Sample records for interactive computer play

  1. Interactive Computer Play in Rehabilitation of Children with Sensorimotor Disorders: A Systematic Review

    ERIC Educational Resources Information Center

    Sandlund, Marlene; McDonough, Suzanne; Hager-Ross, Charlotte

    2009-01-01

    The aim of this review was to examine systematically the evidence for the application of interactive computer play in the rehabilitation of children with sensorimotor disorders. A literature search of 11 electronic databases was conducted to identify articles published between January 1995 and May 2008. The review was restricted to reports of…

  2. The Dimensionality and Correlates of Flow in Human-Computer Interactions.

    ERIC Educational Resources Information Center

    Webster, Jane; And Others

    1993-01-01

    Defines playfulness in human-computer interactions in terms of flow theory and explores the dimensionality of the flow concept. Two studies are reported that investigated the factor structure and correlates of flow in human-computer interactions: one examined MBA students using Lotus 1-2-3 spreadsheet software, and one examined employees using…

  3. Continued use of an interactive computer game-based visual perception learning system in children with developmental delay.

    PubMed

    Lin, Hsien-Cheng; Chiu, Yu-Hsien; Chen, Yenming J; Wuang, Yee-Pay; Chen, Chiu-Ping; Wang, Chih-Chung; Huang, Chien-Ling; Wu, Tang-Meng; Ho, Wen-Hsien

    2017-11-01

    This study developed an interactive computer game-based visual perception learning system for special education children with developmental delay. To investigate whether perceived interactivity affects continued use of the system, this study developed a theoretical model of the process in which learners decide whether to continue using an interactive computer game-based visual perception learning system. The technology acceptance model, which considers perceived ease of use, perceived usefulness, and perceived playfulness, was extended by integrating perceived interaction (i.e., learner-instructor interaction and learner-system interaction) and then analyzing the effects of these perceptions on satisfaction and continued use. Data were collected from 150 participants (rehabilitation therapists, medical paraprofessionals, and parents of children with developmental delay) recruited from a single medical center in Taiwan. Structural equation modeling and partial-least-squares techniques were used to evaluate relationships within the model. The modeling results indicated that both perceived ease of use and perceived usefulness were positively associated with both learner-instructor interaction and learner-system interaction. However, perceived playfulness only had a positive association with learner-system interaction and not with learner-instructor interaction. Moreover, satisfaction was positively affected by perceived ease of use, perceived usefulness, and perceived playfulness. Thus, satisfaction positively affects continued use of the system. The data obtained by this study can be applied by researchers, designers of computer game-based learning systems, special education workers, and medical professionals. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Play and Digital Media

    ERIC Educational Resources Information Center

    Johnson, James E.; Christie, James F.

    2009-01-01

    This article examines how play is affected by computers and digital toys. Research indicates that when computer software targeted at children is problem-solving oriented and open-ended, children tend to engage in creative play and interact with peers in a positive manner. On the other hand, drill-and-practice programs can be quite boring and limit…

  5. 01010000 01001100 01000001 01011001: Play Elements in Computer Programming

    ERIC Educational Resources Information Center

    Breslin, Samantha

    2013-01-01

    This article explores the role of play in human interaction with computers in the context of computer programming. The author considers many facets of programming including the literary practice of coding, the abstract design of programs, and more mundane activities such as testing, debugging, and hacking. She discusses how these incorporate the…

  6. Online mentalising investigated with functional MRI.

    PubMed

    Kircher, Tilo; Blümel, Isabelle; Marjoram, Dominic; Lataster, Tineke; Krabbendam, Lydia; Weber, Jochen; van Os, Jim; Krach, Sören

    2009-05-01

    For successful interpersonal communication, inferring intentions, goals or desires of others is highly advantageous. Increasingly, humans also interact with computers or robots. In this study, we sought to determine to what degree an interactive task, which involves receiving feedback from social partners that can be used to infer intent, engaged the medial prefrontal cortex, a region previously associated with Theory of Mind processes among others. Participants were scanned using fMRI as they played an adapted version of the Prisoner's Dilemma Game with alleged human and computer partners who were outside the scanner. The medial frontal cortex was activated when both human and computer partner were played, while the direct contrast revealed significantly stronger signal change during the human-human interaction. The results suggest a link between activity in the medial prefrontal cortex and the partner played in a mentalising task. This signal change was also present for to the computers partner. Implying agency or a will to non-human actors might be an innate human resource that could lead to an evolutionary advantage.

  7. Creative Practical Use of Digital Media in Early Childhood Education, Parts 1 & 2.

    ERIC Educational Resources Information Center

    Chiba, Takeo; Kanou, Akira; Matsuda, Sohei; Izhara, Dai; Ishigahki, Emiko

    1997-01-01

    Discusses the creative use of television broadcasts, computers for interactive play, electronic instruments for musical expression, and interactive books in Japanese early childhood education. Considers how television can be used more effectively and how computers enhance interaction between children, describes how electronic instruments during…

  8. Awareness in the Home: The Nuances of Relationships, Domestic Coordination and Communication

    NASA Astrophysics Data System (ADS)

    Greenberg, Saul; Neustaedter, Carman; Elliot, Kathryn

    Computing has changed dramatically over the last decade. While some changes arose from technological advances, the most profound effects are in how technologies are used by everyday people for activities other than task-oriented work. Computers are now central to new ways of engaging in play, interpersonal and small group communication, community interaction, entertainment, personal creativity dissemination, personal publication, and so on. We are particularly interested in domestic computing, where technology mediates how families and other inhabitants interact within the context of the home. While domestic computing can incorporate many things, we focus in this chapter on the role awareness plays in domestic coordination and communication.

  9. Computational Insights into the Central Role of Nonbonding Interactions in Modern Covalent Organocatalysis

    DOE PAGES

    Walden, Daniel; Ogba, O. Maduka; Johnston, Ryne C.; ...

    2016-06-06

    The flexibility, complexity, and size of contemporary organocatalytic transformations pose interesting and powerful opportunities to computational and experimental chemists alike. In this Account, we disclose our recent computational investigations of three branches of organocatalysis in which nonbonding interactions, such as C–H···O/N interactions, play a crucial role in the organization of transition states, catalysis, and selectivity.

  10. Effect of Playing Interactive Computer Game on Distress of Insulin Injection Among Type 1 Diabetic Children

    PubMed Central

    Ebrahimpour, Fatemeh; Sadeghi, Narges; Najafi, Mostafa; Iraj, Bijan; Shahrokhi, Akram

    2015-01-01

    Background: Diabetic children and their families experience high level stress because of daily insulin injection. Objectives: This study was conducted to investigate the impact of an interactive computer game on behavioral distress due to insulin injection among diabetic children. Patients and Methods: In this clinical trial, thirty children (3-12 years) with type 1 diabetes who needed daily insulin injection were recruited and allocated randomly into two groups. Children in intervention groups received an interactive computer game and asked to play at home for a week. No special intervention was done for control group. The behavioral distress of groups was assessed before, during and after the intervention by Observational Scale of Behavioral Distress–Revised (OSBD-R). Results: Repeated measure ANOVA test showed no significantly difference of OSBD-R over time for control group (P = 0.08), but this changes is signification in the study group (P = 0.001). Comparison mean score of distress were significantly different between two groups (P = 0.03). Conclusions: According to the findings, playing interactive computer game can decrease behavioral distress induced by insulin injection in type 1 diabetic children. It seems this game can be beneficial to be used alongside other interventions. PMID:26199708

  11. Computers as Music Teachers.

    ERIC Educational Resources Information Center

    Taylor, Jack A.

    1983-01-01

    Peripheral components for music instruction include a music keyboard, a digital music synthesizer, and music listening devices. Computers can teach sight-singing, playing an instrument, dictation, and composition. Computer programs should be interactive with students. (KC)

  12. [Computer games in childhood and adolescence: relations to addictive behavior, ADHD, and aggression].

    PubMed

    Frölich, Jan; Lehmkuhl, Gerd; Döpfner, Manfred

    2009-09-01

    Playing computer games has become one of the main leisure activities in children and adolescents and increasingly replaces traditional playing and interactional activities. There might exist developmental benefits or positive effects of computer games that can be used for educational or therapeutic purposes. More important several studies have well demonstrated that excessive computer game playing is associated with behavior that features all components of non-chemical addiction and the prevalences across all age groups seem to be impressingly high. This overview relies on a Medline research. Its objective is to describe motivational and developmental characteristics attributed to computer games as well as the prevalences of computer playing in children and adolescents to better understand the risks for addictive use. We especially focus on the relations of excessive computer playing with attention-deficit hyperactivity disorder (ADHD) and aggressive behavior. The results demonstrate that children with ADHD are especially vulnerable to addictive use of computer games due to their neuropsychological profile. Moreover excessive violent computer game playing might be a significant risk variable for aggressive behavior in the presence of personality traits with aggressive cognitions and behavior scripts in the consumers. The increasing clinical meaning of addictive computer games playing urgently necessitates the development of diagnostic and therapeutic tools for clinical practice as well as the cooperation with allied disciplines.

  13. Stereogame: An Interactive Computer Game That Engages Students in Reviewing Stereochemistry Concepts

    ERIC Educational Resources Information Center

    da Silva, Jose´ Nunes, Jr.; Lima, Mary Anne Sousa; Moreira, Joao Victor Xerez; Alexandre, Francisco Serra Oliveira; de Almeida, Diego Macedo; de Oliveira, Maria da Conceicao Ferreira; Leite, Antonio Jose´ Melo, Jr.

    2017-01-01

    This report provides information about an interactive computer game that allows undergraduate students to review individually stereochemistry topics in an engaging way by responding to 230 novel questions distributed at three difficulty levels. Responses from students and instructors who have played the game have been quite positive. Stereogame is…

  14. Virtually compliant: Immersive video gaming increases conformity to false computer judgments.

    PubMed

    Weger, Ulrich W; Loughnan, Stephen; Sharma, Dinkar; Gonidis, Lazaros

    2015-08-01

    Real-life encounters with face-to-face contact are on the decline in a world in which many routine tasks are delegated to virtual characters-a development that bears both opportunities and risks. Interacting with such virtual-reality beings is particularly common during role-playing videogames, in which we incarnate into the virtual reality of an avatar. Video gaming is known to lead to the training and development of real-life skills and behaviors; hence, in the present study we sought to explore whether role-playing video gaming primes individuals' identification with a computer enough to increase computer-related social conformity. Following immersive video gaming, individuals were indeed more likely to give up their own best judgment and to follow the vote of computers, especially when the stimulus context was ambiguous. Implications for human-computer interactions and for our understanding of the formation of identity and self-concept are discussed.

  15. Simulating the Dynamics of Subsistence Fishing Communities: REEFGAME as a Learning and Data-Gathering Computer-Assisted Role-Play Game

    ERIC Educational Resources Information Center

    Cleland, Deborah; Dray, Anne; Perez, Pascal; Cruz-Trinidad, Annabelle; Geronimo, Rollan

    2012-01-01

    REEFGAME is a computer-assisted role-playing game that explores the interactions among management strategies, livelihood options, and ecological degradation in subsistence fishing communities. The tool has been successfully used in the Philippines and a variety of student workshops. In the field, REEFGAME operated as a two-way learning tool,…

  16. Computer-Assisted Culture Learning in an Online Augmented Reality Environment Based on Free-Hand Gesture Interaction

    ERIC Educational Resources Information Center

    Yang, Mau-Tsuen; Liao, Wan-Che

    2014-01-01

    The physical-virtual immersion and real-time interaction play an essential role in cultural and language learning. Augmented reality (AR) technology can be used to seamlessly merge virtual objects with real-world images to realize immersions. Additionally, computer vision (CV) technology can recognize free-hand gestures from live images to enable…

  17. A Computer-Assisted Laboratory Sequence for Petroleum Geology.

    ERIC Educational Resources Information Center

    Lumsden, David N.

