ERIC Educational Resources Information Center
Lonchamp, Jacques
2010-01-01
Computer-based interaction analysis (IA) is an automatic process that aims at understanding a computer-mediated activity. In a CSCL system, computer-based IA can provide information directly to learners for self-assessment and regulation and to tutors for coaching support. This article proposes a customizable computer-based IA approach for a…
A Comparative Evaluation of Computer Based and Non-Computer Based Instructional Strategies.
ERIC Educational Resources Information Center
Emerson, Ian
1988-01-01
Compares the computer assisted instruction (CAI) tutorial with its non-computerized pedagogical roots: the Socratic Dialog with Skinner's Programmed Instruction. Tests the effectiveness of a CAI tutorial on diffusion and osmosis against four other interactive and non-interactive instructional strategies. Notes computer based strategies were…
ERIC Educational Resources Information Center
Rieber, Lloyd P.; Tzeng, Shyh-Chii; Tribble, Kelly
2004-01-01
The purpose of this research was to explore how adult users interact and learn during an interactive computer-based simulation supplemented with brief multimedia explanations of the content. A total of 52 college students interacted with a computer-based simulation of Newton's laws of motion in which they had control over the motion of a simple…
ERIC Educational Resources Information Center
Granena, Gisela
2016-01-01
Interaction is a necessary condition for second language (L2) learning (Long, 1980, 1996). Research in computer-mediated communication has shown that interaction opportunities make learners pay attention to form in a variety of ways that promote L2 learning. This research has mostly investigated text-based rather than voice-based interaction. The…
2010-12-01
Base ( CFB ) Kingston. The computer simulation developed in this project is intended to be used for future research and as a possible training platform...DRDC Toronto No. CR 2010-055 Development of an E-Prime based computer simulation of an interactive Human Rights Violation negotiation script...Abstract This report describes the method of developing an E-Prime computer simulation of an interactive Human Rights Violation (HRV) negotiation. An
NASA Astrophysics Data System (ADS)
Zuhrie, M. S.; Basuki, I.; Asto B, I. G. P.; Anifah, L.
2018-01-01
The focus of the research is the teaching module which incorporates manufacturing, planning mechanical designing, controlling system through microprocessor technology and maneuverability of the robot. Computer interactive and computer-assisted learning is strategies that emphasize the use of computers and learning aids (computer assisted learning) in teaching and learning activity. This research applied the 4-D model research and development. The model is suggested by Thiagarajan, et.al (1974). 4-D Model consists of four stages: Define Stage, Design Stage, Develop Stage, and Disseminate Stage. This research was conducted by applying the research design development with an objective to produce a tool of learning in the form of intelligent robot modules and kit based on Computer Interactive Learning and Computer Assisted Learning. From the data of the Indonesia Robot Contest during the period of 2009-2015, it can be seen that the modules that have been developed confirm the fourth stage of the research methods of development; disseminate method. The modules which have been developed for students guide students to produce Intelligent Robot Tool for Teaching Based on Computer Interactive Learning and Computer Assisted Learning. Results of students’ responses also showed a positive feedback to relate to the module of robotics and computer-based interactive learning.
Interactive Computer-Assisted Instruction in Acid-Base Physiology for Mobile Computer Platforms
ERIC Educational Resources Information Center
Longmuir, Kenneth J.
2014-01-01
In this project, the traditional lecture hall presentation of acid-base physiology in the first-year medical school curriculum was replaced by interactive, computer-assisted instruction designed primarily for the iPad and other mobile computer platforms. Three learning modules were developed, each with ~20 screens of information, on the subjects…
ESL Students' Interaction in Second Life: Task-Based Synchronous Computer-Mediated Communication
ERIC Educational Resources Information Center
Jee, Min Jung
2010-01-01
The purpose of the present study was to explore ESL students' interactions in task-based synchronous computer-mediated communication (SCMC) in Second Life, a virtual environment by which users can interact through representational figures. I investigated Low-Intermediate and High-Intermediate ESL students' interaction patterns before, during, and…
ERIC Educational Resources Information Center
Zigic, Sasha; Lemckert, Charles J.
2007-01-01
The following paper presents a computer-based learning strategy to assist in introducing and teaching water quality modelling to undergraduate civil engineering students. As part of the learning strategy, an interactive computer-based instructional (CBI) aid was specifically developed to assist students to set up, run and analyse the output from a…
Computer-Based Interaction Analysis with DEGREE Revisited
ERIC Educational Resources Information Center
Barros, B.; Verdejo, M. F.
2016-01-01
We review our research with "DEGREE" and analyse how our work has impacted the collaborative learning community since 2000. Our research is framed within the context of computer-based interaction analysis and the development of computer-supported collaborative learning (CSCL) tools. We identify some aspects of our work which have been…
Feedback and Elaboration within a Computer-Based Simulation: A Dual Coding Perspective.
ERIC Educational Resources Information Center
Rieber, Lloyd P.; And Others
The purpose of this study was to explore how adult users interact and learn during a computer-based simulation given visual and verbal forms of feedback coupled with embedded elaborations of the content. A total of 52 college students interacted with a computer-based simulation of Newton's laws of motion in which they had control over the motion…
2015-01-01
Objectives This study aimed to determine the effect of mobile-based discussion versus computer-based discussion on self-directed learning readiness, academic motivation, learner-interface interaction, and flow state. Methods This randomized controlled trial was conducted at one university. Eighty-six nursing students who were able to use a computer, had home Internet access, and used a mobile phone were recruited. Participants were randomly assigned to either the mobile phone app-based discussion group (n = 45) or a computer web-based discussion group (n = 41). The effect was measured at before and after an online discussion via self-reported surveys that addressed academic motivation, self-directed learning readiness, time distortion, learner-learner interaction, learner-interface interaction, and flow state. Results The change in extrinsic motivation on identified regulation in the academic motivation (p = 0.011) as well as independence and ability to use basic study (p = 0.047) and positive orientation to the future in self-directed learning readiness (p = 0.021) from pre-intervention to post-intervention was significantly more positive in the mobile phone app-based group compared to the computer web-based discussion group. Interaction between learner and interface (p = 0.002), having clear goals (p = 0.012), and giving and receiving unambiguous feedback (p = 0.049) in flow state was significantly higher in the mobile phone app-based discussion group than it was in the computer web-based discussion group at post-test. Conclusions The mobile phone might offer more valuable learning opportunities for discussion teaching and learning methods in terms of self-directed learning readiness, academic motivation, learner-interface interaction, and the flow state of the learning process compared to the computer. PMID:25995965
ERIC Educational Resources Information Center
Neumann, David L.
2010-01-01
Interactive computer-based simulations have been applied in several contexts to teach statistical concepts in university level courses. In this report, the use of interactive simulations as part of summative assessment in a statistics course is described. Students accessed the simulations via the web and completed questions relating to the…
Rationale, Design and Implementation of a Computer Vision-Based Interactive E-Learning System
ERIC Educational Resources Information Center
Xu, Richard Y. D.; Jin, Jesse S.
2007-01-01
This article presents a schematic application of computer vision technologies to e-learning that is synchronous, peer-to-peer-based, and supports an instructor's interaction with non-computer teaching equipments. The article first discusses the importance of these focused e-learning areas, where the properties include accurate bidirectional…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mereghetti, Paolo; Martinez, M.; Wade, Rebecca C.
Brownian dynamics (BD) simulations can be used to study very large molecular systems, such as models of the intracellular environment, using atomic-detail structures. Such simulations require strategies to contain the computational costs, especially for the computation of interaction forces and energies. A common approach is to compute interaction forces between macromolecules by precomputing their interaction potentials on three-dimensional discretized grids. For long-range interactions, such as electrostatics, grid-based methods are subject to finite size errors. We describe here the implementation of a Debye-Hückel correction to the grid-based electrostatic potential used in the SDA BD simulation software that was applied to simulatemore » solutions of bovine serum albumin and of hen egg white lysozyme.« less
IPython: components for interactive and parallel computing across disciplines. (Invited)
NASA Astrophysics Data System (ADS)
Perez, F.; Bussonnier, M.; Frederic, J. D.; Froehle, B. M.; Granger, B. E.; Ivanov, P.; Kluyver, T.; Patterson, E.; Ragan-Kelley, B.; Sailer, Z.
2013-12-01
Scientific computing is an inherently exploratory activity that requires constantly cycling between code, data and results, each time adjusting the computations as new insights and questions arise. To support such a workflow, good interactive environments are critical. The IPython project (http://ipython.org) provides a rich architecture for interactive computing with: 1. Terminal-based and graphical interactive consoles. 2. A web-based Notebook system with support for code, text, mathematical expressions, inline plots and other rich media. 3. Easy to use, high performance tools for parallel computing. Despite its roots in Python, the IPython architecture is designed in a language-agnostic way to facilitate interactive computing in any language. This allows users to mix Python with Julia, R, Octave, Ruby, Perl, Bash and more, as well as to develop native clients in other languages that reuse the IPython clients. In this talk, I will show how IPython supports all stages in the lifecycle of a scientific idea: 1. Individual exploration. 2. Collaborative development. 3. Production runs with parallel resources. 4. Publication. 5. Education. In particular, the IPython Notebook provides an environment for "literate computing" with a tight integration of narrative and computation (including parallel computing). These Notebooks are stored in a JSON-based document format that provides an "executable paper": notebooks can be version controlled, exported to HTML or PDF for publication, and used for teaching.
System and method for controlling power consumption in a computer system based on user satisfaction
Yang, Lei; Dick, Robert P; Chen, Xi; Memik, Gokhan; Dinda, Peter A; Shy, Alex; Ozisikyilmaz, Berkin; Mallik, Arindam; Choudhary, Alok
2014-04-22
Systems and methods for controlling power consumption in a computer system. For each of a plurality of interactive applications, the method changes a frequency at which a processor of the computer system runs, receives an indication of user satisfaction, determines a relationship between the changed frequency and the user satisfaction of the interactive application, and stores the determined relationship information. The determined relationship can distinguish between different users and different interactive applications. A frequency may be selected from the discrete frequencies at which the processor of the computer system runs based on the determined relationship information for a particular user and a particular interactive application running on the processor of the computer system. The processor may be adapted to run at the selected frequency.
Conceptualizing, Designing, and Investigating Locative Media Use in Urban Space
NASA Astrophysics Data System (ADS)
Diamantaki, Katerina; Rizopoulos, Charalampos; Charitos, Dimitris; Kaimakamis, Nikos
This chapter investigates the social implications of locative media (LM) use and attempts to outline a theoretical framework that may support the design and implementation of location-based applications. Furthermore, it stresses the significance of physical space and location awareness as important factors that influence both human-computer interaction and computer-mediated communication. The chapter documents part of the theoretical aspect of the research undertaken as part of LOcation-based Communication Urban NETwork (LOCUNET), a project that aims to investigate the way users interact with one another (human-computer-human interaction aspect) and with the location-based system itself (human-computer interaction aspect). A number of relevant theoretical approaches are discussed in an attempt to provide a holistic theoretical background for LM use. Additionally, the actual implementation of the LOCUNET system is described and some of the findings are discussed.
Nehaniv, Chrystopher L; Rhodes, John; Egri-Nagy, Attila; Dini, Paolo; Morris, Eric Rothstein; Horváth, Gábor; Karimi, Fariba; Schreckling, Daniel; Schilstra, Maria J
2015-07-28
Interaction computing is inspired by the observation that cell metabolic/regulatory systems construct order dynamically, through constrained interactions between their components and based on a wide range of possible inputs and environmental conditions. The goals of this work are to (i) identify and understand mathematically the natural subsystems and hierarchical relations in natural systems enabling this and (ii) use the resulting insights to define a new model of computation based on interactions that is useful for both biology and computation. The dynamical characteristics of the cellular pathways studied in systems biology relate, mathematically, to the computational characteristics of automata derived from them, and their internal symmetry structures to computational power. Finite discrete automata models of biological systems such as the lac operon, the Krebs cycle and p53-mdm2 genetic regulation constructed from systems biology models have canonically associated algebraic structures (their transformation semigroups). These contain permutation groups (local substructures exhibiting symmetry) that correspond to 'pools of reversibility'. These natural subsystems are related to one another in a hierarchical manner by the notion of 'weak control'. We present natural subsystems arising from several biological examples and their weak control hierarchies in detail. Finite simple non-Abelian groups are found in biological examples and can be harnessed to realize finitary universal computation. This allows ensembles of cells to achieve any desired finitary computational transformation, depending on external inputs, via suitably constrained interactions. Based on this, interaction machines that grow and change their structure recursively are introduced and applied, providing a natural model of computation driven by interactions.
ERIC Educational Resources Information Center
Mavrou, Katerina
2012-01-01
This paper discusses the results of peer acceptance in a study investigating the interactions of pairs of disabled and non-disabled pupils working together on computer-based tasks in mainstream primary schools in Cyprus. Twenty dyads of pupils were observed and videotaped while working together at the computer. Data analyses were based on the…
An Overview of Computer-Based Natural Language Processing.
ERIC Educational Resources Information Center
Gevarter, William B.
Computer-based Natural Language Processing (NLP) is the key to enabling humans and their computer-based creations to interact with machines using natural languages (English, Japanese, German, etc.) rather than formal computer languages. NLP is a major research area in the fields of artificial intelligence and computational linguistics. Commercial…
Methodical and technological aspects of creation of interactive computer learning systems
NASA Astrophysics Data System (ADS)
Vishtak, N. M.; Frolov, D. A.
2017-01-01
The article presents a methodology for the development of an interactive computer training system for training power plant. The methods used in the work are a generalization of the content of scientific and methodological sources on the use of computer-based training systems in vocational education, methods of system analysis, methods of structural and object-oriented modeling of information systems. The relevance of the development of the interactive computer training systems in the preparation of the personnel in the conditions of the educational and training centers is proved. Development stages of the computer training systems are allocated, factors of efficient use of the interactive computer training system are analysed. The algorithm of work performance at each development stage of the interactive computer training system that enables one to optimize time, financial and labor expenditure on the creation of the interactive computer training system is offered.
2014-01-01
Background Brownian dynamics (BD) simulations can be used to study very large molecular systems, such as models of the intracellular environment, using atomic-detail structures. Such simulations require strategies to contain the computational costs, especially for the computation of interaction forces and energies. A common approach is to compute interaction forces between macromolecules by precomputing their interaction potentials on three-dimensional discretized grids. For long-range interactions, such as electrostatics, grid-based methods are subject to finite size errors. We describe here the implementation of a Debye-Hückel correction to the grid-based electrostatic potential used in the SDA BD simulation software that was applied to simulate solutions of bovine serum albumin and of hen egg white lysozyme. Results We found that the inclusion of the long-range electrostatic correction increased the accuracy of both the protein-protein interaction profiles and the protein diffusion coefficients at low ionic strength. Conclusions An advantage of this method is the low additional computational cost required to treat long-range electrostatic interactions in large biomacromolecular systems. Moreover, the implementation described here for BD simulations of protein solutions can also be applied in implicit solvent molecular dynamics simulations that make use of gridded interaction potentials. PMID:25045516
Interactive Computer-Based Testing.
ERIC Educational Resources Information Center
Franklin, Stephen; Marasco, Joseph
1977-01-01
Discusses the use of the Interactive Computer-based Testing (ICBT) in university-level science courses as an effective and economical educational tool. The authors discuss: (1) major objectives to ICBT; (2) advantages and pitfalls of the student use of ICBT; and (3) future prospects of ICBT. (HM)
Quizzing and Feedback in Computer-Based and Book-Based Training for Workplace Safety and Health
ERIC Educational Resources Information Center
Rohlman, Diane S.; Eckerman, David A.; Ammerman, Tammara A.; Fercho, Heather L.; Lundeen, Christine A.; Blomquist, Carrie; Anger, W. Kent
2005-01-01
Participants received different amounts of information in either a cTRAIN computer-based instruction (CBI) program or in a booklet format, presented before or concurrently with interactive questions about the information. An interactive CBI presentation that required an overt response during training produced equivalent acquisition and retention…
SIGI: A Computer-Based System of Interactive Guidance and Information.
ERIC Educational Resources Information Center
Educational Testing Service, Princeton, NJ.
This pamphlet describes SIGI, a computer-based System of Interactive Guidance and Information designed to help students in community and junior colleges make career decisions. SIGI is based on a humanistic philosophy, a theory of guidance that emphasizes individual values, a vast store of occupational data, and a strategy for processing…
Lin, Hsien-Cheng; Chiu, Yu-Hsien; Chen, Yenming J; Wuang, Yee-Pay; Chen, Chiu-Ping; Wang, Chih-Chung; Huang, Chien-Ling; Wu, Tang-Meng; Ho, Wen-Hsien
2017-11-01
This study developed an interactive computer game-based visual perception learning system for special education children with developmental delay. To investigate whether perceived interactivity affects continued use of the system, this study developed a theoretical model of the process in which learners decide whether to continue using an interactive computer game-based visual perception learning system. The technology acceptance model, which considers perceived ease of use, perceived usefulness, and perceived playfulness, was extended by integrating perceived interaction (i.e., learner-instructor interaction and learner-system interaction) and then analyzing the effects of these perceptions on satisfaction and continued use. Data were collected from 150 participants (rehabilitation therapists, medical paraprofessionals, and parents of children with developmental delay) recruited from a single medical center in Taiwan. Structural equation modeling and partial-least-squares techniques were used to evaluate relationships within the model. The modeling results indicated that both perceived ease of use and perceived usefulness were positively associated with both learner-instructor interaction and learner-system interaction. However, perceived playfulness only had a positive association with learner-system interaction and not with learner-instructor interaction. Moreover, satisfaction was positively affected by perceived ease of use, perceived usefulness, and perceived playfulness. Thus, satisfaction positively affects continued use of the system. The data obtained by this study can be applied by researchers, designers of computer game-based learning systems, special education workers, and medical professionals. Copyright © 2017 Elsevier B.V. All rights reserved.
The Use of Computer-Based Simulation to Aid Comprehension and Incidental Vocabulary Learning
ERIC Educational Resources Information Center
Mohsen, Mohammed Ali
2016-01-01
One of the main issues in language learning is to find ways to enable learners to interact with the language input in an involved task. Given that computer-based simulation allows learners to interact with visual modes, this article examines how the interaction of students with an online video simulation affects their second language video…
Reciprocity in computer-human interaction: source-based, norm-based, and affect-based explanations.
Lee, Seungcheol Austin; Liang, Yuhua Jake
2015-04-01
Individuals often apply social rules when they interact with computers, and this is known as the Computers Are Social Actors (CASA) effect. Following previous work, one approach to understand the mechanism responsible for CASA is to utilize computer agents and have the agents attempt to gain human compliance (e.g., completing a pattern recognition task). The current study focuses on three key factors frequently cited to influence traditional notions of compliance: evaluations toward the source (competence and warmth), normative influence (reciprocity), and affective influence (mood). Structural equation modeling assessed the effects of these factors on human compliance with computer request. The final model shows that norm-based influence (reciprocity) increased the likelihood of compliance, while evaluations toward the computer agent did not significantly influence compliance.
ERIC Educational Resources Information Center
Ruzhitskaya, Lanika
2011-01-01
The presented research study investigated the effects of computer-supported inquiry-based learning and peer interaction methods on effectiveness of learning a scientific concept. The stellar parallax concept was selected as a basic, and yet important in astronomy, scientific construct, which is based on a straightforward relationship of several…
ERIC Educational Resources Information Center
Wells, J.; Clark, K. D.; Sarno, K.
2012-01-01
Background: Despite recent recognition of the need for preventive sexual health materials for people with intellectual disability (ID), there have been remarkably few health-based interventions designed for people with mild to moderate ID. The purpose of this study was to evaluate the effects of a computer-based interactive multimedia (CBIM)…
ERIC Educational Resources Information Center
Xu, Q.; Lai, L. L.; Tse, N. C. F.; Ichiyanagi, K.
2011-01-01
An interactive computer-based learning tool with multiple sessions is proposed in this paper, which teaches students to think and helps them recognize the merits and limitations of simulation tools so as to improve their practical abilities in electrical circuit simulation based on the case of a power converter with progressive problems. The…
Tertiary structure-based analysis of microRNA–target interactions
Gan, Hin Hark; Gunsalus, Kristin C.
2013-01-01
Current computational analysis of microRNA interactions is based largely on primary and secondary structure analysis. Computationally efficient tertiary structure-based methods are needed to enable more realistic modeling of the molecular interactions underlying miRNA-mediated translational repression. We incorporate algorithms for predicting duplex RNA structures, ionic strength effects, duplex entropy and free energy, and docking of duplex–Argonaute protein complexes into a pipeline to model and predict miRNA–target duplex binding energies. To ensure modeling accuracy and computational efficiency, we use an all-atom description of RNA and a continuum description of ionic interactions using the Poisson–Boltzmann equation. Our method predicts the conformations of two constructs of Caenorhabditis elegans let-7 miRNA–target duplexes to an accuracy of ∼3.8 Å root mean square distance of their NMR structures. We also show that the computed duplex formation enthalpies, entropies, and free energies for eight miRNA–target duplexes agree with titration calorimetry data. Analysis of duplex–Argonaute docking shows that structural distortions arising from single-base-pair mismatches in the seed region influence the activity of the complex by destabilizing both duplex hybridization and its association with Argonaute. Collectively, these results demonstrate that tertiary structure-based modeling of miRNA interactions can reveal structural mechanisms not accessible with current secondary structure-based methods. PMID:23417009
A framework supporting the development of a Grid portal for analysis based on ROI.
Ichikawa, K; Date, S; Kaishima, T; Shimojo, S
2005-01-01
In our research on brain function analysis, users require two different simultaneous types of processing: interactive processing to a specific part of data and high-performance batch processing to an entire dataset. The difference between these two types of processing is in whether or not the analysis is for data in the region of interest (ROI). In this study, we propose a Grid portal that has a mechanism to freely assign computing resources to the users on a Grid environment according to the users' two different types of processing requirements. We constructed a Grid portal which integrates interactive processing and batch processing by the following two mechanisms. First, a job steering mechanism controls job execution based on user-tagged priority among organizations with heterogeneous computing resources. Interactive jobs are processed in preference to batch jobs by this mechanism. Second, a priority-based result delivery mechanism that administrates a rank of data significance. The portal ensures a turn-around time of interactive processing by the priority-based job controlling mechanism, and provides the users with quality of services (QoS) for interactive processing. The users can access the analysis results of interactive jobs in preference to the analysis results of batch jobs. The Grid portal has also achieved high-performance computation of MEG analysis with batch processing on the Grid environment. The priority-based job controlling mechanism has been realized to freely assign computing resources to the users' requirements. Furthermore the achievement of high-performance computation contributes greatly to the overall progress of brain science. The portal has thus made it possible for the users to flexibly include the large computational power in what they want to analyze.
Specifying and Refining a Measurement Model for a Computer-Based Interactive Assessment
ERIC Educational Resources Information Center
Levy, Roy; Mislevy, Robert J.
2004-01-01
The challenges of modeling students' performance in computer-based interactive assessments include accounting for multiple aspects of knowledge and skill that arise in different situations and the conditional dependencies among multiple aspects of performance. This article describes a Bayesian approach to modeling and estimating cognitive models…
Automated Content Synthesis for Interactive Remote Instruction.
ERIC Educational Resources Information Center
Maly, K.; Overstreet, C. M.; Gonzalez, A.; Denbar, M. L.; Cutaran, R.; Karunaratne, N.
This paper describes IRI (Interactive Remote Instruction), a computer-based system built at Old Dominion University (Virginia) in order to support distance education. The system is based on the concept of a virtual classroom where students at different locations have the same synchronous class experience, using networked computers to communicate…
Putting Life into Computer-Based Training: The Creation of an Epidemiologic Case Study.
ERIC Educational Resources Information Center
Gathany, Nancy C.; Stehr-Green, Jeanette K.
1994-01-01
Describes the design of "Pharyngitis in Louisiana," a computer-based epidemiologic case study that was created to teach students how to conduct disease outbreak investigations. Topics discussed include realistic content portrayals; graphics; interactive teaching methods; interaction between the instructional designer and the medical…
Cyberpsychology: a human-interaction perspective based on cognitive modeling.
Emond, Bruno; West, Robert L
2003-10-01
This paper argues for the relevance of cognitive modeling and cognitive architectures to cyberpsychology. From a human-computer interaction point of view, cognitive modeling can have benefits both for theory and model building, and for the design and evaluation of sociotechnical systems usability. Cognitive modeling research applied to human-computer interaction has two complimentary objectives: (1) to develop theories and computational models of human interactive behavior with information and collaborative technologies, and (2) to use the computational models as building blocks for the design, implementation, and evaluation of interactive technologies. From the perspective of building theories and models, cognitive modeling offers the possibility to anchor cyberpsychology theories and models into cognitive architectures. From the perspective of the design and evaluation of socio-technical systems, cognitive models can provide the basis for simulated users, which can play an important role in usability testing. As an example of application of cognitive modeling to technology design, the paper presents a simulation of interactive behavior with five different adaptive menu algorithms: random, fixed, stacked, frequency based, and activation based. Results of the simulation indicate that fixed menu positions seem to offer the best support for classification like tasks such as filing e-mails. This research is part of the Human-Computer Interaction, and the Broadband Visual Communication research programs at the National Research Council of Canada, in collaboration with the Carleton Cognitive Modeling Lab at Carleton University.
ERIC Educational Resources Information Center
Mavrou, Katerina; Lewis, Ann; Douglas, Graeme
2010-01-01
This paper discusses the results of a study of the role of the computer in scaffolding pupils' interaction and its effects on the disabled (D) pupils' participation and inclusion in the context of socio-cultural theories and the ideals of inclusive education. The study investigated the interactions of pairs of D and non-disabled (ND) pupils…
Ryhänen, Anne M; Siekkinen, Mervi; Rankinen, Sirkku; Korvenranta, Heikki; Leino-Kilpi, Helena
2010-04-01
The aim of this systematic review was to analyze what kind of Internet or interactive computer-based patient education programs have been developed and to analyze the effectiveness of these programs in the field of breast cancer patient education. Patient education for breast cancer patients is an important intervention to empower the patient. However, we know very little about the effects and potential of Internet-based patient education in the empowerment of breast cancer patients. Complete databases were searched covering the period from the beginning of each database to November 2008. Studies were included if they concerned patient education for breast cancer patients with Internet or interactive computer programs and were based on randomized controlled, on clinical trials or quasi-experimental studies. We identified 14 articles involving 2374 participants. The design was randomized controlled trial in nine papers, in two papers clinical trial and in three quasi-experimental. Seven of the studies were randomized to experimental and control groups, in two papers participants were grouped by ethnic and racial differences and by mode of Internet use and three studies measured the same group pre- and post-tests after using a computer program. The interventions used were described as interactive computer or multimedia programs and use of the Internet. The methodological solutions of the studies varied. The effects of the studies were diverse except for knowledge-related issues. Internet or interactive computer-based patient education programs in the care of breast cancer patients may have positive effect increasing breast cancer knowledge. The results suggest a positive relationship between the Internet or computer-based patient education program use and the knowledge level of patients with breast cancer but a diverse relationship between patient's participation and other outcome measures. There is need to develop and research more Internet-based patient education. 2009 Elsevier Ireland Ltd. All rights reserved.
Variance-based interaction index measuring heteroscedasticity
NASA Astrophysics Data System (ADS)
Ito, Keiichi; Couckuyt, Ivo; Poles, Silvia; Dhaene, Tom
2016-06-01
This work is motivated by the need to deal with models with high-dimensional input spaces of real variables. One way to tackle high-dimensional problems is to identify interaction or non-interaction among input parameters. We propose a new variance-based sensitivity interaction index that can detect and quantify interactions among the input variables of mathematical functions and computer simulations. The computation is very similar to first-order sensitivity indices by Sobol'. The proposed interaction index can quantify the relative importance of input variables in interaction. Furthermore, detection of non-interaction for screening can be done with as low as 4 n + 2 function evaluations, where n is the number of input variables. Using the interaction indices based on heteroscedasticity, the original function may be decomposed into a set of lower dimensional functions which may then be analyzed separately.
The Generative Effects of Instructional Organizers with Computer-Based Interactive Video.
ERIC Educational Resources Information Center
Kenny, Richard F.
This study compared the use of three instructional organizers--the advance organizer (AO), the participatory pictorial graphic organizer (PGO), and the final form pictorial graphic organizer (FGO)--in the design and use of computer-based interactive video (CBIV) programs. That is, it attempted to determine whether a less generative or more…
A Kinect-Based Assessment System for Smart Classroom
ERIC Educational Resources Information Center
Kumara, W. G. C. W.; Wattanachote, Kanoksak; Battulga, Batbaatar; Shih, Timothy K.; Hwang, Wu-Yuin
2015-01-01
With the advancements of the human computer interaction field, nowadays it is possible for the users to use their body motions, such as swiping, pushing and moving, to interact with the content of computers or smart phones without traditional input devices like mouse and keyboard. With the introduction of gesture-based interface Kinect from…
Oral Computer-Mediated Interaction between L2 Learners: It's about Time!
ERIC Educational Resources Information Center
Yanguas, Inigo
2010-01-01
This study explores task-based, synchronous oral computer-mediated communication (CMC) among intermediate-level learners of Spanish. In particular, this paper examines (a) how learners in video and audio CMC groups negotiate for meaning during task-based interaction, (b) possible differences between both oral CMC modes and traditional face-to-face…
Learner Assessment Methods Using a Computer Based Interactive Videodisc System.
ERIC Educational Resources Information Center
Ehrlich, Lisa R.
This paper focuses on item design considerations faced by instructional designers and evaluators when using computer videodisc delivery systems as a means of assessing learner comprehension and competencies. Media characteristics of various interactive computer/videodisc training systems are briefly discussed as well as reasons for using such…
ERIC Educational Resources Information Center
Jenny, Ng Yuen Yee; Fai, Tam Sing
2001-01-01
A study compared 48 cardiac patients who used an interactive multimedia computer-assisted patient education program and 48 taught by tutorial. The computer-assisted instructional method resulted in significantly better knowledge about exercise and self-management of chronic diseases. (Contains 29 references.) (JOW)
Fusing literature and full network data improves disease similarity computation.
Li, Ping; Nie, Yaling; Yu, Jingkai
2016-08-30
Identifying relatedness among diseases could help deepen understanding for the underlying pathogenic mechanisms of diseases, and facilitate drug repositioning projects. A number of methods for computing disease similarity had been developed; however, none of them were designed to utilize information of the entire protein interaction network, using instead only those interactions involving disease causing genes. Most of previously published methods required gene-disease association data, unfortunately, many diseases still have very few or no associated genes, which impeded broad adoption of those methods. In this study, we propose a new method (MedNetSim) for computing disease similarity by integrating medical literature and protein interaction network. MedNetSim consists of a network-based method (NetSim), which employs the entire protein interaction network, and a MEDLINE-based method (MedSim), which computes disease similarity by mining the biomedical literature. Among function-based methods, NetSim achieved the best performance. Its average AUC (area under the receiver operating characteristic curve) reached 95.2 %. MedSim, whose performance was even comparable to some function-based methods, acquired the highest average AUC in all semantic-based methods. Integration of MedSim and NetSim (MedNetSim) further improved the average AUC to 96.4 %. We further studied the effectiveness of different data sources. It was found that quality of protein interaction data was more important than its volume. On the contrary, higher volume of gene-disease association data was more beneficial, even with a lower reliability. Utilizing higher volume of disease-related gene data further improved the average AUC of MedNetSim and NetSim to 97.5 % and 96.7 %, respectively. Integrating biomedical literature and protein interaction network can be an effective way to compute disease similarity. Lacking sufficient disease-related gene data, literature-based methods such as MedSim can be a great addition to function-based algorithms. It may be beneficial to steer more resources torward studying gene-disease associations and improving the quality of protein interaction data. Disease similarities can be computed using the proposed methods at http:// www.digintelli.com:8000/ .
ERIC Educational Resources Information Center
Sayre, Scott Alan
The purpose of this study was to develop and validate a computer-based system that would allow interactive video developers to integrate and manage the design components prior to production. These components of an interactive video (IVD) program include visual information in a variety of formats, audio information, and instructional techniques,…
Bryce, Richard A
2011-04-01
The ability to accurately predict the interaction of a ligand with its receptor is a key limitation in computer-aided drug design approaches such as virtual screening and de novo design. In this article, we examine current strategies for a physics-based approach to scoring of protein-ligand affinity, as well as outlining recent developments in force fields and quantum chemical techniques. We also consider advances in the development and application of simulation-based free energy methods to study protein-ligand interactions. Fuelled by recent advances in computational algorithms and hardware, there is the opportunity for increased integration of physics-based scoring approaches at earlier stages in computationally guided drug discovery. Specifically, we envisage increased use of implicit solvent models and simulation-based scoring methods as tools for computing the affinities of large virtual ligand libraries. Approaches based on end point simulations and reference potentials allow the application of more advanced potential energy functions to prediction of protein-ligand binding affinities. Comprehensive evaluation of polarizable force fields and quantum mechanical (QM)/molecular mechanical and QM methods in scoring of protein-ligand interactions is required, particularly in their ability to address challenging targets such as metalloproteins and other proteins that make highly polar interactions. Finally, we anticipate increasingly quantitative free energy perturbation and thermodynamic integration methods that are practical for optimization of hits obtained from screened ligand libraries.
Lechner, William J; MacGlashan, James; Wray, Tyler B; Littman, Michael L
2017-01-01
Background Computer-delivered interventions have been shown to be effective in reducing alcohol consumption in heavy drinking college students. However, these computer-delivered interventions rely on mouse, keyboard, or touchscreen responses for interactions between the users and the computer-delivered intervention. The principles of motivational interviewing suggest that in-person interventions may be effective, in part, because they encourage individuals to think through and speak aloud their motivations for changing a health behavior, which current computer-delivered interventions do not allow. Objective The objective of this study was to take the initial steps toward development of a voice-based computer-delivered intervention that can ask open-ended questions and respond appropriately to users’ verbal responses, more closely mirroring a human-delivered motivational intervention. Methods We developed (1) a voice-based computer-delivered intervention that was run by a human controller and that allowed participants to speak their responses to scripted prompts delivered by speech generation software and (2) a text-based computer-delivered intervention that relied on the mouse, keyboard, and computer screen for all interactions. We randomized 60 heavy drinking college students to interact with the voice-based computer-delivered intervention and 30 to interact with the text-based computer-delivered intervention and compared their ratings of the systems as well as their motivation to change drinking and their drinking behavior at 1-month follow-up. Results Participants reported that the voice-based computer-delivered intervention engaged positively with them in the session and delivered content in a manner consistent with motivational interviewing principles. At 1-month follow-up, participants in the voice-based computer-delivered intervention condition reported significant decreases in quantity, frequency, and problems associated with drinking, and increased perceived importance of changing drinking behaviors. In comparison to the text-based computer-delivered intervention condition, those assigned to voice-based computer-delivered intervention reported significantly fewer alcohol-related problems at the 1-month follow-up (incident rate ratio 0.60, 95% CI 0.44-0.83, P=.002). The conditions did not differ significantly on perceived importance of changing drinking or on measures of drinking quantity and frequency of heavy drinking. Conclusions Results indicate that it is feasible to construct a series of open-ended questions and a bank of responses and follow-up prompts that can be used in a future fully automated voice-based computer-delivered intervention that may mirror more closely human-delivered motivational interventions to reduce drinking. Such efforts will require using advanced speech recognition capabilities and machine-learning approaches to train a program to mirror the decisions made by human controllers in the voice-based computer-delivered intervention used in this study. In addition, future studies should examine enhancements that can increase the perceived warmth and empathy of voice-based computer-delivered intervention, possibly through greater personalization, improvements in the speech generation software, and embodying the computer-delivered intervention in a physical form. PMID:28659259
Silicon CMOS architecture for a spin-based quantum computer.
Veldhorst, M; Eenink, H G J; Yang, C H; Dzurak, A S
2017-12-15
Recent advances in quantum error correction codes for fault-tolerant quantum computing and physical realizations of high-fidelity qubits in multiple platforms give promise for the construction of a quantum computer based on millions of interacting qubits. However, the classical-quantum interface remains a nascent field of exploration. Here, we propose an architecture for a silicon-based quantum computer processor based on complementary metal-oxide-semiconductor (CMOS) technology. We show how a transistor-based control circuit together with charge-storage electrodes can be used to operate a dense and scalable two-dimensional qubit system. The qubits are defined by the spin state of a single electron confined in quantum dots, coupled via exchange interactions, controlled using a microwave cavity, and measured via gate-based dispersive readout. We implement a spin qubit surface code, showing the prospects for universal quantum computation. We discuss the challenges and focus areas that need to be addressed, providing a path for large-scale quantum computing.
Design and Evaluation of Fusion Approach for Combining Brain and Gaze Inputs for Target Selection
Évain, Andéol; Argelaguet, Ferran; Casiez, Géry; Roussel, Nicolas; Lécuyer, Anatole
2016-01-01
Gaze-based interfaces and Brain-Computer Interfaces (BCIs) allow for hands-free human–computer interaction. In this paper, we investigate the combination of gaze and BCIs. We propose a novel selection technique for 2D target acquisition based on input fusion. This new approach combines the probabilistic models for each input, in order to better estimate the intent of the user. We evaluated its performance against the existing gaze and brain–computer interaction techniques. Twelve participants took part in our study, in which they had to search and select 2D targets with each of the evaluated techniques. Our fusion-based hybrid interaction technique was found to be more reliable than the previous gaze and BCI hybrid interaction techniques for 10 participants over 12, while being 29% faster on average. However, similarly to what has been observed in hybrid gaze-and-speech interaction, gaze-only interaction technique still provides the best performance. Our results should encourage the use of input fusion, as opposed to sequential interaction, in order to design better hybrid interfaces. PMID:27774048
Yoink: An interaction-based partitioning API.
Zheng, Min; Waller, Mark P
2018-05-15
Herein, we describe the implementation details of our interaction-based partitioning API (application programming interface) called Yoink for QM/MM modeling and fragment-based quantum chemistry studies. Interactions are detected by computing density descriptors such as reduced density gradient, density overlap regions indicator, and single exponential decay detector. Only molecules having an interaction with a user-definable QM core are added to the QM region of a hybrid QM/MM calculation. Moreover, a set of molecule pairs having density-based interactions within a molecular system can be computed in Yoink, and an interaction graph can then be constructed. Standard graph clustering methods can then be applied to construct fragments for further quantum chemical calculations. The Yoink API is licensed under Apache 2.0 and can be accessed via yoink.wallerlab.org. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Intelligent Context-Aware and Adaptive Interface for Mobile LBS
Liu, Yanhong
2015-01-01
Context-aware user interface plays an important role in many human-computer Interaction tasks of location based services. Although spatial models for context-aware systems have been studied extensively, how to locate specific spatial information for users is still not well resolved, which is important in the mobile environment where location based services users are impeded by device limitations. Better context-aware human-computer interaction models of mobile location based services are needed not just to predict performance outcomes, such as whether people will be able to find the information needed to complete a human-computer interaction task, but to understand human processes that interact in spatial query, which will in turn inform the detailed design of better user interfaces in mobile location based services. In this study, a context-aware adaptive model for mobile location based services interface is proposed, which contains three major sections: purpose, adjustment, and adaptation. Based on this model we try to describe the process of user operation and interface adaptation clearly through the dynamic interaction between users and the interface. Then we show how the model applies users' demands in a complicated environment and suggested the feasibility by the experimental results. PMID:26457077
Identifying the Computer Competency Levels of Recreation Department Undergraduates
ERIC Educational Resources Information Center
Zorba, Erdal
2011-01-01
Computer-based and web-based applications are as major instructional tools to increase undergraduates' motivation at school. In the recreation field usage of, computer and the internet based recreational applications has become more prevalent in order to present visual and interactive entertainment activities. Recreation department undergraduates…
Computer simulation of surface and film processes
NASA Technical Reports Server (NTRS)
Tiller, W. A.; Halicioglu, M. T.
1983-01-01
Adequate computer methods, based on interactions between discrete particles, provide information leading to an atomic level understanding of various physical processes. The success of these simulation methods, however, is related to the accuracy of the potential energy function representing the interactions among the particles. The development of a potential energy function for crystalline SiO2 forms that can be employed in lengthy computer modelling procedures was investigated. In many of the simulation methods which deal with discrete particles, semiempirical two body potentials were employed to analyze energy and structure related properties of the system. Many body interactions are required for a proper representation of the total energy for many systems. Many body interactions for simulations based on discrete particles are discussed.
ERIC Educational Resources Information Center
Von Der Linn, Robert Christopher
A needs assessment of the Grumman E-Beam Systems Group identified the requirement for additional skill mastery for the engineers who assemble, integrate, and maintain devices used to manufacture integrated circuits. Further analysis of the tasks involved led to the decision to develop interactive videodisc, computer-based job aids to enable…
Interactive Computer Based Assessment Tasks: How Problem-Solving Process Data Can Inform Instruction
ERIC Educational Resources Information Center
Zoanetti, Nathan
2010-01-01
This article presents key steps in the design and analysis of a computer based problem-solving assessment featuring interactive tasks. The purpose of the assessment is to support targeted instruction for students by diagnosing strengths and weaknesses at different stages of problem-solving. The first focus of this article is the task piloting…
Computer-based Interactive Literature Searching for CSU-Chico Chemistry Students.
ERIC Educational Resources Information Center
Cooke, Ron C.; And Others
The intent of this instructional manual, which is aimed at exploring the literature of a discipline and presented in a self-paced, course segment format applicable to any course content, is to enable college students to conduct computer-based interactive searches through multiple databases. The manual is divided into 10 chapters: (1) Introduction,…
MOO: Using a Computer Gaming Environment to Teach about Community Arts
ERIC Educational Resources Information Center
Garber, Elizabeth
2004-01-01
In this paper, the author discusses the use of an interactive computer technology, "MOO" (Multi-user domain, Object-Oriented), in her art education classes for preservice teachers. A MOO is a text-based environment wherein interactivity is centered on text exchanges made between users based on problems or other materials created by teachers. The…
ERIC Educational Resources Information Center
Stevenson, Kimberly
This master's thesis describes the development of an expert system and interactive videodisc computer-based instructional job aid used for assisting in the integration of electron beam lithography devices. Comparable to all comprehensive training, expert system and job aid development require a criterion-referenced systems approach treatment to…
Using the Computer to Foster Creative Interaction among Students.
ERIC Educational Resources Information Center
Dugdale, Sharon
The network characteristics of the PLATO computer-based education system permit students to communicate not only with the computer, but with each other. This capability can be exploited in educationally significant ways. In addition to the social interaction which occurs when students help each other at the terminal and when they work together at…
The role of voice input for human-machine communication.
Cohen, P R; Oviatt, S L
1995-01-01
Optimism is growing that the near future will witness rapid growth in human-computer interaction using voice. System prototypes have recently been built that demonstrate speaker-independent real-time speech recognition, and understanding of naturally spoken utterances with vocabularies of 1000 to 2000 words, and larger. Already, computer manufacturers are building speech recognition subsystems into their new product lines. However, before this technology can be broadly useful, a substantial knowledge base is needed about human spoken language and performance during computer-based spoken interaction. This paper reviews application areas in which spoken interaction can play a significant role, assesses potential benefits of spoken interaction with machines, and compares voice with other modalities of human-computer interaction. It also discusses information that will be needed to build a firm empirical foundation for the design of future spoken and multimodal interfaces. Finally, it argues for a more systematic and scientific approach to investigating spoken input and performance with future language technology. PMID:7479803
Qubit-qubit interaction in quantum computers: errors and scaling laws
NASA Astrophysics Data System (ADS)
Gea-Banacloche, Julio R.
1998-07-01
This paper explores the limitations that interaction between the physical qubits making up a quantum computer may impose on the computer's performance. For computers using atoms as qubits, magnetic dipole-dipole interactions are likely to be dominant; various types of errors which they might introduce are considered here. The strength of the interaction may be reduce by increasing the distance between qubits, which in general will make the computer slower. For ion-chain based quantum computers the slowing down due to this effect is found to be generally more sever than that due to other causes. In particular, this effect alone would be enough to make these systems unacceptably slow for large-scale computation, whether they use the center of mass motion as the 'bus' or whether they do this via an optical cavity mode.
A Computer Model for Red Blood Cell Chemistry
1996-10-01
5012. 13. ABSTRACT (Maximum 200 There is a growing need for interactive computational tools for medical education and research. The most exciting...paradigm for interactive education is simulation. Fluid Mod is a simulation based computational tool developed in the late sixties and early seventies at...to a modern Windows, object oriented interface. This development will provide students with a useful computational tool for learning . More important
IMP: Interactive mass properties program. Volume 1: Program description
NASA Technical Reports Server (NTRS)
Stewart, W. A.
1976-01-01
A method of computing a weights and center of gravity analysis of a flight vehicle using interactive graphical capabilities of the Adage 340 computer is described. The equations used to calculate area, volume, and mass properties are based on elemental surface characteristics. The input/output methods employ the graphic support of the Adage computer. Several interactive program options are available for analyzing the mass properties of a vehicle. These options are explained.
Computational Methods to Predict Protein Interaction Partners
NASA Astrophysics Data System (ADS)
Valencia, Alfonso; Pazos, Florencio
In the new paradigm for studying biological phenomena represented by Systems Biology, cellular components are not considered in isolation but as forming complex networks of relationships. Protein interaction networks are among the first objects studied from this new point of view. Deciphering the interactome (the whole network of interactions for a given proteome) has been shown to be a very complex task. Computational techniques for detecting protein interactions have become standard tools for dealing with this problem, helping and complementing their experimental counterparts. Most of these techniques use genomic or sequence features intuitively related with protein interactions and are based on "first principles" in the sense that they do not involve training with examples. There are also other computational techniques that use other sources of information (i.e. structural information or even experimental data) or are based on training with examples.
An Interactive Computer-Based Training Program for Beginner Personal Computer Maintenance.
ERIC Educational Resources Information Center
Summers, Valerie Brooke
A computer-assisted instructional program, which was developed for teaching beginning computer maintenance to employees of Unisys, covered external hardware maintenance, proper diskette care, making software backups, and electro-static discharge prevention. The procedure used in developing the program was based upon the Dick and Carey (1985) model…
Developing Computer Model-Based Assessment of Chemical Reasoning: A Feasibility Study
ERIC Educational Resources Information Center
Liu, Xiufeng; Waight, Noemi; Gregorius, Roberto; Smith, Erica; Park, Mihwa
2012-01-01
This paper reports a feasibility study on developing computer model-based assessments of chemical reasoning at the high school level. Computer models are flash and NetLogo environments to make simultaneously available three domains in chemistry: macroscopic, submicroscopic, and symbolic. Students interact with computer models to answer assessment…
Mission-based Scenario Research: Experimental Design And Analysis
2012-01-01
neurotechnologies called Brain-Computer Interaction Technologies. 15. SUBJECT TERMS neuroimaging, EEG, task loading, neurotechnologies , ground... neurotechnologies called Brain-Computer Interaction Technologies. INTRODUCTION Imagine a system that can identify operator fatigue during a long-term...BCIT), a class of neurotechnologies , that aim to improve task performance by incorporating measures of brain activity to optimize the interactions
Computers for Interactive Learning.
