzold, Linda; Hellander, Andreas

    2017-01-01

    Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments. PMID:28190948

  2. pulver: an R package for parallel ultra-rapid p-value computation for linear regression interaction terms.

    PubMed

    Molnos, Sophie; Baumbach, Clemens; Wahl, Simone; Müller-Nurasyid, Martina; Strauch, Konstantin; Wang-Sattler, Rui; Waldenberger, Melanie; Meitinger, Thomas; Adamski, Jerzy; Kastenmüller, Gabi; Suhre, Karsten; Peters, Annette; Grallert, Harald; Theis, Fabian J; Gieger, Christian

    2017-09-29

    Genome-wide association studies allow us to understand the genetics of complex diseases. Human metabolism provides information about the disease-causing mechanisms, so it is usual to investigate the associations between genetic variants and metabolite levels. However, only considering genetic variants and their effects on one trait ignores the possible interplay between different "omics" layers. Existing tools only consider single-nucleotide polymorphism (SNP)-SNP interactions, and no practical tool is available for large-scale investigations of the interactions between pairs of arbitrary quantitative variables. We developed an R package called pulver to compute p-values for the interaction term in a very large number of linear regression models. Comparisons based on simulated data showed that pulver is much faster than the existing tools. This is achieved by using the correlation coefficient to test the null-hypothesis, which avoids the costly computation of inversions. Additional tricks are a rearrangement of the order, when iterating through the different "omics" layers, and implementing this algorithm in the fast programming language C++. Furthermore, we applied our algorithm to data from the German KORA study to investigate a real-world problem involving the interplay among DNA methylation, genetic variants, and metabolite levels. The pulver package is a convenient and rapid tool for screening huge numbers of linear regression models for significant interaction terms in arbitrary pairs of quantitative variables. pulver is written in R and C++, and can be downloaded freely from CRAN at https://cran.r-project.org/web/packages/pulver/ .

  3. Effects of Online Interaction via Computer-Mediated Communication (CMC) Tools on an E-Mathematics Learning Outcome

    ERIC Educational Resources Information Center

    Okonta, Olomeruom

    2010-01-01

    Recent research studies in open and distance learning have focused on the differences between traditional learning versus online learning, the benefits of computer-mediated communication (CMC) tools in an e-learning environment, and the relationship between online discussion posts and students' achievement. In fact, there is an extant…

  4. Mutually Beneficial Foreign Language Learning: Creating Meaningful Interactions through Video-Synchronous Computer-Mediated Communication

    ERIC Educational Resources Information Center

    Kato, Fumie; Spring, Ryan; Mori, Chikako

    2016-01-01

    Providing learners of a foreign language with meaningful opportunities for interactions, specifically with native speakers, is especially challenging for instructors. One way to overcome this obstacle is through video-synchronous computer-mediated communication tools such as Skype software. This study reports quantitative and qualitative data from…

  5. Interactive Whiteboards and Implications for Use in Education

    ERIC Educational Resources Information Center

    Gibson, Danita C.

    2013-01-01

    Interactive whiteboards (IWBs) have increasingly become a technology tool used in the educational field. IWBs are touch-sensitive screens that work in conjunction with a computer and a projector, and which are used to display information from a computer. As a qualitative case study, this study investigated the SMART Board-infused instructional…

  6. Graphics processing units in bioinformatics, computational biology and systems biology.

    PubMed

    Nobile, Marco S; Cazzaniga, Paolo; Tangherloni, Andrea; Besozzi, Daniela

    2017-09-01

    Several studies in Bioinformatics, Computational Biology and Systems Biology rely on the definition of physico-chemical or mathematical models of biological systems at different scales and levels of complexity, ranging from the interaction of atoms in single molecules up to genome-wide interaction networks. Traditional computational methods and software tools developed in these research fields share a common trait: they can be computationally demanding on Central Processing Units (CPUs), therefore limiting their applicability in many circumstances. To overcome this issue, general-purpose Graphics Processing Units (GPUs) are gaining an increasing attention by the scientific community, as they can considerably reduce the running time required by standard CPU-based software, and allow more intensive investigations of biological systems. In this review, we present a collection of GPU tools recently developed to perform computational analyses in life science disciplines, emphasizing the advantages and the drawbacks in the use of these parallel architectures. The complete list of GPU-powered tools here reviewed is available at http://bit.ly/gputools. © The Author 2016. Published by Oxford University Press.

  7. Simulation System for Training in Laparoscopic Surgery

    NASA Technical Reports Server (NTRS)

    Basdogan, Cagatay; Ho, Chih-Hao

    2003-01-01

    A computer-based simulation system creates a visual and haptic virtual environment for training a medical practitioner in laparoscopic surgery. Heretofore, it has been common practice to perform training in partial laparoscopic surgical procedures by use of a laparoscopic training box that encloses a pair of laparoscopic tools, objects to be manipulated by the tools, and an endoscopic video camera. However, the surgical procedures simulated by use of a training box are usually poor imitations of the actual ones. The present computer-based system improves training by presenting a more realistic simulated environment to the trainee. The system includes a computer monitor that displays a real-time image of the affected interior region of the patient, showing laparoscopic instruments interacting with organs and tissues, as would be viewed by use of an endoscopic video camera and displayed to a surgeon during a laparoscopic operation. The system also includes laparoscopic tools that the trainee manipulates while observing the image on the computer monitor (see figure). The instrumentation on the tools consists of (1) position and orientation sensors that provide input data for the simulation and (2) actuators that provide force feedback to simulate the contact forces between the tools and tissues. The simulation software includes components that model the geometries of surgical tools, components that model the geometries and physical behaviors of soft tissues, and components that detect collisions between them. Using the measured positions and orientations of the tools, the software detects whether they are in contact with tissues. In the event of contact, the deformations of the tissues and contact forces are computed by use of the geometric and physical models. The image on the computer screen shows tissues deformed accordingly, while the actuators apply the corresponding forces to the distal ends of the tools. For the purpose of demonstration, the system has been set up to simulate the insertion of a flexible catheter in a bile duct. [As thus configured, the system can also be used to simulate other endoscopic procedures (e.g., bronchoscopy and colonoscopy) that include the insertion of flexible tubes into flexible ducts.] A hybrid approach has been followed in developing the software for real-time simulation of the visual and haptic interactions (1) between forceps and the catheter, (2) between the forceps and the duct, and (3) between the catheter and the duct. The deformations of the duct are simulated by finite-element and modalanalysis procedures, using only the most significant vibration modes of the duct for computing deformations and interaction forces. The catheter is modeled as a set of virtual particles uniformly distributed along the center line of the catheter and connected to each other via linear and torsional springs and damping elements. The interactions between the forceps and the duct as well as the catheter are simulated by use of a ray-based haptic-interaction- simulating technique in which the forceps are modeled as connected line segments.

  8. The challenge of big data in public health: an opportunity for visual analytics.

    PubMed

    Ola, Oluwakemi; Sedig, Kamran

    2014-01-01

    Public health (PH) data can generally be characterized as big data. The efficient and effective use of this data determines the extent to which PH stakeholders can sufficiently address societal health concerns as they engage in a variety of work activities. As stakeholders interact with data, they engage in various cognitive activities such as analytical reasoning, decision-making, interpreting, and problem solving. Performing these activities with big data is a challenge for the unaided mind as stakeholders encounter obstacles relating to the data's volume, variety, velocity, and veracity. Such being the case, computer-based information tools are needed to support PH stakeholders. Unfortunately, while existing computational tools are beneficial in addressing certain work activities, they fall short in supporting cognitive activities that involve working with large, heterogeneous, and complex bodies of data. This paper presents visual analytics (VA) tools, a nascent category of computational tools that integrate data analytics with interactive visualizations, to facilitate the performance of cognitive activities involving big data. Historically, PH has lagged behind other sectors in embracing new computational technology. In this paper, we discuss the role that VA tools can play in addressing the challenges presented by big data. In doing so, we demonstrate the potential benefit of incorporating VA tools into PH practice, in addition to highlighting the need for further systematic and focused research.

  9. The Challenge of Big Data in Public Health: An Opportunity for Visual Analytics

    PubMed Central

    Ola, Oluwakemi; Sedig, Kamran

    2014-01-01

    Public health (PH) data can generally be characterized as big data. The efficient and effective use of this data determines the extent to which PH stakeholders can sufficiently address societal health concerns as they engage in a variety of work activities. As stakeholders interact with data, they engage in various cognitive activities such as analytical reasoning, decision-making, interpreting, and problem solving. Performing these activities with big data is a challenge for the unaided mind as stakeholders encounter obstacles relating to the data’s volume, variety, velocity, and veracity. Such being the case, computer-based information tools are needed to support PH stakeholders. Unfortunately, while existing computational tools are beneficial in addressing certain work activities, they fall short in supporting cognitive activities that involve working with large, heterogeneous, and complex bodies of data. This paper presents visual analytics (VA) tools, a nascent category of computational tools that integrate data analytics with interactive visualizations, to facilitate the performance of cognitive activities involving big data. Historically, PH has lagged behind other sectors in embracing new computational technology. In this paper, we discuss the role that VA tools can play in addressing the challenges presented by big data. In doing so, we demonstrate the potential benefit of incorporating VA tools into PH practice, in addition to highlighting the need for further systematic and focused research. PMID:24678376

  10. A computational tool to predict the evolutionarily conserved protein-protein interaction hot-spot residues from the structure of the unbound protein.

    PubMed

    Agrawal, Neeraj J; Helk, Bernhard; Trout, Bernhardt L

    2014-01-21

    Identifying hot-spot residues - residues that are critical to protein-protein binding - can help to elucidate a protein's function and assist in designing therapeutic molecules to target those residues. We present a novel computational tool, termed spatial-interaction-map (SIM), to predict the hot-spot residues of an evolutionarily conserved protein-protein interaction from the structure of an unbound protein alone. SIM can predict the protein hot-spot residues with an accuracy of 36-57%. Thus, the SIM tool can be used to predict the yet unknown hot-spot residues for many proteins for which the structure of the protein-protein complexes are not available, thereby providing a clue to their functions and an opportunity to design therapeutic molecules to target these proteins. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Preliminary ISIS users manual

    NASA Technical Reports Server (NTRS)

    Grantham, C.

    1979-01-01

    The Interactive Software Invocation (ISIS), an interactive data management system, was developed to act as a buffer between the user and host computer system. The user is provided by ISIS with a powerful system for developing software or systems in the interactive environment. The user is protected from the idiosyncracies of the host computer system by providing such a complete range of capabilities that the user should have no need for direct access to the host computer. These capabilities are divided into four areas: desk top calculator, data editor, file manager, and tool invoker.

  12. High-resolution computational algorithms for simulating offshore wind turbines and farms: Model development and validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calderer, Antoni; Yang, Xiaolei; Angelidis, Dionysios

    2015-10-30

    The present project involves the development of modeling and analysis design tools for assessing offshore wind turbine technologies. The computational tools developed herein are able to resolve the effects of the coupled interaction of atmospheric turbulence and ocean waves on aerodynamic performance and structural stability and reliability of offshore wind turbines and farms. Laboratory scale experiments have been carried out to derive data sets for validating the computational models.

  13. Analyzing Collaborative Learning Processes Automatically: Exploiting the Advances of Computational Linguistics in Computer-Supported Collaborative Learning

    ERIC Educational Resources Information Center

    Rose, Carolyn; Wang, Yi-Chia; Cui, Yue; Arguello, Jaime; Stegmann, Karsten; Weinberger, Armin; Fischer, Frank

    2008-01-01

    In this article we describe the emerging area of text classification research focused on the problem of collaborative learning process analysis both from a broad perspective and more specifically in terms of a publicly available tool set called TagHelper tools. Analyzing the variety of pedagogically valuable facets of learners' interactions is a…

  14. Simulating the Dynamics of Subsistence Fishing Communities: REEFGAME as a Learning and Data-Gathering Computer-Assisted Role-Play Game

    ERIC Educational Resources Information Center

    Cleland, Deborah; Dray, Anne; Perez, Pascal; Cruz-Trinidad, Annabelle; Geronimo, Rollan

    2012-01-01

    REEFGAME is a computer-assisted role-playing game that explores the interactions among management strategies, livelihood options, and ecological degradation in subsistence fishing communities. The tool has been successfully used in the Philippines and a variety of student workshops. In the field, REEFGAME operated as a two-way learning tool,…

  15. A Guide to Analyzing Message-Response Sequences and Group Interaction Patterns in Computer-Mediated Communication

    ERIC Educational Resources Information Center

    Jeong, Allan

    2005-01-01

    This paper proposes a set of methods and a framework for evaluating, modeling, and predicting group interactions in computer-mediated communication. The method of sequential analysis is described along with specific software tools and techniques to facilitate the analysis of message-response sequences. In addition, the Dialogic Theory and its…

  16. A Complete Interactive Graphical Computer-Aided Instruction System.

    ERIC Educational Resources Information Center

    Abrams, Steven Selby

    The use of interactive graphics in computer-aided instruction systems is discussed with emphasis placed on two requirements of such a system. The first is the need to provide the teacher with a useful tool with which to design and modify teaching sessions tailored to the individual needs and capabilities of the students. The second is the…

  17. The ZAP Project: Designing Interactive Computer Tools for Learning Psychology

    ERIC Educational Resources Information Center

    Hulshof, Casper; Eysink, Tessa; de Jong, Ton

    2006-01-01

    In the ZAP project, a set of interactive computer programs called "ZAPs" was developed. The programs were designed in such a way that first-year students experience psychological phenomena in a vivid and self-explanatory way. Students can either take the role of participant in a psychological experiment, they can experience phenomena themselves,…

  18. Engineering computer graphics in gas turbine engine design, analysis and manufacture

    NASA Technical Reports Server (NTRS)

    Lopatka, R. S.

    1975-01-01

    A time-sharing and computer graphics facility designed to provide effective interactive tools to a large number of engineering users with varied requirements was described. The application of computer graphics displays at several levels of hardware complexity and capability is discussed, with examples of graphics systems tracing gas turbine product development, beginning with preliminary design through manufacture. Highlights of an operating system stylized for interactive engineering graphics is described.

  19. Computer implemented method, and apparatus for controlling a hand-held tool

    NASA Technical Reports Server (NTRS)

    Wagner, Kenneth William (Inventor); Taylor, James Clayton (Inventor)

    1999-01-01

    The invention described here in is a computer-implemented method and apparatus for controlling a hand-held tool. In particular, the control of a hand held tool is for the purpose of controlling the speed of a fastener interface mechanism and the torque applied to fasteners by the fastener interface mechanism of the hand-held tool and monitoring the operating parameters of the tool. The control is embodied in intool software embedded on a processor within the tool which also communicates with remote software. An operator can run the tool, or through the interaction of both software, operate the tool from a remote location, analyze data from a performance history recorded by the tool, and select various torque and speed parameters for each fastener.

  20. Computer-aided system design

    NASA Technical Reports Server (NTRS)

    Walker, Carrie K.

    1991-01-01

    A technique has been developed for combining features of a systems architecture design and assessment tool and a software development tool. This technique reduces simulation development time and expands simulation detail. The Architecture Design and Assessment System (ADAS), developed at the Research Triangle Institute, is a set of computer-assisted engineering tools for the design and analysis of computer systems. The ADAS system is based on directed graph concepts and supports the synthesis and analysis of software algorithms mapped to candidate hardware implementations. Greater simulation detail is provided by the ADAS functional simulator. With the functional simulator, programs written in either Ada or C can be used to provide a detailed description of graph nodes. A Computer-Aided Software Engineering tool developed at the Charles Stark Draper Laboratory (CSDL CASE) automatically generates Ada or C code from engineering block diagram specifications designed with an interactive graphical interface. A technique to use the tools together has been developed, which further automates the design process.

  1. User-Driven Sampling Strategies in Image Exploitation

    DOE PAGES

    Harvey, Neal R.; Porter, Reid B.

    2013-12-23

    Visual analytics and interactive machine learning both try to leverage the complementary strengths of humans and machines to solve complex data exploitation tasks. These fields overlap most significantly when training is involved: the visualization or machine learning tool improves over time by exploiting observations of the human-computer interaction. This paper focuses on one aspect of the human-computer interaction that we call user-driven sampling strategies. Unlike relevance feedback and active learning sampling strategies, where the computer selects which data to label at each iteration, we investigate situations where the user selects which data is to be labeled at each iteration. User-drivenmore » sampling strategies can emerge in many visual analytics applications but they have not been fully developed in machine learning. We discovered that in user-driven sampling strategies suggest new theoretical and practical research questions for both visualization science and machine learning. In this paper we identify and quantify the potential benefits of these strategies in a practical image analysis application. We find user-driven sampling strategies can sometimes provide significant performance gains by steering tools towards local minima that have lower error than tools trained with all of the data. Furthermore, in preliminary experiments we find these performance gains are particularly pronounced when the user is experienced with the tool and application domain.« less

  2. User-driven sampling strategies in image exploitation

    NASA Astrophysics Data System (ADS)

    Harvey, Neal; Porter, Reid

    2013-12-01

    Visual analytics and interactive machine learning both try to leverage the complementary strengths of humans and machines to solve complex data exploitation tasks. These fields overlap most significantly when training is involved: the visualization or machine learning tool improves over time by exploiting observations of the human-computer interaction. This paper focuses on one aspect of the human-computer interaction that we call user-driven sampling strategies. Unlike relevance feedback and active learning sampling strategies, where the computer selects which data to label at each iteration, we investigate situations where the user selects which data is to be labeled at each iteration. User-driven sampling strategies can emerge in many visual analytics applications but they have not been fully developed in machine learning. User-driven sampling strategies suggest new theoretical and practical research questions for both visualization science and machine learning. In this paper we identify and quantify the potential benefits of these strategies in a practical image analysis application. We find user-driven sampling strategies can sometimes provide significant performance gains by steering tools towards local minima that have lower error than tools trained with all of the data. In preliminary experiments we find these performance gains are particularly pronounced when the user is experienced with the tool and application domain.

  3. A Survey of Educational Games as Interaction Design Tools for Affective Learning: Thematic Analysis Taxonomy

    ERIC Educational Resources Information Center

    Yusoff, Zarwina; Kamsin, Amirrudin; Shamshirband, Shahaboddin; Chronopoulos, Anthony T.

    2018-01-01

    A Computer game is the new platform in generating learning experiences for educational purposes. There are many educational games that have been used as an interaction design tool in a learning environment to enhance students learning outcomes. However, research also claims that playing video games can have a negative impact on student behavior,…

  4. Speech-Enabled Tools for Augmented Interaction in E-Learning Applications

    ERIC Educational Resources Information Center

    Selouani, Sid-Ahmed A.; Lê, Tang-Hô; Benahmed, Yacine; O'Shaughnessy, Douglas

    2008-01-01

    This article presents systems that use speech technology, to emulate the one-on-one interaction a student can get from a virtual instructor. A web-based learning tool, the Learn IN Context (LINC+) system, designed and used in a real mixed-mode learning context for a computer (C++ language) programming course taught at the Université de Moncton…

  5. Digital interactive learning of oral radiographic anatomy.

    PubMed

    Vuchkova, J; Maybury, T; Farah, C S

    2012-02-01

    Studies reporting high number of diagnostic errors made from radiographs suggest the need to improve the learning of radiographic interpretation in the dental curriculum. Given studies that show student preference for computer-assisted or digital technologies, the purpose of this study was to develop an interactive digital tool and to determine whether it was more successful than a conventional radiology textbook in assisting dental students with the learning of radiographic anatomy. Eighty-eight dental students underwent a learning phase of radiographic anatomy using an interactive digital tool alongside a conventional radiology textbook. The success of the digital tool, when compared to the textbook, was assessed by quantitative means using a radiographic interpretation test and by qualitative means using a structured Likert scale survey, asking students to evaluate their own learning outcomes from the digital tool. Student evaluations of the digital tool showed that almost all participants (95%) indicated that the tool positively enhanced their learning of radiographic anatomy and interpretation. The success of the digital tool in assisting the learning of radiographic interpretation is discussed in the broader context of learning and teaching curricula, and preference (by students) for the use of this digital form when compared to the conventional literate form of the textbook. Whilst traditional textbooks are still valued in the dental curriculum, it is evident that the preference for computer-assisted learning of oral radiographic anatomy enhances the learning experience by enabling students to interact and better engage with the course material. © 2011 John Wiley & Sons A/S.

  6. On the computational modeling of the viscosity of colloidal dispersions and its relation with basic molecular interactions

    NASA Astrophysics Data System (ADS)

    Gama Goicochea, A.; Balderas Altamirano, M. A.; Lopez-Esparza, R.; Waldo-Mendoza, Miguel A.; Perez, E.

    2015-09-01

    The connection between fundamental interactions acting in molecules in a fluid and macroscopically measured properties, such as the viscosity between colloidal particles coated with polymers, is studied here. The role that hydrodynamic and Brownian forces play in colloidal dispersions is also discussed. It is argued that many-body systems in which all these interactions take place can be accurately solved using computational simulation tools. One of those modern tools is the technique known as dissipative particle dynamics, which incorporates Brownian and hydrodynamic forces, as well as basic conservative interactions. A case study is reported, as an example of the applications of this technique, which consists of the prediction of the viscosity and friction between two opposing parallel surfaces covered with polymer chains, under the influence of a steady flow. This work is intended to serve as an introduction to the subject of colloidal dispersions and computer simulations, for final-year undergraduate students and beginning graduate students who are interested in beginning research in soft matter systems. To that end, a computational code is included that students can use right away to study complex fluids in equilibrium.

  7. The Construction of Knowledge through Social Interaction via Computer-Mediated Communication

    ERIC Educational Resources Information Center

    Saritas, Tuncay

    2008-01-01

    With the advance in information and communication technologies, computer-mediated communication--more specifically computer conferencing systems (CCS)--has captured the interest of educators as an ideal tool to create a learning environment featuring active, participative, and reflective learning. Educators are increasingly adapting the features…

  8. Identifying the Computer Competency Levels of Recreation Department Undergraduates

    ERIC Educational Resources Information Center

    Zorba, Erdal

    2011-01-01

    Computer-based and web-based applications are as major instructional tools to increase undergraduates' motivation at school. In the recreation field usage of, computer and the internet based recreational applications has become more prevalent in order to present visual and interactive entertainment activities. Recreation department undergraduates…

  9. A Turing Machine Simulator.

    ERIC Educational Resources Information Center

    Navarro, Aaron B.

    1981-01-01

    Presents a program in Level II BASIC for a TRS-80 computer that simulates a Turing machine and discusses the nature of the device. The program is run interactively and is designed to be used as an educational tool by computer science or mathematics students studying computational or automata theory. (MP)

  10. Cloud Computing Techniques for Space Mission Design

    NASA Technical Reports Server (NTRS)

    Arrieta, Juan; Senent, Juan

    2014-01-01

    The overarching objective of space mission design is to tackle complex problems producing better results, and faster. In developing the methods and tools to fulfill this objective, the user interacts with the different layers of a computing system.

  11. Embodying Computational Thinking: Initial Design of an Emerging Technological Learning Tool

    ERIC Educational Resources Information Center

    Daily, Shaundra B.; Leonard, Alison E.; Jörg, Sophie; Babu, Sabarish; Gundersen, Kara; Parmar, Dhaval

    2015-01-01

    This emerging technology report describes virtual environment interactions an approach for blending movement and computer programming as an embodied way to support girls in building computational thinking skills. The authors seek to understand how body syntonicity might enable young learners to bootstrap their intuitive knowledge in order to…

  12. Eyetracking Methodology in SCMC: A Tool for Empowering Learning and Teaching

    ERIC Educational Resources Information Center

    Stickler, Ursula; Shi, Lijing

    2017-01-01

    Computer-assisted language learning, or CALL, is an interdisciplinary area of research, positioned between science and social science, computing and education, linguistics and applied linguistics. This paper argues that by appropriating methods originating in some areas of CALL-related research, for example human-computer interaction (HCI) or…

  13. Metabolic Network Modeling for Computer-Aided Design of Microbial Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Hyun-Seob; Nelson, William C.; Lee, Joon-Yong

    Interest in applying microbial communities to biotechnology continues to increase. Successful engineering of microbial communities requires a fundamental shift in focus from enhancing metabolic capabilities in individual organisms to promoting synergistic interspecies interactions. This goal necessitates in silico tools that provide a predictive understanding of how microorganisms interact with each other and their environments. In this regard, we highlight a need for a new concept that we have termed biological computer-aided design of interactions (BioCADi). We ground this discussion within the context of metabolic network modeling.

  14. Transportation Infrastructure Design and Construction \\0x16 Virtual Training Tools

    DOT National Transportation Integrated Search

    2003-09-01

    This project will develop 3D interactive computer-training environments for a major element of transportation infrastructure : hot mix asphalt paving. These tools will include elements of hot mix design (including laboratory equipment) and constructi...

  15. Blended Interaction Design: A Spatial Workspace Supporting HCI and Design Practice

    NASA Astrophysics Data System (ADS)

    Geyer, Florian

    This research investigates novel methods and techniques along with tool support that result from a conceptual blend of human-computer interaction with design practice. Using blending theory with material anchors as a theoretical framework, we frame both input spaces and explore emerging structures within technical, cognitive, and social aspects. Based on our results, we will describe a framework of the emerging structures and will design and evaluate tool support within a spatial, studio-like workspace to support collaborative creativity in interaction design.

  16. MAUD: An Interactive Computer Program for the Structuring, Decomposition, and Recomposition of Preferences between Multiattributed Alternatives. Final Report. Technical Report 543.

    ERIC Educational Resources Information Center

    Humphreys, Patrick; Wisudha, Ayleen

    As a demonstration of the application of heuristic devices to decision-theoretical techniques, an interactive computer program known as MAUD (Multiattribute Utility Decomposition) has been designed to support decision or choice problems that can be decomposed into component factors, or to act as a tool for investigating the microstructure of a…

  17. Designing Interactive Learning Systems.

    ERIC Educational Resources Information Center

    Barker, Philip

    1990-01-01

    Describes multimedia, computer-based interactive learning systems that support various forms of individualized study. Highlights include design models; user interfaces; design guidelines; media utilization paradigms, including hypermedia and learner-controlled models; metaphors and myths; authoring tools; optical media; workstations; four case…

  18. Running SINDA '85/FLUINT interactive on the VAX

    NASA Technical Reports Server (NTRS)

    Simmonds, Boris

    1992-01-01

    Computer software as engineering tools are typically run in three modes: Batch, Demand, and Interactive. The first two are the most popular in the SINDA world. The third one is not so popular, due probably to the users inaccessibility to the command procedure files for running SINDA '85, or lack of familiarity with the SINDA '85 execution processes (pre-processor, processor, compilation, linking, execution and all of the file assignment, creation, deletions and de-assignments). Interactive is the mode that makes thermal analysis with SINDA '85 a real-time design tool. This paper explains a command procedure sufficient (the minimum modifications required in an existing demand command procedure) to run SINDA '85 on the VAX in an interactive mode. To exercise the procedure a sample problem is presented exemplifying the mode, plus additional programming capabilities available in SINDA '85. Following the same guidelines the process can be extended to other SINDA '85 residence computer platforms.

  19. An Interactive Learning Environment for Information and Communication Theory

    ERIC Educational Resources Information Center

    Hamada, Mohamed; Hassan, Mohammed

    2017-01-01

    Interactive learning tools are emerging as effective educational materials in the area of computer science and engineering. It is a research domain that is rapidly expanding because of its positive impacts on motivating and improving students' performance during the learning process. This paper introduces an interactive learning environment for…

  20. Biomaterial science meets computational biology.

    PubMed

    Hutmacher, Dietmar W; Little, J Paige; Pettet, Graeme J; Loessner, Daniela

    2015-05-01

    There is a pressing need for a predictive tool capable of revealing a holistic understanding of fundamental elements in the normal and pathological cell physiology of organoids in order to decipher the mechanoresponse of cells. Therefore, the integration of a systems bioengineering approach into a validated mathematical model is necessary to develop a new simulation tool. This tool can only be innovative by combining biomaterials science with computational biology. Systems-level and multi-scale experimental data are incorporated into a single framework, thus representing both single cells and collective cell behaviour. Such a computational platform needs to be validated in order to discover key mechano-biological factors associated with cell-cell and cell-niche interactions.

  1. LIVING SHORES GALLERY MX964015

    EPA Science Inventory

    An interactive computer kiosk will allow the Texas State Aquarium to deliver a considerable amount of information in an efficient and highly effective manner. Touch screen interactives have proven to be excellent teaching tools in the Aquarium's Jellies: Floating Phantoms galler...

  2. 20180129 - Computational Embryology: Translational Tools for Modeling in vitro Data (Toxicology Forum)

    EPA Science Inventory

    Integrative models are needed to "decode the toxicological blueprint of active substances that interact with living systems" (Systems toxicology). Computational biology is uniquely positioned to capture this connectivity and help shift decision-making to mechanistic pre...

  3. Use of MCIDAS as an earth science information systems tool

    NASA Technical Reports Server (NTRS)

    Goodman, H. Michael; Karitani, Shogo; Parker, Karen G.; Stooksbury, Laura M.; Wilson, Gregory S.

    1988-01-01

    The application of the man computer interactive data access system (MCIDAS) to information processing is examined. The computer systems that interface with the MCIDAS are discussed. Consideration is given to the computer networking of MCIDAS, data base archival, and the collection and distribution of real-time special sensor microwave/imager data.

  4. Mistaking Identities: Challenging Representations of Language, Gender, and Race in High Tech Television Programs.

    ERIC Educational Resources Information Center

    Voithofer, R. J.

    Television programs are increasingly featuring information technologies like computers as significant narrative devices, including the use of computer-based technologies as virtual worlds or environments in which characters interact, the use of computers as tools in problem solving and confronting conflict, and characters that are part human, part…

  5. EEGLAB, SIFT, NFT, BCILAB, and ERICA: new tools for advanced EEG processing.

    PubMed

    Delorme, Arnaud; Mullen, Tim; Kothe, Christian; Akalin Acar, Zeynep; Bigdely-Shamlo, Nima; Vankov, Andrey; Makeig, Scott

    2011-01-01

    We describe a set of complementary EEG data collection and processing tools recently developed at the Swartz Center for Computational Neuroscience (SCCN) that connect to and extend the EEGLAB software environment, a freely available and readily extensible processing environment running under Matlab. The new tools include (1) a new and flexible EEGLAB STUDY design facility for framing and performing statistical analyses on data from multiple subjects; (2) a neuroelectromagnetic forward head modeling toolbox (NFT) for building realistic electrical head models from available data; (3) a source information flow toolbox (SIFT) for modeling ongoing or event-related effective connectivity between cortical areas; (4) a BCILAB toolbox for building online brain-computer interface (BCI) models from available data, and (5) an experimental real-time interactive control and analysis (ERICA) environment for real-time production and coordination of interactive, multimodal experiments.

  6. High-Performance Data Analysis Tools for Sun-Earth Connection Missions

    NASA Technical Reports Server (NTRS)

    Messmer, Peter

    2011-01-01

    The data analysis tool of choice for many Sun-Earth Connection missions is the Interactive Data Language (IDL) by ITT VIS. The increasing amount of data produced by these missions and the increasing complexity of image processing algorithms requires access to higher computing power. Parallel computing is a cost-effective way to increase the speed of computation, but algorithms oftentimes have to be modified to take advantage of parallel systems. Enhancing IDL to work on clusters gives scientists access to increased performance in a familiar programming environment. The goal of this project was to enable IDL applications to benefit from both computing clusters as well as graphics processing units (GPUs) for accelerating data analysis tasks. The tool suite developed in this project enables scientists now to solve demanding data analysis problems in IDL that previously required specialized software, and it allows them to be solved orders of magnitude faster than on conventional PCs. The tool suite consists of three components: (1) TaskDL, a software tool that simplifies the creation and management of task farms, collections of tasks that can be processed independently and require only small amounts of data communication; (2) mpiDL, a tool that allows IDL developers to use the Message Passing Interface (MPI) inside IDL for problems that require large amounts of data to be exchanged among multiple processors; and (3) GPULib, a tool that simplifies the use of GPUs as mathematical coprocessors from within IDL. mpiDL is unique in its support for the full MPI standard and its support of a broad range of MPI implementations. GPULib is unique in enabling users to take advantage of an inexpensive piece of hardware, possibly already installed in their computer, and achieve orders of magnitude faster execution time for numerically complex algorithms. TaskDL enables the simple setup and management of task farms on compute clusters. The products developed in this project have the potential to interact, so one can build a cluster of PCs, each equipped with a GPU, and use mpiDL to communicate between the nodes and GPULib to accelerate the computations on each node.

  7. Identifying Key Features, Cutting Edge Cloud Resources, and Artificial Intelligence Tools to Achieve User-Friendly Water Science in the Cloud

    NASA Astrophysics Data System (ADS)

    Pierce, S. A.

    2017-12-01

    Decision making for groundwater systems is becoming increasingly important, as shifting water demands increasingly impact aquifers. As buffer systems, aquifers provide room for resilient responses and augment the actual timeframe for hydrological response. Yet the pace impacts, climate shifts, and degradation of water resources is accelerating. To meet these new drivers, groundwater science is transitioning toward the emerging field of Integrated Water Resources Management, or IWRM. IWRM incorporates a broad array of dimensions, methods, and tools to address problems that tend to be complex. Computational tools and accessible cyberinfrastructure (CI) are needed to cross the chasm between science and society. Fortunately cloud computing environments, such as the new Jetstream system, are evolving rapidly. While still targeting scientific user groups systems such as, Jetstream, offer configurable cyberinfrastructure to enable interactive computing and data analysis resources on demand. The web-based interfaces allow researchers to rapidly customize virtual machines, modify computing architecture and increase the usability and access for broader audiences to advanced compute environments. The result enables dexterous configurations and opening up opportunities for IWRM modelers to expand the reach of analyses, number of case studies, and quality of engagement with stakeholders and decision makers. The acute need to identify improved IWRM solutions paired with advanced computational resources refocuses the attention of IWRM researchers on applications, workflows, and intelligent systems that are capable of accelerating progress. IWRM must address key drivers of community concern, implement transdisciplinary methodologies, adapt and apply decision support tools in order to effectively support decisions about groundwater resource management. This presentation will provide an overview of advanced computing services in the cloud using integrated groundwater management case studies to highlight how Cloud CI streamlines the process for setting up an interactive decision support system. Moreover, advances in artificial intelligence offer new techniques for old problems from integrating data to adaptive sensing or from interactive dashboards to optimizing multi-attribute problems. The combination of scientific expertise, flexible cloud computing solutions, and intelligent systems opens new research horizons.

  8. Integrating interactive computational modeling in biology curricula.

    PubMed

    Helikar, Tomáš; Cutucache, Christine E; Dahlquist, Lauren M; Herek, Tyler A; Larson, Joshua J; Rogers, Jim A

    2015-03-01

    While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology) class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.

  9. Individualizing Educational Strategies: An Apple Computer Managed System for the Diagnosis and Evaluation of Reading, Math and Behavior.

    ERIC Educational Resources Information Center

    Kern, Richard

    1985-01-01

    A computer-based interactive system for diagnosing academic and school behavior problems is described. Elements include criterion-referenced testing, an instructional management system, and a behavior evaluation tool developed by the author. (JW)

  10. Usability of Interactive Item Types and Tools Introduced in the New GRE® Revised General Test. ETS GRE® Board Research Report. ETS GRE®-14-05. ETS Research Report. RR-14-28

    ERIC Educational Resources Information Center

    Swiggett, Wanda D.; Kotloff, Laurie; Ezzo, Chelsea; Adler, Rachel; Oliveri, Maria Elena

    2014-01-01

    The computer-based "Graduate Record Examinations"® ("GRE"®) revised General Test includes interactive item types and testing environment tools (e.g., test navigation, on-screen calculator, and help). How well do test takers understand these innovations? If test takers do not understand the new item types, these innovations may…

  11. Grasping Reality Through Illusion: Interactive Graphics Serving Science

    DTIC Science & Technology

    1988-03-01

    SIGGRAPH, or riding techniques to the enhancement of scientific computing. StarTours at Disneyland shows how stunningly far we ........ have come. We need...supercomputer References matching and steering tools. Such tools must be Bergman, L., Fuchs, H., Grant , E., Spach, S. [1986] universal and application

  12. Computer constructed imagery of distant plasma interaction boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grenstadt, E.W.; Schurr, H.D.; Tsugawa, R.K.

    1982-01-01

    Computer constructed sketches of plasma boundaries arising from the interaction between the solar wind and the magnetosphere can serve as both didactic and research tools. In particular, the structure of the earth's bow shock can be represented as a nonuniform surfce according to the instantaneous orientation of the IMF, and temporal changes in structural distribution can be modeled as a sequence of sketches based on observed sequences of spacecraft-based measurements. Viewed rapidly, such a sequence of sketches can be the basis for representation of plasma processes by computer animation.

  13. A DGS Gesture Dictionary for Modelling on Mobile Devices

    ERIC Educational Resources Information Center

    Isotani, Seiji; Reis, Helena M.; Alvares, Danilo; Brandão, Anarosa A. F.; Brandão, Leônidas O.

    2018-01-01

    Interactive or Dynamic Geometry System (DGS) is a tool that help to teach and learn geometry using a computer-based interactive environment. Traditionally, the interaction with DGS is based on keyboard and mouse events where the functionalities are accessed using a menu of icons. Nevertheless, recent findings suggest that such a traditional model…

  14. A Computer-Assisted Instruction Program for Exercises on Finding Axioms. Technical Report Number 186.

    ERIC Educational Resources Information Center

    Goldberg, Adele; Suppes, Patrick

    An interactive computer-assisted system for teaching elementary logic is described, which was designed to handle formalizations of first-order theories suitable for presentation in a computer-assisted instruction environment. The system provides tools with which the user can develop and then study a nonlogical axiomatic theory along whatever lines…

  15. An Interactive, Versatile, Three-Dimensional Display, Manipulation and Plotting System for Biomedical Research

    ERIC Educational Resources Information Center

    Feldmann, Richard J.; And Others

    1972-01-01

    Computer graphics provides a valuable tool for the representation and a better understanding of structures, both small and large. Accurate and rapid construction, manipulation, and plotting of structures, such as macromolecules as complex as hemoglobin, are performed by a collection of computer programs and a time-sharing computer. (21 references)…

  16. Smagglce: Surface Modeling and Grid Generation for Iced Airfoils: Phase 1 Results

    NASA Technical Reports Server (NTRS)

    Vickerman, Mary B.; Choo, Yung K.; Braun, Donald C.; Baez, Marivell; Gnepp, Steven

    1999-01-01

    SmaggIce (Surface Modeling and Grid Generation for Iced Airfoils) is a software toolkit used in the process of aerodynamic performance prediction of iced airfoils with grid-based Computational Fluid Dynamics (CFD). It includes tools for data probing, boundary smoothing, domain decomposition, and structured grid generation and refinement. SmaggIce provides the underlying computations to perform these functions, a GUI (Graphical User Interface) to control and interact with those functions, and graphical displays of results, it is being developed at NASA Glenn Research Center. This paper discusses the overall design of SmaggIce as well as what has been implemented in Phase 1. Phase 1 results provide two types of software tools: interactive ice shape probing and interactive ice shape control. The ice shape probing tools will provide aircraft icing engineers and scientists with an interactive means to measure the physical characteristics of ice shapes. On the other hand, the ice shape control features of SmaggIce will allow engineers to examine input geometry data, correct or modify any deficiencies in the geometry, and perform controlled systematic smoothing to a level that will make the CFD process manageable.

  17. Simulation of Robot Kinematics Using Interactive Computer Graphics.

    ERIC Educational Resources Information Center

    Leu, M. C.; Mahajan, R.

    1984-01-01

    Development of a robot simulation program based on geometric transformation softwares available in most computer graphics systems and program features are described. The program can be extended to simulate robots coordinating with external devices (such as tools, fixtures, conveyors) using geometric transformations to describe the…

  18. OpenSees

    Science.gov Websites

    , through soil-structure interaction, to structural response. New computer simulation tools are necessary to of structures and soils to investigate challenging problems in soil-structure-foundation interaction including foundations and soils is used to study the effects of soil liquefaction and permanent

  19. Interactive Graphics Analysis for Aircraft Design

    NASA Technical Reports Server (NTRS)

    Townsend, J. C.

    1983-01-01

    Program uses higher-order far field drag minimization. Computer program WDES WDEM preliminary aerodynamic design tool for one or two interacting, subsonic lifting surfaces. Subcritical wing design code employs higher-order far-field drag minimization technique. Linearized aerodynamic theory used. Program written in FORTRAN IV.

  20. EEGLAB, SIFT, NFT, BCILAB, and ERICA: New Tools for Advanced EEG Processing

    PubMed Central

    Delorme, Arnaud; Mullen, Tim; Kothe, Christian; Akalin Acar, Zeynep; Bigdely-Shamlo, Nima; Vankov, Andrey; Makeig, Scott

    2011-01-01

    We describe a set of complementary EEG data collection and processing tools recently developed at the Swartz Center for Computational Neuroscience (SCCN) that connect to and extend the EEGLAB software environment, a freely available and readily extensible processing environment running under Matlab. The new tools include (1) a new and flexible EEGLAB STUDY design facility for framing and performing statistical analyses on data from multiple subjects; (2) a neuroelectromagnetic forward head modeling toolbox (NFT) for building realistic electrical head models from available data; (3) a source information flow toolbox (SIFT) for modeling ongoing or event-related effective connectivity between cortical areas; (4) a BCILAB toolbox for building online brain-computer interface (BCI) models from available data, and (5) an experimental real-time interactive control and analysis (ERICA) environment for real-time production and coordination of interactive, multimodal experiments. PMID:21687590

  1. An interactive tool for visualization of spike train synchronization.

    PubMed

    Terry, Kevin

    2010-08-15

    A number of studies have examined the synchronization of central and peripheral spike trains by applying signal analysis techniques in the time and frequency domains. These analyses can reveal the presence of one or more common neural inputs that produce synchronization. However, synchronization measurements can fluctuate significantly due to the inherent variability of neural discharges and a finite data record length. Moreover, the effect of these natural variations is further compounded by the number of parameters available for calculating coherence in the frequency domain and the number of indices used to quantify short-term synchronization (STS) in the time domain. The computational tool presented here provides the user with an interactive environment that dynamically calculates and displays spike train properties along with STS and coherence indices to show how these factors interact. It is intended for a broad range of users, from those who are new to synchronization to experienced researchers who want to develop more meaningful and effective computational and experimental studies. To ensure this freely available tool meets the needs of all users, there are two versions. The first is a stand-alone version for educational use that can run on any computer. The second version can be modified and expanded by researchers who want to explore more in-depth questions about synchronization. Therefore, the distribution and use of this tool should both improve the understanding of fundamental spike train synchronization dynamics and produce more efficient and meaningful synchronization studies. (c) 2010 Elsevier B.V. All rights reserved.

  2. JPL control/structure interaction test bed real-time control computer architecture

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.

    1989-01-01

    The Control/Structure Interaction Program is a technology development program for spacecraft that exhibit interactions between the control system and structural dynamics. The program objectives include development and verification of new design concepts - such as active structure - and new tools - such as combined structure and control optimization algorithm - and their verification in ground and possibly flight test. A focus mission spacecraft was designed based upon a space interferometer and is the basis for design of the ground test article. The ground test bed objectives include verification of the spacecraft design concepts, the active structure elements and certain design tools such as the new combined structures and controls optimization tool. In anticipation of CSI technology flight experiments, the test bed control electronics must emulate the computation capacity and control architectures of space qualifiable systems as well as the command and control networks that will be used to connect investigators with the flight experiment hardware. The Test Bed facility electronics were functionally partitioned into three units: a laboratory data acquisition system for structural parameter identification and performance verification; an experiment supervisory computer to oversee the experiment, monitor the environmental parameters and perform data logging; and a multilevel real-time control computing system. The design of the Test Bed electronics is presented along with hardware and software component descriptions. The system should break new ground in experimental control electronics and is of interest to anyone working in the verification of control concepts for large structures.

  3. Intelligent control system based on ARM for lithography tool

    NASA Astrophysics Data System (ADS)

    Chen, Changlong; Tang, Xiaoping; Hu, Song; Wang, Nan

    2014-08-01

    The control system of traditional lithography tool is based on PC and MCU. The PC handles the complex algorithm, human-computer interaction, and communicates with MCU via serial port; The MCU controls motors and electromagnetic valves, etc. This mode has shortcomings like big volume, high power consumption, and wasting of PC resource. In this paper, an embedded intelligent control system of lithography tool, based on ARM, is provided. The control system used S5PV210 as processor, completing the functions of PC in traditional lithography tool, and provided a good human-computer interaction by using LCD and capacitive touch screen. Using Android4.0.3 as operating system, the equipment provided a cool and easy UI which made the control more user-friendly, and implemented remote control and debug, pushing video information of product by network programming. As a result, it's convenient for equipment vendor to provide technical support for users. Finally, compared with traditional lithography tool, this design reduced the PC part, making the hardware resources efficiently used and reducing the cost and volume. Introducing embedded OS and the concepts in "The Internet of things" into the design of lithography tool can be a development trend.

  4. Computational Methods to Predict Protein Interaction Partners

    NASA Astrophysics Data System (ADS)

    Valencia, Alfonso; Pazos, Florencio

    In the new paradigm for studying biological phenomena represented by Systems Biology, cellular components are not considered in isolation but as forming complex networks of relationships. Protein interaction networks are among the first objects studied from this new point of view. Deciphering the interactome (the whole network of interactions for a given proteome) has been shown to be a very complex task. Computational techniques for detecting protein interactions have become standard tools for dealing with this problem, helping and complementing their experimental counterparts. Most of these techniques use genomic or sequence features intuitively related with protein interactions and are based on "first principles" in the sense that they do not involve training with examples. There are also other computational techniques that use other sources of information (i.e. structural information or even experimental data) or are based on training with examples.

  5. Tools and Techniques for Measuring and Improving Grid Performance

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Frumkin, M.; Smith, W.; VanderWijngaart, R.; Wong, P.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    This viewgraph presentation provides information on NASA's geographically dispersed computing resources, and the various methods by which the disparate technologies are integrated within a nationwide computational grid. Many large-scale science and engineering projects are accomplished through the interaction of people, heterogeneous computing resources, information systems and instruments at different locations. The overall goal is to facilitate the routine interactions of these resources to reduce the time spent in design cycles, particularly for NASA's mission critical projects. The IPG (Information Power Grid) seeks to implement NASA's diverse computing resources in a fashion similar to the way in which electric power is made available.

  6. High-Tech Cruelty

    ERIC Educational Resources Information Center

    Hinduja, Sameer; Patchin, Justin W.

    2011-01-01

    Cyberbullying is a growing problem because increasing numbers of young people use computers, cell phones, and other interactive devices as their main form of social interaction. Cyberbullies use technology to harass, threaten, or humiliate their peers. Online aggression isn't just traditional bullying with new tools. It's widespread, devastating,…

  7. ASTEC: Controls analysis for personal computers

    NASA Technical Reports Server (NTRS)

    Downing, John P.; Bauer, Frank H.; Thorpe, Christopher J.

    1989-01-01

    The ASTEC (Analysis and Simulation Tools for Engineering Controls) software is under development at Goddard Space Flight Center (GSFC). The design goal is to provide a wide selection of controls analysis tools at the personal computer level, as well as the capability to upload compute-intensive jobs to a mainframe or supercomputer. The project is a follow-on to the INCA (INteractive Controls Analysis) program that has been developed at GSFC over the past five years. While ASTEC makes use of the algorithms and expertise developed for the INCA program, the user interface was redesigned to take advantage of the capabilities of the personal computer. The design philosophy and the current capabilities of the ASTEC software are described.

  8. Computational and mathematical methods in brain atlasing.

    PubMed

    Nowinski, Wieslaw L

    2017-12-01

    Brain atlases have a wide range of use from education to research to clinical applications. Mathematical methods as well as computational methods and tools play a major role in the process of brain atlas building and developing atlas-based applications. Computational methods and tools cover three areas: dedicated editors for brain model creation, brain navigators supporting multiple platforms, and atlas-assisted specific applications. Mathematical methods in atlas building and developing atlas-aided applications deal with problems in image segmentation, geometric body modelling, physical modelling, atlas-to-scan registration, visualisation, interaction and virtual reality. Here I overview computational and mathematical methods in atlas building and developing atlas-assisted applications, and share my contribution to and experience in this field.

  9. A Simple Tool for the Design and Analysis of Multiple-Reflector Antennas in a Multi-Disciplinary Environment

    NASA Technical Reports Server (NTRS)

    Katz, Daniel S.; Cwik, Tom; Fu, Chuigang; Imbriale, William A.; Jamnejad, Vahraz; Springer, Paul L.; Borgioli, Andrea

    2000-01-01

    The process of designing and analyzing a multiple-reflector system has traditionally been time-intensive, requiring large amounts of both computational and human time. At many frequencies, a discrete approximation of the radiation integral may be used to model the system. The code which implements this physical optics (PO) algorithm was developed at the Jet Propulsion Laboratory. It analyzes systems of antennas in pairs, and for each pair, the analysis can be computationally time-consuming. Additionally, the antennas must be described using a local coordinate system for each antenna, which makes it difficult to integrate the design into a multi-disciplinary framework in which there is traditionally one global coordinate system, even before considering deforming the antenna as prescribed by external structural and/or thermal factors. Finally, setting up the code to correctly analyze all the antenna pairs in the system can take a fair amount of time, and introduces possible human error. The use of parallel computing to reduce the computational time required for the analysis of a given pair of antennas has been previously discussed. This paper focuses on the other problems mentioned above. It will present a methodology and examples of use of an automated tool that performs the analysis of a complete multiple-reflector system in an integrated multi-disciplinary environment (including CAD modeling, and structural and thermal analysis) at the click of a button. This tool, named MOD Tool (Millimeter-wave Optics Design Tool), has been designed and implemented as a distributed tool, with a client that runs almost identically on Unix, Mac, and Windows platforms, and a server that runs primarily on a Unix workstation and can interact with parallel supercomputers with simple instruction from the user interacting with the client.

  10. P-MartCancer: A New Online Platform to Access CPTAC Datasets and Enable New Analyses | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The November 1, 2017 issue of Cancer Research is dedicated to a collection of computational resource papers in genomics, proteomics, animal models, imaging, and clinical subjects for non-bioinformaticists looking to incorporate computing tools into their work. Scientists at Pacific Northwest National Laboratory have developed P-MartCancer, an open, web-based interactive software tool that enables statistical analyses of peptide or protein data generated from mass-spectrometry (MS)-based global proteomics experiments.

  11. Activity Theory and Qualitative Research in Digital Domains

    ERIC Educational Resources Information Center

    Sam, Cecile

    2012-01-01

    Understanding the interactions between people, computer-mediated communication, and online life requires that researchers appropriate a set of methodological tools that would be best suited for capturing and analyzing the phenomenon. However, these tools are not limited to relevant technological forms of data collections and analysis programs; it…

  12. Investigating the Effectiveness of Classroom Diagnostic Tools

    ERIC Educational Resources Information Center

    Schultz, Robert K.

    2012-01-01

    The primary purposes of the study are to investigate what teachers experience while using the Classroom Diagnostic Tools (CDT) and to relate those experiences to the rate of growth in students' mathematics achievement. The CDT contains three components: an online computer adaptive diagnostic test, interactive web-based student reports, and…

  13. Interaction Equivalency in Self-Paced Online Learning Environments: An Exploration of Learner Preferences

    ERIC Educational Resources Information Center

    Rhode, Jason F.

    2009-01-01

    This mixed methods study explored the dynamics of interaction within a self-paced online learning environment. It used rich media and a mix of traditional and emerging asynchronous computer-mediated communication tools to determine what forms of interaction learners in a self-paced online course value most and what impact they perceive interaction…

  14. E-Books Plus: Role of Interactive Visuals in Exploration of Mathematical Information and E-Learning

    ERIC Educational Resources Information Center

    Rowhani, Sonja; Sedig, Kamran

    2005-01-01

    E-books promise to become a widespread delivery mechanism for educational resources. However, current e-books do not take full advantage of the power of computing tools. In particular, interaction with the content is often reduced to navigation through the information. This article investigates how adding interactive visuals to an e-book…

  15. Data Analysis Tools and Methods for Improving the Interaction Design in E-Learning

    ERIC Educational Resources Information Center

    Popescu, Paul Stefan

    2015-01-01

    In this digital era, learning from data gathered from different software systems may have a great impact on the quality of the interaction experience. There are two main directions that come to enhance this emerging research domain, Intelligent Data Analysis (IDA) and Human Computer Interaction (HCI). HCI specific research methodologies can be…

  16. Tools for building a comprehensive modeling system for virtual screening under real biological conditions: The Computational Titration algorithm.

    PubMed

    Kellogg, Glen E; Fornabaio, Micaela; Chen, Deliang L; Abraham, Donald J; Spyrakis, Francesca; Cozzini, Pietro; Mozzarelli, Andrea

    2006-05-01

    Computational tools utilizing a unique empirical modeling system based on the hydrophobic effect and the measurement of logP(o/w) (the partition coefficient for solvent transfer between 1-octanol and water) are described. The associated force field, Hydropathic INTeractions (HINT), contains much rich information about non-covalent interactions in the biological environment because of its basis in an experiment that measures interactions in solution. HINT is shown to be the core of an evolving virtual screening system that is capable of taking into account a number of factors often ignored such as entropy, effects of solvent molecules at the active site, and the ionization states of acidic and basic residues and ligand functional groups. The outline of a comprehensive modeling system for virtual screening that incorporates these features is described. In addition, a detailed description of the Computational Titration algorithm is provided. As an example, three complexes of dihydrofolate reductase (DHFR) are analyzed with our system and these results are compared with the experimental free energies of binding.

  17. Using Interactive Visualization to Analyze Solid Earth Data and Geodynamics Models

    NASA Astrophysics Data System (ADS)

    Kellogg, L. H.; Kreylos, O.; Billen, M. I.; Hamann, B.; Jadamec, M. A.; Rundle, J. B.; van Aalsburg, J.; Yikilmaz, M. B.