    1979-01-01

    Describes a competitive oil-play game for petroleum geology students. It is accompanied by a computer program written in interactive Fortran. The program, however, is not essential, but useful for adding more interest. (SA)

  18. Reconfiguring Interactivity, Agency and Pleasure in the Education and Computer Games Debate--Using Zizek's Concept of Interpassivity to Analyse Educational Play

    ERIC Educational Resources Information Center

    Pelletier, Caroline

    2005-01-01

    Digital or computer games have recently attracted the interest of education researchers and policy-makers for two main reasons: their interactivity, which is said to allow greater agency, and their inherent pleasures, which are linked to increased motivation to learn. However, the relationship between pleasure, agency and motivation in educational…

  19. Computer modeling and simulation of human movement. Applications in sport and rehabilitation.

    PubMed

    Neptune, R R

    2000-05-01

    Computer modeling and simulation of human movement plays an increasingly important role in sport and rehabilitation, with applications ranging from sport equipment design to understanding pathologic gait. The complex dynamic interactions within the musculoskeletal and neuromuscular systems make analyzing human movement with existing experimental techniques difficult but computer modeling and simulation allows for the identification of these complex interactions and causal relationships between input and output variables. This article provides an overview of computer modeling and simulation and presents an example application in the field of rehabilitation.

  20. Computer games may be good for your health: shifting healthcare behavior via interactive drama videogames.

    PubMed

    Silverman, Barry G; Mosley, Josh; Johns, Michael; Weaver, Ransom; Green, Melanie; Holmes, John; Kimmel, Stephen; Holmes, William

    2003-01-01

    There is increasing evidence that interactive learning systems have an important role in reducing health risks and improving general health status. This theater style demonstration is aimed at harnessing people's passions for videogames and the movies, and a major purpose of this research is to explore alternative ways for a game generator to help authors to introduce entertainment and free play as well as learning by teaching into role playing games and interactive dramas that are behavioral interventions in disguise.

  1. Systems Concepts and Computer-Managed Instruction: An Implementation and Validation Study.

    ERIC Educational Resources Information Center

    Dick, Walter; Gallagher, Paul

    The Florida State model of computer-managed instruction (CMI) differs from other such models in that it assumes a student will achieve his maximum performance level by interacting directly with the computer in order to evaluate his learning experience. In this system the computer plays the role of real-time diagnostician and prescriber for the…

  2. Hotspot-Centric De Novo Design of Protein Binders

    PubMed Central

    Fleishman, Sarel J.; Corn, Jacob E.; Strauch, Eva-Maria; Whitehead, Timothy A.; Karanicolas, John; Baker, David

    2014-01-01

    Protein–protein interactions play critical roles in biology, and computational design of interactions could be useful in a range of applications. We describe in detail a general approach to de novo design of protein interactions based on computed, energetically optimized interaction hotspots, which was recently used to produce high-affinity binders of influenza hemagglutinin. We present several alternative approaches to identify and build the key hotspot interactions within both core secondary structural elements and variable loop regions and evaluate the method's performance in natural-interface recapitulation. We show that the method generates binding surfaces that are more conformationally restricted than previous design methods, reducing opportunities for off-target interactions. PMID:21945116

  3. Parent-child interactions during traditional and interactive media settings: A pilot randomized control study.

    PubMed

    Skaug, Silje; Englund, Kjellrun T; Saksvik-Lehouillier, Ingvild; Lydersen, Stian; Wichstrøm, Lars

    2018-04-01

    Parent-child interactions are pivotal for children's socioemotional development, yet might suffer with increased attention to screen media, as research has suggested. In response, we hypothesized that parent-child play on a tablet computer, as representative of interactive media, would generate higher-quality parent-child interactions than toy play or watching TV. We examined the emotional availability of mothers and their 2-year-old child during the previous three contexts using a randomized crossover design (n = 22) in a laboratory room. Among other results, mothers were more sensitive and structuring during joint gaming on a tablet than when engaged in toy play or watching TV. In addition, mothers were more hostile toward their children during play with traditional toys than during joint tablet gaming and television co-viewing. Such findings provide new insights into the impact of new media on parent-child interactions, chiefly by demonstrating that interactive media devices such as tablets can afford growth-enhancing parent-child interactions. © 2017 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  4. From Tabletop RPG to Interactive Storytelling: Definition of a Story Manager for Videogames

    NASA Astrophysics Data System (ADS)

    Delmas, Guylain; Champagnat, Ronan; Augeraud, Michel

    Adding narrative in computer game is complicated because it may restrict player interactivity. Our aim is to design a controller that dynamically built a plot, through the game execution, centred on player's actions. Tabletop Role-playing games manage to deal with this goal. This paper presents a study of role-playing games, their organization, and the models commonly used for narrative generation. It then deduces a proposition of components and data structures for interactive storytelling in videogames. A prototype of a social game has been developed as example.

  5. Integrating Computer-Mediated Communication Strategy Instruction

    ERIC Educational Resources Information Center

    McNeil, Levi

    2016-01-01

    Communication strategies (CSs) play important roles in resolving problematic second language interaction and facilitating language learning. While studies in face-to-face contexts demonstrate the benefits of communication strategy instruction (CSI), there have been few attempts to integrate computer-mediated communication and CSI. The study…

  6. Interactive Story Authoring: A Viable Form of Creative Expression for the Classroom

    ERIC Educational Resources Information Center

    Carbonaro, M.; Cutumisu, M.; Duff, H.; Gillis, S.; Onuczko, C.; Siegel, J.; Schaeffer, J.; Schumacher, A.; Szafron, D.; Waugh, K.

    2008-01-01

    The unprecedented growth in numbers of children playing computer games has stimulated discussion and research regarding what, if any, educational value these games have for teaching and learning. The research on this topic has primarily focused on children as players of computer games rather than builders/constructors of computer games. Recently,…

  7. Impact of Human like Cues on Human Trust in Machines: Brain Imaging and Modeling Studies for Human-Machine Interactions

    DTIC Science & Technology

    2018-01-05

    research team recorded fMRI or event-related potentials while subjects were playing two cognitive games . At the first experiment, human subjects played a...theory-of-mind bilateral game with two types of computerized agents: with or without humanlike cues. At the second experiment, human subjects played...a unilateral game in which the human subjects played the role of the Coach (or supervisor) while a computer agent played as the Player

  8. Role of virtual reality for cerebral palsy management.

    PubMed

    Weiss, Patrice L Tamar; Tirosh, Emanuel; Fehlings, Darcy

    2014-08-01

    Virtual reality is the use of interactive simulations to present users with opportunities to perform in virtual environments that appear, sound, and less frequently, feel similar to real-world objects and events. Interactive computer play refers to the use of a game where a child interacts and plays with virtual objects in a computer-generated environment. Because of their distinctive attributes that provide ecologically realistic and motivating opportunities for active learning, these technologies have been used in pediatric rehabilitation over the past 15 years. The ability of virtual reality to create opportunities for active repetitive motor/sensory practice adds to their potential for neuroplasticity and learning in individuals with neurologic disorders. The objectives of this article is to provide an overview of how virtual reality and gaming are used clinically, to present the results of several example studies that demonstrate their use in research, and to briefly remark on future developments. © The Author(s) 2014.

  9. A Cognitive Model of How Interactive Multimedia Authoring Facilitates Conceptual Understanding of Object-Oriented Programming in Novices

    ERIC Educational Resources Information Center

    Yuen, Timothy; Liu, Min

    2011-01-01

    This paper presents a cognitive model of how interactive multimedia authoring (IMA) affect novices' cognition in object-oriented programming. This model was generated through an empirical study of first year computer science students at the university level being engaged in interactive multimedia authoring of a role-playing game. Clinical…

  10. Creating a Development Support Bubble for Children

    NASA Astrophysics Data System (ADS)

    Verhaegh, Janneke; Fontijn, Willem; Aarts, Emile; Boer, Laurens; van de Wouw, Doortje

    In this paper we describe an opportunity Ambient Intelligence provides outside the domains typically associated with it. We present a concept for enhancing child development by introducing tangible computing in a way that fits the children and improves current education. We argue that the interfaces used should be simple and make sense to the children. The computer should be hidden and interaction should take place through familiar play objects to which the children already have a connection. Contrary to a straightforward application of personal computers, our solution addresses cognitive, social and fine motor skills in an integrated manner. We illustrate our vision with a concrete example of an application that supports the inevitable transition from free play throughout the classroom to focused play at the table. We also present the validation of the concept with children, parents and teachers, highlighting that they all recognize the benefits of tangible computing in this domain.

  11. Human Pacman: A Mobile Augmented Reality Entertainment System Based on Physical, Social, and Ubiquitous Computing

    NASA Astrophysics Data System (ADS)

    Cheok, Adrian David

    This chapter details the Human Pacman system to illuminate entertainment computing which ventures to embed the natural physical world seamlessly with a fantasy virtual playground by capitalizing on infrastructure provided by mobile computing, wireless LAN, and ubiquitous computing. With Human Pacman, we have a physical role-playing computer fantasy together with real human-social and mobile-gaming that emphasizes on collaboration and competition between players in a wide outdoor physical area that allows natural wide-area human-physical movements. Pacmen and Ghosts are now real human players in the real world experiencing mixed computer graphics fantasy-reality provided by using the wearable computers on them. Virtual cookies and actual tangible physical objects are incorporated into the game play to provide novel experiences of seamless transitions between the real and virtual worlds. This is an example of a new form of gaming that anchors on physicality, mobility, social interaction, and ubiquitous computing.

  12. Primary School Pupils' Attitudes toward Learning Programming through Visual Interactive Environments

    ERIC Educational Resources Information Center

    Asad, Khaled; Tibi, Moanis; Raiyn, Jamal

    2016-01-01

    New generations are using and playing with mobile and computer applications extensively. These applications are the outcomes of programming work that involves skills, such as computational and algorithmic thinking. Learning programming is not easy for students children. In recent years, academic institutions like the Massachusetts Institute of…

  13. A Computational Model of Linguistic Humor in Puns

    ERIC Educational Resources Information Center

    Kao, Justine T.; Levy, Roger; Goodman, Noah D.

    2016-01-01

    Humor plays an essential role in human interactions. Precisely what makes something funny, however, remains elusive. While research on natural language understanding has made significant advancements in recent years, there has been little direct integration of humor research with computational models of language understanding. In this paper, we…

  14. The role of voice input for human-machine communication.

    PubMed Central

    Cohen, P R; Oviatt, S L

    1995-01-01

    Optimism is growing that the near future will witness rapid growth in human-computer interaction using voice. System prototypes have recently been built that demonstrate speaker-independent real-time speech recognition, and understanding of naturally spoken utterances with vocabularies of 1000 to 2000 words, and larger. Already, computer manufacturers are building speech recognition subsystems into their new product lines. However, before this technology can be broadly useful, a substantial knowledge base is needed about human spoken language and performance during computer-based spoken interaction. This paper reviews application areas in which spoken interaction can play a significant role, assesses potential benefits of spoken interaction with machines, and compares voice with other modalities of human-computer interaction. It also discusses information that will be needed to build a firm empirical foundation for the design of future spoken and multimodal interfaces. Finally, it argues for a more systematic and scientific approach to investigating spoken input and performance with future language technology. PMID:7479803

  15. Factors Influencing Future Educational Technologists' Intentions to Participate in Online Teaching

    ERIC Educational Resources Information Center

    Hung, Wei-Chen; Jeng, Ifeng

    2013-01-01

    Education through the Internet is being shaped by the next wave of Web technology where productivity, collaborative tools and the ubiquity of computers play a major role in changing methods of peer interaction and collaboration. Because future educational technologists will play vital roles in navigating through this technical complexity and…

  16. Multimodal approaches for emotion recognition: a survey

    NASA Astrophysics Data System (ADS)

    Sebe, Nicu; Cohen, Ira; Gevers, Theo; Huang, Thomas S.