ERIC Educational Resources Information Center
Grabowski, Barbara; Aggen, William
1984-01-01
Analyzes features of computer-based interactive video including sophisticated answer judging, diagnostic feedback, simulation, animation, audible tones, touch sensitive screen, function keys, and video enhancements, and matches these to the characteristics and pedagogical styles of learners. The learner characteristics discussed include internal…
Pfeiffer, Ulrich J; Schilbach, Leonhard; Timmermans, Bert; Kuzmanovic, Bojana; Georgescu, Alexandra L; Bente, Gary; Vogeley, Kai
2014-11-01
There is ample evidence that human primates strive for social contact and experience interactions with conspecifics as intrinsically rewarding. Focusing on gaze behavior as a crucial means of human interaction, this study employed a unique combination of neuroimaging, eye-tracking, and computer-animated virtual agents to assess the neural mechanisms underlying this component of behavior. In the interaction task, participants believed that during each interaction the agent's gaze behavior could either be controlled by another participant or by a computer program. Their task was to indicate whether they experienced a given interaction as an interaction with another human participant or the computer program based on the agent's reaction. Unbeknownst to them, the agent was always controlled by a computer to enable a systematic manipulation of gaze reactions by varying the degree to which the agent engaged in joint attention. This allowed creating a tool to distinguish neural activity underlying the subjective experience of being engaged in social and non-social interaction. In contrast to previous research, this allows measuring neural activity while participants experience active engagement in real-time social interactions. Results demonstrate that gaze-based interactions with a perceived human partner are associated with activity in the ventral striatum, a core component of reward-related neurocircuitry. In contrast, interactions with a computer-driven agent activate attention networks. Comparisons of neural activity during interaction with behaviorally naïve and explicitly cooperative partners demonstrate different temporal dynamics of the reward system and indicate that the mere experience of engagement in social interaction is sufficient to recruit this system. Copyright © 2014 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Akpinar, Ercan
2014-01-01
This study investigates the effects of using interactive computer animations based on predict-observe-explain (POE) as a presentation tool on primary school students' understanding of the static electricity concepts. A quasi-experimental pre-test/post-test control group design was utilized in this study. The experiment group consisted of 30…
Mediated Activity in the Primary Classroom: Girls, Boys and Computers.
ERIC Educational Resources Information Center
Fitzpatrick, Helen; Hardman, Margaret
2000-01-01
Studied the social interaction of 7- and 9-year-olds working in the same or mixed gender pairs on language-based computer and noncomputer tasks. At both ages, mixed gender pairs showed more assertive and less transactive (collaborative) interaction than same gender pairs on both tasks. Discusses the mediational role of the computer and the social…
Kahler, Christopher W; Lechner, William J; MacGlashan, James; Wray, Tyler B; Littman, Michael L
2017-06-28
Computer-delivered interventions have been shown to be effective in reducing alcohol consumption in heavy drinking college students. However, these computer-delivered interventions rely on mouse, keyboard, or touchscreen responses for interactions between the users and the computer-delivered intervention. The principles of motivational interviewing suggest that in-person interventions may be effective, in part, because they encourage individuals to think through and speak aloud their motivations for changing a health behavior, which current computer-delivered interventions do not allow. The objective of this study was to take the initial steps toward development of a voice-based computer-delivered intervention that can ask open-ended questions and respond appropriately to users' verbal responses, more closely mirroring a human-delivered motivational intervention. We developed (1) a voice-based computer-delivered intervention that was run by a human controller and that allowed participants to speak their responses to scripted prompts delivered by speech generation software and (2) a text-based computer-delivered intervention that relied on the mouse, keyboard, and computer screen for all interactions. We randomized 60 heavy drinking college students to interact with the voice-based computer-delivered intervention and 30 to interact with the text-based computer-delivered intervention and compared their ratings of the systems as well as their motivation to change drinking and their drinking behavior at 1-month follow-up. Participants reported that the voice-based computer-delivered intervention engaged positively with them in the session and delivered content in a manner consistent with motivational interviewing principles. At 1-month follow-up, participants in the voice-based computer-delivered intervention condition reported significant decreases in quantity, frequency, and problems associated with drinking, and increased perceived importance of changing drinking behaviors. In comparison to the text-based computer-delivered intervention condition, those assigned to voice-based computer-delivered intervention reported significantly fewer alcohol-related problems at the 1-month follow-up (incident rate ratio 0.60, 95% CI 0.44-0.83, P=.002). The conditions did not differ significantly on perceived importance of changing drinking or on measures of drinking quantity and frequency of heavy drinking. Results indicate that it is feasible to construct a series of open-ended questions and a bank of responses and follow-up prompts that can be used in a future fully automated voice-based computer-delivered intervention that may mirror more closely human-delivered motivational interventions to reduce drinking. Such efforts will require using advanced speech recognition capabilities and machine-learning approaches to train a program to mirror the decisions made by human controllers in the voice-based computer-delivered intervention used in this study. In addition, future studies should examine enhancements that can increase the perceived warmth and empathy of voice-based computer-delivered intervention, possibly through greater personalization, improvements in the speech generation software, and embodying the computer-delivered intervention in a physical form. ©Christopher W Kahler, William J Lechner, James MacGlashan, Tyler B Wray, Michael L Littman. Originally published in JMIR Mental Health (http://mental.jmir.org), 28.06.2017.
An interactive program for pharmacokinetic modeling.
Lu, D R; Mao, F
1993-05-01
A computer program, PharmK, was developed for pharmacokinetic modeling of experimental data. The program was written in C computer language based on the high-level user-interface Macintosh operating system. The intention was to provide a user-friendly tool for users of Macintosh computers. An interactive algorithm based on the exponential stripping method is used for the initial parameter estimation. Nonlinear pharmacokinetic model fitting is based on the maximum likelihood estimation method and is performed by the Levenberg-Marquardt method based on chi 2 criterion. Several methods are available to aid the evaluation of the fitting results. Pharmacokinetic data sets have been examined with the PharmK program, and the results are comparable with those obtained with other programs that are currently available for IBM PC-compatible and other types of computers.
ERIC Educational Resources Information Center
Howard, Bruce C.; McGee, Steven; Shia, Regina; Hong, Namsoo Shin
This study sought to examine the effects of meta cognitive self-regulation on problem solving across three conditions: (1) an interactive, computer-based treatment condition; (2) a noninteractive computer-based alternative treatment condition; and (3) a control condition. Also investigated was which of five components of metacognitive…
Training Aids for Online Instruction: An Analysis.
ERIC Educational Resources Information Center
Guy, Robin Frederick
This paper describes a number of different types of training aids currently employed in online training: non-interactive audiovisual presentations; interactive computer-based aids; partially interactive aids based on recorded searches; print-based materials; and kits. The advantages and disadvantages of each type of aid are noted, and a table…
ERIC Educational Resources Information Center
Association for the Development of Computer-based Instructional Systems.
These proceedings present 74 selected abstracts and 47 selected formal papers under 14 special interest group headings. Topics addressed by the papers include constructing multimedia; interactive video; computers in secondary school mathematics; access in computer-based instruction; implementing computer-based technology; advisor development;…
Interactive algebraic grid-generation technique
NASA Technical Reports Server (NTRS)
Smith, R. E.; Wiese, M. R.
1986-01-01
An algebraic grid generation technique and use of an associated interactive computer program are described. The technique, called the two boundary technique, is based on Hermite cubic interpolation between two fixed, nonintersecting boundaries. The boundaries are referred to as the bottom and top, and they are defined by two ordered sets of points. Left and right side boundaries which intersect the bottom and top boundaries may also be specified by two ordered sets of points. when side boundaries are specified, linear blending functions are used to conform interior interpolation to the side boundaries. Spacing between physical grid coordinates is determined as a function of boundary data and uniformly space computational coordinates. Control functions relating computational coordinates to parametric intermediate variables that affect the distance between grid points are embedded in the interpolation formulas. A versatile control function technique with smooth-cubic-spline functions is presented. The technique works best in an interactive graphics environment where computational displays and user responses are quickly exchanged. An interactive computer program based on the technique and called TBGG (two boundary grid generation) is also described.
New strategy for protein interactions and application to structure-based drug design
NASA Astrophysics Data System (ADS)
Zou, Xiaoqin
One of the greatest challenges in computational biophysics is to predict interactions between biological molecules, which play critical roles in biological processes and rational design of therapeutic drugs. Biomolecular interactions involve delicate interplay between multiple interactions, including electrostatic interactions, van der Waals interactions, solvent effect, and conformational entropic effect. Accurate determination of these complex and subtle interactions is challenging. Moreover, a biological molecule such as a protein usually consists of thousands of atoms, and thus occupies a huge conformational space. The large degrees of freedom pose further challenges for accurate prediction of biomolecular interactions. Here, I will present our development of physics-based theory and computational modeling on protein interactions with other molecules. The major strategy is to extract microscopic energetics from the information embedded in the experimentally-determined structures of protein complexes. I will also present applications of the methods to structure-based therapeutic design. Supported by NSF CAREER Award DBI-0953839, NIH R01GM109980, and the American Heart Association (Midwest Affiliate) [13GRNT16990076].
An Empirical Study of User Experience on Touch Mice
ERIC Educational Resources Information Center
Chou, Jyh Rong
2016-01-01
The touch mouse is a new type of computer mouse that provides users with a new way of touch-based environment to interact with computers. For more than a decade, user experience (UX) has grown into a core concept of human-computer interaction (HCI), describing a user's perceptions and responses that result from the use of a product in a particular…
Computer constructed imagery of distant plasma interaction boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grenstadt, E.W.; Schurr, H.D.; Tsugawa, R.K.
1982-01-01
Computer constructed sketches of plasma boundaries arising from the interaction between the solar wind and the magnetosphere can serve as both didactic and research tools. In particular, the structure of the earth's bow shock can be represented as a nonuniform surfce according to the instantaneous orientation of the IMF, and temporal changes in structural distribution can be modeled as a sequence of sketches based on observed sequences of spacecraft-based measurements. Viewed rapidly, such a sequence of sketches can be the basis for representation of plasma processes by computer animation.
Hsiao, Tzu-Hung; Chiu, Yu-Chiao; Hsu, Pei-Yin; Lu, Tzu-Pin; Lai, Liang-Chuan; Tsai, Mong-Hsun; Huang, Tim H.-M.; Chuang, Eric Y.; Chen, Yidong
2016-01-01
Several mutual information (MI)-based algorithms have been developed to identify dynamic gene-gene and function-function interactions governed by key modulators (genes, proteins, etc.). Due to intensive computation, however, these methods rely heavily on prior knowledge and are limited in genome-wide analysis. We present the modulated gene/gene set interaction (MAGIC) analysis to systematically identify genome-wide modulation of interaction networks. Based on a novel statistical test employing conjugate Fisher transformations of correlation coefficients, MAGIC features fast computation and adaption to variations of clinical cohorts. In simulated datasets MAGIC achieved greatly improved computation efficiency and overall superior performance than the MI-based method. We applied MAGIC to construct the estrogen receptor (ER) modulated gene and gene set (representing biological function) interaction networks in breast cancer. Several novel interaction hubs and functional interactions were discovered. ER+ dependent interaction between TGFβ and NFκB was further shown to be associated with patient survival. The findings were verified in independent datasets. Using MAGIC, we also assessed the essential roles of ER modulation in another hormonal cancer, ovarian cancer. Overall, MAGIC is a systematic framework for comprehensively identifying and constructing the modulated interaction networks in a whole-genome landscape. MATLAB implementation of MAGIC is available for academic uses at https://github.com/chiuyc/MAGIC. PMID:26972162
Development of Computer-Based Resources for Textile Education.
ERIC Educational Resources Information Center
Hopkins, Teresa; Thomas, Andrew; Bailey, Mike
1998-01-01
Describes the production of computer-based resources for students of textiles and engineering in the United Kingdom. Highlights include funding by the Teaching and Learning Technology Programme (TLTP), courseware author/subject expert interaction, usage test and evaluation, authoring software, graphics, computer-aided design simulation, self-test…
Graveley, E; Fullerton, J T
1998-04-01
The use of electronic technology allows faculty to improve their course offerings. Four graduate courses in nursing administration were contemporized to incorporate fundamental computer-based skills that would be expected of graduates in the work setting. Principles of adult learning offered a philosophical foundation that guided course development and revision. Course delivery strategies included computer-assisted instructional modules, e-mail interactive discussion groups, and use of the electronic classroom. Classroom seminar discussions and two-way interactive video conferencing focused on group resolution of problems derived from employment settings and assigned readings. Using these electronic technologies, a variety of courses can be revised to accommodate the learners' needs.
The Impact of Computer-Based Information Systems Upon School and School District Administration.
ERIC Educational Resources Information Center
Hansen, Thomas; And Others
1978-01-01
This study investigates the ways in which computer-based information systems interact with the strategic planning, management control, and operational control in 11 Minnesota school districts. (Author/IRT)
Interactive computer-assisted instruction in acid-base physiology for mobile computer platforms.
Longmuir, Kenneth J
2014-03-01
In this project, the traditional lecture hall presentation of acid-base physiology in the first-year medical school curriculum was replaced by interactive, computer-assisted instruction designed primarily for the iPad and other mobile computer platforms. Three learning modules were developed, each with ∼20 screens of information, on the subjects of the CO2-bicarbonate buffer system, other body buffer systems, and acid-base disorders. Five clinical case modules were also developed. For the learning modules, the interactive, active learning activities were primarily step-by-step learner control of explanations of complex physiological concepts, usually presented graphically. For the clinical cases, the active learning activities were primarily question-and-answer exercises that related clinical findings to the relevant basic science concepts. The student response was remarkably positive, with the interactive, active learning aspect of the instruction cited as the most important feature. Also, students cited the self-paced instruction, extensive use of interactive graphics, and side-by-side presentation of text and graphics as positive features. Most students reported that it took less time to study the subject matter with this online instruction compared with subject matter presented in the lecture hall. However, the approach to learning was highly examination driven, with most students delaying the study of the subject matter until a few days before the scheduled examination. Wider implementation of active learning computer-assisted instruction will require that instructors present subject matter interactively, that students fully embrace the responsibilities of independent learning, and that institutional administrations measure instructional effort by criteria other than scheduled hours of instruction.
Web-based interactive visualization in a Grid-enabled neuroimaging application using HTML5.
Siewert, René; Specovius, Svenja; Wu, Jie; Krefting, Dagmar
2012-01-01
Interactive visualization and correction of intermediate results are required in many medical image analysis pipelines. To allow certain interaction in the remote execution of compute- and data-intensive applications, new features of HTML5 are used. They allow for transparent integration of user interaction into Grid- or Cloud-enabled scientific workflows. Both 2D and 3D visualization and data manipulation can be performed through a scientific gateway without the need to install specific software or web browser plugins. The possibilities of web-based visualization are presented along the FreeSurfer-pipeline, a popular compute- and data-intensive software tool for quantitative neuroimaging.
I Use the Computer to ADVANCE Advances in Comprehension-Strategy Research.
ERIC Educational Resources Information Center
Blohm, Paul J.
Merging the instructional implications drawn from theory and research in the interactive reading model, schemata, and metacognition with computer based instruction seems a natural approach for actively involving students' participation in reading and learning from text. Computer based graphic organizers guide students' preview or review of lengthy…
Designing Asynchronous, Text-Based Computer Conferences: Ten Research-Based Suggestions
ERIC Educational Resources Information Center
Choitz, Paul; Lee, Doris
2006-01-01
Asynchronous computer conferencing refers to the use of computer software and a network enabling participants to post messages that allow discourse to continue even though interactions may be extended over days and weeks. Asynchronous conferences are time-independent, adapting to multiple time zones and learner schedules. Such activities as…
Digital Immersive Virtual Environments and Instructional Computing
ERIC Educational Resources Information Center
Blascovich, Jim; Beall, Andrew C.
2010-01-01
This article reviews theory and research relevant to the development of digital immersive virtual environment-based instructional computing systems. The review is organized within the context of a multidimensional model of social influence and interaction within virtual environments that models the interaction of four theoretical factors: theory…
Zuck, T F; Cumming, P D; Wallace, E L
2001-12-01
The safety of blood for transfusion depends, in part, on the reliability of the health history given by volunteer blood donors. To improve reliability, a pilot study evaluated the use of an interactive computer-based audiovisual donor interviewing system at a typical midwestern blood center in the United States. An interactive video screening system was tested in a community donor center environment on 395 volunteer blood donors. Of the donors using the system, 277 completed surveys regarding their acceptance of and opinions about the system. The study showed that an interactive computer-based audiovisual donor screening system was an effective means of conducting the donor health history. The majority of donors found the system understandable and favored the system over a face-to-face interview. Further, most donors indicated that they would be more likely to return if they were to be screened by such a system. Interactive computer-based audiovisual blood donor screening is useful and well accepted by donors; it may prevent a majority of errors and accidents that are reportable to the FDA; and it may contribute to increased safety and availability of the blood supply.
Web-based interactive drone control using hand gesture
NASA Astrophysics Data System (ADS)
Zhao, Zhenfei; Luo, Hao; Song, Guang-Hua; Chen, Zhou; Lu, Zhe-Ming; Wu, Xiaofeng
2018-01-01
This paper develops a drone control prototype based on web technology with the aid of hand gesture. The uplink control command and downlink data (e.g., video) are transmitted by WiFi communication, and all the information exchange is realized on web. The control command is translated from various predetermined hand gestures. Specifically, the hardware of this friendly interactive control system is composed by a quadrotor drone, a computer vision-based hand gesture sensor, and a cost-effective computer. The software is simplified as a web-based user interface program. Aided by natural hand gestures, this system significantly reduces the complexity of traditional human-computer interaction, making remote drone operation more intuitive. Meanwhile, a web-based automatic control mode is provided in addition to the hand gesture control mode. For both operation modes, no extra application program is needed to be installed on the computer. Experimental results demonstrate the effectiveness and efficiency of the proposed system, including control accuracy, operation latency, etc. This system can be used in many applications such as controlling a drone in global positioning system denied environment or by handlers without professional drone control knowledge since it is easy to get started.
Web-based interactive drone control using hand gesture.
Zhao, Zhenfei; Luo, Hao; Song, Guang-Hua; Chen, Zhou; Lu, Zhe-Ming; Wu, Xiaofeng
2018-01-01
This paper develops a drone control prototype based on web technology with the aid of hand gesture. The uplink control command and downlink data (e.g., video) are transmitted by WiFi communication, and all the information exchange is realized on web. The control command is translated from various predetermined hand gestures. Specifically, the hardware of this friendly interactive control system is composed by a quadrotor drone, a computer vision-based hand gesture sensor, and a cost-effective computer. The software is simplified as a web-based user interface program. Aided by natural hand gestures, this system significantly reduces the complexity of traditional human-computer interaction, making remote drone operation more intuitive. Meanwhile, a web-based automatic control mode is provided in addition to the hand gesture control mode. For both operation modes, no extra application program is needed to be installed on the computer. Experimental results demonstrate the effectiveness and efficiency of the proposed system, including control accuracy, operation latency, etc. This system can be used in many applications such as controlling a drone in global positioning system denied environment or by handlers without professional drone control knowledge since it is easy to get started.
A critical analysis of computational protein design with sparse residue interaction graphs
Georgiev, Ivelin S.
2017-01-01
Protein design algorithms enumerate a combinatorial number of candidate structures to compute the Global Minimum Energy Conformation (GMEC). To efficiently find the GMEC, protein design algorithms must methodically reduce the conformational search space. By applying distance and energy cutoffs, the protein system to be designed can thus be represented using a sparse residue interaction graph, where the number of interacting residue pairs is less than all pairs of mutable residues, and the corresponding GMEC is called the sparse GMEC. However, ignoring some pairwise residue interactions can lead to a change in the energy, conformation, or sequence of the sparse GMEC vs. the original or the full GMEC. Despite the widespread use of sparse residue interaction graphs in protein design, the above mentioned effects of their use have not been previously analyzed. To analyze the costs and benefits of designing with sparse residue interaction graphs, we computed the GMECs for 136 different protein design problems both with and without distance and energy cutoffs, and compared their energies, conformations, and sequences. Our analysis shows that the differences between the GMECs depend critically on whether or not the design includes core, boundary, or surface residues. Moreover, neglecting long-range interactions can alter local interactions and introduce large sequence differences, both of which can result in significant structural and functional changes. Designs on proteins with experimentally measured thermostability show it is beneficial to compute both the full and the sparse GMEC accurately and efficiently. To this end, we show that a provable, ensemble-based algorithm can efficiently compute both GMECs by enumerating a small number of conformations, usually fewer than 1000. This provides a novel way to combine sparse residue interaction graphs with provable, ensemble-based algorithms to reap the benefits of sparse residue interaction graphs while avoiding their potential inaccuracies. PMID:28358804
Real-time interactive simulation: using touch panels, graphics tablets, and video-terminal keyboards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venhuizen, J.R.
1983-01-01
A Simulation Laboratory utilizing only digital computers for interactive computing must rely on CRT based graphics devices for output devices, and keyboards, graphics tablets, and touch panels, etc., for input devices. The devices all work well, with the combination of a CRT with a touch panel mounted on it as the most flexible combination of input/output devices for interactive simulation.
Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2013-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development. Currently there is no fully coupled computational tool to analyze this fluid/structure interaction process. The objective of this study was to develop a fully coupled aeroelastic modeling capability to describe the fluid/structure interaction process during the transient nozzle operations. The aeroelastic model composes of three components: the computational fluid dynamics component based on an unstructured-grid, pressure-based computational fluid dynamics formulation, the computational structural dynamics component developed in the framework of modal analysis, and the fluid-structural interface component. The developed aeroelastic model was applied to the transient nozzle startup process of the Space Shuttle Main Engine at sea level. The computed nozzle side loads and the axial nozzle wall pressure profiles from the aeroelastic nozzle are compared with those of the published rigid nozzle results, and the impact of the fluid/structure interaction on nozzle side loads is interrogated and presented.
1988-03-01
structure of the interface is a mapping from the physical world [for example, the use of icons, which S have inherent meaning to users but represent...design alternatives. Mechanisms for linking the user to the computer include physical devices (keyboards), actions taken with the devices (keystrokes...VALUATION AIDES TEMLATEI IITCOM1I LATOR IACTICAL KNOWLEDGE ACGIUISITION MICNnII t 1 Fig. 9. INTACVAL. * OtJiCTs ARE PHYSICAL ENTITIES OR CONCEPTUAL EN
Cognitive Architectures and Human-Computer Interaction. Introduction to Special Issue.
ERIC Educational Resources Information Center
Gray, Wayne D.; Young, Richard M.; Kirschenbaum, Susan S.
1997-01-01
In this introduction to a special issue on cognitive architectures and human-computer interaction (HCI), editors and contributors provide a brief overview of cognitive architectures. The following four architectures represented by articles in this issue are: Soar; LICAI (linked model of comprehension-based action planning and instruction taking);…
Polish Teenage Students' Willingness to Engage in On-Line Intercultural Interactions
ERIC Educational Resources Information Center
Wach, Aleksandra
2013-01-01
Computer-based technologies, including various forms of computer-mediated communication (CMC), provide L2 users with opportunities to engage in intercultural interactions which may promote the development of their intercultural communicative competence. The article reports the findings of a study that investigated how beyond-the-classroom…
ERIC Educational Resources Information Center
What Works Clearinghouse, 2012
2012-01-01
"Technology Enhanced Elementary and Middle School Science" ("TEEMSS") is a physical science curriculum for grades 3-8 that utilizes computers, sensors, and interactive models to support investigations of real-world phenomena. Through 15 inquiry-based instructional units, students interact with computers, gather and analyze…
Learning with Interactive Computer Graphics in the Undergraduate Neuroscience Classroom
ERIC Educational Resources Information Center
Pani, John R.; Chariker, Julia H.; Naaz, Farah; Mattingly, William; Roberts, Joshua; Sephton, Sandra E.
2014-01-01
Instruction of neuroanatomy depends on graphical representation and extended self-study. As a consequence, computer-based learning environments that incorporate interactive graphics should facilitate instruction in this area. The present study evaluated such a system in the undergraduate neuroscience classroom. The system used the method of…
Investigating a New Way To Teach Law: A Computer-based Commercial Law Course.
ERIC Educational Resources Information Center
Lloyd, Robert M.
2000-01-01
Describes the successful use of an interactive, computer-based format supplemented by online chats to provide a two-credit-hour commercial law course at the University of Tennessee College of Law. (EV)
The Effectiveness of Gaze-Contingent Control in Computer Games.
Orlov, Paul A; Apraksin, Nikolay
2015-01-01
Eye-tracking technology and gaze-contingent control in human-computer interaction have become an objective reality. This article reports on a series of eye-tracking experiments, in which we concentrated on one aspect of gaze-contingent interaction: Its effectiveness compared with mouse-based control in a computer strategy game. We propose a measure for evaluating the effectiveness of interaction based on "the time of recognition" the game unit. In this article, we use this measure to compare gaze- and mouse-contingent systems, and we present the analysis of the differences as a function of the number of game units. Our results indicate that performance of gaze-contingent interaction is typically higher than mouse manipulation in a visual searching task. When tested on 60 subjects, the results showed that the effectiveness of gaze-contingent systems over 1.5 times higher. In addition, we obtained that eye behavior stays quite stabile with or without mouse interaction. © The Author(s) 2015.
An Adaptive Evaluation Structure for Computer-Based Instruction.
ERIC Educational Resources Information Center
Welsh, William A.
Adaptive Evaluation Structure (AES) is a set of linked computer programs designed to increase the effectiveness of interactive computer-assisted instruction at the college level. The package has four major features, the first of which is based on a prior cognitive inventory and on the accuracy and pace of student responses. AES adjusts materials…
Learning Natural Selection in 4th Grade with Multi-Agent-Based Computational Models
ERIC Educational Resources Information Center
Dickes, Amanda Catherine; Sengupta, Pratim
2013-01-01
In this paper, we investigate how elementary school students develop multi-level explanations of population dynamics in a simple predator-prey ecosystem, through scaffolded interactions with a multi-agent-based computational model (MABM). The term "agent" in an MABM indicates individual computational objects or actors (e.g., cars), and these…
Using Three-Dimensional Interactive Graphics To Teach Equipment Procedures.
ERIC Educational Resources Information Center
Hamel, Cheryl J.; Ryan-Jones, David L.
1997-01-01
Focuses on how three-dimensional graphical and interactive features of computer-based instruction can enhance learning and support human cognition during technical training of equipment procedures. Presents guidelines for using three-dimensional interactive graphics to teach equipment procedures based on studies of the effects of graphics, motion,…
de Carvalho, Sarah Negreiros; Costa, Thiago Bulhões da Silva; Attux, Romis; Hornung, Heiko Horst; Arantes, Dalton Soares
2018-01-01
This paper presents a systematic analysis of a game controlled by a Brain-Computer Interface (BCI) based on Steady-State Visually Evoked Potentials (SSVEP). The objective is to understand BCI systems from the Human-Computer Interface (HCI) point of view, by observing how the users interact with the game and evaluating how the interface elements influence the system performance. The interactions of 30 volunteers with our computer game, named “Get Coins,” through a BCI based on SSVEP, have generated a database of brain signals and the corresponding responses to a questionnaire about various perceptual parameters, such as visual stimulation, acoustic feedback, background music, visual contrast, and visual fatigue. Each one of the volunteers played one match using the keyboard and four matches using the BCI, for comparison. In all matches using the BCI, the volunteers achieved the goals of the game. Eight of them achieved a perfect score in at least one of the four matches, showing the feasibility of the direct communication between the brain and the computer. Despite this successful experiment, adaptations and improvements should be implemented to make this innovative technology accessible to the end user. PMID:29849549
Leite, Harlei Miguel de Arruda; de Carvalho, Sarah Negreiros; Costa, Thiago Bulhões da Silva; Attux, Romis; Hornung, Heiko Horst; Arantes, Dalton Soares
2018-01-01
This paper presents a systematic analysis of a game controlled by a Brain-Computer Interface (BCI) based on Steady-State Visually Evoked Potentials (SSVEP). The objective is to understand BCI systems from the Human-Computer Interface (HCI) point of view, by observing how the users interact with the game and evaluating how the interface elements influence the system performance. The interactions of 30 volunteers with our computer game, named "Get Coins," through a BCI based on SSVEP, have generated a database of brain signals and the corresponding responses to a questionnaire about various perceptual parameters, such as visual stimulation, acoustic feedback, background music, visual contrast, and visual fatigue. Each one of the volunteers played one match using the keyboard and four matches using the BCI, for comparison. In all matches using the BCI, the volunteers achieved the goals of the game. Eight of them achieved a perfect score in at least one of the four matches, showing the feasibility of the direct communication between the brain and the computer. Despite this successful experiment, adaptations and improvements should be implemented to make this innovative technology accessible to the end user.
Computational biology of RNA interactions.
Dieterich, Christoph; Stadler, Peter F
2013-01-01
The biodiversity of the RNA world has been underestimated for decades. RNA molecules are key building blocks, sensors, and regulators of modern cells. The biological function of RNA molecules cannot be separated from their ability to bind to and interact with a wide space of chemical species, including small molecules, nucleic acids, and proteins. Computational chemists, physicists, and biologists have developed a rich tool set for modeling and predicting RNA interactions. These interactions are to some extent determined by the binding conformation of the RNA molecule. RNA binding conformations are approximated with often acceptable accuracy by sequence and secondary structure motifs. Secondary structure ensembles of a given RNA molecule can be efficiently computed in many relevant situations by employing a standard energy model for base pair interactions and dynamic programming techniques. The case of bi-molecular RNA-RNA interactions can be seen as an extension of this approach. However, unbiased transcriptome-wide scans for local RNA-RNA interactions are computationally challenging yet become efficient if the binding motif/mode is known and other external information can be used to confine the search space. Computational methods are less developed for proteins and small molecules, which bind to RNA with very high specificity. Binding descriptors of proteins are usually determined by in vitro high-throughput assays (e.g., microarrays or sequencing). Intriguingly, recent experimental advances, which are mostly based on light-induced cross-linking of binding partners, render in vivo binding patterns accessible yet require new computational methods for careful data interpretation. The grand challenge is to model the in vivo situation where a complex interplay of RNA binders competes for the same target RNA molecule. Evidently, bioinformaticians are just catching up with the impressive pace of these developments. Copyright © 2012 John Wiley & Sons, Ltd.
Space-Time Fluid-Structure Interaction Computation of Flapping-Wing Aerodynamics
2013-12-01
SST-VMST." The structural mechanics computations are based on the Kirchhoff -Love shell model. We use a sequential coupling technique, which is...mechanics computations are based on the Kirchhoff -Love shell model. We use a sequential coupling technique, which is ap- plicable to some classes of FSI...we use the ST-VMS method in combination with the ST-SUPS method. The structural mechanics computations are mostly based on the Kirchhoff –Love shell
feature extraction, human-computer interaction, and physics-based modeling. Professional Experience 2009 ., computer science, University of Colorado at Boulder M.S., computer science, University of Colorado at Boulder B.S., computer science, New Mexico Institute of Mining and Technology
RAID v2.0: an updated resource of RNA-associated interactions across organisms
Yi, Ying; Zhao, Yue; Li, Chunhua; Zhang, Lin; Huang, Huiying; Li, Yana; Liu, Lanlan; Hou, Ping; Cui, Tianyu; Tan, Puwen; Hu, Yongfei; Zhang, Ting; Huang, Yan; Li, Xiaobo; Yu, Jia; Wang, Dong
2017-01-01
With the development of biotechnologies and computational prediction algorithms, the number of experimental and computational prediction RNA-associated interactions has grown rapidly in recent years. However, diverse RNA-associated interactions are scattered over a wide variety of resources and organisms, whereas a fully comprehensive view of diverse RNA-associated interactions is still not available for any species. Hence, we have updated the RAID database to version 2.0 (RAID v2.0, www.rna-society.org/raid/) by integrating experimental and computational prediction interactions from manually reading literature and other database resources under one common framework. The new developments in RAID v2.0 include (i) over 850-fold RNA-associated interactions, an enhancement compared to the previous version; (ii) numerous resources integrated with experimental or computational prediction evidence for each RNA-associated interaction; (iii) a reliability assessment for each RNA-associated interaction based on an integrative confidence score; and (iv) an increase of species coverage to 60. Consequently, RAID v2.0 recruits more than 5.27 million RNA-associated interactions, including more than 4 million RNA–RNA interactions and more than 1.2 million RNA–protein interactions, referring to nearly 130 000 RNA/protein symbols across 60 species. PMID:27899615
Lizunov, A Y; Gonchar, A L; Zaitseva, N I; Zosimov, V V
2015-10-26
We analyzed the frequency with which intraligand contacts occurred in a set of 1300 protein-ligand complexes [ Plewczynski et al. J. Comput. Chem. 2011 , 32 , 742 - 755 .]. Our analysis showed that flexible ligands often form intraligand hydrophobic contacts, while intraligand hydrogen bonds are rare. The test set was also thoroughly investigated and classified. We suggest a universal method for enhancement of a scoring function based on a potential of mean force (PMF-based score) by adding a term accounting for intraligand interactions. The method was implemented via in-house developed program, utilizing an Algo_score scoring function [ Ramensky et al. Proteins: Struct., Funct., Genet. 2007 , 69 , 349 - 357 .] based on the Tarasov-Muryshev PMF [ Muryshev et al. J. Comput.-Aided Mol. Des. 2003 , 17 , 597 - 605 .]. The enhancement of the scoring function was shown to significantly improve the docking and scoring quality for flexible ligands in the test set of 1300 protein-ligand complexes [ Plewczynski et al. J. Comput. Chem. 2011 , 32 , 742 - 755 .]. We then investigated the correlation of the docking results with two parameters of intraligand interactions estimation. These parameters are the weight of intraligand interactions and the minimum number of bonds between the ligand atoms required to take their interaction into account.
Impact of computational structure-based methods on drug discovery.
Reynolds, Charles H
2014-01-01
Structure-based drug design has become an indispensible tool in drug discovery. The emergence of structure-based design is due to gains in structural biology that have provided exponential growth in the number of protein crystal structures, new computational algorithms and approaches for modeling protein-ligand interactions, and the tremendous growth of raw computer power in the last 30 years. Computer modeling and simulation have made major contributions to the discovery of many groundbreaking drugs in recent years. Examples are presented that highlight the evolution of computational structure-based design methodology, and the impact of that methodology on drug discovery.
Learning gestures for customizable human-computer interaction in the operating room.
Schwarz, Loren Arthur; Bigdelou, Ali; Navab, Nassir
2011-01-01
Interaction with computer-based medical devices in the operating room is often challenging for surgeons due to sterility requirements and the complexity of interventional procedures. Typical solutions, such as delegating the interaction task to an assistant, can be inefficient. We propose a method for gesture-based interaction in the operating room that surgeons can customize to personal requirements and interventional workflow. Given training examples for each desired gesture, our system learns low-dimensional manifold models that enable recognizing gestures and tracking particular poses for fine-grained control. By capturing the surgeon's movements with a few wireless body-worn inertial sensors, we avoid issues of camera-based systems, such as sensitivity to illumination and occlusions. Using a component-based framework implementation, our method can easily be connected to different medical devices. Our experiments show that the approach is able to robustly recognize learned gestures and to distinguish these from other movements.
Speech Development of Autistic Children by Interactive Computer Games
ERIC Educational Resources Information Center
Rahman, Mustafizur; Ferdous, S. M.; Ahmed, Syed Ishtiaque; Anwar, Anika
2011-01-01
Purpose: Speech disorder is one of the most common problems found with autistic children. The purpose of this paper is to investigate the introduction of computer-based interactive games along with the traditional therapies in order to help improve the speech of autistic children. Design/methodology/approach: From analysis of the works of Ivar…
A Project-Based Learning Setting to Human-Computer Interaction for Teenagers
ERIC Educational Resources Information Center
Geyer, Cornelia; Geisler, Stefan
2012-01-01
Knowledge of fundamentals of human-computer interaction resp. usability engineering is getting more and more important in technical domains. However this interdisciplinary field of work and corresponding degree programs are not broadly known. Therefore at the Hochschule Ruhr West, University of Applied Sciences, a program was developed to give…
Non-Native Speaker Interaction Management Strategies in a Network-Based Virtual Environment
ERIC Educational Resources Information Center
Peterson, Mark
2008-01-01
This article investigates the dyad-based communication of two groups of non-native speakers (NNSs) of English involved in real time interaction in a type of text-based computer-mediated communication (CMC) tool known as a MOO. The object of this semester long study was to examine the ways in which the subjects managed their L2 interaction during…
Thermodynamic effects of single-qubit operations in silicon-based quantum computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lougovski, Pavel; Peters, Nicholas A.
Silicon-based quantum logic is a promising technology to implement universal quantum computing. It is widely believed that a millikelvin cryogenic environment will be necessary to accommodate silicon-based qubits. This prompts a question of the ultimate scalability of the technology due to finite cooling capacity of refrigeration systems. In this work, we answer this question by studying energy dissipation due to interactions between nuclear spin impurities and qubit control pulses. Furthermore, we demonstrate that this interaction constrains the sustainable number of single-qubit operations per second for a given cooling capacity.
Thermodynamic effects of single-qubit operations in silicon-based quantum computing
Lougovski, Pavel; Peters, Nicholas A.
2018-05-21
Silicon-based quantum logic is a promising technology to implement universal quantum computing. It is widely believed that a millikelvin cryogenic environment will be necessary to accommodate silicon-based qubits. This prompts a question of the ultimate scalability of the technology due to finite cooling capacity of refrigeration systems. In this work, we answer this question by studying energy dissipation due to interactions between nuclear spin impurities and qubit control pulses. Furthermore, we demonstrate that this interaction constrains the sustainable number of single-qubit operations per second for a given cooling capacity.
Dietary Interviewing by Computer.
ERIC Educational Resources Information Center
Slack, Warner V.; And Others
1976-01-01
A computer based dietary interviewing program enhanced self awareness for overweight participants. In a three part interview designed for direct interaction between patient and computer, questions dealt with general dietary behavior and details of food intake. The computer assisted the patient in planning a weight reducing diet of approximately…
Heterogeneous computing architecture for fast detection of SNP-SNP interactions.
Sluga, Davor; Curk, Tomaz; Zupan, Blaz; Lotric, Uros
2014-06-25
The extent of data in a typical genome-wide association study (GWAS) poses considerable computational challenges to software tools for gene-gene interaction discovery. Exhaustive evaluation of all interactions among hundreds of thousands to millions of single nucleotide polymorphisms (SNPs) may require weeks or even months of computation. Massively parallel hardware within a modern Graphic Processing Unit (GPU) and Many Integrated Core (MIC) coprocessors can shorten the run time considerably. While the utility of GPU-based implementations in bioinformatics has been well studied, MIC architecture has been introduced only recently and may provide a number of comparative advantages that have yet to be explored and tested. We have developed a heterogeneous, GPU and Intel MIC-accelerated software module for SNP-SNP interaction discovery to replace the previously single-threaded computational core in the interactive web-based data exploration program SNPsyn. We report on differences between these two modern massively parallel architectures and their software environments. Their utility resulted in an order of magnitude shorter execution times when compared to the single-threaded CPU implementation. GPU implementation on a single Nvidia Tesla K20 runs twice as fast as that for the MIC architecture-based Xeon Phi P5110 coprocessor, but also requires considerably more programming effort. General purpose GPUs are a mature platform with large amounts of computing power capable of tackling inherently parallel problems, but can prove demanding for the programmer. On the other hand the new MIC architecture, albeit lacking in performance reduces the programming effort and makes it up with a more general architecture suitable for a wider range of problems.
Heterogeneous computing architecture for fast detection of SNP-SNP interactions
2014-01-01
Background The extent of data in a typical genome-wide association study (GWAS) poses considerable computational challenges to software tools for gene-gene interaction discovery. Exhaustive evaluation of all interactions among hundreds of thousands to millions of single nucleotide polymorphisms (SNPs) may require weeks or even months of computation. Massively parallel hardware within a modern Graphic Processing Unit (GPU) and Many Integrated Core (MIC) coprocessors can shorten the run time considerably. While the utility of GPU-based implementations in bioinformatics has been well studied, MIC architecture has been introduced only recently and may provide a number of comparative advantages that have yet to be explored and tested. Results We have developed a heterogeneous, GPU and Intel MIC-accelerated software module for SNP-SNP interaction discovery to replace the previously single-threaded computational core in the interactive web-based data exploration program SNPsyn. We report on differences between these two modern massively parallel architectures and their software environments. Their utility resulted in an order of magnitude shorter execution times when compared to the single-threaded CPU implementation. GPU implementation on a single Nvidia Tesla K20 runs twice as fast as that for the MIC architecture-based Xeon Phi P5110 coprocessor, but also requires considerably more programming effort. Conclusions General purpose GPUs are a mature platform with large amounts of computing power capable of tackling inherently parallel problems, but can prove demanding for the programmer. On the other hand the new MIC architecture, albeit lacking in performance reduces the programming effort and makes it up with a more general architecture suitable for a wider range of problems. PMID:24964802
Computational Workbench for Multibody Dynamics
NASA Technical Reports Server (NTRS)
Edmonds, Karina
2007-01-01
PyCraft is a computer program that provides an interactive, workbenchlike computing environment for developing and testing algorithms for multibody dynamics. Examples of multibody dynamic systems amenable to analysis with the help of PyCraft include land vehicles, spacecraft, robots, and molecular models. PyCraft is based on the Spatial-Operator- Algebra (SOA) formulation for multibody dynamics. The SOA operators enable construction of simple and compact representations of complex multibody dynamical equations. Within the Py-Craft computational workbench, users can, essentially, use the high-level SOA operator notation to represent the variety of dynamical quantities and algorithms and to perform computations interactively. PyCraft provides a Python-language interface to underlying C++ code. Working with SOA concepts, a user can create and manipulate Python-level operator classes in order to implement and evaluate new dynamical quantities and algorithms. During use of PyCraft, virtually all SOA-based algorithms are available for computational experiments.
Computer Applications in Balancing Chemical Equations.
ERIC Educational Resources Information Center
Kumar, David D.
2001-01-01
Discusses computer-based approaches to balancing chemical equations. Surveys 13 methods, 6 based on matrix, 2 interactive programs, 1 stand-alone system, 1 developed in algorithm in Basic, 1 based on design engineering, 1 written in HyperCard, and 1 prepared for the World Wide Web. (Contains 17 references.) (Author/YDS)
GBOOST: a GPU-based tool for detecting gene-gene interactions in genome-wide case control studies.
Yung, Ling Sing; Yang, Can; Wan, Xiang; Yu, Weichuan
2011-05-01
Collecting millions of genetic variations is feasible with the advanced genotyping technology. With a huge amount of genetic variations data in hand, developing efficient algorithms to carry out the gene-gene interaction analysis in a timely manner has become one of the key problems in genome-wide association studies (GWAS). Boolean operation-based screening and testing (BOOST), a recent work in GWAS, completes gene-gene interaction analysis in 2.5 days on a desktop computer. Compared with central processing units (CPUs), graphic processing units (GPUs) are highly parallel hardware and provide massive computing resources. We are, therefore, motivated to use GPUs to further speed up the analysis of gene-gene interactions. We implement the BOOST method based on a GPU framework and name it GBOOST. GBOOST achieves a 40-fold speedup compared with BOOST. It completes the analysis of Wellcome Trust Case Control Consortium Type 2 Diabetes (WTCCC T2D) genome data within 1.34 h on a desktop computer equipped with Nvidia GeForce GTX 285 display card. GBOOST code is available at http://bioinformatics.ust.hk/BOOST.html#GBOOST.
NASA Technical Reports Server (NTRS)
Edwards, Jack R.; Mcrae, D. Scott
1991-01-01
An efficient method for computing two-dimensional compressible Navier-Stokes flow fields is presented. The solution algorithm is a fully-implicit approximate factorization technique based on an unsymmetric line Gauss-Seidel splitting of the equation system Jacobian matrix. Convergence characteristics are improved by the addition of acceleration techniques based on Shamanskii's method for nonlinear equations and Broyden's quasi-Newton update. Characteristic-based differencing of the equations is provided by means of Van Leer's flux vector splitting. In this investigation, emphasis is placed on the fast and accurate computation of shock-wave-boundary layer interactions with and without slot suction effects. In the latter context, a set of numerical boundary conditions for simulating the transpiration flow in an open slot is devised. Both laminar and turbulent cases are considered, with turbulent closure provided by a modified Cebeci-Smith algebraic model. Comparisons with computational and experimental data sets are presented for a variety of interactions, and a fully-coupled simulation of a plenum chamber/inlet flowfield with shock interaction and suction is also shown and discussed.
Evolving technologies for Space Station Freedom computer-based workstations
NASA Technical Reports Server (NTRS)
Jensen, Dean G.; Rudisill, Marianne
1990-01-01
Viewgraphs on evolving technologies for Space Station Freedom computer-based workstations are presented. The human-computer computer software environment modules are described. The following topics are addressed: command and control workstation concept; cupola workstation concept; Japanese experiment module RMS workstation concept; remote devices controlled from workstations; orbital maneuvering vehicle free flyer; remote manipulator system; Japanese experiment module exposed facility; Japanese experiment module small fine arm; flight telerobotic servicer; human-computer interaction; and workstation/robotics related activities.
A DGS Gesture Dictionary for Modelling on Mobile Devices
ERIC Educational Resources Information Center
Isotani, Seiji; Reis, Helena M.; Alvares, Danilo; Brandão, Anarosa A. F.; Brandão, Leônidas O.
2018-01-01
Interactive or Dynamic Geometry System (DGS) is a tool that help to teach and learn geometry using a computer-based interactive environment. Traditionally, the interaction with DGS is based on keyboard and mouse events where the functionalities are accessed using a menu of icons. Nevertheless, recent findings suggest that such a traditional model…
High-performance biocomputing for simulating the spread of contagion over large contact networks
2012-01-01
Background Many important biological problems can be modeled as contagion diffusion processes over interaction networks. This article shows how the EpiSimdemics interaction-based simulation system can be applied to the general contagion diffusion problem. Two specific problems, computational epidemiology and human immune system modeling, are given as examples. We then show how the graphics processing unit (GPU) within each compute node of a cluster can effectively be used to speed-up the execution of these types of problems. Results We show that a single GPU can accelerate the EpiSimdemics computation kernel by a factor of 6 and the entire application by a factor of 3.3, compared to the execution time on a single core. When 8 CPU cores and 2 GPU devices are utilized, the speed-up of the computational kernel increases to 9.5. When combined with effective techniques for inter-node communication, excellent scalability can be achieved without significant loss of accuracy in the results. Conclusions We show that interaction-based simulation systems can be used to model disparate and highly relevant problems in biology. We also show that offloading some of the work to GPUs in distributed interaction-based simulations can be an effective way to achieve increased intra-node efficiency. PMID:22537298
Interactive computer graphics system for structural sizing and analysis of aircraft structures
NASA Technical Reports Server (NTRS)
Bendavid, D.; Pipano, A.; Raibstein, A.; Somekh, E.