    2008-12-01

    The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. Major projects such as EarthScope and GeoEarthScope are producing the data needed to characterize the structure and kinematics of Earth's surface and interior at unprecedented resolution. At the same time, high-performance computing enables high-precision and fine- detail simulation of geodynamics processes, complementing the observational data. To facilitate interpretation and analysis of these datasets, to evaluate models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth's surface and interior. VR has traditionally been used primarily as a presentation tool allowing active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for accelerated scientific analysis requires building on the method's strengths, that is, using both 3D perception and interaction with observed or simulated data. Our approach to VR takes advantage of the specialized skills of geoscientists who are trained to interpret geological and geophysical data generated from field observations. Interactive tools allow the scientist to explore and interpret geodynamic models, tomographic models, and topographic observations, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulations or field observations. The use of VR technology enables us to improve our interpretation of crust and mantle structure and of geodynamical processes. Mapping tools based on computer visualization allow virtual "field studies" in inaccessible regions, and an interactive tool allows us to construct digital fault models for use in numerical models. Using the interactive tools on a high-end platform such as an immersive virtual reality room known as a Cave Automatic Virtual Environment (CAVE), enables the scientist to stand in data three-dimensional dataset while taking measurements. The CAVE involves three or more projection surfaces arranged as walls in a room. Stereo projectors combined with a motion tracking system and immersion recreates the experience of carrying out research in the field. This high-end system provides significant advantages for scientists working with complex volumetric data. The interactive tools also work on low-cost platforms that provide stereo views and the potential for interactivity such as a Geowall or a 3D enabled TV. The Geowall is also a well-established tool for education, and in combination with the tools we have developed, enables the rapid transfer of research data and new knowledge to the classroom. The interactive visualization tools can also be used on a desktop or laptop with or without stereo capability. Further information about the Virtual Reality User Interface (VRUI), the 3DVisualizer, the Virtual mapping tools, and the LIDAR viewer, can be found on the KeckCAVES website, www.keckcaves.org.

  18. Drug-Target Interactions: Prediction Methods and Applications.

    PubMed

    Anusuya, Shanmugam; Kesherwani, Manish; Priya, K Vishnu; Vimala, Antonydhason; Shanmugam, Gnanendra; Velmurugan, Devadasan; Gromiha, M Michael

    2018-01-01

    Identifying the interactions between drugs and target proteins is a key step in drug discovery. This not only aids to understand the disease mechanism, but also helps to identify unexpected therapeutic activity or adverse side effects of drugs. Hence, drug-target interaction prediction becomes an essential tool in the field of drug repurposing. The availability of heterogeneous biological data on known drug-target interactions enabled many researchers to develop various computational methods to decipher unknown drug-target interactions. This review provides an overview on these computational methods for predicting drug-target interactions along with available webservers and databases for drug-target interactions. Further, the applicability of drug-target interactions in various diseases for identifying lead compounds has been outlined. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Web-based interactive visualization in a Grid-enabled neuroimaging application using HTML5.

    PubMed

    Siewert, René; Specovius, Svenja; Wu, Jie; Krefting, Dagmar

    2012-01-01

    Interactive visualization and correction of intermediate results are required in many medical image analysis pipelines. To allow certain interaction in the remote execution of compute- and data-intensive applications, new features of HTML5 are used. They allow for transparent integration of user interaction into Grid- or Cloud-enabled scientific workflows. Both 2D and 3D visualization and data manipulation can be performed through a scientific gateway without the need to install specific software or web browser plugins. The possibilities of web-based visualization are presented along the FreeSurfer-pipeline, a popular compute- and data-intensive software tool for quantitative neuroimaging.

  20. Learning of embodied interaction dynamics with recurrent neural networks: some exploratory experiments.

    PubMed

    Oubbati, Mohamed; Kord, Bahram; Koprinkova-Hristova, Petia; Palm, Günther

    2014-04-01

    The new tendency of artificial intelligence suggests that intelligence must be seen as a result of the interaction between brains, bodies and environments. This view implies that designing sophisticated behaviour requires a primary focus on how agents are functionally coupled to their environments. Under this perspective, we present early results with the application of reservoir computing as an efficient tool to understand how behaviour emerges from interaction. Specifically, we present reservoir computing models, that are inspired by imitation learning designs, to extract the essential components of behaviour that results from agent-environment interaction dynamics. Experimental results using a mobile robot are reported to validate the learning architectures.

  1. Learning of embodied interaction dynamics with recurrent neural networks: some exploratory experiments

    NASA Astrophysics Data System (ADS)

    Oubbati, Mohamed; Kord, Bahram; Koprinkova-Hristova, Petia; Palm, Günther

    2014-04-01

    The new tendency of artificial intelligence suggests that intelligence must be seen as a result of the interaction between brains, bodies and environments. This view implies that designing sophisticated behaviour requires a primary focus on how agents are functionally coupled to their environments. Under this perspective, we present early results with the application of reservoir computing as an efficient tool to understand how behaviour emerges from interaction. Specifically, we present reservoir computing models, that are inspired by imitation learning designs, to extract the essential components of behaviour that results from agent-environment interaction dynamics. Experimental results using a mobile robot are reported to validate the learning architectures.

  2. Using Haptic and Auditory Interaction Tools to Engage Students with Visual Impairments in Robot Programming Activities

    ERIC Educational Resources Information Center

    Howard, A. M.; Park, Chung Hyuk; Remy, S.

    2012-01-01

    The robotics field represents the integration of multiple facets of computer science and engineering. Robotics-based activities have been shown to encourage K-12 students to consider careers in computing and have even been adopted as part of core computer-science curriculum at a number of universities. Unfortunately, for students with visual…

  3. Challenges in Reproducibility, Replicability, and Comparability of Computational Models and Tools for Neuronal and Glial Networks, Cells, and Subcellular Structures.

    PubMed

    Manninen, Tiina; Aćimović, Jugoslava; Havela, Riikka; Teppola, Heidi; Linne, Marja-Leena

    2018-01-01

    The possibility to replicate and reproduce published research results is one of the biggest challenges in all areas of science. In computational neuroscience, there are thousands of models available. However, it is rarely possible to reimplement the models based on the information in the original publication, let alone rerun the models just because the model implementations have not been made publicly available. We evaluate and discuss the comparability of a versatile choice of simulation tools: tools for biochemical reactions and spiking neuronal networks, and relatively new tools for growth in cell cultures. The replicability and reproducibility issues are considered for computational models that are equally diverse, including the models for intracellular signal transduction of neurons and glial cells, in addition to single glial cells, neuron-glia interactions, and selected examples of spiking neuronal networks. We also address the comparability of the simulation results with one another to comprehend if the studied models can be used to answer similar research questions. In addition to presenting the challenges in reproducibility and replicability of published results in computational neuroscience, we highlight the need for developing recommendations and good practices for publishing simulation tools and computational models. Model validation and flexible model description must be an integral part of the tool used to simulate and develop computational models. Constant improvement on experimental techniques and recording protocols leads to increasing knowledge about the biophysical mechanisms in neural systems. This poses new challenges for computational neuroscience: extended or completely new computational methods and models may be required. Careful evaluation and categorization of the existing models and tools provide a foundation for these future needs, for constructing multiscale models or extending the models to incorporate additional or more detailed biophysical mechanisms. Improving the quality of publications in computational neuroscience, enabling progressive building of advanced computational models and tools, can be achieved only through adopting publishing standards which underline replicability and reproducibility of research results.

  4. Challenges in Reproducibility, Replicability, and Comparability of Computational Models and Tools for Neuronal and Glial Networks, Cells, and Subcellular Structures

    PubMed Central

    Manninen, Tiina; Aćimović, Jugoslava; Havela, Riikka; Teppola, Heidi; Linne, Marja-Leena

    2018-01-01

    The possibility to replicate and reproduce published research results is one of the biggest challenges in all areas of science. In computational neuroscience, there are thousands of models available. However, it is rarely possible to reimplement the models based on the information in the original publication, let alone rerun the models just because the model implementations have not been made publicly available. We evaluate and discuss the comparability of a versatile choice of simulation tools: tools for biochemical reactions and spiking neuronal networks, and relatively new tools for growth in cell cultures. The replicability and reproducibility issues are considered for computational models that are equally diverse, including the models for intracellular signal transduction of neurons and glial cells, in addition to single glial cells, neuron-glia interactions, and selected examples of spiking neuronal networks. We also address the comparability of the simulation results with one another to comprehend if the studied models can be used to answer similar research questions. In addition to presenting the challenges in reproducibility and replicability of published results in computational neuroscience, we highlight the need for developing recommendations and good practices for publishing simulation tools and computational models. Model validation and flexible model description must be an integral part of the tool used to simulate and develop computational models. Constant improvement on experimental techniques and recording protocols leads to increasing knowledge about the biophysical mechanisms in neural systems. This poses new challenges for computational neuroscience: extended or completely new computational methods and models may be required. Careful evaluation and categorization of the existing models and tools provide a foundation for these future needs, for constructing multiscale models or extending the models to incorporate additional or more detailed biophysical mechanisms. Improving the quality of publications in computational neuroscience, enabling progressive building of advanced computational models and tools, can be achieved only through adopting publishing standards which underline replicability and reproducibility of research results. PMID:29765315

  5. Simulation tools for scattering corrections in spectrally resolved x-ray computed tomography using McXtrace

    NASA Astrophysics Data System (ADS)

    Busi, Matteo; Olsen, Ulrik L.; Knudsen, Erik B.; Frisvad, Jeppe R.; Kehres, Jan; Dreier, Erik S.; Khalil, Mohamad; Haldrup, Kristoffer

    2018-03-01

    Spectral computed tomography is an emerging imaging method that involves using recently developed energy discriminating photon-counting detectors (PCDs). This technique enables measurements at isolated high-energy ranges, in which the dominating undergoing interaction between the x-ray and the sample is the incoherent scattering. The scattered radiation causes a loss of contrast in the results, and its correction has proven to be a complex problem, due to its dependence on energy, material composition, and geometry. Monte Carlo simulations can utilize a physical model to estimate the scattering contribution to the signal, at the cost of high computational time. We present a fast Monte Carlo simulation tool, based on McXtrace, to predict the energy resolved radiation being scattered and absorbed by objects of complex shapes. We validate the tool through measurements using a CdTe single PCD (Multix ME-100) and use it for scattering correction in a simulation of a spectral CT. We found the correction to account for up to 7% relative amplification in the reconstructed linear attenuation. It is a useful tool for x-ray CT to obtain a more accurate material discrimination, especially in the high-energy range, where the incoherent scattering interactions become prevailing (>50 keV).

  6. Program For Generating Interactive Displays

    NASA Technical Reports Server (NTRS)

    Costenbader, Jay; Moleski, Walt; Szczur, Martha; Howell, David; Engelberg, Norm; Li, Tin P.; Misra, Dharitri; Miller, Philip; Neve, Leif; Wolf, Karl; hide

    1991-01-01

    Sun/Unix version of Transportable Applications Environment Plus (TAE+) computer program provides integrated, portable software environment for developing and running interactive window, text, and graphical-object-based application software systems. Enables programmer or nonprogrammer to construct easily custom software interface between user and application program and to move resulting interface program and its application program to different computers. Plus viewed as productivity tool for application developers and application end users, who benefit from resultant consistent and well-designed user interface sheltering them from intricacies of computer. Available in form suitable for following six different groups of computers: DEC VAX station and other VMS VAX computers, Macintosh II computers running AUX, Apollo Domain Series 3000, DEC VAX and reduced-instruction-set-computer workstations running Ultrix, Sun 3- and 4-series workstations running Sun OS and IBM RT/PC and PS/2 compute

  7. LATUX: An Iterative Workflow for Designing, Validating, and Deploying Learning Analytics Visualizations

    ERIC Educational Resources Information Center

    Martinez-Maldonado, Roberto; Pardo, Abelardo; Mirriahi, Negin; Yacef, Kalina; Kay, Judy; Clayphan, Andrew

    2015-01-01

    Designing, validating, and deploying learning analytics tools for instructors or students is a challenge that requires techniques and methods from different disciplines, such as software engineering, human-computer interaction, computer graphics, educational design, and psychology. Whilst each has established its own design methodologies, we now…

  8. Engaging or Distracting: Children's Tablet Computer Use in Education

    ERIC Educational Resources Information Center

    McEwen, Rhonda N.; Dubé, Adam K.

    2015-01-01

    Communications studies and psychology offer analytical and methodological tools that when combined have the potential to bring novel perspectives on human interaction with technologies. In this study of children using simple and complex mathematics applications on tablet computers, cognitive load theory is used to answer the question: how…

  9. Analyses of track shift under high-speed vehicle-track interaction : safety of high speed ground transportation systems

    DOT National Transportation Integrated Search

    1997-06-01

    This report describes analysis tools to predict shift under high-speed vehicle- : track interaction. The analysis approach is based on two fundamental models : developed (as part of this research); the first model computes the track lateral : residua...

  10. A conceptual network model of the air transportation system. the basic level 1 model.

    DOT National Transportation Integrated Search

    1971-04-01

    A basic conceptual model of the entire Air Transportation System is being developed to serve as an analytical tool for studying the interactions among the system elements. The model is being designed to function in an interactive computer graphics en...

  11. EINVis: a visualization tool for analyzing and exploring genetic interactions in large-scale association studies.

    PubMed

    Wu, Yubao; Zhu, Xiaofeng; Chen, Jian; Zhang, Xiang

    2013-11-01

    Epistasis (gene-gene interaction) detection in large-scale genetic association studies has recently drawn extensive research interests as many complex traits are likely caused by the joint effect of multiple genetic factors. The large number of possible interactions poses both statistical and computational challenges. A variety of approaches have been developed to address the analytical challenges in epistatic interaction detection. These methods usually output the identified genetic interactions and store them in flat file formats. It is highly desirable to develop an effective visualization tool to further investigate the detected interactions and unravel hidden interaction patterns. We have developed EINVis, a novel visualization tool that is specifically designed to analyze and explore genetic interactions. EINVis displays interactions among genetic markers as a network. It utilizes a circular layout (specially, a tree ring view) to simultaneously visualize the hierarchical interactions between single nucleotide polymorphisms (SNPs), genes, and chromosomes, and the network structure formed by these interactions. Using EINVis, the user can distinguish marginal effects from interactions, track interactions involving more than two markers, visualize interactions at different levels, and detect proxy SNPs based on linkage disequilibrium. EINVis is an effective and user-friendly free visualization tool for analyzing and exploring genetic interactions. It is publicly available with detailed documentation and online tutorial on the web at http://filer.case.edu/yxw407/einvis/. © 2013 WILEY PERIODICALS, INC.

  12. An interactive computer code for calculation of gas-phase chemical equilibrium (EQLBRM)

    NASA Technical Reports Server (NTRS)

    Pratt, B. S.; Pratt, D. T.

    1984-01-01

    A user friendly, menu driven, interactive computer program known as EQLBRM which calculates the adiabatic equilibrium temperature and product composition resulting from the combustion of hydrocarbon fuels with air, at specified constant pressure and enthalpy is discussed. The program is developed primarily as an instructional tool to be run on small computers to allow the user to economically and efficiency explore the effects of varying fuel type, air/fuel ratio, inlet air and/or fuel temperature, and operating pressure on the performance of continuous combustion devices such as gas turbine combustors, Stirling engine burners, and power generation furnaces.

  13. Data-Informed Large-Eddy Simulation of Coastal Land-Air-Sea Interactions

    NASA Astrophysics Data System (ADS)

    Calderer, A.; Hao, X.; Fernando, H. J.; Sotiropoulos, F.; Shen, L.

    2016-12-01

    The study of atmospheric flows in coastal areas has not been fully addressed due to the complex processes emerging from the land-air-sea interactions, e.g., abrupt change in land topography, strong current shear, wave shoaling, and depth-limited wave breaking. The available computational tools that have been applied to study such littoral regions are mostly based on open-ocean assumptions, which most times do not lead to reliable solutions. The goal of the present study is to better understand some of these near-shore processes, employing the advanced computational tools, developed in our research group. Our computational framework combines a large-eddy simulation (LES) flow solver for atmospheric flows, a sharp-interface immersed boundary method that can deal with real complex topographies (Calderer et al., J. Comp. Physics 2014), and a phase-resolved, depth-dependent, wave model (Yang and Shen, J. Comp. Physics 2011). Using real measured data taken in the FRF station in Duck, North Carolina, we validate and demonstrate the predictive capabilities of the present computational framework, which are shown to be in overall good agreement with the measured data under different wind-wave scenarios. We also analyse the effects of some of the complex processes captured by our simulation tools.

  14. A collision scheme for hybrid fluid-particle simulation of plasmas

    NASA Astrophysics Data System (ADS)

    Nguyen, Christine; Lim, Chul-Hyun; Verboncoeur, John

    2006-10-01

    Desorption phenomena at the wall of a tokamak can lead to the introduction of impurities at the edge of a thermonuclear plasma. In particular, the use of carbon as a constituent of the tokamak wall, as planned for ITER, requires the study of carbon and hydrocarbon transport in the plasma, including understanding of collisional interaction with the plasma. These collisions can result in new hydrocarbons, hydrogen, secondary electrons and so on. Computational modeling is a primary tool for studying these phenomena. XOOPIC [1] and OOPD1 are widely used computer modeling tools for the simulation of plasmas. Both are particle type codes. Particle simulation gives more kinetic information than fluid simulation, but more computation time is required. In order to reduce this disadvantage, hybrid simulation has been developed, and applied to the modeling of collisions. Present particle simulation tools such as XOOPIC and OODP1 employ a Monte Carlo model for the collisions between particle species and a neutral background gas defined by its temperature and pressure. In fluid-particle hybrid plasma models, collisions include combinations of particle and fluid interactions categorized by projectile-target pairing: particle-particle, particle-fluid, and fluid-fluid. For verification of this hybrid collision scheme, we compare simulation results to analytic solutions for classical plasma models. [1] Verboncoeur et al. Comput. Phys. Comm. 87, 199 (1995).

  15. Design and utility of a web-based computer-assisted instructional tool for neuroanatomy self-study and review for physical and occupational therapy graduate students.

    PubMed

    Foreman, K Bo; Morton, David A; Musolino, Gina Maria; Albertine, Kurt H

    2005-07-01

    The cadaver continues to be the primary tool to teach human gross anatomy. However, cadavers are not available to students outside of the teaching laboratory. A solution is to make course content available through computer-assisted instruction (CAI). While CAI is commonly used as an ancillary teaching tool for anatomy, use of screen space, annotations that obscure the image, and restricted interactivity have limited the utility of such teaching tools. To address these limitations, we designed a Web-based CAI tool that optimizes use of screen space, uses annotations that do not decrease the clarity of the images, and incorporates interactivity across different operating systems and browsers. To assess the design and utility of our CAI tool, we conducted a prospective evaluation of 43 graduate students enrolled in neuroanatomy taught by the Divisions of Physical and Occupational Therapy at the University of Utah, College of Health. A questionnaire addressed navigation, clarity of the images, benefit of the CAI tool, and rating of the CAI tool compared to traditional learning tools. Results showed that 88% of the respondents strongly agreed that the CAI tool was easy to navigate and overall beneficial. Eighty-four percent strongly agreed that the CAI tool was educational in structure identification and had clear images. Furthermore, 95% of the respondents thought that the CAI tool was much to somewhat better than traditional learning tools. We conclude that the design of a CAI tool, with minimal limitations, provides a useful ancillary tool for human neuroanatomy instruction. Copyright 2005 Wiley-Liss, Inc.

  16. 3D liver volume reconstructed for palpation training.

    PubMed

    Tibamoso, Gerardo; Perez-Gutierrez, Byron; Uribe-Quevedo, Alvaro

    2013-01-01

    Virtual Reality systems for medical procedures such as the palpation of different organs, requires fast, robust, accurate and reliable computational methods for providing realism during interaction with the 3D biological models. This paper presents the segmentation, reconstruction and palpation simulation of a healthy liver volume as a tool for training. The chosen method considers the mechanical characteristics and liver properties for correctly simulating palpation interactions, which results appropriate as a complementary tool for training medical students in familiarizing with the liver anatomy.

  17. DOVIS 2.0: An Efficient and Easy to Use Parallel Virtual Screening Tool Based on AutoDock 4.0

    DTIC Science & Technology

    2008-09-08

    under the GNU General Public License. Background Molecular docking is a computational method that pre- dicts how a ligand interacts with a receptor...Hence, it is an important tool in studying receptor-ligand interactions and plays an essential role in drug design. Particularly, molecular docking has...libraries from OpenBabel and setup a molecular data structure as a C++ object in our program. This makes handling of molecular structures (e.g., atoms

  18. Integrated computer-aided design using minicomputers

    NASA Technical Reports Server (NTRS)

    Storaasli, O. O.

    1980-01-01

    Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM), a highly interactive software, has been implemented on minicomputers at the NASA Langley Research Center. CAD/CAM software integrates many formerly fragmented programs and procedures into one cohesive system; it also includes finite element modeling and analysis, and has been interfaced via a computer network to a relational data base management system and offline plotting devices on mainframe computers. The CAD/CAM software system requires interactive graphics terminals operating at a minimum of 4800 bits/sec transfer rate to a computer. The system is portable and introduces 'interactive graphics', which permits the creation and modification of models interactively. The CAD/CAM system has already produced designs for a large area space platform, a national transonic facility fan blade, and a laminar flow control wind tunnel model. Besides the design/drafting element analysis capability, CAD/CAM provides options to produce an automatic program tooling code to drive a numerically controlled (N/C) machine. Reductions in time for design, engineering, drawing, finite element modeling, and N/C machining will benefit productivity through reduced costs, fewer errors, and a wider range of configuration.

  19. A Comparison of Automatic Parallelization Tools/Compilers on the SGI Origin 2000 Using the NAS Benchmarks

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Frumkin, Michael; Hribar, Michelle; Jin, Hao-Qiang; Waheed, Abdul; Yan, Jerry

    1998-01-01

    Porting applications to new high performance parallel and distributed computing platforms is a challenging task. Since writing parallel code by hand is extremely time consuming and costly, porting codes would ideally be automated by using some parallelization tools and compilers. In this paper, we compare the performance of the hand written NAB Parallel Benchmarks against three parallel versions generated with the help of tools and compilers: 1) CAPTools: an interactive computer aided parallelization too] that generates message passing code, 2) the Portland Group's HPF compiler and 3) using compiler directives with the native FORTAN77 compiler on the SGI Origin2000.

  20. ePlant and the 3D data display initiative: integrative systems biology on the world wide web.

    PubMed

    Fucile, Geoffrey; Di Biase, David; Nahal, Hardeep; La, Garon; Khodabandeh, Shokoufeh; Chen, Yani; Easley, Kante; Christendat, Dinesh; Kelley, Lawrence; Provart, Nicholas J

    2011-01-10

    Visualization tools for biological data are often limited in their ability to interactively integrate data at multiple scales. These computational tools are also typically limited by two-dimensional displays and programmatic implementations that require separate configurations for each of the user's computing devices and recompilation for functional expansion. Towards overcoming these limitations we have developed "ePlant" (http://bar.utoronto.ca/eplant) - a suite of open-source world wide web-based tools for the visualization of large-scale data sets from the model organism Arabidopsis thaliana. These tools display data spanning multiple biological scales on interactive three-dimensional models. Currently, ePlant consists of the following modules: a sequence conservation explorer that includes homology relationships and single nucleotide polymorphism data, a protein structure model explorer, a molecular interaction network explorer, a gene product subcellular localization explorer, and a gene expression pattern explorer. The ePlant's protein structure explorer module represents experimentally determined and theoretical structures covering >70% of the Arabidopsis proteome. The ePlant framework is accessed entirely through a web browser, and is therefore platform-independent. It can be applied to any model organism. To facilitate the development of three-dimensional displays of biological data on the world wide web we have established the "3D Data Display Initiative" (http://3ddi.org).

  1. Software tools for interactive instruction in radiologic anatomy.

    PubMed

    Alvarez, Antonio; Gold, Garry E; Tobin, Brian; Desser, Terry S

    2006-04-01

    To promote active learning in an introductory Radiologic Anatomy course through the use of computer-based exercises. DICOM datasets from our hospital PACS system were transferred to a networked cluster of desktop computers in a medical school classroom. Medical students in the Radiologic Anatomy course were divided into four small groups and assigned to work on a clinical case for 45 minutes. The groups used iPACS viewer software, a free DICOM viewer, to view images and annotate anatomic structures. The classroom instructor monitored and displayed each group's work sequentially on the master screen by running SynchronEyes, a software tool for controlling PC desktops remotely. Students were able to execute the assigned tasks using the iPACS software with minimal oversight or instruction. Course instructors displayed each group's work on the main display screen of the classroom as the students presented the rationale for their decisions. The interactive component of the course received high ratings from the students and overall course ratings were higher than in prior years when the course was given solely in lecture format. DICOM viewing software is an excellent tool for enabling students to learn radiologic anatomy from real-life clinical datasets. Interactive exercises performed in groups can be powerful tools for stimulating students to learn radiologic anatomy.

  2. Modeling of Passive Forces of Machine Tool Covers

    NASA Astrophysics Data System (ADS)

    Kolar, Petr; Hudec, Jan; Sulitka, Matej

    The passive forces acting against the drive force are phenomena that influence dynamical properties and precision of linear axes equipped with feed drives. Covers are one of important sources of passive forces in machine tools. The paper describes virtual evaluation of cover passive forces using the cover complex model. The model is able to compute interaction between flexible cover segments and sealing wiper. The result is deformation of cover segments and wipers which is used together with measured friction coefficient for computation of cover total passive force. This resulting passive force is dependent on cover position. Comparison of computational results and measurement on the real cover is presented in the paper.

  3. Interactive Simulated Patient: Experiences with Collaborative E-Learning in Medicine

    ERIC Educational Resources Information Center

    Bergin, Rolf; Youngblood, Patricia; Ayers, Mary K.; Boberg, Jonas; Bolander, Klara; Courteille, Olivier; Dev, Parvati; Hindbeck, Hans; Edward, Leonard E., II; Stringer, Jennifer R.; Thalme, Anders; Fors, Uno G. H.

    2003-01-01

    Interactive Simulated Patient (ISP) is a computer-based simulation tool designed to provide medical students with the opportunity to practice their clinical problem solving skills. The ISP system allows students to perform most clinical decision-making procedures in a simulated environment, including history taking in natural language, many…

  4. Interactivity of Visual Mathematical Representations: Factors Affecting Learning and Cognitive Processes

    ERIC Educational Resources Information Center

    Sedig, Kamran; Liang, Hai-Ning

    2006-01-01

    Computer-based mathematical cognitive tools (MCTs) are a category of external aids intended to support and enhance learning and cognitive processes of learners. MCTs often contain interactive visual mathematical representations (VMRs), where VMRs are graphical representations that encode properties and relationships of mathematical concepts. In…

  5. Non-Native Speaker Interaction Management Strategies in a Network-Based Virtual Environment

    ERIC Educational Resources Information Center

    Peterson, Mark

    2008-01-01

    This article investigates the dyad-based communication of two groups of non-native speakers (NNSs) of English involved in real time interaction in a type of text-based computer-mediated communication (CMC) tool known as a MOO. The object of this semester long study was to examine the ways in which the subjects managed their L2 interaction during…

  6. A New Way of Using the Interactive Whiteboard in a High School Physics Classroom: A Case Study

    ERIC Educational Resources Information Center

    Gregorcic, Bor; Etkina, Eugenia; Planinsic, Gorazd

    2018-01-01

    In recent decades, the interactive whiteboard (IWB) has become a relatively common educational tool in Western schools. The IWB is essentially a large touch screen, that enables the user to interact with digital content in ways that are not possible with an ordinary computer-projector-canvas setup. However, the unique possibilities of IWBs are…

  7. Meet EPA Scientist Valerie Zartarian, Ph.D.

    EPA Pesticide Factsheets

    Senior exposure scientist and research environmental engineer Valerie Zartarian, Ph.D. helps build computer models and other tools that advance our understanding of how people interact with chemicals.

  8. MRIVIEW: An interactive computational tool for investigation of brain structure and function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranken, D.; George, J.

    MRIVIEW is a software system which uses image processing and visualization to provide neuroscience researchers with an integrated environment for combining functional and anatomical information. Key features of the software include semi-automated segmentation of volumetric head data and an interactive coordinate reconciliation method which utilizes surface visualization. The current system is a precursor to a computational brain atlas. We describe features this atlas will incorporate, including methods under development for visualizing brain functional data obtained from several different research modalities.

  9. ULg Spectra: An Interactive Software Tool to Improve Undergraduate Students' Structural Analysis Skills

    ERIC Educational Resources Information Center

    Agnello, Armelinda; Carre, Cyril; Billen, Roland; Leyh, Bernard; De Pauw, Edwin; Damblon, Christian

    2018-01-01

    The analysis of spectroscopic data to solve chemical structures requires practical skills and drills. In this context, we have developed ULg Spectra, a computer-based tool designed to improve the ability of learners to perform complex reasoning. The identification of organic chemical compounds involves gathering and interpreting complementary…

  10. The Effectiveness of Screencasts and Cognitive Tools as Scaffolding for Novice Object-Oriented Programmers

    ERIC Educational Resources Information Center

    Lee, Mark J. W.; Pradhan, Sunam; Dalgarno, Barney

    2008-01-01

    Modern information technology and computer science curricula employ a variety of graphical tools and development environments to facilitate student learning of introductory programming concepts and techniques. While the provision of interactive features and the use of visualization can enhance students' understanding and assist them in grasping…

  11. Using Mathematica to Teach Process Units: A Distillation Case Study

    ERIC Educational Resources Information Center

    Rasteiro, Maria G.; Bernardo, Fernando P.; Saraiva, Pedro M.

    2005-01-01

    The question addressed here is how to integrate computational tools, namely interactive general-purpose platforms, in the teaching of process units. Mathematica has been selected as a complementary tool to teach distillation processes, with the main objective of leading students to achieve a better understanding of the physical phenomena involved…

  12. "SimChemistry" as an Active Learning Tool in Chemical Education

    ERIC Educational Resources Information Center

    Bolton, Kim; Saalman, Elisabeth; Christie, Michael; Ingerman, Ake; Linder, Cedric

    2008-01-01

    The publicly available free computer program, "SimChemistry," was used as an active learning tool in the chemical engineering curriculum at the University College of Boras, Sweden. The activity involved students writing their own simulation programs on topics in the area of molecular structure and interactions. Evaluation of the learning…

  13. Preparing and Analyzing Iced Airfoils

    NASA Technical Reports Server (NTRS)

    Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Cotton, Barbara J.; Choo, Yung K.; Coroneos, Rula M.; Pennline, James A.; Hackenberg, Anthony W.; Schilling, Herbert W.; Slater, John W.; hide

    2004-01-01

    SmaggIce version 1.2 is a computer program for preparing and analyzing iced airfoils. It includes interactive tools for (1) measuring ice-shape characteristics, (2) controlled smoothing of ice shapes, (3) curve discretization, (4) generation of artificial ice shapes, and (5) detection and correction of input errors. Measurements of ice shapes are essential for establishing relationships between characteristics of ice and effects of ice on airfoil performance. The shape-smoothing tool helps prepare ice shapes for use with already available grid-generation and computational-fluid-dynamics software for studying the aerodynamic effects of smoothed ice on airfoils. The artificial ice-shape generation tool supports parametric studies since ice-shape parameters can easily be controlled with the artificial ice. In such studies, artificial shapes generated by this program can supplement simulated ice obtained from icing research tunnels and real ice obtained from flight test under icing weather condition. SmaggIce also automatically detects geometry errors such as tangles or duplicate points in the boundary which may be introduced by digitization and provides tools to correct these. By use of interactive tools included in SmaggIce version 1.2, one can easily characterize ice shapes and prepare iced airfoils for grid generation and flow simulations.

  14. IPython: components for interactive and parallel computing across disciplines. (Invited)

    NASA Astrophysics Data System (ADS)

    Perez, F.; Bussonnier, M.; Frederic, J. D.; Froehle, B. M.; Granger, B. E.; Ivanov, P.; Kluyver, T.; Patterson, E.; Ragan-Kelley, B.; Sailer, Z.

    2013-12-01

    Scientific computing is an inherently exploratory activity that requires constantly cycling between code, data and results, each time adjusting the computations as new insights and questions arise. To support such a workflow, good interactive environments are critical. The IPython project (http://ipython.org) provides a rich architecture for interactive computing with: 1. Terminal-based and graphical interactive consoles. 2. A web-based Notebook system with support for code, text, mathematical expressions, inline plots and other rich media. 3. Easy to use, high performance tools for parallel computing. Despite its roots in Python, the IPython architecture is designed in a language-agnostic way to facilitate interactive computing in any language. This allows users to mix Python with Julia, R, Octave, Ruby, Perl, Bash and more, as well as to develop native clients in other languages that reuse the IPython clients. In this talk, I will show how IPython supports all stages in the lifecycle of a scientific idea: 1. Individual exploration. 2. Collaborative development. 3. Production runs with parallel resources. 4. Publication. 5. Education. In particular, the IPython Notebook provides an environment for "literate computing" with a tight integration of narrative and computation (including parallel computing). These Notebooks are stored in a JSON-based document format that provides an "executable paper": notebooks can be version controlled, exported to HTML or PDF for publication, and used for teaching.

  15. A recommended workflow methodology in the creation of an educational and training application incorporating a digital reconstruction of the cerebral ventricular system and cerebrospinal fluid circulation to aid anatomical understanding.

    PubMed

    Manson, Amy; Poyade, Matthieu; Rea, Paul

    2015-10-19

    The use of computer-aided learning in education can be advantageous, especially when interactive three-dimensional (3D) models are used to aid learning of complex 3D structures. The anatomy of the ventricular system of the brain is difficult to fully understand as it is seldom seen in 3D, as is the flow of cerebrospinal fluid (CSF). This article outlines a workflow for the creation of an interactive training tool for the cerebral ventricular system, an educationally challenging area of anatomy. This outline is based on the use of widely available computer software packages. Using MR images of the cerebral ventricular system and several widely available commercial and free software packages, the techniques of 3D modelling, texturing, sculpting, image editing and animations were combined to create a workflow in the creation of an interactive educational and training tool. This was focussed on cerebral ventricular system anatomy, and the flow of cerebrospinal fluid. We have successfully created a robust methodology by using key software packages in the creation of an interactive education and training tool. This has resulted in an application being developed which details the anatomy of the ventricular system, and flow of cerebrospinal fluid using an anatomically accurate 3D model. In addition to this, our established workflow pattern presented here also shows how tutorials, animations and self-assessment tools can also be embedded into the training application. Through our creation of an established workflow in the generation of educational and training material for demonstrating cerebral ventricular anatomy and flow of cerebrospinal fluid, it has enormous potential to be adopted into student training in this field. With the digital age advancing rapidly, this has the potential to be used as an innovative tool alongside other methodologies for the training of future healthcare practitioners and scientists. This workflow could be used in the creation of other tools, which could be developed for use not only on desktop and laptop computers but also smartphones, tablets and fully immersive stereoscopic environments. It also could form the basis on which to build surgical simulations enhanced with haptic interaction.

  16. Using CamiTK for rapid prototyping of interactive computer assisted medical intervention applications.

    PubMed

    Promayon, Emmanuel; Fouard, Céline; Bailet, Mathieu; Deram, Aurélien; Fiard, Gaëlle; Hungr, Nikolai; Luboz, Vincent; Payan, Yohan; Sarrazin, Johan; Saubat, Nicolas; Selmi, Sonia Yuki; Voros, Sandrine; Cinquin, Philippe; Troccaz, Jocelyne

    2013-01-01

    Computer Assisted Medical Intervention (CAMI hereafter) is a complex multi-disciplinary field. CAMI research requires the collaboration of experts in several fields as diverse as medicine, computer science, mathematics, instrumentation, signal processing, mechanics, modeling, automatics, optics, etc. CamiTK is a modular framework that helps researchers and clinicians to collaborate together in order to prototype CAMI applications by regrouping the knowledge and expertise from each discipline. It is an open-source, cross-platform generic and modular tool written in C++ which can handle medical images, surgical navigation, biomedicals simulations and robot control. This paper presents the Computer Assisted Medical Intervention ToolKit (CamiTK) and how it is used in various applications in our research team.

  17. Pedagogical Utilization and Assessment of the Statistic Online Computational Resource in Introductory Probability and Statistics Courses.

    PubMed

    Dinov, Ivo D; Sanchez, Juana; Christou, Nicolas

    2008-01-01

    Technology-based instruction represents a new recent pedagogical paradigm that is rooted in the realization that new generations are much more comfortable with, and excited about, new technologies. The rapid technological advancement over the past decade has fueled an enormous demand for the integration of modern networking, informational and computational tools with classical pedagogical instruments. Consequently, teaching with technology typically involves utilizing a variety of IT and multimedia resources for online learning, course management, electronic course materials, and novel tools of communication, engagement, experimental, critical thinking and assessment.The NSF-funded Statistics Online Computational Resource (SOCR) provides a number of interactive tools for enhancing instruction in various undergraduate and graduate courses in probability and statistics. These resources include online instructional materials, statistical calculators, interactive graphical user interfaces, computational and simulation applets, tools for data analysis and visualization. The tools provided as part of SOCR include conceptual simulations and statistical computing interfaces, which are designed to bridge between the introductory and the more advanced computational and applied probability and statistics courses. In this manuscript, we describe our designs for utilizing SOCR technology in instruction in a recent study. In addition, present the results of the effectiveness of using SOCR tools at two different course intensity levels on three outcome measures: exam scores, student satisfaction and choice of technology to complete assignments. Learning styles assessment was completed at baseline. We have used three very different designs for three different undergraduate classes. Each course included a treatment group, using the SOCR resources, and a control group, using classical instruction techniques. Our findings include marginal effects of the SOCR treatment per individual classes; however, pooling the results across all courses and sections, SOCR effects on the treatment groups were exceptionally robust and significant. Coupling these findings with a clear decrease in the variance of the quantitative examination measures in the treatment groups indicates that employing technology, like SOCR, in a sound pedagogical and scientific manner enhances overall the students' understanding and suggests better long-term knowledge retention.

  18. Pedagogical Utilization and Assessment of the Statistic Online Computational Resource in Introductory Probability and Statistics Courses

    PubMed Central

    Dinov, Ivo D.; Sanchez, Juana; Christou, Nicolas

    2009-01-01

    Technology-based instruction represents a new recent pedagogical paradigm that is rooted in the realization that new generations are much more comfortable with, and excited about, new technologies. The rapid technological advancement over the past decade has fueled an enormous demand for the integration of modern networking, informational and computational tools with classical pedagogical instruments. Consequently, teaching with technology typically involves utilizing a variety of IT and multimedia resources for online learning, course management, electronic course materials, and novel tools of communication, engagement, experimental, critical thinking and assessment. The NSF-funded Statistics Online Computational Resource (SOCR) provides a number of interactive tools for enhancing instruction in various undergraduate and graduate courses in probability and statistics. These resources include online instructional materials, statistical calculators, interactive graphical user interfaces, computational and simulation applets, tools for data analysis and visualization. The tools provided as part of SOCR include conceptual simulations and statistical computing interfaces, which are designed to bridge between the introductory and the more advanced computational and applied probability and statistics courses. In this manuscript, we describe our designs for utilizing SOCR technology in instruction in a recent study. In addition, present the results of the effectiveness of using SOCR tools at two different course intensity levels on three outcome measures: exam scores, student satisfaction and choice of technology to complete assignments. Learning styles assessment was completed at baseline. We have used three very different designs for three different undergraduate classes. Each course included a treatment group, using the SOCR resources, and a control group, using classical instruction techniques. Our findings include marginal effects of the SOCR treatment per individual classes; however, pooling the results across all courses and sections, SOCR effects on the treatment groups were exceptionally robust and significant. Coupling these findings with a clear decrease in the variance of the quantitative examination measures in the treatment groups indicates that employing technology, like SOCR, in a sound pedagogical and scientific manner enhances overall the students’ understanding and suggests better long-term knowledge retention. PMID:19750185

  19. How Not To Drown in Data: A Guide for Biomaterial Engineers.

    PubMed

    Vasilevich, Aliaksei S; Carlier, Aurélie; de Boer, Jan; Singh, Shantanu

    2017-08-01

    High-throughput assays that produce hundreds of measurements per sample are powerful tools for quantifying cell-material interactions. With advances in automation and miniaturization in material fabrication, hundreds of biomaterial samples can be rapidly produced, which can then be characterized using these assays. However, the resulting deluge of data can be overwhelming. To the rescue are computational methods that are well suited to these problems. Machine learning techniques provide a vast array of tools to make predictions about cell-material interactions and to find patterns in cellular responses. Computational simulations allow researchers to pose and test hypotheses and perform experiments in silico. This review describes approaches from these two domains that can be brought to bear on the problem of analyzing biomaterial screening data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effectiveness of Interactive Computer-Based Instruction: A Review of Studies Published between 1995 and 2007

    ERIC Educational Resources Information Center

    Johnson, Douglas A.; Rubin, Sophie

    2011-01-01

    Computer-based instruction (CBI) has been growing rapidly as a training tool in organizational settings, but close attention to behavioral factors has often been neglected. CBI represents a promising instructional advancement over current training methods. This review article summarizes 12 years of comparative research in interactive…

  1. Learning Mathematics by Designing, Programming, and Investigating with Interactive, Dynamic Computer-Based Objects

    ERIC Educational Resources Information Center

    Marshall, Neil; Buteau, Chantal

    2014-01-01

    As part of their undergraduate mathematics curriculum, students at Brock University learn to create and use computer-based tools with dynamic, visual interfaces, called Exploratory Objects, developed for the purpose of conducting pure or applied mathematical investigations. A student's Development Process Model of creating and using an Exploratory…

  2. Exploring Focal and Aberration Properties of Electrostatic Lenses through Computer Simulation

    ERIC Educational Resources Information Center

    Sise, Omer; Manura, David J.; Dogan, Mevlut

    2008-01-01

    The interactive nature of computer simulation allows students to develop a deeper understanding of the laws of charged particle optics. Here, the use of commercially available optical design programs is described as a tool to aid in solving charged particle optics problems. We describe simple and practical demonstrations of basic electrostatic…

  3. Computer Generated Optical Illusions: A Teaching and Research Tool.

    ERIC Educational Resources Information Center

    Bailey, Bruce; Harman, Wade

    Interactive computer-generated simulations that highlight psychological principles were investigated in this study in which 33 female and 19 male undergraduate college student volunteers of median age 21 matched line and circle sizes in six variations of Ponzo's illusion. Prior to working with the illusions, data were collected based on subjects'…

  4. Design and Development of a Web-Based Interactive Software Tool for Teaching Operating Systems

    ERIC Educational Resources Information Center

    Garmpis, Aristogiannis

    2011-01-01

    Operating Systems (OS) is an important and mandatory discipline in many Computer Science, Information Systems and Computer Engineering curricula. Some of its topics require a careful and detailed explanation from the instructor as they often involve theoretical concepts and somewhat complex mechanisms, demanding a certain degree of abstraction…

  5. Fostering Students' Participation in Online Environments: Focus on Interaction, Communication and Problem Solving

    ERIC Educational Resources Information Center

    Zacharis, Nick Z.

    2009-01-01

    Rapid technological advances in the areas of telecommunications, computer technology and the Internet have made available to tutors and learners in the domain of online learning, a broad array of tools that provide the possibility to facilitate and enhance learning to higher levels of critical reflective thinking. Computer mediated communication…

  6. The Negotiation Model in Asynchronous Computer-Mediated Communication (CMC): Negotiation in Task-Based Email Exchanges

    ERIC Educational Resources Information Center

    Kitade, Keiko

    2006-01-01

    Based on recent studies, computer-mediated communication (CMC) has been considered a tool to aid in language learning on account of its distinctive interactional features. However, most studies have referred to "synchronous" CMC and neglected to investigate how "asynchronous" CMC contributes to language learning. Asynchronous CMC possesses…

  7. Integrating a Music Curriculum into an External Degree Program Using Computer Assisted Instruction.

    ERIC Educational Resources Information Center

    Brinkley, Robert C.

    This paper outlines the method and theoretical basis for establishing and implementing an independent study music curriculum. The curriculum combines practical and theoretical paradigms and leads to an external degree. The computer, in direct interaction with the student, is the primary instructional tool, and the teacher is involved in indirect…

  8. Cloud Computing Technologies in Writing Class: Factors Influencing Students' Learning Experience

    ERIC Educational Resources Information Center

    Wang, Jenny

    2017-01-01

    The proposed interactive online group within the cloud computing technologies as a main contribution of this paper provides easy and simple access to the cloud-based Software as a Service (SaaS) system and delivers effective educational tools for students and teacher on after-class group writing assignment activities. Therefore, this study…

  9. VisRseq: R-based visual framework for analysis of sequencing data

    PubMed Central

    2015-01-01

    Background Several tools have been developed to enable biologists to perform initial browsing and exploration of sequencing data. However the computational tool set for further analyses often requires significant computational expertise to use and many of the biologists with the knowledge needed to interpret these data must rely on programming experts. Results We present VisRseq, a framework for analysis of sequencing datasets that provides a computationally rich and accessible framework for integrative and interactive analyses without requiring programming expertise. We achieve this aim by providing R apps, which offer a semi-auto generated and unified graphical user interface for computational packages in R and repositories such as Bioconductor. To address the interactivity limitation inherent in R libraries, our framework includes several native apps that provide exploration and brushing operations as well as an integrated genome browser. The apps can be chained together to create more powerful analysis workflows. Conclusions To validate the usability of VisRseq for analysis of sequencing data, we present two case studies performed by our collaborators and report their workflow and insights. PMID:26328469

  10. VisRseq: R-based visual framework for analysis of sequencing data.

    PubMed

    Younesy, Hamid; Möller, Torsten; Lorincz, Matthew C; Karimi, Mohammad M; Jones, Steven J M

    2015-01-01

    Several tools have been developed to enable biologists to perform initial browsing and exploration of sequencing data. However the computational tool set for further analyses often requires significant computational expertise to use and many of the biologists with the knowledge needed to interpret these data must rely on programming experts. We present VisRseq, a framework for analysis of sequencing datasets that provides a computationally rich and accessible framework for integrative and interactive analyses without requiring programming expertise. We achieve this aim by providing R apps, which offer a semi-auto generated and unified graphical user interface for computational packages in R and repositories such as Bioconductor. To address the interactivity limitation inherent in R libraries, our framework includes several native apps that provide exploration and brushing operations as well as an integrated genome browser. The apps can be chained together to create more powerful analysis workflows. To validate the usability of VisRseq for analysis of sequencing data, we present two case studies performed by our collaborators and report their workflow and insights.

  11. Evaluating interactive computer-based scenarios designed for learning medical technology.

    PubMed

    Persson, Johanna; Dalholm, Elisabeth Hornyánszky; Wallergård, Mattias; Johansson, Gerd

    2014-11-01

    The use of medical equipment is growing in healthcare, resulting in an increased need for resources to educate users in how to manage the various devices. Learning the practical operation of a device is one thing, but learning how to work with the device in the actual clinical context is more challenging. This paper presents a computer-based simulation prototype for learning medical technology in the context of critical care. Properties from simulation and computer games have been adopted to create a visualization-based, interactive and contextually bound tool for learning. A participatory design process, including three researchers and three practitioners from a clinic for infectious diseases, was adopted to adjust the form and content of the prototype to the needs of the clinical practice and to create a situated learning experience. An evaluation with 18 practitioners showed that practitioners were positive to this type of tool for learning and that it served as a good platform for eliciting and sharing knowledge. Our conclusion is that this type of tools can be a complement to traditional learning resources to situate the learning in a context without requiring advanced technology or being resource-demanding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Tools for 3D scientific visualization in computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon; Plessel, Todd; Merritt, Fergus; Watson, Val

    1989-01-01

    The purpose is to describe the tools and techniques in use at the NASA Ames Research Center for performing visualization of computational aerodynamics, for example visualization of flow fields from computer simulations of fluid dynamics about vehicles such as the Space Shuttle. The hardware used for visualization is a high-performance graphics workstation connected to a super computer with a high speed channel. At present, the workstation is a Silicon Graphics IRIS 3130, the supercomputer is a CRAY2, and the high speed channel is a hyperchannel. The three techniques used for visualization are post-processing, tracking, and steering. Post-processing analysis is done after the simulation. Tracking analysis is done during a simulation but is not interactive, whereas steering analysis involves modifying the simulation interactively during the simulation. Using post-processing methods, a flow simulation is executed on a supercomputer and, after the simulation is complete, the results of the simulation are processed for viewing. The software in use and under development at NASA Ames Research Center for performing these types of tasks in computational aerodynamics is described. Workstation performance issues, benchmarking, and high-performance networks for this purpose are also discussed as well as descriptions of other hardware for digital video and film recording.

  13. Coordinating complex decision support activities across distributed applications

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.

    1994-01-01

    Knowledge-based technologies have been applied successfully to automate planning and scheduling in many problem domains. Automation of decision support can be increased further by integrating task-specific applications with supporting database systems, and by coordinating interactions between such tools to facilitate collaborative activities. Unfortunately, the technical obstacles that must be overcome to achieve this vision of transparent, cooperative problem-solving are daunting. Intelligent decision support tools are typically developed for standalone use, rely on incompatible, task-specific representational models and application programming interfaces (API's), and run on heterogeneous computing platforms. Getting such applications to interact freely calls for platform independent capabilities for distributed communication, as well as tools for mapping information across disparate representations. Symbiotics is developing a layered set of software tools (called NetWorks! for integrating and coordinating heterogeneous distributed applications. he top layer of tools consists of an extensible set of generic, programmable coordination services. Developers access these services via high-level API's to implement the desired interactions between distributed applications.

  14. Assessment of a human computer interface prototyping environment

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.

    1993-01-01

    A Human Computer Interface (HCI) prototyping environment with embedded evaluation capability has been successfully assessed which will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. The HCI prototyping environment is designed to include four components: (1) a HCI format development tool, (2) a test and evaluation simulator development tool, (3) a dynamic, interactive interface between the HCI prototype and simulator, and (4) an embedded evaluation capability to evaluate the adequacy of an HCI based on a user's performance.

  15. A new strategic neurosurgical planning tool for brainstem cavernous malformations using interactive computer graphics with multimodal fusion images.

    PubMed

    Kin, Taichi; Nakatomi, Hirofumi; Shojima, Masaaki; Tanaka, Minoru; Ino, Kenji; Mori, Harushi; Kunimatsu, Akira; Oyama, Hiroshi; Saito, Nobuhito

    2012-07-01

    In this study, the authors used preoperative simulation employing 3D computer graphics (interactive computer graphics) to fuse all imaging data for brainstem cavernous malformations. The authors evaluated whether interactive computer graphics or 2D imaging correlated better with the actual operative field, particularly in identifying a developmental venous anomaly (DVA). The study population consisted of 10 patients scheduled for surgical treatment of brainstem cavernous malformations. Data from preoperative imaging (MRI, CT, and 3D rotational angiography) were automatically fused using a normalized mutual information method, and then reconstructed by a hybrid method combining surface rendering and volume rendering methods. With surface rendering, multimodality and multithreshold techniques for 1 tissue were applied. The completed interactive computer graphics were used for simulation of surgical approaches and assumed surgical fields. Preoperative diagnostic rates for a DVA associated with brainstem cavernous malformation were compared between conventional 2D imaging and interactive computer graphics employing receiver operating characteristic (ROC) analysis. The time required for reconstruction of 3D images was 3-6 hours for interactive computer graphics. Observation in interactive mode required approximately 15 minutes. Detailed anatomical information for operative procedures, from the craniotomy to microsurgical operations, could be visualized and simulated three-dimensionally as 1 computer graphic using interactive computer graphics. Virtual surgical views were consistent with actual operative views. This technique was very useful for examining various surgical approaches. Mean (±SEM) area under the ROC curve for rate of DVA diagnosis was significantly better for interactive computer graphics (1.000±0.000) than for 2D imaging (0.766±0.091; p<0.001, Mann-Whitney U-test). The authors report a new method for automatic registration of preoperative imaging data from CT, MRI, and 3D rotational angiography for reconstruction into 1 computer graphic. The diagnostic rate of DVA associated with brainstem cavernous malformation was significantly better using interactive computer graphics than with 2D images. Interactive computer graphics was also useful in helping to plan the surgical access corridor.

  16. Geometric modeling for computer aided design

    NASA Technical Reports Server (NTRS)

    Schwing, James L.

    1993-01-01

    Over the past several years, it has been the primary goal of this grant to design and implement software to be used in the conceptual design of aerospace vehicles. The work carried out under this grant was performed jointly with members of the Vehicle Analysis Branch (VAB) of NASA LaRC, Computer Sciences Corp., and Vigyan Corp. This has resulted in the development of several packages and design studies. Primary among these are the interactive geometric modeling tool, the Solid Modeling Aerospace Research Tool (smart), and the integration and execution tools provided by the Environment for Application Software Integration and Execution (EASIE). In addition, it is the purpose of the personnel of this grant to provide consultation in the areas of structural design, algorithm development, and software development and implementation, particularly in the areas of computer aided design, geometric surface representation, and parallel algorithms.