    2004-12-01

    Recent technological advances have enabled human users to interact with computers in ways previously unimaginable. Beyond the confines of the keyboard and mouse, new modalities for human-computer interaction such as voice, gesture, and force-feedback are emerging. Despite important advances, one necessary ingredient for natural interaction is still missing-emotions. Emotions play an important role in human-to-human communication and interaction, allowing people to express themselves beyond the verbal domain. The ability to understand human emotions is desirable for the computer in several applications. This paper explores new ways of human-computer interaction that enable the computer to be more aware of the user's emotional and attentional expressions. We present the basic research in the field and the recent advances into the emotion recognition from facial, voice, and physiological signals, where the different modalities are treated independently. We then describe the challenging problem of multimodal emotion recognition and we advocate the use of probabilistic graphical models when fusing the different modalities. We also discuss the difficult issues of obtaining reliable affective data, obtaining ground truth for emotion recognition, and the use of unlabeled data.

  17. Multimodal approaches for emotion recognition: a survey

    NASA Astrophysics Data System (ADS)

    Sebe, Nicu; Cohen, Ira; Gevers, Theo; Huang, Thomas S.

    2005-01-01

    Recent technological advances have enabled human users to interact with computers in ways previously unimaginable. Beyond the confines of the keyboard and mouse, new modalities for human-computer interaction such as voice, gesture, and force-feedback are emerging. Despite important advances, one necessary ingredient for natural interaction is still missing-emotions. Emotions play an important role in human-to-human communication and interaction, allowing people to express themselves beyond the verbal domain. The ability to understand human emotions is desirable for the computer in several applications. This paper explores new ways of human-computer interaction that enable the computer to be more aware of the user's emotional and attentional expressions. We present the basic research in the field and the recent advances into the emotion recognition from facial, voice, and physiological signals, where the different modalities are treated independently. We then describe the challenging problem of multimodal emotion recognition and we advocate the use of probabilistic graphical models when fusing the different modalities. We also discuss the difficult issues of obtaining reliable affective data, obtaining ground truth for emotion recognition, and the use of unlabeled data.

  18. Choice of Interactive Dance and Bicycle Games in Overweight and Nonoverweight Youth

    PubMed Central

    Epstein, Leonard H.; Beecher, Meghan D.; Graf, Jennifer L.; Roemmich, James N.

    2008-01-01

    Background: Interactive video games are a popular alternative to physical activity in youth. One advancement in computer games are interactive games that use physical activity as a game playing controller, combining exercise and entertainment, or exertainment. Purpose: This study tested the reinforcing value and activity levels of interactive dance and bicycle race games in 18 overweight and 17 nonoverweight 8- to 12-year-old youth. Methods: Reinforcing value was studied using a behavioral choice paradigm that provided children the opportunity to respond on progressive ratio schedules of reinforcement for a choice of either playing the video dance or bicycle game using a handheld video game controller or one of three options: dancing or bicycling alone, dancing or bicycling while watching a video, or playing the interactive dance or bicycle game. Reinforcing value was defined in relationship to the amount of responding children engaged in for either choice. Results: Results showed the interactive dance game was more reinforcing than dancing alone or dancing while watching the video (p = .003), but there was no difference across bicycling conditions. Nonoverweight youth were more active when given the opportunity to play the interactive dance game than overweight children (p = .05). Conclusions: These results suggest that children may be motivated to be active when given the opportunity to play an interactive dance game. PMID:17447864

  19. Paradoxical Expectation: Oscillatory Brain Activity Reveals Social Interaction Impairment in Schizophrenia.

    PubMed

    Billeke, Pablo; Armijo, Alejandra; Castillo, Daniel; López, Tamara; Zamorano, Francisco; Cosmelli, Diego; Aboitiz, Francisco

    2015-09-15

    People with schizophrenia show social impairments that are related to functional outcomes. We tested the hypothesis that social interaction impairments in people with schizophrenia are related to alterations in the predictions of others' behavior and explored their underlying neurobiological mechanisms. Electroencephalography was performed in 20 patients with schizophrenia and 25 well-matched control subjects. Participants played as proposers in the repeated version of the Ultimatum Game believing that they were playing with another human or with a computer. The power of oscillatory brain activity was obtained by means of the wavelet transform. We performed a trial-by-trial correlation between the oscillatory activity and the risk of the offer. Control subjects adapted their offers when playing with computers and tended to maintain their offers when playing with humans, as such revealing learning and bargaining strategies, respectively. People with schizophrenia presented the opposite pattern of behavior in both games. During the anticipation of others' responses, the power of alpha oscillations correlated with the risk of the offers made, in a different way in both games. Patients with schizophrenia presented a greater correlation in computer games than in human games; control subjects showed the opposite pattern. The alpha activity correlated with positive symptoms. Our results reveal an alteration in social interaction in patients with schizophrenia that is related to oscillatory brain activity, suggesting maladjustment of expectation when patients face social and nonsocial agents. This alteration is related to psychotic symptoms and could guide further therapies for improving social functioning in patients with schizophrenia. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Virtual performer: single camera 3D measuring system for interaction in virtual space

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kunio; Taneji, Shoto

    2006-10-01

    The authors developed interaction media systems in the 3D virtual space. In these systems, the musician virtually plays an instrument like the theremin in the virtual space or the performer plays a show using the virtual character such as a puppet. This interactive virtual media system consists of the image capture, measuring performer's position, detecting and recognizing motions and synthesizing video image using the personal computer. In this paper, we propose some applications of interaction media systems; a virtual musical instrument and superimposing CG character. Moreover, this paper describes the measuring method of the positions of the performer, his/her head and both eyes using a single camera.

  1. Questioning Mechanisms During Tutoring, Conversation, and Human-Computer Interaction

    DTIC Science & Technology

    1992-10-14

    project on the grant, we are analyzing sequences of speech act categories in dialogues between children. The 90 dialogues occur in the context of free ... play , a puzzle task, versus a 20-questions game. Our goal is to assess the extent to which various computational models can predict speech act category N

  2. L2 Immersion in 3D Virtual Worlds: The Next Thing to Being There?

    ERIC Educational Resources Information Center

    Paillat, Edith

    2014-01-01

    Second Life is one of the many three-dimensional virtual environments accessible through a computer and a fast broadband connection. Thousands of participants connect to this platform to interact virtually with the world, join international communities of practice and, for some, role play groups. Unlike online role play games however, Second Life…

  3. Virtual Frog Dissection Kit Version 2.2

    Science.gov Websites

    Virtual Frog Dissection Kit This award-winning interactive program is part of the "Whole Frog " project. You can interactively dissect a (digitized) frog named Fluffy, and play the Virtual Frog animals other than the frog that have a computer-graphics based virtual dissection page. We get frequent

  4. A New Way to Play Music Together: The Continuator in the Classroom

    ERIC Educational Resources Information Center

    Ferrari, Laura; Addessi, Anna Rita

    2014-01-01

    This article describes a didactic experience concerning the interaction between young children and the Continuator, an Interactive Reflexive Musical System (IRMS) elaborated at SONY- Computer Science Laboratory in Paris. The general aim was to analyse whether and how the Continuator can be used in the kindergartner during the daily school…

  5. Learning through social interaction in game technology.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waern, Annika; Raybourn, Elaine Marie

    2005-05-01

    The present ITSE journal special issue on 'Learning About Social Interaction through Gaming' is the result of an invitation to the attendees of a one-day workshop on 'Social Learning Through Gaming' co-organized by the guest editors and held at the Human Factors in Computing Systems (CHI) conference on April 26, 2004 in Vienna, Austria. CHI is one of the premiere conferences on human-computer interaction. CHI 2004 attracted hundreds of delegates from all over the world. The CHI workshop program results from a competitive selection process. The Social Learning through Gaming workshop was filled to capacity and attended by approximately 25more » participants from Europe and North America who submitted position papers that were refereed and selected for participation based on the relevancy and innovativeness of the research. The participants came together to share research on play, learning, games, interactive technologies, and what playing and designing games can teach us about social behaviors. The present special issue focuses on learning about social aspects through gaming: learning to socialize through games and learning games through social behavior.« less

  6. CMC Technologies for Teaching Foreign Languages: What's on the Horizon?

    ERIC Educational Resources Information Center

    Lafford, Peter A.; Lafford, Barbara A.

    2005-01-01

    Computer-mediated communication (CMC) technologies have begun to play an increasingly important role in the teaching of foreign/second (L2) languages. Its use in this context is supported by a growing body of CMC research that highlights the importance of the negotiation of meaning and computer-based interaction in the process of second language…

  7. Games Children Play: The Effects of Media Violence on Young Children.

    ERIC Educational Resources Information Center

    Wellisch, Mimi

    2000-01-01

    Noting that most children living in Australia have access to a television, video games, and computers and are influenced by the content of their viewing and interactive games, this report examines the impact of media violence on young children. Topics discussed include the recognition of violence on television and video/computer games, reasons for…

  8. School Students and Computer Games with Screen Violence

    ERIC Educational Resources Information Center

    Fedorov, A. V.

    2005-01-01

    In this article, the author states how these days, school students from low-income strata of the population in Russia spend hours sitting in computer rooms and Internet clubs, where, for a relatively small fee, they can play interactive video games. And to determine what games they prefer the author conducted a content analysis of eighty-seven…

  9. Adding an Intelligent Tutoring System to an Existing Training Simulation

    DTIC Science & Technology

    2006-01-01

    to apply information in a job should be the goal of training. Also, conventional IMI is not able to meaningfully incorporate use of free - play simulators...incorporating desktop free - play simulators into computer-based training since the software can stand in for a human tutor in all the roles. Existing IMI...2. ITS can integrate free - play simulators and IMI BC2010 ITS DESCRIPTION Overview Figure 3 illustrates the interaction between BC2010, ITS

  10. Virtual Learning Environments in Social Psychology: Using "The SIMs[superscript 3]" to Teach Self-Related Processes

    ERIC Educational Resources Information Center

    Stansbury, Jessica A.

    2017-01-01

    An interactive learning module was developed and implemented in a social psychology course to teach concepts of the "self" via self-exploration and game play using "The SIMS[superscript 3]." Students volunteered to play the computer video game throughout a 5-week summer session as a supplement to reading the chapter in the…

  11. Computer Cache. Online Recess--Web Games for Play and Fun

    ERIC Educational Resources Information Center

    Byerly, Greg; Brodie, Carolyn S.

    2005-01-01

    There are many age-appropriate, free, and easy-to-use online games available on the Web. In this column the authors describe some of their favorites for use with and by elementary students. They have not included games that require children to log on and/or register with their names or play against someone else interactively over the Web. None of…

  12. Computational Methods for Biomolecular Electrostatics

    PubMed Central

    Dong, Feng; Olsen, Brett; Baker, Nathan A.