1975-01-01
A computerized system for preliminary sizing and analysis of aircraft wing and fuselage structures was described. The system is based upon repeated application of analytical program modules, which are interactively interfaced and sequence-controlled during the iterative design process with the aid of design-oriented graphics software modules. The entire process is initiated and controlled via low-cost interactive graphics terminals driven by a remote computer in a time-sharing mode.
Measurement-based quantum computation on two-body interacting qubits with adiabatic evolution.
Kyaw, Thi Ha; Li, Ying; Kwek, Leong-Chuan
2014-10-31
A cluster state cannot be a unique ground state of a two-body interacting Hamiltonian. Here, we propose the creation of a cluster state of logical qubits encoded in spin-1/2 particles by adiabatically weakening two-body interactions. The proposal is valid for any spatial dimensional cluster states. Errors induced by thermal fluctuations and adiabatic evolution within finite time can be eliminated ensuring fault-tolerant quantum computing schemes.
The Study on Human-Computer Interaction Design Based on the Users’ Subconscious Behavior
NASA Astrophysics Data System (ADS)
Li, Lingyuan
2017-09-01
Human-computer interaction is human-centered. An excellent interaction design should focus on the study of user experience, which greatly comes from the consistence between design and human behavioral habit. However, users’ behavioral habits often result from subconsciousness. Therefore, it is smart to utilize users’ subconscious behavior to achieve design's intention and maximize the value of products’ functions, which gradually becomes a new trend in this field.
AOIPS data base management systems support for GARP data sets
NASA Technical Reports Server (NTRS)
Gary, J. P.
1977-01-01
A data base management system is identified, developed to provide flexible access to data sets produced by GARP during its data systems tests. The content and coverage of the data base are defined and a computer-aided, interactive information storage and retrieval system, implemented to facilitate access to user specified data subsets, is described. The computer programs developed to provide the capability were implemented on the highly interactive, minicomputer-based AOIPS and are referred to as the data retrieval system (DRS). Implemented as a user interactive but menu guided system, the DRS permits users to inventory the data tape library and create duplicate or subset data sets based on a user selected window defined by time and latitude/longitude boundaries. The DRS permits users to select, display, or produce formatted hard copy of individual data items contained within the data records.
ERIC Educational Resources Information Center
McConatha, Douglas; And Others
1994-01-01
Examined and documented effects of interactive computer-based education and training on rehabilitation of long-term care residents (n=14). This approach was found to provide mental stimulation and challenge, as well as improving practical skills which directly impact upon competencies and feelings of autonomy of participants. (Author/NB)
ERIC Educational Resources Information Center
Yang, Mau-Tsuen; Liao, Wan-Che
2014-01-01
The physical-virtual immersion and real-time interaction play an essential role in cultural and language learning. Augmented reality (AR) technology can be used to seamlessly merge virtual objects with real-world images to realize immersions. Additionally, computer vision (CV) technology can recognize free-hand gestures from live images to enable…
Rapid Human-Computer Interactive Conceptual Design of Mobile and Manipulative Robot Systems
2015-05-19
algorithm based on Age-Fitness Pareto Optimization (AFPO) ([9]) with an additional user prefer- ence objective and a neural network-based user model, we...greater than 40, which is about 5 times further than any robot traveled in our experiments. 6 3.3 Methods The algorithm uses a client -server computational...architecture. The client here is an interactive pro- gram which takes a pair of controllers as input, simulates4 two copies of the robot with
Recommendation Techniques for Drug-Target Interaction Prediction and Drug Repositioning.
Alaimo, Salvatore; Giugno, Rosalba; Pulvirenti, Alfredo
2016-01-01
The usage of computational methods in drug discovery is a common practice. More recently, by exploiting the wealth of biological knowledge bases, a novel approach called drug repositioning has raised. Several computational methods are available, and these try to make a high-level integration of all the knowledge in order to discover unknown mechanisms. In this chapter, we review drug-target interaction prediction methods based on a recommendation system. We also give some extensions which go beyond the bipartite network case.
Game-Based Evacuation Drill Using Augmented Reality and Head-Mounted Display
ERIC Educational Resources Information Center
Kawai, Junya; Mitsuhara, Hiroyuki; Shishibori, Masami
2016-01-01
Purpose: Evacuation drills should be more realistic and interactive. Focusing on situational and audio-visual realities and scenario-based interactivity, the authors have developed a game-based evacuation drill (GBED) system that presents augmented reality (AR) materials on tablet computers. The paper's current research purpose is to improve…
NASA Astrophysics Data System (ADS)
Wood, E. L.
2014-12-01
"Project Spectra!" is a standards-based E-M spectrum and engineering program that includes paper and pencil activities as well as Flash-based computer games that help students solidify understanding of high-level planetary and solar physics. Using computer interactive games, students experience and manipulate information making abstract concepts accessible, solidifying understanding and enhancing retention of knowledge. Since students can choose what to watch and explore, the interactives accommodate a broad range of learning styles. Students can go back and forth through the interactives if they've missed a concept or wish to view something again. In the end, students are asked critical thinking questions and conduct web-based research. As part of the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission education programming, we've developed two new interactives. The MAVEN mission will study volatiles in the upper atmosphere to help piece together Mars' climate history. In the first interactive, students explore black body radiation, albedo, and a simplified greenhouse effect to establish what factors contribute to overall planetary temperature. Students design a planet that is able to maintain liquid water on the surface. In the second interactive, students are asked to consider conditions needed for Mars to support water on the surface, keeping some variables fixed. Ideally, students will walk away with the very basic and critical elements required for climate studies, which has far-reaching implications beyond the study of Mars. These interactives were pilot tested at Arvada High School in Colorado.
Hotspot-Centric De Novo Design of Protein Binders
Fleishman, Sarel J.; Corn, Jacob E.; Strauch, Eva-Maria; Whitehead, Timothy A.; Karanicolas, John; Baker, David
2014-01-01
Protein–protein interactions play critical roles in biology, and computational design of interactions could be useful in a range of applications. We describe in detail a general approach to de novo design of protein interactions based on computed, energetically optimized interaction hotspots, which was recently used to produce high-affinity binders of influenza hemagglutinin. We present several alternative approaches to identify and build the key hotspot interactions within both core secondary structural elements and variable loop regions and evaluate the method's performance in natural-interface recapitulation. We show that the method generates binding surfaces that are more conformationally restricted than previous design methods, reducing opportunities for off-target interactions. PMID:21945116
Why CBI? An Examination of the Case for Computer-Based Instruction.
ERIC Educational Resources Information Center
Dean, Peter M.
1977-01-01
Discussion of the use of computers in instruction includes the relationship of theory to practice, the interactive nature of computer instruction, an overview of the Keller Plan, cost considerations, strategy for use of computers in instruction and training, and a look at examination procedure. (RAO)
Methane Adsorption in Zr-Based MOFs: Comparison and Critical Evaluation of Force Fields
2017-01-01
The search for nanoporous materials that are highly performing for gas storage and separation is one of the contemporary challenges in material design. The computational tools to aid these experimental efforts are widely available, and adsorption isotherms are routinely computed for huge sets of (hypothetical) frameworks. Clearly the computational results depend on the interactions between the adsorbed species and the adsorbent, which are commonly described using force fields. In this paper, an extensive comparison and in-depth investigation of several force fields from literature is reported for the case of methane adsorption in the Zr-based Metal–Organic Frameworks UiO-66, UiO-67, DUT-52, NU-1000, and MOF-808. Significant quantitative differences in the computed uptake are observed when comparing different force fields, but most qualitative features are common which suggests some predictive power of the simulations when it comes to these properties. More insight into the host–guest interactions is obtained by benchmarking the force fields with an extensive number of ab initio computed single molecule interaction energies. This analysis at the molecular level reveals that especially ab initio derived force fields perform well in reproducing the ab initio interaction energies. Finally, the high sensitivity of uptake predictions on the underlying potential energy surface is explored. PMID:29170687
Bottoni, Paolo; Cinque, Luigi; De Marsico, Maria; Levialdi, Stefano; Panizzi, Emanuele
2006-06-01
This paper reports on the research activities performed by the Pictorial Computing Laboratory at the University of Rome, La Sapienza, during the last 5 years. Such work, essentially is based on the study of humancomputer interaction, spans from metamodels of interaction down to prototypes of interactive systems for both synchronous multimedia communication and groupwork, annotation systems for web pages, also encompassing theoretical and practical issues of visual languages and environments also including pattern recognition algorithms. Some applications are also considered like e-learning and collaborative work.
Rule-based programming paradigm: a formal basis for biological, chemical and physical computation.
Krishnamurthy, V; Krishnamurthy, E V
1999-03-01
A rule-based programming paradigm is described as a formal basis for biological, chemical and physical computations. In this paradigm, the computations are interpreted as the outcome arising out of interaction of elements in an object space. The interactions can create new elements (or same elements with modified attributes) or annihilate old elements according to specific rules. Since the interaction rules are inherently parallel, any number of actions can be performed cooperatively or competitively among the subsets of elements, so that the elements evolve toward an equilibrium or unstable or chaotic state. Such an evolution may retain certain invariant properties of the attributes of the elements. The object space resembles Gibbsian ensemble that corresponds to a distribution of points in the space of positions and momenta (called phase space). It permits the introduction of probabilities in rule applications. As each element of the ensemble changes over time, its phase point is carried into a new phase point. The evolution of this probability cloud in phase space corresponds to a distributed probabilistic computation. Thus, this paradigm can handle tor deterministic exact computation when the initial conditions are exactly specified and the trajectory of evolution is deterministic. Also, it can handle probabilistic mode of computation if we want to derive macroscopic or bulk properties of matter. We also explain how to support this rule-based paradigm using relational-database like query processing and transactions.
ERIC Educational Resources Information Center
Culp, G. H.; And Others
Over 100 interactive computer programs for use in general and organic chemistry at the University of Texas at Austin have been prepared. The rationale for the programs is based upon the belief that computer-assisted instruction (CAI) can improve education by, among other things, freeing teachers from routine tasks, measuring entry skills,…
ERIC Educational Resources Information Center
Barrett, Andrew J.; And Others
The Center for Interactive Technology, Applications, and Research at the College of Engineering of the University of South Florida (Tampa) has developed objective and descriptive evaluation models to assist in determining the educational potential of computer and video courseware. The computer-based courseware evaluation model and the video-based…
Designing for Interaction: Six Steps to Designing Computer-Supported Group-Based Learning
ERIC Educational Resources Information Center
Strijbos, J. W.; Martens, R. L.; Jochems, W. M. G.
2004-01-01
At present, the design of computer-supported group-based learning (CSGBL) is often based on subjective decisions regarding tasks, pedagogy and technology, or concepts such as "cooperative learning" and "collaborative learning." Critical review reveals these concepts as insufficiently substantial to serve as a basis for CSGBL design. Furthermore,…
RAID v2.0: an updated resource of RNA-associated interactions across organisms.
Yi, Ying; Zhao, Yue; Li, Chunhua; Zhang, Lin; Huang, Huiying; Li, Yana; Liu, Lanlan; Hou, Ping; Cui, Tianyu; Tan, Puwen; Hu, Yongfei; Zhang, Ting; Huang, Yan; Li, Xiaobo; Yu, Jia; Wang, Dong
2017-01-04
With the development of biotechnologies and computational prediction algorithms, the number of experimental and computational prediction RNA-associated interactions has grown rapidly in recent years. However, diverse RNA-associated interactions are scattered over a wide variety of resources and organisms, whereas a fully comprehensive view of diverse RNA-associated interactions is still not available for any species. Hence, we have updated the RAID database to version 2.0 (RAID v2.0, www.rna-society.org/raid/) by integrating experimental and computational prediction interactions from manually reading literature and other database resources under one common framework. The new developments in RAID v2.0 include (i) over 850-fold RNA-associated interactions, an enhancement compared to the previous version; (ii) numerous resources integrated with experimental or computational prediction evidence for each RNA-associated interaction; (iii) a reliability assessment for each RNA-associated interaction based on an integrative confidence score; and (iv) an increase of species coverage to 60. Consequently, RAID v2.0 recruits more than 5.27 million RNA-associated interactions, including more than 4 million RNA-RNA interactions and more than 1.2 million RNA-protein interactions, referring to nearly 130 000 RNA/protein symbols across 60 species. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Seven-Step Problem-Based Learning in an Interaction Design Course
ERIC Educational Resources Information Center
Schultz, Nette; Christensen, Hans Peter
2004-01-01
The objective in this paper is the implementation of the highly structured seven-step problem-based learning (PBL) procedure as part of the learning process in a human-computer interaction (HCI) design course at the Technical University of Denmark, taking into account the common learning processes in PBL and the interaction design process. These…
ERIC Educational Resources Information Center
Ioannou, Andri; Vasiliou, Christina; Zaphiris, Panayiotis; Arh, Tanja; Klobucar, Tomaž; Pipan, Matija
2015-01-01
This exploratory case study aims to examine how students benefit from a multimodal learning environment while they engage in collaborative problem-based activity in a Human Computer Interaction (HCI) university course. For 12 weeks, 30 students, in groups of 5-7 each, participated in weekly face-to-face meetings and online interactions.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnstad, H.
The purpose of this meeting is to discuss the current and future HEP computing support and environments from the perspective of new horizons in accelerator, physics, and computing technologies. Topics of interest to the Meeting include (but are limited to): the forming of the HEPLIB world user group for High Energy Physic computing; mandate, desirables, coordination, organization, funding; user experience, international collaboration; the roles of national labs, universities, and industry; range of software, Monte Carlo, mathematics, physics, interactive analysis, text processors, editors, graphics, data base systems, code management tools; program libraries, frequency of updates, distribution; distributed and interactive computing, datamore » base systems, user interface, UNIX operating systems, networking, compilers, Xlib, X-Graphics; documentation, updates, availability, distribution; code management in large collaborations, keeping track of program versions; and quality assurance, testing, conventions, standards.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnstad, H.
The purpose of this meeting is to discuss the current and future HEP computing support and environments from the perspective of new horizons in accelerator, physics, and computing technologies. Topics of interest to the Meeting include (but are limited to): the forming of the HEPLIB world user group for High Energy Physic computing; mandate, desirables, coordination, organization, funding; user experience, international collaboration; the roles of national labs, universities, and industry; range of software, Monte Carlo, mathematics, physics, interactive analysis, text processors, editors, graphics, data base systems, code management tools; program libraries, frequency of updates, distribution; distributed and interactive computing, datamore » base systems, user interface, UNIX operating systems, networking, compilers, Xlib, X-Graphics; documentation, updates, availability, distribution; code management in large collaborations, keeping track of program versions; and quality assurance, testing, conventions, standards.« less
Marketing via Computer Diskette.
ERIC Educational Resources Information Center
Thombs, Michael
This report describes the development and evaluation of an interactive marketing diskette which describes the characteristics, advantages, and application procedures for each of the major computer-based graduate programs at Nova University. Copies of the diskettes were distributed at the 1988 Florida Instructional Computing Conference and were…
NASA Technical Reports Server (NTRS)
Hirt, Stefanie M.; Reich, David B.; O'Connor, Michael B.
2010-01-01
Computational fluid dynamics was used to study the effectiveness of micro-ramp vortex generators to control oblique shock boundary layer interactions. Simulations were based on experiments previously conducted in the 15 x 15 cm supersonic wind tunnel at NASA Glenn Research Center. Four micro-ramp geometries were tested at Mach 2.0 varying the height, chord length, and spanwise spacing between micro-ramps. The overall flow field was examined. Additionally, key parameters such as boundary-layer displacement thickness, momentum thickness and incompressible shape factor were also examined. The computational results predicted the effects of the micro-ramps well, including the trends for the impact that the devices had on the shock boundary layer interaction. However, computing the shock boundary layer interaction itself proved to be problematic since the calculations predicted more pronounced adverse effects on the boundary layer due to the shock than were seen in the experiment.
NASA Technical Reports Server (NTRS)
Hirt, Stephanie M.; Reich, David B.; O'Connor, Michael B.
2012-01-01
Computational fluid dynamics was used to study the effectiveness of micro-ramp vortex generators to control oblique shock boundary layer interactions. Simulations were based on experiments previously conducted in the 15- by 15-cm supersonic wind tunnel at the NASA Glenn Research Center. Four micro-ramp geometries were tested at Mach 2.0 varying the height, chord length, and spanwise spacing between micro-ramps. The overall flow field was examined. Additionally, key parameters such as boundary-layer displacement thickness, momentum thickness and incompressible shape factor were also examined. The computational results predicted the effects of the microramps well, including the trends for the impact that the devices had on the shock boundary layer interaction. However, computing the shock boundary layer interaction itself proved to be problematic since the calculations predicted more pronounced adverse effects on the boundary layer due to the shock than were seen in the experiment.
ERIC Educational Resources Information Center
Rouhshad, Amir; Wigglesworth, Gillian; Storch, Neomy
2016-01-01
The Interaction Approach argues that negotiation for meaning and form is conducive to second language development. To date, most of the research on negotiations has been either in face-to-face (FTF) or text-based synchronous computer-mediated communication (SCMC) modes. Very few studies have compared the nature of negotiations across the modes.…
Bardhan, Jaydeep P; Knepley, Matthew G; Anitescu, Mihai
2009-03-14
The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.
NASA Astrophysics Data System (ADS)
Bardhan, Jaydeep P.; Knepley, Matthew G.; Anitescu, Mihai
2009-03-01
The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.
Integrated computer-aided design using minicomputers
NASA Technical Reports Server (NTRS)
Storaasli, O. O.
1980-01-01
Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM), a highly interactive software, has been implemented on minicomputers at the NASA Langley Research Center. CAD/CAM software integrates many formerly fragmented programs and procedures into one cohesive system; it also includes finite element modeling and analysis, and has been interfaced via a computer network to a relational data base management system and offline plotting devices on mainframe computers. The CAD/CAM software system requires interactive graphics terminals operating at a minimum of 4800 bits/sec transfer rate to a computer. The system is portable and introduces 'interactive graphics', which permits the creation and modification of models interactively. The CAD/CAM system has already produced designs for a large area space platform, a national transonic facility fan blade, and a laminar flow control wind tunnel model. Besides the design/drafting element analysis capability, CAD/CAM provides options to produce an automatic program tooling code to drive a numerically controlled (N/C) machine. Reductions in time for design, engineering, drawing, finite element modeling, and N/C machining will benefit productivity through reduced costs, fewer errors, and a wider range of configuration.
Computer Mediated Communication: Online Instruction and Interactivity.
ERIC Educational Resources Information Center
Lavooy, Maria J.; Newlin, Michael H.
2003-01-01
Explores the different forms and potential applications of computer mediated communication (CMC) for Web-based and Web-enhanced courses. Based on their experiences with three different Web courses (Research Methods in Psychology, Statistical Methods in Psychology, and Basic Learning Processes) taught repeatedly over the last five years, the…
Cognitive Support for Learning Computer-Based Tasks Using Animated Demonstration
ERIC Educational Resources Information Center
Chen, Chun-Ying
2016-01-01
This study investigated the influence of cognitive support for learning computer-based tasks using animated demonstration (AD) on instructional efficiency. Cognitive support included (1) segmentation and learner control introducing interactive devices that allow content sequencing through a navigational menu, and content pacing through stop and…
Primary School Children's Collaboration: Task Presentation and Gender Issues.
ERIC Educational Resources Information Center
Fitzpatrick, Helen; Hardman, Margaret
2000-01-01
Explores the characteristics of social interaction during an English language based task in the primary classroom, and the role of the computer in structuring collaboration when compared to a non-computer mode. Explains that seven and nine year old boys and girls (n=120) completed a computer and non-computer task. (CMK)
Parker, Trent M; Hohenstein, Edward G; Parrish, Robert M; Hud, Nicholas V; Sherrill, C David
2013-01-30
Symmetry-adapted perturbation theory (SAPT) is applied to pairs of hydrogen-bonded nucleobases to obtain the energetic components of base stacking (electrostatic, exchange-repulsion, induction/polarization, and London dispersion interactions) and how they vary as a function of the helical parameters Rise, Twist, and Slide. Computed average values of Rise and Twist agree well with experimental data for B-form DNA from the Nucleic Acids Database, even though the model computations omitted the backbone atoms (suggesting that the backbone in B-form DNA is compatible with having the bases adopt their ideal stacking geometries). London dispersion forces are the most important attractive component in base stacking, followed by electrostatic interactions. At values of Rise typical of those in DNA (3.36 Å), the electrostatic contribution is nearly always attractive, providing further evidence for the importance of charge-penetration effects in π-π interactions (a term neglected in classical force fields). Comparison of the computed stacking energies with those from model complexes made of the "parent" nucleobases purine and 2-pyrimidone indicates that chemical substituents in DNA and RNA account for 20-40% of the base-stacking energy. A lack of correspondence between the SAPT results and experiment for Slide in RNA base-pair steps suggests that the backbone plays a larger role in determining stacking geometries in RNA than in B-form DNA. In comparisons of base-pair steps with thymine versus uracil, the thymine methyl group tends to enhance the strength of the stacking interaction through a combination of dispersion and electrosatic interactions.
ERIC Educational Resources Information Center
Carrejo, David; Robertson, William H.
2011-01-01
Computer-based mathematical modeling in physics is a process of constructing models of concepts and the relationships between them in the scientific characteristics of work. In this manner, computer-based modeling integrates the interactions of natural phenomenon through the use of models, which provide structure for theories and a base for…
Development of the cardiovascular system: an interactive video computer program.
Smolen, A. J.; Zeiset, G. E.; Beaston-Wimmer, P.
1992-01-01
The major aim of this project is to provide interactive video computer based courseware that can be used by the medical student and others to supplement his or her learning of this very important aspect of basic biomedical education. Embryology is a science that depends on the ability of the student to visualize dynamic changes in structure which occur in four dimensions--X, Y, Z, and time. Traditional didactic methods, including lectures employing photographic slides and laboratories employing histological sections, are limited to two dimensions--X and Y. The third spatial dimension and the dimension of time cannot be readily illustrated using these methods. Computer based learning, particularly when used in conjunction with interactive video, can be used effectively to illustrate developmental processes in all four dimensions. This methodology can also be used to foster the critical skills of independent learning and problem solving. PMID:1483013
ERIC Educational Resources Information Center
Tardif-Williams, Christine Y.; Owen, Frances; Feldman, Maurice; Tarulli, Donato; Griffiths, Dorothy; Sales, Carol; McQueen-Fuentes, Glenys; Stoner, Karen
2007-01-01
We tested the effectiveness of an interactive, video CD-ROM in teaching persons with intellectual disabilities (ID) about their human rights. Thirty-nine participants with ID were trained using both a classroom activity-based version of the training program and the interactive CD-ROM in a counterbalanced presentation. All individuals were pre- and…
Increasing the Interaction with Distant Learners on an Interactive Telecommunications System.
ERIC Educational Resources Information Center
Schlenker, Jon
1994-01-01
Suggests a variety of ways to increase interaction with distance learners on an interactive telecommunications system, based on experiences at the University of Maine at Augusta. Highlights include establishing the proper environment; telephone systems; voice mail; fax; electronic mail; computer conferencing; postal mail; printed materials; and…
Nontrivial, Nonintelligent, Computer-Based Learning.
ERIC Educational Resources Information Center
Bork, Alfred
1987-01-01
This paper describes three interactive computer programs used with personal computers to present science learning modules for all ages. Developed by groups of teachers at the Educational Technology Center at the University of California, Irvine, these instructional materials do not use the techniques of contemporary artificial intelligence. (GDC)
ERIC Educational Resources Information Center
Batt, Russell H., Ed.
1989-01-01
Discussed are some uses of computers in chemistry classrooms. Described are: (1) interactive chromatographic analysis software; (2) computer interface for a digital frequency-period-counter-ratio meter and analog interface based on a voltage-to-frequency converter; and (3) use of spectrometer/microcomputer arrangement for teaching atomic theory.…
Student Sensemaking with Science Diagrams in a Computer-Based Setting
ERIC Educational Resources Information Center
Furberg, Anniken; Kluge, Anders; Ludvigsen, Sten
2013-01-01
This paper reports on a study of students' conceptual sensemaking with science diagrams within a computer-based learning environment aimed at supporting collaborative learning. Through the microanalysis of students' interactions in a project about energy and heat transfer, we demonstrate "how" representations become productive social and cognitive…
A Review of Research on Intercultural Learning through Computer-Based Digital Technologies
ERIC Educational Resources Information Center
Çiftçi, Emrullah Yasin
2016-01-01
Intercultural communication is now a crucial part of our globalizing lives; however, not everyone has an opportunity to engage in an intercultural interaction with people from different cultures. Computer-based technologies are promising in creating environments for people to communicate with people from diverse cultures. This qualitative…
A Framework for the Specification of the Semantics and the Dynamics of Instructional Applications
ERIC Educational Resources Information Center
Buendia-Garcia, Felix; Diaz, Paloma
2003-01-01
An instructional application consists of a set of resources and activities to implement interacting, interrelated, and structured experiences oriented towards achieving specific educational objectives. The development of computer-based instructional applications has to follow a well defined process, so models for computer-based instructional…
Computer-Based Imaginary Sciences and Research on Concept Acquisition.
ERIC Educational Resources Information Center
Allen, Brockenbrough S.
To control for interactions in learning research due to subjects' prior knowledge of the instructional material presented, an imaginary curriculum was presented with a computer assisted technique based on Carl Berieter's imaginary science of Xenograde systems. The curriculum consisted of a classification system for ten conceptual classes of…
Computer-Game-Based Tutoring of Mathematics
ERIC Educational Resources Information Center
Ke, Fengfeng
2013-01-01
This in-situ, descriptive case study examined the potential of implementing computer mathematics games as an anchor for tutoring of mathematics. Data were collected from middle school students at a rural pueblo school and an urban Hispanic-serving school, through in-field observation, content analysis of game-based tutoring-learning interactions,…
NASA Astrophysics Data System (ADS)
Yang, Sheng-Chun; Lu, Zhong-Yuan; Qian, Hu-Jun; Wang, Yong-Lei; Han, Jie-Ping
2017-11-01
In this work, we upgraded the electrostatic interaction method of CU-ENUF (Yang, et al., 2016) which first applied CUNFFT (nonequispaced Fourier transforms based on CUDA) to the reciprocal-space electrostatic computation and made the computation of electrostatic interaction done thoroughly in GPU. The upgraded edition of CU-ENUF runs concurrently in a hybrid parallel way that enables the computation parallelizing on multiple computer nodes firstly, then further on the installed GPU in each computer. By this parallel strategy, the size of simulation system will be never restricted to the throughput of a single CPU or GPU. The most critical technical problem is how to parallelize a CUNFFT in the parallel strategy, which is conquered effectively by deep-seated research of basic principles and some algorithm skills. Furthermore, the upgraded method is capable of computing electrostatic interactions for both the atomistic molecular dynamics (MD) and the dissipative particle dynamics (DPD). Finally, the benchmarks conducted for validation and performance indicate that the upgraded method is able to not only present a good precision when setting suitable parameters, but also give an efficient way to compute electrostatic interactions for huge simulation systems. Program Files doi:http://dx.doi.org/10.17632/zncf24fhpv.1 Licensing provisions: GNU General Public License 3 (GPL) Programming language: C, C++, and CUDA C Supplementary material: The program is designed for effective electrostatic interactions of large-scale simulation systems, which runs on particular computers equipped with NVIDIA GPUs. It has been tested on (a) single computer node with Intel(R) Core(TM) i7-3770@ 3.40 GHz (CPU) and GTX 980 Ti (GPU), and (b) MPI parallel computer nodes with the same configurations. Nature of problem: For molecular dynamics simulation, the electrostatic interaction is the most time-consuming computation because of its long-range feature and slow convergence in simulation space, which approximately take up most of the total simulation time. Although the parallel method CU-ENUF (Yang et al., 2016) based on GPU has achieved a qualitative leap compared with previous methods in electrostatic interactions computation, the computation capability is limited to the throughput capacity of a single GPU for super-scale simulation system. Therefore, we should look for an effective method to handle the calculation of electrostatic interactions efficiently for a simulation system with super-scale size. Solution method: We constructed a hybrid parallel architecture, in which CPU and GPU are combined to accelerate the electrostatic computation effectively. Firstly, the simulation system is divided into many subtasks via domain-decomposition method. Then MPI (Message Passing Interface) is used to implement the CPU-parallel computation with each computer node corresponding to a particular subtask, and furthermore each subtask in one computer node will be executed in GPU in parallel efficiently. In this hybrid parallel method, the most critical technical problem is how to parallelize a CUNFFT (nonequispaced fast Fourier transform based on CUDA) in the parallel strategy, which is conquered effectively by deep-seated research of basic principles and some algorithm skills. Restrictions: The HP-ENUF is mainly oriented to super-scale system simulations, in which the performance superiority is shown adequately. However, for a small simulation system containing less than 106 particles, the mode of multiple computer nodes has no apparent efficiency advantage or even lower efficiency due to the serious network delay among computer nodes, than the mode of single computer node. References: (1) S.-C. Yang, H.-J. Qian, Z.-Y. Lu, Appl. Comput. Harmon. Anal. 2016, http://dx.doi.org/10.1016/j.acha.2016.04.009. (2) S.-C. Yang, Y.-L. Wang, G.-S. Jiao, H.-J. Qian, Z.-Y. Lu, J. Comput. Chem. 37 (2016) 378. (3) S.-C. Yang, Y.-L. Zhu, H.-J. Qian, Z.-Y. Lu, Appl. Chem. Res. Chin. Univ., 2017, http://dx.doi.org/10.1007/s40242-016-6354-5. (4) Y.-L. Zhu, H. Liu, Z.-W. Li, H.-J. Qian, G. Milano, Z.-Y. Lu, J. Comput. Chem. 34 (2013) 2197.
Interactive Video-Based Industrial Training in Basic Electronics.
ERIC Educational Resources Information Center
Mirkin, Barry
The Wisconsin Foundation for Vocational, Technical, and Adult Education is currently involved in the development, implementation, and distribution of a sophisticated interactive computer and video learning system. Designed to offer trainees an open entry and open exit opportunity to pace themselves through a comprehensive competency-based,…
Computer graphics application in the engineering design integration system
NASA Technical Reports Server (NTRS)
Glatt, C. R.; Abel, R. W.; Hirsch, G. N.; Alford, G. E.; Colquitt, W. N.; Stewart, W. A.
1975-01-01
The computer graphics aspect of the Engineering Design Integration (EDIN) system and its application to design problems were discussed. Three basic types of computer graphics may be used with the EDIN system for the evaluation of aerospace vehicles preliminary designs: offline graphics systems using vellum-inking or photographic processes, online graphics systems characterized by direct coupled low cost storage tube terminals with limited interactive capabilities, and a minicomputer based refresh terminal offering highly interactive capabilities. The offline line systems are characterized by high quality (resolution better than 0.254 mm) and slow turnaround (one to four days). The online systems are characterized by low cost, instant visualization of the computer results, slow line speed (300 BAUD), poor hard copy, and the early limitations on vector graphic input capabilities. The recent acquisition of the Adage 330 Graphic Display system has greatly enhanced the potential for interactive computer aided design.
A meta-analysis of outcomes from the use of computer-simulated experiments in science education
NASA Astrophysics Data System (ADS)
Lejeune, John Van
The purpose of this study was to synthesize the findings from existing research on the effects of computer simulated experiments on students in science education. Results from 40 reports were integrated by the process of meta-analysis to examine the effect of computer-simulated experiments and interactive videodisc simulations on student achievement and attitudes. Findings indicated significant positive differences in both low-level and high-level achievement of students who use computer-simulated experiments and interactive videodisc simulations as compared to students who used more traditional learning activities. No significant differences in retention, student attitudes toward the subject, or toward the educational method were found. Based on the findings of this study, computer-simulated experiments and interactive videodisc simulations should be used to enhance students' learning in science, especially in cases where the use of traditional laboratory activities are expensive, dangerous, or impractical.
NASA Astrophysics Data System (ADS)
Matott, L. S.; Hymiak, B.; Reslink, C. F.; Baxter, C.; Aziz, S.
2012-12-01
As part of the NSF-sponsored 'URGE (Undergraduate Research Group Experiences) to Compute' program, Dr. Matott has been collaborating with talented Math majors to explore the design of cost-effective systems to safeguard groundwater supplies from contaminated sites. Such activity is aided by a combination of groundwater modeling, simulation-based optimization, and high-performance computing - disciplines largely unfamiliar to the students at the outset of the program. To help train and engage the students, a number of interactive and graphical software packages were utilized. Examples include: (1) a tutorial for exploring the behavior of evolutionary algorithms and other heuristic optimizers commonly used in simulation-based optimization; (2) an interactive groundwater modeling package for exploring alternative pump-and-treat containment scenarios at a contaminated site in Billings, Montana; (3) the R software package for visualizing various concepts related to subsurface hydrology; and (4) a job visualization tool for exploring the behavior of numerical experiments run on a large distributed computing cluster. Further engagement and excitement in the program was fostered by entering (and winning) a computer art competition run by the Coalition for Academic Scientific Computation (CASC). The winning submission visualizes an exhaustively mapped optimization cost surface and dramatically illustrates the phenomena of artificial minima - valley locations that correspond to designs whose costs are only partially optimal.
NASA Technical Reports Server (NTRS)
Stahara, S. S.; Klenke, D.; Trudinger, B. C.; Spreiter, J. R.
1980-01-01
Computational procedures are developed and applied to the prediction of solar wind interaction with nonmagnetic terrestrial planet atmospheres, with particular emphasis to Venus. The theoretical method is based on a single fluid, steady, dissipationless, magnetohydrodynamic continuum model, and is appropriate for the calculation of axisymmetric, supersonic, super-Alfvenic solar wind flow past terrestrial planets. The procedures, which consist of finite difference codes to determine the gasdynamic properties and a variety of special purpose codes to determine the frozen magnetic field, streamlines, contours, plots, etc. of the flow, are organized into one computational program. Theoretical results based upon these procedures are reported for a wide variety of solar wind conditions and ionopause obstacle shapes. Plasma and magnetic field comparisons in the ionosheath are also provided with actual spacecraft data obtained by the Pioneer Venus Orbiter.
Computers and the Thought-Producing Self of the Young Child.
ERIC Educational Resources Information Center
Fomichova, Olga; Fomichov, Vladimir
2000-01-01
Discusses a new, informational-based cybernetic conception of the early development of child consciousness. Suggests a solution to the fundamental problem of formulating and creating the optimal cognitive preconditions of successful child-computer interaction, and analyzes some negative aspects of using intelligent computer and communications…
The Role of Multiphysics Simulation in Multidisciplinary Analysis
NASA Technical Reports Server (NTRS)
Rifai, Steven M.; Ferencz, Robert M.; Wang, Wen-Ping; Spyropoulos, Evangelos T.; Lawrence, Charles; Melis, Matthew E.
1998-01-01
This article describes the applications of the Spectrum(Tm) Solver in Multidisciplinary Analysis (MDA). Spectrum, a multiphysics simulation software based on the finite element method, addresses compressible and incompressible fluid flow, structural, and thermal modeling as well as the interaction between these disciplines. Multiphysics simulation is based on a single computational framework for the modeling of multiple interacting physical phenomena. Interaction constraints are enforced in a fully-coupled manner using the augmented-Lagrangian method. Within the multiphysics framework, the finite element treatment of fluids is based on Galerkin-Least-Squares (GLS) method with discontinuity capturing operators. The arbitrary-Lagrangian-Eulerian method is utilized to account for deformable fluid domains. The finite element treatment of solids and structures is based on the Hu-Washizu variational principle. The multiphysics architecture lends itself naturally to high-performance parallel computing. Aeroelastic, propulsion, thermal management and manufacturing applications are presented.
ERIC Educational Resources Information Center
Rosner, Yotam; Perlman, Amotz
2018-01-01
Introduction: The Israel Ministry of Social Affairs and Social Services subsidizes computer-based assistive devices for individuals with visual impairments (that is, those who are blind or have low vision) to assist these individuals in their interactions with computers and thus to enhance their independence and quality of life. The aim of this…
Program For Generating Interactive Displays
NASA Technical Reports Server (NTRS)
Costenbader, Jay; Moleski, Walt; Szczur, Martha; Howell, David; Engelberg, Norm; Li, Tin P.; Misra, Dharitri; Miller, Philip; Neve, Leif; Wolf, Karl;
1991-01-01
Sun/Unix version of Transportable Applications Environment Plus (TAE+) computer program provides integrated, portable software environment for developing and running interactive window, text, and graphical-object-based application software systems. Enables programmer or nonprogrammer to construct easily custom software interface between user and application program and to move resulting interface program and its application program to different computers. Plus viewed as productivity tool for application developers and application end users, who benefit from resultant consistent and well-designed user interface sheltering them from intricacies of computer. Available in form suitable for following six different groups of computers: DEC VAX station and other VMS VAX computers, Macintosh II computers running AUX, Apollo Domain Series 3000, DEC VAX and reduced-instruction-set-computer workstations running Ultrix, Sun 3- and 4-series workstations running Sun OS and IBM RT/PC and PS/2 compute
Another Program For Generating Interactive Graphics
NASA Technical Reports Server (NTRS)
Costenbader, Jay; Moleski, Walt; Szczur, Martha; Howell, David; Engelberg, Norm; Li, Tin P.; Misra, Dharitri; Miller, Philip; Neve, Leif; Wolf, Karl;
1991-01-01
VAX/Ultrix version of Transportable Applications Environment Plus (TAE+) computer program provides integrated, portable software environment for developing and running interactive window, text, and graphical-object-based application software systems. Enables programmer or nonprogrammer to construct easily custom software interface between user and application program and to move resulting interface program and its application program to different computers. When used throughout company for wide range of applications, makes both application program and computer seem transparent, with noticeable improvements in learning curve. Available in form suitable for following six different groups of computers: DEC VAX station and other VMS VAX computers, Macintosh II computers running AUX, Apollo Domain Series 3000, DEC VAX and reduced-instruction-set-computer workstations running Ultrix, Sun 3- and 4-series workstations running Sun OS and IBM RT/PC's and PS/2 computers running AIX, and HP 9000 S
NASA Astrophysics Data System (ADS)
Fuentes-Cabrera, Miguel; Anderson, John D.; Wilmoth, Jared; Ginovart, Marta; Prats, Clara; Portell-Canal, Xavier; Retterer, Scott
Microbial interactions are critical for governing community behavior and structure in natural environments. Examination of microbial interactions in the lab involves growth under ideal conditions in batch culture; conditions that occur in nature are, however, characterized by disequilibrium. Of particular interest is the role that system variables play in shaping cell-to-cell interactions and organization at ultrafine spatial scales. We seek to use experiments and agent-based modeling to help discover mechanisms relevant to microbial dynamics and interactions in the environment. Currently, we are using an agent-based model to simulate microbial growth, dynamics and interactions that occur on a microwell-array device developed in our lab. Bacterial cells growing in the microwells of this platform can be studied with high-throughput and high-content image analyses using brightfield and fluorescence microscopy. The agent-based model is written in the language Netlogo, which in turn is ''plugged into'' a computational framework that allows submitting many calculations in parallel for different initial parameters; visualizing the outcomes in an interactive phase-like diagram; and searching, with a genetic algorithm, for the parameters that lead to the most optimal simulation outcome.
Modeling of Tool-Tissue Interactions for Computer-Based Surgical Simulation: A Literature Review
Misra, Sarthak; Ramesh, K. T.; Okamura, Allison M.
2009-01-01
Surgical simulators present a safe and potentially effective method for surgical training, and can also be used in robot-assisted surgery for pre- and intra-operative planning. Accurate modeling of the interaction between surgical instruments and organs has been recognized as a key requirement in the development of high-fidelity surgical simulators. Researchers have attempted to model tool-tissue interactions in a wide variety of ways, which can be broadly classified as (1) linear elasticity-based, (2) nonlinear (hyperelastic) elasticity-based finite element (FE) methods, and (3) other techniques that not based on FE methods or continuum mechanics. Realistic modeling of organ deformation requires populating the model with real tissue data (which are difficult to acquire in vivo) and simulating organ response in real time (which is computationally expensive). Further, it is challenging to account for connective tissue supporting the organ, friction, and topological changes resulting from tool-tissue interactions during invasive surgical procedures. Overcoming such obstacles will not only help us to model tool-tissue interactions in real time, but also enable realistic force feedback to the user during surgical simulation. This review paper classifies the existing research on tool-tissue interactions for surgical simulators specifically based on the modeling techniques employed and the kind of surgical operation being simulated, in order to inform and motivate future research on improved tool-tissue interaction models. PMID:20119508
Computational challenges of structure-based approaches applied to HIV.
Forli, Stefano; Olson, Arthur J
2015-01-01
Here, we review some of the opportunities and challenges that we face in computational modeling of HIV therapeutic targets and structural biology, both in terms of methodology development and structure-based drug design (SBDD). Computational methods have provided fundamental support to HIV research since the initial structural studies, helping to unravel details of HIV biology. Computational models have proved to be a powerful tool to analyze and understand the impact of mutations and to overcome their structural and functional influence in drug resistance. With the availability of structural data, in silico experiments have been instrumental in exploiting and improving interactions between drugs and viral targets, such as HIV protease, reverse transcriptase, and integrase. Issues such as viral target dynamics and mutational variability, as well as the role of water and estimates of binding free energy in characterizing ligand interactions, are areas of active computational research. Ever-increasing computational resources and theoretical and algorithmic advances have played a significant role in progress to date, and we envision a continually expanding role for computational methods in our understanding of HIV biology and SBDD in the future.
ERIC Educational Resources Information Center
Sarré, Cédric
2011-01-01
Despite the amount of published research on the use of text-based computer-mediated communication (CMC) in second language acquisition (SLA), very little attention has been paid to voice-based CMC (audioconferencing and videoconferencing) and to how it compares with the better known text-based CMC modes. This chapter investigates and compares the…
ERIC Educational Resources Information Center
Neeson, John F.; Austin, Stephen
1975-01-01
Describes a method for the measurement of the velocity of sound in various liquids based on the Raman-Nath theory of light-sound interaction. Utilizes an analog computer program to calculate the intensity of light scattered into various diffraction orders. (CP)
MTA Computer Based Evaluation System.
ERIC Educational Resources Information Center
Brenner, Lisa P.; And Others
The MTA PLATO-based evaluation system, which has been implemented by a consortium of schools of medical technology, is designed to be general-purpose, modular, data-driven, and interactive, and to accommodate other national and local item banks. The system provides a comprehensive interactive item-banking system in conjunction with online student…
User Interface Models for Multidisciplinary Bibliographic Information Dissemination Centers.
ERIC Educational Resources Information Center
Zipperer, W. C.
Two information dissemination centers at University of California at Los Angeles and University of Georgia studied the interactions between computer based search facilities and their users. The study, largely descriptive in nature, investigated the interaction processes between data base users and profile analysis or information specialists in…
Development and Evaluation of an Interactive Internet-Based Pharmacokinetic Teaching Module.
ERIC Educational Resources Information Center
Hedaya, Mohsen A.
1998-01-01
Describes an Internet-based, interactive, learner-centered, asynchronous instructional module for pharmacokinetics that requires minimal computer knowledge to operate. Main components are concept presentation, a simulation exercise, and self-assessment questions. The module has been found effective in teaching the steady state concept at the…
A Suggested Model for a Working Cyberschool.
ERIC Educational Resources Information Center
Javid, Mahnaz A.
2000-01-01
Suggests a model for a working cyberschool based on a case study of Kamiak Cyberschool (Washington), a technology-driven public high school. Topics include flexible hours; one-to-one interaction with teachers; a supportive school environment; use of computers, interactive media, and online resources; and self-paced, project-based learning.…
Design of a Multi-Touch Tabletop for Simulation-Based Training
2014-06-01
receive, for example using point and click mouse-based computer interactions to specify the routes that vehicles take as part of a convoy...learning, coordination and support for planning. We first provide background in tabletop interaction in general and survey earlier efforts to use...tremendous progress over the past five years. Touch detection technologies now enable multiple users to interact simultaneously on large areas with
Improved Interactive Medical-Imaging System
NASA Technical Reports Server (NTRS)
Ross, Muriel D.; Twombly, Ian A.; Senger, Steven
2003-01-01
An improved computational-simulation system for interactive medical imaging has been invented. The system displays high-resolution, three-dimensional-appearing images of anatomical objects based on data acquired by such techniques as computed tomography (CT) and magnetic-resonance imaging (MRI). The system enables users to manipulate the data to obtain a variety of views for example, to display cross sections in specified planes or to rotate images about specified axes. Relative to prior such systems, this system offers enhanced capabilities for synthesizing images of surgical cuts and for collaboration by users at multiple, remote computing sites.
Computer Center. Interactive Biology with Videodisc.
ERIC Educational Resources Information Center
Kramer, David W.
1991-01-01
Ways in which students are allowed to choose, based on their curiosity at the moment, which way they will move through a lesson are described. Available software for interactive biology programs and available authoring software for developing interactive programs by teachers and students are listed. (KR)
Designing Templates for Interactive Tasks in CALL Tutorials.
ERIC Educational Resources Information Center
Ruhlmann, Felicitas
The development of templates for computer-assisted language learning (CALL) is discussed, based on experiences with primarily linear multimedia tutorial programs. Design of templates for multiple-choice questions and interactive tasks in a prototype module is described. Possibilities of enhancing interactivity by introducing problem-oriented…
Computer-Based Alternatives to Using Animals in Teaching Physiology.
ERIC Educational Resources Information Center
Dewhurst, David
1990-01-01
Three interactive computer-assisted learning programs are described. The use of tissues from freshly killed frogs is simulated, including the isolated sciatic nerve, the sciatic nerve-gastrocnemius muscle, and the in situ heart. (KR)
Computer-Based Arithmetic Test Generation
ERIC Educational Resources Information Center
Trocchi, Robert F.
1973-01-01
The computer can be a welcome partner in the instructional process, but only if there is man-machine interaction. Man should not compromise system design because of available hardware; the computer must fit the system design for the result to represent an acceptable solution to instructional technology. The Arithmetic Test Generator system fits…
Modeling Mendel's Laws on Inheritance in Computational Biology and Medical Sciences
ERIC Educational Resources Information Center
Singh, Gurmukh; Siddiqui, Khalid; Singh, Mankiran; Singh, Satpal
2011-01-01
The current research article is based on a simple and practical way of employing the computational power of widely available, versatile software MS Excel 2007 to perform interactive computer simulations for undergraduate/graduate students in biology, biochemistry, biophysics, microbiology, medicine in college and university classroom setting. To…
CAPSAS: Computer Assisted Program for the Selection of Appropriate Statistics.
ERIC Educational Resources Information Center
Shermis, Mark D.; Albert, Susan L.