  17. AA9int: SNP Interaction Pattern Search Using Non-Hierarchical Additive Model Set.

    PubMed

    Lin, Hui-Yi; Huang, Po-Yu; Chen, Dung-Tsa; Tung, Heng-Yuan; Sellers, Thomas A; Pow-Sang, Julio; Eeles, Rosalind; Easton, Doug; Kote-Jarai, Zsofia; Amin Al Olama, Ali; Benlloch, Sara; Muir, Kenneth; Giles, Graham G; Wiklund, Fredrik; Gronberg, Henrik; Haiman, Christopher A; Schleutker, Johanna; Nordestgaard, Børge G; Travis, Ruth C; Hamdy, Freddie; Neal, David E; Pashayan, Nora; Khaw, Kay-Tee; Stanford, Janet L; Blot, William J; Thibodeau, Stephen N; Maier, Christiane; Kibel, Adam S; Cybulski, Cezary; Cannon-Albright, Lisa; Brenner, Hermann; Kaneva, Radka; Batra, Jyotsna; Teixeira, Manuel R; Pandha, Hardev; Lu, Yong-Jie; Park, Jong Y

    2018-06-07

    The use of single nucleotide polymorphism (SNP) interactions to predict complex diseases is getting more attention during the past decade, but related statistical methods are still immature. We previously proposed the SNP Interaction Pattern Identifier (SIPI) approach to evaluate 45 SNP interaction patterns/patterns. SIPI is statistically powerful but suffers from a large computation burden. For large-scale studies, it is necessary to use a powerful and computation-efficient method. The objective of this study is to develop an evidence-based mini-version of SIPI as the screening tool or solitary use and to evaluate the impact of inheritance mode and model structure on detecting SNP-SNP interactions. We tested two candidate approaches: the 'Five-Full' and 'AA9int' method. The Five-Full approach is composed of the five full interaction models considering three inheritance modes (additive, dominant and recessive). The AA9int approach is composed of nine interaction models by considering non-hierarchical model structure and the additive mode. Our simulation results show that AA9int has similar statistical power compared to SIPI and is superior to the Five-Full approach, and the impact of the non-hierarchical model structure is greater than that of the inheritance mode in detecting SNP-SNP interactions. In summary, it is recommended that AA9int is a powerful tool to be used either alone or as the screening stage of a two-stage approach (AA9int+SIPI) for detecting SNP-SNP interactions in large-scale studies. The 'AA9int' and 'parAA9int' functions (standard and parallel computing version) are added in the SIPI R package, which is freely available at https://linhuiyi.github.io/LinHY_Software/. hlin1@lsuhsc.edu. Supplementary data are available at Bioinformatics online.

  18. Human-Computer Interaction and Information Management Research Needs

    DTIC Science & Technology

    2003-10-01

    Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be...hand-held personal digital assistants, networked sensors and actuators, and low-power computers on satellites. 5 most complex tools that humans have...calculations using data on external media such as tapes evolved into our multi-functional 21st century systems. More ideas came as networks of computing

  19. Internal aerodynamics of a generic three-dimensional scramjet inlet at Mach 10

    NASA Technical Reports Server (NTRS)

    Holland, Scott D.

    1995-01-01

    A combined computational and experimental parametric study of the internal aerodynamics of a generic three-dimensional sidewall compression scramjet inlet configuration at Mach 10 has been performed. The study was designed to demonstrate the utility of computational fluid dynamics as a design tool in hypersonic inlet flow fields, to provide a detailed account of the nature and structure of the internal flow interactions, and to provide a comprehensive surface property and flow field database to determine the effects of contraction ratio, cowl position, and Reynolds number on the performance of a hypersonic scramjet inlet configuration. The work proceeded in several phases: the initial inviscid assessment of the internal shock structure, the preliminary computational parametric study, the coupling of the optimized configuration with the physical limitations of the facility, the wind tunnel blockage assessment, and the computational and experimental parametric study of the final configuration. Good agreement between computation and experimentation was observed in the magnitude and location of the interactions, particularly for weakly interacting flow fields. Large-scale forward separations resulted when the interaction strength was increased by increasing the contraction ratio or decreasing the Reynolds number.

  20. Developing Interactional Competence through Video-Based Computer-Mediated Conversations: Beginning Learners of Spanish

    ERIC Educational Resources Information Center

    Tecedor Cabrero, Marta

    2013-01-01

    This dissertation examines the discourse produced by beginning learners of Spanish using social media. Specifically, it looks at the use and development of interactional resources during two video-mediated conversations. Through a combination of Conversation Analysis tools and quantitative data analysis, the use of turn-taking strategies, repair…

  1. Project ITCH: Interactive Digital Simulation in Electrical Engineering Education.

    ERIC Educational Resources Information Center

    Bailey, F. N.; Kain, R. Y.

    A two-stage project is investigating the educational potential of a low-cost time-sharing system used as a simulation tool in Electrical Engineering (EE) education. Phase I involves a pilot study and Phase II a full integration. The system employs interactive computer simulation to teach engineering concepts which are not well handled by…

  2. Integrative Metabolism: An Interactive Learning Tool for Nutrition, Biochemistry, and Physiology

    ERIC Educational Resources Information Center

    Carey, Gale

    2010-01-01

    Metabolism is a dynamic, simultaneous, and integrative science that cuts across nutrition, biochemistry, and physiology. Teaching this science can be a challenge. The use of a scenario-based, visually appealing, interactive, computer-animated CD may overcome the limitations of learning "one pathway at a time" and engage two- and…

  3. Let's Dance the "Robot Hokey-Pokey!": Children's Programming Approaches and Achievement throughout Early Cognitive Development

    ERIC Educational Resources Information Center

    Flannery, Louise P.; Bers, Marina Umaschi

    2013-01-01

    Young learners today generate, express, and interact with sophisticated ideas using a range of digital tools to explore interactive stories, animations, computer games, and robotics. In recent years, new developmentally appropriate robotics kits have been entering early childhood classrooms. This paper presents a retrospective analysis of one…

  4. Making English Accessible: Using ELECTRONIC NETWORKS FOR INTERACTION (ENFI) in the Classroom.

    ERIC Educational Resources Information Center

    Peyton, Joy Kreeft; French, Martha

    Electronic Networks for Interaction (ENFI), an instructional tool for teaching reading and writing using computer technology, improves the English reading and writing of deaf students at all educational levels. Chapters address these topics: (1) the origins of the technique; (2) how ENFI works in the classroom and laboratory (software, lab…

  5. The Design and Development of a Collaborative mLearning Prototype for Malaysian Secondary School Science

    ERIC Educational Resources Information Center

    DeWitt, Dorothy; Alias, Norlidah; Siraj, Saedah

    2014-01-01

    Collaborative problem-solving in science instruction allows learners to build their knowledge and understanding through interaction, using the language of science. Computer-mediated communication (CMC) tools facilitate collaboration and may provide the opportunity for interaction when using the language of science in learning. There seems to be…

  6. An interactive interface for NCAR Graphics

    NASA Technical Reports Server (NTRS)

    Buzbee, Bill; Lackman, Bob; Alpert, Ethan

    1994-01-01

    The NCAR Graphics package has been a valuable research tool for over 20 years. As a low level Fortran library, however, it was difficult to use for nonprogramming researchers. With this grant and NSF support, an interactive interface has been created which greatly facilitates use of the package by researchers of diverse computer skill levels.

  7. Geometric modeling for computer aided design

    NASA Technical Reports Server (NTRS)

    Schwing, James L.

    1992-01-01

    The goal was the design and implementation of software to be used in the conceptual design of aerospace vehicles. Several packages and design studies were completed, including two software tools currently used in the conceptual level design of aerospace vehicles. These tools are the Solid Modeling Aerospace Research Tool (SMART) and the Environment for Software Integration and Execution (EASIE). SMART provides conceptual designers with a rapid prototyping capability and additionally provides initial mass property analysis. EASIE provides a set of interactive utilities that simplify the task of building and executing computer aided design systems consisting of diverse, stand alone analysis codes that result in the streamlining of the exchange of data between programs, reducing errors and improving efficiency.

  8. Keeping Student Performance Central: The New York Assessment Collection. Studies on Exhibitions.

    ERIC Educational Resources Information Center

    Allen, David; McDonald, Joseph

    This report describes a computer tool used by the state of New York to assess student performance in elementary and secondary grades. Based on the premise that every assessment is a system of interacting elements, the tool examines students on six dimensions: vision, prompt, coaching context, performance, standards, and reflection. Vision, which…

  9. The 2009 DOD Cost Research Workshop: Acquisition Reform

    DTIC Science & Technology

    2010-02-01

    2 ACEIT Enhancement, Help-Desk/Training, Consulting DASA-CE–3 Command, Control, Communications, Computers, Intelligence, Surveillance, and...Management Information System (OSMIS) online interactive relational database DASA-CE–2 Title: ACEIT Enhancement, Help-Desk/Training, Consulting Summary...support and training for the Automated Cost estimator Integrated Tools ( ACEIT ) software suite. ACEIT is the Army standard suite of analytical tools for

  10. The Effects of Collaborative Interaction and Computer Tool Use on the Problem-Solving Processes of Lower-Ability Students.

    ERIC Educational Resources Information Center

    Derry, Sharon; And Others

    This study examined ways in which two independent variables, peer collaboration and the use of a specific tool (the TAPS interface), work together and individually to shape students' problem-solving processes. More specifically, the researchers were interested in determining how collaboration and TAPS use cause metacognitive processes to differ…

  11. PREMER: a Tool to Infer Biological Networks.

    PubMed

    Villaverde, Alejandro F; Becker, Kolja; Banga, Julio R

    2017-10-04

    Inferring the structure of unknown cellular networks is a main challenge in computational biology. Data-driven approaches based on information theory can determine the existence of interactions among network nodes automatically. However, the elucidation of certain features - such as distinguishing between direct and indirect interactions or determining the direction of a causal link - requires estimating information-theoretic quantities in a multidimensional space. This can be a computationally demanding task, which acts as a bottleneck for the application of elaborate algorithms to large-scale network inference problems. The computational cost of such calculations can be alleviated by the use of compiled programs and parallelization. To this end we have developed PREMER (Parallel Reverse Engineering with Mutual information & Entropy Reduction), a software toolbox that can run in parallel and sequential environments. It uses information theoretic criteria to recover network topology and determine the strength and causality of interactions, and allows incorporating prior knowledge, imputing missing data, and correcting outliers. PREMER is a free, open source software tool that does not require any commercial software. Its core algorithms are programmed in FORTRAN 90 and implement OpenMP directives. It has user interfaces in Python and MATLAB/Octave, and runs on Windows, Linux and OSX (https://sites.google.com/site/premertoolbox/).

  12. Continuum approach for aerothermal flow through ablative porous material using discontinuous Galerkin discretization.

    NASA Astrophysics Data System (ADS)

    Schrooyen, Pierre; Chatelain, Philippe; Hillewaert, Koen; Magin, Thierry E.

    2014-11-01

    The atmospheric entry of spacecraft presents several challenges in simulating the aerothermal flow around the heat shield. Predicting an accurate heat-flux is a complex task, especially regarding the interaction between the flow in the free stream and the erosion of the thermal protection material. To capture this interaction, a continuum approach is developed to go progressively from the region fully occupied by fluid to a receding porous medium. The volume averaged Navier-Stokes equations are used to model both phases in the same computational domain considering a single set of conservation laws. The porosity is itself a variable of the computation, allowing to take volumetric ablation into account through adequate source terms. This approach is implemented within a computational tool based on a high-order discontinuous Galerkin discretization. The multi-dimensional tool has already been validated and has proven its efficient parallel implementation. Within this platform, a fully implicit method was developed to simulate multi-phase reacting flows. Numerical results to verify and validate the methodology are considered within this work. Interactions between the flow and the ablated geometry are also presented. Supported by Fund for Research Training in Industry and Agriculture.

  13. A computational approach to climate science education with CLIMLAB

    NASA Astrophysics Data System (ADS)

    Rose, B. E. J.

    2017-12-01

    CLIMLAB is a Python-based software toolkit for interactive, process-oriented climate modeling for use in education and research. It is motivated by the need for simpler tools and more reproducible workflows with which to "fill in the gaps" between blackboard-level theory and the results of comprehensive climate models. With CLIMLAB you can interactively mix and match physical model components, or combine simpler process models together into a more comprehensive model. I use CLIMLAB in the classroom to put models in the hands of students (undergraduate and graduate), and emphasize a hierarchical, process-oriented approach to understanding the key emergent properties of the climate system. CLIMLAB is equally a tool for climate research, where the same needs exist for more robust, process-based understanding and reproducible computational results. I will give an overview of CLIMLAB and an update on recent developments, including: a full-featured, well-documented, interactive implementation of a widely-used radiation model (RRTM) packaging with conda-forge for compiler-free (and hassle-free!) installation on Mac, Windows and Linux interfacing with xarray for i/o and graphics with gridded model data a rich and growing collection of examples and self-computing lecture notes in Jupyter notebook format

  14. SnapAnatomy, a computer-based interactive tool for independent learning of human anatomy.

    PubMed

    Yip, George W; Rajendran, Kanagasuntheram

    2008-06-01

    Computer-aided instruction materials are becoming increasing popular in medical education and particularly in the teaching of human anatomy. This paper describes SnapAnatomy, a new interactive program that the authors designed for independent learning of anatomy. SnapAnatomy is primarily tailored for the beginner student to encourage the learning of anatomy by developing a three-dimensional visualization of human structure that is essential to applications in clinical practice and the understanding of function. The program allows the student to take apart and to accurately put together body components in an interactive, self-paced and variable manner to achieve the learning outcome.

  15. A Web Tool for Research in Nonlinear Optics

    NASA Astrophysics Data System (ADS)

    Prikhod'ko, Nikolay V.; Abramovsky, Viktor A.; Abramovskaya, Natalia V.; Demichev, Andrey P.; Kryukov, Alexandr P.; Polyakov, Stanislav P.

    2016-02-01

    This paper presents a project of developing the web platform called WebNLO for computer modeling of nonlinear optics phenomena. We discuss a general scheme of the platform and a model for interaction between the platform modules. The platform is built as a set of interacting RESTful web services (SaaS approach). Users can interact with the platform through a web browser or command line interface. Such a resource has no analogues in the field of nonlinear optics and will be created for the first time therefore allowing researchers to access high-performance computing resources that will significantly reduce the cost of the research and development process.

  16. Interactive Computer-Enhanced Remote Viewing System (ICERVS): Final report, November 1994--September 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-05-01

    The Interactive Computer-Enhanced Remote Viewing System (ICERVS) is a software tool for complex three-dimensional (3-D) visualization and modeling. Its primary purpose is to facilitate the use of robotic and telerobotic systems in remote and/or hazardous environments, where spatial information is provided by 3-D mapping sensors. ICERVS provides a robust, interactive system for viewing sensor data in 3-D and combines this with interactive geometric modeling capabilities that allow an operator to construct CAD models to match the remote environment. Part I of this report traces the development of ICERVS through three evolutionary phases: (1) development of first-generation software to render orthogonalmore » view displays and wireframe models; (2) expansion of this software to include interactive viewpoint control, surface-shaded graphics, material (scalar and nonscalar) property data, cut/slice planes, color and visibility mapping, and generalized object models; (3) demonstration of ICERVS as a tool for the remediation of underground storage tanks (USTs) and the dismantlement of contaminated processing facilities. Part II of this report details the software design of ICERVS, with particular emphasis on its object-oriented architecture and user interface.« less

  17. Pre-evaluation and interactive editing of B-spline and GERBS curves and surfaces

    NASA Astrophysics Data System (ADS)

    Laksâ, Arne

    2017-12-01

    Interactive computer based geometry editing is very useful for designers and artists. Our goal has been to develop useful tools for geometry editing in a way that increases the ability for creative design. When we interactively editing geometry, we want to see the change happening gradually and smoothly on the screen. Pre-evaluation is a tool for increasing the speed of the graphics when doing interactive affine operation on control points and control surfaces. It is then possible to add details on surfaces, and change shape in a smooth and continuous way. We use pre-evaluation on basis functions, on blending functions and on local surfaces. Pre-evaluation can be made hierarchi-cally and is thus useful for local refinements. Sampling and plotting of curves, surfaces and volumes can today be handled by the GPU and it is therefore important to have a structured organization and updating system to be able to make interactive editing as smooth and user friendly as possible. In the following, we will show a structure for pre-evaluation and an optimal organisation of the computation and we will show the effect of implementing both of these techniques.

  18. Applied Graph-Mining Algorithms to Study Biomolecular Interaction Networks

    PubMed Central

    2014-01-01

    Protein-protein interaction (PPI) networks carry vital information on the organization of molecular interactions in cellular systems. The identification of functionally relevant modules in PPI networks is one of the most important applications of biological network analysis. Computational analysis is becoming an indispensable tool to understand large-scale biomolecular interaction networks. Several types of computational methods have been developed and employed for the analysis of PPI networks. Of these computational methods, graph comparison and module detection are the two most commonly used strategies. This review summarizes current literature on graph kernel and graph alignment methods for graph comparison strategies, as well as module detection approaches including seed-and-extend, hierarchical clustering, optimization-based, probabilistic, and frequent subgraph methods. Herein, we provide a comprehensive review of the major algorithms employed under each theme, including our recently published frequent subgraph method, for detecting functional modules commonly shared across multiple cancer PPI networks. PMID:24800226

  19. A Survey of Videodisc Technology.

    DTIC Science & Technology

    1985-12-01

    store images and the microcomputer is used as an interactive and management tool , makes for a powerful teaching system. General Motors was the first...videodisc are used for archival storage of documents. * IBM uses videodisc in over 180 branch offices where they are used both as a presentation tool and to...provide reference material. IBM is also currently working on a videodisc project as a direct training tool for mainten- ance of their computers. A

  20. Social robots as embedded reinforcers of social behavior in children with autism.

    PubMed

    Kim, Elizabeth S; Berkovits, Lauren D; Bernier, Emily P; Leyzberg, Dan; Shic, Frederick; Paul, Rhea; Scassellati, Brian

    2013-05-01

    In this study we examined the social behaviors of 4- to 12-year-old children with autism spectrum disorders (ASD; N = 24) during three tradic interactions with an adult confederate and an interaction partner, where the interaction partner varied randomly among (1) another adult human, (2) a touchscreen computer game, and (3) a social dinosaur robot. Children spoke more in general, and directed more speech to the adult confederate, when the interaction partner was a robot, as compared to a human or computer game interaction partner. Children spoke as much to the robot as to the adult interaction partner. This study provides the largest demonstration of social human-robot interaction in children with autism to date. Our findings suggest that social robots may be developed into useful tools for social skills and communication therapies, specifically by embedding social interaction into intrinsic reinforcers and motivators.

  1. The Computer-Mediated Communication (CMC) Classroom: A Challenge of Medium, Presence, Interaction, Identity, and Relationship

    ERIC Educational Resources Information Center

    Sherblom, John C.

    2010-01-01

    There is a "prevalence of computer-mediated communication (CMC) in education," and a concern for its negative psychosocial consequences and lack of effectiveness as an instructional tool. This essay identifies five variables in the CMC research literature and shows their moderating effect on the psychosocial, instructional expevrience of the CMC…

  2. Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2013-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development. Currently there is no fully coupled computational tool to analyze this fluid/structure interaction process. The objective of this study was to develop a fully coupled aeroelastic modeling capability to describe the fluid/structure interaction process during the transient nozzle operations. The aeroelastic model composes of three components: the computational fluid dynamics component based on an unstructured-grid, pressure-based computational fluid dynamics formulation, the computational structural dynamics component developed in the framework of modal analysis, and the fluid-structural interface component. The developed aeroelastic model was applied to the transient nozzle startup process of the Space Shuttle Main Engine at sea level. The computed nozzle side loads and the axial nozzle wall pressure profiles from the aeroelastic nozzle are compared with those of the published rigid nozzle results, and the impact of the fluid/structure interaction on nozzle side loads is interrogated and presented.

  3. Computational Methods for Biomolecular Electrostatics

    PubMed Central

    Dong, Feng; Olsen, Brett; Baker, Nathan A.

    2008-01-01

    An understanding of intermolecular interactions is essential for insight into how cells develop, operate, communicate and control their activities. Such interactions include several components: contributions from linear, angular, and torsional forces in covalent bonds, van der Waals forces, as well as electrostatics. Among the various components of molecular interactions, electrostatics are of special importance because of their long range and their influence on polar or charged molecules, including water, aqueous ions, and amino or nucleic acids, which are some of the primary components of living systems. Electrostatics, therefore, play important roles in determining the structure, motion and function of a wide range of biological molecules. This chapter presents a brief overview of electrostatic interactions in cellular systems with a particular focus on how computational tools can be used to investigate these types of interactions. PMID:17964951

  4. The Electric Propulsion Interactions Code (EPIC)

    NASA Technical Reports Server (NTRS)

    Mikellides, I. G.; Mandell, M. J.; Kuharski, R. A.; Davis, V. A.; Gardner, B. M.; Minor, J.

    2004-01-01

    Science Applications International Corporation is currently developing the Electric Propulsion Interactions Code, EPIC, as part of a project sponsored by the Space Environments and Effects Program at the NASA Marshall Space Flight Center. Now in its second year of development, EPIC is an interactive computer tool that allows the construction of a 3-D spacecraft model, and the assessment of a variety of interactions between its subsystems and the plume from an electric thruster. These interactions may include erosion of surfaces due to sputtering and re-deposition of sputtered materials, surface heating, torque on the spacecraft, and changes in surface properties due to erosion and deposition. This paper describes the overall capability of EPIC and provides an outline of the physics and algorithms that comprise many of its computational modules.

  5. The Impact of an Interactive Computer Game on the Quality of Life of Children Undergoing Chemotherapy.

    PubMed

    Fazelniya, Zahra; Najafi, Mostafa; Moafi, Alireza; Talakoub, Sedigheh

    2017-01-01

    Quality of life (QOL) of children with cancer reduces right from the diagnosis of disease and the start of treatment. Computer games in medicine are utilized to interact with patients and to improve their health-related behaviors. This study aimed to investigate the effect of an interactive computer game on the QOL of children undergoing chemotherapy. In this clinical trial, 64 children with cancer aged between 8 and12 years were selected through convenience sampling and randomly assigned to experimental or control group. The experimental group played a computer game for 3 hours a week for 4 consecutive weeks and the control group only received routine care. The data collection tool was the Pediatric Quality of Life Inventory (PedsQL) 3.0 Cancer Module Child self-report designed for children aged between 8 to 12 years. Data were analyzed using descriptive and inferential statistics in SPSS software. Before intervention, there was no significant difference between the two groups in terms of mean total QOL score ( p = 0.87). However, immediately after the intervention ( p = 0.02) and 1 month after the intervention ( p < 0.001), the overall mean QOL score was significantly higher in the intervention group than the control group. Based on the findings, computer games seem to be effective as a tool in influencing health-related behavior and improving the QOL of children undergoing chemotherapy. Therefore, according to the findings of this study, computer games can be used to improve the QOL of children undergoing chemotherapy.

  6. The Impact of an Interactive Computer Game on the Quality of Life of Children Undergoing Chemotherapy

    PubMed Central

    Fazelniya, Zahra; Najafi, Mostafa; Moafi, Alireza; Talakoub, Sedigheh

    2017-01-01

    Background: Quality of life (QOL) of children with cancer reduces right from the diagnosis of disease and the start of treatment. Computer games in medicine are utilized to interact with patients and to improve their health-related behaviors. This study aimed to investigate the effect of an interactive computer game on the QOL of children undergoing chemotherapy. Materials and Methods: In this clinical trial, 64 children with cancer aged between 8 and12 years were selected through convenience sampling and randomly assigned to experimental or control group. The experimental group played a computer game for 3 hours a week for 4 consecutive weeks and the control group only received routine care. The data collection tool was the Pediatric Quality of Life Inventory (PedsQL) 3.0 Cancer Module Child self-report designed for children aged between 8 to 12 years. Data were analyzed using descriptive and inferential statistics in SPSS software. Results: Before intervention, there was no significant difference between the two groups in terms of mean total QOL score (p = 0.87). However, immediately after the intervention (p = 0.02) and 1 month after the intervention (p < 0.001), the overall mean QOL score was significantly higher in the intervention group than the control group. Conclusions: Based on the findings, computer games seem to be effective as a tool in influencing health-related behavior and improving the QOL of children undergoing chemotherapy. Therefore, according to the findings of this study, computer games can be used to improve the QOL of children undergoing chemotherapy. PMID:29184580

  7. Post hoc support vector machine learning for impedimetric biosensors based on weak protein-ligand interactions.

    PubMed

    Rong, Y; Padron, A V; Hagerty, K J; Nelson, N; Chi, S; Keyhani, N O; Katz, J; Datta, S P A; Gomes, C; McLamore, E S

    2018-04-30

    Impedimetric biosensors for measuring small molecules based on weak/transient interactions between bioreceptors and target analytes are a challenge for detection electronics, particularly in field studies or in the analysis of complex matrices. Protein-ligand binding sensors have enormous potential for biosensing, but achieving accuracy in complex solutions is a major challenge. There is a need for simple post hoc analytical tools that are not computationally expensive, yet provide near real time feedback on data derived from impedance spectra. Here, we show the use of a simple, open source support vector machine learning algorithm for analyzing impedimetric data in lieu of using equivalent circuit analysis. We demonstrate two different protein-based biosensors to show that the tool can be used for various applications. We conclude with a mobile phone-based demonstration focused on the measurement of acetone, an important biomarker related to the onset of diabetic ketoacidosis. In all conditions tested, the open source classifier was capable of performing as well as, or better, than the equivalent circuit analysis for characterizing weak/transient interactions between a model ligand (acetone) and a small chemosensory protein derived from the tsetse fly. In addition, the tool has a low computational requirement, facilitating use for mobile acquisition systems such as mobile phones. The protocol is deployed through Jupyter notebook (an open source computing environment available for mobile phone, tablet or computer use) and the code was written in Python. For each of the applications, we provide step-by-step instructions in English, Spanish, Mandarin and Portuguese to facilitate widespread use. All codes were based on scikit-learn, an open source software machine learning library in the Python language, and were processed in Jupyter notebook, an open-source web application for Python. The tool can easily be integrated with the mobile biosensor equipment for rapid detection, facilitating use by a broad range of impedimetric biosensor users. This post hoc analysis tool can serve as a launchpad for the convergence of nanobiosensors in planetary health monitoring applications based on mobile phone hardware.

  8. Verifying the interactive convergence clock synchronization algorithm using the Boyer-Moore theorem prover

    NASA Technical Reports Server (NTRS)

    Young, William D.

    1992-01-01

    The application of formal methods to the analysis of computing systems promises to provide higher and higher levels of assurance as the sophistication of our tools and techniques increases. Improvements in tools and techniques come about as we pit the current state of the art against new and challenging problems. A promising area for the application of formal methods is in real-time and distributed computing. Some of the algorithms in this area are both subtle and important. In response to this challenge and as part of an ongoing attempt to verify an implementation of the Interactive Convergence Clock Synchronization Algorithm (ICCSA), we decided to undertake a proof of the correctness of the algorithm using the Boyer-Moore theorem prover. This paper describes our approach to proving the ICCSA using the Boyer-Moore prover.

  9. Interactive Voice/Web Response System in clinical research

    PubMed Central

    Ruikar, Vrishabhsagar

    2016-01-01

    Emerging technologies in computer and telecommunication industry has eased the access to computer through telephone. An Interactive Voice/Web Response System (IxRS) is one of the user friendly systems for end users, with complex and tailored programs at its backend. The backend programs are specially tailored for easy understanding of users. Clinical research industry has experienced revolution in methodologies of data capture with time. Different systems have evolved toward emerging modern technologies and tools in couple of decades from past, for example, Electronic Data Capture, IxRS, electronic patient reported outcomes, etc. PMID:26952178

  10. Interactive Voice/Web Response System in clinical research.

    PubMed

    Ruikar, Vrishabhsagar

    2016-01-01

    Emerging technologies in computer and telecommunication industry has eased the access to computer through telephone. An Interactive Voice/Web Response System (IxRS) is one of the user friendly systems for end users, with complex and tailored programs at its backend. The backend programs are specially tailored for easy understanding of users. Clinical research industry has experienced revolution in methodologies of data capture with time. Different systems have evolved toward emerging modern technologies and tools in couple of decades from past, for example, Electronic Data Capture, IxRS, electronic patient reported outcomes, etc.

  11. Theoretical model to investigate the alkyl chain and anion dependent interactions of gemini surfactant with bovine serum albumin.

    PubMed

    Vishvakarma, Vijay K; Kumari, Kamlesh; Patel, Rajan; Dixit, V S; Singh, Prashant; Mehrotra, Gopal K; Chandra, Ramesh; Chakrawarty, Anand Kumar

    2015-05-15

    Surfactants are used to prevent the irreversible aggregation of partially refolded proteins and they also assist in protein refolding. We have reported the design and screening of gemini surfactant to stabilize bovine serum albumin (BSA) with the help of computational tool (iGEMDOCK). A series of gemini surfactant has been designed based on bis-N-alkyl nicotinate dianion via varying the alkyl group and anion. On changing the alkyl group and anion of the surfactant, the value of Log P changes means polarity of surfactant can be tuned. Further, the virtual screening of the gemini surfactant has been carried out based on generic evolutionary method. Herein, thermodynamic data was studied to determine the potential of gemini surfactant as BSA stabilizer. Computational tools help to find out the efficient gemini surfactant to stabilize the BSA rather than to use the surfactant randomly and directionless for the stabilization. It can be confirmed through the experimental techniques. Previously, researcher synthesized one of the designed and used gemini surfactant to stabilize the BSA and their interactions were confirmed through various techniques and computational docking. But herein, the authors find the most competent gemini surfactant to stabilize BSA using computational tools on the basis of energy score. Different from the single chain surfactant, the gemini surfactants exhibit much stronger electrostatic and hydrophobic interactions with the protein and are thus effective at much lower concentrations. Based on the present study, it is expected that gemini surfactants may prove useful in the protein stabilization operations and may thus be effectively employed to circumvent the problem of misfolding and aggregation. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Theoretical model to investigate the alkyl chain and anion dependent interactions of gemini surfactant with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Vishvakarma, Vijay K.; Kumari, Kamlesh; Patel, Rajan; Dixit, V. S.; Singh, Prashant; Mehrotra, Gopal K.; Chandra, Ramesh; Chakrawarty, Anand Kumar

    2015-05-01

    Surfactants are used to prevent the irreversible aggregation of partially refolded proteins and they also assist in protein refolding. We have reported the design and screening of gemini surfactant to stabilize bovine serum albumin (BSA) with the help of computational tool (iGEMDOCK). A series of gemini surfactant has been designed based on bis-N-alkyl nicotinate dianion via varying the alkyl group and anion. On changing the alkyl group and anion of the surfactant, the value of Log P changes means polarity of surfactant can be tuned. Further, the virtual screening of the gemini surfactant has been carried out based on generic evolutionary method. Herein, thermodynamic data was studied to determine the potential of gemini surfactant as BSA stabilizer. Computational tools help to find out the efficient gemini surfactant to stabilize the BSA rather than to use the surfactant randomly and directionless for the stabilization. It can be confirmed through the experimental techniques. Previously, researcher synthesized one of the designed and used gemini surfactant to stabilize the BSA and their interactions were confirmed through various techniques and computational docking. But herein, the authors find the most competent gemini surfactant to stabilize BSA using computational tools on the basis of energy score. Different from the single chain surfactant, the gemini surfactants exhibit much stronger electrostatic and hydrophobic interactions with the protein and are thus effective at much lower concentrations. Based on the present study, it is expected that gemini surfactants may prove useful in the protein stabilization operations and may thus be effectively employed to circumvent the problem of misfolding and aggregation.

  13. Human eye haptics-based multimedia.

    PubMed

    Velandia, David; Uribe-Quevedo, Alvaro; Perez-Gutierrez, Byron

    2014-01-01

    Immersive and interactive multimedia applications offer complementary study tools in anatomy as users can explore 3D models while obtaining information about the organ, tissue or part being explored. Haptics increases the sense of interaction with virtual objects improving user experience in a more realistic manner. Common eye studying tools are books, illustrations, assembly models, and more recently these are being complemented with mobile apps whose 3D capabilities, computing power and customers are increasing. The goal of this project is to develop a complementary eye anatomy and pathology study tool using deformable models within a multimedia application, offering the students the opportunity for exploring the eye from up close and within with relevant information. Validation of the tool provided feedback on the potential of the development, along with suggestions on improving haptic feedback and navigation.

  14. Building a Propulsion Experiment Project Management Environment

    NASA Technical Reports Server (NTRS)

    Keiser, Ken; Tanner, Steve; Hatcher, Danny; Graves, Sara

    2004-01-01

    What do you get when you cross rocket scientists with computer geeks? It is an interactive, distributed computing web of tools and services providing a more productive environment for propulsion research and development. The Rocket Engine Advancement Program 2 (REAP2) project involves researchers at several institutions collaborating on propulsion experiments and modeling. In an effort to facilitate these collaborations among researchers at different locations and with different specializations, researchers at the Information Technology and Systems Center,' University of Alabama in Huntsville, are creating a prototype web-based interactive information system in support of propulsion research. This system, to be based on experience gained in creating similar systems for NASA Earth science field experiment campaigns such as the Convection and Moisture Experiments (CAMEX), will assist in the planning and analysis of model and experiment results across REAP2 participants. The initial version of the Propulsion Experiment Project Management Environment (PExPM) consists of a controlled-access web portal facilitating the drafting and sharing of working documents and publications. Interactive tools for building and searching an annotated bibliography of publications related to REAP2 research topics have been created to help organize and maintain the results of literature searches. Also work is underway, with some initial prototypes in place, for interactive project management tools allowing project managers to schedule experiment activities, track status and report on results. This paper describes current successes, plans, and expected challenges for this project.

  15. SOCR Motion Charts: An Efficient, Open-Source, Interactive and Dynamic Applet for Visualizing Longitudinal Multivariate Data

    PubMed Central

    Al-Aziz, Jameel; Christou, Nicolas; Dinov, Ivo D.

    2011-01-01

    The amount, complexity and provenance of data have dramatically increased in the past five years. Visualization of observed and simulated data is a critical component of any social, environmental, biomedical or scientific quest. Dynamic, exploratory and interactive visualization of multivariate data, without preprocessing by dimensionality reduction, remains a nearly insurmountable challenge. The Statistics Online Computational Resource (www.SOCR.ucla.edu) provides portable online aids for probability and statistics education, technology-based instruction and statistical computing. We have developed a new Java-based infrastructure, SOCR Motion Charts, for discovery-based exploratory analysis of multivariate data. This interactive data visualization tool enables the visualization of high-dimensional longitudinal data. SOCR Motion Charts allows mapping of ordinal, nominal and quantitative variables onto time, 2D axes, size, colors, glyphs and appearance characteristics, which facilitates the interactive display of multidimensional data. We validated this new visualization paradigm using several publicly available multivariate datasets including Ice-Thickness, Housing Prices, Consumer Price Index, and California Ozone Data. SOCR Motion Charts is designed using object-oriented programming, implemented as a Java Web-applet and is available to the entire community on the web at www.socr.ucla.edu/SOCR_MotionCharts. It can be used as an instructional tool for rendering and interrogating high-dimensional data in the classroom, as well as a research tool for exploratory data analysis. PMID:21479108

  16. The Hematopoietic Expression Viewer: expanding mobile apps as a scientific tool.

    PubMed

    James, Regis A; Rao, Mitchell M; Chen, Edward S; Goodell, Margaret A; Shaw, Chad A

    2012-07-15

    Many important data in current biological science comprise hundreds, thousands or more individual results. These massive data require computational tools to navigate results and effectively interact with the content. Mobile device apps are an increasingly important tool in the everyday lives of scientists and non-scientists alike. These software present individuals with compact and efficient tools to interact with complex data at meetings or other locations remote from their main computing environment. We believe that apps will be important tools for biologists, geneticists and physicians to review content while participating in biomedical research or practicing medicine. We have developed a prototype app for displaying gene expression data using the iOS platform. To present the software engineering requirements, we review the model-view-controller schema for Apple's iOS. We apply this schema to a simple app for querying locally developed microarray gene expression data. The challenge of this application is to balance between storing content locally within the app versus obtaining it dynamically via a network connection. The Hematopoietic Expression Viewer is available at http://www.shawlab.org/he_viewer. The source code for this project and any future information on how to obtain the app can be accessed at http://www.shawlab.org/he_viewer.

  17. GISpark: A Geospatial Distributed Computing Platform for Spatiotemporal Big Data

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhong, E.; Wang, E.; Zhong, Y.; Cai, W.; Li, S.; Gao, S.

    2016-12-01

    Geospatial data are growing exponentially because of the proliferation of cost effective and ubiquitous positioning technologies such as global remote-sensing satellites and location-based devices. Analyzing large amounts of geospatial data can provide great value for both industrial and scientific applications. Data- and compute- intensive characteristics inherent in geospatial big data increasingly pose great challenges to technologies of data storing, computing and analyzing. Such challenges require a scalable and efficient architecture that can store, query, analyze, and visualize large-scale spatiotemporal data. Therefore, we developed GISpark - a geospatial distributed computing platform for processing large-scale vector, raster and stream data. GISpark is constructed based on the latest virtualized computing infrastructures and distributed computing architecture. OpenStack and Docker are used to build multi-user hosting cloud computing infrastructure for GISpark. The virtual storage systems such as HDFS, Ceph, MongoDB are combined and adopted for spatiotemporal data storage management. Spark-based algorithm framework is developed for efficient parallel computing. Within this framework, SuperMap GIScript and various open-source GIS libraries can be integrated into GISpark. GISpark can also integrated with scientific computing environment (e.g., Anaconda), interactive computing web applications (e.g., Jupyter notebook), and machine learning tools (e.g., TensorFlow/Orange). The associated geospatial facilities of GISpark in conjunction with the scientific computing environment, exploratory spatial data analysis tools, temporal data management and analysis systems make up a powerful geospatial computing tool. GISpark not only provides spatiotemporal big data processing capacity in the geospatial field, but also provides spatiotemporal computational model and advanced geospatial visualization tools that deals with other domains related with spatial property. We tested the performance of the platform based on taxi trajectory analysis. Results suggested that GISpark achieves excellent run time performance in spatiotemporal big data applications.

  18. Identification of new allosteric sites and modulators of AChE through computational and experimental tools.

    PubMed

    Roca, Carlos; Requena, Carlos; Sebastián-Pérez, Víctor; Malhotra, Sony; Radoux, Chris; Pérez, Concepción; Martinez, Ana; Antonio Páez, Juan; Blundell, Tom L; Campillo, Nuria E

    2018-12-01

    Allosteric sites on proteins are targeted for designing more selective inhibitors of enzyme activity and to discover new functions. Acetylcholinesterase (AChE), which is most widely known for the hydrolysis of the neurotransmitter acetylcholine, has a peripheral allosteric subsite responsible for amyloidosis in Alzheimer's disease through interaction with amyloid β-peptide. However, AChE plays other non-hydrolytic functions. Here, we identify and characterise using computational tools two new allosteric sites in AChE, which have allowed us to identify allosteric inhibitors by virtual screening guided by structure-based and fragment hotspot strategies. The identified compounds were also screened for in vitro inhibition of AChE and three were observed to be active. Further experimental (kinetic) and computational (molecular dynamics) studies have been performed to verify the allosteric activity. These new compounds may be valuable pharmacological tools in the study of non-cholinergic functions of AChE.

  19. On the Use of Interactive Texts in Undergraduate Chemical Reaction Engineering Courses: A Pedagogical Experience

    ERIC Educational Resources Information Center

    Asensio, Daniela A.; Barassi, Francisca J.; Zambon, Mariana T.; Mazza, Germán D.

    2010-01-01

    This paper describes the results of a pedagogical experience carried out at the University of Comahue, Argentina, with an interactive text (IT) concerning Homogeneous Chemical Reactors Analysis. The IT was built on the frame of the "Mathematica" software with the aim of providing students with a robust computational tool. Students'…

  20. Assessment of an Interactive Computer-Based Patient Prenatal Genetic Screening and Testing Education Tool

    ERIC Educational Resources Information Center

    Griffith, Jennifer M.; Sorenson, James R.; Bowling, J. Michael; Jennings-Grant, Tracey

    2005-01-01

    The Enhancing Patient Prenatal Education study tested the feasibility and educational impact of an interactive program for patient prenatal genetic screening and testing education. Patients at two private practices and one public health clinic participated (N = 207). The program collected knowledge and measures of anxiety before and after use of…

  1. Researching Online Foreign Language Interaction and Exchange: Theories, Methods and Challenges. Telecollaboration in Education. Volume 3

    ERIC Educational Resources Information Center

    Dooly, Melinda; O'Dowd, Robert

    2012-01-01

    This book provides an accessible introduction to some of the methods and theoretical approaches for investigating foreign language (FL) interaction and exchange in online environments. Research approaches which can be applied to Computer-Mediated Communication (CMC) are outlined, followed by discussion of the way in which tools and techniques for…

  2. The Effects of Instructor-Avatar Immediacy in Second Life, an Immersive and Interactive Three-Dimensional Virtual Environment

    ERIC Educational Resources Information Center

    Lawless-Reljic, Sabine Karine

    2010-01-01

    Growing interest of educational institutions in desktop 3D graphic virtual environments for hybrid and distance education prompts questions on the efficacy of such tools. Virtual worlds, such as Second Life[R], enable computer-mediated immersion and interactions encompassing multimodal communication channels including audio, video, and text-.…

  3. Computational Tools for Probing Interactions in Multiple Linear Regression, Multilevel Modeling, and Latent Curve Analysis

    ERIC Educational Resources Information Center

    Preacher, Kristopher J.; Curran, Patrick J.; Bauer, Daniel J.

    2006-01-01

    Simple slopes, regions of significance, and confidence bands are commonly used to evaluate interactions in multiple linear regression (MLR) models, and the use of these techniques has recently been extended to multilevel or hierarchical linear modeling (HLM) and latent curve analysis (LCA). However, conducting these tests and plotting the…

  4. Shifting the Load: A Peer Dialogue Agent That Encourages Its Human Collaborator to Contribute More to Problem Solving

    ERIC Educational Resources Information Center

    Howard, Cynthia; Jordan, Pamela; Di Eugenio, Barbara; Katz, Sandra

    2017-01-01

    Despite a growing need for educational tools that support students at the earliest phases of undergraduate Computer Science (CS) curricula, relatively few such tools exist--the majority being Intelligent Tutoring Systems. Since peer interactions more readily give rise to challenges and negotiations, another way in which students can become more…

  5. Evaluating Gaze-Based Interface Tools to Facilitate Point-and-Select Tasks with Small Targets

    ERIC Educational Resources Information Center

    Skovsgaard, Henrik; Mateo, Julio C.; Hansen, John Paulin

    2011-01-01

    Gaze interaction affords hands-free control of computers. Pointing to and selecting small targets using gaze alone is difficult because of the limited accuracy of gaze pointing. This is the first experimental comparison of gaze-based interface tools for small-target (e.g. less than 12 x 12 pixels) point-and-select tasks. We conducted two…

  6. Virtual Social Environments as a Tool for Psychological Assessment: Dynamics of Interaction with a Virtual Spouse

    ERIC Educational Resources Information Center

    Schonbrodt, Felix D.; Asendorpf, Jens B.

    2011-01-01

    Computer games are advocated as a promising tool bridging the gap between the controllability of a lab experiment and the mundane realism of a field experiment. At the same time, many authors stress the importance of observing real behavior instead of asking participants about possible or intended behaviors. In this article, the authors introduce…

  7. Advanced computational simulations of water waves interacting with wave energy converters

    NASA Astrophysics Data System (ADS)

    Pathak, Ashish; Freniere, Cole; Raessi, Mehdi

    2017-03-01

    Wave energy converter (WEC) devices harness the renewable ocean wave energy and convert it into useful forms of energy, e.g. mechanical or electrical. This paper presents an advanced 3D computational framework to study the interaction between water waves and WEC devices. The computational tool solves the full Navier-Stokes equations and considers all important effects impacting the device performance. To enable large-scale simulations in fast turnaround times, the computational solver was developed in an MPI parallel framework. A fast multigrid preconditioned solver is introduced to solve the computationally expensive pressure Poisson equation. The computational solver was applied to two surface-piercing WEC geometries: bottom-hinged cylinder and flap. Their numerically simulated response was validated against experimental data. Additional simulations were conducted to investigate the applicability of Froude scaling in predicting full-scale WEC response from the model experiments.

  8. Configuration Analysis Tool (CAT). System Description and users guide (revision 1)

    NASA Technical Reports Server (NTRS)

    Decker, W.; Taylor, W.; Mcgarry, F. E.; Merwarth, P.

    1982-01-01

    A system description of, and user's guide for, the Configuration Analysis Tool (CAT) are presented. As a configuration management tool, CAT enhances the control of large software systems by providing a repository for information describing the current status of a project. CAT provides an editing capability to update the information and a reporting capability to present the information. CAT is an interactive program available in versions for the PDP-11/70 and VAX-11/780 computers.

  9. CARE+ user study: usability and attitudes towards a tablet pc computer counseling tool for HIV+ men and women.

    PubMed

    Skeels, Meredith M; Kurth, Ann; Clausen, Marc; Severynen, Anneleen; Garcia-Smith, Hal

    2006-01-01

    CARE+ is a tablet PC-based computer counseling tool designed to support medication adherence and secondary HIV prevention for people living with HIV. Thirty HIV+ men and women participated in our user study to assess usability and attitudes towards CARE+. We observed them using CARE+ for the first time and conducted a semi-structured interview afterwards. Our findings suggest computer counseling may reduce social bias and encourage participants to answer questions honestly. Participants felt that discussing sensitive subjects with a computer instead of a person reduced feelings of embarrassment and being judged, and promoted privacy. Results also confirm that potential users think computers can provide helpful counseling, and that many also want human counseling interaction. Our study also revealed that tablet PC-based applications are usable by our population of mixed experience computer users. Computer counseling holds great potential for providing assessment and health promotion to individuals with chronic conditions such as HIV.

  10. Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies

    NASA Technical Reports Server (NTRS)

    Suh, Peter M.; Conyers, Howard J.; Mavris, Dimitri N.

    2014-01-01

    This paper introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio and number of control surfaces. A doublet lattice approach is taken to compute generalized forces. A rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. Although, all parameters can be easily modified if desired.The focus of this paper is on tool presentation, verification and validation. This process is carried out in stages throughout the paper. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool. Therefore the flutter speed and frequency for a clamped plate are computed using V-g and V-f analysis. The computational results are compared to a previously published computational analysis and wind tunnel results for the same structure. Finally a case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to V-g and V-f analysis. This also includes the analysis of the model in response to a 1-cos gust.

  11. Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies

    NASA Technical Reports Server (NTRS)

    Suh, Peter M.; Conyers, Howard J.; Mavris, Dimitri N.

    2015-01-01

    This paper introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this paper is on tool presentation, verification, and validation. These processes are carried out in stages throughout the paper. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust.

  12. Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies

    NASA Technical Reports Server (NTRS)

    Suh, Peter M.; Conyers, Howard Jason; Mavris, Dimitri N.

    2015-01-01

    This report introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this report is on tool presentation, verification, and validation. These processes are carried out in stages throughout the report. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust.

  13. Reproducible research in palaeomagnetism

    NASA Astrophysics Data System (ADS)

    Lurcock, Pontus; Florindo, Fabio

    2015-04-01

    The reproducibility of research findings is attracting increasing attention across all scientific disciplines. In palaeomagnetism as elsewhere, computer-based analysis techniques are becoming more commonplace, complex, and diverse. Analyses can often be difficult to reproduce from scratch, both for the original researchers and for others seeking to build on the work. We present a palaeomagnetic plotting and analysis program designed to make reproducibility easier. Part of the problem is the divide between interactive and scripted (batch) analysis programs. An interactive desktop program with a graphical interface is a powerful tool for exploring data and iteratively refining analyses, but usually cannot operate without human interaction. This makes it impossible to re-run an analysis automatically, or to integrate it into a larger automated scientific workflow - for example, a script to generate figures and tables for a paper. In some cases the parameters of the analysis process itself are not saved explicitly, making it hard to repeat or improve the analysis even with human interaction. Conversely, non-interactive batch tools can be controlled by pre-written scripts and configuration files, allowing an analysis to be 'replayed' automatically from the raw data. However, this advantage comes at the expense of exploratory capability: iteratively improving an analysis entails a time-consuming cycle of editing scripts, running them, and viewing the output. Batch tools also tend to require more computer expertise from their users. PuffinPlot is a palaeomagnetic plotting and analysis program which aims to bridge this gap. First released in 2012, it offers both an interactive, user-friendly desktop interface and a batch scripting interface, both making use of the same core library of palaeomagnetic functions. We present new improvements to the program that help to integrate the interactive and batch approaches, allowing an analysis to be interactively explored and refined, then saved as a self-contained configuration which can be re-run without human interaction. PuffinPlot can thus be used as a component of a larger scientific workflow, integrated with workflow management tools such as Kepler, without compromising its capabilities as an exploratory tool. Since both PuffinPlot and the platform it runs on (Java) are Free/Open Source software, even the most fundamental components of an analysis can be verified and reproduced.

  14. Development and Validation of a Multidisciplinary Tool for Accurate and Efficient Rotorcraft Noise Prediction (MUTE)

    NASA Technical Reports Server (NTRS)

    Liu, Yi; Anusonti-Inthra, Phuriwat; Diskin, Boris

    2011-01-01

    A physics-based, systematically coupled, multidisciplinary prediction tool (MUTE) for rotorcraft noise was developed and validated with a wide range of flight configurations and conditions. MUTE is an aggregation of multidisciplinary computational tools that accurately and efficiently model the physics of the source of rotorcraft noise, and predict the noise at far-field observer locations. It uses systematic coupling approaches among multiple disciplines including Computational Fluid Dynamics (CFD), Computational Structural Dynamics (CSD), and high fidelity acoustics. Within MUTE, advanced high-order CFD tools are used around the rotor blade to predict the transonic flow (shock wave) effects, which generate the high-speed impulsive noise. Predictions of the blade-vortex interaction noise in low speed flight are also improved by using the Particle Vortex Transport Method (PVTM), which preserves the wake flow details required for blade/wake and fuselage/wake interactions. The accuracy of the source noise prediction is further improved by utilizing a coupling approach between CFD and CSD, so that the effects of key structural dynamics, elastic blade deformations, and trim solutions are correctly represented in the analysis. The blade loading information and/or the flow field parameters around the rotor blade predicted by the CFD/CSD coupling approach are used to predict the acoustic signatures at far-field observer locations with a high-fidelity noise propagation code (WOPWOP3). The predicted results from the MUTE tool for rotor blade aerodynamic loading and far-field acoustic signatures are compared and validated with a variation of experimental data sets, such as UH60-A data, DNW test data and HART II test data.

  15. Computational fluid dynamics uses in fluid dynamics/aerodynamics education

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    1994-01-01

    The field of computational fluid dynamics (CFD) has advanced to the point where it can now be used for the purpose of fluid dynamics physics education. Because of the tremendous wealth of information available from numerical simulation, certain fundamental concepts can be efficiently communicated using an interactive graphical interrogation of the appropriate numerical simulation data base. In other situations, a large amount of aerodynamic information can be communicated to the student by interactive use of simple CFD tools on a workstation or even in a personal computer environment. The emphasis in this presentation is to discuss ideas for how this process might be implemented. Specific examples, taken from previous publications, will be used to highlight the presentation.

  16. Why we interact: on the functional role of the striatum in the subjective experience of social interaction.

    PubMed

    Pfeiffer, Ulrich J; Schilbach, Leonhard; Timmermans, Bert; Kuzmanovic, Bojana; Georgescu, Alexandra L; Bente, Gary; Vogeley, Kai

    2014-11-01

    There is ample evidence that human primates strive for social contact and experience interactions with conspecifics as intrinsically rewarding. Focusing on gaze behavior as a crucial means of human interaction, this study employed a unique combination of neuroimaging, eye-tracking, and computer-animated virtual agents to assess the neural mechanisms underlying this component of behavior. In the interaction task, participants believed that during each interaction the agent's gaze behavior could either be controlled by another participant or by a computer program. Their task was to indicate whether they experienced a given interaction as an interaction with another human participant or the computer program based on the agent's reaction. Unbeknownst to them, the agent was always controlled by a computer to enable a systematic manipulation of gaze reactions by varying the degree to which the agent engaged in joint attention. This allowed creating a tool to distinguish neural activity underlying the subjective experience of being engaged in social and non-social interaction. In contrast to previous research, this allows measuring neural activity while participants experience active engagement in real-time social interactions. Results demonstrate that gaze-based interactions with a perceived human partner are associated with activity in the ventral striatum, a core component of reward-related neurocircuitry. In contrast, interactions with a computer-driven agent activate attention networks. Comparisons of neural activity during interaction with behaviorally naïve and explicitly cooperative partners demonstrate different temporal dynamics of the reward system and indicate that the mere experience of engagement in social interaction is sufficient to recruit this system. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Physics-based subsurface visualization of human tissue.

    PubMed

    Sharp, Richard; Adams, Jacob; Machiraju, Raghu; Lee, Robert; Crane, Robert

    2007-01-01

    In this paper, we present a framework for simulating light transport in three-dimensional tissue with inhomogeneous scattering properties. Our approach employs a computational model to simulate light scattering in tissue through the finite element solution of the diffusion equation. Although our model handles both visible and nonvisible wavelengths, we especially focus on the interaction of near infrared (NIR) light with tissue. Since most human tissue is permeable to NIR light, tools to noninvasively image tumors, blood vasculature, and monitor blood oxygenation levels are being constructed. We apply this model to a numerical phantom to visually reproduce the images generated by these real-world tools. Therefore, in addition to enabling inverse design of detector instruments, our computational tools produce physically-accurate visualizations of subsurface structures.

  18. An Integrated Unix-based CAD System for the Design and Testing of Custom VLSI Chips

    NASA Technical Reports Server (NTRS)

    Deutsch, L. J.

    1985-01-01

    A computer aided design (CAD) system that is being used at the Jet Propulsion Laboratory for the design of custom and semicustom very large scale integrated (VLSI) chips is described. The system consists of a Digital Equipment Corporation VAX computer with the UNIX operating system and a collection of software tools for the layout, simulation, and verification of microcircuits. Most of these tools were written by the academic community and are, therefore, available to JPL at little or no cost. Some small pieces of software have been written in-house in order to make all the tools interact with each other with a minimal amount of effort on the part of the designer.

  19. Hydrogen Financial Analysis Scenario Tool (H2FAST). Web Tool User's Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bush, B.; Penev, M.; Melaina, M.