    2008-01-01

    An understanding of intermolecular interactions is essential for insight into how cells develop, operate, communicate and control their activities. Such interactions include several components: contributions from linear, angular, and torsional forces in covalent bonds, van der Waals forces, as well as electrostatics. Among the various components of molecular interactions, electrostatics are of special importance because of their long range and their influence on polar or charged molecules, including water, aqueous ions, and amino or nucleic acids, which are some of the primary components of living systems. Electrostatics, therefore, play important roles in determining the structure, motion and function of a wide range of biological molecules. This chapter presents a brief overview of electrostatic interactions in cellular systems with a particular focus on how computational tools can be used to investigate these types of interactions. PMID:17964951

  13. Multiscale Space-Time Computational Methods for Fluid-Structure Interactions

    DTIC Science & Technology

    2015-09-13

    prescribed fully or partially, is from an actual locust, extracted from high-speed, multi-camera video recordings of the locust in a wind tunnel . We use...With creative methods for coupling the fluid and structure, we can increase the scope and efficiency of the FSI modeling . Multiscale methods, which now...play an important role in computational mathematics, can also increase the accuracy and efficiency of the computer modeling techniques. The main

  14. Digital Gaming Perspectives of Older Adults: Content vs. Interaction

    ERIC Educational Resources Information Center

    Marston, Hannah R.

    2013-01-01

    There were two objectives to this study: (a) to establish flow and (2) to establish whether computer game interaction or content was important to the older adult, using the Nintendo Wii and the Sony PlayStation 2 consoles. An earlier study had identified the sports genre as a preference, and three games (golf, tennis, and boxing) were selected…

  15. Computational Determination of the Effects of Bacteriophage Bacteriophage Interactions in Human body.

    PubMed

    Mostafa, Marwa Mostafa; Nassef, Mohammad; Badr, Amr

    2017-10-19

    Chronic diseases are becoming more serious and widely spreading and this carries a heavy burden on doctors to deal with such patients. Although many of these diseases can be treated by bacteriophages, the situation is significantly dangerous in patients having concomitant more than one chronic disease, where conflicts between phages used in treating these diseases are very closer to happen. This research paper presents a method to detecting the Bacteriophage-Bacteriophage Interaction. This method is implemented based on Domain-Domain Interactions model and it was used to infer Domain-Domain Interactions between the bacteriophages injected in the human body at the same time. By testing the method over bacteriophages that are used to treat tuberculosis, salmonella and virulent E.coli, many interactions have been inferred and detected between these bacteriophages. Several effects were detected for the resulted interactions such as: playing a role in DNA repair such as non-homologous end joining, playing a role in DNA replication, playing a role in the interaction between the immune system and the tumor cells and playing a role in the stiff man syndrome. We revised all patents relating to bacteriophage bacteriophage interactions and phage therapy. The proposed method is developed to help doctors to realize the effect of simultaneously injecting different bacteriophages into the human body to treat different diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Analysis of context dependence in social interaction networks of a massively multiplayer online role-playing game.

    PubMed

    Son, Seokshin; Kang, Ah Reum; Kim, Hyun-chul; Kwon, Taekyoung; Park, Juyong; Kim, Huy Kang

    2012-01-01

    Rapid advances in modern computing and information technology have enabled millions of people to interact online via various social network and gaming services. The widespread adoption of such online services have made possible analysis of large-scale archival data containing detailed human interactions, presenting a very promising opportunity to understand the rich and complex human behavior. In collaboration with a leading global provider of Massively Multiplayer Online Role-Playing Games (MMORPGs), here we present a network science-based analysis of the interplay between distinct types of user interaction networks in the virtual world. We find that their properties depend critically on the nature of the context-interdependence of the interactions, highlighting the complex and multilayered nature of human interactions, a robust understanding of which we believe may prove instrumental in the designing of more realistic future virtual arenas as well as provide novel insights to the science of collective human behavior.

  17. Rigid-Docking Approaches to Explore Protein-Protein Interaction Space.

    PubMed

    Matsuzaki, Yuri; Uchikoga, Nobuyuki; Ohue, Masahito; Akiyama, Yutaka

    Protein-protein interactions play core roles in living cells, especially in the regulatory systems. As information on proteins has rapidly accumulated on publicly available databases, much effort has been made to obtain a better picture of protein-protein interaction networks using protein tertiary structure data. Predicting relevant interacting partners from their tertiary structure is a challenging task and computer science methods have the potential to assist with this. Protein-protein rigid docking has been utilized by several projects, docking-based approaches having the advantages that they can suggest binding poses of predicted binding partners which would help in understanding the interaction mechanisms and that comparing docking results of both non-binders and binders can lead to understanding the specificity of protein-protein interactions from structural viewpoints. In this review we focus on explaining current computational prediction methods to predict pairwise direct protein-protein interactions that form protein complexes.

  18. Cyberpsychology: a human-interaction perspective based on cognitive modeling.

    PubMed

    Emond, Bruno; West, Robert L

    2003-10-01

    This paper argues for the relevance of cognitive modeling and cognitive architectures to cyberpsychology. From a human-computer interaction point of view, cognitive modeling can have benefits both for theory and model building, and for the design and evaluation of sociotechnical systems usability. Cognitive modeling research applied to human-computer interaction has two complimentary objectives: (1) to develop theories and computational models of human interactive behavior with information and collaborative technologies, and (2) to use the computational models as building blocks for the design, implementation, and evaluation of interactive technologies. From the perspective of building theories and models, cognitive modeling offers the possibility to anchor cyberpsychology theories and models into cognitive architectures. From the perspective of the design and evaluation of socio-technical systems, cognitive models can provide the basis for simulated users, which can play an important role in usability testing. As an example of application of cognitive modeling to technology design, the paper presents a simulation of interactive behavior with five different adaptive menu algorithms: random, fixed, stacked, frequency based, and activation based. Results of the simulation indicate that fixed menu positions seem to offer the best support for classification like tasks such as filing e-mails. This research is part of the Human-Computer Interaction, and the Broadband Visual Communication research programs at the National Research Council of Canada, in collaboration with the Carleton Cognitive Modeling Lab at Carleton University.

  19. Toward a Neuroscientific Understanding of Play: A Dimensional Coding Framework for Analyzing Infant–Adult Play Patterns

    PubMed Central

    Neale, Dave; Clackson, Kaili; Georgieva, Stanimira; Dedetas, Hatice; Scarpate, Melissa; Wass, Sam; Leong, Victoria

    2018-01-01

    Play during early life is a ubiquitous activity, and an individual’s propensity for play is positively related to cognitive development and emotional well-being. Play behavior (which may be solitary or shared with a social partner) is diverse and multi-faceted. A challenge for current research is to converge on a common definition and measurement system for play – whether examined at a behavioral, cognitive or neurological level. Combining these different approaches in a multimodal analysis could yield significant advances in understanding the neurocognitive mechanisms of play, and provide the basis for developing biologically grounded play models. However, there is currently no integrated framework for conducting a multimodal analysis of play that spans brain, cognition and behavior. The proposed coding framework uses grounded and observable behaviors along three dimensions (sensorimotor, cognitive and socio-emotional), to compute inferences about playful behavior in a social context, and related social interactional states. Here, we illustrate the sensitivity and utility of the proposed coding framework using two contrasting dyadic corpora (N = 5) of mother-infant object-oriented interactions during experimental conditions that were either non-conducive (Condition 1) or conducive (Condition 2) to the emergence of playful behavior. We find that the framework accurately identifies the modal form of social interaction as being either non-playful (Condition 1) or playful (Condition 2), and further provides useful insights about differences in the quality of social interaction and temporal synchronicity within the dyad. It is intended that this fine-grained coding of play behavior will be easily assimilated with, and inform, future analysis of neural data that is also collected during adult–infant play. In conclusion, here, we present a novel framework for analyzing the continuous time-evolution of adult–infant play patterns, underpinned by biologically informed state coding along sensorimotor, cognitive and socio-emotional dimensions. We expect that the proposed framework will have wide utility amongst researchers wishing to employ an integrated, multimodal approach to the study of play, and lead toward a greater understanding of the neuroscientific basis of play. It may also yield insights into a new biologically grounded taxonomy of play interactions. PMID:29618994

  20. Toward a Neuroscientific Understanding of Play: A Dimensional Coding Framework for Analyzing Infant-Adult Play Patterns.

    PubMed

    Neale, Dave; Clackson, Kaili; Georgieva, Stanimira; Dedetas, Hatice; Scarpate, Melissa; Wass, Sam; Leong, Victoria

    2018-01-01

    Play during early life is a ubiquitous activity, and an individual's propensity for play is positively related to cognitive development and emotional well-being. Play behavior (which may be solitary or shared with a social partner) is diverse and multi-faceted. A challenge for current research is to converge on a common definition and measurement system for play - whether examined at a behavioral, cognitive or neurological level. Combining these different approaches in a multimodal analysis could yield significant advances in understanding the neurocognitive mechanisms of play, and provide the basis for developing biologically grounded play models. However, there is currently no integrated framework for conducting a multimodal analysis of play that spans brain, cognition and behavior. The proposed coding framework uses grounded and observable behaviors along three dimensions (sensorimotor, cognitive and socio-emotional), to compute inferences about playful behavior in a social context, and related social interactional states. Here, we illustrate the sensitivity and utility of the proposed coding framework using two contrasting dyadic corpora ( N = 5) of mother-infant object-oriented interactions during experimental conditions that were either non-conducive (Condition 1) or conducive (Condition 2) to the emergence of playful behavior. We find that the framework accurately identifies the modal form of social interaction as being either non-playful (Condition 1) or playful (Condition 2), and further provides useful insights about differences in the quality of social interaction and temporal synchronicity within the dyad. It is intended that this fine-grained coding of play behavior will be easily assimilated with, and inform, future analysis of neural data that is also collected during adult-infant play. In conclusion, here, we present a novel framework for analyzing the continuous time-evolution of adult-infant play patterns, underpinned by biologically informed state coding along sensorimotor, cognitive and socio-emotional dimensions. We expect that the proposed framework will have wide utility amongst researchers wishing to employ an integrated, multimodal approach to the study of play, and lead toward a greater understanding of the neuroscientific basis of play. It may also yield insights into a new biologically grounded taxonomy of play interactions.

  1. A multimodal interface device for online board games designed for sight-impaired people.

    PubMed

    Caporusso, Nicholas; Mkrtchyan, Lusine; Badia, Leonardo

    2010-03-01

    Online games between remote opponents playing over computer networks are becoming a common activity of everyday life. However, computer interfaces for board games are usually based on the visual channel. For example, they require players to check their moves on a video display and interact by using pointing devices such as a mouse. Hence, they are not suitable for visually impaired people. The present paper discusses a multipurpose system that allows especially blind and deafblind people playing chess or other board games over a network, therefore reducing their disability barrier. We describe and benchmark a prototype of a special interactive haptic device for online gaming providing a dual tactile feedback. The novel interface of this proposed device is able to guarantee not only a better game experience for everyone but also an improved quality of life for sight-impaired people.

  2. A Survey of Educational Games as Interaction Design Tools for Affective Learning: Thematic Analysis Taxonomy

    ERIC Educational Resources Information Center

    Yusoff, Zarwina; Kamsin, Amirrudin; Shamshirband, Shahaboddin; Chronopoulos, Anthony T.