A computer-assisted program has been developed for the selection of statistics or statistical techniques by both students and researchers. Based on Andrews, Klem, Davidson, O'Malley and Rodgers "A Guide for Selecting Statistical Techniques for Analyzing Social Science Data," this FORTRAN-compiled interactive computer program was…
Lewinski, Allison A; Fisher, Edwin B
2016-06-01
Interventions via the internet provide support to individuals managing chronic illness. The purpose of this integrative review was to determine how the features of a computer-mediated environment influence social interactions among individuals with type 2 diabetes. A combination of MeSH and keyword terms, based on the cognates of three broad groupings: social interaction, computer-mediated environments, and chronic illness, was used to search the PubMed, PsychInfo, Sociology Research Database, and Cumulative Index to Nursing and Allied Health Literature databases. Eleven articles met the inclusion criteria. Computer-mediated environments enhance an individual's ability to interact with peers while increasing the convenience of obtaining personalized support. A matrix, focused on social interaction among peers, identified themes across all articles, and five characteristics emerged: (1) the presence of synchronous and asynchronous communication, (2) the ability to connect with similar peers, (3) the presence or absence of a moderator, (4) personalization of feedback regarding individual progress and self-management, and (5) the ability of individuals to maintain choice during participation. Individuals interact with peers to obtain relevant, situation-specific information and knowledge about managing their own care. Computer-mediated environments facilitate the ability of individuals to exchange this information despite temporal or geographical barriers that may be present, thus improving T2D self-management. © The Author(s) 2015.
ERIC Educational Resources Information Center
Johnson, Douglas A.; Rubin, Sophie
2011-01-01
Computer-based instruction (CBI) has been growing rapidly as a training tool in organizational settings, but close attention to behavioral factors has often been neglected. CBI represents a promising instructional advancement over current training methods. This review article summarizes 12 years of comparative research in interactive…
ERIC Educational Resources Information Center
Marshall, Neil; Buteau, Chantal
2014-01-01
As part of their undergraduate mathematics curriculum, students at Brock University learn to create and use computer-based tools with dynamic, visual interfaces, called Exploratory Objects, developed for the purpose of conducting pure or applied mathematical investigations. A student's Development Process Model of creating and using an Exploratory…
An Interactive Computer-Based Conferencing System to Accommodate Students' Learning Process.
ERIC Educational Resources Information Center
Saiedian, Hossein
1993-01-01
Describes an integrated computer-based conferencing and mail system called ICMS (Integrated Conferencing and Mail System) that was developed to encourage students to participate in class discussions more actively. The menu-driven user interface is explained, and ICMS's role in promoting self-assessment and critical thinking is discussed. (eight…
ERIC Educational Resources Information Center
VanLehn, Kurt
2011-01-01
This article is a review of experiments comparing the effectiveness of human tutoring, computer tutoring, and no tutoring. "No tutoring" refers to instruction that teaches the same content without tutoring. The computer tutoring systems were divided by their granularity of the user interface interaction into answer-based, step-based, and…
Towards a Theory-Based Design Framework for an Effective E-Learning Computer Programming Course
ERIC Educational Resources Information Center
McGowan, Ian S.
2016-01-01
Built on Dabbagh (2005), this paper presents a four component theory-based design framework for an e-learning session in introductory computer programming. The framework, driven by a body of exemplars component, emphasizes the transformative interaction between the knowledge building community (KBC) pedagogical model, a mixed instructional…
Using Web Speech Technology with Language Learning Applications
ERIC Educational Resources Information Center
Daniels, Paul
2015-01-01
In this article, the author presents the history of human-to-computer interaction based upon the design of sophisticated computerized speech recognition algorithms. Advancements such as the arrival of cloud-based computing and software like Google's Web Speech API allows anyone with an Internet connection and Chrome browser to take advantage of…
The Effectiveness of Interactivity in Multimedia Software Tutorials
ERIC Educational Resources Information Center
Whitman, Lisa
2013-01-01
Many people face the challenge of finding effective computer-based software instruction, including employees who must learn how to use software applications for their job and students of distance education classes. Therefore, it is important to conduct research on how computer-based multimedia software tutorials should be designed so they are as…
Negotiation of Meaning in Synchronous Computer-Mediated Communication in Relation to Task Types
ERIC Educational Resources Information Center
Cho, Hye-jin
2011-01-01
The present study explored how negotiation of meaning occurred in task-based synchronous computer-mediated communication (SCMC) environment among college English learners. Based on the theoretical framework of the interaction hypothesis and negotiation of meaning, four research questions arose: (1) how negotiation of meaning occur in non-native…
ERIC Educational Resources Information Center
Kitade, Keiko
2006-01-01
Based on recent studies, computer-mediated communication (CMC) has been considered a tool to aid in language learning on account of its distinctive interactional features. However, most studies have referred to "synchronous" CMC and neglected to investigate how "asynchronous" CMC contributes to language learning. Asynchronous CMC possesses…
Technological Change in Assessing Economics: A Cautionary Welcome
ERIC Educational Resources Information Center
Kennelly, Brendan; Considine, John; Flannery, Darragh
2009-01-01
The use of computer-based automated assignment systems in economics has expanded significantly in recent years. The most widely used system is Aplia which was developed by Paul Romer in 2000. Aplia is a computer application designed to replace traditional paper-based assignments in economics. The main features of Aplia are: (1) interactive content…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, He; Luo, Li -Shi; Li, Rui
To compute the non-oscillating mutual interaction for a systems with N points, the fast multipole method (FMM) has an efficiency that scales linearly with the number of points. Specifically, for Coulomb interaction, FMM can be constructed using either the spherical harmonic functions or the totally symmetric Cartesian tensors. In this paper, we will present that the effciency of the Cartesian tensor-based FMM for the Coulomb interaction can be significantly improved by implementing the traces of the Cartesian tensors in calculation to reduce the independent elements of the n-th rank totally symmetric Cartesian tensor from (n + 1)(n + 2)=2 tomore » 2n + 1. The computation complexity for the operations in FMM are analyzed and expressed as polynomials of the highest rank of the Cartesian tensors. For most operations, the complexity is reduced by one order. Numerical examples regarding the convergence and the effciency of the new algorithm are demonstrated. As a result, a reduction of computation time up to 50% has been observed for a moderate number of points and rank of tensors.« less
Huang, He; Luo, Li -Shi; Li, Rui; ...
2018-05-17
To compute the non-oscillating mutual interaction for a systems with N points, the fast multipole method (FMM) has an efficiency that scales linearly with the number of points. Specifically, for Coulomb interaction, FMM can be constructed using either the spherical harmonic functions or the totally symmetric Cartesian tensors. In this paper, we will present that the effciency of the Cartesian tensor-based FMM for the Coulomb interaction can be significantly improved by implementing the traces of the Cartesian tensors in calculation to reduce the independent elements of the n-th rank totally symmetric Cartesian tensor from (n + 1)(n + 2)=2 tomore » 2n + 1. The computation complexity for the operations in FMM are analyzed and expressed as polynomials of the highest rank of the Cartesian tensors. For most operations, the complexity is reduced by one order. Numerical examples regarding the convergence and the effciency of the new algorithm are demonstrated. As a result, a reduction of computation time up to 50% has been observed for a moderate number of points and rank of tensors.« less
Sands, Natisha; Elsom, Stephen; Keppich-Arnold, Sandra; Henderson, Kathryn; King, Peter; Bourke-Finn, Karen; Brunning, Debra
2016-02-01
Telephone-based mental health triage services are frontline health-care providers that operate 24/7 to facilitate access to psychiatric assessment and intervention for people requiring assistance with a mental health problem. The mental health triage clinical role is complex, and the populations triage serves are typically high risk; yet to date, no evidence-based methods have been available to assess clinician competence to practice telephone-based mental health triage. The present study reports the findings of a study that investigated the validity and usability of the Mental Health Triage Competency Assessment Tool, an evidence-based, interactive computer programme designed to assist clinicians in developing and assessing competence to practice telephone-based mental health triage. © 2015 Australian College of Mental Health Nurses Inc.
2010-01-01
Background Protein-protein interaction (PPI) plays essential roles in cellular functions. The cost, time and other limitations associated with the current experimental methods have motivated the development of computational methods for predicting PPIs. As protein interactions generally occur via domains instead of the whole molecules, predicting domain-domain interaction (DDI) is an important step toward PPI prediction. Computational methods developed so far have utilized information from various sources at different levels, from primary sequences, to molecular structures, to evolutionary profiles. Results In this paper, we propose a computational method to predict DDI using support vector machines (SVMs), based on domains represented as interaction profile hidden Markov models (ipHMM) where interacting residues in domains are explicitly modeled according to the three dimensional structural information available at the Protein Data Bank (PDB). Features about the domains are extracted first as the Fisher scores derived from the ipHMM and then selected using singular value decomposition (SVD). Domain pairs are represented by concatenating their selected feature vectors, and classified by a support vector machine trained on these feature vectors. The method is tested by leave-one-out cross validation experiments with a set of interacting protein pairs adopted from the 3DID database. The prediction accuracy has shown significant improvement as compared to InterPreTS (Interaction Prediction through Tertiary Structure), an existing method for PPI prediction that also uses the sequences and complexes of known 3D structure. Conclusions We show that domain-domain interaction prediction can be significantly enhanced by exploiting information inherent in the domain profiles via feature selection based on Fisher scores, singular value decomposition and supervised learning based on support vector machines. Datasets and source code are freely available on the web at http://liao.cis.udel.edu/pub/svdsvm. Implemented in Matlab and supported on Linux and MS Windows. PMID:21034480
An Interactive, Web-based High Performance Modeling Environment for Computational Epidemiology.
Deodhar, Suruchi; Bisset, Keith R; Chen, Jiangzhuo; Ma, Yifei; Marathe, Madhav V
2014-07-01
We present an integrated interactive modeling environment to support public health epidemiology. The environment combines a high resolution individual-based model with a user-friendly web-based interface that allows analysts to access the models and the analytics back-end remotely from a desktop or a mobile device. The environment is based on a loosely-coupled service-oriented-architecture that allows analysts to explore various counter factual scenarios. As the modeling tools for public health epidemiology are getting more sophisticated, it is becoming increasingly hard for non-computational scientists to effectively use the systems that incorporate such models. Thus an important design consideration for an integrated modeling environment is to improve ease of use such that experimental simulations can be driven by the users. This is achieved by designing intuitive and user-friendly interfaces that allow users to design and analyze a computational experiment and steer the experiment based on the state of the system. A key feature of a system that supports this design goal is the ability to start, stop, pause and roll-back the disease propagation and intervention application process interactively. An analyst can access the state of the system at any point in time and formulate dynamic interventions based on additional information obtained through state assessment. In addition, the environment provides automated services for experiment set-up and management, thus reducing the overall time for conducting end-to-end experimental studies. We illustrate the applicability of the system by describing computational experiments based on realistic pandemic planning scenarios. The experiments are designed to demonstrate the system's capability and enhanced user productivity.
An Interactive, Web-based High Performance Modeling Environment for Computational Epidemiology
Deodhar, Suruchi; Bisset, Keith R.; Chen, Jiangzhuo; Ma, Yifei; Marathe, Madhav V.
2014-01-01
We present an integrated interactive modeling environment to support public health epidemiology. The environment combines a high resolution individual-based model with a user-friendly web-based interface that allows analysts to access the models and the analytics back-end remotely from a desktop or a mobile device. The environment is based on a loosely-coupled service-oriented-architecture that allows analysts to explore various counter factual scenarios. As the modeling tools for public health epidemiology are getting more sophisticated, it is becoming increasingly hard for non-computational scientists to effectively use the systems that incorporate such models. Thus an important design consideration for an integrated modeling environment is to improve ease of use such that experimental simulations can be driven by the users. This is achieved by designing intuitive and user-friendly interfaces that allow users to design and analyze a computational experiment and steer the experiment based on the state of the system. A key feature of a system that supports this design goal is the ability to start, stop, pause and roll-back the disease propagation and intervention application process interactively. An analyst can access the state of the system at any point in time and formulate dynamic interventions based on additional information obtained through state assessment. In addition, the environment provides automated services for experiment set-up and management, thus reducing the overall time for conducting end-to-end experimental studies. We illustrate the applicability of the system by describing computational experiments based on realistic pandemic planning scenarios. The experiments are designed to demonstrate the system's capability and enhanced user productivity. PMID:25530914
Struct2Net: a web service to predict protein–protein interactions using a structure-based approach
Singh, Rohit; Park, Daniel; Xu, Jinbo; Hosur, Raghavendra; Berger, Bonnie
2010-01-01
Struct2Net is a web server for predicting interactions between arbitrary protein pairs using a structure-based approach. Prediction of protein–protein interactions (PPIs) is a central area of interest and successful prediction would provide leads for experiments and drug design; however, the experimental coverage of the PPI interactome remains inadequate. We believe that Struct2Net is the first community-wide resource to provide structure-based PPI predictions that go beyond homology modeling. Also, most web-resources for predicting PPIs currently rely on functional genomic data (e.g. GO annotation, gene expression, cellular localization, etc.). Our structure-based approach is independent of such methods and only requires the sequence information of the proteins being queried. The web service allows multiple querying options, aimed at maximizing flexibility. For the most commonly studied organisms (fly, human and yeast), predictions have been pre-computed and can be retrieved almost instantaneously. For proteins from other species, users have the option of getting a quick-but-approximate result (using orthology over pre-computed results) or having a full-blown computation performed. The web service is freely available at http://struct2net.csail.mit.edu. PMID:20513650
ERIC Educational Resources Information Center
Angeli, Charoula
2013-01-01
An investigation was carried out to examine the effects of cognitive style on learners' performance and interaction during complex problem solving with a computer modeling tool. One hundred and nineteen undergraduates volunteered to participate in the study. Participants were first administered a test, and based on their test scores they were…
Pun, Thierry; Alecu, Teodor Iulian; Chanel, Guillaume; Kronegg, Julien; Voloshynovskiy, Sviatoslav
2006-06-01
This paper describes the work being conducted in the domain of brain-computer interaction (BCI) at the Multimodal Interaction Group, Computer Vision and Multimedia Laboratory, University of Geneva, Geneva, Switzerland. The application focus of this work is on multimodal interaction rather than on rehabilitation, that is how to augment classical interaction by means of physiological measurements. Three main research topics are addressed. The first one concerns the more general problem of brain source activity recognition from EEGs. In contrast with classical deterministic approaches, we studied iterative robust stochastic based reconstruction procedures modeling source and noise statistics, to overcome known limitations of current techniques. We also developed procedures for optimal electroencephalogram (EEG) sensor system design in terms of placement and number of electrodes. The second topic is the study of BCI protocols and performance from an information-theoretic point of view. Various information rate measurements have been compared for assessing BCI abilities. The third research topic concerns the use of EEG and other physiological signals for assessing a user's emotional status.
ERIC Educational Resources Information Center
Seal, Kala Chand; Przasnyski, Zbigniew H.; Leon, Linda A.
2010-01-01
Do students learn to model OR/MS problems better by using computer-based interactive tutorials and, if so, does increased interactivity in the tutorials lead to better learning? In order to determine the effect of different levels of interactivity on student learning, we used screen capture technology to design interactive support materials for…
He, Jieyue; Li, Chaojun; Ye, Baoliu; Zhong, Wei
2012-06-25
Most computational algorithms mainly focus on detecting highly connected subgraphs in PPI networks as protein complexes but ignore their inherent organization. Furthermore, many of these algorithms are computationally expensive. However, recent analysis indicates that experimentally detected protein complexes generally contain Core/attachment structures. In this paper, a Greedy Search Method based on Core-Attachment structure (GSM-CA) is proposed. The GSM-CA method detects densely connected regions in large protein-protein interaction networks based on the edge weight and two criteria for determining core nodes and attachment nodes. The GSM-CA method improves the prediction accuracy compared to other similar module detection approaches, however it is computationally expensive. Many module detection approaches are based on the traditional hierarchical methods, which is also computationally inefficient because the hierarchical tree structure produced by these approaches cannot provide adequate information to identify whether a network belongs to a module structure or not. In order to speed up the computational process, the Greedy Search Method based on Fast Clustering (GSM-FC) is proposed in this work. The edge weight based GSM-FC method uses a greedy procedure to traverse all edges just once to separate the network into the suitable set of modules. The proposed methods are applied to the protein interaction network of S. cerevisiae. Experimental results indicate that many significant functional modules are detected, most of which match the known complexes. Results also demonstrate that the GSM-FC algorithm is faster and more accurate as compared to other competing algorithms. Based on the new edge weight definition, the proposed algorithm takes advantages of the greedy search procedure to separate the network into the suitable set of modules. Experimental analysis shows that the identified modules are statistically significant. The algorithm can reduce the computational time significantly while keeping high prediction accuracy.
Some foundational aspects of quantum computers and quantum robots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benioff, P.; Physics
1998-01-01
This paper addresses foundational issues related to quantum computing. The need for a universally valid theory such as quantum mechanics to describe to some extent its own validation is noted. This includes quantum mechanical descriptions of systems that do theoretical calculations (i.e. quantum computers) and systems that perform experiments. Quantum robots interacting with an environment are a small first step in this direction. Quantum robots are described here as mobile quantum systems with on-board quantum computers that interact with environments. Included are discussions on the carrying out of tasks and the division of tasks into computation and action phases. Specificmore » models based on quantum Turing machines are described. Differences and similarities between quantum robots plus environments and quantum computers are discussed.« less
NASA Astrophysics Data System (ADS)
Laws, Priscilla W.; Willis, Maxine C.; Jackson, David P.; Koenig, Kathleen; Teese, Robert
2015-02-01
Ever since the first generalized computer-assisted instruction system (PLATO1) was introduced over 50 years ago, educators have been adding computer-based materials to their classes. Today many textbooks have complete online versions that include video lectures and other supplements. In the past 25 years the web has fueled an explosion of online homework and course management systems, both as blended learning and online courses. Meanwhile, introductory physics instructors have been implementing new approaches to teaching based on the outcomes of Physics Education Research (PER). A common theme of PER-based instruction has been the use of active-learning strategies designed to help students overcome alternative conceptions that they often bring to the study of physics.2 Unfortunately, while classrooms have become more active, online learning typically relies on passive lecture videos or Kahn-style3 tablet drawings. To bring active learning online, the LivePhoto Physics Group has been developing Interactive Video Vignettes (IVVs) that add interactivity and PER-based elements to short presentations. These vignettes incorporate web-based video activities that contain interactive elements and typically require students to make predictions and analyze real-world phenomena.
Hu, Jian; Xu, Xiang-yang; Song, En-min; Tan, Hong-bao; Wang, Yi-ning
2009-09-01
To establish a new visual educational system of virtual reality for clinical dentistry based on world wide web (WWW) webpage in order to provide more three-dimensional multimedia resources to dental students and an online three-dimensional consulting system for patients. Based on computer graphics and three-dimensional webpage technologies, the software of 3Dsmax and Webmax were adopted in the system development. In the Windows environment, the architecture of whole system was established step by step, including three-dimensional model construction, three-dimensional scene setup, transplanting three-dimensional scene into webpage, reediting the virtual scene, realization of interactions within the webpage, initial test, and necessary adjustment. Five cases of three-dimensional interactive webpage for clinical dentistry were completed. The three-dimensional interactive webpage could be accessible through web browser on personal computer, and users could interact with the webpage through rotating, panning and zooming the virtual scene. It is technically feasible to implement the visual educational system of virtual reality for clinical dentistry based on WWW webpage. Information related to clinical dentistry can be transmitted properly, visually and interactively through three-dimensional webpage.
ERIC Educational Resources Information Center
Jafari, Mina; Welden, Alicia Rae; Williams, Kyle L.; Winograd, Blair; Mulvihill, Ellen; Hendrickson, Heidi P.; Lenard, Michael; Gottfried, Amy; Geva, Eitan
2017-01-01
In this paper, we report on the implementation of a novel compute-to-learn pedagogy, which is based upon the theories of situated cognition and meaningful learning. The "compute-to-learn" pedagogy is designed to simulate an authentic research experience as part of the undergraduate curriculum, including project development, teamwork,…
ERIC Educational Resources Information Center
Aksakalli, Ayhan; Turgut, Umit; Salar, Riza
2016-01-01
This research aims to investigate the ways in which pre-service physics teachers interact with computers, which, as an indispensable means of today's technology, are of major value in education and training, and to identify any misconceptions said teachers may have about computer-aided instruction. As part of the study, computer-based physics…
ERIC Educational Resources Information Center
Moore, John W., Ed.
1981-01-01
Provides short descriptions of chemists' applications of computers in instruction: an interactive instructional program for Instrumental-Qualitative Organic Analysis; question-and-answer exercises in organic chemistry; computerized organic nomenclature drills; integration of theoretical and descriptive materials; acid-base titration simulation;…
Drawert, Brian; Trogdon, Michael; Toor, Salman; Petzold, Linda; Hellander, Andreas
2016-01-01
Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments.
Building the Joint Battlespace Infosphere. Volume 2: Interactive Information Technologies
1999-12-17
G. A . Vouros, “ A Knowledge- Based Methodology for Supporting Multilingual and User -Tailored Interfaces ,” Interacting With Computers, Vol. 9 (1998), p...project is to develop a two-handed user interface to the stereoscopic field analyzer, an interactive 3-D scientific visualization system. The...62 See http://www.hitl.washington.edu/research/vrd/. 63 R. Baumann and R. Clavel, “Haptic Interface for Virtual Reality Based
A Conceptual Framework Based on Activity Theory for Mobile CSCL
ERIC Educational Resources Information Center
Zurita, Gustavo; Nussbaum, Miguel
2007-01-01
There is a need for collaborative group activities that promote student social interaction in the classroom. Handheld computers interconnected by a wireless network allow people who work on a common task to interact face to face while maintaining the mediation afforded by a technology-based system. Wirelessly interconnected handhelds open up new…
Learning Mathematics with Interactive Whiteboards and Computer-Based Graphing Utility
ERIC Educational Resources Information Center
Erbas, Ayhan Kursat; Ince, Muge; Kaya, Sukru
2015-01-01
The purpose of this study was to explore the effect of a technology-supported learning environment utilizing an interactive whiteboard (IWB) and NuCalc graphing software compared to a traditional direct instruction-based environment on student achievement in graphs of quadratic functions and attitudes towards mathematics and technology. Sixty-five…
Collaborative Spaces for GIS-Based Multimedia Cartography in Blended Environments
ERIC Educational Resources Information Center
Balram, Shivanand; Dragicevic, Suzana
2008-01-01
The interaction spaces between instructors and learners in the traditional face-to-face classroom environment are being changed by the diffusion and adoption of many forms of computer-based pedagogy. An integrated understanding of these evolving interaction spaces together with how they interconnect and leverage learning are needed to develop…
The use of PC based VR in clinical medicine: the VREPAR projects.
Riva, G; Bacchetta, M; Baruffi, M; Borgomainerio, E; Defrance, C; Gatti, F; Galimberti, C; Fontaneto, S; Marchi, S; Molinari, E; Nugues, P; Rinaldi, S; Rovetta, A; Ferretti, G S; Tonci, A; Wann, J; Vincelli, F
1999-01-01
Virtual reality (VR) is an emerging technology that alters the way individuals interact with computers: a 3D computer-generated environment in which a person can move about and interact as if he actually was inside it. Given to the high computational power required to create virtual environments, these are usually developed on expensive high-end workstations. However, the significant advances in PC hardware that have been made over the last three years, are making PC-based VR a possible solution for clinical assessment and therapy. VREPAR - Virtual Reality Environments for Psychoneurophysiological Assessment and Rehabilitation - are two European Community funded projects (Telematics for health - HC 1053/HC 1055 - http://www.psicologia.net) that are trying to develop a modular PC-based virtual reality system for the medical market. The paper describes the rationale of the developed modules and the preliminary results obtained.
Wieland, L. Susan; Falzon, Louise; Sciamanna, Chris N; Trudeau, Kimberlee J; Folse, Suzanne Brodney; Schwartz, Joseph E; Davidson, Karina W
2014-01-01
Background The World Health Organization (WHO) estimates that the number of obese or overweight individuals worldwide will increase to 1.5 billion by 2015. Chronic diseases associated with overweight or obesity include diabetes, heart disease, hypertension and stroke. Objectives To assess the effects of interactive computer-based interventions for weight loss or weight maintenance in overweight or obese people. Search methods We searched several electronic databases, including CENTRAL, MEDLINE, EMBASE, CINAHL, LILACS and PsycINFO, through 25 May 2011. We also searched clinical trials registries to identify studies. We scanned reference lists of included studies and relevant systematic reviews. Selection criteria Studies were included if they were randomized controlled trials or quasi-randomized controlled trials that evaluated interactive computer-based weight loss or weight maintenance programs in adults with overweight or obesity. We excluded trials if the duration of the intervention was less than four weeks or the loss to follow-up was greater than 20% overall. Data collection and analysis Two authors independently extracted study data and assessed risk of bias. Where interventions, control conditions, outcomes and time frames were similar between studies, we combined study data using meta-analysis. Main results We included 14 weight loss studies with a total of 2537 participants, and four weight maintenance studies with a total of 1603 participants. Treatment duration was between four weeks and 30 months. At six months, computer-based interventions led to greater weight loss than minimal interventions (mean difference (MD) −1.5 kg; 95% confidence interval (CI) −2.1 to −0.9; two trials) but less weight loss than in-person treatment (MD 2.1 kg; 95% CI 0.8 to 3.4; one trial). At six months, computer-based interventions were superior to a minimal control intervention in limiting weight regain (MD −0.7 kg; 95% CI −1.2 to −0.2; two trials), but not superior to infrequent in-person treatment (MD 0.5 kg; 95% −0.5 to 1.6; two trials). We did not observe consistent differences in dietary or physical activity behaviors between intervention and control groups in either weight loss or weight maintenance trials. Three weight loss studies estimated the costs of computer-based interventions compared to usual care, however two of the studies were 11 and 28 years old, and recent advances in technology render these estimates unlikely to be applicable to current or future interventions, while the third study was conducted in active duty military personnel, and it is unclear whether the costs are relevant to other settings. One weight loss study reported the cost-effectiveness ratio for a weekly in-person weight loss intervention relative to a computer-based intervention as USD 7177 (EUR 5678) per life year gained (80% CI USD 3055 to USD 60,291 (EUR 2417 to EUR 47,702)). It is unclear whether this could be extrapolated to other studies. No data were identified on adverse events, morbidity, complications or health-related quality of life. Authors’ conclusions Compared to no intervention or minimal interventions (pamphlets, usual care), interactive computer-based interventions are an effective intervention for weight loss and weight maintenance. Compared to in-person interventions, interactive computer-based interventions result in smaller weight losses and lower levels of weight maintenance. The amount of additional weight loss, however, is relatively small and of brief duration, making the clinical significance of these differences unclear. PMID:22895964
Impedance computations and beam-based measurements: A problem of discrepancy
NASA Astrophysics Data System (ADS)
Smaluk, Victor
2018-04-01
High intensity of particle beams is crucial for high-performance operation of modern electron-positron storage rings, both colliders and light sources. The beam intensity is limited by the interaction of the beam with self-induced electromagnetic fields (wake fields) proportional to the vacuum chamber impedance. For a new accelerator project, the total broadband impedance is computed by element-wise wake-field simulations using computer codes. For a machine in operation, the impedance can be measured experimentally using beam-based techniques. In this article, a comparative analysis of impedance computations and beam-based measurements is presented for 15 electron-positron storage rings. The measured data and the predictions based on the computed impedance budgets show a significant discrepancy. Three possible reasons for the discrepancy are discussed: interference of the wake fields excited by a beam in adjacent components of the vacuum chamber, effect of computation mesh size, and effect of insufficient bandwidth of the computed impedance.
How Science Students Can Learn about Unobservable Phenomena Using Computer-Based Analogies
ERIC Educational Resources Information Center
Trey, L.; Khan, S.
2008-01-01
A novel instructional computer simulation that incorporates a dynamic analogy to represent Le Chatelier's Principle was designed to investigate the contribution of this feature to students' understanding. Two groups of 12th grade Chemistry students (n=15) interacted with the computer simulation during the study. Both groups did the same…
Use of MCIDAS as an earth science information systems tool
NASA Technical Reports Server (NTRS)
Goodman, H. Michael; Karitani, Shogo; Parker, Karen G.; Stooksbury, Laura M.; Wilson, Gregory S.
1988-01-01
The application of the man computer interactive data access system (MCIDAS) to information processing is examined. The computer systems that interface with the MCIDAS are discussed. Consideration is given to the computer networking of MCIDAS, data base archival, and the collection and distribution of real-time special sensor microwave/imager data.
ERIC Educational Resources Information Center
Voithofer, R. J.
Television programs are increasingly featuring information technologies like computers as significant narrative devices, including the use of computer-based technologies as virtual worlds or environments in which characters interact, the use of computers as tools in problem solving and confronting conflict, and characters that are part human, part…
Interaction and Cognition in Asynchronous Computer Conferencing
ERIC Educational Resources Information Center
Schrire, Sarah
2004-01-01
This paper is based on a multiple-case study of the learning process in three asynchronous computer conferences. The conferences were part of the distance learning component in doctoral degree courses in computing technology in education offered at an American university. The conferences were analyzed from a number of perspectives, the emphasis in…
Integration of Computer Technology Into an Introductory-Level Neuroscience Laboratory
ERIC Educational Resources Information Center
Evert, Denise L.; Goodwin, Gregory; Stavnezer, Amy Jo
2005-01-01
We describe 3 computer-based neuroscience laboratories. In the first 2 labs, we used commercially available interactive software to enhance the study of functional and comparative neuroanatomy and neurophysiology. In the remaining lab, we used customized software and hardware in 2 psychophysiological experiments. With the use of the computer-based…
Ethical Issues Associated with the Use of Interactive Technology in Learning Environments.
ERIC Educational Resources Information Center
Bork, Alfred
1988-01-01
Discusses general social, moral, and ethical issues connected with computers in education; considers ethical issues related to the development of computer-based learning materials; and examines the use of the computer as a medium for ethical and moral education. Highlights include equity of access, games and learning, and cultural bias. (seven…
NASA Technical Reports Server (NTRS)
Stevens, N. J.
1979-01-01
Cases where the charged-particle environment acts on the spacecraft (e.g., spacecraft charging phenomena) and cases where a system on the spacecraft causes the interaction (e.g., high voltage space power systems) are considered. Both categories were studied in ground simulation facilities to understand the processes involved and to measure the pertinent parameters. Computer simulations are based on the NASA Charging Analyzer Program (NASCAP) code. Analytical models are developed in this code and verified against the experimental data. Extrapolation from the small test samples to space conditions are made with this code. Typical results from laboratory and computer simulations are presented for both types of interactions. Extrapolations from these simulations to performance in space environments are discussed.
GPU-accelerated FDTD modeling of radio-frequency field-tissue interactions in high-field MRI.
Chi, Jieru; Liu, Feng; Weber, Ewald; Li, Yu; Crozier, Stuart
2011-06-01
The analysis of high-field RF field-tissue interactions requires high-performance finite-difference time-domain (FDTD) computing. Conventional CPU-based FDTD calculations offer limited computing performance in a PC environment. This study presents a graphics processing unit (GPU)-based parallel-computing framework, producing substantially boosted computing efficiency (with a two-order speedup factor) at a PC-level cost. Specific details of implementing the FDTD method on a GPU architecture have been presented and the new computational strategy has been successfully applied to the design of a novel 8-element transceive RF coil system at 9.4 T. Facilitated by the powerful GPU-FDTD computing, the new RF coil array offers optimized fields (averaging 25% improvement in sensitivity, and 20% reduction in loop coupling compared with conventional array structures of the same size) for small animal imaging with a robust RF configuration. The GPU-enabled acceleration paves the way for FDTD to be applied for both detailed forward modeling and inverse design of MRI coils, which were previously impractical.
DOT National Transportation Integrated Search
2016-01-01
Human attention is a finite resource. When interrupted while performing a task, this : resource is split between two interactive tasks. People have to decide whether the benefits : from the interruptive interaction will be enough to offset the loss o...
Task-Based Oral Computer-Mediated Communication and L2 Vocabulary Acquisition
ERIC Educational Resources Information Center
Yanguas, Inigo
2012-01-01
The present study adds to the computer-mediated communication (CMC) literature by exploring oral learner-to-learner interaction using Skype, a free and widely used Internet software program. In particular, this task-based study has a two-fold goal. Firstly, it explores possible differences between two modes of oral CMC (audio and video) and…
Providing the Public with Online Access to Large Bibliographic Data Bases.
ERIC Educational Resources Information Center
Firschein, Oscar; Summit, Roger K.
DIALOG, an interactive, computer-based information retrieval language, consists of a series of computer programs designed to make use of direct access memory devices in order to provide the user with a rapid means of identifying records within a specific memory bank. Using the system, a library user can be provided access to sixteen distinct and…
NASA Astrophysics Data System (ADS)
Ragan-Kelley, M.; Perez, F.; Granger, B.; Kluyver, T.; Ivanov, P.; Frederic, J.; Bussonnier, M.
2014-12-01
IPython has provided terminal-based tools for interactive computing in Python since 2001. The notebook document format and multi-process architecture introduced in 2011 have expanded the applicable scope of IPython into teaching, presenting, and sharing computational work, in addition to interactive exploration. The new architecture also allows users to work in any language, with implementations in Python, R, Julia, Haskell, and several other languages. The language agnostic parts of IPython have been renamed to Jupyter, to better capture the notion that a cross-language design can encapsulate commonalities present in computational research regardless of the programming language being used. This architecture offers components like the web-based Notebook interface, that supports rich documents that combine code and computational results with text narratives, mathematics, images, video and any media that a modern browser can display. This interface can be used not only in research, but also for publication and education, as notebooks can be converted to a variety of output formats, including HTML and PDF. Recent developments in the Jupyter project include a multi-user environment for hosting notebooks for a class or research group, a live collaboration notebook via Google Docs, and better support for languages other than Python.
NASA Astrophysics Data System (ADS)
Gil, Y.; Duffy, C.
2015-12-01
This paper proposes the concept of a "Computable Catchment" which is used to develop a collaborative platform for watershed modeling and data analysis. The object of the research is a sharable, executable document similar to a pdf, but one that includes documentation of the underlying theoretical concepts, interactive computational/numerical resources, linkage to essential data repositories and the ability for interactive model-data visualization and analysis. The executable document for each catchment is stored in the cloud with automatic provisioning and a unique identifier allowing collaborative model and data enhancements for historical hydroclimatic reconstruction and/or future landuse or climate change scenarios to be easily reconstructed or extended. The Computable Catchment adopts metadata standards for naming all variables in the model and the data. The a-priori or initial data is derived from national data sources for soils, hydrogeology, climate, and land cover available from the www.hydroterre.psu.edu data service (Leonard and Duffy, 2015). The executable document is based on Wolfram CDF or Computable Document Format with an interactive open-source reader accessible by any modern computing platform. The CDF file and contents can be uploaded to a website or simply shared as a normal document maintaining all interactive features of the model and data. The Computable Catchment concept represents one application for Geoscience Papers of the Future representing an extensible document that combines theory, models, data and analysis that are digitally shared, documented and reused among research collaborators, students, educators and decision makers.
Designing Interactive Learning Systems.
ERIC Educational Resources Information Center
Barker, Philip
1990-01-01
Describes multimedia, computer-based interactive learning systems that support various forms of individualized study. Highlights include design models; user interfaces; design guidelines; media utilization paradigms, including hypermedia and learner-controlled models; metaphors and myths; authoring tools; optical media; workstations; four case…
Kron, Frederick W; Fetters, Michael D; Scerbo, Mark W; White, Casey B; Lypson, Monica L; Padilla, Miguel A; Gliva-McConvey, Gayle A; Belfore, Lee A; West, Temple; Wallace, Amelia M; Guetterman, Timothy C; Schleicher, Lauren S; Kennedy, Rebecca A; Mangrulkar, Rajesh S; Cleary, James F; Marsella, Stacy C; Becker, Daniel M
2017-04-01
To assess advanced communication skills among second-year medical students exposed either to a computer simulation (MPathic-VR) featuring virtual humans, or to a multimedia computer-based learning module, and to understand each group's experiences and learning preferences. A single-blinded, mixed methods, randomized, multisite trial compared MPathic-VR (N=210) to computer-based learning (N=211). Primary outcomes: communication scores during repeat interactions with MPathic-VR's intercultural and interprofessional communication scenarios and scores on a subsequent advanced communication skills objective structured clinical examination (OSCE). Multivariate analysis of variance was used to compare outcomes. student attitude surveys and qualitative assessments of their experiences with MPathic-VR or computer-based learning. MPathic-VR-trained students improved their intercultural and interprofessional communication performance between their first and second interactions with each scenario. They also achieved significantly higher composite scores on the OSCE than computer-based learning-trained students. Attitudes and experiences were more positive among students trained with MPathic-VR, who valued its providing immediate feedback, teaching nonverbal communication skills, and preparing them for emotion-charged patient encounters. MPathic-VR was effective in training advanced communication skills and in enabling knowledge transfer into a more realistic clinical situation. MPathic-VR's virtual human simulation offers an effective and engaging means of advanced communication training. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Kron, Frederick W.; Fetters, Michael D.; Scerbo, Mark W.; White, Casey B.; Lypson, Monica L.; Padilla, Miguel A.; Gliva-McConvey, Gayle A.; Belfore, Lee A.; West, Temple; Wallace, Amelia M.; Guetterman, Timothy C.; Schleicher, Lauren S.; Kennedy, Rebecca A.; Mangrulkar, Rajesh S.; Cleary, James F.; Marsella, Stacy C.; Becker, Daniel M.
2016-01-01
Objectives To assess advanced communication skills among second-year medical students exposed either to a computer simulation (MPathic-VR) featuring virtual humans, or to a multimedia computer-based learning module, and to understand each group’s experiences and learning preferences. Methods A single-blinded, mixed methods, randomized, multisite trial compared MPathic-VR (N=210) to computer-based learning (N=211). Primary outcomes: communication scores during repeat interactions with MPathic-VR’s intercultural and interprofessional communication scenarios and scores on a subsequent advanced communication skills objective structured clinical examination (OSCE). Multivariate analysis of variance was used to compare outcomes. Secondary outcomes: student attitude surveys and qualitative assessments of their experiences with MPathic-VR or computer-based learning. Results MPathic-VR-trained students improved their intercultural and interprofessional communication performance between their first and second interactions with each scenario. They also achieved significantly higher composite scores on the OSCE than computer-based learning-trained students. Attitudes and experiences were more positive among students trained with MPathic-VR, who valued its providing immediate feedback, teaching nonverbal communication skills, and preparing them for emotion-charged patient encounters. Conclusions MPathic-VR was effective in training advanced communication skills and in enabling knowledge transfer into a more realistic clinical situation. Practice Implications MPathic-VR’s virtual human simulation offers an effective and engaging means of advanced communication training. PMID:27939846
Development of a recursion RNG-based turbulence model
NASA Technical Reports Server (NTRS)
Zhou, YE; Vahala, George; Thangam, S.
1993-01-01
Reynolds stress closure models based on the recursion renormalization group theory are developed for the prediction of turbulent separated flows. The proposed model uses a finite wavenumber truncation scheme to account for the spectral distribution of energy. In particular, the model incorporates effects of both local and nonlocal interactions. The nonlocal interactions are shown to yield a contribution identical to that from the epsilon-renormalization group (RNG), while the local interactions introduce higher order dispersive effects. A formal analysis of the model is presented and its ability to accurately predict separated flows is analyzed from a combined theoretical and computational stand point. Turbulent flow past a backward facing step is chosen as a test case and the results obtained based on detailed computations demonstrate that the proposed recursion -RNG model with finite cut-off wavenumber can yield very good predictions for the backstep problem.
ACSYNT - A standards-based system for parametric, computer aided conceptual design of aircraft
NASA Technical Reports Server (NTRS)
Jayaram, S.; Myklebust, A.; Gelhausen, P.
1992-01-01
A group of eight US aerospace companies together with several NASA and NAVY centers, led by NASA Ames Systems Analysis Branch, and Virginia Tech's CAD Laboratory agreed, through the assistance of Americal Technology Initiative, in 1990 to form the ACSYNT (Aircraft Synthesis) Institute. The Institute is supported by a Joint Sponsored Research Agreement to continue the research and development in computer aided conceptual design of aircraft initiated by NASA Ames Research Center and Virginia Tech's CAD Laboratory. The result of this collaboration, a feature-based, parametric computer aided aircraft conceptual design code called ACSYNT, is described. The code is based on analysis routines begun at NASA Ames in the early 1970's. ACSYNT's CAD system is based entirely on the ISO standard Programmer's Hierarchical Interactive Graphics System and is graphics-device independent. The code includes a highly interactive graphical user interface, automatically generated Hermite and B-Spline surface models, and shaded image displays. Numerous features to enhance aircraft conceptual design are described.
Interaction with Machine Improvisation
NASA Astrophysics Data System (ADS)
Assayag, Gerard; Bloch, George; Cont, Arshia; Dubnov, Shlomo
We describe two multi-agent architectures for an improvisation oriented musician-machine interaction systems that learn in real time from human performers. The improvisation kernel is based on sequence modeling and statistical learning. We present two frameworks of interaction with this kernel. In the first, the stylistic interaction is guided by a human operator in front of an interactive computer environment. In the second framework, the stylistic interaction is delegated to machine intelligence and therefore, knowledge propagation and decision are taken care of by the computer alone. The first framework involves a hybrid architecture using two popular composition/performance environments, Max and OpenMusic, that are put to work and communicate together, each one handling the process at a different time/memory scale. The second framework shares the same representational schemes with the first but uses an Active Learning architecture based on collaborative, competitive and memory-based learning to handle stylistic interactions. Both systems are capable of processing real-time audio/video as well as MIDI. After discussing the general cognitive background of improvisation practices, the statistical modelling tools and the concurrent agent architecture are presented. Then, an Active Learning scheme is described and considered in terms of using different improvisation regimes for improvisation planning. Finally, we provide more details about the different system implementations and describe several performances with the system.
French Plans for Fifth Generation Computer Systems.
1984-12-07
centrally man- French industry In electronics, compu- aged project in France that covers all ters, software, and services and to make the facets of the...Centre National of Japan’s Fifth Generation Project , the de Recherche Scientifique (CNRS) Cooper- French scientific and industrial com- ative Research...systems, man-computer The National Projects interaction, novel computer structures, The French Ministry of Research and knowledge-based computer systems
Applied Graph-Mining Algorithms to Study Biomolecular Interaction Networks
2014-01-01
Protein-protein interaction (PPI) networks carry vital information on the organization of molecular interactions in cellular systems. The identification of functionally relevant modules in PPI networks is one of the most important applications of biological network analysis. Computational analysis is becoming an indispensable tool to understand large-scale biomolecular interaction networks. Several types of computational methods have been developed and employed for the analysis of PPI networks. Of these computational methods, graph comparison and module detection are the two most commonly used strategies. This review summarizes current literature on graph kernel and graph alignment methods for graph comparison strategies, as well as module detection approaches including seed-and-extend, hierarchical clustering, optimization-based, probabilistic, and frequent subgraph methods. Herein, we provide a comprehensive review of the major algorithms employed under each theme, including our recently published frequent subgraph method, for detecting functional modules commonly shared across multiple cancer PPI networks. PMID:24800226
NASA Astrophysics Data System (ADS)
Barrett, Christopher L.; Bisset, Keith; Chen, Jiangzhuo; Eubank, Stephen; Lewis, Bryan; Kumar, V. S. Anil; Marathe, Madhav V.; Mortveit, Henning S.
Human behavior, social networks, and the civil infrastructures are closely intertwined. Understanding their co-evolution is critical for designing public policies and decision support for disaster planning. For example, human behaviors and day to day activities of individuals create dense social interactions that are characteristic of modern urban societies. These dense social networks provide a perfect fabric for fast, uncontrolled disease propagation. Conversely, people’s behavior in response to public policies and their perception of how the crisis is unfolding as a result of disease outbreak can dramatically alter the normally stable social interactions. Effective planning and response strategies must take these complicated interactions into account. In this chapter, we describe a computer simulation based approach to study these issues using public health and computational epidemiology as an illustrative example. We also formulate game-theoretic and stochastic optimization problems that capture many of the problems that we study empirically.
ERIC Educational Resources Information Center
Blaser, Mark; Larsen, Jamie
1996-01-01
Presents five interactive, computer-based activities that mimic scientific tests used by sport researchers to help companies design high-performance athletic shoes, including impact tests, flexion tests, friction tests, video analysis, and computer modeling. Provides a platform for teachers to build connections between chemistry (polymer science),…
NASA Astrophysics Data System (ADS)
Christofferson, R.; Wood, E. L.; Euler, G.
2012-12-01
"Project Spectra!" is a standards-based light science and engineering program on solar system exploration that includes both hands-on paper and pencil activities as well as Flash-based computer games that help students solidify understanding of high-level planetary and solar physics. Using computer interactive games where students experience and manipulate the information makes abstract concepts accessible. Visualizing lessons with multi-media tools solidifies understanding and retention of knowledge. Since students can choose what to watch and explore, the interactives accommodate a broad range of learning styles. Students can go back and forth through the interactives if they've missed a concept or wish to view something again. In the end, students are asked critical thinking questions and conduct web-based research. As a part of the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission education programming, we've developed two new "Project Spectra!" interactives that go hand-in-hand with a paper and pencil activity. The MAVEN mission will study volatiles in the upper atmosphere to help piece together Mars' climate history. In the first interactive, students explore black body radiation, albedo, and a simplified greenhouse effect to establish what factors contribute to overall planetary temperature and how they contribute. Students are asked to create a scenario in which a planet they build and design is able to maintain liquid water on the surface. In the second interactive, students are asked to consider Mars and the conditions needed for Mars to support water on the surface, keeping some variables fixed. Ideally, students will walk away with the very basic and critical elements required for climate studies, which has far-reaching implications beyond the study of Mars. These interactives are currently being pilot tested at Arvada High School in Colorado.
NASA Astrophysics Data System (ADS)
Wood, E. L.
2013-12-01
'Project Spectra!' is a standards-based light science and engineering program on solar system exploration that includes both hands-on paper and pencil activities as well as Flash-based computer games that help students solidify understanding of high-level planetary and solar physics. Using computer interactive games where students experience and manipulate the information makes abstract concepts accessible. Visualizing lessons with multi-media tools solidifies understanding and retention of knowledge. Since students can choose what to watch and explore, the interactives accommodate a broad range of learning styles. Students can go back and forth through the interactives if they've missed a concept or wish to view something again. In the end, students are asked critical thinking questions and conduct web-based research. As a part of the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission education programming, we've developed two new 'Project Spectra!' interactives that go hand-in-hand with a paper and pencil activity. The MAVEN mission will study volatiles in the upper atmosphere to help piece together Mars' climate history. In the first interactive, students explore black body radiation, albedo, and a simplified greenhouse effect to establish what factors contribute to overall planetary temperature and how they contribute. Students are asked to create a scenario in which a planet they build and design is able to maintain liquid water on the surface. In the second interactive, students are asked to consider Mars and the conditions needed for Mars to support water on the surface, keeping some variables fixed. Ideally, students will walk away with the very basic and critical elements required for climate studies, which has far-reaching implications beyond the study of Mars. These interactives were pilot tested at Arvada High School in Colorado.