    The Hydrogen Financial Analysis Scenario Tool (H2FAST) provides a quick and convenient indepth financial analysis for hydrogen fueling stations. This manual describes how to use the H2FAST web tool, which is one of three H2FAST formats developed by the National Renewable Energy Laboratory (NREL). Although all of the formats are based on the same financial computations and conform to generally accepted accounting principles (FASAB 2014, Investopedia 2014), each format provides a different level of complexity and user interactivity.

  20. [An interactive three-dimensional model of the human body].

    PubMed

    Liem, S L

    2009-01-01

    Driven by advanced computer technology, it is now possible to show the human anatomy on a computer. On the internet, the Visible Body programme makes it possible to navigate in all directions through the anatomical structures of the human body, using mouse and keyboard. Visible Body is a wonderful tool to give insight in the human structures, body functions and organs.

  1. CADRE-SS, an in Silico Tool for Predicting Skin Sensitization Potential Based on Modeling of Molecular Interactions.

    PubMed

    Kostal, Jakub; Voutchkova-Kostal, Adelina

    2016-01-19

    Using computer models to accurately predict toxicity outcomes is considered to be a major challenge. However, state-of-the-art computational chemistry techniques can now be incorporated in predictive models, supported by advances in mechanistic toxicology and the exponential growth of computing resources witnessed over the past decade. The CADRE (Computer-Aided Discovery and REdesign) platform relies on quantum-mechanical modeling of molecular interactions that represent key biochemical triggers in toxicity pathways. Here, we present an external validation exercise for CADRE-SS, a variant developed to predict the skin sensitization potential of commercial chemicals. CADRE-SS is a hybrid model that evaluates skin permeability using Monte Carlo simulations, assigns reactive centers in a molecule and possible biotransformations via expert rules, and determines reactivity with skin proteins via quantum-mechanical modeling. The results were promising with an overall very good concordance of 93% between experimental and predicted values. Comparison to performance metrics yielded by other tools available for this endpoint suggests that CADRE-SS offers distinct advantages for first-round screenings of chemicals and could be used as an in silico alternative to animal tests where permissible by legislative programs.

  2. Portable computing - A fielded interactive scientific application in a small off-the-shelf package

    NASA Technical Reports Server (NTRS)

    Groleau, Nicolas; Hazelton, Lyman; Frainier, Rich; Compton, Michael; Colombano, Silvano; Szolovits, Peter

    1993-01-01

    Experience with the design and implementation of a portable computing system for STS crew-conducted science is discussed. Principal-Investigator-in-a-Box (PI) will help the SLS-2 astronauts perform vestibular (human orientation system) experiments in flight. PI is an interactive system that provides data acquisition and analysis, experiment step rescheduling, and various other forms of reasoning to astronaut users. The hardware architecture of PI consists of a computer and an analog interface box. 'Off-the-shelf' equipment is employed in the system wherever possible in an effort to use widely available tools and then to add custom functionality and application codes to them. Other projects which can help prospective teams to learn more about portable computing in space are also discussed.

  3. An interactive program for pharmacokinetic modeling.

    PubMed

    Lu, D R; Mao, F

    1993-05-01

    A computer program, PharmK, was developed for pharmacokinetic modeling of experimental data. The program was written in C computer language based on the high-level user-interface Macintosh operating system. The intention was to provide a user-friendly tool for users of Macintosh computers. An interactive algorithm based on the exponential stripping method is used for the initial parameter estimation. Nonlinear pharmacokinetic model fitting is based on the maximum likelihood estimation method and is performed by the Levenberg-Marquardt method based on chi 2 criterion. Several methods are available to aid the evaluation of the fitting results. Pharmacokinetic data sets have been examined with the PharmK program, and the results are comparable with those obtained with other programs that are currently available for IBM PC-compatible and other types of computers.

  4. The Man computer Interactive Data Access System: 25 Years of Interactive Processing.

    NASA Astrophysics Data System (ADS)

    Lazzara, Matthew A.; Benson, John M.; Fox, Robert J.; Laitsch, Denise J.; Rueden, Joseph P.; Santek, David A.; Wade, Delores M.; Whittaker, Thomas M.; Young, J. T.

    1999-02-01

    On 12 October 1998, it was the 25th anniversary of the Man computer Interactive Data Access System (McIDAS). On that date in 1973, McIDAS was first used operationally by scientists as a tool for data analysis. Over the last 25 years, McIDAS has undergone numerous architectural changes in an effort to keep pace with changing technology. In its early years, significant technological breakthroughs were required to achieve the functionality needed by atmospheric scientists. Today McIDAS is challenged by new Internet-based approaches to data access and data display. The history and impact of McIDAS, along with some of the lessons learned, are presented here

  5. A Guide for Developing Human-Robot Interaction Experiments in the Robotic Interactive Visualization and Experimentation Technology (RIVET) Simulation

    DTIC Science & Technology

    2016-05-01

    research, Kunkler (2006) suggested that the similarities between computer simulation tools and robotic surgery systems (e.g., mechanized feedback...distribution is unlimited. 49 Davies B. A review of robotics in surgery . Proceedings of the Institution of Mechanical Engineers, Part H: Journal...ARL-TR-7683 ● MAY 2016 US Army Research Laboratory A Guide for Developing Human- Robot Interaction Experiments in the Robotic

  6. Protein-protein interaction predictions using text mining methods.

    PubMed

    Papanikolaou, Nikolas; Pavlopoulos, Georgios A; Theodosiou, Theodosios; Iliopoulos, Ioannis

    2015-03-01

    It is beyond any doubt that proteins and their interactions play an essential role in most complex biological processes. The understanding of their function individually, but also in the form of protein complexes is of a great importance. Nowadays, despite the plethora of various high-throughput experimental approaches for detecting protein-protein interactions, many computational methods aiming to predict new interactions have appeared and gained interest. In this review, we focus on text-mining based computational methodologies, aiming to extract information for proteins and their interactions from public repositories such as literature and various biological databases. We discuss their strengths, their weaknesses and how they complement existing experimental techniques by simultaneously commenting on the biological databases which hold such information and the benchmark datasets that can be used for evaluating new tools. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. New generation of exploration tools: interactive modeling software and microcomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krajewski, S.A.

    1986-08-01

    Software packages offering interactive modeling techniques are now available for use on microcomputer hardware systems. These packages are reasonably priced for both company and independent explorationists; they do not require users to have high levels of computer literacy; they are capable of rapidly completing complex ranges of sophisticated geologic and geophysical modeling tasks; and they can produce presentation-quality output for comparison with real-world data. For example, interactive packages are available for mapping, log analysis, seismic modeling, reservoir studies, and financial projects as well as for applying a variety of statistical and geostatistical techniques to analysis of exploration data. More importantly,more » these packages enable explorationists to directly apply their geologic expertise when developing and fine-tuning models for identifying new prospects and for extending producing fields. As a result of these features, microcomputers and interactive modeling software are becoming common tools in many exploration offices. Gravity and magnetics software programs illustrate some of the capabilities of such exploration tools.« less

  8. CaveCAD: a tool for architectural design in immersive virtual environments

    NASA Astrophysics Data System (ADS)

    Schulze, Jürgen P.; Hughes, Cathleen E.; Zhang, Lelin; Edelstein, Eve; Macagno, Eduardo

    2014-02-01

    Existing 3D modeling tools were designed to run on desktop computers with monitor, keyboard and mouse. To make 3D modeling possible with mouse and keyboard, many 3D interactions, such as point placement or translations of geometry, had to be mapped to the 2D parameter space of the mouse, possibly supported by mouse buttons or keyboard keys. We hypothesize that had the designers of these existing systems had been able to assume immersive virtual reality systems as their target platforms, they would have been able to design 3D interactions much more intuitively. In collaboration with professional architects, we created a simple, but complete 3D modeling tool for virtual environments from the ground up and use direct 3D interaction wherever possible and adequate. In this publication, we present our approaches for interactions for typical 3D modeling functions, such as geometry creation, modification of existing geometry, and assignment of surface materials. We also discuss preliminary user experiences with this system.

  9. Keys and the crisis in taxonomy: extinction or reinvention?

    PubMed

    Walter, David Evans; Winterton, Shaun

    2007-01-01

    Dichotomous keys that follow a single pathway of character state choices to an end point have been the primary tools for the identification of unknown organisms for more than two centuries. However, a revolution in computer diagnostics is now under way that may result in the replacement of traditional keys by matrix-based computer interactive keys that have many paths to a correct identification and make extensive use of hypertext to link to images, glossaries, and other support material. Progress is also being made on replacing keys entirely by optical matching of specimens to digital databases and DNA sequences. These new tools may go some way toward alleviating the taxonomic impediment to biodiversity studies and other ecological and evolutionary research, especially with better coordination between those who produce keys and those who use them and by integrating interactive keys into larger biological Web sites.

  10. STRUTEX: A prototype knowledge-based system for initially configuring a structure to support point loads in two dimensions

    NASA Technical Reports Server (NTRS)

    Robers, James L.; Sobieszczanski-Sobieski, Jaroslaw

    1989-01-01

    Only recently have engineers begun making use of Artificial Intelligence (AI) tools in the area of conceptual design. To continue filling this void in the design process, a prototype knowledge-based system, called STRUTEX has been developed to initially configure a structure to support point loads in two dimensions. This prototype was developed for testing the application of AI tools to conceptual design as opposed to being a testbed for new methods for improving structural analysis and optimization. This system combines numerical and symbolic processing by the computer with interactive problem solving aided by the vision of the user. How the system is constructed to interact with the user is described. Of special interest is the information flow between the knowledge base and the data base under control of the algorithmic main program. Examples of computed and refined structures are presented during the explanation of the system.

  11. Generating Animated Displays of Spacecraft Orbits

    NASA Technical Reports Server (NTRS)

    Candey, Robert M.; Chimiak, Reine A.; Harris, Bernard T.

    2005-01-01

    Tool for Interactive Plotting, Sonification, and 3D Orbit Display (TIPSOD) is a computer program for generating interactive, animated, four-dimensional (space and time) displays of spacecraft orbits. TIPSOD utilizes the programming interface of the Satellite Situation Center Web (SSCWeb) services to communicate with the SSC logic and database by use of the open protocols of the Internet. TIPSOD is implemented in Java 3D and effects an extension of the preexisting SSCWeb two-dimensional static graphical displays of orbits. Orbits can be displayed in any or all of the following seven reference systems: true-of-date (an inertial system), J2000 (another inertial system), geographic, geomagnetic, geocentric solar ecliptic, geocentric solar magnetospheric, and solar magnetic. In addition to orbits, TIPSOD computes and displays Sibeck's magnetopause and Fairfield's bow-shock surfaces. TIPSOD can be used by the scientific community as a means of projection or interpretation. It also has potential as an educational tool.

  12. Psi4NumPy: An Interactive Quantum Chemistry Programming Environment for Reference Implementations and Rapid Development.

    PubMed

    Smith, Daniel G A; Burns, Lori A; Sirianni, Dominic A; Nascimento, Daniel R; Kumar, Ashutosh; James, Andrew M; Schriber, Jeffrey B; Zhang, Tianyuan; Zhang, Boyi; Abbott, Adam S; Berquist, Eric J; Lechner, Marvin H; Cunha, Leonardo A; Heide, Alexander G; Waldrop, Jonathan M; Takeshita, Tyler Y; Alenaizan, Asem; Neuhauser, Daniel; King, Rollin A; Simmonett, Andrew C; Turney, Justin M; Schaefer, Henry F; Evangelista, Francesco A; DePrince, A Eugene; Crawford, T Daniel; Patkowski, Konrad; Sherrill, C David

    2018-06-11

    Psi4NumPy demonstrates the use of efficient computational kernels from the open-source Psi4 program through the popular NumPy library for linear algebra in Python to facilitate the rapid development of clear, understandable Python computer code for new quantum chemical methods, while maintaining a relatively low execution time. Using these tools, reference implementations have been created for a number of methods, including self-consistent field (SCF), SCF response, many-body perturbation theory, coupled-cluster theory, configuration interaction, and symmetry-adapted perturbation theory. Furthermore, several reference codes have been integrated into Jupyter notebooks, allowing background, underlying theory, and formula information to be associated with the implementation. Psi4NumPy tools and associated reference implementations can lower the barrier for future development of quantum chemistry methods. These implementations also demonstrate the power of the hybrid C++/Python programming approach employed by the Psi4 program.

  13. Interactive computation of coverage regions for indoor wireless communication

    NASA Astrophysics Data System (ADS)

    Abbott, A. Lynn; Bhat, Nitin; Rappaport, Theodore S.

    1995-12-01

    This paper describes a system which assists in the strategic placement of rf base stations within buildings. Known as the site modeling tool (SMT), this system allows the user to display graphical floor plans and to select base station transceiver parameters, including location and orientation, interactively. The system then computes and highlights estimated coverage regions for each transceiver, enabling the user to assess the total coverage within the building. For single-floor operation, the user can choose between distance-dependent and partition- dependent path-loss models. Similar path-loss models are also available for the case of multiple floors. This paper describes the method used by the system to estimate coverage for both directional and omnidirectional antennas. The site modeling tool is intended to be simple to use by individuals who are not experts at wireless communication system design, and is expected to be very useful in the specification of indoor wireless systems.

  14. Animated analysis of geoscientific datasets: An interactive graphical application

    NASA Astrophysics Data System (ADS)

    Morse, Peter; Reading, Anya; Lueg, Christopher

    2017-12-01

    Geoscientists are required to analyze and draw conclusions from increasingly large volumes of data. There is a need to recognise and characterise features and changing patterns of Earth observables within such large datasets. It is also necessary to identify significant subsets of the data for more detailed analysis. We present an innovative, interactive software tool and workflow to visualise, characterise, sample and tag large geoscientific datasets from both local and cloud-based repositories. It uses an animated interface and human-computer interaction to utilise the capacity of human expert observers to identify features via enhanced visual analytics. 'Tagger' enables users to analyze datasets that are too large in volume to be drawn legibly on a reasonable number of single static plots. Users interact with the moving graphical display, tagging data ranges of interest for subsequent attention. The tool provides a rapid pre-pass process using fast GPU-based OpenGL graphics and data-handling and is coded in the Quartz Composer visual programing language (VPL) on Mac OSX. It makes use of interoperable data formats, and cloud-based (or local) data storage and compute. In a case study, Tagger was used to characterise a decade (2000-2009) of data recorded by the Cape Sorell Waverider Buoy, located approximately 10 km off the west coast of Tasmania, Australia. These data serve as a proxy for the understanding of Southern Ocean storminess, which has both local and global implications. This example shows use of the tool to identify and characterise 4 different types of storm and non-storm events during this time. Events characterised in this way are compared with conventional analysis, noting advantages and limitations of data analysis using animation and human interaction. Tagger provides a new ability to make use of humans as feature detectors in computer-based analysis of large-volume geosciences and other data.

  15. Adapting Web content for low-literacy readers by using lexical elaboration and named entities labeling

    NASA Astrophysics Data System (ADS)

    Watanabe, W. M.; Candido, A.; Amâncio, M. A.; De Oliveira, M.; Pardo, T. A. S.; Fortes, R. P. M.; Aluísio, S. M.

    2010-12-01

    This paper presents an approach for assisting low-literacy readers in accessing Web online information. The "Educational FACILITA" tool is a Web content adaptation tool that provides innovative features and follows more intuitive interaction models regarding accessibility concerns. Especially, we propose an interaction model and a Web application that explore the natural language processing tasks of lexical elaboration and named entity labeling for improving Web accessibility. We report on the results obtained from a pilot study on usability analysis carried out with low-literacy users. The preliminary results show that "Educational FACILITA" improves the comprehension of text elements, although the assistance mechanisms might also confuse users when word sense ambiguity is introduced, by gathering, for a complex word, a list of synonyms with multiple meanings. This fact evokes a future solution in which the correct sense for a complex word in a sentence is identified, solving this pervasive characteristic of natural languages. The pilot study also identified that experienced computer users find the tool to be more useful than novice computer users do.

  16. Parallel and serial computing tools for testing single-locus and epistatic SNP effects of quantitative traits in genome-wide association studies

    PubMed Central

    Ma, Li; Runesha, H Birali; Dvorkin, Daniel; Garbe, John R; Da, Yang

    2008-01-01

    Background Genome-wide association studies (GWAS) using single nucleotide polymorphism (SNP) markers provide opportunities to detect epistatic SNPs associated with quantitative traits and to detect the exact mode of an epistasis effect. Computational difficulty is the main bottleneck for epistasis testing in large scale GWAS. Results The EPISNPmpi and EPISNP computer programs were developed for testing single-locus and epistatic SNP effects on quantitative traits in GWAS, including tests of three single-locus effects for each SNP (SNP genotypic effect, additive and dominance effects) and five epistasis effects for each pair of SNPs (two-locus interaction, additive × additive, additive × dominance, dominance × additive, and dominance × dominance) based on the extended Kempthorne model. EPISNPmpi is the parallel computing program for epistasis testing in large scale GWAS and achieved excellent scalability for large scale analysis and portability for various parallel computing platforms. EPISNP is the serial computing program based on the EPISNPmpi code for epistasis testing in small scale GWAS using commonly available operating systems and computer hardware. Three serial computing utility programs were developed for graphical viewing of test results and epistasis networks, and for estimating CPU time and disk space requirements. Conclusion The EPISNPmpi parallel computing program provides an effective computing tool for epistasis testing in large scale GWAS, and the epiSNP serial computing programs are convenient tools for epistasis analysis in small scale GWAS using commonly available computer hardware. PMID:18644146

  17. The X-windows interactive navigation data editor

    NASA Technical Reports Server (NTRS)

    Rinker, G. C.

    1992-01-01

    A new computer program called the X-Windows Interactive Data Editor (XIDE) was developed and demonstrated as a prototype application for editing radio metric data in the orbit-determination process. The program runs on a variety of workstations and employs pull-down menus and graphical displays, which allow users to easily inspect and edit radio metric data in the orbit data files received from the Deep Space Network (DSN). The XIDE program is based on the Open Software Foundation OSF/Motif Graphical User Interface (GUI) and has proven to be an efficient tool for editing radio metric data in the navigation operations environment. It was adopted by the Magellan Navigation Team as their primary data-editing tool. Because the software was designed from the beginning to be portable, the prototype was successfully moved to new workstation environments. It was also itegrated into the design of the next-generation software tool for DSN multimission navigation interactive launch support.

  18. Vids: Version 2.0 Alpha Visualization Engine

    DTIC Science & Technology

    2018-04-25

    fidelity than existing efforts. Vids is a project aimed at producing more dynamic and interactive visualization tools using modern computer game ...move through and interact with the data to improve informational understanding. The Vids software leverages off-the-shelf modern game development...analysis and correlations. Recently, an ARL-pioneered project named Virtual Reality Data Analysis Environment (VRDAE) used VR and a modern game engine

  19. Hierarchical, parallel computing strategies using component object model for process modelling responses of forest plantations to interacting multiple stresses

    Treesearch

    J. G. Isebrands; G. E. Host; K. Lenz; G. Wu; H. W. Stech

    2000-01-01

    Process models are powerful research tools for assessing the effects of multiple environmental stresses on forest plantations. These models are driven by interacting environmental variables and often include genetic factors necessary for assessing forest plantation growth over a range of different site, climate, and silvicultural conditions. However, process models are...

  20. CardioClassifier: disease- and gene-specific computational decision support for clinical genome interpretation.

    PubMed

    Whiffin, Nicola; Walsh, Roddy; Govind, Risha; Edwards, Matthew; Ahmad, Mian; Zhang, Xiaolei; Tayal, Upasana; Buchan, Rachel; Midwinter, William; Wilk, Alicja E; Najgebauer, Hanna; Francis, Catherine; Wilkinson, Sam; Monk, Thomas; Brett, Laura; O'Regan, Declan P; Prasad, Sanjay K; Morris-Rosendahl, Deborah J; Barton, Paul J R; Edwards, Elizabeth; Ware, James S; Cook, Stuart A

    2018-01-25

    PurposeInternationally adopted variant interpretation guidelines from the American College of Medical Genetics and Genomics (ACMG) are generic and require disease-specific refinement. Here we developed CardioClassifier (http://www.cardioclassifier.org), a semiautomated decision-support tool for inherited cardiac conditions (ICCs).MethodsCardioClassifier integrates data retrieved from multiple sources with user-input case-specific information, through an interactive interface, to support variant interpretation. Combining disease- and gene-specific knowledge with variant observations in large cohorts of cases and controls, we refined 14 computational ACMG criteria and created three ICC-specific rules.ResultsWe benchmarked CardioClassifier on 57 expertly curated variants and show full retrieval of all computational data, concordantly activating 87.3% of rules. A generic annotation tool identified fewer than half as many clinically actionable variants (64/219 vs. 156/219, Fisher's P = 1.1  ×  10 -18 ), with important false positives, illustrating the critical importance of disease and gene-specific annotations. CardioClassifier identified putatively disease-causing variants in 33.7% of 327 cardiomyopathy cases, comparable with leading ICC laboratories. Through addition of manually curated data, variants found in over 40% of cardiomyopathy cases are fully annotated, without requiring additional user-input data.ConclusionCardioClassifier is an ICC-specific decision-support tool that integrates expertly curated computational annotations with case-specific data to generate fast, reproducible, and interactive variant pathogenicity reports, according to best practice guidelines.GENETICS in MEDICINE advance online publication, 25 January 2018; doi:10.1038/gim.2017.258.

  1. Modeling synthetic lethality

    PubMed Central

    Le Meur, Nolwenn; Gentleman, Robert

    2008-01-01

    Background Synthetic lethality defines a genetic interaction where the combination of mutations in two or more genes leads to cell death. The implications of synthetic lethal screens have been discussed in the context of drug development as synthetic lethal pairs could be used to selectively kill cancer cells, but leave normal cells relatively unharmed. A challenge is to assess genome-wide experimental data and integrate the results to better understand the underlying biological processes. We propose statistical and computational tools that can be used to find relationships between synthetic lethality and cellular organizational units. Results In Saccharomyces cerevisiae, we identified multi-protein complexes and pairs of multi-protein complexes that share an unusually high number of synthetic genetic interactions. As previously predicted, we found that synthetic lethality can arise from subunits of an essential multi-protein complex or between pairs of multi-protein complexes. Finally, using multi-protein complexes allowed us to take into account the pleiotropic nature of the gene products. Conclusions Modeling synthetic lethality using current estimates of the yeast interactome is an efficient approach to disentangle some of the complex molecular interactions that drive a cell. Our model in conjunction with applied statistical methods and computational methods provides new tools to better characterize synthetic genetic interactions. PMID:18789146

  2. Controlled English for Effective Communication during Coalition Operations

    DTIC Science & Technology

    2013-06-01

    Linguistic variations and cultural differences often create unexpected challenges for effective communication and thus for Command and Control (C2...CE), and CE-based tools to improve cross- linguistic /cross-cultural communication. We will discuss various types of linguistic variations and cultural...human-computer interaction, reasoning, and explanation CE and CE-based tools can play an important role in facilitating cross- linguistic and cross

  3. New tools for Content Innovation and data sharing: Enhancing reproducibility and rigor in biomechanics research.

    PubMed

    Guilak, Farshid

    2017-03-21

    We are currently in one of the most exciting times for science and engineering as we witness unprecedented growth in our computational and experimental capabilities to generate new data and models. To facilitate data and model sharing, and to enhance reproducibility and rigor in biomechanics research, the Journal of Biomechanics has introduced a number of tools for Content Innovation to allow presentation, sharing, and archiving of methods, models, and data in our articles. The tools include an Interactive Plot Viewer, 3D Geometric Shape and Model Viewer, Virtual Microscope, Interactive MATLAB Figure Viewer, and Audioslides. Authors are highly encouraged to make use of these in upcoming journal submissions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Evacuation simulation using Hybrid Space Discretisation and Application to Large Underground Rail Tunnel Station

    NASA Astrophysics Data System (ADS)

    Chooramun, N.; Lawrence, P. J.; Galea, E. R.

    2017-08-01

    In all evacuation simulation tools, the space through which agents navigate and interact is represented by one the following methods, namely Coarse regions, Fine nodes and Continuous regions. Each of the spatial representation methods has its benefits and limitations. For instance, the Coarse approach allows simulations to be processed very rapidly, but is unable to represent the interactions of the agents from an individual perspective; the Continuous approach provides a detailed representation of agent movement and interaction but suffers from relatively poor computational performance. The Fine nodal approach presents a compromise between the Continuous and Coarse approaches such that it allows agent interaction to be modelled while providing good computational performance. Our approach for representing space in an evacuation simulation tool differs such that it allows evacuation simulations to be run using a combination of Coarse regions, Fine nodes and Continuous regions. This approach, which we call Hybrid Spatial Discretisation (HSD), is implemented within the buildingEXODUS evacuation simulation software. The HSD incorporates the benefits of each of the spatial representation methods whilst providing an optimal environment for representing agent movement and interaction. In this work, we demonstrate the effectiveness of the HSD through its application to a moderately large case comprising of an underground rail tunnel station with a population of 2,000 agents.

  5. Impact of computational structure-based methods on drug discovery.

    PubMed

    Reynolds, Charles H

    2014-01-01

    Structure-based drug design has become an indispensible tool in drug discovery. The emergence of structure-based design is due to gains in structural biology that have provided exponential growth in the number of protein crystal structures, new computational algorithms and approaches for modeling protein-ligand interactions, and the tremendous growth of raw computer power in the last 30 years. Computer modeling and simulation have made major contributions to the discovery of many groundbreaking drugs in recent years. Examples are presented that highlight the evolution of computational structure-based design methodology, and the impact of that methodology on drug discovery.

  6. Enhancing Knowledge Flow in a Health Care Context: A Mobile Computing Approach

    PubMed Central

    Souza, Diego Da Silva; de Lima, Patrícia Zudio; da Silveira, Pedro C; de Souza, Jano Moreira

    2014-01-01

    Background Advances in mobile computing and wireless communication have allowed people to interact and exchange knowledge almost anywhere. These technologies support Medicine 2.0, where the health knowledge flows among all involved people (eg, patients, caregivers, doctors, and patients’ relatives). Objective Our paper proposes a knowledge-sharing environment that takes advantage of mobile computing and contextual information to support knowledge sharing among participants within a health care community (ie, from patients to health professionals). This software environment enables knowledge exchange using peer-to-peer (P2P) mobile networks based on users’ profiles, and it facilitates face-to-face interactions among people with similar health interests, needs, or goals. Methods First, we reviewed and analyzed relevant scientific articles and software apps to determine the current state of knowledge flow within health care. Although no proposal was capable of addressing every aspect in the Medicine 2.0 paradigm, a list of requirements was compiled. Using this requirement list and our previous works, a knowledge-sharing environment was created integrating Mobile Exchange of Knowledge (MEK) and the Easy to Deploy Indoor Positioning System (EDIPS), and a twofold qualitative evaluation was performed. Second, we analyzed the efficiency and reliability of the knowledge that the integrated MEK-EDIPS tool provided to users according to their interest topics, and then performed a proof of concept with health professionals to determine the feasibility and usefulness of using this solution in a real-world scenario. Results . Using MEK, we reached 100% precision and 80% recall in the exchange of files within the peer-to-peer network. The mechanism that facilitated face-to-face interactions was evaluated by the difference between the location indicated by the EDIPS tool and the actual location of the people involved in the knowledge exchange. The average distance error was <6.28 m for an indoor environment. The usability and usefulness of this tool was assessed by questioning a sample of 18 health professionals: 94% (17/18) agreed the integrated MEK-EDIPS tool provides greater interaction among all the participants (eg, patients, caregivers, doctors, and patients’ relatives), most considered it extremely important in the health scenario, 72% (13/18) believed it could increase the knowledge flow in a health environment, and 67% (12/18) recommend it or would like to recommend its use. Conclusions The integrated MEK-EDIPS tool can provide more services than any other software tool analyzed in this paper. The proposed integrated MEK-EDIPS tool seems to be the best alternative for supporting health knowledge flow within the Medicine 2.0 paradigm. PMID:25427923

  7. HyperCard to SPSS: improving data integrity.

    PubMed

    Gostel, R

    1993-01-01

    This article describes a database design that captures responses in a HyperCard stack and moves the data to SPSS for the Macintosh without the need to rekey data. Pregnant women used an interactive computer application with a touch screen to answer questions and receive educational information about fetal alcohol syndrome. A database design was created to capture survey responses through interaction with a computer by a sample of prenatal women during formative evaluation trials. The author does not compare this method of data collection to other methods. This article simply describes the method of data collection as a useful research tool.

  8. HEPLIB `91: International users meeting on the support and environments of high energy physics computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstad, H.

    The purpose of this meeting is to discuss the current and future HEP computing support and environments from the perspective of new horizons in accelerator, physics, and computing technologies. Topics of interest to the Meeting include (but are limited to): the forming of the HEPLIB world user group for High Energy Physic computing; mandate, desirables, coordination, organization, funding; user experience, international collaboration; the roles of national labs, universities, and industry; range of software, Monte Carlo, mathematics, physics, interactive analysis, text processors, editors, graphics, data base systems, code management tools; program libraries, frequency of updates, distribution; distributed and interactive computing, datamore » base systems, user interface, UNIX operating systems, networking, compilers, Xlib, X-Graphics; documentation, updates, availability, distribution; code management in large collaborations, keeping track of program versions; and quality assurance, testing, conventions, standards.« less

  9. HEPLIB 91: International users meeting on the support and environments of high energy physics computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstad, H.

    The purpose of this meeting is to discuss the current and future HEP computing support and environments from the perspective of new horizons in accelerator, physics, and computing technologies. Topics of interest to the Meeting include (but are limited to): the forming of the HEPLIB world user group for High Energy Physic computing; mandate, desirables, coordination, organization, funding; user experience, international collaboration; the roles of national labs, universities, and industry; range of software, Monte Carlo, mathematics, physics, interactive analysis, text processors, editors, graphics, data base systems, code management tools; program libraries, frequency of updates, distribution; distributed and interactive computing, datamore » base systems, user interface, UNIX operating systems, networking, compilers, Xlib, X-Graphics; documentation, updates, availability, distribution; code management in large collaborations, keeping track of program versions; and quality assurance, testing, conventions, standards.« less

  10. On Roles of Models in Information Systems

    NASA Astrophysics Data System (ADS)

    Sølvberg, Arne

    The increasing penetration of computers into all aspects of human activity makes it desirable that the interplay among software, data and the domains where computers are applied is made more transparent. An approach to this end is to explicitly relate the modeling concepts of the domains, e.g., natural science, technology and business, to the modeling concepts of software and data. This may make it simpler to build comprehensible integrated models of the interactions between computers and non-computers, e.g., interaction among computers, people, physical processes, biological processes, and administrative processes. This chapter contains an analysis of various facets of the modeling environment for information systems engineering. The lack of satisfactory conceptual modeling tools seems to be central to the unsatisfactory state-of-the-art in establishing information systems. The chapter contains a proposal for defining a concept of information that is relevant to information systems engineering.

  11. In silico polypharmacology of natural products.

    PubMed

    Fang, Jiansong; Liu, Chuang; Wang, Qi; Lin, Ping; Cheng, Feixiong

    2017-04-27

    Natural products with polypharmacological profiles have demonstrated promise as novel therapeutics for various complex diseases, including cancer. Currently, many gaps exist in our knowledge of which compounds interact with which targets, and experimentally testing all possible interactions is infeasible. Recent advances and developments of systems pharmacology and computational (in silico) approaches provide powerful tools for exploring the polypharmacological profiles of natural products. In this review, we introduce recent progresses and advances of computational tools and systems pharmacology approaches for identifying drug targets of natural products by focusing on the development of targeted cancer therapy. We survey the polypharmacological and systems immunology profiles of five representative natural products that are being considered as cancer therapies. We summarize various chemoinformatics, bioinformatics and systems biology resources for reconstructing drug-target networks of natural products. We then review currently available computational approaches and tools for prediction of drug-target interactions by focusing on five domains: target-based, ligand-based, chemogenomics-based, network-based and omics-based systems biology approaches. In addition, we describe a practical example of the application of systems pharmacology approaches by integrating the polypharmacology of natural products and large-scale cancer genomics data for the development of precision oncology under the systems biology framework. Finally, we highlight the promise of cancer immunotherapies and combination therapies that target tumor ecosystems (e.g. clones or 'selfish' sub-clones) via exploiting the immunological and inflammatory 'side' effects of natural products in the cancer post-genomics era. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Evaluation of a Computer-Based Patient Education and Motivation Tool on Knowledge, Attitudes and Practice towards Influenza Vaccination

    ERIC Educational Resources Information Center

    Joshi, Ashish; Lichenstein, Richard; King, James; Arora, Mohit; Khan, Salwa

    2009-01-01

    The objective of this pilot study was to assess and describe changes in knowledge, attitudes and practice regarding influenza vaccination in an inner city setting using an interactive computer-based educational program. A convenience sample of ninety participants whose children were in the age group of 6 months to 5 years was enrolled in this…

  13. Graphical Requirements for Force Level Planning. Volume 2

    DTIC Science & Technology

    1991-09-01

    technology review includes graphics algorithms, computer hardware, computer software, and design methodologies. The technology can either exist today or...level graphics language. 7.4 User Interface Design Tools As user interfaces have become more sophisticated, they have become harder to develop. Xl...Setphen M. Pizer, editors. Proceedings 1986 Workshop on Interactive 31) Graphics , October 1986. 18 J. S. Dumas. Designing User Interface Software. Prentice

  14. Developing an educational curriculum for EnviroAtlas ...

    EPA Pesticide Factsheets

    EnviroAtlas is a web-based tool developed by the EPA and its partners, which provides interactive tools and resources for users to explore the benefits that people receive from nature, often referred to as ecosystem goods and services.Ecosystem goods and services are important to human health and well-being. Using EnviroAtlas, users can access, view, and analyze diverse information to better understand the potential impacts of decisions. EnviroAtlas provides two primary tools, the Interactive Map and the Eco-Health Relationship Browser. EnviroAtlas integrates geospatial data from a variety of sources so that users can visualize the impacts of decision-making on ecosystems. The Interactive Map allows users to investigate various ecosystem elements (i.e. land cover, pollution, and community development) and compare them across localities in the United States. The best part of the Interactive Map is that it does not require specialized software for map application; rather, it requires only a computer and an internet connection. As such, it can be used as a powerful educational tool. The Eco-Health Relationship Browser is also a web-based, highly interactive tool that uses existing scientific literature to visually demonstrate the connections between the environment and human health.As an ASPPH/EPA Fellow with a background in environmental science and secondary science education, I am currently developing an educational curriculum to support the EnviroAtlas to

  15. GTOOLS: an Interactive Computer Program to Process Gravity Data for High-Resolution Applications

    NASA Astrophysics Data System (ADS)

    Battaglia, M.; Poland, M. P.; Kauahikaua, J. P.

    2012-12-01

    An interactive computer program, GTOOLS, has been developed to process gravity data acquired by the Scintrex CG-5 and LaCoste & Romberg EG, G and D gravity meters. The aim of GTOOLS is to provide a validated methodology for computing relative gravity values in a consistent way accounting for as many environmental factors as possible (e.g., tides, ocean loading, solar constraints, etc.), as well as instrument drift. The program has a modular architecture. Each processing step is implemented in a tool (function) that can be either run independently or within an automated task. The tools allow the user to (a) read the gravity data acquired during field surveys completed using different types of gravity meters; (b) compute Earth tides using an improved version of Longman's (1959) model; (c) compute ocean loading using the HARDISP code by Petit and Luzum (2010) and ocean loading harmonics from the TPXO7.2 ocean tide model; (d) estimate the instrument drift using linear functions as appropriate; and (e) compute the weighted least-square-adjusted gravity values and their errors. The corrections are performed up to microGal ( μGal) precision, in accordance with the specifications of high-resolution surveys. The program has the ability to incorporate calibration factors that allow for surveys done using different gravimeters to be compared. Two additional tools (functions) allow the user to (1) estimate the instrument calibration factor by processing data collected by a gravimeter on a calibration range; (2) plot gravity time-series at a chosen benchmark. The interactive procedures and the program output (jpeg plots and text files) have been designed to ease data handling and archiving, to provide useful information for future data interpretation or modeling, and facilitate comparison of gravity surveys conducted at different times. All formulas have been checked for typographical errors in the original reference. GTOOLS, developed using Matlab, is open source and machine independent. We will demonstrate program use and utility with data from multiple microgravity surveys at Kilauea volcano, Hawai'i.

  16. Tools and procedures for visualization of proteins and other biomolecules.

    PubMed

    Pan, Lurong; Aller, Stephen G

    2015-04-01

    Protein, peptides, and nucleic acids are biomolecules that drive biological processes in living organisms. An enormous amount of structural data for a large number of these biomolecules has been described with atomic precision in the form of structural "snapshots" that are freely available in public repositories. These snapshots can help explain how the biomolecules function, the nature of interactions between multi-molecular complexes, and even how small-molecule drugs can modulate the biomolecules for clinical benefits. Furthermore, these structural snapshots serve as inputs for sophisticated computer simulations to turn the biomolecules into moving, "breathing" molecular machines for understanding their dynamic properties in real-time computer simulations. In order for the researcher to take advantage of such a wealth of structural data, it is necessary to gain competency in the use of computer molecular visualization tools for exploring the structures and visualizing three-dimensional spatial representations. Here, we present protocols for using two common visualization tools--the Web-based Jmol and the stand-alone PyMOL package--as well as a few examples of other popular tools. Copyright © 2015 John Wiley & Sons, Inc.

  17. Simultaneous fits in ISIS on the example of GRO J1008-57

    NASA Astrophysics Data System (ADS)

    Kühnel, Matthias; Müller, Sebastian; Kreykenbohm, Ingo; Schwarm, Fritz-Walter; Grossberger, Christoph; Dauser, Thomas; Pottschmidt, Katja; Ferrigno, Carlo; Rothschild, Richard E.; Klochkov, Dmitry; Staubert, Rüdiger; Wilms, Joern

    2015-04-01

    Parallel computing and steadily increasing computation speed have led to a new tool for analyzing multiple datasets and datatypes: fitting several datasets simultaneously. With this technique, physically connected parameters of individual data can be treated as a single parameter by implementing this connection into the fit directly. We discuss the terminology, implementation, and possible issues of simultaneous fits based on the X-ray data analysis tool Interactive Spectral Interpretation System (ISIS). While all data modeling tools in X-ray astronomy allow in principle fitting data from multiple data sets individually, the syntax used in these tools is not often well suited for this task. Applying simultaneous fits to the transient X-ray binary GRO J1008-57, we find that the spectral shape is only dependent on X-ray flux. We determine time independent parameters such as, e.g., the folding energy E_fold, with unprecedented precision.

  18. Educational technology, reimagined.

    PubMed

    Eisenberg, Michael

    2010-01-01

    "Educational technology" is often equated in the popular imagination with "computers in the schools." But technology is much more than merely computers, and education is much more than mere schooling. The landscape of child-accessible technologies is blossoming in all sorts of directions: tools for communication, for physical construction and fabrication, and for human-computer interaction. These new systems and artifacts allow educational designers to think much more creatively about when and where learning takes place in children's lives, both within and outside the classroom.

  19. A Perspective on Computational Human Performance Models as Design Tools

    NASA Technical Reports Server (NTRS)

    Jones, Patricia M.

    2010-01-01

    The design of interactive systems, including levels of automation, displays, and controls, is usually based on design guidelines and iterative empirical prototyping. A complementary approach is to use computational human performance models to evaluate designs. An integrated strategy of model-based and empirical test and evaluation activities is particularly attractive as a methodology for verification and validation of human-rated systems for commercial space. This talk will review several computational human performance modeling approaches and their applicability to design of display and control requirements.

  20. Practical quality control tools for curves and surfaces

    NASA Technical Reports Server (NTRS)

    Small, Scott G.

    1992-01-01

    Curves (geometry) and surfaces created by Computer Aided Geometric Design systems in the engineering environment must satisfy two basic quality criteria: the geometric shape must have the desired engineering properties; and the objects must be parameterized in a way which does not cause computational difficulty for geometric processing and engineering analysis. Interactive techniques are described which are in use at Boeing to evaluate the quality of aircraft geometry prior to Computational Fluid Dynamic analysis, including newly developed methods for examining surface parameterization and its effects.

  1. Web-based Tool Suite for Plasmasphere Information Discovery

    NASA Astrophysics Data System (ADS)

    Newman, T. S.; Wang, C.; Gallagher, D. L.

    2005-12-01

    A suite of tools that enable discovery of terrestrial plasmasphere characteristics from NASA IMAGE Extreme Ultra Violet (EUV) images is described. The tool suite is web-accessible, allowing easy remote access without the need for any software installation on the user's computer. The features supported by the tool include reconstruction of the plasmasphere plasma density distribution from a short sequence of EUV images, semi-automated selection of the plasmapause boundary in an EUV image, and mapping of the selected boundary to the geomagnetic equatorial plane. EUV image upload and result download is also supported. The tool suite's plasmapause mapping feature is achieved via the Roelof and Skinner (2000) Edge Algorithm. The plasma density reconstruction is achieved through a tomographic technique that exploits physical constraints to allow for a moderate resolution result. The tool suite's software architecture uses Java Server Pages (JSP) and Java Applets on the front side for user-software interaction and Java Servlets on the server side for task execution. The compute-intensive components of the tool suite are implemented in C++ and invoked by the server via Java Native Interface (JNI).

  2. 'Designing Ambient Interactions - Pervasive Ergonomic Interfaces for Ageing Well' (DAI'10)

    NASA Astrophysics Data System (ADS)

    Geven, Arjan; Prost, Sebastian; Tscheligi, Manfred; Soldatos, John; Gonzalez, Mari Feli

    The workshop will focus on novel computer based interaction mechanisms and interfaces, which boost natural interactivity and obviate the need for conventional tedious interfaces. Such interfaces are increasingly used in ambient intelligence environments and related applications, including application boosting elderly cognitive support, cognitive rehabilitation and Ambient Assisted Living (AAL). The aim of the workshop is to provide insights on the technological underpinnings of such interfaces, along with tools and techniques for their design and evaluation.

  3. Leveraging Modeling Approaches: Reaction Networks and Rules

    PubMed Central

    Blinov, Michael L.; Moraru, Ion I.

    2012-01-01

    We have witnessed an explosive growth in research involving mathematical models and computer simulations of intracellular molecular interactions, ranging from metabolic pathways to signaling and gene regulatory networks. Many software tools have been developed to aid in the study of such biological systems, some of which have a wealth of features for model building and visualization, and powerful capabilities for simulation and data analysis. Novel high resolution and/or high throughput experimental techniques have led to an abundance of qualitative and quantitative data related to the spatio-temporal distribution of molecules and complexes, their interactions kinetics, and functional modifications. Based on this information, computational biology researchers are attempting to build larger and more detailed models. However, this has proved to be a major challenge. Traditionally, modeling tools require the explicit specification of all molecular species and interactions in a model, which can quickly become a major limitation in the case of complex networks – the number of ways biomolecules can combine to form multimolecular complexes can be combinatorially large. Recently, a new breed of software tools has been created to address the problems faced when building models marked by combinatorial complexity. These have a different approach for model specification, using reaction rules and species patterns. Here we compare the traditional modeling approach with the new rule-based methods. We make a case for combining the capabilities of conventional simulation software with the unique features and flexibility of a rule-based approach in a single software platform for building models of molecular interaction networks. PMID:22161349

  4. Leveraging modeling approaches: reaction networks and rules.

    PubMed

    Blinov, Michael L; Moraru, Ion I

    2012-01-01

    We have witnessed an explosive growth in research involving mathematical models and computer simulations of intracellular molecular interactions, ranging from metabolic pathways to signaling and gene regulatory networks. Many software tools have been developed to aid in the study of such biological systems, some of which have a wealth of features for model building and visualization, and powerful capabilities for simulation and data analysis. Novel high-resolution and/or high-throughput experimental techniques have led to an abundance of qualitative and quantitative data related to the spatiotemporal distribution of molecules and complexes, their interactions kinetics, and functional modifications. Based on this information, computational biology researchers are attempting to build larger and more detailed models. However, this has proved to be a major challenge. Traditionally, modeling tools require the explicit specification of all molecular species and interactions in a model, which can quickly become a major limitation in the case of complex networks - the number of ways biomolecules can combine to form multimolecular complexes can be combinatorially large. Recently, a new breed of software tools has been created to address the problems faced when building models marked by combinatorial complexity. These have a different approach for model specification, using reaction rules and species patterns. Here we compare the traditional modeling approach with the new rule-based methods. We make a case for combining the capabilities of conventional simulation software with the unique features and flexibility of a rule-based approach in a single software platform for building models of molecular interaction networks.

  5. r.avaflow v1, an advanced open-source computational framework for the propagation and interaction of two-phase mass flows

    NASA Astrophysics Data System (ADS)

    Mergili, Martin; Fischer, Jan-Thomas; Krenn, Julia; Pudasaini, Shiva P.

    2017-02-01

    r.avaflow represents an innovative open-source computational tool for routing rapid mass flows, avalanches, or process chains from a defined release area down an arbitrary topography to a deposition area. In contrast to most existing computational tools, r.avaflow (i) employs a two-phase, interacting solid and fluid mixture model (Pudasaini, 2012); (ii) is suitable for modelling more or less complex process chains and interactions; (iii) explicitly considers both entrainment and stopping with deposition, i.e. the change of the basal topography; (iv) allows for the definition of multiple release masses, and/or hydrographs; and (v) serves with built-in functionalities for validation, parameter optimization, and sensitivity analysis. r.avaflow is freely available as a raster module of the GRASS GIS software, employing the programming languages Python and C along with the statistical software R. We exemplify the functionalities of r.avaflow by means of two sets of computational experiments: (1) generic process chains consisting in bulk mass and hydrograph release into a reservoir with entrainment of the dam and impact downstream; (2) the prehistoric Acheron rock avalanche, New Zealand. The simulation results are generally plausible for (1) and, after the optimization of two key parameters, reasonably in line with the corresponding observations for (2). However, we identify some potential to enhance the analytic and numerical concepts. Further, thorough parameter studies will be necessary in order to make r.avaflow fit for reliable forward simulations of possible future mass flow events.

  6. A new approach to the rationale discovery of polymeric biomaterials

    PubMed Central

    Kohn, Joachim; Welsh, William J.; Knight, Doyle

    2007-01-01

    This paper attempts to illustrate both the need for new approaches to biomaterials discovery as well as the significant promise inherent in the use of combinatorial and computational design strategies. The key observation of this Leading Opinion Paper is that the biomaterials community has been slow to embrace advanced biomaterials discovery tools such as combinatorial methods, high throughput experimentation, and computational modeling in spite of the significant promise shown by these discovery tools in materials science, medicinal chemistry and the pharmaceutical industry. It seems that the complexity of living cells and their interactions with biomaterials has been a conceptual as well as a practical barrier to the use of advanced discovery tools in biomaterials science. However, with the continued increase in computer power, the goal of predicting the biological response of cells in contact with biomaterials surfaces is within reach. Once combinatorial synthesis, high throughput experimentation, and computational modeling are integrated into the biomaterials discovery process, a significant acceleration is possible in the pace of development of improved medical implants, tissue regeneration scaffolds, and gene/drug delivery systems. PMID:17644176

  7. Application of desktop computers in nuclear engineering education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graves, H.W. Jr.

    1990-01-01

    Utilization of desktop computers in the academic environment is based on the same objectives as in the industrial environment - increased quality and efficiency. Desktop computers can be extremely useful teaching tools in two general areas: classroom demonstrations and homework assignments. Although differences in emphasis exist, tutorial programs share many characteristics with interactive software developed for the industrial environment. In the Reactor Design and Fuel Management course at the University of Maryland, several interactive tutorial programs provided by Energy analysis Software Service have been utilized. These programs have been designed to be sufficiently structured to permit an orderly, disciplined solutionmore » to the problem being solved, and yet be flexible enough to accommodate most problem solution options.« less

  8. Continuum Electrostatics Approaches to Calculating pKas and Ems in Proteins

    PubMed Central

    Gunner, MR; Baker, Nathan A.

    2017-01-01

    Proteins change their charge state through protonation and redox reactions as well as through binding charged ligands. The free energy of these reactions are dominated by solvation and electrostatic energies and modulated by protein conformational relaxation in response to the ionization state changes. Although computational methods for calculating these interactions can provide very powerful tools for predicting protein charge states, they include several critical approximations of which users should be aware. This chapter discusses the strengths, weaknesses, and approximations of popular computational methods for predicting charge states and understanding their underlying electrostatic interactions. The goal of this chapter is to inform users about applications and potential caveats of these methods as well as outline directions for future theoretical and computational research. PMID:27497160

  9. Parallel Three-Dimensional Computation of Fluid Dynamics and Fluid-Structure Interactions of Ram-Air Parachutes

    NASA Technical Reports Server (NTRS)

    Tezduyar, Tayfun E.

    1998-01-01

    This is a final report as far as our work at University of Minnesota is concerned. The report describes our research progress and accomplishments in development of high performance computing methods and tools for 3D finite element computation of aerodynamic characteristics and fluid-structure interactions (FSI) arising in airdrop systems, namely ram-air parachutes and round parachutes. This class of simulations involves complex geometries, flexible structural components, deforming fluid domains, and unsteady flow patterns. The key components of our simulation toolkit are a stabilized finite element flow solver, a nonlinear structural dynamics solver, an automatic mesh moving scheme, and an interface between the fluid and structural solvers; all of these have been developed within a parallel message-passing paradigm.

  10. The Biomolecular Interaction Network Database and related tools 2005 update

    PubMed Central

    Alfarano, C.; Andrade, C. E.; Anthony, K.; Bahroos, N.; Bajec, M.; Bantoft, K.; Betel, D.; Bobechko, B.; Boutilier, K.; Burgess, E.; Buzadzija, K.; Cavero, R.; D'Abreo, C.; Donaldson, I.; Dorairajoo, D.; Dumontier, M. J.; Dumontier, M. R.; Earles, V.; Farrall, R.; Feldman, H.; Garderman, E.; Gong, Y.; Gonzaga, R.; Grytsan, V.; Gryz, E.; Gu, V.; Haldorsen, E.; Halupa, A.; Haw, R.; Hrvojic, A.; Hurrell, L.; Isserlin, R.; Jack, F.; Juma, F.; Khan, A.; Kon, T.; Konopinsky, S.; Le, V.; Lee, E.; Ling, S.; Magidin, M.; Moniakis, J.; Montojo, J.; Moore, S.; Muskat, B.; Ng, I.; Paraiso, J. P.; Parker, B.; Pintilie, G.; Pirone, R.; Salama, J. J.; Sgro, S.; Shan, T.; Shu, Y.; Siew, J.; Skinner, D.; Snyder, K.; Stasiuk, R.; Strumpf, D.; Tuekam, B.; Tao, S.; Wang, Z.; White, M.; Willis, R.; Wolting, C.; Wong, S.; Wrong, A.; Xin, C.; Yao, R.; Yates, B.; Zhang, S.; Zheng, K.; Pawson, T.; Ouellette, B. F. F.; Hogue, C. W. V.

    2005-01-01

    The Biomolecular Interaction Network Database (BIND) (http://bind.ca) archives biomolecular interaction, reaction, complex and pathway information. Our aim is to curate the details about molecular interactions that arise from published experimental research and to provide this information, as well as tools to enable data analysis, freely to researchers worldwide. BIND data are curated into a comprehensive machine-readable archive of computable information and provides users with methods to discover interactions and molecular mechanisms. BIND has worked to develop new methods for visualization that amplify the underlying annotation of genes and proteins to facilitate the study of molecular interaction networks. BIND has maintained an open database policy since its inception in 1999. Data growth has proceeded at a tremendous rate, approaching over 100 000 records. New services provided include a new BIND Query and Submission interface, a Standard Object Access Protocol service and the Small Molecule Interaction Database (http://smid.blueprint.org) that allows users to determine probable small molecule binding sites of new sequences and examine conserved binding residues. PMID:15608229

  11. TNEEL workshop. Interactive methods for teaching end-of-life care.

    PubMed

    Wilkie, Diana J; Lin, Yu-Chuan; Judge, M Kay M; Shannon, Sarah E; Corless, Inge B; Farber, Stuart J; Brown, Marie-Annette

    2004-01-01

    Nurse educators have identified lack of end-of-life content as a serious deficit in undergraduate nursing education. TNEEL, a new software program with tools for teaching end-of-life topics, was created to help educators overcome this problem. The authors implemented an experiential workshop to help educators learn how to use TNEEL's wide variety of educational tools. Trainers provided information about TNEEL and coached participants (N = 94) as they practiced using laptop computers to increase their familiarity and comfort in using the toolkit. Workshop participants completed pre- and posttest evaluations addressing their opinions and beliefs about using this computer tool. Findings support the workshop as an effective way to facilitate adoption of this innovative educational resource and support the development of a nation-wide training plan for TNEEL with experiential workshops.

  12. Development and Demonstration of a Computational Tool for the Analysis of Particle Vitiation Effects in Hypersonic Propulsion Test Facilities

    NASA Technical Reports Server (NTRS)

    Perkins, Hugh Douglas

    2010-01-01

    In order to improve the understanding of particle vitiation effects in hypersonic propulsion test facilities, a quasi-one dimensional numerical tool was developed to efficiently model reacting particle-gas flows over a wide range of conditions. Features of this code include gas-phase finite-rate kinetics, a global porous-particle combustion model, mass, momentum and energy interactions between phases, and subsonic and supersonic particle drag and heat transfer models. The basic capabilities of this tool were validated against available data or other validated codes. To demonstrate the capabilities of the code a series of computations were performed for a model hypersonic propulsion test facility and scramjet. Parameters studied were simulated flight Mach number, particle size, particle mass fraction and particle material.

  13. A computer-aided approach to nonlinear control systhesis

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Anthony, Tobin

    1988-01-01

    The major objective of this project is to develop a computer-aided approach to nonlinear stability analysis and nonlinear control system design. This goal is to be obtained by refining the describing function method as a synthesis tool for nonlinear control design. The interim report outlines the approach by this study to meet these goals including an introduction to the INteractive Controls Analysis (INCA) program which was instrumental in meeting these study objectives. A single-input describing function (SIDF) design methodology was developed in this study; coupled with the software constructed in this study, the results of this project provide a comprehensive tool for design and integration of nonlinear control systems.