    2018-01-01

    A Computer game is the new platform in generating learning experiences for educational purposes. There are many educational games that have been used as an interaction design tool in a learning environment to enhance students learning outcomes. However, research also claims that playing video games can have a negative impact on student behavior,…

  3. Analyzing Conflict Dynamics with the Aid of an Interactive Microworld Simulator of a Fishing Dispute

    ERIC Educational Resources Information Center

    Kuperman, Ranan D.

    2010-01-01

    This article presents findings from a research project that uses an interactive simulator of an imaginary fishing dispute. Subjects operating the simulator play the role of a state leader, while the computer program controls the behavior of a contending state as well as provides all the environmental data associated with the conflict. The…

  4. The Interactive Influences of Friend Deviance and Reward Dominance on the Development of Externalizing Behavior during Middle Adolescence

    ERIC Educational Resources Information Center

    Goodnight, Jackson A.; Bates, John E.; Newman, Joseph P.; Dodge, Kenneth A.; Pettit, Gregory S.

    2006-01-01

    This study investigated the interactive effects of friend deviance and reward dominance on the development of externalizing behavior of adolescents in the Child Development Project. Reward dominance was assessed at age 16 by performance on a computer-presented card-playing game in which participants had the choice of either continuing or…

  5. Quantifying electron transfer reactions in biological systems: what interactions play the major role?

    NASA Astrophysics Data System (ADS)

    Sjulstok, Emil; Olsen, Jógvan Magnus Haugaard; Solov'Yov, Ilia A.

    2015-12-01

    Various biological processes involve the conversion of energy into forms that are usable for chemical transformations and are quantum mechanical in nature. Such processes involve light absorption, excited electronic states formation, excitation energy transfer, electrons and protons tunnelling which for example occur in photosynthesis, cellular respiration, DNA repair, and possibly magnetic field sensing. Quantum biology uses computation to model biological interactions in light of quantum mechanical effects and has primarily developed over the past decade as a result of convergence between quantum physics and biology. In this paper we consider electron transfer in biological processes, from a theoretical view-point; namely in terms of quantum mechanical and semi-classical models. We systematically characterize the interactions between the moving electron and its biological environment to deduce the driving force for the electron transfer reaction and to establish those interactions that play the major role in propelling the electron. The suggested approach is seen as a general recipe to treat electron transfer events in biological systems computationally, and we utilize it to describe specifically the electron transfer reactions in Arabidopsis thaliana cryptochrome-a signaling photoreceptor protein that became attractive recently due to its possible function as a biological magnetoreceptor.

  6. Protein-protein interaction predictions using text mining methods.

    PubMed

    Papanikolaou, Nikolas; Pavlopoulos, Georgios A; Theodosiou, Theodosios; Iliopoulos, Ioannis

    2015-03-01

    It is beyond any doubt that proteins and their interactions play an essential role in most complex biological processes. The understanding of their function individually, but also in the form of protein complexes is of a great importance. Nowadays, despite the plethora of various high-throughput experimental approaches for detecting protein-protein interactions, many computational methods aiming to predict new interactions have appeared and gained interest. In this review, we focus on text-mining based computational methodologies, aiming to extract information for proteins and their interactions from public repositories such as literature and various biological databases. We discuss their strengths, their weaknesses and how they complement existing experimental techniques by simultaneously commenting on the biological databases which hold such information and the benchmark datasets that can be used for evaluating new tools. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. New strategy for protein interactions and application to structure-based drug design

    NASA Astrophysics Data System (ADS)

    Zou, Xiaoqin

    One of the greatest challenges in computational biophysics is to predict interactions between biological molecules, which play critical roles in biological processes and rational design of therapeutic drugs. Biomolecular interactions involve delicate interplay between multiple interactions, including electrostatic interactions, van der Waals interactions, solvent effect, and conformational entropic effect. Accurate determination of these complex and subtle interactions is challenging. Moreover, a biological molecule such as a protein usually consists of thousands of atoms, and thus occupies a huge conformational space. The large degrees of freedom pose further challenges for accurate prediction of biomolecular interactions. Here, I will present our development of physics-based theory and computational modeling on protein interactions with other molecules. The major strategy is to extract microscopic energetics from the information embedded in the experimentally-determined structures of protein complexes. I will also present applications of the methods to structure-based therapeutic design. Supported by NSF CAREER Award DBI-0953839, NIH R01GM109980, and the American Heart Association (Midwest Affiliate) [13GRNT16990076].

  8. Interactive Multimedia Distance Learning (IMDL)

    DTIC Science & Technology

    1999-01-01

    scales to their original values. Media Toolbar. The Media Toolbar provides the instructor the ability to choose camera positions, use the whiteboard ...on the classroom server computer. Whiteboard . Activates a whiteboard associated with the MIDL system. The whiteboard is used to annotate the course...button. Media Control Panel. The Media Control Panel allows the instructor to choose a camera position, use the whiteboard , play some computer video, use

  9. Structural Exploration and Conformational Transitions in MDM2 upon DHFR Interaction from Homo sapiens: A Computational Outlook for Malignancy via Epigenetic Disruption.

    PubMed

    Banerjee, Arundhati; Ray, Sujay

    2016-01-01

    Structural basis for exploration into MDM2 and MDM2-DHFR interaction plays a vital role in analyzing the obstruction in folate metabolism, nonsynthesis of purines, and further epigenetic regulation in Homo sapiens. Therefore, it leads to suppression of normal cellular behavior and malignancy. This has been earlier documented via yeast two-hybrid assays. So, with a novel outlook, this study explores the molecular level demonstration of the best satisfactory MDM2 model selection after performing manifold modeling techniques. Z-scores and other stereochemical features were estimated for comparison. Further, protein-protein docking was executed with MDM2 and the experimentally validated X-ray crystallographic DHFR. Residual disclosure from the best suited simulated protein complex disclosed 18 side chain and 3 ionic interactions to strongly accommodate MDM2 protein into the pocket-like zone in DHFR due to the positive environment by charged residues. Lysine residues from MDM2 played a predominant role. Moreover, evaluation from varied energy calculations, folding rate, and net area for solvent accessibility implied the active participation of MDM2 with DHFR. Fascinatingly, conformational transitions from coils to helices and β-sheets after interaction with DHFR affirm the conformational strength and firmer interaction of human MDM2-DHFR. Therefore, this probe instigates near-future clinical research and interactive computational investigations with mutations.

  10. Structural Exploration and Conformational Transitions in MDM2 upon DHFR Interaction from Homo sapiens: A Computational Outlook for Malignancy via Epigenetic Disruption

    PubMed Central

    Banerjee, Arundhati; Ray, Sujay

    2016-01-01

    Structural basis for exploration into MDM2 and MDM2-DHFR interaction plays a vital role in analyzing the obstruction in folate metabolism, nonsynthesis of purines, and further epigenetic regulation in Homo sapiens. Therefore, it leads to suppression of normal cellular behavior and malignancy. This has been earlier documented via yeast two-hybrid assays. So, with a novel outlook, this study explores the molecular level demonstration of the best satisfactory MDM2 model selection after performing manifold modeling techniques. Z-scores and other stereochemical features were estimated for comparison. Further, protein-protein docking was executed with MDM2 and the experimentally validated X-ray crystallographic DHFR. Residual disclosure from the best suited simulated protein complex disclosed 18 side chain and 3 ionic interactions to strongly accommodate MDM2 protein into the pocket-like zone in DHFR due to the positive environment by charged residues. Lysine residues from MDM2 played a predominant role. Moreover, evaluation from varied energy calculations, folding rate, and net area for solvent accessibility implied the active participation of MDM2 with DHFR. Fascinatingly, conformational transitions from coils to helices and β-sheets after interaction with DHFR affirm the conformational strength and firmer interaction of human MDM2-DHFR. Therefore, this probe instigates near-future clinical research and interactive computational investigations with mutations. PMID:27213086

  11. Enhanced Flexibility of the O2 + N2 Interaction and Its Effect on Collisional Vibrational Energy Exchange.

    PubMed

    Garcia, E; Laganà, A; Pirani, F; Bartolomei, M; Cacciatore, M; Kurnosov, A

    2016-07-14

    Prompted by a comparison of measured and computed rate coefficients of Vibration-to-Vibration and Vibration-to-Translation energy transfer in O2 + N2 non-reactive collisions, extended semiclassical calculations of the related cross sections were performed to rationalize the role played by attractive and repulsive components of the interaction on two different potential energy surfaces. By exploiting the distributed concurrent scheme of the Grid Empowered Molecular Simulator we extended the computational work to quasiclassical techniques, investigated in this way more in detail the underlying microscopic mechanisms, singled out the interaction components facilitating the energy transfer, improved the formulation of the potential, and performed additional calculations that confirmed the effectiveness of the improvement introduced.

  12. Analysis of Context Dependence in Social Interaction Networks of a Massively Multiplayer Online Role-Playing Game

    PubMed Central

    Son, Seokshin; Kang, Ah Reum; Kim, Hyun-chul; Kwon, Taekyoung; Park, Juyong; Kim, Huy Kang

    2012-01-01

    Rapid advances in modern computing and information technology have enabled millions of people to interact online via various social network and gaming services. The widespread adoption of such online services have made possible analysis of large-scale archival data containing detailed human interactions, presenting a very promising opportunity to understand the rich and complex human behavior. In collaboration with a leading global provider of Massively Multiplayer Online Role-Playing Games (MMORPGs), here we present a network science-based analysis of the interplay between distinct types of user interaction networks in the virtual world. We find that their properties depend critically on the nature of the context-interdependence of the interactions, highlighting the complex and multilayered nature of human interactions, a robust understanding of which we believe may prove instrumental in the designing of more realistic future virtual arenas as well as provide novel insights to the science of collective human behavior. PMID:22496771

  13. Cross-Cultural Competence in the Department of Defense: An Annotated Bibliography

    DTIC Science & Technology

    2014-04-01

    computer toward the best possible strategy. The article outlines, in detail, how the game is played in theory as well as how it was played in this...validation of the CQS: The cultural intelligence scale. In S. Ang & L. Van Dyne (Eds.), Handbook of cultural intelligence: Theory , measurement, and...weaknesses of various approaches, general learning theory , and the utility of employing civilian style education to prepare Soldiers to interact in

  14. Restoring Fun to Game Theory

    ERIC Educational Resources Information Center

    Dixit, Avinash

    2005-01-01

    The author suggests methods for teaching game theory at an introductory level, using interactive games to be played in the classroom or in computer clusters, clips from movies to be screened and discussed, and excerpts from novels and historical books to be read and discussed.

  15. High Fidelity Virtual Environments: Does Shader Quality or Higher Polygon Count Models Increase Presence and Learning

    NASA Astrophysics Data System (ADS)

    Horton, Scott

    This research study investigated the effects of high fidelity graphics on both learning and presence, or the "sense of being there," inside a Virtual Learning Environment (VLE). Four versions of a VLE on the subject of the element mercury were created, each with a different combination of high and low fidelity polygon models and high and low fidelity shaders. A total of 76 college age (18+ years of age) participants were randomly assigned to one of the four conditions. The participants interacted with the VLE and then completed several posttest measures on learning, presence, and attitudes towards the VLE experience. Demographic information was also collected, including age, computer gameplay experience, number of virtual environments interacted with, gender and time spent in this virtual environment. The data was analyzed as a 2 x 2 between subjects ANOVA. The main effects of shader fidelity and polygon fidelity were both non-significant for both learning and all presence subscales inside the VLE. In addition, there was no significant interaction between shader fidelity and model fidelity. However, there were two significant results on the supplementary variables. First, gender was found to have a significant main effect on all the presence subscales. Females reported higher average levels of presence than their male counterparts. Second, gameplay hours, or the number of hours a participant played computer games per week, also had a significant main effect on participant score on the learning measure. The participants who reported playing 15+ hours of computer games per week, the highest amount of time in the variable, had the highest score as a group on the mercury learning measure while those participants that played 1-5 hours per week had the lowest scores.