ERIC Educational Resources Information Center
Nguyen, Thi Thao Duyen
2013-01-01
This dissertation explores how participants express and interpret verbal cues of interaction involvement in dyadic conversations via text-based Instant Messaging (IM). Moreover, it seeks to discover differences in the way American participants and Chinese participants use verbal cues when they are highly, or lowly involved. Based on previous…
ERIC Educational Resources Information Center
Wang, Yen-Hui
2014-01-01
The study investigated the learner perceptions of a CALL component in a blended language learning context. 52 Taiwanese college students attended instructional classroom sessions and did weekly online assignments in the form of interactive web-based exercises over one semester. Their learning performance was measured by means of two computer-based…
Multi-step EMG Classification Algorithm for Human-Computer Interaction
NASA Astrophysics Data System (ADS)
Ren, Peng; Barreto, Armando; Adjouadi, Malek
A three-electrode human-computer interaction system, based on digital processing of the Electromyogram (EMG) signal, is presented. This system can effectively help disabled individuals paralyzed from the neck down to interact with computers or communicate with people through computers using point-and-click graphic interfaces. The three electrodes are placed on the right frontalis, the left temporalis and the right temporalis muscles in the head, respectively. The signal processing algorithm used translates the EMG signals during five kinds of facial movements (left jaw clenching, right jaw clenching, eyebrows up, eyebrows down, simultaneous left & right jaw clenching) into five corresponding types of cursor movements (left, right, up, down and left-click), to provide basic mouse control. The classification strategy is based on three principles: the EMG energy of one channel is typically larger than the others during one specific muscle contraction; the spectral characteristics of the EMG signals produced by the frontalis and temporalis muscles during different movements are different; the EMG signals from adjacent channels typically have correlated energy profiles. The algorithm is evaluated on 20 pre-recorded EMG signal sets, using Matlab simulations. The results show that this method provides improvements and is more robust than other previous approaches.
A heterogeneous system based on GPU and multi-core CPU for real-time fluid and rigid body simulation
NASA Astrophysics Data System (ADS)
da Silva Junior, José Ricardo; Gonzalez Clua, Esteban W.; Montenegro, Anselmo; Lage, Marcos; Dreux, Marcelo de Andrade; Joselli, Mark; Pagliosa, Paulo A.; Kuryla, Christine Lucille
2012-03-01
Computational fluid dynamics in simulation has become an important field not only for physics and engineering areas but also for simulation, computer graphics, virtual reality and even video game development. Many efficient models have been developed over the years, but when many contact interactions must be processed, most models present difficulties or cannot achieve real-time results when executed. The advent of parallel computing has enabled the development of many strategies for accelerating the simulations. Our work proposes a new system which uses some successful algorithms already proposed, as well as a data structure organisation based on a heterogeneous architecture using CPUs and GPUs, in order to process the simulation of the interaction of fluids and rigid bodies. This successfully results in a two-way interaction between them and their surrounding objects. As far as we know, this is the first work that presents a computational collaborative environment which makes use of two different paradigms of hardware architecture for this specific kind of problem. Since our method achieves real-time results, it is suitable for virtual reality, simulation and video game fluid simulation problems.
Connectionist Interaction Information Retrieval.
ERIC Educational Resources Information Center
Dominich, Sandor
2003-01-01
Discussion of connectionist views for adaptive clustering in information retrieval focuses on a connectionist clustering technique and activation spreading-based information retrieval model using the interaction information retrieval method. Presents theoretical as well as simulation results as regards computational complexity and includes…
An eLearning Standard Approach for Supporting PBL in Computer Engineering
ERIC Educational Resources Information Center
Garcia-Robles, R.; Diaz-del-Rio, F.; Vicente-Diaz, S.; Linares-Barranco, A.
2009-01-01
Problem-based learning (PBL) has proved to be a highly successful pedagogical model in many fields, although it is not that common in computer engineering. PBL goes beyond the typical teaching methodology by promoting student interaction. This paper presents a PBL trial applied to a course in a computer engineering degree at the University of…
Integrated Visible Photonics for Trapped-Ion Quantum Computing
2017-06-10
necessarily reflect the views of the Department of Defense. Abstract- A scalable trapped-ion-based quantum - computing architecture requires the... Quantum Computing Dave Kharas, Cheryl Sorace-Agaskar, Suraj Bramhavar, William Loh, Jeremy M. Sage, Paul W. Juodawlkis, and John...coherence times, strong coulomb interactions, and optical addressability, hold great promise for implementation of practical quantum information
Assessing the Purpose and Importance University Students Attribute to Current ICT Applications
ERIC Educational Resources Information Center
DiGiuseppe, Maurice; Partosoedarso, Elita
2014-01-01
In this study we surveyed students in a mid-sized university in Ontario, Canada to explore various aspects associated with their use of computer-based applications. For the purpose of analysis, the computer applications under study were categorized according to the Human-Computer-Human Interaction (HCHI) model of Desjardins (2005) in which…
ERIC Educational Resources Information Center
Khalil, Mohammed K.; Kirkley, Debbie L.; Kibble, Jonathan D.
2013-01-01
This article describes the development of an interactive computer-based laboratory manual, created to facilitate the teaching and learning of medical histology. The overarching goal of developing the manual is to facilitate self-directed group interactivities that actively engage students during laboratory sessions. The design of the manual…
Task-Induced Development of Hinting Behaviors in Online Task-Oriented L2 Interaction
ERIC Educational Resources Information Center
Balaman, Ufuk
2018-01-01
Technology-mediated task settings are rich interactional domains in which second language (L2) learners manage a multitude of interactional resources for task accomplishment. The affordances of these settings have been repeatedly addressed in computer-assisted language learning (CALL) literature mainly based on theory-informed task design…
ERIC Educational Resources Information Center
Dewhurst, D. G.; Williams, A. D.
1998-01-01
Presents the results of a comparative study to evaluate the effectiveness of two interactive computer-based learning (CBL) programs, covering the cardiovascular system, as an alternative to lectures for first year undergraduate students at a United Kingdom University. Discusses results in relation to the design of evaluative studies and the future…
ERIC Educational Resources Information Center
Laws, Priscilla W.; Willis, Maxine C.; Jackson, David P.; Koenig, Kathleen; Teese, Robert
2015-01-01
Ever since the first generalized computer-assisted instruction system (PLATO) was introduced over 50 years ago, educators have been adding computer-based materials to their classes. Today many textbooks have complete online versions that include video lectures and other supplements. In the past 25 years the web has fueled an explosion of online…
ERIC Educational Resources Information Center
Herrera-Viedma, Enrique; Peis, Eduardo
2003-01-01
Presents a fuzzy evaluation method of SGML documents based on computing with words. Topics include filtering the amount of information available on the Web to assist users in their search processes; document type definitions; linguistic modeling; user-system interaction; and use with XML and other markup languages. (Author/LRW)
ERIC Educational Resources Information Center
Merrill, Paul F.; And Others
To replicate and extend the results of a previous study, this project investigated the effects of behavioral objectives and/or rules on computer-based learning task performance. The 133 subjects were randomly assigned to an example-only, objective-example, rule example, or objective-rule example group. The availability of rules and/or objectives…
Lee, J D; Caven, B; Haake, S; Brown, T L
2001-01-01
As computer applications for cars emerge, a speech-based interface offers an appealing alternative to the visually demanding direct manipulation interface. However, speech-based systems may pose cognitive demands that could undermine driving safety. This study used a car-following task to evaluate how a speech-based e-mail system affects drivers' response to the periodic braking of a lead vehicle. The study included 24 drivers between the ages of 18 and 24 years. A baseline condition with no e-mail system was compared with a simple and a complex e-mail system in both simple and complex driving environments. The results show a 30% (310 ms) increase in reaction time when the speech-based system is used. Subjective workload ratings and probe questions also indicate that speech-based interaction introduces a significant cognitive load, which was highest for the complex e-mail system. These data show that a speech-based interface is not a panacea that eliminates the potential distraction of in-vehicle computers. Actual or potential applications of this research include design of in-vehicle information systems and evaluation of their contributions to driver distraction.
Goudey, Benjamin; Abedini, Mani; Hopper, John L; Inouye, Michael; Makalic, Enes; Schmidt, Daniel F; Wagner, John; Zhou, Zeyu; Zobel, Justin; Reumann, Matthias
2015-01-01
Genome-wide association studies (GWAS) are a common approach for systematic discovery of single nucleotide polymorphisms (SNPs) which are associated with a given disease. Univariate analysis approaches commonly employed may miss important SNP associations that only appear through multivariate analysis in complex diseases. However, multivariate SNP analysis is currently limited by its inherent computational complexity. In this work, we present a computational framework that harnesses supercomputers. Based on our results, we estimate a three-way interaction analysis on 1.1 million SNP GWAS data requiring over 5.8 years on the full "Avoca" IBM Blue Gene/Q installation at the Victorian Life Sciences Computation Initiative. This is hundreds of times faster than estimates for other CPU based methods and four times faster than runtimes estimated for GPU methods, indicating how the improvement in the level of hardware applied to interaction analysis may alter the types of analysis that can be performed. Furthermore, the same analysis would take under 3 months on the currently largest IBM Blue Gene/Q supercomputer "Sequoia" at the Lawrence Livermore National Laboratory assuming linear scaling is maintained as our results suggest. Given that the implementation used in this study can be further optimised, this runtime means it is becoming feasible to carry out exhaustive analysis of higher order interaction studies on large modern GWAS.
Tait, Alan R; Voepel-Lewis, Terri; Moscucci, Mauro; Brennan-Martinez, Colleen M; Levine, Robert
2009-11-09
Several studies suggest that standard verbal and written consent information for treatment is often poorly understood by patients and their families. The present study examines the effect of an interactive computer-based information program on patients' understanding of cardiac catheterization. Adult patients scheduled to undergo diagnostic cardiac catheterization (n = 135) were randomized to receive details about the procedure using either standard institutional verbal and written information (SI) or interactive computerized information (ICI) preloaded on a laptop computer. Understanding was measured using semistructured interviews at baseline (ie, before information was given), immediately following cardiac catheterization (early understanding), and 2 weeks after the procedure (late understanding). The primary study outcome was the change from baseline to early understanding between groups. Subjects randomized to the ICI intervention had significantly greater improvement in understanding compared with those who received the SI (net change, 0.81; 95% confidence interval, 0.01-1.6). Significantly more subjects in the ICI group had complete understanding of the risks of cardiac catheterization (53.6% vs 23.1%) (P = .001) and options for treatment (63.2% vs 46.2%) (P = .048) compared with the SI group. Several predictors of improved understanding were identified, including baseline knowledge (P < .001), younger age (P = .002), and use of the ICI (P = .003). Results suggest that an interactive computer-based information program for cardiac catheterization may be more effective in improving patient understanding than conventional written consent information. This technology, therefore, holds promise as a means of presenting understandable detailed information regarding a variety of medical treatments and procedures.
A Perspective on Computational Human Performance Models as Design Tools
NASA Technical Reports Server (NTRS)
Jones, Patricia M.
2010-01-01
The design of interactive systems, including levels of automation, displays, and controls, is usually based on design guidelines and iterative empirical prototyping. A complementary approach is to use computational human performance models to evaluate designs. An integrated strategy of model-based and empirical test and evaluation activities is particularly attractive as a methodology for verification and validation of human-rated systems for commercial space. This talk will review several computational human performance modeling approaches and their applicability to design of display and control requirements.
Using a Drug Interaction Program (Drug Interactions Advisor™) in a Community Hospital
Harvey, A. C.; Diehl, G. R.; Finlayson, W. B.
1987-01-01
To test the usefulness of a drugs-interaction program in a community hospital one hundred patients in three medical wards were surveyed with respect to their drug regime. The drugs listed for each patient were entered into Drug Interactions Advisor™ a commercial interactions program running on an Apple IIE. Interacting drugs were listed with the severity of the interaction in each case. Of one hundred patients fifty-one had drugs which could potentially interact and in fifty-one percent of cases a change in therapy would have been advised by Drug Interactions Advisor™. The completeness of the data base was assessed as to its inclusion of drugs actually given and it dealt with eighty-nine percent. The program was tested against ten known interactions and it identified six. Multiple drug therapy is a major problem nowadays and will increase with the aging of the population. Drug interactions programs exploit computer technology to make drug surveillance easier. Without computers such surveillance is difficult if not impossible.
Implicit prosody mining based on the human eye image capture technology
NASA Astrophysics Data System (ADS)
Gao, Pei-pei; Liu, Feng
2013-08-01
The technology of eye tracker has become the main methods of analyzing the recognition issues in human-computer interaction. Human eye image capture is the key problem of the eye tracking. Based on further research, a new human-computer interaction method introduced to enrich the form of speech synthetic. We propose a method of Implicit Prosody mining based on the human eye image capture technology to extract the parameters from the image of human eyes when reading, control and drive prosody generation in speech synthesis, and establish prosodic model with high simulation accuracy. Duration model is key issues for prosody generation. For the duration model, this paper put forward a new idea for obtaining gaze duration of eyes when reading based on the eye image capture technology, and synchronous controlling this duration and pronunciation duration in speech synthesis. The movement of human eyes during reading is a comprehensive multi-factor interactive process, such as gaze, twitching and backsight. Therefore, how to extract the appropriate information from the image of human eyes need to be considered and the gaze regularity of eyes need to be obtained as references of modeling. Based on the analysis of current three kinds of eye movement control model and the characteristics of the Implicit Prosody reading, relative independence between speech processing system of text and eye movement control system was discussed. It was proved that under the same text familiarity condition, gaze duration of eyes when reading and internal voice pronunciation duration are synchronous. The eye gaze duration model based on the Chinese language level prosodic structure was presented to change previous methods of machine learning and probability forecasting, obtain readers' real internal reading rhythm and to synthesize voice with personalized rhythm. This research will enrich human-computer interactive form, and will be practical significance and application prospect in terms of disabled assisted speech interaction. Experiments show that Implicit Prosody mining based on the human eye image capture technology makes the synthesized speech has more flexible expressions.
Motivating At-Risk Students through Computer-based Cooperative Learning Activities.
ERIC Educational Resources Information Center
Gan, Siowck-Lee
1999-01-01
Malaysian at-risk students trained in information-technology skills were appointed to lead cooperative-learning groups engaged in computer-search activities. Activities were structured to incorporate individual accountability, positive interdependence and interaction, collaborative skills, and group processing. Motivation, self-confidence,…
ERIC Educational Resources Information Center
Kern, Richard
1985-01-01
A computer-based interactive system for diagnosing academic and school behavior problems is described. Elements include criterion-referenced testing, an instructional management system, and a behavior evaluation tool developed by the author. (JW)
A System for Generating Instructional Computer Graphics.
ERIC Educational Resources Information Center
Nygard, Kendall E.; Ranganathan, Babusankar
1983-01-01
Description of the Tektronix-Based Interactive Graphics System for Instruction (TIGSI), which was developed for generating graphics displays in computer-assisted instruction materials, discusses several applications (e.g., reinforcing learning of concepts, principles, rules, and problem-solving techniques) and presents advantages of the TIGSI…
Hafner, Jürgen
2010-09-29
During the last 20 years computer simulations based on a quantum-mechanical description of the interactions between electrons and atomic nuclei have developed an increasingly important impact on materials science, not only in promoting a deeper understanding of the fundamental physical phenomena, but also enabling the computer-assisted design of materials for future technologies. The backbone of atomic-scale computational materials science is density-functional theory (DFT) which allows us to cast the intractable complexity of electron-electron interactions into the form of an effective single-particle equation determined by the exchange-correlation functional. Progress in DFT-based calculations of the properties of materials and of simulations of processes in materials depends on: (1) the development of improved exchange-correlation functionals and advanced post-DFT methods and their implementation in highly efficient computer codes, (2) the development of methods allowing us to bridge the gaps in the temperature, pressure, time and length scales between the ab initio calculations and real-world experiments and (3) the extension of the functionality of these codes, permitting us to treat additional properties and new processes. In this paper we discuss the current status of techniques for performing quantum-based simulations on materials and present some illustrative examples of applications to complex quasiperiodic alloys, cluster-support interactions in microporous acid catalysts and magnetic nanostructures.
ERIC Educational Resources Information Center
Kim, Do Kyun; Dinu, Lucian F.; Chung, Wonjon
2013-01-01
Currently, the South Korean government is in the process of transforming school textbooks from a paper-based platform to a computer-based digital platform. Along with this effort, interactive online educational games (edu-games) have been examined as a potential component of the digital textbooks. Based on the theory of diffusion of innovations,…
Multipurpose Interactive NASA Information Systems (MINIS)
NASA Technical Reports Server (NTRS)
1977-01-01
The Multipurpose Interactive NASA Information System was developed to provide remote, interactive information retrieval capability for various types of data bases to be processed on different types of small and medium size computers. Use of the system for three different data bases is decribed: (1) LANDSAT photo look-up, (2) land use, and (3) census/socioeconomic. Each of the data base elements is shown together with other detailed information that a user would require to contact the system remotely, to transmit inquiries on commands, and to receive the results of the queries or commands.
BRYNTRN: A baryon transport computer code, computation procedures and data base
NASA Technical Reports Server (NTRS)
Wilson, John W.; Townsend, Lawrence W.; Chun, Sang Y.; Buck, Warren W.; Khan, Ferdous; Cucinotta, Frank
1988-01-01
The development is described of an interaction data base and a numerical solution to the transport of baryons through the arbitrary shield material based on a straight ahead approximation of the Boltzmann equation. The code is most accurate for continuous energy boundary values but gives reasonable results for discrete spectra at the boundary with even a relatively coarse energy grid (30 points) and large spatial increments (1 cm in H2O).
A computer-based physics laboratory apparatus: Signal generator software
NASA Astrophysics Data System (ADS)
Thanakittiviroon, Tharest; Liangrocapart, Sompong
2005-09-01
This paper describes a computer-based physics laboratory apparatus to replace expensive instruments such as high-precision signal generators. This apparatus uses a sound card in a common personal computer to give sinusoidal signals with an accurate frequency that can be programmed to give different frequency signals repeatedly. An experiment on standing waves on an oscillating string uses this apparatus. In conjunction with interactive lab manuals, which have been developed using personal computers in our university, we achieve a complete set of low-cost, accurate, and easy-to-use equipment for teaching a physics laboratory.
Enrichment of Human-Computer Interaction in Brain-Computer Interfaces via Virtual Environments
Víctor Rodrigo, Mercado-García
2017-01-01
Tridimensional representations stimulate cognitive processes that are the core and foundation of human-computer interaction (HCI). Those cognitive processes take place while a user navigates and explores a virtual environment (VE) and are mainly related to spatial memory storage, attention, and perception. VEs have many distinctive features (e.g., involvement, immersion, and presence) that can significantly improve HCI in highly demanding and interactive systems such as brain-computer interfaces (BCI). BCI is as a nonmuscular communication channel that attempts to reestablish the interaction between an individual and his/her environment. Although BCI research started in the sixties, this technology is not efficient or reliable yet for everyone at any time. Over the past few years, researchers have argued that main BCI flaws could be associated with HCI issues. The evidence presented thus far shows that VEs can (1) set out working environmental conditions, (2) maximize the efficiency of BCI control panels, (3) implement navigation systems based not only on user intentions but also on user emotions, and (4) regulate user mental state to increase the differentiation between control and noncontrol modalities. PMID:29317861
X based interactive computer graphics applications for aerodynamic design and education
NASA Technical Reports Server (NTRS)
Benson, Thomas J.; Higgs, C. Fred, III
1995-01-01
Six computer applications packages have been developed to solve a variety of aerodynamic problems in an interactive environment on a single workstation. The packages perform classical one dimensional analysis under the control of a graphical user interface and can be used for preliminary design or educational purposes. The programs were originally developed on a Silicon Graphics workstation and used the GL version of the FORMS library as the graphical user interface. These programs have recently been converted to the XFORMS library of X based graphics widgets and have been tested on SGI, IBM, Sun, HP and PC-Lunix computers. The paper will show results from the new VU-DUCT program as a prime example. VU-DUCT has been developed as an educational package for the study of subsonic open and closed loop wind tunnels.
Development of the Telehealth Usability Questionnaire (TUQ).
Parmanto, Bambang; Lewis, Allen Nelson; Graham, Kristin M; Bertolet, Marnie H
2016-01-01
Current telehealth usability questionnaires are designed primarily for older technologies, where telehealth interaction is conducted over dedicated videoconferencing applications. However, telehealth services are increasingly conducted over computer-based systems that rely on commercial software and a user supplied computer interface. Therefore, a usability questionnaire that addresses the changes in telehealth service delivery and technology is needed. The Telehealth Usability Questionnaire (TUQ) was developed to evaluate the usability of telehealth implementation and services. This paper addresses: (1) the need for a new measure of telehealth usability, (2) the development of the TUQ, (3) intended uses for the TUQ, and (4) the reliability of the TUQ. Analyses indicate that the TUQ is a solid, robust, and versatile measure that can be used to measure the quality of the computer-based user interface and the quality of the telehealth interaction and services.
Rigid-Docking Approaches to Explore Protein-Protein Interaction Space.
Matsuzaki, Yuri; Uchikoga, Nobuyuki; Ohue, Masahito; Akiyama, Yutaka
Protein-protein interactions play core roles in living cells, especially in the regulatory systems. As information on proteins has rapidly accumulated on publicly available databases, much effort has been made to obtain a better picture of protein-protein interaction networks using protein tertiary structure data. Predicting relevant interacting partners from their tertiary structure is a challenging task and computer science methods have the potential to assist with this. Protein-protein rigid docking has been utilized by several projects, docking-based approaches having the advantages that they can suggest binding poses of predicted binding partners which would help in understanding the interaction mechanisms and that comparing docking results of both non-binders and binders can lead to understanding the specificity of protein-protein interactions from structural viewpoints. In this review we focus on explaining current computational prediction methods to predict pairwise direct protein-protein interactions that form protein complexes.
CAD system for footwear design based on whole real 3D data of last surface
NASA Astrophysics Data System (ADS)
Song, Wanzhong; Su, Xianyu
2000-10-01
Two major parts of application of CAD in footwear design are studied: the development of last surface; computer-aided design of planar shoe-template. A new quasi-experiential development algorithm of last surface based on triangulation approximation is presented. This development algorithm consumes less time and does not need any interactive operation for precisely development compared with other development algorithm of last surface. Based on this algorithm, a software, SHOEMAKERTM, which contains computer aided automatic measurement, automatic development of last surface and computer aide design of shoe-template has been developed.
π-π stacking tackled with density functional theory
Swart, Marcel; van der Wijst, Tushar; Fonseca Guerra, Célia
2007-01-01
Through comparison with ab initio reference data, we have evaluated the performance of various density functionals for describing π-π interactions as a function of the geometry between two stacked benzenes or benzene analogs, between two stacked DNA bases, and between two stacked Watson–Crick pairs. Our main purpose is to find a robust and computationally efficient density functional to be used specifically and only for describing π-π stacking interactions in DNA and other biological molecules in the framework of our recently developed QM/QM approach "QUILD". In line with previous studies, most standard density functionals recover, at best, only part of the favorable stacking interactions. An exception is the new KT1 functional, which correctly yields bound π-stacked structures. Surprisingly, a similarly good performance is achieved with the computationally very robust and efficient local density approximation (LDA). Furthermore, we show that classical electrostatic interactions determine the shape and depth of the π-π stacking potential energy surface. Figure Additivity approximation for the π-π interaction between two stacked Watson–Crick base pairs in terms of pairwise interactions between individual bases Electronic supplementary material The online version of this article (doi:10.1007/s00894-007-0239-y) contains supplementary material, which is available to authorized users. PMID:17874150
Interoperating Cloud-based Virtual Farms
NASA Astrophysics Data System (ADS)
Bagnasco, S.; Colamaria, F.; Colella, D.; Casula, E.; Elia, D.; Franco, A.; Lusso, S.; Luparello, G.; Masera, M.; Miniello, G.; Mura, D.; Piano, S.; Vallero, S.; Venaruzzo, M.; Vino, G.
2015-12-01
The present work aims at optimizing the use of computing resources available at the grid Italian Tier-2 sites of the ALICE experiment at CERN LHC by making them accessible to interactive distributed analysis, thanks to modern solutions based on cloud computing. The scalability and elasticity of the computing resources via dynamic (“on-demand”) provisioning is essentially limited by the size of the computing site, reaching the theoretical optimum only in the asymptotic case of infinite resources. The main challenge of the project is to overcome this limitation by federating different sites through a distributed cloud facility. Storage capacities of the participating sites are seen as a single federated storage area, preventing the need of mirroring data across them: high data access efficiency is guaranteed by location-aware analysis software and storage interfaces, in a transparent way from an end-user perspective. Moreover, the interactive analysis on the federated cloud reduces the execution time with respect to grid batch jobs. The tests of the investigated solutions for both cloud computing and distributed storage on wide area network will be presented.
Drawert, Brian; Trogdon, Michael; Toor, Salman; Petzold, Linda; Hellander, Andreas
2017-01-01
Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments. PMID:28190948
An overview of computer-based natural language processing
NASA Technical Reports Server (NTRS)
Gevarter, W. B.
1983-01-01
Computer based Natural Language Processing (NLP) is the key to enabling humans and their computer based creations to interact with machines in natural language (like English, Japanese, German, etc., in contrast to formal computer languages). The doors that such an achievement can open have made this a major research area in Artificial Intelligence and Computational Linguistics. Commercial natural language interfaces to computers have recently entered the market and future looks bright for other applications as well. This report reviews the basic approaches to such systems, the techniques utilized, applications, the state of the art of the technology, issues and research requirements, the major participants and finally, future trends and expectations. It is anticipated that this report will prove useful to engineering and research managers, potential users, and others who will be affected by this field as it unfolds.
An adhesive contact mechanics formulation based on atomistically induced surface traction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Houfu; Ren, Bo; Li, Shaofan, E-mail: shaofan@berkeley.edu
2015-12-01
In this work, we have developed a novel multiscale computational contact formulation based on the generalized Derjuguin approximation for continua that are characterized by atomistically enriched constitutive relations in order to study macroscopic interaction between arbitrarily shaped deformable continua. The proposed adhesive contact formulation makes use of the microscopic interaction forces between individual particles in the interacting bodies. In particular, the double-layer volume integral describing the contact interaction (energy, force vector, matrix) is converted into a double-layer surface integral through a mathematically consistent approach that employs the divergence theorem and a special partitioning technique. The proposed contact model is formulatedmore » in the nonlinear continuum mechanics framework and implemented using the standard finite element method. With no large penalty constant, the stiffness matrix of the system will in general be well-conditioned, which is of great significance for quasi-static analysis. Three numerical examples are presented to illustrate the capability of the proposed method. Results indicate that with the same mesh configuration, the finite element computation based on the surface integral approach is faster and more accurate than the volume integral based approach. In addition, the proposed approach is energy preserving even in a very long dynamic simulation.« less
Simulation of Robot Kinematics Using Interactive Computer Graphics.
ERIC Educational Resources Information Center
Leu, M. C.; Mahajan, R.
1984-01-01
Development of a robot simulation program based on geometric transformation softwares available in most computer graphics systems and program features are described. The program can be extended to simulate robots coordinating with external devices (such as tools, fixtures, conveyors) using geometric transformations to describe the…
Teaching Differential Diagnosis by Computer: A Pathophysiological Approach
ERIC Educational Resources Information Center
Goroll, Allan H.; And Others
1977-01-01
An interactive, computer-based teaching exercise in diagnosis that emphasizes pathophysiology in the analysis of clinical data is described. Called the Jaundice Program, its objective is to simplify the pattern recognition problem by relating clinical findings to diagnosis via reference to disease mechanisms. (LBH)
Integrating Multimedia Techniques into CS Pedagogy.
ERIC Educational Resources Information Center
Adams, Sandra Honda; Jou, Richard; Nasri, Ahmad; Radimsky, Anne-Louise; Sy, Bon K.
Through its grants, the National Science Foundation sponsors workshops that inform faculty of current topics in computer science. Such a workshop, entitled, "Developing Multimedia-based Interactive Laboratory Modules for Computer Science," was given July 27-August 6, 1998, at Illinois State University at Normal. Each participant was…
Home Learning, Technology, and Tomorrow's Workplace.
ERIC Educational Resources Information Center
Rieseberg, Rhonda L.
1995-01-01
Discusses characteristics and trends of home schools and workplaces. Use of computers and computer applications (CD-ROMS, interactive software, and networking) in home schooling provides a compatible environment for future home-based businesses and telecommuting trends. Sidebars include information on home schools on line; standardized test…
Interactive computer programs for the graphic analysis of nucleotide sequence data.
Luckow, V A; Littlewood, R K; Rownd, R H
1984-01-01
A group of interactive computer programs have been developed which aid in the collection and graphical analysis of nucleotide and protein sequence data. The programs perform the following basic functions: a) enter, edit, list, and rearrange sequence data; b) permit automatic entry of nucleotide sequence data directly from an autoradiograph into the computer; c) search for restriction sites or other specified patterns and plot a linear or circular restriction map, or print their locations; d) plot base composition; e) analyze homology between sequences by plotting a two-dimensional graphic matrix; and f) aid in plotting predicted secondary structures of RNA molecules. PMID:6546437
Designing Interaction for Next Generation Personal Computing
NASA Astrophysics Data System (ADS)
de Michelis, Giorgio; Loregian, Marco; Moderini, Claudio; Marti, Patrizia; Colombo, Cesare; Bannon, Liam; Storni, Cristiano; Susani, Marco
Over two decades of research in the field of Interaction Design and Computer Supported Cooperative Work convinced us that the current design of workstations no longer fits users’ needs. It is time to design new personal computers based on metaphors alternative to the desktop one. With this SIG, we are seeking to involve international HCI professionals into the challenges of designing products that are radically new and tackling the many different issues of modern knowledge workers. We would like to engage a wider cross-section of the community: our focus will be on issues of development and participation and the impact of different values in our work.
Impedance computations and beam-based measurements: A problem of discrepancy
Smaluk, Victor
2018-04-21
High intensity of particle beams is crucial for high-performance operation of modern electron-positron storage rings, both colliders and light sources. The beam intensity is limited by the interaction of the beam with self-induced electromagnetic fields (wake fields) proportional to the vacuum chamber impedance. For a new accelerator project, the total broadband impedance is computed by element-wise wake-field simulations using computer codes. For a machine in operation, the impedance can be measured experimentally using beam-based techniques. In this article, a comparative analysis of impedance computations and beam-based measurements is presented for 15 electron-positron storage rings. The measured data and the predictionsmore » based on the computed impedance budgets show a significant discrepancy. For this article, three possible reasons for the discrepancy are discussed: interference of the wake fields excited by a beam in adjacent components of the vacuum chamber, effect of computation mesh size, and effect of insufficient bandwidth of the computed impedance.« less
Impedance computations and beam-based measurements: A problem of discrepancy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smaluk, Victor
High intensity of particle beams is crucial for high-performance operation of modern electron-positron storage rings, both colliders and light sources. The beam intensity is limited by the interaction of the beam with self-induced electromagnetic fields (wake fields) proportional to the vacuum chamber impedance. For a new accelerator project, the total broadband impedance is computed by element-wise wake-field simulations using computer codes. For a machine in operation, the impedance can be measured experimentally using beam-based techniques. In this article, a comparative analysis of impedance computations and beam-based measurements is presented for 15 electron-positron storage rings. The measured data and the predictionsmore » based on the computed impedance budgets show a significant discrepancy. For this article, three possible reasons for the discrepancy are discussed: interference of the wake fields excited by a beam in adjacent components of the vacuum chamber, effect of computation mesh size, and effect of insufficient bandwidth of the computed impedance.« less
2014-07-08
internction ( BCI ) system allows h uman subjects to communicate with or control an extemal device with their brain signals [1], or to use those brain...signals to interact with computers, environments, or even other humans [2]. One application of BCI is to use brnin signals to distinguish target...images within a large collection of non-target images [2]. Such BCI -based systems can drastically increase the speed of target identification in
ERIC Educational Resources Information Center
Nikolaidou, Georgia N.
2012-01-01
This exploratory work describes and analyses the collaborative interactions that emerge during computer-based music composition in the primary school. The study draws on socio-cultural theories of learning, originated within Vygotsky's theoretical context, and proposes a new model, namely Computer-mediated Praxis and Logos under Synergy (ComPLuS).…
ERIC Educational Resources Information Center
Howard, A. M.; Park, Chung Hyuk; Remy, S.
2012-01-01
The robotics field represents the integration of multiple facets of computer science and engineering. Robotics-based activities have been shown to encourage K-12 students to consider careers in computing and have even been adopted as part of core computer-science curriculum at a number of universities. Unfortunately, for students with visual…
GRUMFOIL: A computer code for the viscous transonic flow over airfoils
NASA Technical Reports Server (NTRS)
Mead, H. R.; Melnik, R. E.
1985-01-01
A user's manual which describes the operation of the computer program, GRUMFOIL is presented. The program computes the viscous transonic flow over two dimensional airfoils using a boundary layer type viscid-inviscid interaction approach. The inviscid solution is obtained by a multigrid method for the full potential equation. The boundary layer solution is based on integral entrainment methods.
A qualitative study of technophobic students' reactions to a technology-rich college science course
NASA Astrophysics Data System (ADS)
Guttschow, Gena Lee
The use of technology in education has grown rapidly in the last 20 years. In fact, many of today's college students have had some sort of computer in their elementary school classrooms. One might think that this consistent exposure to computers would foster positive attitudes about computers but this is not always the case. Currently, a substantial number of college students dislike interacting with technology. People who dislike interacting with technology are often referred to as "technophobic". Technophobic people have negative thoughts and feelings about technology and they often have a desire to avoid interaction with technology. Technophobic students' negative feelings about technology have the potential to interfere with their learning when technology is utilized as a tool for instruction of school subjects. As computer use becomes prevalent and in many instances mandatory in education, the issue of technophobia increasingly needs to be understood and addressed. This is a qualitative study designed with the intent of gaining an understanding the experiences of technophobic students who are required to use technology to learn science in a college class. Six developmental college students enrolled in a computer based anatomy and physiology class were chosen to participate in the study based on their high technophobia scores. They were interviewed three times during the quarter and videotaped once. The interview data were transcribed, coded, and analyzed. The analysis resulted in six case studies describing each participant's experience and 11 themes representing overlapping areas in the participants' worlds of experience. A discussion of the themes, the meaning they hold for me as a science educator and how they relate to the existing literature, is presented. The participants' descriptions of their experiences showed that the technophobic students did use the computers and learned skills when they had to in order to complete assignments. It was also revealed that the technophobic participants' negative attitudes did not improve after learning computer skills. Lastly, based on the participants' experiences it seems important to start a class with step-by step computer training, teaching foundational computer skills, and slowly progress towards autonomous computer exploration.
Characterizing Interaction with Visual Mathematical Representations
ERIC Educational Resources Information Center
Sedig, Kamran; Sumner, Mark
2006-01-01
This paper presents a characterization of computer-based interactions by which learners can explore and investigate visual mathematical representations (VMRs). VMRs (e.g., geometric structures, graphs, and diagrams) refer to graphical representations that visually encode properties and relationships of mathematical structures and concepts.…
ERIC Educational Resources Information Center
Joshi, Ashish; Lichenstein, Richard; King, James; Arora, Mohit; Khan, Salwa
2009-01-01
The objective of this pilot study was to assess and describe changes in knowledge, attitudes and practice regarding influenza vaccination in an inner city setting using an interactive computer-based educational program. A convenience sample of ninety participants whose children were in the age group of 6 months to 5 years was enrolled in this…
Sorensen, Mads Solvsten; Mosegaard, Jesper; Trier, Peter
2009-06-01
Existing virtual simulators for middle ear surgery are based on 3-dimensional (3D) models from computed tomographic or magnetic resonance imaging data in which image quality is limited by the lack of detail (maximum, approximately 50 voxels/mm3), natural color, and texture of the source material.Virtual training often requires the purchase of a program, a customized computer, and expensive peripherals dedicated exclusively to this purpose. The Visible Ear freeware library of digital images from a fresh-frozen human temporal bone was segmented, and real-time volume rendered as a 3D model of high-fidelity, true color, and great anatomic detail and realism of the surgically relevant structures. A haptic drilling model was developed for surgical interaction with the 3D model. Realistic visualization in high-fidelity (approximately 125 voxels/mm3) and true color, 2D, or optional anaglyph stereoscopic 3D was achieved on a standard Core 2 Duo personal computer with a GeForce 8,800 GTX graphics card, and surgical interaction was provided through a relatively inexpensive (approximately $2,500) Phantom Omni haptic 3D pointing device. This prototype is published for download (approximately 120 MB) as freeware at http://www.alexandra.dk/ves/index.htm.With increasing personal computer performance, future versions may include enhanced resolution (up to 8,000 voxels/mm3) and realistic interaction with deformable soft tissue components such as skin, tympanic membrane, dura, and cholesteatomas-features some of which are not possible with computed tomographic-/magnetic resonance imaging-based systems.
76 FR 28821 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-18
... exclusively through computer software-based models or applications termed under the rule as ``interactive Web... conducted through an interactive Web site in accordance with the rule.\\7\\ \\1\\ 17 CFR 275.203A-2(f). Included in rule 203A-2(f) is a limited exception to the interactive Web site requirement which allows these...
Automatic Sound Generation for Spherical Objects Hitting Straight Beams Based on Physical Models.
ERIC Educational Resources Information Center
Rauterberg, M.; And Others
Sounds are the result of one or several interactions between one or several objects at a certain place and in a certain environment; the attributes of every interaction influence the generated sound. The following factors influence users in human/computer interaction: the organization of the learning environment, the content of the learning tasks,…
NASA Technical Reports Server (NTRS)
Kennedy, J. R.; Fitzpatrick, W. S.
1971-01-01
The computer executive functional system design concepts derived from study of the Space Station/Base are presented. Information Management System hardware configuration as directly influencing the executive design is reviewed. The hardware configuration and generic executive design requirements are considered in detail in a previous report (System Configuration and Executive Requirements Specifications for Reusable Shuttle and Space Station/Base, 9/25/70). This report defines basic system primitives and delineates processes and process control. Supervisor states are considered for describing basic multiprogramming and multiprocessing systems. A high-level computer executive including control of scheduling, allocation of resources, system interactions, and real-time supervisory functions is defined. The description is oriented to provide a baseline for a functional simulation of the computer executive system.
Theoretical, Experimental, and Computational Evaluation of Several Vane-Type Slow-Wave Structures
NASA Technical Reports Server (NTRS)
Wallett, Thomas M.; Qureshi, A. Haq
1994-01-01
Several types of periodic vane slow-wave structures were fabricated. The dispersion characteristics were found by theoretical analysis, experimental testing, and computer simulation using the MAFIA code. Computer-generated characteristics agreed to approximately within 2 percent of the experimental characteristics for all structures. The theoretical characteristics, however, deviated increasingly as the width to height ratio became smaller. Interaction impedances were also computed based on the experimental and computer-generated resonance frequency shifts due to the introduction of a perturbing dielectric rod.
Interactive collision detection for deformable models using streaming AABBs.
Zhang, Xinyu; Kim, Young J
2007-01-01
We present an interactive and accurate collision detection algorithm for deformable, polygonal objects based on the streaming computational model. Our algorithm can detect all possible pairwise primitive-level intersections between two severely deforming models at highly interactive rates. In our streaming computational model, we consider a set of axis aligned bounding boxes (AABBs) that bound each of the given deformable objects as an input stream and perform massively-parallel pairwise, overlapping tests onto the incoming streams. As a result, we are able to prevent performance stalls in the streaming pipeline that can be caused by expensive indexing mechanism required by bounding volume hierarchy-based streaming algorithms. At runtime, as the underlying models deform over time, we employ a novel, streaming algorithm to update the geometric changes in the AABB streams. Moreover, in order to get only the computed result (i.e., collision results between AABBs) without reading back the entire output streams, we propose a streaming en/decoding strategy that can be performed in a hierarchical fashion. After determining overlapped AABBs, we perform a primitive-level (e.g., triangle) intersection checking on a serial computational model such as CPUs. We implemented the entire pipeline of our algorithm using off-the-shelf graphics processors (GPUs), such as nVIDIA GeForce 7800 GTX, for streaming computations, and Intel Dual Core 3.4G processors for serial computations. We benchmarked our algorithm with different models of varying complexities, ranging from 15K up to 50K triangles, under various deformation motions, and the timings were obtained as 30 approximately 100 FPS depending on the complexity of models and their relative configurations. Finally, we made comparisons with a well-known GPU-based collision detection algorithm, CULLIDE [4] and observed about three times performance improvement over the earlier approach. We also made comparisons with a SW-based AABB culling algorithm [2] and observed about two times improvement.
Simulating highly nonlocal Hamiltonians with less nonlocal Hamiltonians
NASA Astrophysics Data System (ADS)
Subasi, Yigit; Jarzynski, Christopher
The need for Hamiltonians with many-body interactions arises in various applications of quantum computing. However, interactions beyond two-body are difficult to realize experimentally. Perturbative gadgets were introduced to obtain arbitrary many-body effective interactions using Hamiltonians with two-body interactions only. Although valid for arbitrary k-body interactions, their use is limited to small k because the strength of interaction is k'th order in perturbation theory. Here we develop a nonperturbative technique for obtaining effective k-body interactions using Hamiltonians consisting of at most l-body interactions with l < k . This technique works best for Hamiltonians with a few interactions with very large k and can be used together with perturbative gadgets to embed Hamiltonians of considerable complexity in proper subspaces of two-local Hamiltonians. We describe how our technique can be implemented in a hybrid (gate-based and adiabatic) as well as solely adiabatic quantum computing scheme. We gratefully acknowledge financial support from the Lockheed Martin Corporation under Contract U12001C.
Computational Model of Population Dynamics Based on the Cell Cycle and Local Interactions
NASA Astrophysics Data System (ADS)
Oprisan, Sorinel Adrian; Oprisan, Ana
2005-03-01
Our study bridges cellular (mesoscopic) level interactions and global population (macroscopic) dynamics of carcinoma. The morphological differences and transitions between well and smooth defined benign tumors and tentacular malignat tumors suggest a theoretical analysis of tumor invasion based on the development of mathematical models exhibiting bifurcations of spatial patterns in the density of tumor cells. Our computational model views the most representative and clinically relevant features of oncogenesis as a fight between two distinct sub-systems: the immune system of the host and the neoplastic system. We implemented the neoplastic sub-system using a three-stage cell cycle: active, dormant, and necrosis. The second considered sub-system consists of cytotoxic active (effector) cells — EC, with a very broad phenotype ranging from NK cells to CTL cells, macrophages, etc. Based on extensive numerical simulations, we correlated the fractal dimensions for carcinoma, which could be obtained from tumor imaging, with the malignat stage. Our computational model was able to also simulate the effects of surgical, chemotherapeutical, and radiotherapeutical treatments.
SnapAnatomy, a computer-based interactive tool for independent learning of human anatomy.
Yip, George W; Rajendran, Kanagasuntheram
2008-06-01
Computer-aided instruction materials are becoming increasing popular in medical education and particularly in the teaching of human anatomy. This paper describes SnapAnatomy, a new interactive program that the authors designed for independent learning of anatomy. SnapAnatomy is primarily tailored for the beginner student to encourage the learning of anatomy by developing a three-dimensional visualization of human structure that is essential to applications in clinical practice and the understanding of function. The program allows the student to take apart and to accurately put together body components in an interactive, self-paced and variable manner to achieve the learning outcome.
NASA Astrophysics Data System (ADS)
Hadida, Jonathan; Desrosiers, Christian; Duong, Luc
2011-03-01
The segmentation of anatomical structures in Computed Tomography Angiography (CTA) is a pre-operative task useful in image guided surgery. Even though very robust and precise methods have been developed to help achieving a reliable segmentation (level sets, active contours, etc), it remains very time consuming both in terms of manual interactions and in terms of computation time. The goal of this study is to present a fast method to find coarse anatomical structures in CTA with few parameters, based on hierarchical clustering. The algorithm is organized as follows: first, a fast non-parametric histogram clustering method is proposed to compute a piecewise constant mask. A second step then indexes all the space-connected regions in the piecewise constant mask. Finally, a hierarchical clustering is achieved to build a graph representing the connections between the various regions in the piecewise constant mask. This step builds up a structural knowledge about the image. Several interactive features for segmentation are presented, for instance association or disassociation of anatomical structures. A comparison with the Mean-Shift algorithm is presented.
Interactive graphics system for IBM 1800 computer
NASA Technical Reports Server (NTRS)
Carleton, T. P.; Howell, D. R.; Mish, W. H.
1972-01-01
A FORTRAN compatible software system that has been developed to provide an interactive graphics capability for the IBM 1800 computer is described. The interactive graphics hardware consists of a Hewlett-Packard 1300A cathode ray tube, Sanders photopen, digital to analog converters, pulse counter, and necessary interface. The hardware is available from IBM as several related RPQ's. The software developed permits the application programmer to use IBM 1800 FORTRAN to develop a display on the cathode ray tube which consists of one or more independent units called pictures. The software permits a great deal of flexibility in the manipulation of these pictures and allows the programmer to use the photopen to interact with the displayed data and make decisions based on information returned by the photopen.
Why Adolescents Use a Computer-Based Health Information System.
ERIC Educational Resources Information Center
Hawkins, Robert P.; And Others
The Body Awareness Resource Network (BARN) is a system of interactive computer programs designed to provide adolescents with confidential, nonjudgmental health information, behavior change strategies, and sources of referral. These programs cover five adolescent health areas: alcohol and other drugs, human sexuality, smoking prevention and…
Analyzing Team Based Engineering Design Process in Computer Supported Collaborative Learning
ERIC Educational Resources Information Center
Lee, Dong-Kuk; Lee, Eun-Sang
2016-01-01
The engineering design process has been largely implemented in a collaborative project format. Recently, technological advancement has helped collaborative problem solving processes such as engineering design to have efficient implementation using computers or online technology. In this study, we investigated college students' interaction and…
DNS and modeling of the interaction between turbulent premixed flames and walls
NASA Technical Reports Server (NTRS)
Poinsot, T. J.; Haworth, D. C.
1992-01-01
The interaction between turbulent premixed flames and walls is studied using a two-dimensional full Navier-Stokes solver with simple chemistry. The effects of wall distance on the local and global flame structure are investigated. Quenching distances and maximum wall heat fluxes during quenching are computed in laminar cases and are found to be comparable to experimental and analytical results. For turbulent cases, it is shown that quenching distances and maximum heat fluxes remain of the same order as for laminar flames. Based on simulation results, a 'law-of-the-wall' model is derived to describe the interaction between a turbulent premixed flame and a wall. This model is constructed to provide reasonable behavior of flame surface density near a wall under the assumption that flame-wall interaction takes place at scales smaller than the computational mesh. It can be implemented in conjunction with any of several recent flamelet models based on a modeled surface density equation, with no additional constraints on mesh size or time step.