  14. UTOPIA-User-Friendly Tools for Operating Informatics Applications.

    PubMed

    Pettifer, S R; Sinnott, J R; Attwood, T K

    2004-01-01

    Bioinformaticians routinely analyse vast amounts of information held both in large remote databases and in flat data files hosted on local machines. The contemporary toolkit available for this purpose consists of an ad hoc collection of data manipulation tools, scripting languages and visualization systems; these must often be combined in complex and bespoke ways, the result frequently being an unwieldy artefact capable of one specific task, which cannot easily be exploited or extended by other practitioners. Owing to the sizes of current databases and the scale of the analyses necessary, routine bioinformatics tasks are often automated, but many still require the unique experience and intuition of human researchers: this requires tools that support real-time interaction with complex datasets. Many existing tools have poor user interfaces and limited real-time performance when applied to realistically large datasets; much of the user's cognitive capacity is therefore focused on controlling the tool rather than on performing the research. The UTOPIA project is addressing some of these issues by building reusable software components that can be combined to make useful applications in the field of bioinformatics. Expertise in the fields of human computer interaction, high-performance rendering, and distributed systems is being guided by bioinformaticians and end-user biologists to create a toolkit that is both architecturally sound from a computing point of view, and directly addresses end-user and application-developer requirements.

  15. Computing at h1 - Experience and Future

    NASA Astrophysics Data System (ADS)

    Eckerlin, G.; Gerhards, R.; Kleinwort, C.; KrÜNer-Marquis, U.; Egli, S.; Niebergall, F.

    The H1 experiment has now been successfully operating at the electron proton collider HERA at DESY for three years. During this time the computing environment has gradually shifted from a mainframe oriented environment to the distributed server/client Unix world. This transition is now almost complete. Computing needs are largely determined by the present amount of 1.5 TB of reconstructed data per year (1994), corresponding to 1.2 × 107 accepted events. All data are centrally available at DESY. In addition to data analysis, which is done in all collaborating institutes, most of the centrally organized Monte Carlo production is performed outside of DESY. New software tools to cope with offline computing needs include CENTIPEDE, a tool for the use of distributed batch and interactive resources for Monte Carlo production, and H1 UNIX, a software package for automatic updates of H1 software on all UNIX platforms.

  16. Rational, computer-enabled peptide drug design: principles, methods, applications and future directions.

    PubMed

    Diller, David J; Swanson, Jon; Bayden, Alexander S; Jarosinski, Mark; Audie, Joseph

    2015-01-01

    Peptides provide promising templates for developing drugs to occupy a middle space between small molecules and antibodies and for targeting 'undruggable' intracellular protein-protein interactions. Importantly, rational or in cerebro design, especially when coupled with validated in silico tools, can be used to efficiently explore chemical space and identify islands of 'drug-like' peptides to satisfy diverse drug discovery program objectives. Here, we consider the underlying principles of and recent advances in rational, computer-enabled peptide drug design. In particular, we consider the impact of basic physicochemical properties, potency and ADME/Tox opportunities and challenges, and recently developed computational tools for enabling rational peptide drug design. Key principles and practices are spotlighted by recent case studies. We close with a hypothetical future case study.

  17. Human-Centered Design of Human-Computer-Human Dialogs in Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1998-01-01

    A series of ongoing research programs at Georgia Tech established a need for a simulation support tool for aircraft computer-based aids. This led to the design and development of the Georgia Tech Electronic Flight Instrument Research Tool (GT-EFIRT). GT-EFIRT is a part-task flight simulator specifically designed to study aircraft display design and single pilot interaction. ne simulator, using commercially available graphics and Unix workstations, replicates to a high level of fidelity the Electronic Flight Instrument Systems (EFIS), Flight Management Computer (FMC) and Auto Flight Director System (AFDS) of the Boeing 757/767 aircraft. The simulator can be configured to present information using conventional looking B757n67 displays or next generation Primary Flight Displays (PFD) such as found on the Beech Starship and MD-11.

  18. Computer applications making rapid advances in high throughput microbial proteomics (HTMP).

    PubMed

    Anandkumar, Balakrishna; Haga, Steve W; Wu, Hui-Fen

    2014-02-01

    The last few decades have seen the rise of widely-available proteomics tools. From new data acquisition devices, such as MALDI-MS and 2DE to new database searching softwares, these new products have paved the way for high throughput microbial proteomics (HTMP). These tools are enabling researchers to gain new insights into microbial metabolism, and are opening up new areas of study, such as protein-protein interactions (interactomics) discovery. Computer software is a key part of these emerging fields. This current review considers: 1) software tools for identifying the proteome, such as MASCOT or PDQuest, 2) online databases of proteomes, such as SWISS-PROT, Proteome Web, or the Proteomics Facility of the Pathogen Functional Genomics Resource Center, and 3) software tools for applying proteomic data, such as PSI-BLAST or VESPA. These tools allow for research in network biology, protein identification, functional annotation, target identification/validation, protein expression, protein structural analysis, metabolic pathway engineering and drug discovery.

  19. Playbook Data Analysis Tool: Collecting Interaction Data from Extremely Remote Users

    NASA Technical Reports Server (NTRS)

    Kanefsky, Bob; Zheng, Jimin; Deliz, Ivonne; Marquez, Jessica J.; Hillenius, Steven

    2017-01-01

    Typically, user tests for software tools are conducted in person. At NASA, the users may be located at the bottom of the ocean in a pressurized habitat, above the atmosphere in the International Space Station, or in an isolated capsule on a simulated asteroid mission. The Playbook Data Analysis Tool (P-DAT) is a human-computer interaction (HCI) evaluation tool that the NASA Ames HCI Group has developed to record user interactions with Playbook, the group's existing planning-and-execution software application. Once the remotely collected user interaction data makes its way back to Earth, researchers can use P-DAT for in-depth analysis. Since a critical component of the Playbook project is to understand how to develop more intuitive software tools for astronauts to plan in space, P-DAT helps guide us in the development of additional easy-to-use features for Playbook, informing the design of future crew autonomy tools.P-DAT has demonstrated the capability of discreetly capturing usability data in amanner that is transparent to Playbook’s end-users. In our experience, P-DAT data hasalready shown its utility, revealing potential usability patterns, helping diagnose softwarebugs, and identifying metrics and events that are pertinent to Playbook usage aswell as spaceflight operations. As we continue to develop this analysis tool, P-DATmay yet provide a method for long-duration, unobtrusive human performance collectionand evaluation for mission controllers back on Earth and researchers investigatingthe effects and mitigations related to future human spaceflight performance.

  20. Earth Observation oriented teaching materials development based on OGC Web services and Bashyt generated reports

    NASA Astrophysics Data System (ADS)

    Stefanut, T.; Gorgan, D.; Giuliani, G.; Cau, P.

    2012-04-01

    Creating e-Learning materials in the Earth Observation domain is a difficult task especially for non-technical specialists who have to deal with distributed repositories, large amounts of information and intensive processing requirements. Furthermore, due to the lack of specialized applications for developing teaching resources, technical knowledge is required also for defining data presentation structures or in the development and customization of user interaction techniques for better teaching results. As a response to these issues during the GiSHEO FP7 project [1] and later in the EnviroGRIDS FP7 [2] project, we have developed the eGLE e-Learning Platform [3], a tool based application that provides dedicated functionalities to the Earth Observation specialists for developing teaching materials. The proposed architecture is built around a client-server design that provides the core functionalities (e.g. user management, tools integration, teaching materials settings, etc.) and has been extended with a distributed component implemented through the tools that are integrated into the platform, as described further. Our approach in dealing with multiple transfer protocol types, heterogeneous data formats or various user interaction techniques involve the development and integration of very specialized elements (tools) that can be customized by the trainers in a visual manner through simple user interfaces. In our concept each tool is dedicated to a specific data type, implementing optimized mechanisms for searching, retrieving, visualizing and interacting with it. At the same time, in each learning resource can be integrated any number of tools, through drag-and-drop interaction, allowing the teacher to retrieve pieces of data of various types (e.g. images, charts, tables, text, videos etc.) from different sources (e.g. OGC web services, charts created through Bashyt application, etc.) through different protocols (ex. WMS, BASHYT API, FTP, HTTP etc.) and to display them all together in a unitary manner using the same visual structure [4]. Addressing the High Power Computation requirements that are met while processing environmental data, our platform can be easily extended through tools that connect to GRID infrastructures, WCS web services, Bashyt API (for creating specialized hydrological reports) or any other specialized services (ex. graphics cluster visualization) that can be reached over the Internet. At run time, on the trainee's computer each tool is launched in an asynchronous running mode and connects to the data source that has been established by the teacher, retrieving and displaying the information to the user. The data transfer is accomplished directly between the trainee's computer and the corresponding services (e.g. OGC, Bashyt API, etc.) without passing through the core server platform. In this manner, the eGLE application can provide better and more responsive connections to a large number of users.

  1. New Products.

    ERIC Educational Resources Information Center

    TechTrends, 1992

    1992-01-01

    Reviews new educational technology products, including a microcomputer-based tutoring system, laser barcode reader, video/data projectors, CD-ROM for notebook computers, a system to increase a printer's power, data cartridge storage shell, knowledge-based decision tool, video illustrator, interactive videodiscs, surge protectors, scanner system,…

  2. Automated Extraction of Flow Features

    NASA Technical Reports Server (NTRS)

    Dorney, Suzanne (Technical Monitor); Haimes, Robert

    2005-01-01

    Computational Fluid Dynamics (CFD) simulations are routinely performed as part of the design process of most fluid handling devices. In order to efficiently and effectively use the results of a CFD simulation, visualization tools are often used. These tools are used in all stages of the CFD simulation including pre-processing, interim-processing, and post-processing, to interpret the results. Each of these stages requires visualization tools that allow one to examine the geometry of the device, as well as the partial or final results of the simulation. An engineer will typically generate a series of contour and vector plots to better understand the physics of how the fluid is interacting with the physical device. Of particular interest are detecting features such as shocks, re-circulation zones, and vortices (which will highlight areas of stress and loss). As the demand for CFD analyses continues to increase the need for automated feature extraction capabilities has become vital. In the past, feature extraction and identification were interesting concepts, but not required in understanding the physics of a steady flow field. This is because the results of the more traditional tools like; isc-surface, cuts and streamlines, were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snapshot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments). Methods must be developed to abstract the feature of interest and display it in a manner that physically makes sense.

  3. Automated Extraction of Flow Features

    NASA Technical Reports Server (NTRS)

    Dorney, Suzanne (Technical Monitor); Haimes, Robert

    2004-01-01

    Computational Fluid Dynamics (CFD) simulations are routinely performed as part of the design process of most fluid handling devices. In order to efficiently and effectively use the results of a CFD simulation, visualization tools are often used. These tools are used in all stages of the CFD simulation including pre-processing, interim-processing, and post-processing, to interpret the results. Each of these stages requires visualization tools that allow one to examine the geometry of the device, as well as the partial or final results of the simulation. An engineer will typically generate a series of contour and vector plots to better understand the physics of how the fluid is interacting with the physical device. Of particular interest are detecting features such as shocks, recirculation zones, and vortices (which will highlight areas of stress and loss). As the demand for CFD analyses continues to increase the need for automated feature extraction capabilities has become vital. In the past, feature extraction and identification were interesting concepts, but not required in understanding the physics of a steady flow field. This is because the results of the more traditional tools like; iso-surface, cuts and streamlines, were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snapshot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for (co-processing environments). Methods must be developed to abstract the feature of interest and display it in a manner that physically makes sense.

  4. Web-based hydrodynamics computing

    NASA Astrophysics Data System (ADS)

    Shimoide, Alan; Lin, Luping; Hong, Tracie-Lynne; Yoon, Ilmi; Aragon, Sergio R.

    2005-01-01

    Proteins are long chains of amino acids that have a definite 3-d conformation and the shape of each protein is vital to its function. Since proteins are normally in solution, hydrodynamics (describes the movement of solvent around a protein as a function of shape and size of the molecule) can be used to probe the size and shape of proteins compared to those derived from X-ray crystallography. The computation chain needed for these hydrodynamics calculations consists of several separate programs by different authors on various platforms and often requires 3D visualizations of intermediate results. Due to the complexity, tools developed by a particular research group are not readily available for use by other groups, nor even by the non-experts within the same research group. To alleviate this situation, and to foment the easy and wide distribution of computational tools worldwide, we developed a web based interactive computational environment (WICE) including interactive 3D visualization that can be used with any web browser. Java based technologies were used to provide a platform neutral, user-friendly solution. Java Server Pages (JSP), Java Servlets, Java Beans, JOGL (Java bindings for OpenGL), and Java Web Start were used to create a solution that simplifies the computing chain for the user allowing the user to focus on their scientific research. WICE hides complexity from the user and provides robust and sophisticated visualization through a web browser.

  5. Web-based hydrodynamics computing

    NASA Astrophysics Data System (ADS)

    Shimoide, Alan; Lin, Luping; Hong, Tracie-Lynne; Yoon, Ilmi; Aragon, Sergio R.

    2004-12-01

    Proteins are long chains of amino acids that have a definite 3-d conformation and the shape of each protein is vital to its function. Since proteins are normally in solution, hydrodynamics (describes the movement of solvent around a protein as a function of shape and size of the molecule) can be used to probe the size and shape of proteins compared to those derived from X-ray crystallography. The computation chain needed for these hydrodynamics calculations consists of several separate programs by different authors on various platforms and often requires 3D visualizations of intermediate results. Due to the complexity, tools developed by a particular research group are not readily available for use by other groups, nor even by the non-experts within the same research group. To alleviate this situation, and to foment the easy and wide distribution of computational tools worldwide, we developed a web based interactive computational environment (WICE) including interactive 3D visualization that can be used with any web browser. Java based technologies were used to provide a platform neutral, user-friendly solution. Java Server Pages (JSP), Java Servlets, Java Beans, JOGL (Java bindings for OpenGL), and Java Web Start were used to create a solution that simplifies the computing chain for the user allowing the user to focus on their scientific research. WICE hides complexity from the user and provides robust and sophisticated visualization through a web browser.

  6. The 3D widgets for exploratory scientific visualization

    NASA Technical Reports Server (NTRS)

    Herndon, Kenneth P.; Meyer, Tom

    1995-01-01

    Computational fluid dynamics (CFD) techniques are used to simulate flows of fluids like air or water around such objects as airplanes and automobiles. These techniques usually generate very large amounts of numerical data which are difficult to understand without using graphical scientific visualization techniques. There are a number of commercial scientific visualization applications available today which allow scientists to control visualization tools via textual and/or 2D user interfaces. However, these user interfaces are often difficult to use. We believe that 3D direct-manipulation techniques for interactively controlling visualization tools will provide opportunities for powerful and useful interfaces with which scientists can more effectively explore their datasets. A few systems have been developed which use these techniques. In this paper, we will present a variety of 3D interaction techniques for manipulating parameters of visualization tools used to explore CFD datasets, and discuss in detail various techniques for positioning tools in a 3D scene.

  7. Protocols for Molecular Dynamics Simulations of RNA Nanostructures.

    PubMed

    Kim, Taejin; Kasprzak, Wojciech K; Shapiro, Bruce A

    2017-01-01

    Molecular dynamics (MD) simulations have been used as one of the main research tools to study a wide range of biological systems and bridge the gap between X-ray crystallography or NMR structures and biological mechanism. In the field of RNA nanostructures, MD simulations have been used to fix steric clashes in computationally designed RNA nanostructures, characterize the dynamics, and investigate the interaction between RNA and other biomolecules such as delivery agents and membranes.In this chapter we present examples of computational protocols for molecular dynamics simulations in explicit and implicit solvent using the Amber Molecular Dynamics Package. We also show examples of post-simulation analysis steps and briefly mention selected tools beyond the Amber package. Limitations of the methods, tools, and protocols are also discussed. Most of the examples are illustrated for a small RNA duplex (helix), but the protocols are applicable to any nucleic acid structure, subject only to the computational speed and memory limitations of the hardware available to the user.

  8. Using computer-aided drug design and medicinal chemistry strategies in the fight against diabetes.

    PubMed

    Semighini, Evandro P; Resende, Jonathan A; de Andrade, Peterson; Morais, Pedro A B; Carvalho, Ivone; Taft, Carlton A; Silva, Carlos H T P

    2011-04-01

    The aim of this work is to present a simple, practical and efficient protocol for drug design, in particular Diabetes, which includes selection of the illness, good choice of a target as well as a bioactive ligand and then usage of various computer aided drug design and medicinal chemistry tools to design novel potential drug candidates in different diseases. We have selected the validated target dipeptidyl peptidase IV (DPP-IV), whose inhibition contributes to reduce glucose levels in type 2 diabetes patients. The most active inhibitor with complex X-ray structure reported was initially extracted from the BindingDB database. By using molecular modification strategies widely used in medicinal chemistry, besides current state-of-the-art tools in drug design (including flexible docking, virtual screening, molecular interaction fields, molecular dynamics, ADME and toxicity predictions), we have proposed 4 novel potential DPP-IV inhibitors with drug properties for Diabetes control, which have been supported and validated by all the computational tools used herewith.

  9. A CFD/CSD Interaction Methodology for Aircraft Wings

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Manoj K.

    1997-01-01

    With advanced subsonic transports and military aircraft operating in the transonic regime, it is becoming important to determine the effects of the coupling between aerodynamic loads and elastic forces. Since aeroelastic effects can contribute significantly to the design of these aircraft, there is a strong need in the aerospace industry to predict these aero-structure interactions computationally. To perform static aeroelastic analysis in the transonic regime, high fidelity computational fluid dynamics (CFD) analysis tools must be used in conjunction with high fidelity computational structural fluid dynamics (CSD) analysis tools due to the nonlinear behavior of the aerodynamics in the transonic regime. There is also a need to be able to use a wide variety of CFD and CSD tools to predict these aeroelastic effects in the transonic regime. Because source codes are not always available, it is necessary to couple the CFD and CSD codes without alteration of the source codes. In this study, an aeroelastic coupling procedure is developed which will perform static aeroelastic analysis using any CFD and CSD code with little code integration. The aeroelastic coupling procedure is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas CFD code) and NASTRAN. In addition, the Aeroelastic Research Wing (ARW-2) is used for demonstration of the aeroelastic coupling procedure by using ENSAERO (NASA Ames Research Center CFD code) and a finite element wing-box code (developed as part of this research).

  10. Improve Problem Solving Skills through Adapting Programming Tools

    NASA Technical Reports Server (NTRS)

    Shaykhian, Linda H.; Shaykhian, Gholam Ali

    2007-01-01

    There are numerous ways for engineers and students to become better problem-solvers. The use of command line and visual programming tools can help to model a problem and formulate a solution through visualization. The analysis of problem attributes and constraints provide insight into the scope and complexity of the problem. The visualization aspect of the problem-solving approach tends to make students and engineers more systematic in their thought process and help them catch errors before proceeding too far in the wrong direction. The problem-solver identifies and defines important terms, variables, rules, and procedures required for solving a problem. Every step required to construct the problem solution can be defined in program commands that produce intermediate output. This paper advocates improved problem solving skills through using a programming tool. MatLab created by MathWorks, is an interactive numerical computing environment and programming language. It is a matrix-based system that easily lends itself to matrix manipulation, and plotting of functions and data. MatLab can be used as an interactive command line or a sequence of commands that can be saved in a file as a script or named functions. Prior programming experience is not required to use MatLab commands. The GNU Octave, part of the GNU project, a free computer program for performing numerical computations, is comparable to MatLab. MatLab visual and command programming are presented here.

  11. S3D: An interactive surface grid generation tool

    NASA Technical Reports Server (NTRS)

    Luh, Raymond Ching-Chung; Pierce, Lawrence E.; Yip, David

    1992-01-01

    S3D, an interactive software tool for surface grid generation, is described. S3D provides the means with which a geometry definition based either on a discretized curve set or a rectangular set can be quickly processed towards the generation of a surface grid for computational fluid dynamics (CFD) applications. This is made possible as a result of implementing commonly encountered surface gridding tasks in an environment with a highly efficient and user friendly graphical interface. Some of the more advanced features of S3D include surface-surface intersections, optimized surface domain decomposition and recomposition, and automated propagation of edge distributions to surrounding grids.

  12. Leveraging Social Computing for Personalized Crisis Communication using Social Media.

    PubMed

    Leykin, Dmitry; Aharonson-Daniel, Limor; Lahad, Mooli

    2016-03-24

    The extensive use of social media in modern life redefines social interaction and communication. Communication plays an important role in mitigating, or exacerbating, the psychological and behavioral responses to critical incidents and disasters. As recent disasters demonstrated, people tend to converge to social media during and following emergencies. Authorities can then use this media and other computational methods to gain insights from the public, mainly to enhance situational awareness, but also to improve their communication with the public and public adherence to instructions. The current review presents a conceptual framework for studying psychological aspects of crisis and risk communication using the social media through social computing. Advanced analytical tools can be integrated in the processes and objectives of crisis communication. The availability of the computational techniques can improve communication with the public by a process of Hyper-Targeted Crisis Communication. The review suggests that using advanced computational tools for target-audience profiling and linguistic matching in social media, can facilitate more sensitive and personalized emergency communication.

  13. Embedded systems for supporting computer accessibility.

    PubMed

    Mulfari, Davide; Celesti, Antonio; Fazio, Maria; Villari, Massimo; Puliafito, Antonio

    2015-01-01

    Nowadays, customized AT software solutions allow their users to interact with various kinds of computer systems. Such tools are generally available on personal devices (e.g., smartphones, laptops and so on) commonly used by a person with a disability. In this paper, we investigate a way of using the aforementioned AT equipments in order to access many different devices without assistive preferences. The solution takes advantage of open source hardware and its core component consists of an affordable Linux embedded system: it grabs data coming from the assistive software, which runs on the user's personal device, then, after processing, it generates native keyboard and mouse HID commands for the target computing device controlled by the end user. This process supports any operating system available on the target machine and it requires no specialized software installation; therefore the user with a disability can rely on a single assistive tool to control a wide range of computing platforms, including conventional computers and many kinds of mobile devices, which receive input commands through the USB HID protocol.

  14. Communication and collaboration technologies.

    PubMed

    Cheeseman, Susan E

    2012-01-01

    This is the third in a series of columns exploring health information technology (HIT) in the neonatal intensive care unit (NICU). The first column provided background information on the implementation of information technology throughout the health care delivery system, as well as the requisite informatics competencies needed for nurses to fully engage in the digital era of health care. The second column focused on information and resources to master basic computer competencies described by the TIGER initiative (Technology Informatics Guiding Education Reform) as learning about computers, computer networks, and the transfer of data.1 This column will provide additional information related to basic computer competencies, focusing on communication and collaboration technologies. Computers and the Internet have transformed the way we communicate and collaborate. Electronic communication is the ability to exchange information through the use of computer equipment and software.2 Broadly defined, any technology that facilitates linking one or more individuals together is a collaborative tool. Collaboration using technology encompasses an extensive range of applications that enable groups of individuals to work together including e-mail, instant messaging (IM ), and several web applications collectively referred to as Web 2.0 technologies. The term Web 2.0 refers to web applications where users interact and collaborate with each other in a collective exchange of ideas generating content in a virtual community. Examples of Web 2.0 technologies include social networking sites, blogs, wikis, video sharing sites, and mashups. Many organizations are developing collaborative strategies and tools for employees to connect and interact using web-based social media technologies.3.

  15. A Toolkit for ARB to Integrate Custom Databases and Externally Built Phylogenies

    DOE PAGES

    Essinger, Steven D.; Reichenberger, Erin; Morrison, Calvin; ...

    2015-01-21

    Researchers are perpetually amassing biological sequence data. The computational approaches employed by ecologists for organizing this data (e.g. alignment, phylogeny, etc.) typically scale nonlinearly in execution time with the size of the dataset. This often serves as a bottleneck for processing experimental data since many molecular studies are characterized by massive datasets. To keep up with experimental data demands, ecologists are forced to choose between continually upgrading expensive in-house computer hardware or outsourcing the most demanding computations to the cloud. Outsourcing is attractive since it is the least expensive option, but does not necessarily allow direct user interaction with themore » data for exploratory analysis. Desktop analytical tools such as ARB are indispensable for this purpose, but they do not necessarily offer a convenient solution for the coordination and integration of datasets between local and outsourced destinations. Therefore, researchers are currently left with an undesirable tradeoff between computational throughput and analytical capability. To mitigate this tradeoff we introduce a software package to leverage the utility of the interactive exploratory tools offered by ARB with the computational throughput of cloud-based resources. Our pipeline serves as middleware between the desktop and the cloud allowing researchers to form local custom databases containing sequences and metadata from multiple resources and a method for linking data outsourced for computation back to the local database. Furthermore, a tutorial implementation of the toolkit is provided in the supporting information, S1 Tutorial.« less

  16. A Toolkit for ARB to Integrate Custom Databases and Externally Built Phylogenies

    PubMed Central

    Essinger, Steven D.; Reichenberger, Erin; Morrison, Calvin; Blackwood, Christopher B.; Rosen, Gail L.

    2015-01-01

    Researchers are perpetually amassing biological sequence data. The computational approaches employed by ecologists for organizing this data (e.g. alignment, phylogeny, etc.) typically scale nonlinearly in execution time with the size of the dataset. This often serves as a bottleneck for processing experimental data since many molecular studies are characterized by massive datasets. To keep up with experimental data demands, ecologists are forced to choose between continually upgrading expensive in-house computer hardware or outsourcing the most demanding computations to the cloud. Outsourcing is attractive since it is the least expensive option, but does not necessarily allow direct user interaction with the data for exploratory analysis. Desktop analytical tools such as ARB are indispensable for this purpose, but they do not necessarily offer a convenient solution for the coordination and integration of datasets between local and outsourced destinations. Therefore, researchers are currently left with an undesirable tradeoff between computational throughput and analytical capability. To mitigate this tradeoff we introduce a software package to leverage the utility of the interactive exploratory tools offered by ARB with the computational throughput of cloud-based resources. Our pipeline serves as middleware between the desktop and the cloud allowing researchers to form local custom databases containing sequences and metadata from multiple resources and a method for linking data outsourced for computation back to the local database. A tutorial implementation of the toolkit is provided in the supporting information, S1 Tutorial. Availability: http://www.ece.drexel.edu/gailr/EESI/tutorial.php. PMID:25607539

  17. Quantum walks of interacting fermions on a cycle graph

    PubMed Central

    Melnikov, Alexey A.; Fedichkin, Leonid E.

    2016-01-01

    Quantum walks have been employed widely to develop new tools for quantum information processing recently. A natural quantum walk dynamics of interacting particles can be used to implement efficiently the universal quantum computation. In this work quantum walks of electrons on a graph are studied. The graph is composed of semiconductor quantum dots arranged in a circle. Electrons can tunnel between adjacent dots and interact via Coulomb repulsion, which leads to entanglement. Fermionic entanglement dynamics is obtained and evaluated. PMID:27681057

  18. Shuttle Debris Impact Tool Assessment Using the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    DeLoach, R.; Rayos, E. M.; Campbell, C. H.; Rickman, S. L.

    2006-01-01

    Computational tools have been developed to estimate thermal and mechanical reentry loads experienced by the Space Shuttle Orbiter as the result of cavities in the Thermal Protection System (TPS). Such cavities can be caused by impact from ice or insulating foam debris shed from the External Tank (ET) on liftoff. The reentry loads depend on cavity geometry and certain Shuttle state variables, among other factors. Certain simplifying assumptions have been made in the tool development about the cavity geometry variables. For example, the cavities are all modeled as shoeboxes , with rectangular cross-sections and planar walls. So an actual cavity is typically approximated with an idealized cavity described in terms of its length, width, and depth, as well as its entry angle, exit angle, and side angles (assumed to be the same for both sides). As part of a comprehensive assessment of the uncertainty in reentry loads estimated by the debris impact assessment tools, an effort has been initiated to quantify the component of the uncertainty that is due to imperfect geometry specifications for the debris impact cavities. The approach is to compute predicted loads for a set of geometry factor combinations sufficient to develop polynomial approximations to the complex, nonparametric underlying computational models. Such polynomial models are continuous and feature estimable, continuous derivatives, conditions that facilitate the propagation of independent variable errors. As an additional benefit, once the polynomial models have been developed, they require fewer computational resources to execute than the underlying finite element and computational fluid dynamics codes, and can generate reentry loads estimates in significantly less time. This provides a practical screening capability, in which a large number of debris impact cavities can be quickly classified either as harmless, or subject to additional analysis with the more comprehensive underlying computational tools. The polynomial models also provide useful insights into the sensitivity of reentry loads to various cavity geometry variables, and reveal complex interactions among those variables that indicate how the sensitivity of one variable depends on the level of one or more other variables. For example, the effect of cavity length on certain reentry loads depends on the depth of the cavity. Such interactions are clearly displayed in the polynomial response models.

  19. iDrug: a web-accessible and interactive drug discovery and design platform

    PubMed Central

    2014-01-01

    Background The progress in computer-aided drug design (CADD) approaches over the past decades accelerated the early-stage pharmaceutical research. Many powerful standalone tools for CADD have been developed in academia. As programs are developed by various research groups, a consistent user-friendly online graphical working environment, combining computational techniques such as pharmacophore mapping, similarity calculation, scoring, and target identification is needed. Results We presented a versatile, user-friendly, and efficient online tool for computer-aided drug design based on pharmacophore and 3D molecular similarity searching. The web interface enables binding sites detection, virtual screening hits identification, and drug targets prediction in an interactive manner through a seamless interface to all adapted packages (e.g., Cavity, PocketV.2, PharmMapper, SHAFTS). Several commercially available compound databases for hit identification and a well-annotated pharmacophore database for drug targets prediction were integrated in iDrug as well. The web interface provides tools for real-time molecular building/editing, converting, displaying, and analyzing. All the customized configurations of the functional modules can be accessed through featured session files provided, which can be saved to the local disk and uploaded to resume or update the history work. Conclusions iDrug is easy to use, and provides a novel, fast and reliable tool for conducting drug design experiments. By using iDrug, various molecular design processing tasks can be submitted and visualized simply in one browser without installing locally any standalone modeling softwares. iDrug is accessible free of charge at http://lilab.ecust.edu.cn/idrug. PMID:24955134

  20. Control/structure interaction design methodology

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.; Layman, William E.

    1989-01-01

    The Control Structure Interaction Program is a technology development program for spacecraft that exhibit interactions between the control system and structural dynamics. The program objectives include development and verification of new design concepts (such as active structure) and new tools (such as a combined structure and control optimization algorithm) and their verification in ground and possibly flight test. The new CSI design methodology is centered around interdisciplinary engineers using new tools that closely integrate structures and controls. Verification is an important CSI theme and analysts will be closely integrated to the CSI Test Bed laboratory. Components, concepts, tools and algorithms will be developed and tested in the lab and in future Shuttle-based flight experiments. The design methodology is summarized in block diagrams depicting the evolution of a spacecraft design and descriptions of analytical capabilities used in the process. The multiyear JPL CSI implementation plan is described along with the essentials of several new tools. A distributed network of computation servers and workstations was designed that will provide a state-of-the-art development base for the CSI technologies.

  1. Methane Adsorption in Zr-Based MOFs: Comparison and Critical Evaluation of Force Fields

    PubMed Central

    2017-01-01

    The search for nanoporous materials that are highly performing for gas storage and separation is one of the contemporary challenges in material design. The computational tools to aid these experimental efforts are widely available, and adsorption isotherms are routinely computed for huge sets of (hypothetical) frameworks. Clearly the computational results depend on the interactions between the adsorbed species and the adsorbent, which are commonly described using force fields. In this paper, an extensive comparison and in-depth investigation of several force fields from literature is reported for the case of methane adsorption in the Zr-based Metal–Organic Frameworks UiO-66, UiO-67, DUT-52, NU-1000, and MOF-808. Significant quantitative differences in the computed uptake are observed when comparing different force fields, but most qualitative features are common which suggests some predictive power of the simulations when it comes to these properties. More insight into the host–guest interactions is obtained by benchmarking the force fields with an extensive number of ab initio computed single molecule interaction energies. This analysis at the molecular level reveals that especially ab initio derived force fields perform well in reproducing the ab initio interaction energies. Finally, the high sensitivity of uptake predictions on the underlying potential energy surface is explored. PMID:29170687

  2. Digital retrospective motion-mode display and processing of electron beam cine-computed tomography and other cross-sectional cardiac imaging techniques

    NASA Astrophysics Data System (ADS)

    Reed, Judd E.; Rumberger, John A.; Buithieu, Jean; Behrenbeck, Thomas; Breen, Jerome F.; Sheedy, Patrick F., II

    1995-05-01

    Electron beam computed tomography is unparalleled in its ability to consistently produce high quality dynamic images of the human heart. Its use in quantification of left ventricular dynamics is well established in both clinical and research applications. However, the image analysis tools supplied with the scanners offer a limited number of analysis options. They are based on embedded computer systems which have not been significantly upgraded since the scanner was introduced over a decade ago in spite of the explosive improvements in available computer power which have occured during this period. To address these shortcomings, a workstation-based ventricular analysis system has been developed at our institution. This system, which has been in use for over five years, is based on current workstation technology and therefore has benefited from the periodic upgrades in processor performance available to these systems. The dynamic image segmentation component of this system is an interactively supervised, semi-automatic surface identification and tracking system. It characterizes the endocardial and epicardial surfaces of the left ventricle as two concentric 4D hyper-space polyhedrons. Each of these polyhedrons have nearly ten thousand vertices which are deposited into a relational database. The right ventricle is also processed in a similar manner. This database is queried by other custom components which extract ventricular function parameters such as regional ejection fraction and wall stress. The interactive tool which supervises dynamic image segmentation has been enhanced with a temporal domain display. The operator interactively chooses the spatial location of the endpoints of a line segment while the corresponding space/time image is displayed. These images, with content resembling M-Mode echocardiography, benefit form electron beam computed tomography's high spatial and contrast resolution. The segmented surfaces are displayed along with the imagery. These displays give the operator valuable feedback pertaining to the contiguity of the extracted surfaces. As with M-Mode echocardiography, the velocity of moving structures can be easily visualized and measured. However, many views inaccessible to standard transthoracic echocardiography are easily generated. These features have augmented the interpretability of cine electron beam computed tomography and have prompted the recent cloning of this system into an 'omni-directional M-Mode display' system for use in digital post-processing of echocardiographic parasternal short axis tomograms. This enhances the functional assessment in orthogonal views of the left ventricle, accounting for shape changes particularly in the asymmetric post-infarction ventricle. Conclusions: A new tool has been developed for analysis and visualization of cine electron beam computed tomography. It has been found to be very useful in verifying the consistency of myocardial surface definition with a semi-automated segmentation tool. By drawing on M-Mode echocardiography experience, electron beam tomography's interpretability has been enhanced. Use of this feature, in conjunction with the existing image processing tools, will enhance the presentations of data on regional systolic and diastolic functions to clinicians in a format that is familiar to most cardiologists. Additionally, this tool reinforces the advantages of electron beam tomography as a single imaging modality for the assessment of left and right ventricular size, shape, and regional functions.

  3. Computational biology of RNA interactions.

    PubMed

    Dieterich, Christoph; Stadler, Peter F

    2013-01-01

    The biodiversity of the RNA world has been underestimated for decades. RNA molecules are key building blocks, sensors, and regulators of modern cells. The biological function of RNA molecules cannot be separated from their ability to bind to and interact with a wide space of chemical species, including small molecules, nucleic acids, and proteins. Computational chemists, physicists, and biologists have developed a rich tool set for modeling and predicting RNA interactions. These interactions are to some extent determined by the binding conformation of the RNA molecule. RNA binding conformations are approximated with often acceptable accuracy by sequence and secondary structure motifs. Secondary structure ensembles of a given RNA molecule can be efficiently computed in many relevant situations by employing a standard energy model for base pair interactions and dynamic programming techniques. The case of bi-molecular RNA-RNA interactions can be seen as an extension of this approach. However, unbiased transcriptome-wide scans for local RNA-RNA interactions are computationally challenging yet become efficient if the binding motif/mode is known and other external information can be used to confine the search space. Computational methods are less developed for proteins and small molecules, which bind to RNA with very high specificity. Binding descriptors of proteins are usually determined by in vitro high-throughput assays (e.g., microarrays or sequencing). Intriguingly, recent experimental advances, which are mostly based on light-induced cross-linking of binding partners, render in vivo binding patterns accessible yet require new computational methods for careful data interpretation. The grand challenge is to model the in vivo situation where a complex interplay of RNA binders competes for the same target RNA molecule. Evidently, bioinformaticians are just catching up with the impressive pace of these developments. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Object-oriented Tools for Distributed Computing

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.

    1993-01-01

    Distributed computing systems are proliferating, owing to the availability of powerful, affordable microcomputers and inexpensive communication networks. A critical problem in developing such systems is getting application programs to interact with one another across a computer network. Remote interprogram connectivity is particularly challenging across heterogeneous environments, where applications run on different kinds of computers and operating systems. NetWorks! (trademark) is an innovative software product that provides an object-oriented messaging solution to these problems. This paper describes the design and functionality of NetWorks! and illustrates how it is being used to build complex distributed applications for NASA and in the commercial sector.

  5. Modeling Electrostatic Fields Generated by Internal Charging of Materials in Space Radiation Environments

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.

    2011-01-01

    Internal charging is a risk to spacecraft in energetic electron environments. DICTAT, NU MIT computational codes are the most widely used engineering tools for evaluating internal charging of insulator materials exposed to these environments. Engineering tools are designed for rapid evaluation of ESD threats, but there is a need for more physics based models for investigating the science of materials interactions with energetic electron environments. Current tools are limited by the physics included in the models and ease of user implementation .... additional development work is needed to improve models.

  6. Desktop Publishing: A Powerful Tool for Advanced Composition Courses.

    ERIC Educational Resources Information Center

    Sullivan, Patricia

    1988-01-01

    Examines the advantages of using desktop publishing in advanced writing classes. Explains how desktop publishing can spur creativity, call attention to the interaction between words and pictures, encourage the social dimensions of computing and composing, and provide students with practical skills. (MM)

  7. Discovering Tradeoffs, Vulnerabilities, and Dependencies within Water Resources Systems

    NASA Astrophysics Data System (ADS)

    Reed, P. M.

    2015-12-01

    There is a growing recognition and interest in using emerging computational tools for discovering the tradeoffs that emerge across complex combinations infrastructure options, adaptive operations, and sign posts. As a field concerned with "deep uncertainties", it is logically consistent to include a more direct acknowledgement that our choices for dealing with computationally demanding simulations, advanced search algorithms, and sensitivity analysis tools are themselves subject to failures that could adversely bias our understanding of how systems' vulnerabilities change with proposed actions. Balancing simplicity versus complexity in our computational frameworks is nontrivial given that we are often exploring high impact irreversible decisions. It is not always clear that accepted models even encompass important failure modes. Moreover as they become more complex and computationally demanding the benefits and consequences of simplifications are often untested. This presentation discusses our efforts to address these challenges through our "many-objective robust decision making" (MORDM) framework for the design and management water resources systems. The MORDM framework has four core components: (1) elicited problem conception and formulation, (2) parallel many-objective search, (3) interactive visual analytics, and (4) negotiated selection of robust alternatives. Problem conception and formulation is the process of abstracting a practical design problem into a mathematical representation. We build on the emerging work in visual analytics to exploit interactive visualization of both the design space and the objective space in multiple heterogeneous linked views that permit exploration and discovery. Many-objective search produces tradeoff solutions from potentially competing problem formulations that can each consider up to ten conflicting objectives based on current computational search capabilities. Negotiated design selection uses interactive visualization, reformulation, and optimization to discover desirable designs for implementation. Multi-city urban water supply portfolio planning will be used to illustrate the MORDM framework.

  8. a Web-Based Interactive Tool for Multi-Resolution 3d Models of a Maya Archaeological Site

    NASA Astrophysics Data System (ADS)

    Agugiaro, G.; Remondino, F.; Girardi, G.; von Schwerin, J.; Richards-Rissetto, H.; De Amicis, R.

    2011-09-01

    Continuous technological advances in surveying, computing and digital-content delivery are strongly contributing to a change in the way Cultural Heritage is "perceived": new tools and methodologies for documentation, reconstruction and research are being created to assist not only scholars, but also to reach more potential users (e.g. students and tourists) willing to access more detailed information about art history and archaeology. 3D computer-simulated models, sometimes set in virtual landscapes, offer for example the chance to explore possible hypothetical reconstructions, while on-line GIS resources can help interactive analyses of relationships and change over space and time. While for some research purposes a traditional 2D approach may suffice, this is not the case for more complex analyses concerning spatial and temporal features of architecture, like for example the relationship of architecture and landscape, visibility studies etc. The project aims therefore at creating a tool, called "QueryArch3D" tool, which enables the web-based visualisation and queries of an interactive, multi-resolution 3D model in the framework of Cultural Heritage. More specifically, a complete Maya archaeological site, located in Copan (Honduras), has been chosen as case study to test and demonstrate the platform's capabilities. Much of the site has been surveyed and modelled at different levels of detail (LoD) and the geometric model has been semantically segmented and integrated with attribute data gathered from several external data sources. The paper describes the characteristics of the research work, along with its implementation issues and the initial results of the developed prototype.

  9. Patient-specific surgical planning and hemodynamic computational fluid dynamics optimization through free-form haptic anatomy editing tool (SURGEM).

    PubMed

    Pekkan, Kerem; Whited, Brian; Kanter, Kirk; Sharma, Shiva; de Zelicourt, Diane; Sundareswaran, Kartik; Frakes, David; Rossignac, Jarek; Yoganathan, Ajit P

    2008-11-01

    The first version of an anatomy editing/surgical planning tool (SURGEM) targeting anatomical complexity and patient-specific computational fluid dynamics (CFD) analysis is presented. Novel three-dimensional (3D) shape editing concepts and human-shape interaction technologies have been integrated to facilitate interactive surgical morphology alterations, grid generation and CFD analysis. In order to implement "manual hemodynamic optimization" at the surgery planning phase for patients with congenital heart defects, these tools are applied to design and evaluate possible modifications of patient-specific anatomies. In this context, anatomies involve complex geometric topologies and tortuous 3D blood flow pathways with multiple inlets and outlets. These tools make it possible to freely deform the lumen surface and to bend and position baffles through real-time, direct manipulation of the 3D models with both hands, thus eliminating the tedious and time-consuming phase of entering the desired geometry using traditional computer-aided design (CAD) systems. The 3D models of the modified anatomies are seamlessly exported and meshed for patient-specific CFD analysis. Free-formed anatomical modifications are quantified using an in-house skeletization based cross-sectional geometry analysis tool. Hemodynamic performance of the systematically modified anatomies is compared with the original anatomy using CFD. CFD results showed the relative importance of the various surgically created features such as pouch size, vena cave to pulmonary artery (PA) flare and PA stenosis. An interactive surgical-patch size estimator is also introduced. The combined design/analysis cycle time is used for comparing and optimizing surgical plans and improvements are tabulated. The reduced cost of patient-specific shape design and analysis process, made it possible to envision large clinical studies to assess the validity of predictive patient-specific CFD simulations. In this paper, model anatomical design studies are performed on a total of eight different complex patient specific anatomies. Using SURGEM, more than 30 new anatomical designs (or candidate configurations) are created, and the corresponding user times presented. CFD performances for eight of these candidate configurations are also presented.

  10. Sedimentation equilibrium analysis of protein interactions with global implicit mass conservation constraints and systematic noise decomposition.

    PubMed

    Vistica, Jennifer; Dam, Julie; Balbo, Andrea; Yikilmaz, Emine; Mariuzza, Roy A; Rouault, Tracey A; Schuck, Peter

    2004-03-15

    Sedimentation equilibrium is a powerful tool for the characterization of protein self-association and heterogeneous protein interactions. Frequently, it is applied in a configuration with relatively long solution columns and with equilibrium profiles being acquired sequentially at several rotor speeds. The present study proposes computational tools, implemented in the software SEDPHAT, for the global analysis of equilibrium data at multiple rotor speeds with multiple concentrations and multiple optical detection methods. The detailed global modeling of such equilibrium data can be a nontrivial computational problem. It was shown previously that mass conservation constraints can significantly improve and extend the analysis of heterogeneous protein interactions. Here, a method for using conservation of mass constraints for the macromolecular redistribution is proposed in which the effective loading concentrations are calculated from the sedimentation equilibrium profiles. The approach is similar to that described by Roark (Biophys. Chem. 5 (1976) 185-196), but its utility is extended by determining the bottom position of the solution columns from the macromolecular redistribution. For analyzing heterogeneous associations at multiple protein concentrations, additional constraints that relate the effective loading concentrations of the different components or their molar ratio in the global analysis are introduced. Equilibrium profiles at multiple rotor speeds also permit the algebraic determination of radial-dependent baseline profiles, which can govern interference optical ultracentrifugation data, but usually also occur, to a smaller extent, in absorbance optical data. Finally, the global analysis of equilibrium profiles at multiple rotor speeds with implicit mass conservation and computation of the bottom of the solution column provides an unbiased scale for determining molar mass distributions of noninteracting species. The properties of these tools are studied with theoretical and experimental data sets.

  11. Model-Based Design of Air Traffic Controller-Automation Interaction

    NASA Technical Reports Server (NTRS)

    Romahn, Stephan; Callantine, Todd J.; Palmer, Everett A.; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    A model of controller and automation activities was used to design the controller-automation interactions necessary to implement a new terminal area air traffic management concept. The model was then used to design a controller interface that provides the requisite information and functionality. Using data from a preliminary study, the Crew Activity Tracking System (CATS) was used to help validate the model as a computational tool for describing controller performance.

  12. Multiscale atomistic simulation of metal-oxygen surface interactions: Methodological development, theoretical investigation, and correlation with experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Judith C.

    The purpose of this grant is to develop the multi-scale theoretical methods to describe the nanoscale oxidation of metal thin films, as the PI (Yang) extensive previous experience in the experimental elucidation of the initial stages of Cu oxidation by primarily in situ transmission electron microscopy methods. Through the use and development of computational tools at varying length (and time) scales, from atomistic quantum mechanical calculation, force field mesoscale simulations, to large scale Kinetic Monte Carlo (KMC) modeling, the fundamental underpinings of the initial stages of Cu oxidation have been elucidated. The development of computational modeling tools allows for acceleratedmore » materials discovery. The theoretical tools developed from this program impact a wide range of technologies that depend on surface reactions, including corrosion, catalysis, and nanomaterials fabrication.« less

  13. Implementing WebGL and HTML5 in Macromolecular Visualization and Modern Computer-Aided Drug Design.

    PubMed

    Yuan, Shuguang; Chan, H C Stephen; Hu, Zhenquan

    2017-06-01

    Web browsers have long been recognized as potential platforms for remote macromolecule visualization. However, the difficulty in transferring large-scale data to clients and the lack of native support for hardware-accelerated applications in the local browser undermine the feasibility of such utilities. With the introduction of WebGL and HTML5 technologies in recent years, it is now possible to exploit the power of a graphics-processing unit (GPU) from a browser without any third-party plugin. Many new tools have been developed for biological molecule visualization and modern drug discovery. In contrast to traditional offline tools, real-time computing, interactive data analysis, and cross-platform analyses feature WebGL- and HTML5-based tools, facilitating biological research in a more efficient and user-friendly way. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Use of Continuous Integration Tools for Application Performance Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vergara Larrea, Veronica G; Joubert, Wayne; Fuson, Christopher B

    High performance computing systems are becom- ing increasingly complex, both in node architecture and in the multiple layers of software stack required to compile and run applications. As a consequence, the likelihood is increasing for application performance regressions to occur as a result of routine upgrades of system software components which interact in complex ways. The purpose of this study is to evaluate the effectiveness of continuous integration tools for application performance monitoring on HPC systems. In addition, this paper also describes a prototype system for application perfor- mance monitoring based on Jenkins, a Java-based continuous integration tool. The monitoringmore » system described leverages several features in Jenkins to track application performance results over time. Preliminary results and lessons learned from monitoring applications on Cray systems at the Oak Ridge Leadership Computing Facility are presented.« less

  15. Continuum Electrostatics Approaches to Calculating pKas and Ems in Proteins.

    PubMed

    Gunner, M R; Baker, N A

    2016-01-01

    Proteins change their charge state through protonation and redox reactions as well as through binding charged ligands. The free energy of these reactions is dominated by solvation and electrostatic energies and modulated by protein conformational relaxation in response to the ionization state changes. Although computational methods for calculating these interactions can provide very powerful tools for predicting protein charge states, they include several critical approximations of which users should be aware. This chapter discusses the strengths, weaknesses, and approximations of popular computational methods for predicting charge states and understanding the underlying electrostatic interactions. The goal of this chapter is to inform users about applications and potential caveats of these methods as well as outline directions for future theoretical and computational research. © 2016 Elsevier Inc. All rights reserved.

  16. Use of cloud computing technology in natural hazard assessment and emergency management

    NASA Astrophysics Data System (ADS)

    Webley, P. W.; Dehn, J.

    2015-12-01

    During a natural hazard event, the most up-to-date data needs to be in the hands of those on the front line. Decision support system tools can be developed to provide access to pre-made outputs to quickly assess the hazard and potential risk. However, with the ever growing availability of new satellite data as well as ground and airborne data generated in real-time there is a need to analyze the large volumes of data in an easy-to-access and effective environment. With the growth in the use of cloud computing, where the analysis and visualization system can grow with the needs of the user, then these facilities can used to provide this real-time analysis. Think of a central command center uploading the data to the cloud compute system and then those researchers in-the-field connecting to a web-based tool to view the newly acquired data. New data can be added by any user and then viewed instantly by anyone else in the organization through the cloud computing interface. This provides the ideal tool for collaborative data analysis, hazard assessment and decision making. We present the rationale for developing a cloud computing systems and illustrate how this tool can be developed for use in real-time environments. Users would have access to an interactive online image analysis tool without the need for specific remote sensing software on their local system therefore increasing their understanding of the ongoing hazard and mitigate its impact on the surrounding region.

  17. Applications of the pipeline environment for visual informatics and genomics computations

    PubMed Central

    2011-01-01

    Background Contemporary informatics and genomics research require efficient, flexible and robust management of large heterogeneous data, advanced computational tools, powerful visualization, reliable hardware infrastructure, interoperability of computational resources, and detailed data and analysis-protocol provenance. The Pipeline is a client-server distributed computational environment that facilitates the visual graphical construction, execution, monitoring, validation and dissemination of advanced data analysis protocols. Results This paper reports on the applications of the LONI Pipeline environment to address two informatics challenges - graphical management of diverse genomics tools, and the interoperability of informatics software. Specifically, this manuscript presents the concrete details of deploying general informatics suites and individual software tools to new hardware infrastructures, the design, validation and execution of new visual analysis protocols via the Pipeline graphical interface, and integration of diverse informatics tools via the Pipeline eXtensible Markup Language syntax. We demonstrate each of these processes using several established informatics packages (e.g., miBLAST, EMBOSS, mrFAST, GWASS, MAQ, SAMtools, Bowtie) for basic local sequence alignment and search, molecular biology data analysis, and genome-wide association studies. These examples demonstrate the power of the Pipeline graphical workflow environment to enable integration of bioinformatics resources which provide a well-defined syntax for dynamic specification of the input/output parameters and the run-time execution controls. Conclusions The LONI Pipeline environment http://pipeline.loni.ucla.edu provides a flexible graphical infrastructure for efficient biomedical computing and distributed informatics research. The interactive Pipeline resource manager enables the utilization and interoperability of diverse types of informatics resources. The Pipeline client-server model provides computational power to a broad spectrum of informatics investigators - experienced developers and novice users, user with or without access to advanced computational-resources (e.g., Grid, data), as well as basic and translational scientists. The open development, validation and dissemination of computational networks (pipeline workflows) facilitates the sharing of knowledge, tools, protocols and best practices, and enables the unbiased validation and replication of scientific findings by the entire community. PMID:21791102

  18. An Interactive, Integrated, Instructional Pathway to the LEAD Science Gateway

    NASA Astrophysics Data System (ADS)

    Yalda, S.; Clark, R.; Davis, L.; Wiziecki, E. N.

    2008-12-01

    Linked Environments for Atmospheric Discovery (LEAD) is a bold and revolutionary paradigm that through a Web-based Service Oriented Architecture (SOA) exposes the user to a rich environment of data, models, data mining and visualization and analysis tools, enabling the user to ask science questions of applications while the complexity of the software and middleware managing these applications is hidden from the user. From its inception in 2003, LEAD has championed goals that have context for the future of weather and related research and education. LEAD espouses to lowering the barrier for using complex end-to-end weather technologies by a) democratizing the availability of advanced weather technologies, b) empowering the user of these technologies to tackle a variety of problems, and c) facilitating learning and understanding. LEAD, as it exists today, is poised to enable a diverse community of scientists, educators, students, and operational practitioners. The project has been informed by atmospheric and computer scientists, educators, and educational consultants who, in search of new knowledge, understanding, ideas, and learning methodologies, seek easy access to new capabilities that allow for user-directed and interactive query and acquisition, simulation, assimilation, data mining, computational modeling, and visualization. As one component of the total LEAD effort, the LEAD education team has designed interactive, integrated, instructional pathways within a set of learning modules (LEAD-to-Learn) to facilitate, enhance, and enable the use of the LEAD gateway in the classroom. The LEAD education initiative focuses on the means to integrate data, tools, and services used by researchers into undergraduate meteorology education in order to provide an authentic and contextualized environment for teaching and learning. Educators, educational specialists, and students from meteorology and computer science backgrounds have collaborated on the design and development of learning materials, as well as new tools and features, to enhance the appearance and use of the LEAD portal gateway and its underlying cyberinfrastructure in an educational setting. The development of educational materials has centered on promoting the accessibility and use of meteorological data and analysis tools through the LEAD portal by providing instructional materials, additional custom designed tools that build off of Unidata's Integrated Data Viewer (IDV) (e.g. IDV Basic and NCDestroyer), and an interactive component that takes the user through specific tasks utilizing multiple tools. In fact, select improvements to parameter lists and domain subsetting have inspired IDV developers to incorporate changes in IDV revisions that are now available to the entire community. This collection of materials, demonstrations, interactive guides, student exercises, and customized tools, which are now available to the educator and student through the LEAD portal gateway, can serve as an instructional pathway for a set of guided, phenomenon-based exercises (e.g. fronts, lake-effect snows, etc.). This paper will provide an overview of the LEAD education and outreach efforts with a focus on the design of Web-based educational materials and instructional approaches for user interaction with the LEAD portal gateway and the underlying cyberinfrastructure, and will encourage educators, especially those involved in undergraduate meteorology education, to begin incorporating these capabilities into their course materials.