  16. Gender differences in the use of computers, programming, and peer interactions in computer science classrooms

    NASA Astrophysics Data System (ADS)

    Stoilescu, Dorian; Egodawatte, Gunawardena

    2010-12-01

    Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new definitions for computer science culture but to see how male and female students see themselves involved in computer science practices, how they see computer science as a successful career, and what they like and dislike about current computer science practices. The study took place in a mid-sized university in Ontario. Sixteen students and two instructors were interviewed to get their views. We found that male and female views are different on computer use, programming, and the pattern of student interactions. Female and male students did not have any major issues in using computers. In computing programming, female students were not so involved in computing activities whereas male students were heavily involved. As for the opinions about successful computer science professionals, both female and male students emphasized hard working, detailed oriented approaches, and enjoying playing with computers. The myth of the geek as a typical profile of successful computer science students was not found to be true.

  17. On the computational modeling of the viscosity of colloidal dispersions and its relation with basic molecular interactions

    NASA Astrophysics Data System (ADS)

    Gama Goicochea, A.; Balderas Altamirano, M. A.; Lopez-Esparza, R.; Waldo-Mendoza, Miguel A.; Perez, E.

    2015-09-01

    The connection between fundamental interactions acting in molecules in a fluid and macroscopically measured properties, such as the viscosity between colloidal particles coated with polymers, is studied here. The role that hydrodynamic and Brownian forces play in colloidal dispersions is also discussed. It is argued that many-body systems in which all these interactions take place can be accurately solved using computational simulation tools. One of those modern tools is the technique known as dissipative particle dynamics, which incorporates Brownian and hydrodynamic forces, as well as basic conservative interactions. A case study is reported, as an example of the applications of this technique, which consists of the prediction of the viscosity and friction between two opposing parallel surfaces covered with polymer chains, under the influence of a steady flow. This work is intended to serve as an introduction to the subject of colloidal dispersions and computer simulations, for final-year undergraduate students and beginning graduate students who are interested in beginning research in soft matter systems. To that end, a computational code is included that students can use right away to study complex fluids in equilibrium.

  18. Parkinson Patients' Initial Trust in Avatars: Theory and Evidence.

    PubMed

    Javor, Andrija; Ransmayr, Gerhard; Struhal, Walter; Riedl, René

    2016-01-01

    Parkinson's disease (PD) is a neurodegenerative disease that affects the motor system and cognitive and behavioral functions. Due to these impairments, PD patients also have problems in using the computer. However, using computers and the Internet could help these patients to overcome social isolation and enhance information search. Specifically, avatars (defined as virtual representations of humans) are increasingly used in online environments to enhance human-computer interaction by simulating face-to-face interaction. Our laboratory experiment investigated how PD patients behave in a trust game played with human and avatar counterparts, and we compared this behavior to the behavior of age, income, education and gender matched healthy controls. The results of our study show that PD patients trust avatar faces significantly more than human faces. Moreover, there was no significant difference between initial trust of PD patients and healthy controls in avatar faces, while PD patients trusted human faces significantly less than healthy controls. Our data suggests that PD patients' interaction with avatars may constitute an effective way of communication in situations in which trust is required (e.g., a physician recommends intake of medication). We discuss the implications of these results for several areas of human-computer interaction and neurological research.

  19. Parkinson Patients’ Initial Trust in Avatars: Theory and Evidence

    PubMed Central

    Javor, Andrija; Ransmayr, Gerhard; Struhal, Walter; Riedl, René

    2016-01-01

    Parkinson’s disease (PD) is a neurodegenerative disease that affects the motor system and cognitive and behavioral functions. Due to these impairments, PD patients also have problems in using the computer. However, using computers and the Internet could help these patients to overcome social isolation and enhance information search. Specifically, avatars (defined as virtual representations of humans) are increasingly used in online environments to enhance human-computer interaction by simulating face-to-face interaction. Our laboratory experiment investigated how PD patients behave in a trust game played with human and avatar counterparts, and we compared this behavior to the behavior of age, income, education and gender matched healthy controls. The results of our study show that PD patients trust avatar faces significantly more than human faces. Moreover, there was no significant difference between initial trust of PD patients and healthy controls in avatar faces, while PD patients trusted human faces significantly less than healthy controls. Our data suggests that PD patients’ interaction with avatars may constitute an effective way of communication in situations in which trust is required (e.g., a physician recommends intake of medication). We discuss the implications of these results for several areas of human-computer interaction and neurological research. PMID:27820864

  20. Computational challenges of structure-based approaches applied to HIV.

    PubMed

    Forli, Stefano; Olson, Arthur J

    2015-01-01

    Here, we review some of the opportunities and challenges that we face in computational modeling of HIV therapeutic targets and structural biology, both in terms of methodology development and structure-based drug design (SBDD). Computational methods have provided fundamental support to HIV research since the initial structural studies, helping to unravel details of HIV biology. Computational models have proved to be a powerful tool to analyze and understand the impact of mutations and to overcome their structural and functional influence in drug resistance. With the availability of structural data, in silico experiments have been instrumental in exploiting and improving interactions between drugs and viral targets, such as HIV protease, reverse transcriptase, and integrase. Issues such as viral target dynamics and mutational variability, as well as the role of water and estimates of binding free energy in characterizing ligand interactions, are areas of active computational research. Ever-increasing computational resources and theoretical and algorithmic advances have played a significant role in progress to date, and we envision a continually expanding role for computational methods in our understanding of HIV biology and SBDD in the future.

  1. Analysis of User Interaction with a Brain-Computer Interface Based on Steady-State Visually Evoked Potentials: Case Study of a Game

    PubMed Central

    de Carvalho, Sarah Negreiros; Costa, Thiago Bulhões da Silva; Attux, Romis; Hornung, Heiko Horst; Arantes, Dalton Soares

    2018-01-01

    This paper presents a systematic analysis of a game controlled by a Brain-Computer Interface (BCI) based on Steady-State Visually Evoked Potentials (SSVEP). The objective is to understand BCI systems from the Human-Computer Interface (HCI) point of view, by observing how the users interact with the game and evaluating how the interface elements influence the system performance. The interactions of 30 volunteers with our computer game, named “Get Coins,” through a BCI based on SSVEP, have generated a database of brain signals and the corresponding responses to a questionnaire about various perceptual parameters, such as visual stimulation, acoustic feedback, background music, visual contrast, and visual fatigue. Each one of the volunteers played one match using the keyboard and four matches using the BCI, for comparison. In all matches using the BCI, the volunteers achieved the goals of the game. Eight of them achieved a perfect score in at least one of the four matches, showing the feasibility of the direct communication between the brain and the computer. Despite this successful experiment, adaptations and improvements should be implemented to make this innovative technology accessible to the end user. PMID:29849549

  2. Analysis of User Interaction with a Brain-Computer Interface Based on Steady-State Visually Evoked Potentials: Case Study of a Game.

    PubMed

    Leite, Harlei Miguel de Arruda; de Carvalho, Sarah Negreiros; Costa, Thiago Bulhões da Silva; Attux, Romis; Hornung, Heiko Horst; Arantes, Dalton Soares

    2018-01-01

    This paper presents a systematic analysis of a game controlled by a Brain-Computer Interface (BCI) based on Steady-State Visually Evoked Potentials (SSVEP). The objective is to understand BCI systems from the Human-Computer Interface (HCI) point of view, by observing how the users interact with the game and evaluating how the interface elements influence the system performance. The interactions of 30 volunteers with our computer game, named "Get Coins," through a BCI based on SSVEP, have generated a database of brain signals and the corresponding responses to a questionnaire about various perceptual parameters, such as visual stimulation, acoustic feedback, background music, visual contrast, and visual fatigue. Each one of the volunteers played one match using the keyboard and four matches using the BCI, for comparison. In all matches using the BCI, the volunteers achieved the goals of the game. Eight of them achieved a perfect score in at least one of the four matches, showing the feasibility of the direct communication between the brain and the computer. Despite this successful experiment, adaptations and improvements should be implemented to make this innovative technology accessible to the end user.

  3. Can Computers be Social?

    NASA Astrophysics Data System (ADS)

    Ekdahl, Bertil

    2002-09-01

    Of main concern in agent based computing is the conception that software agents can attain socially responsible behavior. This idea has its origin in the need for agents to interact with one another in a cooperating manner. Such interplay between several agents can be seen as a combinatorial play where the rules are fixed and the actors are supposed to closely analyze the play in order to behave rational. This kind of rationality has successfully being mathematically described. When the social behavior is extended beyond rational behavior, mere mathematical analysis falls short. For such behavior language is decisive for transferring concepts and language is a holistic entity that cannot be analyzed and defined mathematically. Accordingly, computers cannot be furnished with a language in the sense that meaning can be conveyed and consequently they lack all the necessary properties to be made social. The attempts to postulate mental properties to computer programs are a misconception that is blamed the lack of true understanding of language and especially the relation between formal system and its semantics.

  4. An Efficient Semi-supervised Learning Approach to Predict SH2 Domain Mediated Interactions.

    PubMed

    Kundu, Kousik; Backofen, Rolf

    2017-01-01

    Src homology 2 (SH2) domain is an important subclass of modular protein domains that plays an indispensable role in several biological processes in eukaryotes. SH2 domains specifically bind to the phosphotyrosine residue of their binding peptides to facilitate various molecular functions. For determining the subtle binding specificities of SH2 domains, it is very important to understand the intriguing mechanisms by which these domains recognize their target peptides in a complex cellular environment. There are several attempts have been made to predict SH2-peptide interactions using high-throughput data. However, these high-throughput data are often affected by a low signal to noise ratio. Furthermore, the prediction methods have several additional shortcomings, such as linearity problem, high computational complexity, etc. Thus, computational identification of SH2-peptide interactions using high-throughput data remains challenging. Here, we propose a machine learning approach based on an efficient semi-supervised learning technique for the prediction of 51 SH2 domain mediated interactions in the human proteome. In our study, we have successfully employed several strategies to tackle the major problems in computational identification of SH2-peptide interactions.