User Interaction in Semi-Automatic Segmentation of Organs at Risk: a Case Study in Radiotherapy.
Ramkumar, Anjana; Dolz, Jose; Kirisli, Hortense A; Adebahr, Sonja; Schimek-Jasch, Tanja; Nestle, Ursula; Massoptier, Laurent; Varga, Edit; Stappers, Pieter Jan; Niessen, Wiro J; Song, Yu
2016-04-01
Accurate segmentation of organs at risk is an important step in radiotherapy planning. Manual segmentation being a tedious procedure and prone to inter- and intra-observer variability, there is a growing interest in automated segmentation methods. However, automatic methods frequently fail to provide satisfactory result, and post-processing corrections are often needed. Semi-automatic segmentation methods are designed to overcome these problems by combining physicians' expertise and computers' potential. This study evaluates two semi-automatic segmentation methods with different types of user interactions, named the "strokes" and the "contour", to provide insights into the role and impact of human-computer interaction. Two physicians participated in the experiment. In total, 42 case studies were carried out on five different types of organs at risk. For each case study, both the human-computer interaction process and quality of the segmentation results were measured subjectively and objectively. Furthermore, different measures of the process and the results were correlated. A total of 36 quantifiable and ten non-quantifiable correlations were identified for each type of interaction. Among those pairs of measures, 20 of the contour method and 22 of the strokes method were strongly or moderately correlated, either directly or inversely. Based on those correlated measures, it is concluded that: (1) in the design of semi-automatic segmentation methods, user interactions need to be less cognitively challenging; (2) based on the observed workflows and preferences of physicians, there is a need for flexibility in the interface design; (3) the correlated measures provide insights that can be used in improving user interaction design.
Computational approaches for drug discovery.
Hung, Che-Lun; Chen, Chi-Chun
2014-09-01
Cellular proteins are the mediators of multiple organism functions being involved in physiological mechanisms and disease. By discovering lead compounds that affect the function of target proteins, the target diseases or physiological mechanisms can be modulated. Based on knowledge of the ligand-receptor interaction, the chemical structures of leads can be modified to improve efficacy, selectivity and reduce side effects. One rational drug design technology, which enables drug discovery based on knowledge of target structures, functional properties and mechanisms, is computer-aided drug design (CADD). The application of CADD can be cost-effective using experiments to compare predicted and actual drug activity, the results from which can used iteratively to improve compound properties. The two major CADD-based approaches are structure-based drug design, where protein structures are required, and ligand-based drug design, where ligand and ligand activities can be used to design compounds interacting with the protein structure. Approaches in structure-based drug design include docking, de novo design, fragment-based drug discovery and structure-based pharmacophore modeling. Approaches in ligand-based drug design include quantitative structure-affinity relationship and pharmacophore modeling based on ligand properties. Based on whether the structure of the receptor and its interaction with the ligand are known, different design strategies can be seed. After lead compounds are generated, the rule of five can be used to assess whether these have drug-like properties. Several quality validation methods, such as cost function analysis, Fisher's cross-validation analysis and goodness of hit test, can be used to estimate the metrics of different drug design strategies. To further improve CADD performance, multi-computers and graphics processing units may be applied to reduce costs. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Neves, Rui Gomes; Teodoro, Vítor Duarte
2012-09-01
A teaching approach aiming at an epistemologically balanced integration of computational modelling in science and mathematics education is presented. The approach is based on interactive engagement learning activities built around computational modelling experiments that span the range of different kinds of modelling from explorative to expressive modelling. The activities are designed to make a progressive introduction to scientific computation without requiring prior development of a working knowledge of programming, generate and foster the resolution of cognitive conflicts in the understanding of scientific and mathematical concepts and promote performative competency in the manipulation of different and complementary representations of mathematical models. The activities are supported by interactive PDF documents which explain the fundamental concepts, methods and reasoning processes using text, images and embedded movies, and include free space for multimedia enriched student modelling reports and teacher feedback. To illustrate, an example from physics implemented in the Modellus environment and tested in undergraduate university general physics and biophysics courses is discussed.
Coarse-grained modeling of RNA 3D structure.
Dawson, Wayne K; Maciejczyk, Maciej; Jankowska, Elzbieta J; Bujnicki, Janusz M
2016-07-01
Functional RNA molecules depend on three-dimensional (3D) structures to carry out their tasks within the cell. Understanding how these molecules interact to carry out their biological roles requires a detailed knowledge of RNA 3D structure and dynamics as well as thermodynamics, which strongly governs the folding of RNA and RNA-RNA interactions as well as a host of other interactions within the cellular environment. Experimental determination of these properties is difficult, and various computational methods have been developed to model the folding of RNA 3D structures and their interactions with other molecules. However, computational methods also have their limitations, especially when the biological effects demand computation of the dynamics beyond a few hundred nanoseconds. For the researcher confronted with such challenges, a more amenable approach is to resort to coarse-grained modeling to reduce the number of data points and computational demand to a more tractable size, while sacrificing as little critical information as possible. This review presents an introduction to the topic of coarse-grained modeling of RNA 3D structures and dynamics, covering both high- and low-resolution strategies. We discuss how physics-based approaches compare with knowledge based methods that rely on databases of information. In the course of this review, we discuss important aspects in the reasoning process behind building different models and the goals and pitfalls that can result. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Source and listener directivity for interactive wave-based sound propagation.
Mehra, Ravish; Antani, Lakulish; Kim, Sujeong; Manocha, Dinesh
2014-04-01
We present an approach to model dynamic, data-driven source and listener directivity for interactive wave-based sound propagation in virtual environments and computer games. Our directional source representation is expressed as a linear combination of elementary spherical harmonic (SH) sources. In the preprocessing stage, we precompute and encode the propagated sound fields due to each SH source. At runtime, we perform the SH decomposition of the varying source directivity interactively and compute the total sound field at the listener position as a weighted sum of precomputed SH sound fields. We propose a novel plane-wave decomposition approach based on higher-order derivatives of the sound field that enables dynamic HRTF-based listener directivity at runtime. We provide a generic framework to incorporate our source and listener directivity in any offline or online frequency-domain wave-based sound propagation algorithm. We have integrated our sound propagation system in Valve's Source game engine and use it to demonstrate realistic acoustic effects such as sound amplification, diffraction low-passing, scattering, localization, externalization, and spatial sound, generated by wave-based propagation of directional sources and listener in complex scenarios. We also present results from our preliminary user study.
Methods for simulation-based analysis of fluid-structure interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barone, Matthew Franklin; Payne, Jeffrey L.
2005-10-01
Methods for analysis of fluid-structure interaction using high fidelity simulations are critically reviewed. First, a literature review of modern numerical techniques for simulation of aeroelastic phenomena is presented. The review focuses on methods contained within the arbitrary Lagrangian-Eulerian (ALE) framework for coupling computational fluid dynamics codes to computational structural mechanics codes. The review treats mesh movement algorithms, the role of the geometric conservation law, time advancement schemes, wetted surface interface strategies, and some representative applications. The complexity and computational expense of coupled Navier-Stokes/structural dynamics simulations points to the need for reduced order modeling to facilitate parametric analysis. The proper orthogonalmore » decomposition (POD)/Galerkin projection approach for building a reduced order model (ROM) is presented, along with ideas for extension of the methodology to allow construction of ROMs based on data generated from ALE simulations.« less
Viscous wing theory development. Volume 2: GRUMWING computer program user's manual
NASA Technical Reports Server (NTRS)
Chow, R. R.; Ogilvie, P. L.
1986-01-01
This report is a user's manual which describes the operation of the computer program, GRUMWING. The program computes the viscous transonic flow over three-dimensional wings using a boundary layer type viscid-inviscid interaction approach. The inviscid solution is obtained by an approximate factorization (AFZ)method for the full potential equation. The boundary layer solution is based on integral entrainment methods.
Novel 3-D Computer Model Can Help Predict Pathogens’ Roles in Cancer | Poster
To understand how bacterial and viral infections contribute to human cancers, four NCI at Frederick scientists turned not to the lab bench, but to a computer. The team has created the world’s first—and currently, only—3-D computational approach for studying interactions between pathogen proteins and human proteins based on a molecular adaptation known as interface mimicry.
A cis-regulatory logic simulator.
Zeigler, Robert D; Gertz, Jason; Cohen, Barak A
2007-07-27
A major goal of computational studies of gene regulation is to accurately predict the expression of genes based on the cis-regulatory content of their promoters. The development of computational methods to decode the interactions among cis-regulatory elements has been slow, in part, because it is difficult to know, without extensive experimental validation, whether a particular method identifies the correct cis-regulatory interactions that underlie a given set of expression data. There is an urgent need for test expression data in which the interactions among cis-regulatory sites that produce the data are known. The ability to rapidly generate such data sets would facilitate the development and comparison of computational methods that predict gene expression patterns from promoter sequence. We developed a gene expression simulator which generates expression data using user-defined interactions between cis-regulatory sites. The simulator can incorporate additive, cooperative, competitive, and synergistic interactions between regulatory elements. Constraints on the spacing, distance, and orientation of regulatory elements and their interactions may also be defined and Gaussian noise can be added to the expression values. The simulator allows for a data transformation that simulates the sigmoid shape of expression levels from real promoters. We found good agreement between sets of simulated promoters and predicted regulatory modules from real expression data. We present several data sets that may be useful for testing new methodologies for predicting gene expression from promoter sequence. We developed a flexible gene expression simulator that rapidly generates large numbers of simulated promoters and their corresponding transcriptional output based on specified interactions between cis-regulatory sites. When appropriate rule sets are used, the data generated by our simulator faithfully reproduces experimentally derived data sets. We anticipate that using simulated gene expression data sets will facilitate the direct comparison of computational strategies to predict gene expression from promoter sequence. The source code is available online and as additional material. The test sets are available as additional material.
Digital communication support and Alzheimer's disease.
Ekström, Anna; Ferm, Ulrika; Samuelsson, Christina
2017-08-01
Communication is one of the areas where people with dementia and their caregivers experience most challenges. The purpose of this study is to contribute to the understanding of possibilities and pitfalls of using personalized communication applications installed on tablet computers to support communication for people with dementia and their conversational partners. The study is based on video recordings of a woman, 52 years old, with Alzheimer's disease interacting with her husband in their home. The couple was recorded interacting with and without a tablet computer including a personalized communication application. The results from the present study reveal both significant possibilities and potential difficulties in introducing a digital communication device to people with dementia and their conversational partners. For the woman in the present study, the amount of interactive actions and the number of communicative actions seem to increase with the use of the communication application. The results also indicate that problems associated with dementia are foregrounded in interaction where the tablet computer is used.
Protein-protein interaction predictions using text mining methods.
Papanikolaou, Nikolas; Pavlopoulos, Georgios A; Theodosiou, Theodosios; Iliopoulos, Ioannis
2015-03-01
It is beyond any doubt that proteins and their interactions play an essential role in most complex biological processes. The understanding of their function individually, but also in the form of protein complexes is of a great importance. Nowadays, despite the plethora of various high-throughput experimental approaches for detecting protein-protein interactions, many computational methods aiming to predict new interactions have appeared and gained interest. In this review, we focus on text-mining based computational methodologies, aiming to extract information for proteins and their interactions from public repositories such as literature and various biological databases. We discuss their strengths, their weaknesses and how they complement existing experimental techniques by simultaneously commenting on the biological databases which hold such information and the benchmark datasets that can be used for evaluating new tools. Copyright © 2014 Elsevier Inc. All rights reserved.
Challenges in Transcribing Multimodal Data: A Case Study
ERIC Educational Resources Information Center
Helm, Francesca; Dooly, Melinda
2017-01-01
Computer-mediated communication (CMC) once meant principally text-based communication mediated by computers, but rapid technological advances in recent years have heralded an era of multimodal communication with a growing emphasis on audio and video synchronous interaction. As CMC, in all its variants (text chats, video chats, forums, blogs, SMS,…
Design Rationale for a Complex Performance Assessment
ERIC Educational Resources Information Center
Williamson, David M.; Bauer, Malcolm; Steinberg, Linda S.; Mislevy, Robert J.; Behrens, John T.; DeMark, Sarah F.
2004-01-01
In computer-based interactive environments meant to support learning, students must bring a wide range of relevant knowledge, skills, and abilities to bear jointly as they solve meaningful problems in a learning domain. To function effectively as an assessment, a computer system must additionally be able to evoke and interpret observable evidence…
ERIC Educational Resources Information Center
Jarosz, Gaja
2010-01-01
This study examines the interacting roles of implicational markedness and frequency from the joint perspectives of formal linguistic theory, phonological acquisition and computational modeling. The hypothesis that child grammars are rankings of universal constraints, as in Optimality Theory (Prince & Smolensky, 1993/2004), that learning involves a…
Computer-Based Physics: An Anthology.
ERIC Educational Resources Information Center
Blum, Ronald, Ed.
Designed to serve as a guide for integrating interactive problem-solving or simulating computers into a college-level physics course, this anthology contains nine articles each of which includes an introduction, a student manual, and a teacher's guide. Among areas covered in the articles are the computerized reduction of data to a Gaussian…
Man Machine Systems in Education.
ERIC Educational Resources Information Center
Sall, Malkit S.
This review of the research literature on the interaction between humans and computers discusses how man machine systems can be utilized effectively in the learning-teaching process, especially in secondary education. Beginning with a definition of man machine systems and comments on the poor quality of much of the computer-based learning material…
ERIC Educational Resources Information Center
Chandramouli, Magesh; Chittamuru, Siva-Teja
2016-01-01
This paper explains the design of a graphics-based virtual environment for instructing computer hardware concepts to students, especially those at the beginner level. Photorealistic visualizations and simulations are designed and programmed with interactive features allowing students to practice, explore, and test themselves on computer hardware…
A Model for Intelligent Computer-Aided Education Systems.
ERIC Educational Resources Information Center
Du Plessis, Johan P.; And Others
1995-01-01
Proposes a model for intelligent computer-aided education systems that is based on cooperative learning, constructive problem-solving, object-oriented programming, interactive user interfaces, and expert system techniques. Future research is discussed, and a prototype for teaching mathematics to 10- to 12-year-old students is appended. (LRW)
Enhancing Student Performance Using Tablet Computers
ERIC Educational Resources Information Center
Enriquez, Amelito G.
2010-01-01
Tablet PCs have the potential to change the dynamics of classroom interaction through wireless communication coupled with pen-based computing technology that is suited for analyzing and solving engineering problems. This study focuses on how tablet PCs and wireless technology can be used during classroom instruction to create an Interactive…
The Impact of Electronic Media on Faculty Evaluation
ERIC Educational Resources Information Center
Barkhi, Reza; Williams, Paul
2010-01-01
With the proliferation of computer networks and the increased use of Internet-based applications, many forms of social interactions now take place in an on-line context through "Computer-Mediated Communication" (CMC). Many universities are now reaping the benefits of using CMC applications to collect data on student evaluations of…
Computer-Assisted Reading Intervention in a Secondary School: An Evaluation Study.
ERIC Educational Resources Information Center
Lynch, Lisa; Fawcett, Angela J.; Nicolson, Roderick I.
2000-01-01
RITA (Reader's Interactive Teaching Assistant) is a computer-based literacy support system that assists, rather than replaces, the teacher in providing support tailored to each child's profile of reading attainments. This study evaluated the effectiveness of RITA in secondary school with 8 children having very seriously disadvantaged literacy…
Changing How and What Children Learn in School with Computer-based Technologies.
ERIC Educational Resources Information Center
Roschelle, Jeremy M.; Pea, Roy D.; Hoadley, Christopher M.; Gordin, Douglas N.; Means, Barbara
2000-01-01
Explores how computer technology can help improve how and what children learn in school. Highlights several ways technology can enhance how children learn by supporting four fundamental characteristics of learning (active engagement, group participation, frequent interaction and feedback, and connections to real-world contexts). Additional…
Amor, N; Geris, L; Vander Sloten, J; Van Oosterwyck, H
2011-02-01
Surface microroughness can induce contact osteogenesis (bone formation initiated at the implant surface) around oral implants, which may result from different mechanisms, such as blood platelet-biomaterial interactions and/or interaction with (pre-)osteoblast cells. We have developed a computational model of implant endosseous healing that takes into account these interactions. We hypothesized that the initial attachment and growth factor release from activated platelets is crucial in achieving contact osteogenesis. In order to investigate this, a computational model was applied to an animal experiment [7] that looked at the effect of surface microroughness on endosseous healing. Surface-specific model parameters were implemented based on in vitro data (Lincks et al. Biomaterials 1998;19:2219-32). The predicted spatio-temporal patterns of bone formation correlated with the histological data. It was found that contact osteogenesis could not be predicted if only the osteogenic response of cells was up-regulated by surface microroughness. This could only be achieved if platelet-biomaterial interactions were sufficiently up-regulated as well. These results confirmed our hypothesis and demonstrate the added value of the computational model to study the importance of surface-mediated events for peri-implant endosseous healing. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Nesvizhskii, Alexey I.
2013-01-01
Analysis of protein interaction networks and protein complexes using affinity purification and mass spectrometry (AP/MS) is among most commonly used and successful applications of proteomics technologies. One of the foremost challenges of AP/MS data is a large number of false positive protein interactions present in unfiltered datasets. Here we review computational and informatics strategies for detecting specific protein interaction partners in AP/MS experiments, with a focus on incomplete (as opposite to genome-wide) interactome mapping studies. These strategies range from standard statistical approaches, to empirical scoring schemes optimized for a particular type of data, to advanced computational frameworks. The common denominator among these methods is the use of label-free quantitative information such as spectral counts or integrated peptide intensities that can be extracted from AP/MS data. We also discuss related issues such as combining multiple biological or technical replicates, and dealing with data generated using different tagging strategies. Computational approaches for benchmarking of scoring methods are discussed, and the need for generation of reference AP/MS datasets is highlighted. Finally, we discuss the possibility of more extended modeling of experimental AP/MS data, including integration with external information such as protein interaction predictions based on functional genomics data. PMID:22611043
FIND: difFerential chromatin INteractions Detection using a spatial Poisson process
Chen, Yang; Zhang, Michael Q.
2018-01-01
Polymer-based simulations and experimental studies indicate the existence of a spatial dependency between the adjacent DNA fibers involved in the formation of chromatin loops. However, the existing strategies for detecting differential chromatin interactions assume that the interacting segments are spatially independent from the other segments nearby. To resolve this issue, we developed a new computational method, FIND, which considers the local spatial dependency between interacting loci. FIND uses a spatial Poisson process to detect differential chromatin interactions that show a significant difference in their interaction frequency and the interaction frequency of their neighbors. Simulation and biological data analysis show that FIND outperforms the widely used count-based methods and has a better signal-to-noise ratio. PMID:29440282
Binding-Site Assessment by Virtual Fragment Screening
Huang, Niu; Jacobson, Matthew P.
2010-01-01
The accurate prediction of protein druggability (propensity to bind high-affinity drug-like small molecules) would greatly benefit the fields of chemical genomics and drug discovery. We have developed a novel approach to quantitatively assess protein druggability by computationally screening a fragment-like compound library. In analogy to NMR-based fragment screening, we dock ∼11000 fragments against a given binding site and compute a computational hit rate based on the fraction of molecules that exceed an empirically chosen score cutoff. We perform a large-scale evaluation of the approach on four datasets, totaling 152 binding sites. We demonstrate that computed hit rates correlate with hit rates measured experimentally in a previously published NMR-based screening method. Secondly, we show that the in silico fragment screening method can be used to distinguish known druggable and non-druggable targets, including both enzymes and protein-protein interaction sites. Finally, we explore the sensitivity of the results to different receptor conformations, including flexible protein-protein interaction sites. Besides its original aim to assess druggability of different protein targets, this method could be used to identifying druggable conformations of flexible binding site for lead discovery, and suggesting strategies for growing or joining initial fragment hits to obtain more potent inhibitors. PMID:20404926
Learner Agency and Its Effect on Spoken Interaction Time in the Target Language
ERIC Educational Resources Information Center
Knight, Janine; Barberà, Elena
2017-01-01
This paper presents the results of how four dyads in an online task-based synchronous computer-mediated (TB-SCMC) interaction event use their agency to carry out speaking tasks, and how their choices and actions affect time spent interacting in the target language. A case study approach was employed to analyse the language functions and cognitive…
NASA Astrophysics Data System (ADS)
Shen, Yanfeng; Cesnik, Carlos E. S.
2016-04-01
This paper presents a parallelized modeling technique for the efficient simulation of nonlinear ultrasonics introduced by the wave interaction with fatigue cracks. The elastodynamic wave equations with contact effects are formulated using an explicit Local Interaction Simulation Approach (LISA). The LISA formulation is extended to capture the contact-impact phenomena during the wave damage interaction based on the penalty method. A Coulomb friction model is integrated into the computation procedure to capture the stick-slip contact shear motion. The LISA procedure is coded using the Compute Unified Device Architecture (CUDA), which enables the highly parallelized supercomputing on powerful graphic cards. Both the explicit contact formulation and the parallel feature facilitates LISA's superb computational efficiency over the conventional finite element method (FEM). The theoretical formulations based on the penalty method is introduced and a guideline for the proper choice of the contact stiffness is given. The convergence behavior of the solution under various contact stiffness values is examined. A numerical benchmark problem is used to investigate the new LISA formulation and results are compared with a conventional contact finite element solution. Various nonlinear ultrasonic phenomena are successfully captured using this contact LISA formulation, including the generation of nonlinear higher harmonic responses. Nonlinear mode conversion of guided waves at fatigue cracks is also studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, Jakob; Pollak, Eli, E-mail: eli.pollak@weizmann.ac.il
2015-12-14
One of the challenges facing on-the-fly ab initio semiclassical time evolution is the large expense needed to converge the computation. In this paper, we suggest that a significant saving in computational effort may be achieved by employing a semiclassical initial value representation (SCIVR) of the quantum propagator based on the Heisenberg interaction representation. We formulate and test numerically a modification and simplification of the previous semiclassical interaction representation of Shao and Makri [J. Chem. Phys. 113, 3681 (2000)]. The formulation is based on the wavefunction form of the semiclassical propagation instead of the operator form, and so is simpler andmore » cheaper to implement. The semiclassical interaction representation has the advantage that the phase and prefactor vary relatively slowly as compared to the “standard” SCIVR methods. This improves its convergence properties significantly. Using a one-dimensional model system, the approximation is compared with Herman-Kluk’s frozen Gaussian and Heller’s thawed Gaussian approximations. The convergence properties of the interaction representation approach are shown to be favorable and indicate that the interaction representation is a viable way of incorporating on-the-fly force field information within a semiclassical framework.« less
Collaborative voxel-based surgical virtual environments.
Acosta, Eric; Muniz, Gilbert; Armonda, Rocco; Bowyer, Mark; Liu, Alan
2008-01-01
Virtual Reality-based surgical simulators can utilize Collaborative Virtual Environments (C-VEs) to provide team-based training. To support real-time interactions, C-VEs are typically replicated on each user's local computer and a synchronization method helps keep all local copies consistent. This approach does not work well for voxel-based C-VEs since large and frequent volumetric updates make synchronization difficult. This paper describes a method that allows multiple users to interact within a voxel-based C-VE for a craniotomy simulator being developed. Our C-VE method requires smaller update sizes and provides faster synchronization update rates than volumetric-based methods. Additionally, we address network bandwidth/latency issues to simulate networked haptic and bone drilling tool interactions with a voxel-based skull C-VE.
Intellectual Development and Interaction Effectiveness with DISCOVER.
ERIC Educational Resources Information Center
Roselle, Bruce E.; Hummel, Thomas J.
1988-01-01
Used Knefelkamp's and Slepitza's (1976) model of career-related intellectual development to investigate how students at different levels of development think as they interact with a computer-assisted career guidance system, DISCOVER II, which comprises modules on understanding interests, values, and abilities; searching for occupations based on…
DOT National Transportation Integrated Search
1997-06-01
This report describes analysis tools to predict shift under high-speed vehicle- : track interaction. The analysis approach is based on two fundamental models : developed (as part of this research); the first model computes the track lateral : residua...
Computer Model Of Fragmentation Of Atomic Nuclei
NASA Technical Reports Server (NTRS)
Wilson, John W.; Townsend, Lawrence W.; Tripathi, Ram K.; Norbury, John W.; KHAN FERDOUS; Badavi, Francis F.
1995-01-01
High Charge and Energy Semiempirical Nuclear Fragmentation Model (HZEFRG1) computer program developed to be computationally efficient, user-friendly, physics-based program for generating data bases on fragmentation of atomic nuclei. Data bases generated used in calculations pertaining to such radiation-transport applications as shielding against radiation in outer space, radiation dosimetry in outer space, cancer therapy in laboratories with beams of heavy ions, and simulation studies for designing detectors for experiments in nuclear physics. Provides cross sections for production of individual elements and isotopes in breakups of high-energy heavy ions by combined nuclear and Coulomb fields of interacting nuclei. Written in ANSI FORTRAN 77.
Internet messenger based smart virtual class learning using ubiquitous computing
NASA Astrophysics Data System (ADS)
Umam, K.; Mardi, S. N. S.; Hariadi, M.
2017-06-01
Internet messenger (IM) has become an important educational technology component in college education, IM makes it possible for students to engage in learning and collaborating at smart virtual class learning (SVCL) using ubiquitous computing. However, the model of IM-based smart virtual class learning using ubiquitous computing and empirical evidence that would favor a broad application to improve engagement and behavior are still limited. In addition, the expectation that IM based SVCL using ubiquitous computing could improve engagement and behavior on smart class cannot be confirmed because the majority of the reviewed studies followed instructions paradigms. This article aims to present the model of IM-based SVCL using ubiquitous computing and showing learners’ experiences in improved engagement and behavior for learner-learner and learner-lecturer interactions. The method applied in this paper includes design process and quantitative analysis techniques, with the purpose of identifying scenarios of ubiquitous computing and realize the impressions of learners and lecturers about engagement and behavior aspect and its contribution to learning
Umanodan, Rino; Shimazu, Akihito; Minami, Masahide; Kawakami, Norito
2014-01-01
This study evaluated the effectiveness of a computer-based stress management training (SMT) program in improving employees' psychological well-being and work performance. A total of 12 work units (N=263) were randomly assigned to either an intervention group (8 work units, n=142) or to a wait-list control group (4 work units, n=121). All participants were requested to answer online questionnaires assessing psychological well-being as a primary outcome, and coping style, social support, and knowledge about stress management as secondary outcomes at baseline (T0), immediately after the intervention (T1), and 2 months after the intervention (T2). The group × time interaction was tested using a mixed-model repeated measures ANOVA. Results showed a group × time interaction for "knowledge about stress management" in the entire sample. Among participants who had more than 3 d of training, a significant group × time interaction was observed for "problem-solving" and "avoidance and suppression" as well as "knowledge about stress management." Our computer-based stress management program was effective for improving knowledge about stress management. It was also effective for improving coping skills in instances where participants had enough time (at least 3 d) to complete all sessions.
Shachak, Aviv; Domb, Sharon; Borycki, Elizabeth; Fong, Nancy; Skyrme, Alison; Kushniruk, Andre; Reis, Shmuel; Ziv, Amitai
2015-01-01
We previously developed a prototype computer-based simulation to teach residents how to integrate better EMR use in the patient-physician interaction. To evaluate the prototype, we conducted usability tests with three non-clinician students, followed by a pilot study with 16 family medicine residents. The pilot study included pre- and post-test surveys of competencies and attitudes related to using the EMR in the consultation and the acceptability of the simulation, as well as 'think aloud' observations. After using the simulation prototypes, the mean scores for competencies and attitudes improved from 14.88/20 to 15.63/20 and from 22.25/30 to 23.13/30, respectively; however, only the difference for competencies was significant (paired t-test; t=-2.535, p=0.023). Mean scores for perceived usefulness and ease of use of the simulation were good (3.81 and 4.10 on a 5-point scale, respectively). Issues identified in usability testing include confusing interaction with some features, preferences for a more interactive representation of the EMR, and more options for shared decision making. In conclusion, computer-based simulation may be an effective and acceptable tool for teaching residents how to better use EMRs in clinical encounters.
Hybrid quantum computing with ancillas
NASA Astrophysics Data System (ADS)
Proctor, Timothy J.; Kendon, Viv
2016-10-01
In the quest to build a practical quantum computer, it is important to use efficient schemes for enacting the elementary quantum operations from which quantum computer programs are constructed. The opposing requirements of well-protected quantum data and fast quantum operations must be balanced to maintain the integrity of the quantum information throughout the computation. One important approach to quantum operations is to use an extra quantum system - an ancilla - to interact with the quantum data register. Ancillas can mediate interactions between separated quantum registers, and by using fresh ancillas for each quantum operation, data integrity can be preserved for longer. This review provides an overview of the basic concepts of the gate model quantum computer architecture, including the different possible forms of information encodings - from base two up to continuous variables - and a more detailed description of how the main types of ancilla-mediated quantum operations provide efficient quantum gates.
Spin wave Feynman diagram vertex computation package
NASA Astrophysics Data System (ADS)
Price, Alexander; Javernick, Philip; Datta, Trinanjan
Spin wave theory is a well-established theoretical technique that can correctly predict the physical behavior of ordered magnetic states. However, computing the effects of an interacting spin wave theory incorporating magnons involve a laborious by hand derivation of Feynman diagram vertices. The process is tedious and time consuming. Hence, to improve productivity and have another means to check the analytical calculations, we have devised a Feynman Diagram Vertex Computation package. In this talk, we will describe our research group's effort to implement a Mathematica based symbolic Feynman diagram vertex computation package that computes spin wave vertices. Utilizing the non-commutative algebra package NCAlgebra as an add-on to Mathematica, symbolic expressions for the Feynman diagram vertices of a Heisenberg quantum antiferromagnet are obtained. Our existing code reproduces the well-known expressions of a nearest neighbor square lattice Heisenberg model. We also discuss the case of a triangular lattice Heisenberg model where non collinear terms contribute to the vertex interactions.
Mobility in hospital work: towards a pervasive computing hospital environment.
Morán, Elisa B; Tentori, Monica; González, Víctor M; Favela, Jesus; Martínez-Garcia, Ana I
2007-01-01
Handheld computers are increasingly being used by hospital workers. With the integration of wireless networks into hospital information systems, handheld computers can provide the basis for a pervasive computing hospital environment; to develop this designers need empirical information to understand how hospital workers interact with information while moving around. To characterise the medical phenomena we report the results of a workplace study conducted in a hospital. We found that individuals spend about half of their time at their base location, where most of their interactions occur. On average, our informants spent 23% of their time performing information management tasks, followed by coordination (17.08%), clinical case assessment (15.35%) and direct patient care (12.6%). We discuss how our results offer insights for the design of pervasive computing technology, and directions for further research and development in this field such as transferring information between heterogeneous devices and integration of the physical and digital domains.
Deformation of Soft Tissue and Force Feedback Using the Smoothed Particle Hydrodynamics
Liu, Xuemei; Wang, Ruiyi; Li, Yunhua; Song, Dongdong
2015-01-01
We study the deformation and haptic feedback of soft tissue in virtual surgery based on a liver model by using a force feedback device named PHANTOM OMNI developed by SensAble Company in USA. Although a significant amount of research efforts have been dedicated to simulating the behaviors of soft tissue and implementing force feedback, it is still a challenging problem. This paper introduces a kind of meshfree method for deformation simulation of soft tissue and force computation based on viscoelastic mechanical model and smoothed particle hydrodynamics (SPH). Firstly, viscoelastic model can present the mechanical characteristics of soft tissue which greatly promotes the realism. Secondly, SPH has features of meshless technique and self-adaption, which supply higher precision than methods based on meshes for force feedback computation. Finally, a SPH method based on dynamic interaction area is proposed to improve the real time performance of simulation. The results reveal that SPH methodology is suitable for simulating soft tissue deformation and force feedback calculation, and SPH based on dynamic local interaction area has a higher computational efficiency significantly compared with usual SPH. Our algorithm has a bright prospect in the area of virtual surgery. PMID:26417380
Computational fluid dynamics uses in fluid dynamics/aerodynamics education
NASA Technical Reports Server (NTRS)
Holst, Terry L.
1994-01-01
The field of computational fluid dynamics (CFD) has advanced to the point where it can now be used for the purpose of fluid dynamics physics education. Because of the tremendous wealth of information available from numerical simulation, certain fundamental concepts can be efficiently communicated using an interactive graphical interrogation of the appropriate numerical simulation data base. In other situations, a large amount of aerodynamic information can be communicated to the student by interactive use of simple CFD tools on a workstation or even in a personal computer environment. The emphasis in this presentation is to discuss ideas for how this process might be implemented. Specific examples, taken from previous publications, will be used to highlight the presentation.
Mamykina, Lena; Vawdrey, David K.; Hripcsak, George
2016-01-01
Purpose To understand how much time residents spend using computers as compared with other activities, and what residents use computers for. Method This time and motion study was conducted in June and July 2010 at NewYork-Presbyterian/Columbia University Medical Center with seven residents (first-, second-, and third-year) on the general medicine service. An experienced observer shadowed residents during a single day shift, captured all their activities using an iPad application, and took field notes. The activities were captured using a validated taxonomy of clinical activities, expanded to describe computer-based activities with a greater level of detail. Results Residents spent 364.5 minutes (50.6%) of their shift time using computers, compared with 67.8 minutes (9.4%) interacting with patients. In addition, they spent 292.3 minutes (40.6%) talking with others in person, 186.0 minutes (25.8%) handling paper notes, 79.7 minutes (11.1%) in rounds, 80.0 minutes (11.1%) walking or waiting, and 54.0 minutes (7.5%) talking on the phone. Residents spent 685 minutes (59.6%) multitasking. Computer-based documentation activities amounted to 189.9 minutes (52.1%) of all computer-based activities time, with 128.7 minutes (35.3%) spent writing notes and 27.3 minutes (7.5%) reading notes composed by others. Conclusions The study showed residents spent considerably more time interacting with computers (over 50% of their shift time), than in direct contact with patients (less than 10% of their shift time). Some of this may be due to an increasing reliance on computing systems for access to patient data, further exacerbated by inefficiencies in the design of the electronic health record. PMID:27028026
Mamykina, Lena; Vawdrey, David K; Hripcsak, George
2016-06-01
To understand how much time residents spend using computers compared with other activities, and what residents use computers for. This time and motion study was conducted in June and July 2010 at NewYork-Presbyterian/Columbia University Medical Center with seven residents (first-, second-, and third-year) on the general medicine service. An experienced observer shadowed residents during a single day shift, captured all their activities using an iPad application, and took field notes. The activities were captured using a validated taxonomy of clinical activities, expanded to describe computer-based activities with a greater level of detail. Residents spent 364.5 minutes (50.6%) of their shift time using computers, compared with 67.8 minutes (9.4%) interacting with patients. In addition, they spent 292.3 minutes (40.6%) talking with others in person, 186.0 minutes (25.8%) handling paper notes, 79.7 minutes (11.1%) in rounds, 80.0 minutes (11.1%) walking or waiting, and 54.0 minutes (7.5%) talking on the phone. Residents spent 685 minutes (59.6%) multitasking. Computer-based documentation activities amounted to 189.9 minutes (52.1%) of all computer-based activities time, with 128.7 minutes (35.3%) spent writing notes and 27.3 minutes (7.5%) reading notes composed by others. The study showed that residents spent considerably more time interacting with computers (over 50% of their shift time) than in direct contact with patients (less than 10% of their shift time). Some of this may be due to an increasing reliance on computing systems for access to patient data, further exacerbated by inefficiencies in the design of the electronic health record.
You, Zhu-Hong; Li, Shuai; Gao, Xin; Luo, Xin; Ji, Zhen
2014-01-01
Protein-protein interactions are the basis of biological functions, and studying these interactions on a molecular level is of crucial importance for understanding the functionality of a living cell. During the past decade, biosensors have emerged as an important tool for the high-throughput identification of proteins and their interactions. However, the high-throughput experimental methods for identifying PPIs are both time-consuming and expensive. On the other hand, high-throughput PPI data are often associated with high false-positive and high false-negative rates. Targeting at these problems, we propose a method for PPI detection by integrating biosensor-based PPI data with a novel computational model. This method was developed based on the algorithm of extreme learning machine combined with a novel representation of protein sequence descriptor. When performed on the large-scale human protein interaction dataset, the proposed method achieved 84.8% prediction accuracy with 84.08% sensitivity at the specificity of 85.53%. We conducted more extensive experiments to compare the proposed method with the state-of-the-art techniques, support vector machine. The achieved results demonstrate that our approach is very promising for detecting new PPIs, and it can be a helpful supplement for biosensor-based PPI data detection.
De, Suvranu; Deo, Dhannanjay; Sankaranarayanan, Ganesh; Arikatla, Venkata S.
2012-01-01
Background While an update rate of 30 Hz is considered adequate for real time graphics, a much higher update rate of about 1 kHz is necessary for haptics. Physics-based modeling of deformable objects, especially when large nonlinear deformations and complex nonlinear material properties are involved, at these very high rates is one of the most challenging tasks in the development of real time simulation systems. While some specialized solutions exist, there is no general solution for arbitrary nonlinearities. Methods In this work we present PhyNNeSS - a Physics-driven Neural Networks-based Simulation System - to address this long-standing technical challenge. The first step is an off-line pre-computation step in which a database is generated by applying carefully prescribed displacements to each node of the finite element models of the deformable objects. In the next step, the data is condensed into a set of coefficients describing neurons of a Radial Basis Function network (RBFN). During real-time computation, these neural networks are used to reconstruct the deformation fields as well as the interaction forces. Results We present realistic simulation examples from interactive surgical simulation with real time force feedback. As an example, we have developed a deformable human stomach model and a Penrose-drain model used in the Fundamentals of Laparoscopic Surgery (FLS) training tool box. Conclusions A unique computational modeling system has been developed that is capable of simulating the response of nonlinear deformable objects in real time. The method distinguishes itself from previous efforts in that a systematic physics-based pre-computational step allows training of neural networks which may be used in real time simulations. We show, through careful error analysis, that the scheme is scalable, with the accuracy being controlled by the number of neurons used in the simulation. PhyNNeSS has been integrated into SoFMIS (Software Framework for Multimodal Interactive Simulation) for general use. PMID:22629108
Time and learning efficiency in Internet-based learning: a systematic review and meta-analysis.
Cook, David A; Levinson, Anthony J; Garside, Sarah
2010-12-01
Authors have claimed that Internet-based instruction promotes greater learning efficiency than non-computer methods. determine, through a systematic synthesis of evidence in health professions education, how Internet-based instruction compares with non-computer instruction in time spent learning, and what features of Internet-based instruction are associated with improved learning efficiency. we searched databases including MEDLINE, CINAHL, EMBASE, and ERIC from 1990 through November 2008. STUDY SELECTION AND DATA ABSTRACTION we included all studies quantifying learning time for Internet-based instruction for health professionals, compared with other instruction. Reviewers worked independently, in duplicate, to abstract information on interventions, outcomes, and study design. we identified 20 eligible studies. Random effects meta-analysis of 8 studies comparing Internet-based with non-Internet instruction (positive numbers indicating Internet longer) revealed pooled effect size (ES) for time -0.10 (p = 0.63). Among comparisons of two Internet-based interventions, providing feedback adds time (ES 0.67, p =0.003, two studies), and greater interactivity generally takes longer (ES 0.25, p = 0.089, five studies). One study demonstrated that adapting to learner prior knowledge saves time without significantly affecting knowledge scores. Other studies revealed that audio narration, video clips, interactive models, and animations increase learning time but also facilitate higher knowledge and/or satisfaction. Across all studies, time correlated positively with knowledge outcomes (r = 0.53, p = 0.021). on average, Internet-based instruction and non-computer instruction require similar time. Instructional strategies to enhance feedback and interactivity typically prolong learning time, but in many cases also enhance learning outcomes. Isolated examples suggest potential for improving efficiency in Internet-based instruction.
NASA Astrophysics Data System (ADS)
Iwasawa, Masaki; Tanikawa, Ataru; Hosono, Natsuki; Nitadori, Keigo; Muranushi, Takayuki; Makino, Junichiro
2016-08-01
We present the basic idea, implementation, measured performance, and performance model of FDPS (Framework for Developing Particle Simulators). FDPS is an application-development framework which helps researchers to develop simulation programs using particle methods for large-scale distributed-memory parallel supercomputers. A particle-based simulation program for distributed-memory parallel computers needs to perform domain decomposition, exchange of particles which are not in the domain of each computing node, and gathering of the particle information in other nodes which are necessary for interaction calculation. Also, even if distributed-memory parallel computers are not used, in order to reduce the amount of computation, algorithms such as the Barnes-Hut tree algorithm or the Fast Multipole Method should be used in the case of long-range interactions. For short-range interactions, some methods to limit the calculation to neighbor particles are required. FDPS provides all of these functions which are necessary for efficient parallel execution of particle-based simulations as "templates," which are independent of the actual data structure of particles and the functional form of the particle-particle interaction. By using FDPS, researchers can write their programs with the amount of work necessary to write a simple, sequential and unoptimized program of O(N2) calculation cost, and yet the program, once compiled with FDPS, will run efficiently on large-scale parallel supercomputers. A simple gravitational N-body program can be written in around 120 lines. We report the actual performance of these programs and the performance model. The weak scaling performance is very good, and almost linear speed-up was obtained for up to the full system of the K computer. The minimum calculation time per timestep is in the range of 30 ms (N = 107) to 300 ms (N = 109). These are currently limited by the time for the calculation of the domain decomposition and communication necessary for the interaction calculation. We discuss how we can overcome these bottlenecks.
NASA Technical Reports Server (NTRS)
Robers, James L.; Sobieszczanski-Sobieski, Jaroslaw
1989-01-01
Only recently have engineers begun making use of Artificial Intelligence (AI) tools in the area of conceptual design. To continue filling this void in the design process, a prototype knowledge-based system, called STRUTEX has been developed to initially configure a structure to support point loads in two dimensions. This prototype was developed for testing the application of AI tools to conceptual design as opposed to being a testbed for new methods for improving structural analysis and optimization. This system combines numerical and symbolic processing by the computer with interactive problem solving aided by the vision of the user. How the system is constructed to interact with the user is described. Of special interest is the information flow between the knowledge base and the data base under control of the algorithmic main program. Examples of computed and refined structures are presented during the explanation of the system.
A Knowledge-Based System for the Computer Assisted Diagnosis of Endoscopic Images
NASA Astrophysics Data System (ADS)
Kage, Andreas; Münzenmayer, Christian; Wittenberg, Thomas
Due to the actual demographic development the use of Computer-Assisted Diagnosis (CAD) systems becomes a more important part of clinical workflows and clinical decision making. Because changes on the mucosa of the esophagus can indicate the first stage of cancerous developments, there is a large interest to detect and correctly diagnose any such lesion. We present a knowledge-based system which is able to support a physician with the interpretation and diagnosis of endoscopic images of the esophagus. Our system is designed to support the physician directly during the examination of the patient, thus prodving diagnostic assistence at the point of care (POC). Based on an interactively marked region in an endoscopic image of interest, the system provides a diagnostic suggestion, based on an annotated reference image database. Furthermore, using relevant feedback mechanisms, the results can be enhanced interactively.
Adiabatic Quantum Computation with Neutral Cesium
NASA Astrophysics Data System (ADS)
Hankin, Aaron; Parazzoli, L.; Chou, Chin-Wen; Jau, Yuan-Yu; Burns, George; Young, Amber; Kemme, Shanalyn; Ferdinand, Andrew; Biedermann, Grant; Landahl, Andrew; Ivan H. Deutsch Collaboration; Mark Saffman Collaboration
2013-05-01
We are implementing a new platform for adiabatic quantum computation (AQC) based on trapped neutral atoms whose coupling is mediated by the dipole-dipole interactions of Rydberg states. Ground state cesium atoms are dressed by laser fields in a manner conditional on the Rydberg blockade mechanism, thereby providing the requisite entangling interactions. As a benchmark we study a Quadratic Unconstrained Binary Optimization (QUBO) problem whose solution is found in the ground state spin configuration of an Ising-like model. University of New Mexico: Ivan H. Deutsch, Tyler Keating, Krittika Goyal.
New space sensor and mesoscale data analysis
NASA Technical Reports Server (NTRS)
Hickey, John S.
1987-01-01
The developed Earth Science and Application Division (ESAD) system/software provides the research scientist with the following capabilities: an extensive data base management capibility to convert various experiment data types into a standard format; and interactive analysis and display package (AVE80); an interactive imaging/color graphics capability utilizing the Apple III and IBM PC workstations integrated into the ESAD computer system; and local and remote smart-terminal capability which provides color video, graphics, and Laserjet output. Recommendations for updating and enhancing the performance of the ESAD computer system are listed.
Proton Upset Monte Carlo Simulation
NASA Technical Reports Server (NTRS)
O'Neill, Patrick M.; Kouba, Coy K.; Foster, Charles C.
2009-01-01
The Proton Upset Monte Carlo Simulation (PROPSET) program calculates the frequency of on-orbit upsets in computer chips (for given orbits such as Low Earth Orbit, Lunar Orbit, and the like) from proton bombardment based on the results of heavy ion testing alone. The software simulates the bombardment of modern microelectronic components (computer chips) with high-energy (.200 MeV) protons. The nuclear interaction of the proton with the silicon of the chip is modeled and nuclear fragments from this interaction are tracked using Monte Carlo techniques to produce statistically accurate predictions.
NASA Astrophysics Data System (ADS)
Balac, Stéphane; Fernandez, Arnaud
2016-02-01
The computer program SPIP is aimed at solving the Generalized Non-Linear Schrödinger equation (GNLSE), involved in optics e.g. in the modelling of light-wave propagation in an optical fibre, by the Interaction Picture method, a new efficient alternative method to the Symmetric Split-Step method. In the SPIP program a dedicated costless adaptive step-size control based on the use of a 4th order embedded Runge-Kutta method is implemented in order to speed up the resolution.
Principles for the wise use of computers by children.
Straker, L; Pollock, C; Maslen, B
2009-11-01
Computer use by children at home and school is now common in many countries. Child computer exposure varies with the type of computer technology available and the child's age, gender and social group. This paper reviews the current exposure data and the evidence for positive and negative effects of computer use by children. Potential positive effects of computer use by children include enhanced cognitive development and school achievement, reduced barriers to social interaction, enhanced fine motor skills and visual processing and effective rehabilitation. Potential negative effects include threats to child safety, inappropriate content, exposure to violence, bullying, Internet 'addiction', displacement of moderate/vigorous physical activity, exposure to junk food advertising, sleep displacement, vision problems and musculoskeletal problems. The case for child specific evidence-based guidelines for wise use of computers is presented based on children using computers differently to adults, being physically, cognitively and socially different to adults, being in a state of change and development and the potential to impact on later adult risk. Progress towards child-specific guidelines is reported. Finally, a set of guideline principles is presented as the basis for more detailed guidelines on the physical, cognitive and social impact of computer use by children. The principles cover computer literacy, technology safety, child safety and privacy and appropriate social, cognitive and physical development. The majority of children in affluent communities now have substantial exposure to computers. This is likely to have significant effects on child physical, cognitive and social development. Ergonomics can provide and promote guidelines for wise use of computers by children and by doing so promote the positive effects and reduce the negative effects of computer-child, and subsequent computer-adult, interaction.