  19. A computational continuum model of poroelastic beds

    PubMed Central

    Zampogna, G. A.

    2017-01-01

    Despite the ubiquity of fluid flows interacting with porous and elastic materials, we lack a validated non-empirical macroscale method for characterizing the flow over and through a poroelastic medium. We propose a computational tool to describe such configurations by deriving and validating a continuum model for the poroelastic bed and its interface with the above free fluid. We show that, using stress continuity condition and slip velocity condition at the interface, the effective model captures the effects of small changes in the microstructure anisotropy correctly and predicts the overall behaviour in a physically consistent and controllable manner. Moreover, we show that the performance of the effective model is accurate by validating with fully microscopic resolved simulations. The proposed computational tool can be used in investigations in a wide range of fields, including mechanical engineering, bio-engineering and geophysics. PMID:28413355

  20. Exploring JavaScript and ROOT technologies to create Web-based ATLAS analysis and monitoring tools

    NASA Astrophysics Data System (ADS)

    Sánchez Pineda, A.

    2015-12-01

    We explore the potential of current web applications to create online interfaces that allow the visualization, interaction and real cut-based physics analysis and monitoring of processes through a web browser. The project consists in the initial development of web- based and cloud computing services to allow students and researchers to perform fast and very useful cut-based analysis on a browser, reading and using real data and official Monte- Carlo simulations stored in ATLAS computing facilities. Several tools are considered: ROOT, JavaScript and HTML. Our study case is the current cut-based H → ZZ → llqq analysis of the ATLAS experiment. Preliminary but satisfactory results have been obtained online.

  1. Transportable Applications Environment Plus, Version 5.1

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Transportable Applications Environment Plus (TAE+) computer program providing integrated, portable programming environment for developing and running application programs based on interactive windows, text, and graphical objects. Enables both programmers and nonprogrammers to construct own custom application interfaces easily and to move interfaces and application programs to different computers. Used to define corporate user interface, with noticeable improvements in application developer's and end user's learning curves. Main components are; WorkBench, What You See Is What You Get (WYSIWYG) software tool for design and layout of user interface; and WPT (Window Programming Tools) Package, set of callable subroutines controlling user interface of application program. WorkBench and WPT's written in C++, and remaining code written in C.

  2. A mobile tool about causes and distribution of dramatic natural phenomena

    NASA Astrophysics Data System (ADS)

    Boppidi, Ravikanth Reddy

    Most Research suggests that tablet computers could aid the study of many scientific concepts that are difficult to grasp, such as places, time and statistics. These occur especially in the study of geology, chemistry, biology and so on. Tapping the technology will soon become critical career training for future generations. Teaching through mobile is more interactive and helps students to grasp quickly. In this thesis an interactive mobile tool is developed which explains about the causes and distribution of natural disasters like Earthquakes, Tsunami, Tropical Cyclones, Volcanic Eruptions and Tornadoes. The application shows the places of disasters on an interactive map and it also contains YouTube embedded videos, which explain the disasters visually. The advantage of this tool is, it can be deployed onto major mobile operating systems like Android and IOS. The application's user interface (UI) is made very responsive using D3 JavaScript, JQuery, Java Script, HTML, CSS so that it can adapt to mobiles, tablets, and desktop screens.

  3. Computational challenges of structure-based approaches applied to HIV.

    PubMed

    Forli, Stefano; Olson, Arthur J

    2015-01-01

    Here, we review some of the opportunities and challenges that we face in computational modeling of HIV therapeutic targets and structural biology, both in terms of methodology development and structure-based drug design (SBDD). Computational methods have provided fundamental support to HIV research since the initial structural studies, helping to unravel details of HIV biology. Computational models have proved to be a powerful tool to analyze and understand the impact of mutations and to overcome their structural and functional influence in drug resistance. With the availability of structural data, in silico experiments have been instrumental in exploiting and improving interactions between drugs and viral targets, such as HIV protease, reverse transcriptase, and integrase. Issues such as viral target dynamics and mutational variability, as well as the role of water and estimates of binding free energy in characterizing ligand interactions, are areas of active computational research. Ever-increasing computational resources and theoretical and algorithmic advances have played a significant role in progress to date, and we envision a continually expanding role for computational methods in our understanding of HIV biology and SBDD in the future.

  4. Mechanistic Indicators of Childhood Asthma (MICA): piloting an integrative design for evaluating environmental health

    EPA Science Inventory

    Background: Modem methods in molecular biology and advanced computational tools show promise in elucidating complex interactions that occur between genes and environmental factors in diseases such as asthma; however appropriately designed studies are critical for these methods to...

  5. A System for Modelling Cell–Cell Interactions during Plant Morphogenesis

    PubMed Central

    Dupuy, Lionel; Mackenzie, Jonathan; Rudge, Tim; Haseloff, Jim

    2008-01-01

    Background and aims During the development of multicellular organisms, cells are capable of interacting with each other through a range of biological and physical mechanisms. A description of these networks of cell–cell interactions is essential for an understanding of how cellular activity is co-ordinated in regionalized functional entities such as tissues or organs. The difficulty of experimenting on living tissues has been a major limitation to describing such systems, and computer modelling appears particularly helpful to characterize the behaviour of multicellular systems. The experimental difficulties inherent to the multitude of parallel interactions that underlie cellular morphogenesis have led to the need for computer models. Methods A new generic model of plant cellular morphogenesis is described that expresses interactions amongst cellular entities explicitly: the plant is described as a multi-scale structure, and interactions between distinct entities is established through a topological neighbourhood. Tissues are represented as 2D biphasic systems where the cell wall responds to turgor pressure through a viscous yielding of the cell wall. Key Results This principle was used in the development of the CellModeller software, a generic tool dedicated to the analysis and modelling of plant morphogenesis. The system was applied to three contrasting study cases illustrating genetic, hormonal and mechanical factors involved in plant morphogenesis. Conclusions Plant morphogenesis is fundamentally a cellular process and the CellModeller software, through its underlying generic model, provides an advanced research tool to analyse coupled physical and biological morphogenetic mechanisms. PMID:17921524

  6. Open source tools for large-scale neuroscience.

    PubMed

    Freeman, Jeremy

    2015-06-01

    New technologies for monitoring and manipulating the nervous system promise exciting biology but pose challenges for analysis and computation. Solutions can be found in the form of modern approaches to distributed computing, machine learning, and interactive visualization. But embracing these new technologies will require a cultural shift: away from independent efforts and proprietary methods and toward an open source and collaborative neuroscience. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  7. Global Static Indexing for Real-Time Exploration of Very Large Regular Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pascucci, V; Frank, R

    2001-07-23

    In this paper we introduce a new indexing scheme for progressive traversal and visualization of large regular grids. We demonstrate the potential of our approach by providing a tool that displays at interactive rates planar slices of scalar field data with very modest computing resources. We obtain unprecedented results both in terms of absolute performance and, more importantly, in terms of scalability. On a laptop computer we provide real time interaction with a 2048{sup 3} grid (8 Giga-nodes) using only 20MB of memory. On an SGI Onyx we slice interactively an 8192{sup 3} grid (1/2 tera-nodes) using only 60MB ofmore » memory. The scheme relies simply on the determination of an appropriate reordering of the rectilinear grid data and a progressive construction of the output slice. The reordering minimizes the amount of I/O performed during the out-of-core computation. The progressive and asynchronous computation of the output provides flexible quality/speed tradeoffs and a time-critical and interruptible user interface.« less

  8. An Interactive Computer Tool for Teaching About Desalination and Managing Water Demand in the US

    NASA Astrophysics Data System (ADS)

    Ziolkowska, J. R.; Reyes, R.

    2016-12-01

    This paper presents an interactive tool to geospatially and temporally analyze desalination developments and trends in the US in the time span 1950-2013, its current contribution to satisfying water demands and its future potentials. The computer tool is open access and can be used by any user with Internet connection, thus facilitating interactive learning about water resources. The tool can also be used by stakeholders and policy makers for decision-making support and with designing sustainable water management strategies. Desalination technology has been acknowledged as a solution to a sustainable water demand management stemming from many sectors, including municipalities, industry, agriculture, power generation, and other users. Desalination has been applied successfully in the US and many countries around the world since 1950s. As of 2013, around 1,336 desalination plants were operating in the US alone, with a daily production capacity of 2 BGD (billion gallons per day) (GWI, 2013). Despite a steady increase in the number of new desalination plants and growing production capacity, in many regions, the costs of desalination are still prohibitive. At the same time, the technology offers a tremendous potential for `enormous supply expansion that exceeds all likely demands' (Chowdhury et al., 2013). The model and tool are based on data from Global Water Intelligence (GWI, 2013). The analysis shows that more than 90% of all the plants in the US are small-scale plants with the capacity below 4.31 MGD. Most of the plants (and especially larger plants) are located on the US East Coast, as well as in California, Texas, Oklahoma, and Florida. The models and the tool provide information about economic feasibility of potential new desalination plants based on the access to feed water, energy sources, water demand, and experiences of other plants in that region.

  9. Advanced techniques in reliability model representation and solution

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.; Nicol, David M.

    1992-01-01

    The current tendency of flight control system designs is towards increased integration of applications and increased distribution of computational elements. The reliability analysis of such systems is difficult because subsystem interactions are increasingly interdependent. Researchers at NASA Langley Research Center have been working for several years to extend the capability of Markov modeling techniques to address these problems. This effort has been focused in the areas of increased model abstraction and increased computational capability. The reliability model generator (RMG) is a software tool that uses as input a graphical object-oriented block diagram of the system. RMG uses a failure-effects algorithm to produce the reliability model from the graphical description. The ASSURE software tool is a parallel processing program that uses the semi-Markov unreliability range evaluator (SURE) solution technique and the abstract semi-Markov specification interface to the SURE tool (ASSIST) modeling language. A failure modes-effects simulation is used by ASSURE. These tools were used to analyze a significant portion of a complex flight control system. The successful combination of the power of graphical representation, automated model generation, and parallel computation leads to the conclusion that distributed fault-tolerant system architectures can now be analyzed.

  10. Knowledge-acquisition tools for medical knowledge-based systems.

    PubMed

    Lanzola, G; Quaglini, S; Stefanelli, M

    1995-03-01

    Knowledge-based systems (KBS) have been proposed to solve a large variety of medical problems. A strategic issue for KBS development and maintenance are the efforts required for both knowledge engineers and domain experts. The proposed solution is building efficient knowledge acquisition (KA) tools. This paper presents a set of KA tools we are developing within a European Project called GAMES II. They have been designed after the formulation of an epistemological model of medical reasoning. The main goal is that of developing a computational framework which allows knowledge engineers and domain experts to interact cooperatively in developing a medical KBS. To this aim, a set of reusable software components is highly recommended. Their design was facilitated by the development of a methodology for KBS construction. It views this process as comprising two activities: the tailoring of the epistemological model to the specific medical task to be executed and the subsequent translation of this model into a computational architecture so that the connections between computational structures and their knowledge level counterparts are maintained. The KA tools we developed are illustrated taking examples from the behavior of a KBS we are building for the management of children with acute myeloid leukemia.

  11. NVIDIA OptiX ray-tracing engine as a new tool for modelling medical imaging systems

    NASA Astrophysics Data System (ADS)

    Pietrzak, Jakub; Kacperski, Krzysztof; Cieślar, Marek

    2015-03-01

    The most accurate technique to model the X- and gamma radiation path through a numerically defined object is the Monte Carlo simulation which follows single photons according to their interaction probabilities. A simplified and much faster approach, which just integrates total interaction probabilities along selected paths, is known as ray tracing. Both techniques are used in medical imaging for simulating real imaging systems and as projectors required in iterative tomographic reconstruction algorithms. These approaches are ready for massive parallel implementation e.g. on Graphics Processing Units (GPU), which can greatly accelerate the computation time at a relatively low cost. In this paper we describe the application of the NVIDIA OptiX ray-tracing engine, popular in professional graphics and rendering applications, as a new powerful tool for X- and gamma ray-tracing in medical imaging. It allows the implementation of a variety of physical interactions of rays with pixel-, mesh- or nurbs-based objects, and recording any required quantities, like path integrals, interaction sites, deposited energies, and others. Using the OptiX engine we have implemented a code for rapid Monte Carlo simulations of Single Photon Emission Computed Tomography (SPECT) imaging, as well as the ray-tracing projector, which can be used in reconstruction algorithms. The engine generates efficient, scalable and optimized GPU code, ready to run on multi GPU heterogeneous systems. We have compared the results our simulations with the GATE package. With the OptiX engine the computation time of a Monte Carlo simulation can be reduced from days to minutes.

  12. GBOOST: a GPU-based tool for detecting gene-gene interactions in genome-wide case control studies.

    PubMed

    Yung, Ling Sing; Yang, Can; Wan, Xiang; Yu, Weichuan

    2011-05-01

    Collecting millions of genetic variations is feasible with the advanced genotyping technology. With a huge amount of genetic variations data in hand, developing efficient algorithms to carry out the gene-gene interaction analysis in a timely manner has become one of the key problems in genome-wide association studies (GWAS). Boolean operation-based screening and testing (BOOST), a recent work in GWAS, completes gene-gene interaction analysis in 2.5 days on a desktop computer. Compared with central processing units (CPUs), graphic processing units (GPUs) are highly parallel hardware and provide massive computing resources. We are, therefore, motivated to use GPUs to further speed up the analysis of gene-gene interactions. We implement the BOOST method based on a GPU framework and name it GBOOST. GBOOST achieves a 40-fold speedup compared with BOOST. It completes the analysis of Wellcome Trust Case Control Consortium Type 2 Diabetes (WTCCC T2D) genome data within 1.34 h on a desktop computer equipped with Nvidia GeForce GTX 285 display card. GBOOST code is available at http://bioinformatics.ust.hk/BOOST.html#GBOOST.

  13. Roles for Agent Assistants in Field Science: Understanding Personal Projects and Collaboration

    NASA Technical Reports Server (NTRS)

    Clancey, William J.

    2003-01-01

    A human-centered approach to computer systems design involves reframing analysis in terms of the people interacting with each other. The primary concern is not how people can interact with computers, but how shall we design work systems (facilities, tools, roles, and procedures) to help people pursue their personal projects, as they work independently and collaboratively? Two case studies provide empirical requirements. First, an analysis of astronaut interactions with CapCom on Earth during one traverse of Apollo 17 shows what kind of information was conveyed and what might be automated today. A variety of agent and robotic technologies are proposed that deal with recurrent problems in communication and coordination during the analyzed traverse. Second, an analysis of biologists and a geologist working at Haughton Crater in the High Canadian Arctic reveals how work interactions between people involve independent personal projects, sensitively coordinated for mutual benefit. In both cases, an agent or robotic system's role would be to assist people, rather than collaborating, because today's computer systems lack the identity and purpose that consciousness provides.

  14. Determining Effects of Non-synonymous SNPs on Protein-Protein Interactions using Supervised and Semi-supervised Learning

    PubMed Central

    Zhao, Nan; Han, Jing Ginger; Shyu, Chi-Ren; Korkin, Dmitry

    2014-01-01

    Single nucleotide polymorphisms (SNPs) are among the most common types of genetic variation in complex genetic disorders. A growing number of studies link the functional role of SNPs with the networks and pathways mediated by the disease-associated genes. For example, many non-synonymous missense SNPs (nsSNPs) have been found near or inside the protein-protein interaction (PPI) interfaces. Determining whether such nsSNP will disrupt or preserve a PPI is a challenging task to address, both experimentally and computationally. Here, we present this task as three related classification problems, and develop a new computational method, called the SNP-IN tool (non-synonymous SNP INteraction effect predictor). Our method predicts the effects of nsSNPs on PPIs, given the interaction's structure. It leverages supervised and semi-supervised feature-based classifiers, including our new Random Forest self-learning protocol. The classifiers are trained based on a dataset of comprehensive mutagenesis studies for 151 PPI complexes, with experimentally determined binding affinities of the mutant and wild-type interactions. Three classification problems were considered: (1) a 2-class problem (strengthening/weakening PPI mutations), (2) another 2-class problem (mutations that disrupt/preserve a PPI), and (3) a 3-class classification (detrimental/neutral/beneficial mutation effects). In total, 11 different supervised and semi-supervised classifiers were trained and assessed resulting in a promising performance, with the weighted f-measure ranging from 0.87 for Problem 1 to 0.70 for the most challenging Problem 3. By integrating prediction results of the 2-class classifiers into the 3-class classifier, we further improved its performance for Problem 3. To demonstrate the utility of SNP-IN tool, it was applied to study the nsSNP-induced rewiring of two disease-centered networks. The accurate and balanced performance of SNP-IN tool makes it readily available to study the rewiring of large-scale protein-protein interaction networks, and can be useful for functional annotation of disease-associated SNPs. SNIP-IN tool is freely accessible as a web-server at http://korkinlab.org/snpintool/. PMID:24784581

  15. TopoMS: Comprehensive topological exploration for molecular and condensed-matter systems.

    PubMed

    Bhatia, Harsh; Gyulassy, Attila G; Lordi, Vincenzo; Pask, John E; Pascucci, Valerio; Bremer, Peer-Timo

    2018-06-15

    We introduce TopoMS, a computational tool enabling detailed topological analysis of molecular and condensed-matter systems, including the computation of atomic volumes and charges through the quantum theory of atoms in molecules, as well as the complete molecular graph. With roots in techniques from computational topology, and using a shared-memory parallel approach, TopoMS provides scalable, numerically robust, and topologically consistent analysis. TopoMS can be used as a command-line tool or with a GUI (graphical user interface), where the latter also enables an interactive exploration of the molecular graph. This paper presents algorithmic details of TopoMS and compares it with state-of-the-art tools: Bader charge analysis v1.0 (Arnaldsson et al., 01/11/17) and molecular graph extraction using Critic2 (Otero-de-la-Roza et al., Comput. Phys. Commun. 2014, 185, 1007). TopoMS not only combines the functionality of these individual codes but also demonstrates up to 4× performance gain on a standard laptop, faster convergence to fine-grid solution, robustness against lattice bias, and topological consistency. TopoMS is released publicly under BSD License. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  16. Mathematical and computational approaches can complement experimental studies of host-pathogen interactions.

    PubMed

    Kirschner, Denise E; Linderman, Jennifer J

    2009-04-01

    In addition to traditional and novel experimental approaches to study host-pathogen interactions, mathematical and computer modelling have recently been applied to address open questions in this area. These modelling tools not only offer an additional avenue for exploring disease dynamics at multiple biological scales, but also complement and extend knowledge gained via experimental tools. In this review, we outline four examples where modelling has complemented current experimental techniques in a way that can or has already pushed our knowledge of host-pathogen dynamics forward. Two of the modelling approaches presented go hand in hand with articles in this issue exploring fluorescence resonance energy transfer and two-photon intravital microscopy. Two others explore virtual or 'in silico' deletion and depletion as well as a new method to understand and guide studies in genetic epidemiology. In each of these examples, the complementary nature of modelling and experiment is discussed. We further note that multi-scale modelling may allow us to integrate information across length (molecular, cellular, tissue, organism, population) and time (e.g. seconds to lifetimes). In sum, when combined, these compatible approaches offer new opportunities for understanding host-pathogen interactions.

  17. Visualization of particle interactions in granular media.

    PubMed

    Meier, Holger A; Schlemmer, Michael; Wagner, Christian; Kerren, Andreas; Hagen, Hans; Kuhl, Ellen; Steinmann, Paul

    2008-01-01

    Interaction between particles in so-called granular media, such as soil and sand, plays an important role in the context of geomechanical phenomena and numerous industrial applications. A two scale homogenization approach based on a micro and a macro scale level is briefly introduced in this paper. Computation of granular material in such a way gives a deeper insight into the context of discontinuous materials and at the same time reduces the computational costs. However, the description and the understanding of the phenomena in granular materials are not yet satisfactory. A sophisticated problem-specific visualization technique would significantly help to illustrate failure phenomena on the microscopic level. As main contribution, we present a novel 2D approach for the visualization of simulation data, based on the above outlined homogenization technique. Our visualization tool supports visualization on micro scale level as well as on macro scale level. The tool shows both aspects closely arranged in form of multiple coordinated views to give users the possibility to analyze the particle behavior effectively. A novel type of interactive rose diagrams was developed to represent the dynamic contact networks on the micro scale level in a condensed and efficient way.

  18. Rule based design of conceptual models for formative evaluation

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Chang, Kai; Hale, Joseph P.; Bester, Terri; Rix, Thomas; Wang, Yaowen

    1994-01-01

    A Human-Computer Interface (HCI) Prototyping Environment with embedded evaluation capability has been investigated. This environment will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. This environment, which allows for rapid prototyping and evaluation of graphical interfaces, includes the following four components: (1) a HCI development tool; (2) a low fidelity simulator development tool; (3) a dynamic, interactive interface between the HCI and the simulator; and (4) an embedded evaluator that evaluates the adequacy of a HCI based on a user's performance. The embedded evaluation tool collects data while the user is interacting with the system and evaluates the adequacy of an interface based on a user's performance. This paper describes the design of conceptual models for the embedded evaluation system using a rule-based approach.

  19. Rule based design of conceptual models for formative evaluation

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Chang, Kai; Hale, Joseph P.; Bester, Terri; Rix, Thomas; Wang, Yaowen

    1994-01-01

    A Human-Computer Interface (HCI) Prototyping Environment with embedded evaluation capability has been investigated. This environment will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. This environment, which allows for rapid prototyping and evaluation of graphical interfaces, includes the following four components: (1) a HCI development tool, (2) a low fidelity simulator development tool, (3) a dynamic, interactive interface between the HCI and the simulator, and (4) an embedded evaluator that evaluates the adequacy of a HCI based on a user's performance. The embedded evaluation tool collects data while the user is interacting with the system and evaluates the adequacy of an interface based on a user's performance. This paper describes the design of conceptual models for the embedded evaluation system using a rule-based approach.

  20. Building the Scientific Modeling Assistant: An interactive environment for specialized software design

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.

    1991-01-01

    The construction of scientific software models is an integral part of doing science, both within NASA and within the scientific community at large. Typically, model-building is a time-intensive and painstaking process, involving the design of very large, complex computer programs. Despite the considerable expenditure of resources involved, completed scientific models cannot easily be distributed and shared with the larger scientific community due to the low-level, idiosyncratic nature of the implemented code. To address this problem, we have initiated a research project aimed at constructing a software tool called the Scientific Modeling Assistant. This tool provides automated assistance to the scientist in developing, using, and sharing software models. We describe the Scientific Modeling Assistant, and also touch on some human-machine interaction issues relevant to building a successful tool of this type.

  1. Engaging Undergraduate Math Majors in Geoscience Research using Interactive Simulations and Computer Art

    NASA Astrophysics Data System (ADS)

    Matott, L. S.; Hymiak, B.; Reslink, C. F.; Baxter, C.; Aziz, S.

    2012-12-01

    As part of the NSF-sponsored 'URGE (Undergraduate Research Group Experiences) to Compute' program, Dr. Matott has been collaborating with talented Math majors to explore the design of cost-effective systems to safeguard groundwater supplies from contaminated sites. Such activity is aided by a combination of groundwater modeling, simulation-based optimization, and high-performance computing - disciplines largely unfamiliar to the students at the outset of the program. To help train and engage the students, a number of interactive and graphical software packages were utilized. Examples include: (1) a tutorial for exploring the behavior of evolutionary algorithms and other heuristic optimizers commonly used in simulation-based optimization; (2) an interactive groundwater modeling package for exploring alternative pump-and-treat containment scenarios at a contaminated site in Billings, Montana; (3) the R software package for visualizing various concepts related to subsurface hydrology; and (4) a job visualization tool for exploring the behavior of numerical experiments run on a large distributed computing cluster. Further engagement and excitement in the program was fostered by entering (and winning) a computer art competition run by the Coalition for Academic Scientific Computation (CASC). The winning submission visualizes an exhaustively mapped optimization cost surface and dramatically illustrates the phenomena of artificial minima - valley locations that correspond to designs whose costs are only partially optimal.

  2. Geometric modeling for computer aided design

    NASA Technical Reports Server (NTRS)

    Schwing, James L.; Olariu, Stephen

    1995-01-01

    The primary goal of this grant has been the design and implementation of software to be used in the conceptual design of aerospace vehicles particularly focused on the elements of geometric design, graphical user interfaces, and the interaction of the multitude of software typically used in this engineering environment. This has resulted in the development of several analysis packages and design studies. These include two major software systems currently used in the conceptual level design of aerospace vehicles. These tools are SMART, the Solid Modeling Aerospace Research Tool, and EASIE, the Environment for Software Integration and Execution. Additional software tools were designed and implemented to address the needs of the engineer working in the conceptual design environment. SMART provides conceptual designers with a rapid prototyping capability and several engineering analysis capabilities. In addition, SMART has a carefully engineered user interface that makes it easy to learn and use. Finally, a number of specialty characteristics have been built into SMART which allow it to be used efficiently as a front end geometry processor for other analysis packages. EASIE provides a set of interactive utilities that simplify the task of building and executing computer aided design systems consisting of diverse, stand-alone, analysis codes. Resulting in a streamlining of the exchange of data between programs reducing errors and improving the efficiency. EASIE provides both a methodology and a collection of software tools to ease the task of coordinating engineering design and analysis codes.

  3. Transforming Clinical Imaging Data for Virtual Reality Learning Objects

    ERIC Educational Resources Information Center

    Trelease, Robert B.; Rosset, Antoine

    2008-01-01

    Advances in anatomical informatics, three-dimensional (3D) modeling, and virtual reality (VR) methods have made computer-based structural visualization a practical tool for education. In this article, the authors describe streamlined methods for producing VR "learning objects," standardized interactive software modules for anatomical sciences…

  4. Developing Multimedia Courseware for the Internet's Java versus Shockwave.

    ERIC Educational Resources Information Center

    Majchrzak, Tina L.

    1996-01-01

    Describes and compares two methods for developing multimedia courseware for use on the Internet: an authoring tool called Shockwave, and an object-oriented language called Java. Topics include vector graphics, browsers, interaction with network protocols, data security, multithreading, and computer languages versus development environments. (LRW)

  5. Game Theory .net.

    ERIC Educational Resources Information Center

    Shor, Mikhael

    2003-01-01

    States making game theory relevant and accessible to students is challenging. Describes the primary goal of GameTheory.net is to provide interactive teaching tools. Indicates the site strives to unite educators from economics, political and computer science, and ecology by providing a repository of lecture notes and tests for courses using…

  6. An Automated Approach to Instructional Design Guidance.

    ERIC Educational Resources Information Center

    Spector, J. Michael; And Others

    This paper describes the Guided Approach to Instructional Design Advising (GAIDA), an automated instructional design tool that incorporates techniques of artificial intelligence. GAIDA was developed by the U.S. Air Force Armstrong Laboratory to facilitate the planning and production of interactive courseware and computer-based training materials.…

  7. Eye Tracking Based Control System for Natural Human-Computer Interaction

    PubMed Central

    Lin, Shu-Fan

    2017-01-01

    Eye movement can be regarded as a pivotal real-time input medium for human-computer communication, which is especially important for people with physical disability. In order to improve the reliability, mobility, and usability of eye tracking technique in user-computer dialogue, a novel eye control system with integrating both mouse and keyboard functions is proposed in this paper. The proposed system focuses on providing a simple and convenient interactive mode by only using user's eye. The usage flow of the proposed system is designed to perfectly follow human natural habits. Additionally, a magnifier module is proposed to allow the accurate operation. In the experiment, two interactive tasks with different difficulty (searching article and browsing multimedia web) were done to compare the proposed eye control tool with an existing system. The Technology Acceptance Model (TAM) measures are used to evaluate the perceived effectiveness of our system. It is demonstrated that the proposed system is very effective with regard to usability and interface design. PMID:29403528

  8. A computer program for processing impedance cardiographic data: Improving accuracy through user-interactive software

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.; Naifeh, Karen; Thrasher, Chet

    1988-01-01

    This report contains the source code and documentation for a computer program used to process impedance cardiography data. The cardiodynamic measures derived from impedance cardiography are ventricular stroke column, cardiac output, cardiac index and Heather index. The program digitizes data collected from the Minnesota Impedance Cardiograph, Electrocardiography (ECG), and respiratory cycles and then stores these data on hard disk. It computes the cardiodynamic functions using interactive graphics and stores the means and standard deviations of each 15-sec data epoch on floppy disk. This software was designed on a Digital PRO380 microcomputer and used version 2.0 of P/OS, with (minimally) a 4-channel 16-bit analog/digital (A/D) converter. Applications software is written in FORTRAN 77, and uses Digital's Pro-Tool Kit Real Time Interface Library, CORE Graphic Library, and laboratory routines. Source code can be readily modified to accommodate alternative detection, A/D conversion and interactive graphics. The object code utilizing overlays and multitasking has a maximum of 50 Kbytes.

  9. Eye Tracking Based Control System for Natural Human-Computer Interaction.

    PubMed

    Zhang, Xuebai; Liu, Xiaolong; Yuan, Shyan-Ming; Lin, Shu-Fan

    2017-01-01

    Eye movement can be regarded as a pivotal real-time input medium for human-computer communication, which is especially important for people with physical disability. In order to improve the reliability, mobility, and usability of eye tracking technique in user-computer dialogue, a novel eye control system with integrating both mouse and keyboard functions is proposed in this paper. The proposed system focuses on providing a simple and convenient interactive mode by only using user's eye. The usage flow of the proposed system is designed to perfectly follow human natural habits. Additionally, a magnifier module is proposed to allow the accurate operation. In the experiment, two interactive tasks with different difficulty (searching article and browsing multimedia web) were done to compare the proposed eye control tool with an existing system. The Technology Acceptance Model (TAM) measures are used to evaluate the perceived effectiveness of our system. It is demonstrated that the proposed system is very effective with regard to usability and interface design.

  10. Improving Demonstration Using Better Interaction Techniques

    DTIC Science & Technology

    1997-01-14

    Programming by demonstration (PBD) can be used to create tools and methods that eliminate the need to learn difficult computer languages. Gamut is a...do this, Gamut uses advanced interaction techniques that make it easier for a software author to express all needed aspects of one’s program. These...techniques include a simplified way to demonstrate new examples, called nudges, and a way to highlight objects to show they are important. Also, Gamut

  11. The impact of computer science in molecular medicine: enabling high-throughput research.

    PubMed

    de la Iglesia, Diana; García-Remesal, Miguel; de la Calle, Guillermo; Kulikowski, Casimir; Sanz, Ferran; Maojo, Víctor

    2013-01-01

    The Human Genome Project and the explosion of high-throughput data have transformed the areas of molecular and personalized medicine, which are producing a wide range of studies and experimental results and providing new insights for developing medical applications. Research in many interdisciplinary fields is resulting in data repositories and computational tools that support a wide diversity of tasks: genome sequencing, genome-wide association studies, analysis of genotype-phenotype interactions, drug toxicity and side effects assessment, prediction of protein interactions and diseases, development of computational models, biomarker discovery, and many others. The authors of the present paper have developed several inventories covering tools, initiatives and studies in different computational fields related to molecular medicine: medical informatics, bioinformatics, clinical informatics and nanoinformatics. With these inventories, created by mining the scientific literature, we have carried out several reviews of these fields, providing researchers with a useful framework to locate, discover, search and integrate resources. In this paper we present an analysis of the state-of-the-art as it relates to computational resources for molecular medicine, based on results compiled in our inventories, as well as results extracted from a systematic review of the literature and other scientific media. The present review is based on the impact of their related publications and the available data and software resources for molecular medicine. It aims to provide information that can be useful to support ongoing research and work to improve diagnostics and therapeutics based on molecular-level insights.

  12. Aeroacoustic Prediction Codes

    NASA Technical Reports Server (NTRS)

    Gliebe, P; Mani, R.; Shin, H.; Mitchell, B.; Ashford, G.; Salamah, S.; Connell, S.; Huff, Dennis (Technical Monitor)

    2000-01-01

    This report describes work performed on Contract NAS3-27720AoI 13 as part of the NASA Advanced Subsonic Transport (AST) Noise Reduction Technology effort. Computer codes were developed to provide quantitative prediction, design, and analysis capability for several aircraft engine noise sources. The objective was to provide improved, physics-based tools for exploration of noise-reduction concepts and understanding of experimental results. Methods and codes focused on fan broadband and 'buzz saw' noise and on low-emissions combustor noise and compliment work done by other contractors under the NASA AST program to develop methods and codes for fan harmonic tone noise and jet noise. The methods and codes developed and reported herein employ a wide range of approaches, from the strictly empirical to the completely computational, with some being semiempirical analytical, and/or analytical/computational. Emphasis was on capturing the essential physics while still considering method or code utility as a practical design and analysis tool for everyday engineering use. Codes and prediction models were developed for: (1) an improved empirical correlation model for fan rotor exit flow mean and turbulence properties, for use in predicting broadband noise generated by rotor exit flow turbulence interaction with downstream stator vanes: (2) fan broadband noise models for rotor and stator/turbulence interaction sources including 3D effects, noncompact-source effects. directivity modeling, and extensions to the rotor supersonic tip-speed regime; (3) fan multiple-pure-tone in-duct sound pressure prediction methodology based on computational fluid dynamics (CFD) analysis; and (4) low-emissions combustor prediction methodology and computer code based on CFD and actuator disk theory. In addition. the relative importance of dipole and quadrupole source mechanisms was studied using direct CFD source computation for a simple cascadeigust interaction problem, and an empirical combustor-noise correlation model was developed from engine acoustic test results. This work provided several insights on potential approaches to reducing aircraft engine noise. Code development is described in this report, and those insights are discussed.

  13. Novel 3D Approach to Flare Modeling via Interactive IDL Widget Tools

    NASA Astrophysics Data System (ADS)

    Nita, G. M.; Fleishman, G. D.; Gary, D. E.; Kuznetsov, A.; Kontar, E. P.

    2011-12-01

    Currently, and soon-to-be, available sophisticated 3D models of particle acceleration and transport in solar flares require a new level of user-friendly visualization and analysis tools allowing quick and easy adjustment of the model parameters and computation of realistic radiation patterns (images, spectra, polarization, etc). We report the current state of the art of these tools in development, already proved to be highly efficient for the direct flare modeling. We present an interactive IDL widget application intended to provide a flexible tool that allows the user to generate spatially resolved radio and X-ray spectra. The object-based architecture of this application provides full interaction with imported 3D magnetic field models (e.g., from an extrapolation) that may be embedded in a global coronal model. Various tools provided allow users to explore the magnetic connectivity of the model by generating magnetic field lines originating in user-specified volume positions. Such lines may serve as reference lines for creating magnetic flux tubes, which are further populated with user-defined analytical thermal/non thermal particle distribution models. By default, the application integrates IDL callable DLL and Shared libraries containing fast GS emission codes developed in FORTRAN and C++ and soft and hard X-ray codes developed in IDL. However, the interactive interface allows interchanging these default libraries with any user-defined IDL or external callable codes designed to solve the radiation transfer equation in the same or other wavelength ranges of interest. To illustrate the tool capacity and generality, we present a step-by-step real-time computation of microwave and X-ray images from realistic magnetic structures obtained from a magnetic field extrapolation preceding a real event, and compare them with the actual imaging data obtained by NORH and RHESSI instruments. We discuss further anticipated developments of the tools needed to accommodate temporal evolution of the magnetic field structure and/or fast electron population implied by the electron acceleration and transport. This work was supported in part by NSF grants AGS-0961867, AST-0908344, and NASA grants NNX10AF27G and NNX11AB49G to New Jersey Institute of Technology, by a UK STFC rolling grant, STFC/PPARC Advanced Fellowship, and the Leverhulme Trust, UK. Financial support by the European Commission through the SOLAIRE and HESPE Networks is gratefully acknowledged.

  14. Integration of tools for the Design and Assessment of High-Performance, Highly Reliable Computing Systems (DAHPHRS), phase 1

    NASA Technical Reports Server (NTRS)

    Scheper, C.; Baker, R.; Frank, G.; Yalamanchili, S.; Gray, G.

    1992-01-01

    Systems for Space Defense Initiative (SDI) space applications typically require both high performance and very high reliability. These requirements present the systems engineer evaluating such systems with the extremely difficult problem of conducting performance and reliability trade-offs over large design spaces. A controlled development process supported by appropriate automated tools must be used to assure that the system will meet design objectives. This report describes an investigation of methods, tools, and techniques necessary to support performance and reliability modeling for SDI systems development. Models of the JPL Hypercubes, the Encore Multimax, and the C.S. Draper Lab Fault-Tolerant Parallel Processor (FTPP) parallel-computing architectures using candidate SDI weapons-to-target assignment algorithms as workloads were built and analyzed as a means of identifying the necessary system models, how the models interact, and what experiments and analyses should be performed. As a result of this effort, weaknesses in the existing methods and tools were revealed and capabilities that will be required for both individual tools and an integrated toolset were identified.

  15. Integrating the Allen Brain Institute Cell Types Database into Automated Neuroscience Workflow.

    PubMed

    Stockton, David B; Santamaria, Fidel

    2017-10-01

    We developed software tools to download, extract features, and organize the Cell Types Database from the Allen Brain Institute (ABI) in order to integrate its whole cell patch clamp characterization data into the automated modeling/data analysis cycle. To expand the potential user base we employed both Python and MATLAB. The basic set of tools downloads selected raw data and extracts cell, sweep, and spike features, using ABI's feature extraction code. To facilitate data manipulation we added a tool to build a local specialized database of raw data plus extracted features. Finally, to maximize automation, we extended our NeuroManager workflow automation suite to include these tools plus a separate investigation database. The extended suite allows the user to integrate ABI experimental and modeling data into an automated workflow deployed on heterogeneous computer infrastructures, from local servers, to high performance computing environments, to the cloud. Since our approach is focused on workflow procedures our tools can be modified to interact with the increasing number of neuroscience databases being developed to cover all scales and properties of the nervous system.

  16. A semi-automatic annotation tool for cooking video

    NASA Astrophysics Data System (ADS)

    Bianco, Simone; Ciocca, Gianluigi; Napoletano, Paolo; Schettini, Raimondo; Margherita, Roberto; Marini, Gianluca; Gianforme, Giorgio; Pantaleo, Giuseppe

    2013-03-01

    In order to create a cooking assistant application to guide the users in the preparation of the dishes relevant to their profile diets and food preferences, it is necessary to accurately annotate the video recipes, identifying and tracking the foods of the cook. These videos present particular annotation challenges such as frequent occlusions, food appearance changes, etc. Manually annotate the videos is a time-consuming, tedious and error-prone task. Fully automatic tools that integrate computer vision algorithms to extract and identify the elements of interest are not error free, and false positive and false negative detections need to be corrected in a post-processing stage. We present an interactive, semi-automatic tool for the annotation of cooking videos that integrates computer vision techniques under the supervision of the user. The annotation accuracy is increased with respect to completely automatic tools and the human effort is reduced with respect to completely manual ones. The performance and usability of the proposed tool are evaluated on the basis of the time and effort required to annotate the same video sequences.

  17. Automated Fluid Feature Extraction from Transient Simulations

    NASA Technical Reports Server (NTRS)

    Haimes, Robert; Lovely, David

    1999-01-01

    In the past, feature extraction and identification were interesting concepts, but not required to understand the underlying physics of a steady flow field. This is because the results of the more traditional tools like iso-surfaces, cuts and streamlines were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of much interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snap-shot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments like pV3). And methods must be developed to abstract the feature and display it in a manner that physically makes sense. The following is a list of the important physical phenomena found in transient (and steady-state) fluid flow: (1) Shocks, (2) Vortex cores, (3) Regions of recirculation, (4) Boundary layers, (5) Wakes. Three papers and an initial specification for the (The Fluid eXtraction tool kit) FX Programmer's guide were included. The papers, submitted to the AIAA Computational Fluid Dynamics Conference, are entitled : (1) Using Residence Time for the Extraction of Recirculation Regions, (2) Shock Detection from Computational Fluid Dynamics results and (3) On the Velocity Gradient Tensor and Fluid Feature Extraction.

  18. Evidence-based pathology in its second decade: toward probabilistic cognitive computing.

    PubMed

    Marchevsky, Alberto M; Walts, Ann E; Wick, Mark R

    2017-03-01

    Evidence-based pathology advocates using a combination of best available data ("evidence") from the literature and personal experience for the diagnosis, estimation of prognosis, and assessment of other variables that impact individual patient care. Evidence-based pathology relies on systematic reviews of the literature, evaluation of the quality of evidence as categorized by evidence levels and statistical tools such as meta-analyses, estimates of probabilities and odds, and others. However, it is well known that previously "statistically significant" information usually does not accurately forecast the future for individual patients. There is great interest in "cognitive computing" in which "data mining" is combined with "predictive analytics" designed to forecast future events and estimate the strength of those predictions. This study demonstrates the use of IBM Watson Analytics software to evaluate and predict the prognosis of 101 patients with typical and atypical pulmonary carcinoid tumors in which Ki-67 indices have been determined. The results obtained with this system are compared with those previously reported using "routine" statistical software and the help of a professional statistician. IBM Watson Analytics interactively provides statistical results that are comparable to those obtained with routine statistical tools but much more rapidly, with considerably less effort and with interactive graphics that are intuitively easy to apply. It also enables analysis of natural language variables and yields detailed survival predictions for patient subgroups selected by the user. Potential applications of this tool and basic concepts of cognitive computing are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The Computer as a Tool for Learning

    PubMed Central

    Starkweather, John A.

    1986-01-01

    Experimenters from the beginning recognized the advantages computers might offer in medical education. Several medical schools have gained experience in such programs in automated instruction. Television images and graphic display combined with computer control and user interaction are effective for teaching problem solving. The National Board of Medical Examiners has developed patient-case simulation for examining clinical skills, and the National Library of Medicine has experimented with combining media. Advances from the field of artificial intelligence and the availability of increasingly powerful microcomputers at lower cost will aid further development. Computers will likely affect existing educational methods, adding new capabilities to laboratory exercises, to self-assessment and to continuing education. PMID:3544511

  20. 3D printing in chemical engineering and catalytic technology: structured catalysts, mixers and reactors.

    PubMed

    Parra-Cabrera, Cesar; Achille, Clement; Kuhn, Simon; Ameloot, Rob

    2018-01-02

    Computer-aided fabrication technologies combined with simulation and data processing approaches are changing our way of manufacturing and designing functional objects. Also in the field of catalytic technology and chemical engineering the impact of additive manufacturing, also referred to as 3D printing, is steadily increasing thanks to a rapidly decreasing equipment threshold. Although still in an early stage, the rapid and seamless transition between digital data and physical objects enabled by these fabrication tools will benefit both research and manufacture of reactors and structured catalysts. Additive manufacturing closes the gap between theory and experiment, by enabling accurate fabrication of geometries optimized through computational fluid dynamics and the experimental evaluation of their properties. This review highlights the research using 3D printing and computational modeling as digital tools for the design and fabrication of reactors and structured catalysts. The goal of this contribution is to stimulate interactions at the crossroads of chemistry and materials science on the one hand and digital fabrication and computational modeling on the other.

  1. The Design of Modular Web-Based Collaboration

    NASA Astrophysics Data System (ADS)

    Intapong, Ploypailin; Settapat, Sittapong; Kaewkamnerdpong, Boonserm; Achalakul, Tiranee

    Online collaborative systems are popular communication channels as the systems allow people from various disciplines to interact and collaborate with ease. The systems provide communication tools and services that can be integrated on the web; consequently, the systems are more convenient to use and easier to install. Nevertheless, most of the currently available systems are designed according to some specific requirements and cannot be straightforwardly integrated into various applications. This paper provides the design of a new collaborative platform, which is component-based and re-configurable. The platform is called the Modular Web-based Collaboration (MWC). MWC shares the same concept as computer supported collaborative work (CSCW) and computer-supported collaborative learning (CSCL), but it provides configurable tools for online collaboration. Each tool module can be integrated into users' web applications freely and easily. This makes collaborative system flexible, adaptable and suitable for online collaboration.

  2. Human Centered Design and Development for NASA's MerBoard

    NASA Technical Reports Server (NTRS)

    Trimble, Jay

    2003-01-01

    This viewgraph presentation provides an overview of the design and development process for NASA's MerBoard. These devices are large interactive display screens which can be shown on the user's computer, which will allow scientists in many locations to interpret and evaluate mission data in real-time. These tools are scheduled to be used during the 2003 Mars Exploration Rover (MER) expeditions. Topics covered include: mission overview, Mer Human Centered Computers, FIDO 2001 observations and MerBoard prototypes.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grote, D. P.

    Forthon generates links between Fortran and Python. Python is a high level, object oriented, interactive and scripting language that allows a flexible and versatile interface to computational tools. The Forthon package generates the necessary wrapping code which allows access to the Fortran database and to the Fortran subroutines and functions. This provides a development package where the computationally intensive parts of a code can be written in efficient Fortran, and the high level controlling code can be written in the much more versatile Python language.

  4. Performance Refactoring of Instrumentation, Measurement, and Analysis Technologies for Petascale Computing. The PRIMA Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malony, Allen D.; Wolf, Felix G.

    2014-01-31

    The growing number of cores provided by today’s high-­end computing systems present substantial challenges to application developers in their pursuit of parallel efficiency. To find the most effective optimization strategy, application developers need insight into the runtime behavior of their code. The University of Oregon (UO) and the Juelich Supercomputing Centre of Forschungszentrum Juelich (FZJ) develop the performance analysis tools TAU and Scalasca, respectively, which allow high-­performance computing (HPC) users to collect and analyze relevant performance data – even at very large scales. TAU and Scalasca are considered among the most advanced parallel performance systems available, and are used extensivelymore » across HPC centers in the U.S., Germany, and around the world. The TAU and Scalasca groups share a heritage of parallel performance tool research and partnership throughout the past fifteen years. Indeed, the close interactions of the two groups resulted in a cross-­fertilization of tool ideas and technologies that pushed TAU and Scalasca to what they are today. It also produced two performance systems with an increasing degree of functional overlap. While each tool has its specific analysis focus, the tools were implementing measurement infrastructures that were substantially similar. Because each tool provides complementary performance analysis, sharing of measurement results is valuable to provide the user with more facets to understand performance behavior. However, each measurement system was producing performance data in different formats, requiring data interoperability tools to be created. A common measurement and instrumentation system was needed to more closely integrate TAU and Scalasca and to avoid the duplication of development and maintenance effort. The PRIMA (Performance Refactoring of Instrumentation, Measurement, and Analysis) project was proposed over three years ago as a joint international effort between UO and FZJ to accomplish these objectives: (1) refactor TAU and Scalasca performance system components for core code sharing and (2) integrate TAU and Scalasca functionality through data interfaces, formats, and utilities. As presented in this report, the project has completed these goals. In addition to shared technical advances, the groups have worked to engage with users through application performance engineering and tools training. In this regard, the project benefits from the close interactions the teams have with national laboratories in the United States and Germany. We have also sought to enhance our interactions through joint tutorials and outreach. UO has become a member of the Virtual Institute of High-­Productivity Supercomputing (VI-­HPS) established by the Helmholtz Association of German Research Centres as a center of excellence, focusing on HPC tools for diagnosing programming errors and optimizing performance. UO and FZJ have conducted several VI-­HPS training activities together within the past three years.« less

  5. Performance Refactoring of Instrumentation, Measurement, and Analysis Technologies for Petascale Computing: the PRIMA Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malony, Allen D.; Wolf, Felix G.

    2014-01-31

    The growing number of cores provided by today’s high-end computing systems present substantial challenges to application developers in their pursuit of parallel efficiency. To find the most effective optimization strategy, application developers need insight into the runtime behavior of their code. The University of Oregon (UO) and the Juelich Supercomputing Centre of Forschungszentrum Juelich (FZJ) develop the performance analysis tools TAU and Scalasca, respectively, which allow high-performance computing (HPC) users to collect and analyze relevant performance data – even at very large scales. TAU and Scalasca are considered among the most advanced parallel performance systems available, and are used extensivelymore » across HPC centers in the U.S., Germany, and around the world. The TAU and Scalasca groups share a heritage of parallel performance tool research and partnership throughout the past fifteen years. Indeed, the close interactions of the two groups resulted in a cross-fertilization of tool ideas and technologies that pushed TAU and Scalasca to what they are today. It also produced two performance systems with an increasing degree of functional overlap. While each tool has its specific analysis focus, the tools were implementing measurement infrastructures that were substantially similar. Because each tool provides complementary performance analysis, sharing of measurement results is valuable to provide the user with more facets to understand performance behavior. However, each measurement system was producing performance data in different formats, requiring data interoperability tools to be created. A common measurement and instrumentation system was needed to more closely integrate TAU and Scalasca and to avoid the duplication of development and maintenance effort. The PRIMA (Performance Refactoring of Instrumentation, Measurement, and Analysis) project was proposed over three years ago as a joint international effort between UO and FZJ to accomplish these objectives: (1) refactor TAU and Scalasca performance system components for core code sharing and (2) integrate TAU and Scalasca functionality through data interfaces, formats, and utilities. As presented in this report, the project has completed these goals. In addition to shared technical advances, the groups have worked to engage with users through application performance engineering and tools training. In this regard, the project benefits from the close interactions the teams have with national laboratories in the United States and Germany. We have also sought to enhance our interactions through joint tutorials and outreach. UO has become a member of the Virtual Institute of High-Productivity Supercomputing (VI-HPS) established by the Helmholtz Association of German Research Centres as a center of excellence, focusing on HPC tools for diagnosing programming errors and optimizing performance. UO and FZJ have conducted several VI-HPS training activities together within the past three years.« less

  6. Additional extensions to the NASCAP computer code, volume 1

    NASA Technical Reports Server (NTRS)

    Mandell, M. J.; Katz, I.; Stannard, P. R.

    1981-01-01

    Extensions and revisions to a computer code that comprehensively analyzes problems of spacecraft charging (NASCAP) are documented. Using a fully three dimensional approach, it can accurately predict spacecraft potentials under a variety of conditions. Among the extensions are a multiple electron/ion gun test tank capability, and the ability to model anisotropic and time dependent space environments. Also documented are a greatly extended MATCHG program and the preliminary version of NASCAP/LEO. The interactive MATCHG code was developed into an extremely powerful tool for the study of material-environment interactions. The NASCAP/LEO, a three dimensional code to study current collection under conditions of high voltages and short Debye lengths, was distributed for preliminary testing.

  7. MO-E-18C-04: Advanced Computer Simulation and Visualization Tools for Enhanced Understanding of Core Medical Physics Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naqvi, S

    2014-06-15

    Purpose: Most medical physics programs emphasize proficiency in routine clinical calculations and QA. The formulaic aspect of these calculations and prescriptive nature of measurement protocols obviate the need to frequently apply basic physical principles, which, therefore, gradually decay away from memory. E.g. few students appreciate the role of electron transport in photon dose, making it difficult to understand key concepts such as dose buildup, electronic disequilibrium effects and Bragg-Gray theory. These conceptual deficiencies manifest when the physicist encounters a new system, requiring knowledge beyond routine activities. Methods: Two interactive computer simulation tools are developed to facilitate deeper learning of physicalmore » principles. One is a Monte Carlo code written with a strong educational aspect. The code can “label” regions and interactions to highlight specific aspects of the physics, e.g., certain regions can be designated as “starters” or “crossers,” and any interaction type can be turned on and off. Full 3D tracks with specific portions highlighted further enhance the visualization of radiation transport problems. The second code calculates and displays trajectories of a collection electrons under arbitrary space/time dependent Lorentz force using relativistic kinematics. Results: Using the Monte Carlo code, the student can interactively study photon and electron transport through visualization of dose components, particle tracks, and interaction types. The code can, for instance, be used to study kerma-dose relationship, explore electronic disequilibrium near interfaces, or visualize kernels by using interaction forcing. The electromagnetic simulator enables the student to explore accelerating mechanisms and particle optics in devices such as cyclotrons and linacs. Conclusion: The proposed tools are designed to enhance understanding of abstract concepts by highlighting various aspects of the physics. The simulations serve as virtual experiments that give deeper and long lasting understanding of core principles. The student can then make sound judgements in novel situations encountered beyond routine clinical activities.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suresh, Niraj; Stephens, Sean A.; Adams, Lexor

    Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere, as well as processes with important implications to climate change and forest management. Quantitative size information on roots in their native environment is invaluable for studying root growth and environmental processes involving the plant. X ray computed tomography (XCT) has been demonstrated to be an effective tool for in situ root scanning and analysis. Our group at the Environmental Molecular Sciences Laboratory (EMSL) has developed an XCT-based tool to image and quantitatively analyze plant root structures in their native soil environment. XCT data collected on amore » Prairie dropseed (Sporobolus heterolepis) specimen was used to visualize its root structure. A combination of open-source software RooTrak and DDV were employed to segment the root from the soil, and calculate its isosurface, respectively. Our own computer script named 3DRoot-SV was developed and used to calculate root volume and surface area from a triangular mesh. The process utilizing a unique combination of tools, from imaging to quantitative root analysis, including the 3DRoot-SV computer script, is described.« less

  9. Physics-based scoring of protein-ligand interactions: explicit polarizability, quantum mechanics and free energies.

    PubMed

    Bryce, Richard A

    2011-04-01

    The ability to accurately predict the interaction of a ligand with its receptor is a key limitation in computer-aided drug design approaches such as virtual screening and de novo design. In this article, we examine current strategies for a physics-based approach to scoring of protein-ligand affinity, as well as outlining recent developments in force fields and quantum chemical techniques. We also consider advances in the development and application of simulation-based free energy methods to study protein-ligand interactions. Fuelled by recent advances in computational algorithms and hardware, there is the opportunity for increased integration of physics-based scoring approaches at earlier stages in computationally guided drug discovery. Specifically, we envisage increased use of implicit solvent models and simulation-based scoring methods as tools for computing the affinities of large virtual ligand libraries. Approaches based on end point simulations and reference potentials allow the application of more advanced potential energy functions to prediction of protein-ligand binding affinities. Comprehensive evaluation of polarizable force fields and quantum mechanical (QM)/molecular mechanical and QM methods in scoring of protein-ligand interactions is required, particularly in their ability to address challenging targets such as metalloproteins and other proteins that make highly polar interactions. Finally, we anticipate increasingly quantitative free energy perturbation and thermodynamic integration methods that are practical for optimization of hits obtained from screened ligand libraries.