  5. Intelligent Context-Aware and Adaptive Interface for Mobile LBS

    PubMed Central

    Liu, Yanhong

    2015-01-01

    Context-aware user interface plays an important role in many human-computer Interaction tasks of location based services. Although spatial models for context-aware systems have been studied extensively, how to locate specific spatial information for users is still not well resolved, which is important in the mobile environment where location based services users are impeded by device limitations. Better context-aware human-computer interaction models of mobile location based services are needed not just to predict performance outcomes, such as whether people will be able to find the information needed to complete a human-computer interaction task, but to understand human processes that interact in spatial query, which will in turn inform the detailed design of better user interfaces in mobile location based services. In this study, a context-aware adaptive model for mobile location based services interface is proposed, which contains three major sections: purpose, adjustment, and adaptation. Based on this model we try to describe the process of user operation and interface adaptation clearly through the dynamic interaction between users and the interface. Then we show how the model applies users' demands in a complicated environment and suggested the feasibility by the experimental results. PMID:26457077

  6. Choice of Human-Computer Interaction Mode in Stroke Rehabilitation.

    PubMed

    Mousavi Hondori, Hossein; Khademi, Maryam; Dodakian, Lucy; McKenzie, Alison; Lopes, Cristina V; Cramer, Steven C

    2016-03-01

    Advances in technology are providing new forms of human-computer interaction. The current study examined one form of human-computer interaction, augmented reality (AR), whereby subjects train in the real-world workspace with virtual objects projected by the computer. Motor performances were compared with those obtained while subjects used a traditional human-computer interaction, that is, a personal computer (PC) with a mouse. Patients used goal-directed arm movements to play AR and PC versions of the Fruit Ninja video game. The 2 versions required the same arm movements to control the game but had different cognitive demands. With AR, the game was projected onto the desktop, where subjects viewed the game plus their arm movements simultaneously, in the same visual coordinate space. In the PC version, subjects used the same arm movements but viewed the game by looking up at a computer monitor. Among 18 patients with chronic hemiparesis after stroke, the AR game was associated with 21% higher game scores (P = .0001), 19% faster reaching times (P = .0001), and 15% less movement variability (P = .0068), as compared to the PC game. Correlations between game score and arm motor status were stronger with the AR version. Motor performances during the AR game were superior to those during the PC game. This result is due in part to the greater cognitive demands imposed by the PC game, a feature problematic for some patients but clinically useful for others. Mode of human-computer interface influences rehabilitation therapy demands and can be individualized for patients. © The Author(s) 2015.

  7. Hydrodynamic interactions in active colloidal crystal microrheology.

    PubMed

    Weeber, R; Harting, J

    2012-11-01

    In dense colloids it is commonly assumed that hydrodynamic interactions do not play a role. However, a found theoretical quantification is often missing. We present computer simulations that are motivated by experiments where a large colloidal particle is dragged through a colloidal crystal. To qualify the influence of long-ranged hydrodynamics, we model the setup by conventional Langevin dynamics simulations and by an improved scheme with limited hydrodynamic interactions. This scheme significantly improves our results and allows to show that hydrodynamics strongly impacts the development of defects, the crystal regeneration, as well as the jamming behavior.

  8. Instructional design strategies for developing an interactive video educational program for pregnant teens: a pilot study.

    PubMed

    Levenson, P M; Morrow, J R; Smith, P

    1984-01-01

    One hundred forty-six teens attending an urban maternity hospital's prenatal clinic completed a questionnaire designed to assist in the development of educational programs utilizing computer-assisted television instruction or interactive video. Ninety-five percent of the teens agreed that additional information about desirable health behaviors during pregnancy would be helpful. Forty-six percent preferred obtaining information from a health professional at the hospital. Although 90% said that the race of the narrator for a film show was unimportant, responses regarding racial preference corresponded to the racial distribution of participants. Seventy-six percent of the teens preferred the narrator to be younger than 35 years of age, and 54% preferred a female narrator. Race was associated with video game experiences, preferences about the narrator's age and race, and favorite television shows. Age was not associated with responses to any of the questions. Although only 19% had ever used a computer, 98% stated they would like to try a computer with assistance. More than half (55%) knew how to type and 83% had played video games; of those who had played video games, 93% said they enjoyed doing so. Eighty-three percent of the respondents always or sometimes enjoyed cartoons. Favorite television shows and cartoon characters were identified. The design implications of the teens' preferences to the development of instruction using computers coupled with other emerging technologies are discussed.

  9. CASTAG - A Computer Assisted Interactive Naval Wargame.

    DTIC Science & Technology

    1980-03-01

    SEATAG, THE MANUAL GAME -------------------------- 12 A. HISTORY AND DEVELOPMENT OF SEATAG -------------12 B. DESCRIPTION OF THE PLAYING AREA, SCALE...ENVIRONMENT AND PLATFORM CHARACTERISTICS OF SEATAG ------------------------------------ 12 C. GAME FLOW, AIRCRAFT CARRIER AND SUBMARINE OPERATIONS, AND...DISTRIBUTION LIST---------------------------------- 157 7 LIST OF FIGURES 1. SEATAG Game Flow ---------------------------------- 15 2. Overall CASTAG Program

  10. Development of hardware accelerator for molecular dynamics simulations: a computation board that calculates nonbonded interactions in cooperation with fast multipole method.

    PubMed

    Amisaki, Takashi; Toyoda, Shinjiro; Miyagawa, Hiroh; Kitamura, Kunihiro

    2003-04-15

    Evaluation of long-range Coulombic interactions still represents a bottleneck in the molecular dynamics (MD) simulations of biological macromolecules. Despite the advent of sophisticated fast algorithms, such as the fast multipole method (FMM), accurate simulations still demand a great amount of computation time due to the accuracy/speed trade-off inherently involved in these algorithms. Unless higher order multipole expansions, which are extremely expensive to evaluate, are employed, a large amount of the execution time is still spent in directly calculating particle-particle interactions within the nearby region of each particle. To reduce this execution time for pair interactions, we developed a computation unit (board), called MD-Engine II, that calculates nonbonded pairwise interactions using a specially designed hardware. Four custom arithmetic-processors and a processor for memory manipulation ("particle processor") are mounted on the computation board. The arithmetic processors are responsible for calculation of the pair interactions. The particle processor plays a central role in realizing efficient cooperation with the FMM. The results of a series of 50-ps MD simulations of a protein-water system (50,764 atoms) indicated that a more stringent setting of accuracy in FMM computation, compared with those previously reported, was required for accurate simulations over long time periods. Such a level of accuracy was efficiently achieved using the cooperative calculations of the FMM and MD-Engine II. On an Alpha 21264 PC, the FMM computation at a moderate but tolerable level of accuracy was accelerated by a factor of 16.0 using three boards. At a high level of accuracy, the cooperative calculation achieved a 22.7-fold acceleration over the corresponding conventional FMM calculation. In the cooperative calculations of the FMM and MD-Engine II, it was possible to achieve more accurate computation at a comparable execution time by incorporating larger nearby regions. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 582-592, 2003

  11. Red-Shifting versus Blue-Shifting Hydrogen Bonds: Perspective from Ab Initio Valence Bond Theory.

    PubMed

    Chang, Xin; Zhang, Yang; Weng, Xinzhen; Su, Peifeng; Wu, Wei; Mo, Yirong

    2016-05-05

    Both proper, red-shifting and improper, blue-shifting hydrogen bonds have been well-recognized with enormous experimental and computational studies. The current consensus is that there is no difference in nature between these two kinds of hydrogen bonds, where the electrostatic interaction dominates. Since most if not all the computational studies are based on molecular orbital theory, it would be interesting to gain insight into the hydrogen bonds with modern valence bond (VB) theory. In this work, we performed ab initio VBSCF computations on a series of hydrogen-bonding systems, where the sole hydrogen bond donor CF3H interacts with ten hydrogen bond acceptors Y (═NH2CH3, NH3, NH2Cl, OH(-), H2O, CH3OH, (CH3)2O, F(-), HF, or CH3F). This series includes four red-shifting and six blue-shifting hydrogen bonds. Consistent with existing findings in literature, VB-based energy decomposition analyses show that electrostatic interaction plays the dominating role and polarization plays the secondary role in all these hydrogen-bonding systems, and the charge transfer interaction, which denotes the hyperconjugation effect, contributes only slightly to the total interaction energy. As VB theory describes any real chemical bond in terms of pure covalent and ionic structures, our fragment interaction analysis reveals that with the approaching of a hydrogen bond acceptor Y, the covalent state of the F3C-H bond tends to blue-shift, due to the strong repulsion between the hydrogen atom and Y. In contrast, the ionic state F3C(-) H(+) leads to the red-shifting of the C-H vibrational frequency, owing to the attraction between the proton and Y. Thus, the relative weights of the covalent and ionic structures essentially determine the direction of frequency change. Indeed, we find the correlation between the structural weights and vibrational frequency changes.

  12. Neural and cortisol responses during play with human and computer partners in children with autism

    PubMed Central

    Edmiston, Elliot Kale; Merkle, Kristen

    2015-01-01

    Children with autism spectrum disorder (ASD) exhibit impairment in reciprocal social interactions, including play, which can manifest as failure to show social preference or discrimination between social and nonsocial stimuli. To explore mechanisms underlying these deficits, we collected salivary cortisol from 42 children 8–12 years with ASD or typical development during a playground interaction with a confederate child. Participants underwent functional MRI during a prisoner’s dilemma game requiring cooperation or defection with a human (confederate) or computer partner. Search region of interest analyses were based on previous research (e.g. insula, amygdala, temporal parietal junction—TPJ). There were significant group differences in neural activation based on partner and response pattern. When playing with a human partner, children with ASD showed limited engagement of a social salience brain circuit during defection. Reduced insula activation during defection in the ASD children relative to TD children, regardless of partner type, was also a prominent finding. Insula and TPJ BOLD during defection was also associated with stress responsivity and behavior in the ASD group under playground conditions. Children with ASD engage social salience networks less than TD children during conditions of social salience, supporting a fundamental disturbance of social engagement. PMID:25552572

  13. Neural and cortisol responses during play with human and computer partners in children with autism.

    PubMed

    Edmiston, Elliot Kale; Merkle, Kristen; Corbett, Blythe A

    2015-08-01

    Children with autism spectrum disorder (ASD) exhibit impairment in reciprocal social interactions, including play, which can manifest as failure to show social preference or discrimination between social and nonsocial stimuli. To explore mechanisms underlying these deficits, we collected salivary cortisol from 42 children 8-12 years with ASD or typical development during a playground interaction with a confederate child. Participants underwent functional MRI during a prisoner's dilemma game requiring cooperation or defection with a human (confederate) or computer partner. Search region of interest analyses were based on previous research (e.g. insula, amygdala, temporal parietal junction-TPJ). There were significant group differences in neural activation based on partner and response pattern. When playing with a human partner, children with ASD showed limited engagement of a social salience brain circuit during defection. Reduced insula activation during defection in the ASD children relative to TD children, regardless of partner type, was also a prominent finding. Insula and TPJ BOLD during defection was also associated with stress responsivity and behavior in the ASD group under playground conditions. Children with ASD engage social salience networks less than TD children during conditions of social salience, supporting a fundamental disturbance of social engagement. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  14. [Play as a care strategy for children with cancer].

    PubMed

    Lima, Kálya Yasmine Nunes de; Santos, Viviane Euzébia Pereira

    2015-06-01

    To understand the influence of play in the care process as perceived by children with cancer. A descriptive, exploratory and qualitative study conducted in a children's cancer unit in Natal, Rio Grande do Norte, Brazil. Data were collected between October 2013 and January 2014 by means of photographic records and semi-structured interviews with eight children, and content analysis with emphasis on two categories: Auxiliary instruments during play; and The influence of play in the process of care. Recreational activities involve watching television, using computers, games and toys, drawing, the playroom and the clown, which provide fun, feelings of joy, distraction and interaction with other people. There are several activities at the hospital that are considered play-related and, for the children, they all benefit their care process.