Digital processing of mesoscale analysis and space sensor data
NASA Technical Reports Server (NTRS)
Hickey, J. S.; Karitani, S.
1985-01-01
The mesoscale analysis and space sensor (MASS) data management and analysis system on the research computer system is presented. The MASS data base management and analysis system was implemented on the research computer system which provides a wide range of capabilities for processing and displaying large volumes of conventional and satellite derived meteorological data. The research computer system consists of three primary computers (HP-1000F, Harris/6, and Perkin-Elmer 3250), each of which performs a specific function according to its unique capabilities. The overall tasks performed concerning the software, data base management and display capabilities of the research computer system in terms of providing a very effective interactive research tool for the digital processing of mesoscale analysis and space sensor data is described.
Interactive Simulated Patient: Experiences with Collaborative E-Learning in Medicine
ERIC Educational Resources Information Center
Bergin, Rolf; Youngblood, Patricia; Ayers, Mary K.; Boberg, Jonas; Bolander, Klara; Courteille, Olivier; Dev, Parvati; Hindbeck, Hans; Edward, Leonard E., II; Stringer, Jennifer R.; Thalme, Anders; Fors, Uno G. H.
2003-01-01
Interactive Simulated Patient (ISP) is a computer-based simulation tool designed to provide medical students with the opportunity to practice their clinical problem solving skills. The ISP system allows students to perform most clinical decision-making procedures in a simulated environment, including history taking in natural language, many…
WebTOP: A 3D Interactive System for Teaching and Learning Optics
ERIC Educational Resources Information Center
Mzoughi, Taha; Herring, S. Davis; Foley, John T.; Morris, Matthew J.; Gilbert, Peter J.
2007-01-01
WebTOP is a three-dimensional, Web-based, interactive computer graphics system that helps instructors teach and students learn about waves and optics. Current subject areas include waves, geometrical optics, reflection and refraction, polarization, interference, diffraction, lasers, and scattering. Some of the topics covered are suited for…
Interaction in Distance Nursing Education
ERIC Educational Resources Information Center
Boz Yuksekdag, Belgin
2012-01-01
The purpose of this study is to determine psychiatry nurses' attitudes toward the interactions in distance nursing education, and also scrunize their attitudes based on demographics and computer/Internet usage. The comparative relational scanning model is the method of this study. The research data were collected through "The Scale of Attitudes of…
ERIC Educational Resources Information Center
Keyvan, Shahla A.; Pickard, Rodney; Song, Xiaolong
1997-01-01
Computer-aided instruction incorporating interactive multimedia and network technologies can boost teaching effectiveness and student learning. This article describes the development and implementation of network server-based interactive multimedia courseware for a fundamental course in nuclear engineering. A student survey determined that 80% of…
Modeling Interactions in Small Groups
ERIC Educational Resources Information Center
Heise, David R.
2013-01-01
A new theory of interaction within small groups posits that group members initiate actions when tension mounts between the affective meanings of their situational identities and impressions produced by recent events. Actors choose partners and behaviors so as to reduce the tensions. A computer model based on this theory, incorporating reciprocal…
WINDS: A Web-Based Intelligent Interactive Course on Data-Structures
ERIC Educational Resources Information Center
Sirohi, Vijayalaxmi
2007-01-01
The Internet has opened new ways of learning and has brought several advantages to computer-aided education. Global access, self-paced learning, asynchronous teaching, interactivity, and multimedia usage are some of these. Along with the advantages comes the challenge of designing the software using the available facilities. Integrating online…
ERIC Educational Resources Information Center
Sedig, Kamran; Liang, Hai-Ning
2006-01-01
Computer-based mathematical cognitive tools (MCTs) are a category of external aids intended to support and enhance learning and cognitive processes of learners. MCTs often contain interactive visual mathematical representations (VMRs), where VMRs are graphical representations that encode properties and relationships of mathematical concepts. In…
Persistence and Small Group Interaction.
ERIC Educational Resources Information Center
Hooper, Simon; And Others
The effects of persistence on students' ability to interact and learn in cooperative learning groups was studied, and the effect of collaboration on students' attitudes toward their partners was assessed. Participants were 138 sixth graders in a midwestern public school. A computer-based lesson and posttest dealt with the advertising concepts of…
A Contextualized, Differential Sequence Mining Method to Derive Students' Learning Behavior Patterns
ERIC Educational Resources Information Center
Kinnebrew, John S.; Loretz, Kirk M.; Biswas, Gautam
2013-01-01
Computer-based learning environments can produce a wealth of data on student learning interactions. This paper presents an exploratory data mining methodology for assessing and comparing students' learning behaviors from these interaction traces. The core algorithm employs a novel combination of sequence mining techniques to identify deferentially…
Computer-mediated interdisciplinary teams: theory and reality.
Vroman, Kerryellen; Kovacich, Joann
2002-05-01
The benefit of experience, tempered with the wisdom of hindsight and 5 years of text-based, asynchronous, computer-mediated, interdisciplinary team communications, provides the energy, insights and data shared in this article. Through the theoretical lens of group dynamics and the epistemology of interdisciplinary teaming, we analyze the interactions of a virtual interdisciplinary team to provide an understanding and appreciation of collaborative interdisciplinary communication in the context of interactive technologies. Whilst interactive technologies may require new patterns of language similar to that of learning a foreign language, what is communicated in the interdisciplinary team process does not change. Most important is the recognition that virtual teams, similar to their face-to-face counterparts, undergo the same challenges of interdisciplinary teaming and group developmental processes of formation: forming, storming, norming, performing, and transforming. After examining these dynamics of communication and collaboration in the context of the virtual team, the article concludes with guidelines facilitating interdisciplinary team computer-mediated communication.
Computational Investigation of Graphene-Carbon Nanotube-Polymer Composite
NASA Astrophysics Data System (ADS)
Jha, Sanjiv; Roth, Michael; Todde, Guido; Subramanian, Gopinath; Shukla, Manoj; Univ of Southern Mississippi Collaboration; US Army Engineer Research; Development Center 3909 Halls Ferry Road Vicksburg, MS 39180, USA Collaboration
Graphene is a single atom thick two dimensional carbon sheet where sp2 -hybridized carbon atoms are arranged in a honeycomb structure. The functionalization of graphene and carbon nanotubes (CNTs) with polymer is a route for developing high performance nanocomposite materials. We study the interfacial interactions among graphene, CNT, and Nylon 6 polymer using computational methods based on density functional theory (DFT) and empirical force-field. Our DFT calculations are carried out using Quantum-ESPRESSO electronic structure code with van der Waals functional (vdW-DF2), whereas the empirical calculations are performed using LAMMPS with the COMPASS force-field. Our results demonstrated that the interactions between (8,8) CNT and graphene, and between CNT/graphene and Nylon 6 consist mostly of van der Waals type. The computed Young's moduli indicated that the mechanical properties of carbon nanostructures are enhanced by their interactions with polymer. The presence of Stone-Wales (SW) defects lowered the Young's moduli of carbon nanostructures.
A-VCI: A flexible method to efficiently compute vibrational spectra
NASA Astrophysics Data System (ADS)
Odunlami, Marc; Le Bris, Vincent; Bégué, Didier; Baraille, Isabelle; Coulaud, Olivier
2017-06-01
The adaptive vibrational configuration interaction algorithm has been introduced as a new method to efficiently reduce the dimension of the set of basis functions used in a vibrational configuration interaction process. It is based on the construction of nested bases for the discretization of the Hamiltonian operator according to a theoretical criterion that ensures the convergence of the method. In the present work, the Hamiltonian is written as a sum of products of operators. The purpose of this paper is to study the properties and outline the performance details of the main steps of the algorithm. New parameters have been incorporated to increase flexibility, and their influence has been thoroughly investigated. The robustness and reliability of the method are demonstrated for the computation of the vibrational spectrum up to 3000 cm-1 of a widely studied 6-atom molecule (acetonitrile). Our results are compared to the most accurate up to date computation; we also give a new reference calculation for future work on this system. The algorithm has also been applied to a more challenging 7-atom molecule (ethylene oxide). The computed spectrum up to 3200 cm-1 is the most accurate computation that exists today on such systems.
A-VCI: A flexible method to efficiently compute vibrational spectra.
Odunlami, Marc; Le Bris, Vincent; Bégué, Didier; Baraille, Isabelle; Coulaud, Olivier
2017-06-07
The adaptive vibrational configuration interaction algorithm has been introduced as a new method to efficiently reduce the dimension of the set of basis functions used in a vibrational configuration interaction process. It is based on the construction of nested bases for the discretization of the Hamiltonian operator according to a theoretical criterion that ensures the convergence of the method. In the present work, the Hamiltonian is written as a sum of products of operators. The purpose of this paper is to study the properties and outline the performance details of the main steps of the algorithm. New parameters have been incorporated to increase flexibility, and their influence has been thoroughly investigated. The robustness and reliability of the method are demonstrated for the computation of the vibrational spectrum up to 3000 cm -1 of a widely studied 6-atom molecule (acetonitrile). Our results are compared to the most accurate up to date computation; we also give a new reference calculation for future work on this system. The algorithm has also been applied to a more challenging 7-atom molecule (ethylene oxide). The computed spectrum up to 3200 cm -1 is the most accurate computation that exists today on such systems.
A computational model of in vitro angiogenesis based on extracellular matrix fibre orientation.
Edgar, Lowell T; Sibole, Scott C; Underwood, Clayton J; Guilkey, James E; Weiss, Jeffrey A
2013-01-01
Recent interest in the process of vascularisation within the biomedical community has motivated numerous new research efforts focusing on the process of angiogenesis. Although the role of chemical factors during angiogenesis has been well documented, the role of mechanical factors, such as the interaction between angiogenic vessels and the extracellular matrix, remains poorly understood. In vitro methods for studying angiogenesis exist; however, measurements available using such techniques often suffer from limited spatial and temporal resolutions. For this reason, computational models have been extensively employed to investigate various aspects of angiogenesis. This paper outlines the formulation and validation of a simple and robust computational model developed to accurately simulate angiogenesis based on length, branching and orientation morphometrics collected from vascularised tissue constructs. Microvessels were represented as a series of connected line segments. The morphology of the vessels was determined by a linear combination of the collagen fibre orientation, the vessel density gradient and a random walk component. Excellent agreement was observed between computational and experimental morphometric data over time. Computational predictions of microvessel orientation within an anisotropic matrix correlated well with experimental data. The accuracy of this modelling approach makes it a valuable platform for investigating the role of mechanical interactions during angiogenesis.
The Man computer Interactive Data Access System: 25 Years of Interactive Processing.
NASA Astrophysics Data System (ADS)
Lazzara, Matthew A.; Benson, John M.; Fox, Robert J.; Laitsch, Denise J.; Rueden, Joseph P.; Santek, David A.; Wade, Delores M.; Whittaker, Thomas M.; Young, J. T.
1999-02-01
On 12 October 1998, it was the 25th anniversary of the Man computer Interactive Data Access System (McIDAS). On that date in 1973, McIDAS was first used operationally by scientists as a tool for data analysis. Over the last 25 years, McIDAS has undergone numerous architectural changes in an effort to keep pace with changing technology. In its early years, significant technological breakthroughs were required to achieve the functionality needed by atmospheric scientists. Today McIDAS is challenged by new Internet-based approaches to data access and data display. The history and impact of McIDAS, along with some of the lessons learned, are presented here
NASA Astrophysics Data System (ADS)
Akpınar, Ercan
2014-08-01
This study investigates the effects of using interactive computer animations based on predict-observe-explain (POE) as a presentation tool on primary school students' understanding of the static electricity concepts. A quasi-experimental pre-test/post-test control group design was utilized in this study. The experiment group consisted of 30 students, and the control group of 27 students. The control group received normal instruction in which the teacher provided instruction by means of lecture, discussion and homework. Whereas in the experiment group, dynamic and interactive animations based on POE were used as a presentation tool. Data collection tools used in the study were static electricity concept test and open-ended questions. The static electricity concept test was used as pre-test before the implementation, as post-test at the end of the implementation and as delay test approximately 6 weeks after the implementation. Open-ended questions were used at the end of the implementation and approximately 6 weeks after the implementation. Results indicated that the interactive animations used as presentation tools were more effective on the students' understanding of static electricity concepts compared to normal instruction.
Computer-based personality judgments are more accurate than those made by humans
Youyou, Wu; Kosinski, Michal; Stillwell, David
2015-01-01
Judging others’ personalities is an essential skill in successful social living, as personality is a key driver behind people’s interactions, behaviors, and emotions. Although accurate personality judgments stem from social-cognitive skills, developments in machine learning show that computer models can also make valid judgments. This study compares the accuracy of human and computer-based personality judgments, using a sample of 86,220 volunteers who completed a 100-item personality questionnaire. We show that (i) computer predictions based on a generic digital footprint (Facebook Likes) are more accurate (r = 0.56) than those made by the participants’ Facebook friends using a personality questionnaire (r = 0.49); (ii) computer models show higher interjudge agreement; and (iii) computer personality judgments have higher external validity when predicting life outcomes such as substance use, political attitudes, and physical health; for some outcomes, they even outperform the self-rated personality scores. Computers outpacing humans in personality judgment presents significant opportunities and challenges in the areas of psychological assessment, marketing, and privacy. PMID:25583507
Computer-based personality judgments are more accurate than those made by humans.
Youyou, Wu; Kosinski, Michal; Stillwell, David
2015-01-27
Judging others' personalities is an essential skill in successful social living, as personality is a key driver behind people's interactions, behaviors, and emotions. Although accurate personality judgments stem from social-cognitive skills, developments in machine learning show that computer models can also make valid judgments. This study compares the accuracy of human and computer-based personality judgments, using a sample of 86,220 volunteers who completed a 100-item personality questionnaire. We show that (i) computer predictions based on a generic digital footprint (Facebook Likes) are more accurate (r = 0.56) than those made by the participants' Facebook friends using a personality questionnaire (r = 0.49); (ii) computer models show higher interjudge agreement; and (iii) computer personality judgments have higher external validity when predicting life outcomes such as substance use, political attitudes, and physical health; for some outcomes, they even outperform the self-rated personality scores. Computers outpacing humans in personality judgment presents significant opportunities and challenges in the areas of psychological assessment, marketing, and privacy.
ERIC Educational Resources Information Center
Lee, Eun-Ju; Nass, Clifford
2002-01-01
Presents two experiments to address the questions of if and how normative social influence operates in anonymous computer-mediated communication and human-computer interaction. Finds that the perception of interaction partner (human vs. computer) moderated the group conformity effect such that the undergraduate student subjects expressed greater…
A rule based computer aided design system
NASA Technical Reports Server (NTRS)
Premack, T.
1986-01-01
A Computer Aided Design (CAD) system is presented which supports the iterative process of design, the dimensional continuity between mating parts, and the hierarchical structure of the parts in their assembled configuration. Prolog, an interactive logic programming language, is used to represent and interpret the data base. The solid geometry representing the parts is defined in parameterized form using the swept volume method. The system is demonstrated with a design of a spring piston.
System enhancements of Mesoscale Analysis and Space Sensor (MASS) computer system
NASA Technical Reports Server (NTRS)
Hickey, J. S.; Karitani, S.
1985-01-01
The interactive information processing for the mesoscale analysis and space sensor (MASS) program is reported. The development and implementation of new spaceborne remote sensing technology to observe and measure atmospheric processes is described. The space measurements and conventional observational data are processed together to gain an improved understanding of the mesoscale structure and dynamical evolution of the atmosphere relative to cloud development and precipitation processes. A Research Computer System consisting of three primary computers was developed (HP-1000F, Perkin-Elmer 3250, and Harris/6) which provides a wide range of capabilities for processing and displaying interactively large volumes of remote sensing data. The development of a MASS data base management and analysis system on the HP-1000F computer and extending these capabilities by integration with the Perkin-Elmer and Harris/6 computers using the MSFC's Apple III microcomputer workstations is described. The objectives are: to design hardware enhancements for computer integration and to provide data conversion and transfer between machines.
The effect of introducing computers into an introductory physics problem-solving laboratory
NASA Astrophysics Data System (ADS)
McCullough, Laura Ellen
2000-10-01
Computers are appearing in every type of classroom across the country. Yet they often appear without benefit of studying their effects. The research that is available on computer use in classrooms has found mixed results, and often ignores the theoretical and instructional contexts of the computer in the classroom. The University of Minnesota's physics department employs a cooperative-group problem solving pedagogy, based on a cognitive apprenticeship instructional model, in its calculus-based introductory physics course. This study was designed to determine possible negative effects of introducing a computerized data-acquisition and analysis tool into this pedagogy as a problem-solving tool for students to use in laboratory. To determine the effects of the computer tool, two quasi-experimental treatment groups were selected. The computer-tool group (N = 170) used a tool, designed for this study (VideoTool), to collect and analyze motion data in the laboratory. The control group (N = 170) used traditional non-computer equipment (spark tapes and Polaroid(TM) film). The curriculum was kept as similar as possible for the two groups. During the ten week academic quarter, groups were examined for effects on performance on conceptual tests and grades, attitudes towards the laboratory and the laboratory tools, and behaviors within cooperative groups. Possible interactions with gender were also examined. Few differences were found between the control and computer-tool groups. The control group received slightly higher scores on one conceptual test, but this difference was not educationally significant. The computer-tool group had slightly more positive attitudes towards using the computer tool than their counterparts had towards the traditional tools. The computer-tool group also perceived that they spoke more frequently about physics misunderstandings, while the control group felt that they discussed equipment difficulties more often. This perceptual difference interacted with gender, with the men in the control group more likely to discuss equipment difficulties than any other group. Overall, the differences between the control and quasi-experimental groups were minimal. It was concluded that carefully replacing traditional data collection and analysis tools with a computer tool had no negative effects on achievement, attitude, group behavior, and did not interact with gender.
NASA Astrophysics Data System (ADS)
Sippl, Wolfgang
2000-08-01
One of the major challenges in computational approaches to drug design is the accurate prediction of binding affinity of biomolecules. In the present study several prediction methods for a published set of estrogen receptor ligands are investigated and compared. The binding modes of 30 ligands were determined using the docking program AutoDock and were compared with available X-ray structures of estrogen receptor-ligand complexes. On the basis of the docking results an interaction energy-based model, which uses the information of the whole ligand-receptor complex, was generated. Several parameters were modified in order to analyze their influence onto the correlation between binding affinities and calculated ligand-receptor interaction energies. The highest correlation coefficient ( r 2 = 0.617, q 2 LOO = 0.570) was obtained considering protein flexibility during the interaction energy evaluation. The second prediction method uses a combination of receptor-based and 3D quantitative structure-activity relationships (3D QSAR) methods. The ligand alignment obtained from the docking simulations was taken as basis for a comparative field analysis applying the GRID/GOLPE program. Using the interaction field derived with a water probe and applying the smart region definition (SRD) variable selection, a significant and robust model was obtained ( r 2 = 0.991, q 2 LOO = 0.921). The predictive ability of the established model was further evaluated by using a test set of six additional compounds. The comparison with the generated interaction energy-based model and with a traditional CoMFA model obtained using a ligand-based alignment ( r 2 = 0.951, q 2 LOO = 0.796) indicates that the combination of receptor-based and 3D QSAR methods is able to improve the quality of the underlying model.
The Further Development of CSIEC Project Driven by Application and Evaluation in English Education
ERIC Educational Resources Information Center
Jia, Jiyou; Chen, Weichao
2009-01-01
In this paper, we present the comprehensive version of CSIEC (Computer Simulation in Educational Communication), an interactive web-based human-computer dialogue system with natural language for English instruction, and its tentative application and evaluation in English education. First, we briefly introduce the motivation for this project,…
Nonoccurrence of Negotiation of Meaning in Task-Based Synchronous Computer-Mediated Communication
ERIC Educational Resources Information Center
Van Der Zwaard, Rose; Bannink, Anne
2016-01-01
This empirical study investigated the occurrence of meaning negotiation in an interactive synchronous computer-mediated second language (L2) environment. Sixteen dyads (N = 32) consisting of nonnative speakers (NNSs) and native speakers (NSs) of English performed 2 different tasks using videoconferencing and written chat. The data were coded and…
ERIC Educational Resources Information Center
Rapeepisarn, Kowit; Wong, Kok Wai; Fung, Chun Che; Khine, Myint Swe
2008-01-01
When designing Educational Computer Games, designers usually consider target age, interactivity, interface and other related issues. They rarely explore the genres which should employ into one type of educational game. Recently, some digital game-based researchers made attempt to combine game genre with learning theory. Different researchers use…
Health Information System Simulation. Curriculum Improvement Project. Region II.
ERIC Educational Resources Information Center
Anderson, Beth H.; Lacobie, Kevin
This volume is one of three in a self-paced computer literacy course that gives allied health students a firm base of knowledge concerning computer usage in the hospital environment. It also develops skill in several applications software packages. This volume contains five self-paced modules that allow students to interact with a health…
Computer-Based Instruction in Statistical Inference; Final Report. Technical Memorandum (TM Series).
ERIC Educational Resources Information Center
Rosenbaum, J.; And Others
A two-year investigation into the development of computer-assisted instruction (CAI) for the improvement of undergraduate training in statistics was undertaken. The first year was largely devoted to designing PLANIT (Programming LANguage for Interactive Teaching) which reduces, or completely eliminates, the need an author of CAI lessons would…
On-Site to On-Line: Barriers to the Use of Computers for Continuing Education.
ERIC Educational Resources Information Center
Mamary, Edward M.; Charles, Patricia
2000-01-01
A survey of 1,120 physicians, nurse practitioners, and physician assistants identified their top preferences for continuing education delivery methods: in-person conferences, print-based self-study, and CD-ROM. Least favored were interactive audioconferences. Although most had computer access, traditional methods were more frequently used; lack of…
ERIC Educational Resources Information Center
Shin, Mikyung; Bryant, Diane P.
2017-01-01
Students with mathematics learning disabilities (MLD) have a weak understanding of fraction concepts and skills, which are foundations of algebra. Such students might benefit from computer-assisted instruction that utilizes evidence-based instructional components (cognitive strategies, feedback, virtual manipulatives). As a pilot study using a…
ERIC Educational Resources Information Center
Poitras, Eric G.; Lajoie, Susanne P.; Doleck, Tenzin; Jarrell, Amanda
2016-01-01
Learner modeling, a challenging and complex endeavor, is an important and oft-studied research theme in computer-supported education. From this perspective, Educational Data Mining (EDM) research has focused on modeling and comprehending various dimensions of learning in computer-based learning environments (CBLE). Researchers and designers are…
Computer Generated Optical Illusions: A Teaching and Research Tool.
ERIC Educational Resources Information Center
Bailey, Bruce; Harman, Wade
Interactive computer-generated simulations that highlight psychological principles were investigated in this study in which 33 female and 19 male undergraduate college student volunteers of median age 21 matched line and circle sizes in six variations of Ponzo's illusion. Prior to working with the illusions, data were collected based on subjects'…
Design and Development of a Web-Based Interactive Software Tool for Teaching Operating Systems
ERIC Educational Resources Information Center
Garmpis, Aristogiannis
2011-01-01
Operating Systems (OS) is an important and mandatory discipline in many Computer Science, Information Systems and Computer Engineering curricula. Some of its topics require a careful and detailed explanation from the instructor as they often involve theoretical concepts and somewhat complex mechanisms, demanding a certain degree of abstraction…
CyberStrategies: How To Build an Internet-Based Information System.
ERIC Educational Resources Information Center
Carroll, Michael L.; Downs, W. Scott
Many organizations grapple with a glut of electronic information spawned by stockpiles of incompatible computers. This book offers solutions in information sharing and computer interaction. Rather than being about the Internet per se, it is about approaches that are characteristic of the Internet and the managerial and technical aspects of…
ERIC Educational Resources Information Center
Jiang, L. Crystal; Bazarova, Natalie N.; Hancock, Jeffrey T.
2011-01-01
The present research investigated whether the attribution process through which people explain self-disclosures differs in text-based computer-mediated interactions versus face to face, and whether differences in causal attributions account for the increased intimacy frequently observed in mediated communication. In the experiment participants…
Cloud Computing Technologies in Writing Class: Factors Influencing Students' Learning Experience
ERIC Educational Resources Information Center
Wang, Jenny
2017-01-01
The proposed interactive online group within the cloud computing technologies as a main contribution of this paper provides easy and simple access to the cloud-based Software as a Service (SaaS) system and delivers effective educational tools for students and teacher on after-class group writing assignment activities. Therefore, this study…
Topological phases in the Haldane model with spin–spin on-site interactions
NASA Astrophysics Data System (ADS)
Rubio-García, A.; García-Ripoll, J. J.
2018-04-01
Ultracold atom experiments allow the study of topological insulators, such as the non-interacting Haldane model. In this work we study a generalization of the Haldane model with spin–spin on-site interactions that can be implemented on such experiments. We focus on measuring the winding number, a topological invariant, of the ground state, which we compute using a mean-field calculation that effectively captures long-range correlations and a matrix product state computation in a lattice with 64 sites. Our main result is that we show how the topological phases present in the non-interacting model survive until the interactions are comparable to the kinetic energy. We also demonstrate the accuracy of our mean-field approach in efficiently capturing long-range correlations. Based on state-of-the-art ultracold atom experiments, we propose an implementation of our model that can give information about the topological phases.
Nedea, S V; van Steenhoven, A A; Markvoort, A J; Spijker, P; Giordano, D
2014-05-01
The influence of gas-surface interactions of a dilute gas confined between two parallel walls on the heat flux predictions is investigated using a combined Monte Carlo (MC) and molecular dynamics (MD) approach. The accommodation coefficients are computed from the temperature of incident and reflected molecules in molecular dynamics and used as effective coefficients in Maxwell-like boundary conditions in Monte Carlo simulations. Hydrophobic and hydrophilic wall interactions are studied, and the effect of the gas-surface interaction potential on the heat flux and other characteristic parameters like density and temperature is shown. The heat flux dependence on the accommodation coefficient is shown for different fluid-wall mass ratios. We find that the accommodation coefficient is increasing considerably when the mass ratio is decreased. An effective map of the heat flux depending on the accommodation coefficient is given and we show that MC heat flux predictions using Maxwell boundary conditions based on the accommodation coefficient give good results when compared to pure molecular dynamics heat predictions. The accommodation coefficients computed for a dilute gas for different gas-wall interaction parameters and mass ratios are transferred to compute the heat flux predictions for a dense gas. Comparison of the heat fluxes derived using explicit MD, MC with Maxwell-like boundary conditions based on the accommodation coefficients, and pure Maxwell boundary conditions are discussed. A map of the heat flux dependence on the accommodation coefficients for a dense gas, and the effective accommodation coefficients for different gas-wall interactions are given. In the end, this approach is applied to study the gas-surface interactions of argon and xenon molecules on a platinum surface. The derived accommodation coefficients are compared with values of experimental results.
The binding domain of the HMGB1 inhibitor carbenoxolone: Theory and experiment
NASA Astrophysics Data System (ADS)
Mollica, Luca; Curioni, Alessandro; Andreoni, Wanda; Bianchi, Marco E.; Musco, Giovanna
2008-05-01
We present a combined computational and experimental study of the interaction of the Box A of the HMGB1 protein and carbenoxolone, an inhibitor of its pro-inflammatory activity. The computational approach consists of classical molecular dynamics (MD) simulations based on the GROMOS force field with quantum-refined (QRFF) atomic charges for the ligand. Experimental data consist of fluorescence intensities, chemical shift displacements, saturation transfer differences and intermolecular Nuclear Overhauser Enhancement signals. Good agreement is found between observations and the conformation of the ligand-protein complex resulting from QRFF-MD. In contrast, simple docking procedures and MD based on the unrefined force field provide models inconsistent with experiment. The ligand-protein binding is dominated by non-directional interactions.
NASA Technical Reports Server (NTRS)
Smith, M. E.; Gevins, A.; Brown, H.; Karnik, A.; Du, R.
2001-01-01
Electroencephalographic (EEG) recordings were made while 16 participants performed versions of a personal-computer-based flight simulation task of low, moderate, or high difficulty. As task difficulty increased, frontal midline theta EEG activity increased and alpha band activity decreased. A participant-specific function that combined multiple EEG features to create a single load index was derived from a sample of each participant's data and then applied to new test data from that participant. Index values were computed for every 4 s of task data. Across participants, mean task load index values increased systematically with increasing task difficulty and differed significantly between the different task versions. Actual or potential applications of this research include the use of multivariate EEG-based methods to monitor task loading during naturalistic computer-based work.
A comparison of traditional textbook and interactive computer learning of neuromuscular block.
Ohrn, M A; van Oostrom, J H; van Meurs, W L
1997-03-01
We designed an educational software package, RELAX, for teaching first-year anesthesiology residents about the pharmacology and clinical management of neuromuscular blockade. The software uses an interactive, problem-based approach and moves the user through cases in an operating room environment. It can be run on personal computers with Microsoft Windows (Microsoft Corp., Redmond, WA) and combines video, graphics, and text with mouse-driven user input. We utilized test scores 1) to determine whether our software was beneficial to be the educational progress of anesthesiology residents and 2) to compare computer-based learning with textbook learning. Twenty-three residents were divided into two groups matched for age and sex, and a pretest was administered to all 23 residents. There was no significant difference (P > 0.05) in the pretest scores of the two groups. Three weeks later, both groups were subjected to an educational intervention; one with our computer software and the other with selected textbooks. Both groups took a posttest immediately after the intervention. The test scores of the computer group improved significantly more (P < 0.05) than those of the textbook group. Although prior to the study the two groups showed no statistical difference in their familiarity with computers, the computer group reported much higher satisfaction with their learning experience than did the textbook group (P < 0.0001).
Agent-Based Modeling of Cancer Stem Cell Driven Solid Tumor Growth.
Poleszczuk, Jan; Macklin, Paul; Enderling, Heiko
2016-01-01
Computational modeling of tumor growth has become an invaluable tool to simulate complex cell-cell interactions and emerging population-level dynamics. Agent-based models are commonly used to describe the behavior and interaction of individual cells in different environments. Behavioral rules can be informed and calibrated by in vitro assays, and emerging population-level dynamics may be validated with both in vitro and in vivo experiments. Here, we describe the design and implementation of a lattice-based agent-based model of cancer stem cell driven tumor growth.
FIND: difFerential chromatin INteractions Detection using a spatial Poisson process.
Djekidel, Mohamed Nadhir; Chen, Yang; Zhang, Michael Q
2018-02-12
Polymer-based simulations and experimental studies indicate the existence of a spatial dependency between the adjacent DNA fibers involved in the formation of chromatin loops. However, the existing strategies for detecting differential chromatin interactions assume that the interacting segments are spatially independent from the other segments nearby. To resolve this issue, we developed a new computational method, FIND, which considers the local spatial dependency between interacting loci. FIND uses a spatial Poisson process to detect differential chromatin interactions that show a significant difference in their interaction frequency and the interaction frequency of their neighbors. Simulation and biological data analysis show that FIND outperforms the widely used count-based methods and has a better signal-to-noise ratio. © 2018 Djekidel et al.; Published by Cold Spring Harbor Laboratory Press.
Xiao, Bo; Imel, Zac E; Georgiou, Panayiotis; Atkins, David C; Narayanan, Shrikanth S
2016-05-01
Empathy is an important psychological process that facilitates human communication and interaction. Enhancement of empathy has profound significance in a range of applications. In this paper, we review emerging directions of research on computational analysis of empathy expression and perception as well as empathic interactions, including their simulation. We summarize the work on empathic expression analysis by the targeted signal modalities (e.g., text, audio, and facial expressions). We categorize empathy simulation studies into theory-based emotion space modeling or application-driven user and context modeling. We summarize challenges in computational study of empathy including conceptual framing and understanding of empathy, data availability, appropriate use and validation of machine learning techniques, and behavior signal processing. Finally, we propose a unified view of empathy computation and offer a series of open problems for future research.
Web-based hydrodynamics computing
NASA Astrophysics Data System (ADS)
Shimoide, Alan; Lin, Luping; Hong, Tracie-Lynne; Yoon, Ilmi; Aragon, Sergio R.
2005-01-01
Proteins are long chains of amino acids that have a definite 3-d conformation and the shape of each protein is vital to its function. Since proteins are normally in solution, hydrodynamics (describes the movement of solvent around a protein as a function of shape and size of the molecule) can be used to probe the size and shape of proteins compared to those derived from X-ray crystallography. The computation chain needed for these hydrodynamics calculations consists of several separate programs by different authors on various platforms and often requires 3D visualizations of intermediate results. Due to the complexity, tools developed by a particular research group are not readily available for use by other groups, nor even by the non-experts within the same research group. To alleviate this situation, and to foment the easy and wide distribution of computational tools worldwide, we developed a web based interactive computational environment (WICE) including interactive 3D visualization that can be used with any web browser. Java based technologies were used to provide a platform neutral, user-friendly solution. Java Server Pages (JSP), Java Servlets, Java Beans, JOGL (Java bindings for OpenGL), and Java Web Start were used to create a solution that simplifies the computing chain for the user allowing the user to focus on their scientific research. WICE hides complexity from the user and provides robust and sophisticated visualization through a web browser.
Web-based hydrodynamics computing
NASA Astrophysics Data System (ADS)
Shimoide, Alan; Lin, Luping; Hong, Tracie-Lynne; Yoon, Ilmi; Aragon, Sergio R.
2004-12-01
Proteins are long chains of amino acids that have a definite 3-d conformation and the shape of each protein is vital to its function. Since proteins are normally in solution, hydrodynamics (describes the movement of solvent around a protein as a function of shape and size of the molecule) can be used to probe the size and shape of proteins compared to those derived from X-ray crystallography. The computation chain needed for these hydrodynamics calculations consists of several separate programs by different authors on various platforms and often requires 3D visualizations of intermediate results. Due to the complexity, tools developed by a particular research group are not readily available for use by other groups, nor even by the non-experts within the same research group. To alleviate this situation, and to foment the easy and wide distribution of computational tools worldwide, we developed a web based interactive computational environment (WICE) including interactive 3D visualization that can be used with any web browser. Java based technologies were used to provide a platform neutral, user-friendly solution. Java Server Pages (JSP), Java Servlets, Java Beans, JOGL (Java bindings for OpenGL), and Java Web Start were used to create a solution that simplifies the computing chain for the user allowing the user to focus on their scientific research. WICE hides complexity from the user and provides robust and sophisticated visualization through a web browser.
Singh, Karandeep; Ahn, Chang-Won; Paik, Euihyun; Bae, Jang Won; Lee, Chun-Hee
2018-01-01
Artificial life (ALife) examines systems related to natural life, its processes, and its evolution, using simulations with computer models, robotics, and biochemistry. In this article, we focus on the computer modeling, or "soft," aspects of ALife and prepare a framework for scientists and modelers to be able to support such experiments. The framework is designed and built to be a parallel as well as distributed agent-based modeling environment, and does not require end users to have expertise in parallel or distributed computing. Furthermore, we use this framework to implement a hybrid model using microsimulation and agent-based modeling techniques to generate an artificial society. We leverage this artificial society to simulate and analyze population dynamics using Korean population census data. The agents in this model derive their decisional behaviors from real data (microsimulation feature) and interact among themselves (agent-based modeling feature) to proceed in the simulation. The behaviors, interactions, and social scenarios of the agents are varied to perform an analysis of population dynamics. We also estimate the future cost of pension policies based on the future population structure of the artificial society. The proposed framework and model demonstrates how ALife techniques can be used by researchers in relation to social issues and policies.
Discovery of a small-molecule inhibitor of Dvl-CXXC5 interaction by computational approaches
NASA Astrophysics Data System (ADS)
Ma, Songling; Choi, Jiwon; Jin, Xuemei; Kim, Hyun-Yi; Yun, Ji-Hye; Lee, Weontae; Choi, Kang-Yell; No, Kyoung Tai
2018-05-01
The Wnt/β-catenin signaling pathway plays a significant role in the control of osteoblastogenesis and bone formation. CXXC finger protein 5 (CXXC5) has been recently identified as a negative feedback regulator of osteoblast differentiation through a specific interaction with Dishevelled (Dvl) protein. It was reported that targeting the Dvl-CXXC5 interaction could be a novel anabolic therapeutic target for osteoporosis. In this study, complex structure of Dvl PDZ domain and CXXC5 peptide was simulated with molecular dynamics (MD). Based on the structural analysis of binding modes of MD-simulated Dvl PDZ domain with CXXC5 peptide and crystal Dvl PDZ domain with synthetic peptide-ligands, we generated two different pharmacophore models and applied pharmacophore-based virtual screening to discover potent inhibitors of the Dvl-CXXC5 interaction for the anabolic therapy of osteoporosis. Analysis of 16 compounds selected by means of a virtual screening protocol yielded four compounds that effectively disrupted the Dvl-CXXC5 interaction in the fluorescence polarization assay. Potential compounds were validated by fluorescence spectroscopy and nuclear magnetic resonance. We successfully identified a highly potent inhibitor, BMD4722, which directly binds to the Dvl PDZ domain and disrupts the Dvl-CXXC5 interaction. Overall, CXXC5-Dvl PDZ domain complex based pharmacophore combined with various traditional and simple computational methods is a promising approach for the development of modulators targeting the Dvl-CXXC5 interaction, and the potent inhibitor BMD4722 could serve as a starting point to discover or design more potent and specific the Dvl-CXXC5 interaction disruptors.
Discovery of a small-molecule inhibitor of Dvl-CXXC5 interaction by computational approaches.
Ma, Songling; Choi, Jiwon; Jin, Xuemei; Kim, Hyun-Yi; Yun, Ji-Hye; Lee, Weontae; Choi, Kang-Yell; No, Kyoung Tai
2018-05-01
The Wnt/β-catenin signaling pathway plays a significant role in the control of osteoblastogenesis and bone formation. CXXC finger protein 5 (CXXC5) has been recently identified as a negative feedback regulator of osteoblast differentiation through a specific interaction with Dishevelled (Dvl) protein. It was reported that targeting the Dvl-CXXC5 interaction could be a novel anabolic therapeutic target for osteoporosis. In this study, complex structure of Dvl PDZ domain and CXXC5 peptide was simulated with molecular dynamics (MD). Based on the structural analysis of binding modes of MD-simulated Dvl PDZ domain with CXXC5 peptide and crystal Dvl PDZ domain with synthetic peptide-ligands, we generated two different pharmacophore models and applied pharmacophore-based virtual screening to discover potent inhibitors of the Dvl-CXXC5 interaction for the anabolic therapy of osteoporosis. Analysis of 16 compounds selected by means of a virtual screening protocol yielded four compounds that effectively disrupted the Dvl-CXXC5 interaction in the fluorescence polarization assay. Potential compounds were validated by fluorescence spectroscopy and nuclear magnetic resonance. We successfully identified a highly potent inhibitor, BMD4722, which directly binds to the Dvl PDZ domain and disrupts the Dvl-CXXC5 interaction. Overall, CXXC5-Dvl PDZ domain complex based pharmacophore combined with various traditional and simple computational methods is a promising approach for the development of modulators targeting the Dvl-CXXC5 interaction, and the potent inhibitor BMD4722 could serve as a starting point to discover or design more potent and specific the Dvl-CXXC5 interaction disruptors.
Discovery of a small-molecule inhibitor of Dvl-CXXC5 interaction by computational approaches
NASA Astrophysics Data System (ADS)
Ma, Songling; Choi, Jiwon; Jin, Xuemei; Kim, Hyun-Yi; Yun, Ji-Hye; Lee, Weontae; Choi, Kang-Yell; No, Kyoung Tai
2018-04-01
The Wnt/β-catenin signaling pathway plays a significant role in the control of osteoblastogenesis and bone formation. CXXC finger protein 5 (CXXC5) has been recently identified as a negative feedback regulator of osteoblast differentiation through a specific interaction with Dishevelled (Dvl) protein. It was reported that targeting the Dvl-CXXC5 interaction could be a novel anabolic therapeutic target for osteoporosis. In this study, complex structure of Dvl PDZ domain and CXXC5 peptide was simulated with molecular dynamics (MD). Based on the structural analysis of binding modes of MD-simulated Dvl PDZ domain with CXXC5 peptide and crystal Dvl PDZ domain with synthetic peptide-ligands, we generated two different pharmacophore models and applied pharmacophore-based virtual screening to discover potent inhibitors of the Dvl-CXXC5 interaction for the anabolic therapy of osteoporosis. Analysis of 16 compounds selected by means of a virtual screening protocol yielded four compounds that effectively disrupted the Dvl-CXXC5 interaction in the fluorescence polarization assay. Potential compounds were validated by fluorescence spectroscopy and nuclear magnetic resonance. We successfully identified a highly potent inhibitor, BMD4722, which directly binds to the Dvl PDZ domain and disrupts the Dvl-CXXC5 interaction. Overall, CXXC5-Dvl PDZ domain complex based pharmacophore combined with various traditional and simple computational methods is a promising approach for the development of modulators targeting the Dvl-CXXC5 interaction, and the potent inhibitor BMD4722 could serve as a starting point to discover or design more potent and specific the Dvl-CXXC5 interaction disruptors.
Merging Technology and Emotions: Introduction to Affective Computing.
Brigham, Tara J
2017-01-01
Affective computing technologies are designed to sense and respond based on human emotions. This technology allows a computer system to process the information gathered from various sensors to assess the emotional state of an individual. The system then offers a distinct response based on what it "felt." While this is completely unlike how most people interact with electronics today, this technology is likely to trickle into future everyday life. This column will explain what affective computing is, some of its benefits, and concerns with its adoption. It will also provide an overview of its implication in the library setting and offer selected examples of how and where it is currently being used.
Sangadala, Sreedhara; Boden, Scott D; Metpally, Raghu Prasad Rao; Reddy, Boojala Vijay B
2007-08-15
LIM Mineralization Protein-1 (LMP-1) has been cloned and shown to be osteoinductive. Our efforts to understand the mode of action of LMP-1 led to the determination that LMP-1 interacts with Smad Ubiquitin Regulatory Factor-1 (Smurf1). Smurf1 targets osteogenic Smads, Smad1/5, for ubiquitin-mediated proteasomal degradation. Smurf1 interaction with LMP-1 or Smads is based on the presence of unique WW-domain interacting motif in these target molecules. By performing site-directed mutagenesis and binding studies in vitro on purified recombinant proteins, we identified a specific motif within the osteogenic region of several LMP isoforms that is necessary for Smurf1 interaction. Similarly, we have identified that the WW2 domain of Smurf1 is necessary for target protein interaction. Here, we present a homology-based modeling of the Smurf1 WW2 domain and its interacting motif of LMP-1. We performed computational docking of the interacting domains in Smurf1 and LMPs to identify the key amino acid residues involved in their binding regions. In support of the computational predictions, we also present biochemical evidence supporting the hypothesis that the physical interaction of Smurf1 and osteoinductive forms of LMP may prevent Smurf1 from targeting osteogenic Smads by ubiquitin-mediated proteasomal degradation.
Criteria for Evaluating a Game-Based CALL Platform
ERIC Educational Resources Information Center
Ní Chiaráin, Neasa; Ní Chasaide, Ailbhe
2017-01-01
Game-based Computer-Assisted Language Learning (CALL) is an area that currently warrants attention, as task-based, interactive, multimodal games increasingly show promise for language learning. This area is inherently multidisciplinary--theories from second language acquisition, games, and psychology must be explored and relevant concepts from…
An Integrated Crustal Dynamics Simulator
NASA Astrophysics Data System (ADS)
Xing, H. L.; Mora, P.
2007-12-01
Numerical modelling offers an outstanding opportunity to gain an understanding of the crustal dynamics and complex crustal system behaviour. This presentation provides our long-term and ongoing effort on finite element based computational model and software development to simulate the interacting fault system for earthquake forecasting. A R-minimum strategy based finite-element computational model and software tool, PANDAS, for modelling 3-dimensional nonlinear frictional contact behaviour between multiple deformable bodies with the arbitrarily-shaped contact element strategy has been developed by the authors, which builds up a virtual laboratory to simulate interacting fault systems including crustal boundary conditions and various nonlinearities (e.g. from frictional contact, materials, geometry and thermal coupling). It has been successfully applied to large scale computing of the complex nonlinear phenomena in the non-continuum media involving the nonlinear frictional instability, multiple material properties and complex geometries on supercomputers, such as the South Australia (SA) interacting fault system, South California fault model and Sumatra subduction model. It has been also extended and to simulate the hot fractured rock (HFR) geothermal reservoir system in collaboration of Geodynamics Ltd which is constructing the first geothermal reservoir system in Australia and to model the tsunami generation induced by earthquakes. Both are supported by Australian Research Council.
A computational approach to climate science education with CLIMLAB
NASA Astrophysics Data System (ADS)
Rose, B. E. J.
2017-12-01
CLIMLAB is a Python-based software toolkit for interactive, process-oriented climate modeling for use in education and research. It is motivated by the need for simpler tools and more reproducible workflows with which to "fill in the gaps" between blackboard-level theory and the results of comprehensive climate models. With CLIMLAB you can interactively mix and match physical model components, or combine simpler process models together into a more comprehensive model. I use CLIMLAB in the classroom to put models in the hands of students (undergraduate and graduate), and emphasize a hierarchical, process-oriented approach to understanding the key emergent properties of the climate system. CLIMLAB is equally a tool for climate research, where the same needs exist for more robust, process-based understanding and reproducible computational results. I will give an overview of CLIMLAB and an update on recent developments, including: a full-featured, well-documented, interactive implementation of a widely-used radiation model (RRTM) packaging with conda-forge for compiler-free (and hassle-free!) installation on Mac, Windows and Linux interfacing with xarray for i/o and graphics with gridded model data a rich and growing collection of examples and self-computing lecture notes in Jupyter notebook format
Multipole Algorithms for Molecular Dynamics Simulation on High Performance Computers.