  10. Studying Axon-Astrocyte Functional Interactions by 3D Two-Photon Ca2+ Imaging: A Practical Guide to Experiments and "Big Data" Analysis.

    PubMed

    Savtchouk, Iaroslav; Carriero, Giovanni; Volterra, Andrea

    2018-01-01

    Recent advances in fast volumetric imaging have enabled rapid generation of large amounts of multi-dimensional functional data. While many computer frameworks exist for data storage and analysis of the multi-gigabyte Ca 2+ imaging experiments in neurons, they are less useful for analyzing Ca 2+ dynamics in astrocytes, where transients do not follow a predictable spatio-temporal distribution pattern. In this manuscript, we provide a detailed protocol and commentary for recording and analyzing three-dimensional (3D) Ca 2+ transients through time in GCaMP6f-expressing astrocytes of adult brain slices in response to axonal stimulation, using our recently developed tools to perform interactive exploration, filtering, and time-correlation analysis of the transients. In addition to the protocol, we release our in-house software tools and discuss parameters pertinent to conducting axonal stimulation/response experiments across various brain regions and conditions. Our software tools are available from the Volterra Lab webpage at https://wwwfbm.unil.ch/dnf/group/glia-an-active-synaptic-partner/member/volterra-andrea-volterra in the form of software plugins for Image J (NIH)-a de facto standard in scientific image analysis. Three programs are available: MultiROI_TZ_profiler for interactive graphing of several movable ROIs simultaneously, Gaussian_Filter5D for Gaussian filtering in several dimensions, and Correlation_Calculator for computing various cross-correlation parameters on voxel collections through time.

  11. Building a Data Science capability for USGS water research and communication

    NASA Astrophysics Data System (ADS)

    Appling, A.; Read, E. K.

    2015-12-01

    Interpreting and communicating water issues in an era of exponentially increasing information requires a blend of domain expertise, computational proficiency, and communication skills. The USGS Office of Water Information has established a Data Science team to meet these needs, providing challenging careers for diverse domain scientists and innovators in the fields of information technology and data visualization. Here, we detail the experience of building a Data Science capability as a bridging element between traditional water resources analyses and modern computing tools and data management techniques. This approach includes four major components: 1) building reusable research tools, 2) documenting data-intensive research approaches in peer reviewed journals, 3) communicating complex water resources issues with interactive web visualizations, and 4) offering training programs for our peers in scientific computing. These components collectively improve the efficiency, transparency, and reproducibility of USGS data analyses and scientific workflows.

  12. Challenging the Context: Perception, Polity, and Power.

    ERIC Educational Resources Information Center

    Hartfield, Ronne

    1994-01-01

    "Contextual areas" employ models, replicas, artwork, art materials, tools, interpretive panels, and interactive computer installations to help visitors explore the historical and cultural context of 6 of 12 works of art at the "Art Inside Out" exhibition in the Kraft General Foods Education Center of the Art Institute of Chicago. (MDH)

  13. MECHANISTIC INDICATORS OF CHILDHOOD ASTHMA (MICA): A SYSTEMS BIOLOGY APPROACH FOR THE INTEGRATION OF MULTIFACTORIAL EXPOSURE AND ENVIRONMENTAL HEALTH DATA

    EPA Science Inventory

    Modem methods in molecular biology and advanced computational tools show promise in elucidating complex interactions that occur between genes and environmental factors in diseases such as asthma. However, appropriately designed studies are critical for these methods to reach the...

  14. jAMVLE, a New Integrated Molecular Visualization Learning Environment

    ERIC Educational Resources Information Center

    Bottomley, Steven; Chandler, David; Morgan, Eleanor; Helmerhorst, Erik

    2006-01-01

    A new computer-based molecular visualization tool has been developed for teaching, and learning, molecular structure. This java-based jmol Amalgamated Molecular Visualization Learning Environment (jAMVLE) is platform-independent, integrated, and interactive. It has an overall graphical user interface that is intuitive and easy to use. The…

  15. Designer: A Knowledge-Based Graphic Design Assistant.

    ERIC Educational Resources Information Center

    Weitzman, Louis

    This report describes Designer, an interactive tool for assisting with the design of two-dimensional graphic interfaces for instructional systems. The system, which consists of a color graphics interface to a mathematical simulation, provides enhancements to the Graphics Editor component of Steamer (a computer-based training system designed to aid…

  16. Homology Modeling and Molecular Docking for the Science Curriculum

    ERIC Educational Resources Information Center

    McDougal, Owen M.; Cornia, Nic; Sambasivarao, S. V.; Remm, Andrew; Mallory, Chris; Oxford, Julia Thom; Maupin, C. Mark; Andersen, Tim

    2014-01-01

    DockoMatic 2.0 is a powerful open source software program (downloadable from sourceforge.net) that allows users to utilize a readily accessible computational tool to explore biomolecules and their interactions. This manuscript describes a practical tutorial for use in the undergraduate curriculum that introduces students to macromolecular…

  17. The Effect of Interactive CD-ROM/Digitized Audio Courseware on Reading among Low-Literate Adults.

    ERIC Educational Resources Information Center

    Gretes, John A.; Green, Michael

    1994-01-01

    Compares a multimedia adult literacy instructional course, Reading to Educate and Develop Yourself (READY), to traditional classroom instruction by studying effects of replacing conventional learning tools with computer-assisted instruction (CD-ROMs and audio software). Results reveal that READY surpassed traditional instruction for virtually…

  18. Adaptable Interactive CBL Design Tools for Education.

    ERIC Educational Resources Information Center

    Chandra, Peter

    The design team approach to the development of computer based learning (CBL) courseware relies heavily on the effective communication between different members of the team, including up-to-date paperwork and documentation. This is important for the accurate and efficient overall coordination of the courseware design, and for future maintenance of…

  19. Intelligent Adaptive Interface: A Design Tool for Enhancing Human-Machine System Performances

    DTIC Science & Technology

    2009-10-01

    and customizable. Thus, an intelligent interface should tailor its parameters to certain prescribed specifications or convert itself and adjust to...Computer Interaction 3(2): 87-122. [51] Schereiber, G., Akkermans, H., Anjewierden, A., de Hoog , R., Shadbolt, N., Van de Velde, W., & Wielinga, W

  20. What Students Really Want in Science Class

    ERIC Educational Resources Information Center

    Goldenberg, Lauren B.

    2011-01-01

    Nowadays, there are lots of digital resources available to teachers. Tools such as Teachers' Domain, an online digital library (see "On the web"); interactive whiteboards; computer projection devices; laptop carts; and robust wireless internet services make it easy for teachers to use technology in the classroom. In fact, in one…

  1. MODELS-3 INSTALLATION PROCEDURES FOR A PERSONAL COMPUTER WITH A NT OPERATING SYSTEM (MODELS-3 VERSION 4.1)

    EPA Science Inventory

    Models-3 is a flexible system designed to simplify the development and use of air quality models and other environmental decision support tools. It is designed for applications ranging from regulatory and policy analysis to understanding the complex interactions of atmospheric...

  2. Perseus Project: Interactive Teaching and Research Tools for Ancient Greek Civilization.

    ERIC Educational Resources Information Center

    Crane, Gregory; Harward, V. Judson

    1987-01-01

    Describes the Perseus Project, an educational program utilizing computer technology to study ancient Greek civilization. Including approximately 10 percent of all ancient literature and visual information on architecture, sculpture, ceramics, topography, and archaeology, the project spans a range of disciplines. States that Perseus fuels student…

  3. Mapping and Managing Knowledge and Information in Resource-Based Learning

    ERIC Educational Resources Information Center

    Tergan, Sigmar-Olaf; Graber, Wolfgang; Neumann, Anja

    2006-01-01

    In resource-based learning scenarios, students are often overwhelmed by the complexity of task-relevant knowledge and information. Techniques for the external interactive representation of individual knowledge in graphical format may help them to cope with complex problem situations. Advanced computer-based concept-mapping tools have the potential…

  4. Teaching Petri Nets Using P3

    ERIC Educational Resources Information Center

    Gasevic, Dragan; Devedzic, Vladan

    2004-01-01

    This paper presents Petri net software tool P3 that is developed for training purposes of the Architecture and organization of computers (AOC) course. The P3 has the following features: graphical modeling interface, interactive simulation by single and parallel (with previous conflict resolution) transition firing, two well-known Petri net…

  5. An Interactive Diagnosis Approach for Supporting Clinical Nursing Courses

    ERIC Educational Resources Information Center

    Wei, Chun-Wang; Lin, Yi-Chun; Lin, Yen-Ting

    2016-01-01

    Clinical resources in nursing schools are always insufficient for satisfying the practice requirements of each student at the same time during a formal course session. Although several studies have applied information and communication technology to develop computer-based learning tools for addressing this problem, most of these developments lack…

  6. COLLAGE: A Collaborative Learning Design Editor Based on Patterns

    ERIC Educational Resources Information Center

    Hernandez-Leo, Davinia; Villasclaras-Fernandez, Eloy D.; Asensio-Perez, Juan I.; Dimitriadis, Yannis; Jorrin-Abellan, Ivan M.; Ruiz-Requies, Ines; Rubia-Avi, Bartolome

    2006-01-01

    This paper introduces "Collage", a high-level IMS-LD compliant authoring tool that is specialized for CSCL (Computer-Supported Collaborative Learning). Nowadays CSCL is a key trend in e-learning since it highlights the importance of social interactions as an essential element of learning. CSCL is an interdisciplinary domain, which…

  7. A high-throughput and rapid computational method for screening of RNA post-transcriptional modifications that can be recognized by target proteins.

    PubMed

    Orr, Asuka A; Gonzalez-Rivera, Juan C; Wilson, Mark; Bhikha, P Reena; Wang, Daiqi; Contreras, Lydia M; Tamamis, Phanourios

    2018-02-01

    There are over 150 currently known, highly diverse chemically modified RNAs, which are dynamic, reversible, and can modulate RNA-protein interactions. Yet, little is known about the wealth of such interactions. This can be attributed to the lack of tools that allow the rapid study of all the potential RNA modifications that might mediate RNA-protein interactions. As a promising step toward this direction, here we present a computational protocol for the characterization of interactions between proteins and RNA containing post-transcriptional modifications. Given an RNA-protein complex structure, potential RNA modified ribonucleoside positions, and molecular mechanics parameters for capturing energetics of RNA modifications, our protocol operates in two stages. In the first stage, a decision-making tool, comprising short simulations and interaction energy calculations, performs a fast and efficient search in a high-throughput fashion, through a list of different types of RNA modifications categorized into trees according to their structural and physicochemical properties, and selects a subset of RNA modifications prone to interact with the target protein. In the second stage, RNA modifications that are selected as recognized by the protein are examined in-detail using all-atom simulations and free energy calculations. We implement and experimentally validate this protocol in a test case involving the study of RNA modifications in complex with Escherichia coli (E. coli) protein Polynucleotide Phosphorylase (PNPase), depicting the favorable interaction between 8-oxo-7,8-dihydroguanosine (8-oxoG) RNA modification and PNPase. Further advancement of the protocol can broaden our understanding of protein interactions with all known RNA modifications in several systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. End-user satisfaction of a patient education tool manual versus computer-generated tool.

    PubMed

    Tronni, C; Welebob, E

    1996-01-01

    This article reports a nonexperimental comparative study of end-user satisfaction before and after implementation of a vendor supplied computerized system (Micromedex, Inc) for providing up-to-date patient instructions regarding diseases, injuries, procedures, and medications. The purpose of this research was to measure the satisfaction of nurses who directly interact with a specific patient educational software application and to compare user satisfaction with manual versus computer generated materials. A computing satisfaction questionnaire that uses a scale of 1 to 5 (1 being the lowest) was used to measure end-user computing satisfaction in five constructs: content, accuracy, format, ease of use, and timeliness. Summary statistics were used to calculate mean ratings for each of the questionnaire's 12 items and for each of the five constructs. Mean differences between the ratings before and after implementation of the five constructs were significant by paired t test. Total user satisfaction improved with the computerized system, and the computer generated materials were given a higher rating than were the manual materials. Implications of these findings are discussed.

  9. Leveraging Social Computing for Personalized Crisis Communication using Social Media

    PubMed Central

    Leykin, Dmitry; Aharonson-Daniel, Limor; Lahad, Mooli

    2016-01-01

    Introduction: The extensive use of social media in modern life redefines social interaction and communication. Communication plays an important role in mitigating, or exacerbating, the psychological and behavioral responses to critical incidents and disasters. As recent disasters demonstrated, people tend to converge to social media during and following emergencies. Authorities can then use this media and other computational methods to gain insights from the public, mainly to enhance situational awareness, but also to improve their communication with the public and public adherence to instructions. Methods: The current review presents a conceptual framework for studying psychological aspects of crisis and risk communication using the social media through social computing. Results: Advanced analytical tools can be integrated in the processes and objectives of crisis communication. The availability of the computational techniques can improve communication with the public by a process of Hyper-Targeted Crisis Communication. Discussion: The review suggests that using advanced computational tools for target-audience profiling and linguistic matching in social media, can facilitate more sensitive and personalized emergency communication. PMID:27092290

  10. In Pursuit of Improving Airburst and Ground Damage Predictions: Recent Advances in Multi-Body Aerodynamic Testing and Computational Tools Validation

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Gulhan, Ali; Aftosmis, Michael; Brock, Joseph; Mathias, Donovan; Need, Dominic; Rodriguez, David; Seltner, Patrick; Stern, Eric; Wiles, Sebastian

    2017-01-01

    An airburst from a large asteroid during entry can cause significant ground damage. The damage depends on the energy and the altitude of airburst. Breakup of asteroids into fragments and their lateral spread have been observed. Modeling the underlying physics of fragmented bodies interacting at hypersonic speeds and the spread of fragments is needed for a true predictive capability. Current models use heuristic arguments and assumptions such as pancaking or point source explosive energy release at pre-determined altitude or an assumed fragmentation spread rate to predict airburst damage. A multi-year collaboration between German Aerospace Center (DLR) and NASA has been established to develop validated computational tools to address the above challenge.

  11. Web-phreeq: a WWW instructional tool for modeling the distribution of chemical species in water

    NASA Astrophysics Data System (ADS)

    Saini-Eidukat, Bernhardt; Yahin, Andrew

    1999-05-01

    A WWW-based tool, WEB-PHREEQ, was developed for classroom teaching and for routine calculation of low temperature aqueous speciation. Accessible with any computer that has an internet-connected forms-capable WWW-browser, WEB-PHREEQ provides user interface and other support for modeling, creates a properly formatted input file, passes it to the public domain program PHREEQC and returns the output to the WWW browser. Users can calculate the equilibrium speciation of a solution over a range of temperatures or can react solid minerals or gases with a particular water and examine the resulting chemistry. WEB-PHREEQ is one of a number of interactive distributed-computing programs available on the WWW that are of interest to geoscientists.

  12. CERESVis: A QC Tool for CERES that Leverages Browser Technology for Data Validation

    NASA Astrophysics Data System (ADS)

    Chu, C.; Sun-Mack, S.; Heckert, E.; Chen, Y.; Doelling, D.

    2015-12-01

    In this poster, we are going to present three user interfaces that CERES team uses to validate pixel-level data. Besides our home grown tools, we will aslo present the browser technology that we use to provide interactive interfaces, such as jquery, HighCharts and Google Earth. We pass data to the users' browsers and use the browsers to do some simple computations. The three user interfaces are: Thumbnails -- it displays hundrends images to allow users to browse 24-hour data files in few seconds. Multiple-synchronized cursors -- it allows users to compare multiple images side by side. Bounding Boxes and Histograms -- it allows users to draw multiple bounding boxes on an image and the browser computes/display the histograms.

  13. User Directed Tools for Exploiting Expert Knowledge in an Immersive Segmentation and Visualization Environment

    NASA Technical Reports Server (NTRS)

    Senger, Steven O.

    1998-01-01

    Volumetric data sets have become common in medicine and many sciences through technologies such as computed x-ray tomography (CT), magnetic resonance (MR), positron emission tomography (PET), confocal microscopy and 3D ultrasound. When presented with 2D images humans immediately and unconsciously begin a visual analysis of the scene. The viewer surveys the scene identifying significant landmarks and building an internal mental model of presented information. The identification of features is strongly influenced by the viewers expectations based upon their expert knowledge of what the image should contain. While not a conscious activity, the viewer makes a series of choices about how to interpret the scene. These choices occur in parallel with viewing the scene and effectively change the way the viewer sees the image. It is this interaction of viewing and choice which is the basis of many familiar visual illusions. This is especially important in the interpretation of medical images where it is the expert knowledge of the radiologist which interprets the image. For 3D data sets this interaction of view and choice is frustrated because choices must precede the visualization of the data set. It is not possible to visualize the data set with out making some initial choices which determine how the volume of data is presented to the eye. These choices include, view point orientation, region identification, color and opacity assignments. Further compounding the problem is the fact that these visualization choices are defined in terms of computer graphics as opposed to language of the experts knowledge. The long term goal of this project is to develop an environment where the user can interact with volumetric data sets using tools which promote the utilization of expert knowledge by incorporating visualization and choice into a tight computational loop. The tools will support activities involving the segmentation of structures, construction of surface meshes and local filtering of the data set. To conform to this environment tools should have several key attributes. First, they should be only rely on computations over a local neighborhood of the probe position. Second, they should operate iteratively over time converging towards a limit behavior. Third, they should adapt to user input modifying they operational parameters with time.

  14. Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology

    PubMed Central

    Paley, Suzanne M.; Krummenacker, Markus; Latendresse, Mario; Dale, Joseph M.; Lee, Thomas J.; Kaipa, Pallavi; Gilham, Fred; Spaulding, Aaron; Popescu, Liviu; Altman, Tomer; Paulsen, Ian; Keseler, Ingrid M.; Caspi, Ron

    2010-01-01

    Pathway Tools is a production-quality software environment for creating a type of model-organism database called a Pathway/Genome Database (PGDB). A PGDB such as EcoCyc integrates the evolving understanding of the genes, proteins, metabolic network and regulatory network of an organism. This article provides an overview of Pathway Tools capabilities. The software performs multiple computational inferences including prediction of metabolic pathways, prediction of metabolic pathway hole fillers and prediction of operons. It enables interactive editing of PGDBs by DB curators. It supports web publishing of PGDBs, and provides a large number of query and visualization tools. The software also supports comparative analyses of PGDBs, and provides several systems biology analyses of PGDBs including reachability analysis of metabolic networks, and interactive tracing of metabolites through a metabolic network. More than 800 PGDBs have been created using Pathway Tools by scientists around the world, many of which are curated DBs for important model organisms. Those PGDBs can be exchanged using a peer-to-peer DB sharing system called the PGDB Registry. PMID:19955237

  15. Infusion of a Gaming Paradigm into Computer-Aided Engineering Design Tools

    DTIC Science & Technology

    2012-05-03

    Virtual Test Bed (VTB), and the gaming tool, Unity3D . This hybrid gaming environment coupled a three-dimensional (3D) multibody vehicle system model...from Google Earth to the 3D visual front-end fabricated around Unity3D . The hybrid environment was sufficiently developed to support analyses of the...ndFr Cti3r4 G’OjrdFr ctior-2 The VTB simulation of the vehicle dynamics ran concurrently with and interacted with the gaming engine, Unity3D which

  16. Apollo: a sequence annotation editor

    PubMed Central

    Lewis, SE; Searle, SMJ; Harris, N; Gibson, M; Iyer, V; Richter, J; Wiel, C; Bayraktaroglu, L; Birney, E; Crosby, MA; Kaminker, JS; Matthews, BB; Prochnik, SE; Smith, CD; Tupy, JL; Rubin, GM; Misra, S; Mungall, CJ; Clamp, ME

    2002-01-01

    The well-established inaccuracy of purely computational methods for annotating genome sequences necessitates an interactive tool to allow biological experts to refine these approximations by viewing and independently evaluating the data supporting each annotation. Apollo was developed to meet this need, enabling curators to inspect genome annotations closely and edit them. FlyBase biologists successfully used Apollo to annotate the Drosophila melanogaster genome and it is increasingly being used as a starting point for the development of customized annotation editing tools for other genome projects. PMID:12537571

  17. A fast ultrasonic simulation tool based on massively parallel implementations

    NASA Astrophysics Data System (ADS)

    Lambert, Jason; Rougeron, Gilles; Lacassagne, Lionel; Chatillon, Sylvain

    2014-02-01

    This paper presents a CIVA optimized ultrasonic inspection simulation tool, which takes benefit of the power of massively parallel architectures: graphical processing units (GPU) and multi-core general purpose processors (GPP). This tool is based on the classical approach used in CIVA: the interaction model is based on Kirchoff, and the ultrasonic field around the defect is computed by the pencil method. The model has been adapted and parallelized for both architectures. At this stage, the configurations addressed by the tool are : multi and mono-element probes, planar specimens made of simple isotropic materials, planar rectangular defects or side drilled holes of small diameter. Validations on the model accuracy and performances measurements are presented.

  18. A Computational and Experimental Investigation of a Three-Dimensional Hypersonic Scramjet Inlet Flow Field. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Holland, Scott Douglas

    1991-01-01

    A combined computational and experimental parametric study of the internal aerodynamics of a generic three dimensional sidewall compression scramjet inlet configuration was performed. The study was designed to demonstrate the utility of computational fluid dynamics as a design tool in hypersonic inlet flow fields, to provide a detailed account of the nature and structure of the internal flow interactions, and to provide a comprehensive surface property and flow field database to determine the effects of contraction ratio, cowl position, and Reynolds number on the performance of a hypersonic scramjet inlet configuration.

  19. Research in Computer Simulation of Integrated Circuits.

    DTIC Science & Technology

    1983-07-31

    mactore ftor eval -al-rto implementad am a single chip ae those s Lca we beoi ~~g 7he PT!2 software datatow macl*-re ihas nodes ’cr prr., incrastgly... chip grows, these tools are becoming increasingly importan The FTL2 system described in this paper is an interactive system for specifying concurrent...implemented on a single chip grows, theselools are becom- / r/ - --/ ing increasingly important. The FTL2 system described in this paper is an interactive

  20. Experimenter's laboratory for visualized interactive science

    NASA Technical Reports Server (NTRS)

    Hansen, Elaine R.; Klemp, Marjorie K.; Lasater, Sally W.; Szczur, Marti R.; Klemp, Joseph B.

    1992-01-01

    The science activities of the 1990's will require the analysis of complex phenomena and large diverse sets of data. In order to meet these needs, we must take advantage of advanced user interaction techniques: modern user interface tools; visualization capabilities; affordable, high performance graphics workstations; and interoperable data standards and translator. To meet these needs, we propose to adopt and upgrade several existing tools and systems to create an experimenter's laboratory for visualized interactive science. Intuitive human-computer interaction techniques have already been developed and demonstrated at the University of Colorado. A Transportable Applications Executive (TAE+), developed at GSFC, is a powerful user interface tool for general purpose applications. A 3D visualization package developed by NCAR provides both color shaded surface displays and volumetric rendering in either index or true color. The Network Common Data Form (NetCDF) data access library developed by Unidata supports creation, access and sharing of scientific data in a form that is self-describing and network transparent. The combination and enhancement of these packages constitutes a powerful experimenter's laboratory capable of meeting key science needs of the 1990's. This proposal encompasses the work required to build and demonstrate this capability.

  1. Experimenter's laboratory for visualized interactive science

    NASA Technical Reports Server (NTRS)

    Hansen, Elaine R.; Klemp, Marjorie K.; Lasater, Sally W.; Szczur, Marti R.; Klemp, Joseph B.

    1993-01-01

    The science activities of the 1990's will require the analysis of complex phenomena and large diverse sets of data. In order to meet these needs, we must take advantage of advanced user interaction techniques: modern user interface tools; visualization capabilities; affordable, high performance graphics workstations; and interoperatable data standards and translator. To meet these needs, we propose to adopt and upgrade several existing tools and systems to create an experimenter's laboratory for visualized interactive science. Intuitive human-computer interaction techniques have already been developed and demonstrated at the University of Colorado. A Transportable Applications Executive (TAE+), developed at GSFC, is a powerful user interface tool for general purpose applications. A 3D visualization package developed by NCAR provides both color-shaded surface displays and volumetric rendering in either index or true color. The Network Common Data Form (NetCDF) data access library developed by Unidata supports creation, access and sharing of scientific data in a form that is self-describing and network transparent. The combination and enhancement of these packages constitutes a powerful experimenter's laboratory capable of meeting key science needs of the 1990's. This proposal encompasses the work required to build and demonstrate this capability.

  2. Splash: a software tool for stereotactic planning of recording chamber placement and electrode trajectories.

    PubMed

    Sperka, Daniel J; Ditterich, Jochen

    2011-01-01

    While computer-aided planning of human neurosurgeries is becoming more and more common, animal researchers still largely rely on paper atlases for planning their approach before implanting recording chambers to perform invasive recordings of neural activity, which makes this planning process tedious and error-prone. Here we present SPLASh (Stereotactic PLAnning Software), an interactive software tool for the stereotactic planning of recording chamber placement and electrode trajectories. SPLASh has been developed for monkey cortical recordings and relies on a combination of structural MRIs and electronic brain atlases. Since SPLASh is based on the neuroanatomy software Caret, it should also be possible to use it for other parts of the brain or other species for which Caret atlases are available. The tool allows the user to interactively evaluate different possible placements of recording chambers and to simulate electrode trajectories.

  3. Splash: A Software Tool for Stereotactic Planning of Recording Chamber Placement and Electrode Trajectories

    PubMed Central

    Sperka, Daniel J.; Ditterich, Jochen

    2011-01-01

    While computer-aided planning of human neurosurgeries is becoming more and more common, animal researchers still largely rely on paper atlases for planning their approach before implanting recording chambers to perform invasive recordings of neural activity, which makes this planning process tedious and error-prone. Here we present SPLASh (Stereotactic PLAnning Software), an interactive software tool for the stereotactic planning of recording chamber placement and electrode trajectories. SPLASh has been developed for monkey cortical recordings and relies on a combination of structural MRIs and electronic brain atlases. Since SPLASh is based on the neuroanatomy software Caret, it should also be possible to use it for other parts of the brain or other species for which Caret atlases are available. The tool allows the user to interactively evaluate different possible placements of recording chambers and to simulate electrode trajectories. PMID:21472085

  4. Attractive Interactions between Heteroallenes and the Cucurbituril Portal.

    PubMed

    Reany, Ofer; Li, Amanda; Yefet, Maayan; Gilson, Michael K; Keinan, Ehud

    2017-06-21

    In this paper, we report on the noteworthy attractive interaction between organic azides and the portal carbonyls of cucurbiturils. Five homologous bis-α,ω-azidoethylammonium alkanes were prepared, where the number of methylene groups between the ammonium groups ranges from 4 to 8. Their interactions with cucurbit[6]uril were studied by NMR spectroscopy, IR spectroscopy, X-ray crystallography, and computational methods. Remarkably, while the distance between the portal plane and most atoms at the guest end groups increases progressively with the molecular size, the β-nitrogen atoms maintain a constant distance from the portal plane in all homologues, pointing at a strong attractive interaction between the azide group and the portal. Both crystallography and NMR support a specific electrostatic interaction between the carbonyl and the azide β-nitrogen, which stabilizes the canonical resonance form with positive charge on the β-nitrogen and negative charge on the γ-nitrogen. Quantum computational analyses strongly support electrostatics, in the form of orthogonal dipole-dipole interaction, as the main driver for this attraction. The alternative mechanism of n → π* orbital delocalization does not seem to play a significant role in this interaction. The computational studies also indicate that the interaction is not limited to azides, but generalizes to other isoelectronic heteroallene functions, such as isocyanate and isothiocyanate. This essentially unexploited attractive interaction could be more broadly utilized as a tool not only in relation to cucurbituril chemistry, but also for the design of novel supramolecular architectures.

  5. A Computer-Based Educational Approach to the Air Command and Staff College Associate Program

    DTIC Science & Technology

    1985-04-01

    control interactive vid e o, grade student responses and perform some analysis on the dat a . Its main advantages lie in the ability of the author to...basic goal of provid- ing the instructor with assitance in the development of good CBE. One way of viewing the different tools on the market is to...ractice , tutorials and simple games all have as their premise the computer replacing the teacher in a one-on-one en- counter. The other modes, simulation

  6. Program Aids Design Of Fluid-Circulating Systems

    NASA Technical Reports Server (NTRS)

    Bacskay, Allen; Dalee, Robert

    1992-01-01

    Computer Aided Systems Engineering and Analysis (CASE/A) program is interactive software tool for trade study and analysis, designed to increase productivity during all phases of systems engineering. Graphics-based command-driven software package provides user-friendly computing environment in which engineer analyzes performance and interface characteristics of ECLS/ATC system. Useful during all phases of spacecraft-design program, from initial conceptual design trade studies to actual flight, including pre-flight prediction and in-flight analysis of anomalies. Written in FORTRAN 77.

  7. Advanced earth observation spacecraft computer-aided design software: Technical, user and programmer guide

    NASA Technical Reports Server (NTRS)

    Farrell, C. E.; Krauze, L. D.

    1983-01-01

    The IDEAS computer of NASA is a tool for interactive preliminary design and analysis of LSS (Large Space System). Nine analysis modules were either modified or created. These modules include the capabilities of automatic model generation, model mass properties calculation, model area calculation, nonkinematic deployment modeling, rigid-body controls analysis, RF performance prediction, subsystem properties definition, and EOS science sensor selection. For each module, a section is provided that contains technical information, user instructions, and programmer documentation.

  8. Making Your Tools Useful to a Broader Audience

    NASA Astrophysics Data System (ADS)

    Lyness, M. D.; Broten, M. J.

    2006-12-01

    With the increasing growth of Web Services and SOAP the ability to connect and reuse computational and also visualization tools from all over the world via Web Interfaces that can be easily displayed in any current browser has provided the means to construct an ideal online research environment. The age-old question of usability is a major determining factor whether a particular tool would find great success in its community. An interface that can be understood purely by a user's intuition is desirable and more closely obtainable than ever before. Through the use of increasingly sophisticated web-oriented technologies including JavaScript, AJAX, and the DOM, web interfaces are able to harness the advantages of the Internet along with the functional capabilities of native applications such as menus, partial page changes, background processing, and visual effects to name a few. Also, with computers becoming a normal part of the educational process companies, such as Google and Microsoft, give us a synthetic intuition as a foundation for new designs. Understanding the way earth science researchers know how to use computers will allow the VLab portal (http://vlab.msi.umn.edu) and other projects to create interfaces that will get used. To provide detailed communication with the users of VLab's computational tools, projects like the Porky Portlet (http://www.gorerle.com/vlab-wiki/index.php?title=Porky_Portlet) spawned to empower users with a fully- detailed, interactive visual representation of progressing workflows. With the well-thought design of such tools and interfaces, researchers around the world will become accustomed to new highly engaging, visual web- based research environments.

  9. The Jupyter/IPython architecture: a unified view of computational research, from interactive exploration to communication and publication.

    NASA Astrophysics Data System (ADS)

    Ragan-Kelley, M.; Perez, F.; Granger, B.; Kluyver, T.; Ivanov, P.; Frederic, J.; Bussonnier, M.

    2014-12-01

    IPython has provided terminal-based tools for interactive computing in Python since 2001. The notebook document format and multi-process architecture introduced in 2011 have expanded the applicable scope of IPython into teaching, presenting, and sharing computational work, in addition to interactive exploration. The new architecture also allows users to work in any language, with implementations in Python, R, Julia, Haskell, and several other languages. The language agnostic parts of IPython have been renamed to Jupyter, to better capture the notion that a cross-language design can encapsulate commonalities present in computational research regardless of the programming language being used. This architecture offers components like the web-based Notebook interface, that supports rich documents that combine code and computational results with text narratives, mathematics, images, video and any media that a modern browser can display. This interface can be used not only in research, but also for publication and education, as notebooks can be converted to a variety of output formats, including HTML and PDF. Recent developments in the Jupyter project include a multi-user environment for hosting notebooks for a class or research group, a live collaboration notebook via Google Docs, and better support for languages other than Python.

  10. Current And Future Directions Of Lens Design Software

    NASA Astrophysics Data System (ADS)

    Gustafson, Darryl E.

    1983-10-01

    The most effective environment for doing lens design continues to evolve as new computer hardware and software tools become available. Important recent hardware developments include: Low-cost but powerful interactive multi-user 32 bit computers with virtual memory that are totally software-compatible with prior larger and more expensive members of the family. A rapidly growing variety of graphics devices for both hard-copy and screen graphics, including many with color capability. In addition, with optical design software readily accessible in many forms, optical design has become a part-time activity for a large number of engineers instead of being restricted to a small number of full-time specialists. A designer interface that is friendly for the part-time user while remaining efficient for the full-time designer is thus becoming more important as well as more practical. Along with these developments, software tools in other scientific and engineering disciplines are proliferating. Thus, the optical designer is less and less unique in his use of computer-aided techniques and faces the challenge and opportunity of efficiently communicating his designs to other computer-aided-design (CAD), computer-aided-manufacturing (CAM), structural, thermal, and mechanical software tools. This paper will address the impact of these developments on the current and future directions of the CODE VTM optical design software package, its implementation, and the resulting lens design environment.

  11. Investigating the need for clinicians to use tablet computers with a newly envisioned electronic health record.

    PubMed

    Saleem, Jason J; Savoy, April; Etherton, Gale; Herout, Jennifer

    2018-02-01

    The Veterans Health Administration (VHA) has deployed a large number of tablet computers in the last several years. However, little is known about how clinicians may use these devices with a newly planned Web-based electronic health record (EHR), as well as other clinical tools. The objective of this study was to understand the types of use that can be expected of tablet computers versus desktops. Semi-structured interviews were conducted with 24 clinicians at a Veterans Health Administration (VHA) Medical Center. An inductive qualitative analysis resulted in findings organized around recurrent themes of: (1) Barriers, (2) Facilitators, (3) Current Use, (4) Anticipated Use, (5) Patient Interaction, and (6) Connection. Our study generated several recommendations for the use of tablet computers with new health information technology tools being developed. Continuous connectivity for the mobile device is essential to avoid interruptions and clinician frustration. Also, making a physical keyboard available as an option for the tablet was a clear desire from the clinicians. Larger tablets (e.g., regular size iPad as compared to an iPad mini) were preferred. Being able to use secure messaging tools with the tablet computer was another consistent finding. Finally, more simplicity is needed for accessing patient data on mobile devices, while balancing the important need for adequate security. Published by Elsevier B.V.

  12. Automated Generation of Message-Passing Programs: An Evaluation Using CAPTools

    NASA Technical Reports Server (NTRS)

    Hribar, Michelle R.; Jin, Haoqiang; Yan, Jerry C.; Saini, Subhash (Technical Monitor)

    1998-01-01

    Scientists at NASA Ames Research Center have been developing computational aeroscience applications on highly parallel architectures over the past ten years. During that same time period, a steady transition of hardware and system software also occurred, forcing us to expend great efforts into migrating and re-coding our applications. As applications and machine architectures become increasingly complex, the cost and time required for this process will become prohibitive. In this paper, we present the first set of results in our evaluation of interactive parallelization tools. In particular, we evaluate CAPTool's ability to parallelize computational aeroscience applications. CAPTools was tested on serial versions of the NAS Parallel Benchmarks and ARC3D, a computational fluid dynamics application, on two platforms: the SGI Origin 2000 and the Cray T3E. This evaluation includes performance, amount of user interaction required, limitations and portability. Based on these results, a discussion on the feasibility of computer aided parallelization of aerospace applications is presented along with suggestions for future work.

  13. RegulonDB version 9.0: high-level integration of gene regulation, coexpression, motif clustering and beyond

    PubMed Central

    Gama-Castro, Socorro; Salgado, Heladia; Santos-Zavaleta, Alberto; Ledezma-Tejeida, Daniela; Muñiz-Rascado, Luis; García-Sotelo, Jair Santiago; Alquicira-Hernández, Kevin; Martínez-Flores, Irma; Pannier, Lucia; Castro-Mondragón, Jaime Abraham; Medina-Rivera, Alejandra; Solano-Lira, Hilda; Bonavides-Martínez, César; Pérez-Rueda, Ernesto; Alquicira-Hernández, Shirley; Porrón-Sotelo, Liliana; López-Fuentes, Alejandra; Hernández-Koutoucheva, Anastasia; Moral-Chávez, Víctor Del; Rinaldi, Fabio; Collado-Vides, Julio

    2016-01-01

    RegulonDB (http://regulondb.ccg.unam.mx) is one of the most useful and important resources on bacterial gene regulation,as it integrates the scattered scientific knowledge of the best-characterized organism, Escherichia coli K-12, in a database that organizes large amounts of data. Its electronic format enables researchers to compare their results with the legacy of previous knowledge and supports bioinformatics tools and model building. Here, we summarize our progress with RegulonDB since our last Nucleic Acids Research publication describing RegulonDB, in 2013. In addition to maintaining curation up-to-date, we report a collection of 232 interactions with small RNAs affecting 192 genes, and the complete repertoire of 189 Elementary Genetic Sensory-Response units (GENSOR units), integrating the signal, regulatory interactions, and metabolic pathways they govern. These additions represent major progress to a higher level of understanding of regulated processes. We have updated the computationally predicted transcription factors, which total 304 (184 with experimental evidence and 120 from computational predictions); we updated our position-weight matrices and have included tools for clustering them in evolutionary families. We describe our semiautomatic strategy to accelerate curation, including datasets from high-throughput experiments, a novel coexpression distance to search for ‘neighborhood’ genes to known operons and regulons, and computational developments. PMID:26527724

  14. IDEAS: A multidisciplinary computer-aided conceptual design system for spacecraft

    NASA Technical Reports Server (NTRS)

    Ferebee, M. J., Jr.

    1984-01-01

    During the conceptual development of advanced aerospace vehicles, many compromises must be considered to balance economy and performance of the total system. Subsystem tradeoffs may need to be made in order to satisfy system-sensitive attributes. Due to the increasingly complex nature of aerospace systems, these trade studies have become more difficult and time-consuming to complete and involve interactions of ever-larger numbers of subsystems, components, and performance parameters. The current advances of computer-aided synthesis, modeling and analysis techniques have greatly helped in the evaluation of competing design concepts. Langley Research Center's Space Systems Division is currently engaged in trade studies for a variety of systems which include advanced ground-launched space transportation systems, space-based orbital transfer vehicles, large space antenna concepts and space stations. The need for engineering analysis tools to aid in the rapid synthesis and evaluation of spacecraft has led to the development of the Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) computer-aided design system. The ADEAS system has been used to perform trade studies of competing technologies and requirements in order to pinpoint possible beneficial areas for research and development. IDEAS is presented as a multidisciplinary tool for the analysis of advanced space systems. Capabilities range from model generation and structural and thermal analysis to subsystem synthesis and performance analysis.

  15. A Parametric Study of Unsteady Rotor-Stator Interaction in a Simplified Francis Turbine

    NASA Astrophysics Data System (ADS)

    Wouden, Alex; Cimbala, John; Lewis, Bryan

    2011-11-01

    CFD analysis is becoming a critical stage in the design of hydroturbines. However, its capability to represent unsteady flow interactions between the rotor and stator (which requires a 360-degree, mesh-refined model of the turbine passage) is hindered. For CFD to become a more effective tool in predicting the performance of a hydroturbine, the key interactions between the rotor and stator need to be understood using current numerical methods. As a first step towards evaluating this unsteady behavior without the burden of a computationally expensive domain, the stator and Francis-type rotor blades are reduced to flat plates. Local and global variables are compared using periodic, semi-periodic, and 360-degree geometric models and various turbulence models (k-omega, k-epsilon, and Spalart-Allmaras). The computations take place within the OpenFOAM® environment and utilize a general grid interface (GGI) between the rotor and stator computational domains. The rotor computational domain is capable of dynamic rotation. The results demonstrate some of the strengths and limitations of utilizing CFD for hydroturbine analysis. These case studies will also serve as tutorials to help others learn how to use CFD for turbomachinery. This research is funded by a grant from the DOE.

  16. Entanglement entropy with a time-dependent Hamiltonian

    NASA Astrophysics Data System (ADS)

    Sivaramakrishnan, Allic

    2018-03-01

    The time evolution of entanglement tracks how information propagates in interacting quantum systems. We study entanglement entropy in CFT2 with a time-dependent Hamiltonian. We perturb by operators with time-dependent source functions and use the replica trick to calculate higher-order corrections to entanglement entropy. At first order, we compute the correction due to a metric perturbation in AdS3/CFT2 and find agreement on both sides of the duality. Past first order, we find evidence of a universal structure of entanglement propagation to all orders. The central feature is that interactions entangle unentangled excitations. Entanglement propagates according to "entanglement diagrams," proposed structures that are motivated by accessory spacetime diagrams for real-time perturbation theory. To illustrate the mechanisms involved, we compute higher-order corrections to free fermion entanglement entropy. We identify an unentangled operator, one which does not change the entanglement entropy to any order. Then, we introduce an interaction and find it changes entanglement entropy by entangling the unentangled excitations. The entanglement propagates in line with our conjecture. We compute several entanglement diagrams. We provide tools to simplify the computation of loop entanglement diagrams, which probe UV effects in entanglement propagation in CFT and holography.

  17. Digital processing of mesoscale analysis and space sensor data

    NASA Technical Reports Server (NTRS)

    Hickey, J. S.; Karitani, S.

    1985-01-01

    The mesoscale analysis and space sensor (MASS) data management and analysis system on the research computer system is presented. The MASS data base management and analysis system was implemented on the research computer system which provides a wide range of capabilities for processing and displaying large volumes of conventional and satellite derived meteorological data. The research computer system consists of three primary computers (HP-1000F, Harris/6, and Perkin-Elmer 3250), each of which performs a specific function according to its unique capabilities. The overall tasks performed concerning the software, data base management and display capabilities of the research computer system in terms of providing a very effective interactive research tool for the digital processing of mesoscale analysis and space sensor data is described.

  18. Introducing Enabling Computational Tools to the Climate Sciences: Multi-Resolution Climate Modeling with Adaptive Cubed-Sphere Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jablonowski, Christiane

    The research investigates and advances strategies how to bridge the scale discrepancies between local, regional and global phenomena in climate models without the prohibitive computational costs of global cloud-resolving simulations. In particular, the research explores new frontiers in computational geoscience by introducing high-order Adaptive Mesh Refinement (AMR) techniques into climate research. AMR and statically-adapted variable-resolution approaches represent an emerging trend for atmospheric models and are likely to become the new norm in future-generation weather and climate models. The research advances the understanding of multi-scale interactions in the climate system and showcases a pathway how to model these interactions effectively withmore » advanced computational tools, like the Chombo AMR library developed at the Lawrence Berkeley National Laboratory. The research is interdisciplinary and combines applied mathematics, scientific computing and the atmospheric sciences. In this research project, a hierarchy of high-order atmospheric models on cubed-sphere computational grids have been developed that serve as an algorithmic prototype for the finite-volume solution-adaptive Chombo-AMR approach. The foci of the investigations have lied on the characteristics of both static mesh adaptations and dynamically-adaptive grids that can capture flow fields of interest like tropical cyclones. Six research themes have been chosen. These are (1) the introduction of adaptive mesh refinement techniques into the climate sciences, (2) advanced algorithms for nonhydrostatic atmospheric dynamical cores, (3) an assessment of the interplay between resolved-scale dynamical motions and subgrid-scale physical parameterizations, (4) evaluation techniques for atmospheric model hierarchies, (5) the comparison of AMR refinement strategies and (6) tropical cyclone studies with a focus on multi-scale interactions and variable-resolution modeling. The results of this research project demonstrate significant advances in all six research areas. The major conclusions are that statically-adaptive variable-resolution modeling is currently becoming mature in the climate sciences, and that AMR holds outstanding promise for future-generation weather and climate models on high-performance computing architectures.« less

  19. Remote Numerical Simulations of the Interaction of High Velocity Clouds with Random Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Santillan, Alfredo; Hernandez--Cervantes, Liliana; Gonzalez--Ponce, Alejandro; Kim, Jongsoo

    The numerical simulations associated with the interaction of High Velocity Clouds (HVC) with the Magnetized Galactic Interstellar Medium (ISM) are a powerful tool to describe the evolution of the interaction of these objects in our Galaxy. In this work we present a new project referred to as Theoretical Virtual i Observatories. It is oriented toward to perform numerical simulations in real time through a Web page. This is a powerful astrophysical computational tool that consists of an intuitive graphical user interface (GUI) and a database produced by numerical calculations. In this Website the user can make use of the existing numerical simulations from the database or run a new simulation introducing initial conditions such as temperatures, densities, velocities, and magnetic field intensities for both the ISM and HVC. The prototype is programmed using Linux, Apache, MySQL, and PHP (LAMP), based on the open source philosophy. All simulations were performed with the MHD code ZEUS-3D, which solves the ideal MHD equations by finite differences on a fixed Eulerian mesh. Finally, we present typical results that can be obtained with this tool.

  20. Heterogeneous computing architecture for fast detection of SNP-SNP interactions.

    PubMed

    Sluga, Davor; Curk, Tomaz; Zupan, Blaz; Lotric, Uros

    2014-06-25

    The extent of data in a typical genome-wide association study (GWAS) poses considerable computational challenges to software tools for gene-gene interaction discovery. Exhaustive evaluation of all interactions among hundreds of thousands to millions of single nucleotide polymorphisms (SNPs) may require weeks or even months of computation. Massively parallel hardware within a modern Graphic Processing Unit (GPU) and Many Integrated Core (MIC) coprocessors can shorten the run time considerably. While the utility of GPU-based implementations in bioinformatics has been well studied, MIC architecture has been introduced only recently and may provide a number of comparative advantages that have yet to be explored and tested. We have developed a heterogeneous, GPU and Intel MIC-accelerated software module for SNP-SNP interaction discovery to replace the previously single-threaded computational core in the interactive web-based data exploration program SNPsyn. We report on differences between these two modern massively parallel architectures and their software environments. Their utility resulted in an order of magnitude shorter execution times when compared to the single-threaded CPU implementation. GPU implementation on a single Nvidia Tesla K20 runs twice as fast as that for the MIC architecture-based Xeon Phi P5110 coprocessor, but also requires considerably more programming effort. General purpose GPUs are a mature platform with large amounts of computing power capable of tackling inherently parallel problems, but can prove demanding for the programmer. On the other hand the new MIC architecture, albeit lacking in performance reduces the programming effort and makes it up with a more general architecture suitable for a wider range of problems.

  1. Heterogeneous computing architecture for fast detection of SNP-SNP interactions

    PubMed Central

    2014-01-01

    Background The extent of data in a typical genome-wide association study (GWAS) poses considerable computational challenges to software tools for gene-gene interaction discovery. Exhaustive evaluation of all interactions among hundreds of thousands to millions of single nucleotide polymorphisms (SNPs) may require weeks or even months of computation. Massively parallel hardware within a modern Graphic Processing Unit (GPU) and Many Integrated Core (MIC) coprocessors can shorten the run time considerably. While the utility of GPU-based implementations in bioinformatics has been well studied, MIC architecture has been introduced only recently and may provide a number of comparative advantages that have yet to be explored and tested. Results We have developed a heterogeneous, GPU and Intel MIC-accelerated software module for SNP-SNP interaction discovery to replace the previously single-threaded computational core in the interactive web-based data exploration program SNPsyn. We report on differences between these two modern massively parallel architectures and their software environments. Their utility resulted in an order of magnitude shorter execution times when compared to the single-threaded CPU implementation. GPU implementation on a single Nvidia Tesla K20 runs twice as fast as that for the MIC architecture-based Xeon Phi P5110 coprocessor, but also requires considerably more programming effort. Conclusions General purpose GPUs are a mature platform with large amounts of computing power capable of tackling inherently parallel problems, but can prove demanding for the programmer. On the other hand the new MIC architecture, albeit lacking in performance reduces the programming effort and makes it up with a more general architecture suitable for a wider range of problems. PMID:24964802

  2. QCE: A Simulator for Quantum Computer Hardware

    NASA Astrophysics Data System (ADS)

    Michielsen, Kristel; de Raedt, Hans

    2003-09-01

    The Quantum Computer Emulator (QCE) described in this paper consists of a simulator of a generic, general purpose quantum computer and a graphical user interface. The latter is used to control the simulator, to define the hardware of the quantum computer and to debug and execute quantum algorithms. QCE runs in a Windows 98/NT/2000/ME/XP environment. It can be used to validate designs of physically realizable quantum processors and as an interactive educational tool to learn about quantum computers and quantum algorithms. A detailed exposition is given of the implementation of the CNOT and the Toffoli gate, the quantum Fourier transform, Grover's database search algorithm, an order finding algorithm, Shor's algorithm, a three-input adder and a number partitioning algorithm. We also review the results of simulations of an NMR-like quantum computer.

  3. Computer Aided Battery Engineering Consortium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pesaran, Ahmad

    A multi-national lab collaborative team was assembled that includes experts from academia and industry to enhance recently developed Computer-Aided Battery Engineering for Electric Drive Vehicles (CAEBAT)-II battery crush modeling tools and to develop microstructure models for electrode design - both computationally efficient. Task 1. The new Multi-Scale Multi-Domain model framework (GH-MSMD) provides 100x to 1,000x computation speed-up in battery electrochemical/thermal simulation while retaining modularity of particles and electrode-, cell-, and pack-level domains. The increased speed enables direct use of the full model in parameter identification. Task 2. Mechanical-electrochemical-thermal (MECT) models for mechanical abuse simulation were simultaneously coupled, enabling simultaneous modelingmore » of electrochemical reactions during the short circuit, when necessary. The interactions between mechanical failure and battery cell performance were studied, and the flexibility of the model for various batteries structures and loading conditions was improved. Model validation is ongoing to compare with test data from Sandia National Laboratories. The ABDT tool was established in ANSYS. Task 3. Microstructural modeling was conducted to enhance next-generation electrode designs. This 3- year project will validate models for a variety of electrodes, complementing Advanced Battery Research programs. Prototype tools have been developed for electrochemical simulation and geometric reconstruction.« less

  4. Use of an interactive tool to assess patients' willingness-to-pay.

    PubMed

    Matthews, D; Rocchi, A; Wang, E C; Gafni, A

    2001-10-01

    Assessment of willingness to pay (WTP) has become an important issue in health care technology assessment and in providing insight into the risks and benefits of treatment options. We have accordingly explored the use of an interactive method for assessment of WTP. To illustrate our methodology, we describe the development and testing of an interactive tool to administer a WTP survey in a dental setting. The tool was developed to measure patient preference and strength of preference for three dental anesthetic options in a research setting. It delivered written and verbal formats simultaneously, including information about the risks and benefits of treatment options, insurance, and user-based WTP scenarios and questions on previous dental experience. Clinical information was presented using a modified decision aid. Subjects could request additional clinical information and review this information throughout the survey. Information and question algorithms were individualized, depending on the subject's reported clinical status and previous responses. Initial pretesting resulted in substantial modifications to the initial tool: shortening the clinical information (by making more of it optional reading) and personalizing the text to more fully engage the user. In terms of results 196 general population subjects were recruited using random-digit dialing in southwestern Ontario, Canada. Comprehension was tested to ensure the instrument clearly conveyed the clinical information; the average score was 97%. Subjects rated the instrument as easy/very easy to use (99%), interesting/very interesting (91%), and neither long nor short (72.4%). Most subjects were comfortable/very comfortable with a computer (84%). Indirect evaluation revealed most subjects completed the survey in the expected time (30 min). Additional information was requested by 50% of subjects, an average of 2.9 times each. Most subjects wanted this type of information available in the provider's office for use in clinical decision making (92%). Despite extensive pretesting, three "bugs" remained undiscovered until live use. We have demonstrated that the detailed information, complex algorithms, and cognitively challenging questions involved in a WTP survey can be successfully administered using a tailor-made, patient-based, interactive computer tool. Key lessons regarding the use of such tools include allowing the user to set the pace of information flow and tailor the content, engaging the user by personalizing the textual information, inclusion of tests of comprehension and offering opportunities for correction, and pretesting by fully mimicking the live environment.

  5. Simulation of glioblastoma multiforme (GBM) tumor cells using ising model on the Creutz Cellular Automaton

    NASA Astrophysics Data System (ADS)

    Züleyha, Artuç; Ziya, Merdan; Selçuk, Yeşiltaş; Kemal, Öztürk M.; Mesut, Tez

    2017-11-01

    Computational models for tumors have difficulties due to complexity of tumor nature and capacities of computational tools, however, these models provide visions to understand interactions between tumor and its micro environment. Moreover computational models have potential to develop strategies for individualized treatments for cancer. To observe a solid brain tumor, glioblastoma multiforme (GBM), we present a two dimensional Ising Model applied on Creutz cellular automaton (CCA). The aim of this study is to analyze avascular spherical solid tumor growth, considering transitions between non tumor cells and cancer cells are like phase transitions in physical system. Ising model on CCA algorithm provides a deterministic approach with discrete time steps and local interactions in position space to view tumor growth as a function of time. Our simulation results are given for fixed tumor radius and they are compatible with theoretical and clinic data.