NASA Astrophysics Data System (ADS)
Elliott, William Dewey
1995-01-01
A fundamental problem in modeling large molecular systems with molecular dynamics (MD) simulations is the underlying N-body problem of computing the interactions between all pairs of N atoms. The simplest algorithm to compute pair-wise atomic interactions scales in runtime {cal O}(N^2), making it impractical for interesting biomolecular systems, which can contain millions of atoms. Recently, several algorithms have become available that solve the N-body problem by computing the effects of all pair-wise interactions while scaling in runtime less than {cal O}(N^2). One algorithm, which scales {cal O}(N) for a uniform distribution of particles, is called the Greengard-Rokhlin Fast Multipole Algorithm (FMA). This work describes an FMA-like algorithm called the Molecular Dynamics Multipole Algorithm (MDMA). The algorithm contains several features that are new to N-body algorithms. MDMA uses new, efficient series expansion equations to compute general 1/r^{n } potentials to arbitrary accuracy. In particular, the 1/r Coulomb potential and the 1/r^6 portion of the Lennard-Jones potential are implemented. The new equations are based on multivariate Taylor series expansions. In addition, MDMA uses a cell-to-cell interaction region of cells that is closely tied to worst case error bounds. The worst case error bounds for MDMA are derived in this work also. These bounds apply to other multipole algorithms as well. Several implementation enhancements are described which apply to MDMA as well as other N-body algorithms such as FMA and tree codes. The mathematics of the cell -to-cell interactions are converted to the Fourier domain for reduced operation count and faster computation. A relative indexing scheme was devised to locate cells in the interaction region which allows efficient pre-computation of redundant information and prestorage of much of the cell-to-cell interaction. Also, MDMA was integrated into the MD program SIgMA to demonstrate the performance of the program over several simulation timesteps. One MD application described here highlights the utility of including long range contributions to Lennard-Jones potential in constant pressure simulations. Another application shows the time dependence of long range forces in a multiple time step MD simulation.
NASA Technical Reports Server (NTRS)
Gliebe, P; Mani, R.; Shin, H.; Mitchell, B.; Ashford, G.; Salamah, S.; Connell, S.; Huff, Dennis (Technical Monitor)
2000-01-01
This report describes work performed on Contract NAS3-27720AoI 13 as part of the NASA Advanced Subsonic Transport (AST) Noise Reduction Technology effort. Computer codes were developed to provide quantitative prediction, design, and analysis capability for several aircraft engine noise sources. The objective was to provide improved, physics-based tools for exploration of noise-reduction concepts and understanding of experimental results. Methods and codes focused on fan broadband and 'buzz saw' noise and on low-emissions combustor noise and compliment work done by other contractors under the NASA AST program to develop methods and codes for fan harmonic tone noise and jet noise. The methods and codes developed and reported herein employ a wide range of approaches, from the strictly empirical to the completely computational, with some being semiempirical analytical, and/or analytical/computational. Emphasis was on capturing the essential physics while still considering method or code utility as a practical design and analysis tool for everyday engineering use. Codes and prediction models were developed for: (1) an improved empirical correlation model for fan rotor exit flow mean and turbulence properties, for use in predicting broadband noise generated by rotor exit flow turbulence interaction with downstream stator vanes: (2) fan broadband noise models for rotor and stator/turbulence interaction sources including 3D effects, noncompact-source effects. directivity modeling, and extensions to the rotor supersonic tip-speed regime; (3) fan multiple-pure-tone in-duct sound pressure prediction methodology based on computational fluid dynamics (CFD) analysis; and (4) low-emissions combustor prediction methodology and computer code based on CFD and actuator disk theory. In addition. the relative importance of dipole and quadrupole source mechanisms was studied using direct CFD source computation for a simple cascadeigust interaction problem, and an empirical combustor-noise correlation model was developed from engine acoustic test results. This work provided several insights on potential approaches to reducing aircraft engine noise. Code development is described in this report, and those insights are discussed.
Mapping proteins in the presence of paralogs using units of coevolution
2013-01-01
Background We study the problem of mapping proteins between two protein families in the presence of paralogs. This problem occurs as a difficult subproblem in coevolution-based computational approaches for protein-protein interaction prediction. Results Similar to prior approaches, our method is based on the idea that coevolution implies equal rates of sequence evolution among the interacting proteins, and we provide a first attempt to quantify this notion in a formal statistical manner. We call the units that are central to this quantification scheme the units of coevolution. A unit consists of two mapped protein pairs and its score quantifies the coevolution of the pairs. This quantification allows us to provide a maximum likelihood formulation of the paralog mapping problem and to cast it into a binary quadratic programming formulation. Conclusion CUPID, our software tool based on a Lagrangian relaxation of this formulation, makes it, for the first time, possible to compute state-of-the-art quality pairings in a few minutes of runtime. In summary, we suggest a novel alternative to the earlier available approaches, which is statistically sound and computationally feasible. PMID:24564758
Interactive activation and mutual constraint satisfaction in perception and cognition.
McClelland, James L; Mirman, Daniel; Bolger, Donald J; Khaitan, Pranav
2014-08-01
In a seminal 1977 article, Rumelhart argued that perception required the simultaneous use of multiple sources of information, allowing perceivers to optimally interpret sensory information at many levels of representation in real time as information arrives. Building on Rumelhart's arguments, we present the Interactive Activation hypothesis-the idea that the mechanism used in perception and comprehension to achieve these feats exploits an interactive activation process implemented through the bidirectional propagation of activation among simple processing units. We then examine the interactive activation model of letter and word perception and the TRACE model of speech perception, as early attempts to explore this hypothesis, and review the experimental evidence relevant to their assumptions and predictions. We consider how well these models address the computational challenge posed by the problem of perception, and we consider how consistent they are with evidence from behavioral experiments. We examine empirical and theoretical controversies surrounding the idea of interactive processing, including a controversy that swirls around the relationship between interactive computation and optimal Bayesian inference. Some of the implementation details of early versions of interactive activation models caused deviation from optimality and from aspects of human performance data. More recent versions of these models, however, overcome these deficiencies. Among these is a model called the multinomial interactive activation model, which explicitly links interactive activation and Bayesian computations. We also review evidence from neurophysiological and neuroimaging studies supporting the view that interactive processing is a characteristic of the perceptual processing machinery in the brain. In sum, we argue that a computational analysis, as well as behavioral and neuroscience evidence, all support the Interactive Activation hypothesis. The evidence suggests that contemporary versions of models based on the idea of interactive activation continue to provide a basis for efforts to achieve a fuller understanding of the process of perception. Copyright © 2014 Cognitive Science Society, Inc.
NASA Astrophysics Data System (ADS)
Oliver, Joseph Steve; Hodges, Georgia W.; Moore, James N.; Cohen, Allan; Jang, Yoonsun; Brown, Scott A.; Kwon, Kyung A.; Jeong, Sophia; Raven, Sara P.; Jurkiewicz, Melissa; Robertson, Tom P.
2017-11-01
Research into the efficacy of modules featuring dynamic visualizations, case studies, and interactive learning environments is reported here. This quasi-experimental 2-year study examined the implementation of three interactive computer-based instructional modules within a curricular unit covering cellular biology concepts in an introductory high school biology course. The modules featured dynamic visualizations and focused on three processes that underlie much of cellular biology: diffusion, osmosis, and filtration. Pre-tests and post-tests were used to assess knowledge growth across the unit. A mixture Rasch model analysis of the post-test data revealed two groups of students. In both years of the study, a large proportion of the students were classified as low-achieving based on their pre-test scores. The use of the modules in the Cell Unit in year 2 was associated with a much larger proportion of the students having transitioned to the high-achieving group than in year 1. In year 2, the same teachers taught the same concepts as year 1 but incorporated the interactive computer-based modules into the cell biology unit of the curriculum. In year 2, 67% of students initially classified as low-achieving were classified as high-achieving at the end of the unit. Examination of responses to assessments embedded within the modules as well as post-test items linked transition to the high-achieving group with correct responses to items that both referenced the visualization and the contextualization of that visualization within the module. This study points to the importance of dynamic visualization within contextualized case studies as a means to support student knowledge acquisition in biology.
Computer-aided drug design for AMP-activated protein kinase activators.
Wang, Zhanli; Huo, Jianxin; Sun, Lidan; Wang, Yongfu; Jin, Hongwei; Yu, Hui; Zhang, Liangren; Zhou, Lishe
2011-09-01
AMP-activated protein kinase (AMPK) is an important therapeutic target for the potential treatment of metabolic disorders, cardiovascular disease and cancer. Recently, various classes of compounds that activate AMPK by direct or indirect interactions have been reported. The importance of computer-aided drug design approaches in the search for potent activators of AMPK is now established, including structure-based design, ligand-based design, fragment-based design, as well as structural analysis. This review article highlights the computer-aided drug design approaches utilized to discover of activators targeting AMPK. The principles, advantages or limitation of the different methods are also being discussed together with examples of applications taken from the literatures.
Effects of computer-based training on procedural modifications to standard functional analyses.
Schnell, Lauren K; Sidener, Tina M; DeBar, Ruth M; Vladescu, Jason C; Kahng, SungWoo
2018-01-01
Few studies have evaluated methods for training decision-making when functional analysis data are undifferentiated. The current study evaluated computer-based training to teach 20 graduate students to arrange functional analysis conditions, analyze functional analysis data, and implement procedural modifications. Participants were exposed to training materials using interactive software during a 1-day session. Following the training, mean scores on the posttest, novel cases probe, and maintenance probe increased for all participants. These results replicate previous findings during a 1-day session and include a measure of participant acceptability of the training. Recommendations for future research on computer-based training and functional analysis are discussed. © 2017 Society for the Experimental Analysis of Behavior.
Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik
2017-01-01
This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions. PMID:28208684
Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik
2017-02-12
This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions.
The challenge of computer mathematics.
Barendregt, Henk; Wiedijk, Freek
2005-10-15
Progress in the foundations of mathematics has made it possible to formulate all thinkable mathematical concepts, algorithms and proofs in one language and in an impeccable way. This is not in spite of, but partially based on the famous results of Gödel and Turing. In this way statements are about mathematical objects and algorithms, proofs show the correctness of statements and computations, and computations are dealing with objects and proofs. Interactive computer systems for a full integration of defining, computing and proving are based on this. The human defines concepts, constructs algorithms and provides proofs, while the machine checks that the definitions are well formed and the proofs and computations are correct. Results formalized so far demonstrate the feasibility of this 'computer mathematics'. Also there are very good applications. The challenge is to make the systems more mathematician-friendly, by building libraries and tools. The eventual goal is to help humans to learn, develop, communicate, referee and apply mathematics.
Integrating Biodiversity into Biosphere-Atmosphere Interactions Using Individual-Based Models (IBM)
NASA Astrophysics Data System (ADS)
Wang, B.; Shugart, H. H., Jr.; Lerdau, M.
2017-12-01
A key component regulating complex, nonlinear, and dynamic biosphere-atmosphere interactions is the inherent diversity of biological systems. The model frameworks currently widely used, i.e., Plant Functional Type models) do not even begin to capture the metabolic and taxonomic diversity found in many terrestrial systems. We propose that a transition from PFT-based to individual-based modeling approaches (hereafter referred to as IBM) is essential for integrating biodiversity into research on biosphere-atmosphere interactions. The proposal emerges from our studying the interactions of forests with atmospheric processes in the context of climate change using an individual-based forest volatile organic compounds model, UVAFME-VOC. This individual-based model can explicitly simulate VOC emissions based on an explicit modelling of forest dynamics by computing the growth, death, and regeneration of each individual tree of different species and their competition for light, moisture, and nutrient, from which system-level VOC emissions are simulated by explicitly computing and summing up each individual's emissions. We found that elevated O3 significantly altered the forest dynamics by favoring species that are O3-resistant, which, meanwhile, are producers of isoprene. Such compositional changes, on the one hand, resulted in unsuppressed forest productivity and carbon stock because of the compensation by O3-resistant species. On the other hand, with more isoprene produced arising from increased producers, a possible positive feedback loop between tropospheric O3 and forest thereby emerged. We also found that climate warming will not always stimulate isoprene emissions because warming simultaneously reduces isoprene emissions by causing a decline in the abundance of isoprene-emitting species. These results suggest that species diversity is of great significance and that individual-based modelling strategies should be applied in studying biosphere-atmosphere interactions.
Application of desktop computers in nuclear engineering education
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graves, H.W. Jr.
1990-01-01
Utilization of desktop computers in the academic environment is based on the same objectives as in the industrial environment - increased quality and efficiency. Desktop computers can be extremely useful teaching tools in two general areas: classroom demonstrations and homework assignments. Although differences in emphasis exist, tutorial programs share many characteristics with interactive software developed for the industrial environment. In the Reactor Design and Fuel Management course at the University of Maryland, several interactive tutorial programs provided by Energy analysis Software Service have been utilized. These programs have been designed to be sufficiently structured to permit an orderly, disciplined solutionmore » to the problem being solved, and yet be flexible enough to accommodate most problem solution options.« less
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.
2017-01-01
A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. The difficulty addressed here is the fact that, because of metamerism, we cannot know with certainty the spectrum that produced a particular color solely on the basis of sensory data. Knowledge of the spectrum is not required to compute additive mixture of colors, but is critical for subtractive (multiplicative) mixture. Therefore, we cannot predict with certainty the multiplicative interactions between colors based solely on sensory data. There are two potential applications of a color algebra: first, to aid modeling phenomena of human visual perception, such as color constancy and transparency; and, second, to provide better models of the interactions of lights and surfaces for computer graphics rendering.
ERIC Educational Resources Information Center
TechTrends, 1992
1992-01-01
Reviews new educational technology products, including a microcomputer-based tutoring system, laser barcode reader, video/data projectors, CD-ROM for notebook computers, a system to increase a printer's power, data cartridge storage shell, knowledge-based decision tool, video illustrator, interactive videodiscs, surge protectors, scanner system,…
NASA Astrophysics Data System (ADS)
Shao, Meiyue; Aktulga, H. Metin; Yang, Chao; Ng, Esmond G.; Maris, Pieter; Vary, James P.
2018-01-01
We describe a number of recently developed techniques for improving the performance of large-scale nuclear configuration interaction calculations on high performance parallel computers. We show the benefit of using a preconditioned block iterative method to replace the Lanczos algorithm that has traditionally been used to perform this type of computation. The rapid convergence of the block iterative method is achieved by a proper choice of starting guesses of the eigenvectors and the construction of an effective preconditioner. These acceleration techniques take advantage of special structure of the nuclear configuration interaction problem which we discuss in detail. The use of a block method also allows us to improve the concurrency of the computation, and take advantage of the memory hierarchy of modern microprocessors to increase the arithmetic intensity of the computation relative to data movement. We also discuss the implementation details that are critical to achieving high performance on massively parallel multi-core supercomputers, and demonstrate that the new block iterative solver is two to three times faster than the Lanczos based algorithm for problems of moderate sizes on a Cray XC30 system.
ERIC Educational Resources Information Center
Tecedor Cabrero, Marta
2013-01-01
This dissertation examines the discourse produced by beginning learners of Spanish using social media. Specifically, it looks at the use and development of interactional resources during two video-mediated conversations. Through a combination of Conversation Analysis tools and quantitative data analysis, the use of turn-taking strategies, repair…
Effective Student Learning of Fractions with an Interactive Simulation
ERIC Educational Resources Information Center
Hensberry, Karina K. R.; Moore, Emily B.; Perkins, Katherine K.
2015-01-01
Computer technology, when coupled with reform-based teaching practices, has been shown to be an effective way to support student learning of mathematics. The quality of the technology itself, as well as how it is used, impacts how much students learn. Interactive simulations are dynamic virtual environments similar to virtual manipulatives that…
Issues in Interaction Language Specification and Representation.
1983-11-01
of Dialogues for Human-Computer Interfaces," to be submitted for publication (1983). IHEINL75] Heindel, L. and J. Roberto . "LANG-PAK: An Interactive...22043 Bolling Air Force Base Washington, D.C. 20332 Dr. Paul E. Lehner PAR Technology Corp. AFHRL/LRS TDC P.O. Box 2005 Attn: Susan Ewing Reston, VA 22090
ERIC Educational Resources Information Center
Rambe, Patient
2012-01-01
Studies that employed activity theory as a theoretical lens for exploring computer-mediated interaction have not adopted social media as their object of study. However, social media provides lecturers with personalised learning environments for diagnostic and prognostic assessments of student mastery of content and deep learning. The integration…
Virtual Frog Dissection Kit Version 2.2
Virtual Frog Dissection Kit This award-winning interactive program is part of the "Whole Frog " project. You can interactively dissect a (digitized) frog named Fluffy, and play the Virtual Frog animals other than the frog that have a computer-graphics based virtual dissection page. We get frequent
First Steps towards an Interactive Real-Time Hazard Management Simulation
ERIC Educational Resources Information Center
Gemmell, Alastair M. D.; Finlayson, Ian G.; Marston, Philip G.
2010-01-01
This paper reports on the construction and initial testing of a computer-based interactive flood hazard management simulation, designed for undergraduates taking an applied geomorphology course. Details of the authoring interface utilized to create the simulation are presented. Students act as the managers of civil defence utilities in a fictional…
Integrative Metabolism: An Interactive Learning Tool for Nutrition, Biochemistry, and Physiology
ERIC Educational Resources Information Center
Carey, Gale
2010-01-01
Metabolism is a dynamic, simultaneous, and integrative science that cuts across nutrition, biochemistry, and physiology. Teaching this science can be a challenge. The use of a scenario-based, visually appealing, interactive, computer-animated CD may overcome the limitations of learning "one pathway at a time" and engage two- and…
Children's Interaction and Lexical Acquisition in Text-Based Online Chat
ERIC Educational Resources Information Center
Coyle, Yvette; Reverte Prieto, Maria José
2017-01-01
This is an empirical study in which we explore child foreign language learners' interactional strategy use, uptake, and lexical acquisition in synchronous computer-mediated communication (SCMC). The study was carried out with 16 10-year-old Spanish English as a foreign language learners paired with age- and proficiency-matched English native…
ERIC Educational Resources Information Center
Nichols, Kim; Ranasinghe, Muditha; Hanan, Jim
2013-01-01
Interacting with and translating across multiple representations is an essential characteristic of expertise and representational fluency. In this study, we explored the effect of interacting with and translating between representations in a computer simulation or in a paper-based assignment on scientific accuracy of undergraduate science…
ERIC Educational Resources Information Center
Snipes, Katherine H.
2009-01-01
A set of computer-based recreation choice experiments were run to examine the effect of expected congestion and social interactions on the decision making process. MouseTrace is a process-tracing program that recorded individual subject's information acquisitions and provided the necessary information to determine if subjects used attribute-based…
Interaction Analysis for Supporting Students' Self-Regulation during Blog-Based CSCL Activities
ERIC Educational Resources Information Center
Michailidis, Nikolaos; Kapravelos, Efstathios; Tsiatsos, Thrasyvoulos
2018-01-01
Self-regulated learning is an important means of supporting students' self-awareness and self-regulation level so as to enhance their motivation and engagement. Interaction Analysis (IA) contributes to this end, and its use in studying learning dynamics involved in asynchronous Computer-Supported Collaborative Learning (CSCL) activities has…
The Use of Digitized Images in Developing Software for Young Children.
ERIC Educational Resources Information Center
Wright, June L.
1992-01-01
Parents and children interacted with computer-based representations of a park, one with animated picture graphics and one with digitized full motion video. Children who interacted with the digitized representation replayed the program more and showed a stronger cognitive focus on the representation than did the other children. (LB)
An Interactive Multimedia Program to Prevent HIV Transmission in Men with Intellectual Disability
ERIC Educational Resources Information Center
Wells, Jennifer; Clark, Khaya; Sarno, Karen
2014-01-01
The efficacy of a computer-based interactive multimedia HIV/AIDS prevention program for men with intellectual disability (ID) was examined using a quasi-experimental within-subjects design. Thirty-seven men with mild to moderate intellectual disability evaluated the program. The pretest and posttest instruments assessed HIV/AIDS knowledge…
ERIC Educational Resources Information Center
Vickers, Caroline H.
2007-01-01
This article, based on a longitudinal, ethnographic study among engineering students, examines the interactional processes surrounding second language (L2) socialization. L2 socialization perspectives argue that the cognitive and the social are interconnected, and that learning an L2 is a process of coming to understand socially constructed…
The Reading Disc: Learning to Read Using Interactive CD.
ERIC Educational Resources Information Center
Shaw, Simon
1991-01-01
Describes the development of an interactive compact disc on CD-ROM XA that was designed to help adults learn to read. The application of technology to learning is discussed, differences in learner control in computer-based systems are considered, virtual writing is described, and assessment activities available on the disc are explained. (five…
The Role of Agent Age and Gender for Middle-Grade Girls
ERIC Educational Resources Information Center
Kim, Yanghee
2016-01-01
Compared to boys, many girls are more aware of a social context in the learning process and perform better when the environment supports frequent interactions and social relationships. For these girls, embodied agents (animated on-screen characters acting as tutors) could afford simulated social interactions in computer-based learning and thereby…
Prediction of physical protein protein interactions
NASA Astrophysics Data System (ADS)
Szilágyi, András; Grimm, Vera; Arakaki, Adrián K.; Skolnick, Jeffrey
2005-06-01
Many essential cellular processes such as signal transduction, transport, cellular motion and most regulatory mechanisms are mediated by protein-protein interactions. In recent years, new experimental techniques have been developed to discover the protein-protein interaction networks of several organisms. However, the accuracy and coverage of these techniques have proven to be limited, and computational approaches remain essential both to assist in the design and validation of experimental studies and for the prediction of interaction partners and detailed structures of protein complexes. Here, we provide a critical overview of existing structure-independent and structure-based computational methods. Although these techniques have significantly advanced in the past few years, we find that most of them are still in their infancy. We also provide an overview of experimental techniques for the detection of protein-protein interactions. Although the developments are promising, false positive and false negative results are common, and reliable detection is possible only by taking a consensus of different experimental approaches. The shortcomings of experimental techniques affect both the further development and the fair evaluation of computational prediction methods. For an adequate comparative evaluation of prediction and high-throughput experimental methods, an appropriately large benchmark set of biophysically characterized protein complexes would be needed, but is sorely lacking.
An Efficient Semi-supervised Learning Approach to Predict SH2 Domain Mediated Interactions.
Kundu, Kousik; Backofen, Rolf
2017-01-01
Src homology 2 (SH2) domain is an important subclass of modular protein domains that plays an indispensable role in several biological processes in eukaryotes. SH2 domains specifically bind to the phosphotyrosine residue of their binding peptides to facilitate various molecular functions. For determining the subtle binding specificities of SH2 domains, it is very important to understand the intriguing mechanisms by which these domains recognize their target peptides in a complex cellular environment. There are several attempts have been made to predict SH2-peptide interactions using high-throughput data. However, these high-throughput data are often affected by a low signal to noise ratio. Furthermore, the prediction methods have several additional shortcomings, such as linearity problem, high computational complexity, etc. Thus, computational identification of SH2-peptide interactions using high-throughput data remains challenging. Here, we propose a machine learning approach based on an efficient semi-supervised learning technique for the prediction of 51 SH2 domain mediated interactions in the human proteome. In our study, we have successfully employed several strategies to tackle the major problems in computational identification of SH2-peptide interactions.
SciSpark: Highly Interactive and Scalable Model Evaluation and Climate Metrics
NASA Astrophysics Data System (ADS)
Wilson, B. D.; Mattmann, C. A.; Waliser, D. E.; Kim, J.; Loikith, P.; Lee, H.; McGibbney, L. J.; Whitehall, K. D.
2014-12-01
Remote sensing data and climate model output are multi-dimensional arrays of massive sizes locked away in heterogeneous file formats (HDF5/4, NetCDF 3/4) and metadata models (HDF-EOS, CF) making it difficult to perform multi-stage, iterative science processing since each stage requires writing and reading data to and from disk. We are developing a lightning fast Big Data technology called SciSpark based on ApacheTM Spark. Spark implements the map-reduce paradigm for parallel computing on a cluster, but emphasizes in-memory computation, "spilling" to disk only as needed, and so outperforms the disk-based ApacheTM Hadoop by 100x in memory and by 10x on disk, and makes iterative algorithms feasible. SciSpark will enable scalable model evaluation by executing large-scale comparisons of A-Train satellite observations to model grids on a cluster of 100 to 1000 compute nodes. This 2nd generation capability for NASA's Regional Climate Model Evaluation System (RCMES) will compute simple climate metrics at interactive speeds, and extend to quite sophisticated iterative algorithms such as machine-learning (ML) based clustering of temperature PDFs, and even graph-based algorithms for searching for Mesocale Convective Complexes. The goals of SciSpark are to: (1) Decrease the time to compute comparison statistics and plots from minutes to seconds; (2) Allow for interactive exploration of time-series properties over seasons and years; (3) Decrease the time for satellite data ingestion into RCMES to hours; (4) Allow for Level-2 comparisons with higher-order statistics or PDF's in minutes to hours; and (5) Move RCMES into a near real time decision-making platform. We will report on: the architecture and design of SciSpark, our efforts to integrate climate science algorithms in Python and Scala, parallel ingest and partitioning (sharding) of A-Train satellite observations from HDF files and model grids from netCDF files, first parallel runs to compute comparison statistics and PDF's, and first metrics quantifying parallel speedups and memory & disk usage.
Computational Identification of Diverse Mechanisms Underlying Transcription Factor-DNA Occupancy
Cheng, Qiong; Kazemian, Majid; Pham, Hannah; Blatti, Charles; Celniker, Susan E.; Wolfe, Scot A.; Brodsky, Michael H.; Sinha, Saurabh
2013-01-01
ChIP-based genome-wide assays of transcription factor (TF) occupancy have emerged as a powerful, high-throughput method to understand transcriptional regulation, especially on a global scale. This has led to great interest in the underlying biochemical mechanisms that direct TF-DNA binding, with the ultimate goal of computationally predicting a TF's occupancy profile in any cellular condition. In this study, we examined the influence of various potential determinants of TF-DNA binding on a much larger scale than previously undertaken. We used a thermodynamics-based model of TF-DNA binding, called “STAP,” to analyze 45 TF-ChIP data sets from Drosophila embryonic development. We built a cross-validation framework that compares a baseline model, based on the ChIP'ed (“primary”) TF's motif, to more complex models where binding by secondary TFs is hypothesized to influence the primary TF's occupancy. Candidates interacting TFs were chosen based on RNA-SEQ expression data from the time point of the ChIP experiment. We found widespread evidence of both cooperative and antagonistic effects by secondary TFs, and explicitly quantified these effects. We were able to identify multiple classes of interactions, including (1) long-range interactions between primary and secondary motifs (separated by ≤150 bp), suggestive of indirect effects such as chromatin remodeling, (2) short-range interactions with specific inter-site spacing biases, suggestive of direct physical interactions, and (3) overlapping binding sites suggesting competitive binding. Furthermore, by factoring out the previously reported strong correlation between TF occupancy and DNA accessibility, we were able to categorize the effects into those that are likely to be mediated by the secondary TF's effect on local accessibility and those that utilize accessibility-independent mechanisms. Finally, we conducted in vitro pull-down assays to test model-based predictions of short-range cooperative interactions, and found that seven of the eight TF pairs tested physically interact and that some of these interactions mediate cooperative binding to DNA. PMID:23935523
Animated analysis of geoscientific datasets: An interactive graphical application
NASA Astrophysics Data System (ADS)
Morse, Peter; Reading, Anya; Lueg, Christopher
2017-12-01
Geoscientists are required to analyze and draw conclusions from increasingly large volumes of data. There is a need to recognise and characterise features and changing patterns of Earth observables within such large datasets. It is also necessary to identify significant subsets of the data for more detailed analysis. We present an innovative, interactive software tool and workflow to visualise, characterise, sample and tag large geoscientific datasets from both local and cloud-based repositories. It uses an animated interface and human-computer interaction to utilise the capacity of human expert observers to identify features via enhanced visual analytics. 'Tagger' enables users to analyze datasets that are too large in volume to be drawn legibly on a reasonable number of single static plots. Users interact with the moving graphical display, tagging data ranges of interest for subsequent attention. The tool provides a rapid pre-pass process using fast GPU-based OpenGL graphics and data-handling and is coded in the Quartz Composer visual programing language (VPL) on Mac OSX. It makes use of interoperable data formats, and cloud-based (or local) data storage and compute. In a case study, Tagger was used to characterise a decade (2000-2009) of data recorded by the Cape Sorell Waverider Buoy, located approximately 10 km off the west coast of Tasmania, Australia. These data serve as a proxy for the understanding of Southern Ocean storminess, which has both local and global implications. This example shows use of the tool to identify and characterise 4 different types of storm and non-storm events during this time. Events characterised in this way are compared with conventional analysis, noting advantages and limitations of data analysis using animation and human interaction. Tagger provides a new ability to make use of humans as feature detectors in computer-based analysis of large-volume geosciences and other data.
Interpersonal Biocybernetics: Connecting Through Social Psychophysiology
NASA Technical Reports Server (NTRS)
Pope, Alan T.; Stephens, Chad L.
2012-01-01
One embodiment of biocybernetic adaptation is a human-computer interaction system designed such that physiological signals modulate the effect that control of a task by other means, usually manual control, has on performance of the task. Such a modulation system enables a variety of human-human interactions based upon physiological self-regulation performance. These interpersonal interactions may be mixes of competition and cooperation for simulation training and/or videogame entertainment
Ayral, Thomas; Vučičević, Jaksa; Parcollet, Olivier
2017-10-20
We present an embedded-cluster method, based on the triply irreducible local expansion formalism. It turns the Fierz ambiguity, inherent to approaches based on a bosonic decoupling of local fermionic interactions, into a convergence criterion. It is based on the approximation of the three-leg vertex by a coarse-grained vertex computed from a self-consistently determined cluster impurity model. The computed self-energies are, by construction, continuous functions of momentum. We show that, in three interaction and doping regimes of the two-dimensional Hubbard model, self-energies obtained with clusters of size four only are very close to numerically exact benchmark results. We show that the Fierz parameter, which parametrizes the freedom in the Hubbard-Stratonovich decoupling, can be used as a quality control parameter. By contrast, the GW+extended dynamical mean field theory approximation with four cluster sites is shown to yield good results only in the weak-coupling regime and for a particular decoupling. Finally, we show that the vertex has spatially nonlocal components only at low Matsubara frequencies.
Generalized Quantum Field Theory Based on a Nonlinear Deformed Heisenberg Algebra
NASA Astrophysics Data System (ADS)
Ribeiro-Silva, C. I.; Oliveira-Neto, N. M.
We consider a quantum field theory based on a nonlinear Heisenberg algebra which describes phenomenologically a composite particle. Perturbative computation, considering the λϕ4 interaction was done and we also performed some comparison with a quantum field theory based on the q-oscillator algebra.
Educating Laboratory Science Learners at a Distance Using Interactive Television
ERIC Educational Resources Information Center
Reddy, Christopher
2014-01-01
Laboratory science classes offered to students learning at a distance require a methodology that allows for the completion of tactile activities. Literature describes three different methods of solving the distance laboratory dilemma: kit-based laboratory experience, computer-based laboratory experience, and campus-based laboratory experience,…
Mapping and Managing Knowledge and Information in Resource-Based Learning
ERIC Educational Resources Information Center
Tergan, Sigmar-Olaf; Graber, Wolfgang; Neumann, Anja
2006-01-01
In resource-based learning scenarios, students are often overwhelmed by the complexity of task-relevant knowledge and information. Techniques for the external interactive representation of individual knowledge in graphical format may help them to cope with complex problem situations. Advanced computer-based concept-mapping tools have the potential…
Complex-energy approach to sum rules within nuclear density functional theory
Hinohara, Nobuo; Kortelainen, Markus; Nazarewicz, Witold; ...
2015-04-27
The linear response of the nucleus to an external field contains unique information about the effective interaction, correlations governing the behavior of the many-body system, and properties of its excited states. To characterize the response, it is useful to use its energy-weighted moments, or sum rules. By comparing computed sum rules with experimental values, the information content of the response can be utilized in the optimization process of the nuclear Hamiltonian or nuclear energy density functional (EDF). But the additional information comes at a price: compared to the ground state, computation of excited states is more demanding. To establish anmore » efficient framework to compute energy-weighted sum rules of the response that is adaptable to the optimization of the nuclear EDF and large-scale surveys of collective strength, we have developed a new technique within the complex-energy finite-amplitude method (FAM) based on the quasiparticle random- phase approximation. The proposed sum-rule technique based on the complex-energy FAM is a tool of choice when optimizing effective interactions or energy functionals. The method is very efficient and well-adaptable to parallel computing. As a result, the FAM formulation is especially useful when standard theorems based on commutation relations involving the nuclear Hamiltonian and external field cannot be used.« less
Pitre, S; North, C; Alamgir, M; Jessulat, M; Chan, A; Luo, X; Green, J R; Dumontier, M; Dehne, F; Golshani, A
2008-08-01
Protein-protein interaction (PPI) maps provide insight into cellular biology and have received considerable attention in the post-genomic era. While large-scale experimental approaches have generated large collections of experimentally determined PPIs, technical limitations preclude certain PPIs from detection. Recently, we demonstrated that yeast PPIs can be computationally predicted using re-occurring short polypeptide sequences between known interacting protein pairs. However, the computational requirements and low specificity made this method unsuitable for large-scale investigations. Here, we report an improved approach, which exhibits a specificity of approximately 99.95% and executes 16,000 times faster. Importantly, we report the first all-to-all sequence-based computational screen of PPIs in yeast, Saccharomyces cerevisiae in which we identify 29,589 high confidence interactions of approximately 2 x 10(7) possible pairs. Of these, 14,438 PPIs have not been previously reported and may represent novel interactions. In particular, these results reveal a richer set of membrane protein interactions, not readily amenable to experimental investigations. From the novel PPIs, a novel putative protein complex comprised largely of membrane proteins was revealed. In addition, two novel gene functions were predicted and experimentally confirmed to affect the efficiency of non-homologous end-joining, providing further support for the usefulness of the identified PPIs in biological investigations.
Almeida, Fabio A; Smith-Ray, Renae L; Dzewaltowski, David A; Glasgow, Russell E; Lee, Rebecca E; Thomas, Deborah S K; Xu, Stanley; Estabrooks, Paul A
2015-08-24
Physical activity (PA) improves many facets of health. Despite this, the majority of American adults are insufficiently active. Adults who visit a physician complaining of chest pain and related cardiovascular symptoms are often referred for further testing. However, when this testing does not reveal an underlying disease or pathology, patients typically receive no additional standard care services. A PA intervention delivered within the clinic setting may be an effective strategy for improving the health of this population at a time when they may be motivated to take preventive action. Our aim was to determine the effectiveness of a tailored, computer-based, interactive personal action planning session to initiate PA among a group of sedentary cardiac patients following exercise treadmill testing (ETT). This study was part of a larger 2x2 randomized controlled trial to determine the impact of environmental and social-cognitive intervention approaches on the initiation and maintenance of weekly PA for patients post ETT. Participants who were referred to an ETT center but had a negative-test (ie, stress tests results indicated no apparent cardiac issues) were randomized to one of four treatment arms: (1) increased environmental accessibility to PA resources via the provision of a free voucher to a fitness facility in close proximity to their home or workplace (ENV), (2) a tailored social cognitive intervention (SC) using a "5 As"-based (ask, advise, assess, assist, and arrange) personal action planning tool, (3) combined intervention of both ENV and SC approaches (COMBO), or (4) a matched contact nutrition control (CON). Each intervention was delivered using a computer-based interactive session. A general linear model for repeated measures was conducted with change in PA behavior from baseline to 1-month post interactive computer session as the primary outcome. Sedentary participants (n=452; 34.7% participation rate) without a gym membership (mean age 58.57 years; 59% female, 78% white, 12% black, 11% Hispanic) completed a baseline assessment and an interactive computer session. PA increased across the study sample (F1,441=30.03, P<.001). However, a time by condition interaction (F3,441=8.33, P<.001) followed by post hoc analyses indicated that SC participants exhibited a significant increase in weekly PA participation (mean 45.1, SD 10.2) compared to CON (mean -2.5, SD 10.8, P=.004) and ENV (mean 8.3, SD 8.1, P<.05). Additionally, COMBO participants exhibited a significant increase in weekly PA participation (mean 53.4, SD 8.9) compared to CON (P<.001) and ENV (P=.003) participants. There were no significant differences between ENV and CON or between SC and COMBO. A brief, computer-based, interactive personal action planning session may be an effective tool to initiate PA within a health care setting, in particular as part of the ETT system. Clinicaltrials.gov NCT00432133, http://clinicaltrials.gov/ct2/show/NCT00432133 (Archived by WebCite at http://www.webcitation.org/6aa8X3mw1).
Using multimedia for patient information--a program about nocturnal enuresis.
Evans, J H; Collier, J; Crook, I; Garrud, P; Harris, P; MacKinlay, D R; Redsell, S A
1998-05-01
To identify the information needs of children with nocturnal enuresis, and to design, produce and evaluate an interactive computer program to provide this information. The program was developed over an 18-month period using information provided by children, parents and professionals, and was evaluated in a hospital-based enuresis clinic in 65 children. Usability and knowledge gained were also evaluated in 43 healthy children aged 8-10 years attending a local inner-city primary school. An interactive program about nocturnal enuresis was developed, which runs on a personal computer and uses sound, voice, cartoon drawings and animation in a modular design. Knowledge scores increased in clinic attendees and in schoolchildren after using the program (Wilcoxon matched pairs test, P < 0.001). This improvement was maintained when the program was re-tested 6-10 months later. This interactive computer program holds children's attention and increases their understanding of enuresis. Interactive multimedia may be useful to complement the information provided by health professionals. This method of communication may be particularly useful for children with a low level of literacy.
Altwaijry, Nojood A; Baron, Michael; Wright, David W; Coveney, Peter V; Townsend-Nicholson, Andrea
2017-05-09
The accurate identification of the specific points of interaction between G protein-coupled receptor (GPCR) oligomers is essential for the design of receptor ligands targeting oligomeric receptor targets. A coarse-grained molecular dynamics computer simulation approach would provide a compelling means of identifying these specific protein-protein interactions and could be applied both for known oligomers of interest and as a high-throughput screen to identify novel oligomeric targets. However, to be effective, this in silico modeling must provide accurate, precise, and reproducible information. This has been achieved recently in numerous biological systems using an ensemble-based all-atom molecular dynamics approach. In this study, we describe an equivalent methodology for ensemble-based coarse-grained simulations. We report the performance of this method when applied to four different GPCRs known to oligomerize using error analysis to determine the ensemble size and individual replica simulation time required. Our measurements of distance between residues shown to be involved in oligomerization of the fifth transmembrane domain from the adenosine A 2A receptor are in very good agreement with the existing biophysical data and provide information about the nature of the contact interface that cannot be determined experimentally. Calculations of distance between rhodopsin, CXCR4, and β 1 AR transmembrane domains reported to form contact points in homodimers correlate well with the corresponding measurements obtained from experimental structural data, providing an ability to predict contact interfaces computationally. Interestingly, error analysis enables identification of noninteracting regions. Our results confirm that GPCR interactions can be reliably predicted using this novel methodology.
In silico polypharmacology of natural products.
Fang, Jiansong; Liu, Chuang; Wang, Qi; Lin, Ping; Cheng, Feixiong
2017-04-27
Natural products with polypharmacological profiles have demonstrated promise as novel therapeutics for various complex diseases, including cancer. Currently, many gaps exist in our knowledge of which compounds interact with which targets, and experimentally testing all possible interactions is infeasible. Recent advances and developments of systems pharmacology and computational (in silico) approaches provide powerful tools for exploring the polypharmacological profiles of natural products. In this review, we introduce recent progresses and advances of computational tools and systems pharmacology approaches for identifying drug targets of natural products by focusing on the development of targeted cancer therapy. We survey the polypharmacological and systems immunology profiles of five representative natural products that are being considered as cancer therapies. We summarize various chemoinformatics, bioinformatics and systems biology resources for reconstructing drug-target networks of natural products. We then review currently available computational approaches and tools for prediction of drug-target interactions by focusing on five domains: target-based, ligand-based, chemogenomics-based, network-based and omics-based systems biology approaches. In addition, we describe a practical example of the application of systems pharmacology approaches by integrating the polypharmacology of natural products and large-scale cancer genomics data for the development of precision oncology under the systems biology framework. Finally, we highlight the promise of cancer immunotherapies and combination therapies that target tumor ecosystems (e.g. clones or 'selfish' sub-clones) via exploiting the immunological and inflammatory 'side' effects of natural products in the cancer post-genomics era. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
ERIC Educational Resources Information Center
West, Mary Maxwell; McSwiney, Eileen
Asynchronous computer-based conferencing offers several unique capabilities as a medium. Participants can read and write messages at whatever time is convenient for them, groups can interact even though participants are geographically separated, and messages are available to readers almost instantly. Because the medium has served for over a decade…
CMC Technologies for Teaching Foreign Languages: What's on the Horizon?
ERIC Educational Resources Information Center
Lafford, Peter A.; Lafford, Barbara A.
2005-01-01
Computer-mediated communication (CMC) technologies have begun to play an increasingly important role in the teaching of foreign/second (L2) languages. Its use in this context is supported by a growing body of CMC research that highlights the importance of the negotiation of meaning and computer-based interaction in the process of second language…
Socially Relevant Knowledge Based Telemedicine
2013-02-01
have potential to change behavior and/or attitude at different situations and different circumstances. Fogg mentions that there are many...persuade users to perform various activities. Fogg [8] defines persuasive technologies as “interactive computing systems designed to change...8] Fogg , B. J., Persuasive Technology: Using computers to change what we think and do, 2003, Morgan Kaufman. [9] Pedersen, P., Simulations: A
Socially Relevant Knowledge Based Telemedicine
2011-10-01
or attitude at different situations and different circumstances. Fogg mentions that there are many reasons that computers can be better persuaders...finding appropriate way to persuade users to perform various activities. Fogg [8] defines persuasive technologies as “interactive computing systems...Education, IEEE Consumer Electronics Society Conference Games Innovation, ICE-GIC, 2009, pp 54-63. [8] Fogg , B. J., Persuasive Technology: Using
Type Theory, Computation and Interactive Theorem Proving
2015-09-01
postdoc Cody Roux, to develop new methods of verifying real-valued inequalities automatically. They developed a prototype implementation in Python [8] (an...he has developed new heuristic, geometric methods of verifying real-valued inequalities. A python -based implementation has performed surprisingly...express complex mathematical and computational assertions. In this project, Avigad and Harper developed type-theoretic algorithms and formalisms that
How Patient Interactions with a Computer-Based Video Intervention Affect Decisions to Test for HIV
ERIC Educational Resources Information Center
Aronson, Ian David; Rajan, Sonali; Marsch, Lisa A.; Bania, Theodore C.
2014-01-01
The current study examines predictors of HIV test acceptance among emergency department patients who received an educational video intervention designed to increase HIV testing. A total of 202 patients in the main treatment areas of a high-volume, urban hospital emergency department used inexpensive netbook computers to watch brief educational…
I CAN Learn®. [Secondary Mathematics.] What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2017
2017-01-01
"I CAN Learn"® is a computer-based math curriculum for students in middle school, high school, and college. It provides math instruction through a series of interactive lessons that students work on individually at their own computers. Students move at their own pace and must demonstrate mastery of each concept before progressing to the…
I CAN Learn®. [Primary Mathematics.] What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2017
2017-01-01
"I CAN Learn"® is a computer-based math curriculum for students in middle school, high school, and college. It provides math instruction through a series of interactive lessons that students work on individually at their own computers. Students move at their own pace and must demonstrate mastery of each concept before progressing to the…
NASA Astrophysics Data System (ADS)
Israel, Maya; Wherfel, Quentin M.; Shehab, Saadeddine; Ramos, Evan A.; Metzger, Adam; Reese, George C.
2016-07-01
This paper describes the development, validation, and uses of the Collaborative Computing Observation Instrument (C-COI), a web-based analysis instrument that classifies individual and/or collaborative behaviors of students during computing problem-solving (e.g. coding, programming). The C-COI analyzes data gathered through video and audio screen recording software that captures students' computer screens as they program, and their conversations with their peers or adults. The instrument allows researchers to organize and quantify these data to track behavioral patterns that could be further analyzed for deeper understanding of persistence and/or collaborative interactions. The article provides a rationale for the C-COI including the development of a theoretical framework for measuring collaborative interactions in computer-mediated environments. This theoretical framework relied on the computer-supported collaborative learning literature related to adaptive help seeking, the joint problem-solving space in which collaborative computing occurs, and conversations related to outcomes and products of computational activities. Instrument development and validation also included ongoing advisory board feedback from experts in computer science, collaborative learning, and K-12 computing as well as classroom observations to test out the constructs in the C-COI. These processes resulted in an instrument with rigorous validation procedures and a high inter-rater reliability.
Multimedia courseware in an open-systems environment: a DoD strategy
NASA Astrophysics Data System (ADS)
Welsch, Lawrence A.
1991-03-01
The federal government is about to invest billions of dollars to develop multimedia training materials for delivery on computer-based interactive training systems. Acquisition of a variety of computers and peripheral devices hosting various operating systems and suites of authoring system software will be necessary to facilitate the development of this courseware. There is no single source that will satisfy all needs. Although high-performance, low-cost interactive training hardware is available, the products have proprietary software interfaces. Because the interfaces are proprietary, expensive reprogramming is usually required to adapt such software products to other platforms. This costly reprogramming could be eliminated by adopting standard software interfaces. DoD's Portable Courseware Project (PORTCO) is typical of projects worldwide that require standard software interfaces. This paper articulates the strategy whereby PORTCO leverages the open systems movement and the new realities of information technology. These realities encompass changes in the pace at which new technology becomes available, changes in organizational goals and philosophy, new roles of vendors and users, changes in the procurement process, and acceleration toward open system environments. The PORTCO strategy is applicable to all projects and systems that require open systems to achieve mission objectives. The federal goal is to facilitate the creation of an environment in which high quality portable courseware is available as commercial off-the-shelf products and is competitively supplied by a variety of vendors. In order to achieve this goal a system architecture incorporating standards to meet the users' needs must be established. The Request for Architecture (RFA) developed cooperatively by DoD and the National Institute of Standards and Technology (NIST) will generate the PORTCO systems architecture. This architecture must freely integrate the courseware and authoring software from the lower levels of machine architecture and systems service implementation. In addition, the systems architecture will establish how the application-specific technologies relate to other technologies. Further, a computer-based interactive training applications profile must be developed. This profile, along with the systems architecture derived as a result of the RFA, provides the basis for identifying the needed standards. NIST will then accelerate the development of these standards using, but not restricted to, existing standards activities within established standards forums. The federal multimedia courseware effort has adopted the Interactive Multimedia Association (INA) Recommended Practices for Interactive Video Portability as the baseline for the migration of computer-based interactive training systems to an open systems environment based upon international standards. The PORTCO strategy includes an evolutionary migration to a standards-based, Open System Environments (OSE). An important aspect of this migration strategy is to move to open systems via stepwise evolution rather than via quantum leaps. Another area of concern is that of infrastructure issues, such as maintaining and supporting the technologies required for computer-based interactive training. The federal multimedia initiative will use the RFA-based architecture to differentiate between those technologies that can be maintained and supported by existing infrastructure mechanisms and those that require new mechanisms. Existing infrastructure mechanisms will be used and where infrastructure mechanisms do not exist, the approach will be to place high priority on establishing the appropriate mechanisms. Establishing an infrastructure mechanism is a nontrivial task requiring sustained investment of resources.