  6. Interactive computer graphics applications for compressible aerodynamics

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1994-01-01

    Three computer applications have been developed to solve inviscid compressible fluids problems using interactive computer graphics. The first application is a compressible flow calculator which solves for isentropic flow, normal shocks, and oblique shocks or centered expansions produced by two dimensional ramps. The second application couples the solutions generated by the first application to a more graphical presentation of the results to produce a desk top simulator of three compressible flow problems: 1) flow past a single compression ramp; 2) flow past two ramps in series; and 3) flow past two opposed ramps. The third application extends the results of the second to produce a design tool which solves for the flow through supersonic external or mixed compression inlets. The applications were originally developed to run on SGI or IBM workstations running GL graphics. They are currently being extended to solve additional types of flow problems and modified to operate on any X-based workstation.

  7. Measurement of cognitive performance in computer programming concept acquisition: interactive effects of visual metaphors and the cognitive style construct.

    PubMed

    McKay, E

    2000-01-01

    An innovative research program was devised to investigate the interactive effect of instructional strategies enhanced with text-plus-textual metaphors or text-plus-graphical metaphors, and cognitive style on the acquisition of programming concepts. The Cognitive Styles Analysis (CSA) program (Riding,1991) was used to establish the participants' cognitive style. The QUEST Interactive Test Analysis System (Adams and Khoo,1996) provided the cognitive performance measuring tool, which ensured an absence of error measurement in the programming knowledge testing instruments. Therefore, reliability of the instrumentation was assured through the calibration techniques utilized by the QUEST estimate; providing predictability of the research design. A means analysis of the QUEST data, using the Cohen (1977) approach to size effect and statistical power further quantified the significance of the findings. The experimental methodology adopted for this research links the disciplines of instructional science, cognitive psychology, and objective measurement to provide reliable mechanisms for beneficial use in the evaluation of cognitive performance by the education, training and development sectors. Furthermore, the research outcomes will be of interest to educators, cognitive psychologists, communications engineers, and computer scientists specializing in computer-human interactions.

  8. Teaching ocean wave forecasting using computer-generated visualization and animation—Part 2: swell forecasting

    NASA Astrophysics Data System (ADS)

    Whitford, Dennis J.

    2002-05-01

    This paper, the second of a two-part series, introduces undergraduate students to ocean wave forecasting using interactive computer-generated visualization and animation. Verbal descriptions and two-dimensional illustrations are often insufficient for student comprehension. Fortunately, the introduction of computers in the geosciences provides a tool for addressing this problem. Computer-generated visualization and animation, accompanied by oral explanation, have been shown to be a pedagogical improvement to more traditional methods of instruction. Cartographic science and other disciplines using geographical information systems have been especially aggressive in pioneering the use of visualization and animation, whereas oceanography has not. This paper will focus on the teaching of ocean swell wave forecasting, often considered a difficult oceanographic topic due to the mathematics and physics required, as well as its interdependence on time and space. Several MATLAB ® software programs are described and offered to visualize and animate group speed, frequency dispersion, angular dispersion, propagation, and wave height forecasting of deep water ocean swell waves. Teachers may use these interactive visualizations and animations without requiring an extensive background in computer programming.

  9. Factors Influencing Future Educational Technologists' Intentions to Participate in Online Teaching

    ERIC Educational Resources Information Center

    Hung, Wei-Chen; Jeng, Ifeng

    2013-01-01

    Education through the Internet is being shaped by the next wave of Web technology where productivity, collaborative tools and the ubiquity of computers play a major role in changing methods of peer interaction and collaboration. Because future educational technologists will play vital roles in navigating through this technical complexity and…

  10. Operation ARA: A Computerized Learning Game that Teaches Critical Thinking and Scientific Reasoning

    ERIC Educational Resources Information Center

    Halpern, Diane F.; Millis, Keith; Graesser, Arthur C.; Butler, Heather; Forsyth, Carol; Cai, Zhiqiang

    2012-01-01

    Operation ARA (Acquiring Research Acumen) is a computerized learning game that teaches critical thinking and scientific reasoning. It is a valuable learning tool that utilizes principles from the science of learning and serious computer games. Students learn the skills of scientific reasoning by engaging in interactive dialogs with avatars. They…

  11. An overview of the biocreative 2012 workshop track III: Interactive text mining task

    USDA-ARS?s Scientific Manuscript database

    An important question is how to make use of text mining to enhance the biocuration workflow. A number of groups have developed tools for text mining from a computer science/linguistics perspective and there are many initiatives to curate some aspect of biology from the literature. In some cases the ...

  12. Modeling of the Global Water Cycle - Analytical Models

    Treesearch

    Yongqiang Liu; Roni Avissar

    2005-01-01

    Both numerical and analytical models of coupled atmosphere and its underlying ground components (land, ocean, ice) are useful tools for modeling the global and regional water cycle. Unlike complex three-dimensional climate models, which need very large computing resources and involve a large number of complicated interactions often difficult to interpret, analytical...

  13. The Development of a Web-Based Virtual Environment for Teaching Qualitative Analysis of Structures

    ERIC Educational Resources Information Center

    O'Dwyer, D. W.; Logan-Phelan, T. M.; O'Neill, E. A.

    2007-01-01

    The current paper describes the design and development of a qualitative analysis course and an interactive web-based teaching and assessment tool called VSE (virtual structural environment). The widespread reliance on structural analysis programs requires engineers to be able to verify computer output by carrying out qualitative analyses.…

  14. So Why Use Multimedia, the Internet, and Lotus Notes?

    ERIC Educational Resources Information Center

    Byers, Donnie N.

    As part of an effort to begin offering a general chemistry course over the Internet, a project was undertaken at Kansas's Johnson County Community College to determine the possibilities of using a computer to incorporate the tools used in teaching organic chemistry. Using an interactive software package, original lectures were developed, with…

  15. Rethinking the Role of the Professor in an Age of High-Tech Tools.

    ERIC Educational Resources Information Center

    Young, Jeffrey R.

    1997-01-01

    Some faculty feel that, as tasks become "unbundled," technology may take over instructional duties that define professor's jobs, with courses designed outside the institution, lectures replaced by Web sites, tests created and administered by outside organizations. Others feel that computers foster more interactive and lively learning environments…

  16. A Re-Examination of Information Seeking Behaviour in the Context of Activity Theory

    ERIC Educational Resources Information Center

    Wilson, T. D.

    2006-01-01

    Introduction: Activity theory, developed in the USSR as a Marxist alternative to Western psychology, has been applied widely in educational studies and increasingly in human-computer interaction research. Argument: The key elements of activity theory, Motivation, Goal, Activity, Tools, Object, Outcome, Rules, Community and Division of labour are…

  17. An Educational Development Tool Based on Principles of Formal Ontology

    ERIC Educational Resources Information Center

    Guzzi, Rodolfo; Scarpanti, Stefano; Ballista, Giovanni; Di Nicolantonio, Walter

    2005-01-01

    Computer science provides with virtual laboratories, places where one can merge real experiments with the formalism of algorithms and mathematics and where, with the advent of multimedia, sounds and movies can also be added. In this paper we present a method, based on principles of formal ontology, allowing one to develop interactive educational…

  18. A Collaborative Multimedia Annotation Tool for Enhancing Knowledge Sharing in CSCL

    ERIC Educational Resources Information Center

    Yang, Stephen J. H.; Zhang, Jia; Su, Addison Y. S.; Tsai, Jeffrey J. P.

    2011-01-01

    Knowledge sharing in computer supported collaborative learning (CSCL) requires intensive social interactions among participants, typically in the form of annotations. An annotation refers to an explicit expression of knowledge that is attached to a document to reveal the conceptual meanings of an annotator's implicit thoughts. In this research, we…

  19. In silico and in vitro inhibition of cytochrome P450 3A by synthetic stilbenoids.

    PubMed

    Basheer, Loai; Schultz, Keren; Guttman, Yelena; Kerem, Zohar

    2017-12-15

    Inhibition of cytochrome P450 3A4 (CYP3A4), the major drug metabolizing enzyme, by dietary compounds has recently attracted increased attention. Evaluating the potency of the many known inhibitory compounds is a tedious and time consuming task, yet it can be achieved using computing tools. Here, CDOCKER and Glide served to design model inhibitors in order to characterize molecular features of an inhibitor. Assessing nitro-stilbenoids, both approaches suggested nitrostilbene to be a weaker inhibitor of CYP3A4 than resveratrol, and stronger than dimethoxy-nitrostilbene. Nitrostilbene and resveratrol, but not dimethoxy-nitrostilbene, engage electrostatic interactions in the enzyme cavity, and with the haem. In vitro assessment of the inhibitory capacity supported the in silico predictions, suggesting that evaluating the electrostatic interactions of a compound with the prosthetic group allows the prediction of inhibitory potency. Since both programs yielded related results, it is suggested that for CYP3A4, computing tools may allow rapid identification of potent dietary inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The use of interactive computer vision and robot hand controllers for enhancing manufacturing safety

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Jacobus, Charles J.; Peurach, Thomas M.; Mitchell, Brian T.

    1994-01-01

    Current available robotic systems provide limited support for CAD-based model-driven visualization, sensing algorithm development and integration, and automated graphical planning systems. This paper describes ongoing work which provides the functionality necessary to apply advanced robotics to automated manufacturing and assembly operations. An interface has been built which incorporates 6-DOF tactile manipulation, displays for three dimensional graphical models, and automated tracking functions which depend on automated machine vision. A set of tools for single and multiple focal plane sensor image processing and understanding has been demonstrated which utilizes object recognition models. The resulting tool will enable sensing and planning from computationally simple graphical objects. A synergistic interplay between human and operator vision is created from programmable feedback received from the controller. This approach can be used as the basis for implementing enhanced safety in automated robotics manufacturing, assembly, repair and inspection tasks in both ground and space applications. Thus, an interactive capability has been developed to match the modeled environment to the real task environment for safe and predictable task execution.

  1. The use of interactive computer vision and robot hand controllers for enhancing manufacturing safety

    NASA Astrophysics Data System (ADS)

    Marzwell, Neville I.; Jacobus, Charles J.; Peurach, Thomas M.; Mitchell, Brian T.

    1994-02-01

    Current available robotic systems provide limited support for CAD-based model-driven visualization, sensing algorithm development and integration, and automated graphical planning systems. This paper describes ongoing work which provides the functionality necessary to apply advanced robotics to automated manufacturing and assembly operations. An interface has been built which incorporates 6-DOF tactile manipulation, displays for three dimensional graphical models, and automated tracking functions which depend on automated machine vision. A set of tools for single and multiple focal plane sensor image processing and understanding has been demonstrated which utilizes object recognition models. The resulting tool will enable sensing and planning from computationally simple graphical objects. A synergistic interplay between human and operator vision is created from programmable feedback received from the controller. This approach can be used as the basis for implementing enhanced safety in automated robotics manufacturing, assembly, repair and inspection tasks in both ground and space applications. Thus, an interactive capability has been developed to match the modeled environment to the real task environment for safe and predictable task execution.

  2. Analyzing and interpreting genome data at the network level with ConsensusPathDB.

    PubMed

    Herwig, Ralf; Hardt, Christopher; Lienhard, Matthias; Kamburov, Atanas

    2016-10-01

    ConsensusPathDB consists of a comprehensive collection of human (as well as mouse and yeast) molecular interaction data integrated from 32 different public repositories and a web interface featuring a set of computational methods and visualization tools to explore these data. This protocol describes the use of ConsensusPathDB (http://consensuspathdb.org) with respect to the functional and network-based characterization of biomolecules (genes, proteins and metabolites) that are submitted to the system either as a priority list or together with associated experimental data such as RNA-seq. The tool reports interaction network modules, biochemical pathways and functional information that are significantly enriched by the user's input, applying computational methods for statistical over-representation, enrichment and graph analysis. The results of this protocol can be observed within a few minutes, even with genome-wide data. The resulting network associations can be used to interpret high-throughput data mechanistically, to characterize and prioritize biomarkers, to integrate different omics levels, to design follow-up functional assay experiments and to generate topology for kinetic models at different scales.

  3. Modeling protein structure at near atomic resolutions with Gorgon.

    PubMed

    Baker, Matthew L; Abeysinghe, Sasakthi S; Schuh, Stephen; Coleman, Ross A; Abrams, Austin; Marsh, Michael P; Hryc, Corey F; Ruths, Troy; Chiu, Wah; Ju, Tao

    2011-05-01

    Electron cryo-microscopy (cryo-EM) has played an increasingly important role in elucidating the structure and function of macromolecular assemblies in near native solution conditions. Typically, however, only non-atomic resolution reconstructions have been obtained for these large complexes, necessitating computational tools for integrating and extracting structural details. With recent advances in cryo-EM, maps at near-atomic resolutions have been achieved for several macromolecular assemblies from which models have been manually constructed. In this work, we describe a new interactive modeling toolkit called Gorgon targeted at intermediate to near-atomic resolution density maps (10-3.5 Å), particularly from cryo-EM. Gorgon's de novo modeling procedure couples sequence-based secondary structure prediction with feature detection and geometric modeling techniques to generate initial protein backbone models. Beyond model building, Gorgon is an extensible interactive visualization platform with a variety of computational tools for annotating a wide variety of 3D volumes. Examples from cryo-EM maps of Rotavirus and Rice Dwarf Virus are used to demonstrate its applicability to modeling protein structure. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Force Field Accelerated Density Functional Theory Molecular Dynamics for Simulation of Reactive Systems at Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Lindsey, Rebecca; Goldman, Nir; Fried, Laurence

    2017-06-01

    Atomistic modeling of chemistry at extreme conditions remains a challenge, despite continuing advances in computing resources and simulation tools. While first principles methods provide a powerful predictive tool, the time and length scales associated with chemistry at extreme conditions (ns and μm, respectively) largely preclude extension of such models to molecular dynamics. In this work, we develop a simulation approach that retains the accuracy of density functional theory (DFT) while decreasing computational effort by several orders of magnitude. We generate n-body descriptions for atomic interactions by mapping forces arising from short density functional theory (DFT) trajectories on to simple Chebyshev polynomial series. We examine the importance of including greater than 2-body interactions, model transferability to different state points, and discuss approaches to ensure smooth and reasonable model shape outside of the distance domain sampled by the DFT training set. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Visualization techniques for computer network defense

    NASA Astrophysics Data System (ADS)

    Beaver, Justin M.; Steed, Chad A.; Patton, Robert M.; Cui, Xiaohui; Schultz, Matthew

    2011-06-01

    Effective visual analysis of computer network defense (CND) information is challenging due to the volume and complexity of both the raw and analyzed network data. A typical CND is comprised of multiple niche intrusion detection tools, each of which performs network data analysis and produces a unique alerting output. The state-of-the-practice in the situational awareness of CND data is the prevalent use of custom-developed scripts by Information Technology (IT) professionals to retrieve, organize, and understand potential threat events. We propose a new visual analytics framework, called the Oak Ridge Cyber Analytics (ORCA) system, for CND data that allows an operator to interact with all detection tool outputs simultaneously. Aggregated alert events are presented in multiple coordinated views with timeline, cluster, and swarm model analysis displays. These displays are complemented with both supervised and semi-supervised machine learning classifiers. The intent of the visual analytics framework is to improve CND situational awareness, to enable an analyst to quickly navigate and analyze thousands of detected events, and to combine sophisticated data analysis techniques with interactive visualization such that patterns of anomalous activities may be more easily identified and investigated.

  6. Interactive software tool to comprehend the calculation of optimal sequence alignments with dynamic programming.

    PubMed

    Ibarra, Ignacio L; Melo, Francisco

    2010-07-01

    Dynamic programming (DP) is a general optimization strategy that is successfully used across various disciplines of science. In bioinformatics, it is widely applied in calculating the optimal alignment between pairs of protein or DNA sequences. These alignments form the basis of new, verifiable biological hypothesis. Despite its importance, there are no interactive tools available for training and education on understanding the DP algorithm. Here, we introduce an interactive computer application with a graphical interface, for the purpose of educating students about DP. The program displays the DP scoring matrix and the resulting optimal alignment(s), while allowing the user to modify key parameters such as the values in the similarity matrix, the sequence alignment algorithm version and the gap opening/extension penalties. We hope that this software will be useful to teachers and students of bioinformatics courses, as well as researchers who implement the DP algorithm for diverse applications. The software is freely available at: http:/melolab.org/sat. The software is written in the Java computer language, thus it runs on all major platforms and operating systems including Windows, Mac OS X and LINUX. All inquiries or comments about this software should be directed to Francisco Melo at fmelo@bio.puc.cl.

  7. SparkSeq: fast, scalable and cloud-ready tool for the interactive genomic data analysis with nucleotide precision.

    PubMed

    Wiewiórka, Marek S; Messina, Antonio; Pacholewska, Alicja; Maffioletti, Sergio; Gawrysiak, Piotr; Okoniewski, Michał J

    2014-09-15

    Many time-consuming analyses of next -: generation sequencing data can be addressed with modern cloud computing. The Apache Hadoop-based solutions have become popular in genomics BECAUSE OF: their scalability in a cloud infrastructure. So far, most of these tools have been used for batch data processing rather than interactive data querying. The SparkSeq software has been created to take advantage of a new MapReduce framework, Apache Spark, for next-generation sequencing data. SparkSeq is a general-purpose, flexible and easily extendable library for genomic cloud computing. It can be used to build genomic analysis pipelines in Scala and run them in an interactive way. SparkSeq opens up the possibility of customized ad hoc secondary analyses and iterative machine learning algorithms. This article demonstrates its scalability and overall fast performance by running the analyses of sequencing datasets. Tests of SparkSeq also prove that the use of cache and HDFS block size can be tuned for the optimal performance on multiple worker nodes. Available under open source Apache 2.0 license: https://bitbucket.org/mwiewiorka/sparkseq/. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. An interactive wire-wrap board layout program

    NASA Technical Reports Server (NTRS)

    Schlutsmeyer, A.

    1987-01-01

    An interactive computer-graphics-based tool for specifying the placement of electronic parts on a wire-wrap circuit board is presented. Input is a data file (currently produced by a commercial logic design system) which describes the parts used and their interconnections. Output includes printed reports describing the parts and wire paths, parts counts, placement lists, board drawing, and a tape to send to the wire-wrap vendor. The program should reduce the engineer's layout time by a factor of 3 to 5 as compared to manual methods.

  9. 3D Graphics Through the Internet: A "Shoot-Out"

    NASA Technical Reports Server (NTRS)

    Watson, Val; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    3D graphics through the Internet needs to move beyond the current lowest common denominator of pre-computed movies, which consume bandwidth and are non-interactive. Panelists will demonstrate and compare 3D graphical tools for accessing, analyzing, and collaborating on information through the Internet and World-wide web. The "shoot-out" will illustrate which tools are likely to be the best for the various types of information, including dynamic scientific data, 3-D objects, and virtual environments. The goal of the panel is to encourage more effective use of the Internet by encouraging suppliers and users of information to adopt the next generation of graphical tools.

  10. Human Exploration Ethnography of the Haughton-Mars Project, 1998-1999

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Swanson, Keith (Technical Monitor)

    1999-01-01

    During the past two field seasons, July 1988 and 1999, we have conducted research about the field practices of scientists and engineers at Haughton Crater on Devon Island in the Canadian Arctic, with the objective of determining how people will live and work on Mars. This broad investigation of field life and work practice, part of the Haughton-Mars Project lead by Pascal Lee, spans social and cognitive anthropology, psychology, and computer science. Our approach involves systematic observation and description of activities, places, and concepts, constituting an ethnography of field science at Haughton. Our focus is on human behaviors-what people do, where, when, with whom, and why. By locating behavior in time and place-in contrast with a purely functional or "task oriented" description of work-we find patterns constituting the choreography of interaction between people, their habitat, and their tools. As such, we view the exploration process in terms of a total system comprising a social organization, facilities, terrain/climate, personal identities, artifacts, and computer tools. Because we are computer scientists seeking to develop new kinds of tools for living and working on Mars, we focus on the existing representational tools (such as documents and measuring devices), learning and improvization (such as use of the internet or informal assistance), and prototype computational systems brought to the field. Our research is based on partnership, by which field scientists and engineers actively contribute to our findings, just as we participate in their work and life.

  11. Qudit-Basis Universal Quantum Computation Using χ^{(2)} Interactions.

    PubMed

    Niu, Murphy Yuezhen; Chuang, Isaac L; Shapiro, Jeffrey H

    2018-04-20

    We prove that universal quantum computation can be realized-using only linear optics and χ^{(2)} (three-wave mixing) interactions-in any (n+1)-dimensional qudit basis of the n-pump-photon subspace. First, we exhibit a strictly universal gate set for the qubit basis in the one-pump-photon subspace. Next, we demonstrate qutrit-basis universality by proving that χ^{(2)} Hamiltonians and photon-number operators generate the full u(3) Lie algebra in the two-pump-photon subspace, and showing how the qutrit controlled-Z gate can be implemented with only linear optics and χ^{(2)} interactions. We then use proof by induction to obtain our general qudit result. Our induction proof relies on coherent photon injection or subtraction, a technique enabled by χ^{(2)} interaction between the encoding modes and ancillary modes. Finally, we show that coherent photon injection is more than a conceptual tool, in that it offers a route to preparing high-photon-number Fock states from single-photon Fock states.

  12. Interaction between IGFBP7 and insulin: a theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Ruan, Wenjing; Kang, Zhengzhong; Li, Youzhao; Sun, Tianyang; Wang, Lipei; Liang, Lijun; Lai, Maode; Wu, Tao

    2016-04-01

    Insulin-like growth factor binding protein 7 (IGFBP7) can bind to insulin with high affinity which inhibits the early steps of insulin action. Lack of recognition mechanism impairs our understanding of insulin regulation before it binds to insulin receptor. Here we combine computational simulations with experimental methods to investigate the interaction between IGFBP7 and insulin. Molecular dynamics simulations indicated that His200 and Arg198 in IGFBP7 were key residues. Verified by experimental data, the interaction remained strong in single mutation systems R198E and H200F but became weak in double mutation system R198E-H200F relative to that in wild-type IGFBP7. The results and methods in present study could be adopted in future research of discovery of drugs by disrupting protein-protein interactions in insulin signaling. Nevertheless, the accuracy, reproducibility, and costs of free-energy calculation are still problems that need to be addressed before computational methods can become standard binding prediction tools in discovery pipelines.

  13. Safety Analysis of FMS/CTAS Interactions During Aircraft Arrivals

    NASA Technical Reports Server (NTRS)

    Leveson, Nancy G.

    1998-01-01

    This grant funded research on human-computer interaction design and analysis techniques, using future ATC environments as a testbed. The basic approach was to model the nominal behavior of both the automated and human procedures and then to apply safety analysis techniques to these models. Our previous modeling language, RSML, had been used to specify the system requirements for TCAS II for the FAA. Using the lessons learned from this experience, we designed a new modeling language that (among other things) incorporates features to assist in designing less error-prone human-computer interactions and interfaces and in detecting potential HCI problems, such as mode confusion. The new language, SpecTRM-RL, uses "intent" abstractions, based on Rasmussen's abstraction hierarchy, and includes both informal (English and graphical) specifications and formal, executable models for specifying various aspects of the system. One of the goals for our language was to highlight the system modes and mode changes to assist in identifying the potential for mode confusion. Three published papers resulted from this research. The first builds on the work of Degani on mode confusion to identify aspects of the system design that could lead to potential hazards. We defined and modeled modes differently than Degani and also defined design criteria for SpecTRM-RL models. Our design criteria include the Degani criteria but extend them to include more potential problems. In a second paper, Leveson and Palmer showed how the criteria for indirect mode transitions could be applied to a mode confusion problem found in several ASRS reports for the MD-88. In addition, we defined a visual task modeling language that can be used by system designers to model human-computer interaction. The visual models can be translated into SpecTRM-RL models, and then the SpecTRM-RL suite of analysis tools can be used to perform formal and informal safety analyses on the task model in isolation or integrated with the rest of the modeled system. We had hoped to be able to apply these modeling languages and analysis tools to a TAP air/ground trajectory negotiation scenario, but the development of the tools took more time than we anticipated.

  14. 3DRISM-HI-D2MSA: an improved analytic theory to compute solvent structure around hydrophobic solutes with proper treatment of solute–solvent electrostatic interactions

    NASA Astrophysics Data System (ADS)

    Cao, Siqin; Zhu, Lizhe; Huang, Xuhui

    2018-04-01

    The 3D reference interaction site model (3DRISM) is a powerful tool to study the thermodynamic and structural properties of liquids. However, for hydrophobic solutes, the inhomogeneity of the solvent density around them poses a great challenge to the 3DRISM theory. To address this issue, we have previously introduced the hydrophobic-induced density inhomogeneity theory (HI) for purely hydrophobic solutes. To further consider the complex hydrophobic solutes containing partial charges, here we propose the D2MSA closure to incorporate the short-range and long-range interactions with the D2 closure and the mean spherical approximation, respectively. We demonstrate that our new theory can compute the solvent distributions around real hydrophobic solutes in water and complex organic solvents that agree well with the explicit solvent molecular dynamics simulations.

  15. Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus.

    PubMed

    Zhang, Yan; An, Lin; Xu, Jie; Zhang, Bo; Zheng, W Jim; Hu, Ming; Tang, Jijun; Yue, Feng

    2018-02-21

    Although Hi-C technology is one of the most popular tools for studying 3D genome organization, due to sequencing cost, the resolution of most Hi-C datasets are coarse and cannot be used to link distal regulatory elements to their target genes. Here we develop HiCPlus, a computational approach based on deep convolutional neural network, to infer high-resolution Hi-C interaction matrices from low-resolution Hi-C data. We demonstrate that HiCPlus can impute interaction matrices highly similar to the original ones, while only using 1/16 of the original sequencing reads. We show that the models learned from one cell type can be applied to make predictions in other cell or tissue types. Our work not only provides a computational framework to enhance Hi-C data resolution but also reveals features underlying the formation of 3D chromatin interactions.

  16. Integrated modeling of advanced optical systems

    NASA Astrophysics Data System (ADS)

    Briggs, Hugh C.; Needels, Laura; Levine, B. Martin

    1993-02-01

    This poster session paper describes an integrated modeling and analysis capability being developed at JPL under funding provided by the JPL Director's Discretionary Fund and the JPL Control/Structure Interaction Program (CSI). The posters briefly summarize the program capabilities and illustrate them with an example problem. The computer programs developed under this effort will provide an unprecedented capability for integrated modeling and design of high performance optical spacecraft. The engineering disciplines supported include structural dynamics, controls, optics and thermodynamics. Such tools are needed in order to evaluate the end-to-end system performance of spacecraft such as OSI, POINTS, and SMMM. This paper illustrates the proof-of-concept tools that have been developed to establish the technology requirements and demonstrate the new features of integrated modeling and design. The current program also includes implementation of a prototype tool based upon the CAESY environment being developed under the NASA Guidance and Control Research and Technology Computational Controls Program. This prototype will be available late in FY-92. The development plan proposes a major software production effort to fabricate, deliver, support and maintain a national-class tool from FY-93 through FY-95.

  17. The use of elearning in medical education: a review of the current situation.

    PubMed

    Choules, A P

    2007-04-01

    Computers are increasingly used in medical education. Electronic learning (elearning) is moving from textbooks in electronic format (that are increasingly enhanced by the use of multimedia adjuncts) to a truly interactive medium that can be delivered to meet the educational needs of students and postgraduate learners. Computer technology can present reliable, reusable content in a format that is convenient to the learner. It can be used to transcend geographical boundaries and time zones. It is a valuable tool to add to the medical teacher's toolkit, but like all tools it must be used appropriately. This article endeavours to review the current "state of the art2 in use of elearning and its role in medical education alongside non-electronic methods-a combination that is currently referred to as "blended" learning.

  18. A Haptic-Enhanced System for Molecular Sensing

    NASA Astrophysics Data System (ADS)

    Comai, Sara; Mazza, Davide

    The science of haptics has received an enormous attention in the last decade. One of the major application trends of haptics technology is data visualization and training. In this paper, we present a haptically-enhanced system for manipulation and tactile exploration of molecules.The geometrical models of molecules is extracted either from theoretical or empirical data using file formats widely adopted in chemical and biological fields. The addition of information computed with computational chemistry tools, allows users to feel the interaction forces between an explored molecule and a charge associated to the haptic device, and to visualize a huge amount of numerical data in a more comprehensible way. The developed tool can be used either for teaching or research purposes due to its high reliance on both theoretical and experimental data.

  19. Advancements in RNASeqGUI towards a Reproducible Analysis of RNA-Seq Experiments

    PubMed Central

    Russo, Francesco; Righelli, Dario

    2016-01-01

    We present the advancements and novelties recently introduced in RNASeqGUI, a graphical user interface that helps biologists to handle and analyse large data collected in RNA-Seq experiments. This work focuses on the concept of reproducible research and shows how it has been incorporated in RNASeqGUI to provide reproducible (computational) results. The novel version of RNASeqGUI combines graphical interfaces with tools for reproducible research, such as literate statistical programming, human readable report, parallel executions, caching, and interactive and web-explorable tables of results. These features allow the user to analyse big datasets in a fast, efficient, and reproducible way. Moreover, this paper represents a proof of concept, showing a simple way to develop computational tools for Life Science in the spirit of reproducible research. PMID:26977414

  20. Electromagnetomechanical elastodynamic model for Lamb wave damage quantification in composites

    NASA Astrophysics Data System (ADS)

    Borkowski, Luke; Chattopadhyay, Aditi

    2014-03-01

    Physics-based wave propagation computational models play a key role in structural health monitoring (SHM) and the development of improved damage quantification methodologies. Guided waves (GWs), such as Lamb waves, provide the capability to monitor large plate-like aerospace structures with limited actuators and sensors and are sensitive to small scale damage; however due to the complex nature of GWs, accurate and efficient computation tools are necessary to investigate the mechanisms responsible for dispersion, coupling, and interaction with damage. In this paper, the local interaction simulation approach (LISA) coupled with the sharp interface model (SIM) solution methodology is used to solve the fully coupled electro-magneto-mechanical elastodynamic equations for the piezoelectric and piezomagnetic actuation and sensing of GWs in fiber reinforced composite material systems. The final framework provides the full three-dimensional displacement as well as electrical and magnetic potential fields for arbitrary plate and transducer geometries and excitation waveform and frequency. The model is validated experimentally and proven computationally efficient for a laminated composite plate. Studies are performed with surface bonded piezoelectric and embedded piezomagnetic sensors to gain insight into the physics of experimental techniques used for SHM. The symmetric collocation of piezoelectric actuators is modeled to demonstrate mode suppression in laminated composites for the purpose of damage detection. The effect of delamination and damage (i.e., matrix cracking) on the GW propagation is demonstrated and quantified. The developed model provides a valuable tool for the improvement of SHM techniques due to its proven accuracy and computational efficiency.

  1. Inlets, ducts, and nozzles

    NASA Technical Reports Server (NTRS)

    Abbott, John M.; Anderson, Bernhard H.; Rice, Edward J.

    1990-01-01

    The internal fluid mechanics research program in inlets, ducts, and nozzles consists of a balanced effort between the development of computational tools (both parabolized Navier-Stokes and full Navier-Stokes) and the conduct of experimental research. The experiments are designed to better understand the fluid flow physics, to develop new or improved flow models, and to provide benchmark quality data sets for validation of the computational methods. The inlet, duct, and nozzle research program is described according to three major classifications of flow phenomena: (1) highly 3-D flow fields; (2) shock-boundary-layer interactions; and (3) shear layer control. Specific examples of current and future elements of the research program are described for each of these phenomenon. In particular, the highly 3-D flow field phenomenon is highlighted by describing the computational and experimental research program in transition ducts having a round-to-rectangular area variation. In the case of shock-boundary-layer interactions, the specific details of research for normal shock-boundary-layer interactions are described. For shear layer control, research in vortex generators and the use of aerodynamic excitation for enhancement of the jet mixing process are described.

  2. Computational Modeling of Fluid–Structure–Acoustics Interaction during Voice Production

    PubMed Central

    Jiang, Weili; Zheng, Xudong; Xue, Qian

    2017-01-01

    The paper presented a three-dimensional, first-principle based fluid–structure–acoustics interaction computer model of voice production, which employed a more realistic human laryngeal and vocal tract geometries. Self-sustained vibrations, important convergent–divergent vibration pattern of the vocal folds, and entrainment of the two dominant vibratory modes were captured. Voice quality-associated parameters including the frequency, open quotient, skewness quotient, and flow rate of the glottal flow waveform were found to be well within the normal physiological ranges. The analogy between the vocal tract and a quarter-wave resonator was demonstrated. The acoustic perturbed flux and pressure inside the glottis were found to be at the same order with their incompressible counterparts, suggesting strong source–filter interactions during voice production. Such high fidelity computational model will be useful for investigating a variety of pathological conditions that involve complex vibrations, such as vocal fold paralysis, vocal nodules, and vocal polyps. The model is also an important step toward a patient-specific surgical planning tool that can serve as a no-risk trial and error platform for different procedures, such as injection of biomaterials and thyroplastic medialization. PMID:28243588

  3. Bounds on the power of proofs and advice in general physical theories.

    PubMed

    Lee, Ciarán M; Hoban, Matty J

    2016-06-01

    Quantum theory presents us with the tools for computational and communication advantages over classical theory. One approach to uncovering the source of these advantages is to determine how computation and communication power vary as quantum theory is replaced by other operationally defined theories from a broad framework of such theories. Such investigations may reveal some of the key physical features required for powerful computation and communication. In this paper, we investigate how simple physical principles bound the power of two different computational paradigms which combine computation and communication in a non-trivial fashion: computation with advice and interactive proof systems. We show that the existence of non-trivial dynamics in a theory implies a bound on the power of computation with advice. Moreover, we provide an explicit example of a theory with no non-trivial dynamics in which the power of computation with advice is unbounded. Finally, we show that the power of simple interactive proof systems in theories where local measurements suffice for tomography is non-trivially bounded. This result provides a proof that [Formula: see text] is contained in [Formula: see text], which does not make use of any uniquely quantum structure-such as the fact that observables correspond to self-adjoint operators-and thus may be of independent interest.

  4. Modeling Tools for Propulsion Analysis and Computational Fluid Dynamics on the Internet

    NASA Technical Reports Server (NTRS)

    Muss, J. A.; Johnson, C. W.; Gotchy, M. B.

    2000-01-01

    The existing RocketWeb(TradeMark) Internet Analysis System (httr)://www.iohnsonrockets.com/rocketweb) provides an integrated set of advanced analysis tools that can be securely accessed over the Internet. Since these tools consist of both batch and interactive analysis codes, the system includes convenient methods for creating input files and evaluating the resulting data. The RocketWeb(TradeMark) system also contains many features that permit data sharing which, when further developed, will facilitate real-time, geographically diverse, collaborative engineering within a designated work group. Adding work group management functionality while simultaneously extending and integrating the system's set of design and analysis tools will create a system providing rigorous, controlled design development, reducing design cycle time and cost.

  5. SOCRAT Platform Design: A Web Architecture for Interactive Visual Analytics Applications

    PubMed Central

    Kalinin, Alexandr A.; Palanimalai, Selvam; Dinov, Ivo D.

    2018-01-01

    The modern web is a successful platform for large scale interactive web applications, including visualizations. However, there are no established design principles for building complex visual analytics (VA) web applications that could efficiently integrate visualizations with data management, computational transformation, hypothesis testing, and knowledge discovery. This imposes a time-consuming design and development process on many researchers and developers. To address these challenges, we consider the design requirements for the development of a module-based VA system architecture, adopting existing practices of large scale web application development. We present the preliminary design and implementation of an open-source platform for Statistics Online Computational Resource Analytical Toolbox (SOCRAT). This platform defines: (1) a specification for an architecture for building VA applications with multi-level modularity, and (2) methods for optimizing module interaction, re-usage, and extension. To demonstrate how this platform can be used to integrate a number of data management, interactive visualization, and analysis tools, we implement an example application for simple VA tasks including raw data input and representation, interactive visualization and analysis. PMID:29630069

  6. SOCRAT Platform Design: A Web Architecture for Interactive Visual Analytics Applications.

    PubMed

    Kalinin, Alexandr A; Palanimalai, Selvam; Dinov, Ivo D

    2017-04-01

    The modern web is a successful platform for large scale interactive web applications, including visualizations. However, there are no established design principles for building complex visual analytics (VA) web applications that could efficiently integrate visualizations with data management, computational transformation, hypothesis testing, and knowledge discovery. This imposes a time-consuming design and development process on many researchers and developers. To address these challenges, we consider the design requirements for the development of a module-based VA system architecture, adopting existing practices of large scale web application development. We present the preliminary design and implementation of an open-source platform for Statistics Online Computational Resource Analytical Toolbox (SOCRAT). This platform defines: (1) a specification for an architecture for building VA applications with multi-level modularity, and (2) methods for optimizing module interaction, re-usage, and extension. To demonstrate how this platform can be used to integrate a number of data management, interactive visualization, and analysis tools, we implement an example application for simple VA tasks including raw data input and representation, interactive visualization and analysis.

  7. Thermal Analysis of Magnetically-Coupled Pump for Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Senocak, Inanc; Udaykumar, H. S.; Ndri, Narcisse; Francois, Marianne; Shyy, Wei

    1999-01-01

    Magnetically-coupled pump is under evaluation at Kennedy Space Center for possible cryogenic applications. A major concern is the impact of low temperature fluid flows on the pump performance. As a first step toward addressing this and related issues, a computational fluid dynamics and heat transfer tool has been adopted in a pump geometry. The computational tool includes (i) a commercial grid generator to handle multiple grid blocks and complicated geometric definitions, and (ii) an in-house computational fluid dynamics and heat transfer software developed in the Principal Investigator's group at the University of Florida. Both pure-conduction and combined convection-conduction computations have been conducted. A pure-conduction analysis gives insufficient information about the overall thermal distribution. Combined convection-conduction analysis indicates the significant influence of the coolant over the entire flow path. Since 2-D simulation is of limited help, future work on full 3-D modeling of the pump using multi-materials is needed. A comprehensive and accurate model can be developed to take into account the effect of multi-phase flow in the cooling flow loop, and the magnetic interactions.

  8. Genome wide approaches to identify protein-DNA interactions.

    PubMed

    Ma, Tao; Ye, Zhenqing; Wang, Liguo

    2018-05-29

    Transcription factors are DNA-binding proteins that play key roles in many fundamental biological processes. Unraveling their interactions with DNA is essential to identify their target genes and understand the regulatory network. Genome-wide identification of their binding sites became feasible thanks to recent progress in experimental and computational approaches. ChIP-chip, ChIP-seq, and ChIP-exo are three widely used techniques to demarcate genome-wide transcription factor binding sites. This review aims to provide an overview of these three techniques including their experiment procedures, computational approaches, and popular analytic tools. ChIP-chip, ChIP-seq, and ChIP-exo have been the major techniques to study genome-wide in vivo protein-DNA interaction. Due to the rapid development of next-generation sequencing technology, array-based ChIP-chip is deprecated and ChIP-seq has become the most widely used technique to identify transcription factor binding sites in genome-wide. The newly developed ChIP-exo further improves the spatial resolution to single nucleotide. Numerous tools have been developed to analyze ChIP-chip, ChIP-seq and ChIP-exo data. However, different programs may employ different mechanisms or underlying algorithms thus each will inherently include its own set of statistical assumption and bias. So choosing the most appropriate analytic program for a given experiment needs careful considerations. Moreover, most programs only have command line interface so their installation and usage will require basic computation expertise in Unix/Linux. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Toward an integrated account of object and action selection: A computational analysis and empirical findings from reaching-to-grasp and tool-use

    PubMed Central

    Botvinick, Matthew M.; Buxbaum, Laurel J.; Bylsma, Lauren M.; Jax, Steven A.

    2014-01-01

    The act of reaching for and acting upon an object involves two forms of selection: selection of the object as a target, and selection of the action to be performed. While these two forms of selection are logically dissociable, and are evidently subserved by separable neural pathways, they must also be closely coordinated. We examine the nature of this coordination by developing and analyzing a computational model of object and action selection first proposed by Ward [Ward, R. (1999). Interactions between perception and action systems: a model for selective action. In G. W. Humphreys, J. Duncan, & A. Treisman (Eds.), Attention, Space and Action: Studies in Cognitive Neuroscience. Oxford: Oxford University Press]. An interesting tenet of this account, which we explore in detail, is that the interplay between object and action selection depends critically on top-down inputs representing the current task set or plan of action. A concrete manifestation of this, established through a series of simulations, is that the impact of distractor objects on reaching times can vary depending on the nature of the current action plan. In order to test the model's predictions in this regard, we conducted two experiments, one involving direct object manipulation, the other involving tool-use. In both experiments we observed the specific interaction between task set and distractor type predicted by the model. Our findings provide support for the computational model, and more broadly for an interactive account of object and action selection. PMID:19100758

  10. ReliefSeq: A Gene-Wise Adaptive-K Nearest-Neighbor Feature Selection Tool for Finding Gene-Gene Interactions and Main Effects in mRNA-Seq Gene Expression Data

    PubMed Central

    McKinney, Brett A.; White, Bill C.; Grill, Diane E.; Li, Peter W.; Kennedy, Richard B.; Poland, Gregory A.; Oberg, Ann L.

    2013-01-01

    Relief-F is a nonparametric, nearest-neighbor machine learning method that has been successfully used to identify relevant variables that may interact in complex multivariate models to explain phenotypic variation. While several tools have been developed for assessing differential expression in sequence-based transcriptomics, the detection of statistical interactions between transcripts has received less attention in the area of RNA-seq analysis. We describe a new extension and assessment of Relief-F for feature selection in RNA-seq data. The ReliefSeq implementation adapts the number of nearest neighbors (k) for each gene to optimize the Relief-F test statistics (importance scores) for finding both main effects and interactions. We compare this gene-wise adaptive-k (gwak) Relief-F method with standard RNA-seq feature selection tools, such as DESeq and edgeR, and with the popular machine learning method Random Forests. We demonstrate performance on a panel of simulated data that have a range of distributional properties reflected in real mRNA-seq data including multiple transcripts with varying sizes of main effects and interaction effects. For simulated main effects, gwak-Relief-F feature selection performs comparably to standard tools DESeq and edgeR for ranking relevant transcripts. For gene-gene interactions, gwak-Relief-F outperforms all comparison methods at ranking relevant genes in all but the highest fold change/highest signal situations where it performs similarly. The gwak-Relief-F algorithm outperforms Random Forests for detecting relevant genes in all simulation experiments. In addition, Relief-F is comparable to the other methods based on computational time. We also apply ReliefSeq to an RNA-Seq study of smallpox vaccine to identify gene expression changes between vaccinia virus-stimulated and unstimulated samples. ReliefSeq is an attractive tool for inclusion in the suite of tools used for analysis of mRNA-Seq data; it has power to detect both main effects and interaction effects. Software Availability: http://insilico.utulsa.edu/ReliefSeq.php. PMID:24339943

  11. Analytic and rule-based decision support tool for VDT workstation adjustment and computer accessories arrangement.

    PubMed

    Rurkhamet, Busagarin; Nanthavanij, Suebsak

    2004-12-01

    One important factor that leads to the development of musculoskeletal disorders (MSD) and cumulative trauma disorders (CTD) among visual display terminal (VDT) users is their work posture. While operating a VDT, a user's body posture is strongly influenced by the task, VDT workstation settings, and layout of computer accessories. This paper presents an analytic and rule-based decision support tool called EQ-DeX (an ergonomics and quantitative design expert system) that is developed to provide valid and practical recommendations regarding the adjustment of a VDT workstation and the arrangement of computer accessories. The paper explains the structure and components of EQ-DeX, input data, rules, and adjustment and arrangement algorithms. From input information such as gender, age, body height, task, etc., EQ-DeX uses analytic and rule-based algorithms to estimate quantitative settings of a computer table and a chair, as well as locations of computer accessories such as monitor, document holder, keyboard, and mouse. With the input and output screens that are designed using the concept of usability, the interactions between the user and EQ-DeX are convenient. Examples are also presented to demonstrate the recommendations generated by EQ-DeX.

  12. Biopython: freely available Python tools for computational molecular biology and bioinformatics.

    PubMed

    Cock, Peter J A; Antao, Tiago; Chang, Jeffrey T; Chapman, Brad A; Cox, Cymon J; Dalke, Andrew; Friedberg, Iddo; Hamelryck, Thomas; Kauff, Frank; Wilczynski, Bartek; de Hoon, Michiel J L

    2009-06-01

    The Biopython project is a mature open source international collaboration of volunteer developers, providing Python libraries for a wide range of bioinformatics problems. Biopython includes modules for reading and writing different sequence file formats and multiple sequence alignments, dealing with 3D macro molecular structures, interacting with common tools such as BLAST, ClustalW and EMBOSS, accessing key online databases, as well as providing numerical methods for statistical learning. Biopython is freely available, with documentation and source code at (www.biopython.org) under the Biopython license.

  13. Combustion and flow modelling applied to the OMV VTE

    NASA Technical Reports Server (NTRS)

    Larosiliere, Louis M.; Jeng, San-Mou

    1990-01-01

    A predictive tool for hypergolic bipropellant spray combustion and flow evolution in the OMV VTE (orbital maneuvering vehicle variable thrust engine) is described. It encompasses a computational technique for the gas phase governing equations, a discrete particle method for liquid bipropellant sprays, and constitutive models for combustion chemistry, interphase exchanges, and unlike impinging liquid hypergolic stream interactions. Emphasis is placed on the phenomenological modelling of the hypergolic liquid bipropellant gasification processes. An application to the OMV VTE combustion chamber is given in order to show some of the capabilities and inadequacies of this tool.

  14. Computer-assisted learning in critical care: from ENIAC to HAL.

    PubMed

    Tegtmeyer, K; Ibsen, L; Goldstein, B

    2001-08-01

    Computers are commonly used to serve many functions in today's modern intensive care unit. One of the most intriguing and perhaps most challenging applications of computers has been to attempt to improve medical education. With the introduction of the first computer, medical educators began looking for ways to incorporate their use into the modern curriculum. Prior limitations of cost and complexity of computers have consistently decreased since their introduction, making it increasingly feasible to incorporate computers into medical education. Simultaneously, the capabilities and capacities of computers have increased. Combining the computer with other modern digital technology has allowed the development of more intricate and realistic educational tools. The purpose of this article is to briefly describe the history and use of computers in medical education with special reference to critical care medicine. In addition, we will examine the role of computers in teaching and learning and discuss the types of interaction between the computer user and the computer.

  15. Analysis of Cysteine Redox Post-Translational Modifications in Cell Biology and Drug Pharmacology.

    PubMed

    Wani, Revati; Murray, Brion W

    2017-01-01

    Reversible cysteine oxidation is an emerging class of protein post-translational modification (PTM) that regulates catalytic activity, modulates conformation, impacts protein-protein interactions, and affects subcellular trafficking of numerous proteins. Redox PTMs encompass a broad array of cysteine oxidation reactions with different half-lives, topographies, and reactivities such as S-glutathionylation and sulfoxidation. Recent studies from our group underscore the lesser known effect of redox protein modifications on drug binding. To date, biological studies to understand mechanistic and functional aspects of redox regulation are technically challenging. A prominent issue is the lack of tools for labeling proteins oxidized to select chemotype/oxidant species in cells. Predictive computational tools and curated databases of oxidized proteins are facilitating structural and functional insights into regulation of the network of oxidized proteins or redox proteome. In this chapter, we discuss analytical platforms for studying protein oxidation, suggest computational tools currently available in the field to determine redox sensitive proteins, and begin to illuminate roles of cysteine redox PTMs in drug pharmacology.

  16. Efficient utilization of graphics technology for space animation

    NASA Technical Reports Server (NTRS)

    Panos, Gregory Peter

    1989-01-01

    Efficient utilization of computer graphics technology has become a major investment in the work of aerospace engineers and mission designers. These new tools are having a significant impact in the development and analysis of complex tasks and procedures which must be prepared prior to actual space flight. Design and implementation of useful methods in applying these tools has evolved into a complex interaction of hardware, software, network, video and various user interfaces. Because few people can understand every aspect of this broad mix of technology, many specialists are required to build, train, maintain and adapt these tools to changing user needs. Researchers have set out to create systems where an engineering designer can easily work to achieve goals with a minimum of technological distraction. This was accomplished with high-performance flight simulation visual systems and supercomputer computational horsepower. Control throughout the creative process is judiciously applied while maintaining generality and ease of use to accommodate a wide variety of engineering needs.

  17. McIDAS-V: A Data Analysis and Visualization Tool for Global Satellite Data

    NASA Astrophysics Data System (ADS)

    Achtor, T. H.; Rink, T. D.

    2011-12-01

    The Man-computer Interactive Data Access System (McIDAS-V) is a java-based, open-source, freely available system for scientists, researchers and algorithm developers working with atmospheric data. The McIDAS-V software tools provide powerful new data manipulation and visualization capabilities, including 4-dimensional displays, an abstract data model with integrated metadata, user defined computation, and a powerful scripting capability. As such, McIDAS-V is a valuable tool for scientists and researchers within the GEO and GOESS domains. The advancing polar and geostationary orbit environmental satellite missions conducted by several countries will carry advanced instrumentation and systems that will collect and distribute land, ocean, and atmosphere data. These systems provide atmospheric and sea surface temperatures, humidity sounding, cloud and aerosol properties, and numerous other environmental products. This presentation will display and demonstrate some of the capabilities of McIDAS-V to analyze and display high temporal and spectral resolution data using examples from international environmental satellites.

  18. RF Models for Plasma-Surface Interactions in VSim

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Smithe, D. N.; Pankin, A. Y.; Roark, C. M.; Zhou, C. D.; Stoltz, P. H.; Kruger, S. E.

    2014-10-01

    An overview of ongoing enhancements to the Plasma Discharge (PD) module of Tech-X's VSim software tool is presented. A sub-grid kinetic sheath model, developed for the accurate computation of sheath potentials near metal and dielectric-coated walls, enables the physical effects of DC and RF sheath physics to be included in macroscopic-scale plasma simulations that need not explicitly resolve sheath scale lengths. Sheath potential evolution, together with particle behavior near the sheath, can thus be simulated in complex geometries. Generalizations of the model to include sputtering, secondary electron emission, and effects from multiple ion species and background magnetic fields are summarized; related numerical results are also presented. In addition, improved tools for plasma chemistry and IEDF/EEDF visualization and modeling are discussed, as well as our initial efforts toward the development of hybrid fluid/kinetic transition capabilities within VSim. Ultimately, we aim to establish VSimPD as a robust, efficient computational tool for modeling industrial plasma processes. Supported by US DoE SBIR-I/II Award DE-SC0009501.

  19. Plant Aquaporins: Genome-Wide Identification, Transcriptomics, Proteomics, and Advanced Analytical Tools.

    PubMed

    Deshmukh, Rupesh K; Sonah, Humira; Bélanger, Richard R

    2016-01-01

    Aquaporins (AQPs) are channel-forming integral membrane proteins that facilitate the movement of water and many other small molecules. Compared to animals, plants contain a much higher number of AQPs in their genome. Homology-based identification of AQPs in sequenced species is feasible because of the high level of conservation of protein sequences across plant species. Genome-wide characterization of AQPs has highlighted several important aspects such as distribution, genetic organization, evolution and conserved features governing solute specificity. From a functional point of view, the understanding of AQP transport system has expanded rapidly with the help of transcriptomics and proteomics data. The efficient analysis of enormous amounts of data generated through omic scale studies has been facilitated through computational advancements. Prediction of protein tertiary structures, pore architecture, cavities, phosphorylation sites, heterodimerization, and co-expression networks has become more sophisticated and accurate with increasing computational tools and pipelines. However, the effectiveness of computational approaches is based on the understanding of physiological and biochemical properties, transport kinetics, solute specificity, molecular interactions, sequence variations, phylogeny and evolution of aquaporins. For this purpose, tools like Xenopus oocyte assays, yeast expression systems, artificial proteoliposomes, and lipid membranes have been efficiently exploited to study the many facets that influence solute transport by AQPs. In the present review, we discuss genome-wide identification of AQPs in plants in relation with recent advancements in analytical tools, and their availability and technological challenges as they apply to AQPs. An exhaustive review of omics resources available for AQP research is also provided in order to optimize their efficient utilization. Finally, a detailed catalog of computational tools and analytical pipelines is offered as a resource for AQP research.

  20. Plant Aquaporins: Genome-Wide Identification, Transcriptomics, Proteomics, and Advanced Analytical Tools

    PubMed Central

    Deshmukh, Rupesh K.; Sonah, Humira; Bélanger, Richard R.

    2016-01-01

    Aquaporins (AQPs) are channel-forming integral membrane proteins that facilitate the movement of water and many other small molecules. Compared to animals, plants contain a much higher number of AQPs in their genome. Homology-based identification of AQPs in sequenced species is feasible because of the high level of conservation of protein sequences across plant species. Genome-wide characterization of AQPs has highlighted several important aspects such as distribution, genetic organization, evolution and conserved features governing solute specificity. From a functional point of view, the understanding of AQP transport system has expanded rapidly with the help of transcriptomics and proteomics data. The efficient analysis of enormous amounts of data generated through omic scale studies has been facilitated through computational advancements. Prediction of protein tertiary structures, pore architecture, cavities, phosphorylation sites, heterodimerization, and co-expression networks has become more sophisticated and accurate with increasing computational tools and pipelines. However, the effectiveness of computational approaches is based on the understanding of physiological and biochemical properties, transport kinetics, solute specificity, molecular interactions, sequence variations, phylogeny and evolution of aquaporins. For this purpose, tools like Xenopus oocyte assays, yeast expression systems, artificial proteoliposomes, and lipid membranes have been efficiently exploited to study the many facets that influence solute transport by AQPs. In the present review, we discuss genome-wide identification of AQPs in plants in relation with recent advancements in analytical tools, and their availability and technological challenges as they apply to AQPs. An exhaustive review of omics resources available for AQP research is also provided in order to optimize their efficient utilization. Finally, a detailed catalog of computational tools and analytical pipelines is offered as a resource for AQP research. PMID:28066459

Top