  15. Representing and Learning Complex Object Interactions

    PubMed Central

    Zhou, Yilun; Konidaris, George

    2017-01-01

    We present a framework for representing scenarios with complex object interactions, in which a robot cannot directly interact with the object it wishes to control, but must instead do so via intermediate objects. For example, a robot learning to drive a car can only indirectly change its pose, by rotating the steering wheel. We formalize such complex interactions as chains of Markov decision processes and show how they can be learned and used for control. We describe two systems in which a robot uses learning from demonstration to achieve indirect control: playing a computer game, and using a hot water dispenser to heat a cup of water. PMID:28593181

  16. Attractive Interactions between Heteroallenes and the Cucurbituril Portal.

    PubMed

    Reany, Ofer; Li, Amanda; Yefet, Maayan; Gilson, Michael K; Keinan, Ehud

    2017-06-21

    In this paper, we report on the noteworthy attractive interaction between organic azides and the portal carbonyls of cucurbiturils. Five homologous bis-α,ω-azidoethylammonium alkanes were prepared, where the number of methylene groups between the ammonium groups ranges from 4 to 8. Their interactions with cucurbit[6]uril were studied by NMR spectroscopy, IR spectroscopy, X-ray crystallography, and computational methods. Remarkably, while the distance between the portal plane and most atoms at the guest end groups increases progressively with the molecular size, the β-nitrogen atoms maintain a constant distance from the portal plane in all homologues, pointing at a strong attractive interaction between the azide group and the portal. Both crystallography and NMR support a specific electrostatic interaction between the carbonyl and the azide β-nitrogen, which stabilizes the canonical resonance form with positive charge on the β-nitrogen and negative charge on the γ-nitrogen. Quantum computational analyses strongly support electrostatics, in the form of orthogonal dipole-dipole interaction, as the main driver for this attraction. The alternative mechanism of n → π* orbital delocalization does not seem to play a significant role in this interaction. The computational studies also indicate that the interaction is not limited to azides, but generalizes to other isoelectronic heteroallene functions, such as isocyanate and isothiocyanate. This essentially unexploited attractive interaction could be more broadly utilized as a tool not only in relation to cucurbituril chemistry, but also for the design of novel supramolecular architectures.

  17. Interactive Technologies for Teacher Training: Comparing Performance and Assessment in Second Life and simSchool

    ERIC Educational Resources Information Center

    Meritt, Julia; Gibson, David; Christensen, Rhonda; Knezek, Gerald

    2013-01-01

    Two alternative technologies forming the basis of computer-mediated teacher preparation systems are compared and contrasted regarding implementation, operation, and assessment considerations. The role-playing system in Second Life is shown to have the unique characteristic of developing a co-constructed pedagogical identity, while the flight…

  18. Social Benefits of a Tangible User Interface for Children with Autistic Spectrum Conditions

    ERIC Educational Resources Information Center

    Farr, William; Yuill, Nicola; Raffle, Hayes

    2010-01-01

    Tangible user interfaces (TUIs) embed computer technology in graspable objects. This study assessed the potential of Topobo, a construction toy with programmable movement, to support social interaction in children with Autistic Spectrum Conditions (ASC). Groups of either typically developing (TD) children or those with ASC had group play sessions…

  19. Understanding Usefulness in Human-Computer Interaction to Enhance User Experience Evaluation

    ERIC Educational Resources Information Center

    MacDonald, Craig Matthew

    2012-01-01

    The concept of usefulness has implicitly played a pivotal role in evaluation research, but the meaning of usefulness has changed over time from system reliability to user performance and learnability/ease of use for non-experts. Despite massive technical and social changes, usability remains the "gold standard" for system evaluation.…

  20. Computational substrates of social value in interpersonal collaboration.

    PubMed

    Fareri, Dominic S; Chang, Luke J; Delgado, Mauricio R

    2015-05-27

    Decisions to engage in collaborative interactions require enduring considerable risk, yet provide the foundation for building and maintaining relationships. Here, we investigate the mechanisms underlying this process and test a computational model of social value to predict collaborative decision making. Twenty-six participants played an iterated trust game and chose to invest more frequently with their friends compared with a confederate or computer despite equal reinforcement rates. This behavior was predicted by our model, which posits that people receive a social value reward signal from reciprocation of collaborative decisions conditional on the closeness of the relationship. This social value signal was associated with increased activity in the ventral striatum and medial prefrontal cortex, which significantly predicted the reward parameters from the social value model. Therefore, we demonstrate that the computation of social value drives collaborative behavior in repeated interactions and provide a mechanistic account of reward circuit function instantiating this process. Copyright © 2015 the authors 0270-6474/15/358170-11$15.00/0.

  1. Krylov subspace methods for computing hydrodynamic interactions in Brownian dynamics simulations

    PubMed Central

    Ando, Tadashi; Chow, Edmond; Saad, Yousef; Skolnick, Jeffrey

    2012-01-01

    Hydrodynamic interactions play an important role in the dynamics of macromolecules. The most common way to take into account hydrodynamic effects in molecular simulations is in the context of a Brownian dynamics simulation. However, the calculation of correlated Brownian noise vectors in these simulations is computationally very demanding and alternative methods are desirable. This paper studies methods based on Krylov subspaces for computing Brownian noise vectors. These methods are related to Chebyshev polynomial approximations, but do not require eigenvalue estimates. We show that only low accuracy is required in the Brownian noise vectors to accurately compute values of dynamic and static properties of polymer and monodisperse suspension models. With this level of accuracy, the computational time of Krylov subspace methods scales very nearly as O(N2) for the number of particles N up to 10 000, which was the limit tested. The performance of the Krylov subspace methods, especially the “block” version, is slightly better than that of the Chebyshev method, even without taking into account the additional cost of eigenvalue estimates required by the latter. Furthermore, at N = 10 000, the Krylov subspace method is 13 times faster than the exact Cholesky method. Thus, Krylov subspace methods are recommended for performing large-scale Brownian dynamics simulations with hydrodynamic interactions. PMID:22897254

  2. Computational and mathematical methods in brain atlasing.

    PubMed

    Nowinski, Wieslaw L

    2017-12-01

    Brain atlases have a wide range of use from education to research to clinical applications. Mathematical methods as well as computational methods and tools play a major role in the process of brain atlas building and developing atlas-based applications. Computational methods and tools cover three areas: dedicated editors for brain model creation, brain navigators supporting multiple platforms, and atlas-assisted specific applications. Mathematical methods in atlas building and developing atlas-aided applications deal with problems in image segmentation, geometric body modelling, physical modelling, atlas-to-scan registration, visualisation, interaction and virtual reality. Here I overview computational and mathematical methods in atlas building and developing atlas-assisted applications, and share my contribution to and experience in this field.

  3. DOVIS 2.0: An Efficient and Easy to Use Parallel Virtual Screening Tool Based on AutoDock 4.0

    DTIC Science & Technology

    2008-09-08

    under the GNU General Public License. Background Molecular docking is a computational method that pre- dicts how a ligand interacts with a receptor...Hence, it is an important tool in studying receptor-ligand interactions and plays an essential role in drug design. Particularly, molecular docking has...libraries from OpenBabel and setup a molecular data structure as a C++ object in our program. This makes handling of molecular structures (e.g., atoms

  4. Converting laserdisc video to digital video: a demonstration project using brain animations.

    PubMed

    Jao, C S; Hier, D B; Brint, S U

    1995-01-01

    Interactive laserdiscs are of limited value in large group learning situations due to the expense of establishing multiple workstations. The authors implemented an alternative to laserdisc video by using indexed digital video combined with an expert system. High-quality video was captured from a laserdisc player and combined with waveform audio into an audio-video-interleave (AVI) file format in the Microsoft Video-for-Windows environment (Microsoft Corp., Seattle, WA). With the use of an expert system, a knowledge-based computer program provided random access to these indexed AVI files. The program can be played on any multimedia computer without the need for laserdiscs. This system offers a high level of interactive video without the overhead and cost of a laserdisc player.

  5. Robotic gaming prototype for upper limb exercise: Effects of age and embodiment on user preferences and movement.

    PubMed

    Eizicovits, Danny; Edan, Yael; Tabak, Iris; Levy-Tzedek, Shelly

    2018-01-01

    Effective human-robot interactions in rehabilitation necessitates an understanding of how these should be tailored to the needs of the human. We report on a robotic system developed as a partner on a 3-D everyday task, using a gamified approach. To: (1) design and test a prototype system, to be ultimately used for upper-limb rehabilitation; (2) evaluate how age affects the response to such a robotic system; and (3) identify whether the robot's physical embodiment is an important aspect in motivating users to complete a set of repetitive tasks. 62 healthy participants, young (<30 yo) and old (>60 yo), played a 3D tic-tac-toe game against an embodied (a robotic arm) and a non-embodied (a computer-controlled lighting system) partner. To win, participants had to place three cups in sequence on a physical 3D grid. Cup picking-and-placing was chosen as a functional task that is often practiced in post-stroke rehabilitation. Movement of the participants was recorded using a Kinect camera. The timing of the participants' movement was primed by the response time of the system: participants moved slower when playing with the slower embodied system (p = 0.006). The majority of participants preferred the robot over the computer-controlled system. Slower response time of the robot compared to the computer-controlled one only affected the young group's motivation to continue playing. We demonstrated the feasibility of the system to encourage the performance of repetitive 3D functional movements, and track these movements. Young and old participants preferred to interact with the robot, compared with the non-embodied system. We contribute to the growing knowledge concerning personalized human-robot interactions by (1) demonstrating the priming of the human movement by the robotic movement - an important design feature, and (2) identifying response-speed as a design variable, the importance of which depends on the age of the user.

  6. A prisoner's dilemma experiment on cooperation with people and human-like computers.

    PubMed

    Kiesler, S; Sproull, L; Waters, K

    1996-01-01

    The authors investigated basic properties of social exchange and interaction with technology in an experiment on cooperation with a human-like computer partner or a real human partner. Talking with a computer partner may trigger social identity feelings or commitment norms. Participants played a prisoner's dilemma game with a confederate or a computer partner. Discussion, inducements to make promises, and partner cooperation varied across trials. On Trial 1, after discussion, most participants proposed cooperation. They kept their promises as much with a text-only computer as with a person, but less with a more human-like computer. Cooperation dropped sharply when any partner avoided discussion. The strong impact of discussion fits a social contract explanation of cooperation following discussion. Participants broke their promises to a computer more than to a person, however, indicating that people make heterogeneous commitments.

  7. Advances in visual representation of molecular potentials.

    PubMed

    Du, Qi-Shi; Huang, Ri-Bo; Chou, Kuo-Chen

    2010-06-01

    The recent advances in visual representations of molecular properties in 3D space are summarized, and their applications in molecular modeling study and rational drug design are introduced. The visual representation methods provide us with detailed insights into protein-ligand interactions, and hence can play a major role in elucidating the structure or reactivity of a biomolecular system. Three newly developed computation and visualization methods for studying the physical and chemical properties of molecules are introduced, including their electrostatic potential, lipophilicity potential and excess chemical potential. The newest application examples of visual representations in structure-based rational drug are presented. The 3D electrostatic potentials, calculated using the empirical method (EM-ESP), in which the classical Coulomb equation and traditional atomic partial changes are discarded, are highly consistent with the results by the higher level quantum chemical method. The 3D lipophilicity potentials, computed by the heuristic molecular lipophilicity potential method based on the principles of quantum mechanics and statistical mechanics, are more accurate and reliable than those by using the traditional empirical methods. The 3D excess chemical potentials, derived by the reference interaction site model-hypernetted chain theory, provide a new tool for computational chemistry and molecular modeling. For structure-based drug design, the visual representations of molecular properties will play a significant role in practical applications. It is anticipated that the new advances in computational chemistry will stimulate the development of molecular modeling methods, further enriching the visual representation techniques for rational drug design, as well as other relevant fields in life science.

  8. Computational examination of utility scale wind turbine wake interactions

    DOE PAGES

    Okosun, Tyamo; Zhou, Chenn Q.

    2015-07-14

    We performed numerical simulations of small, utility scale wind turbine groupings to determine how wakes generated by upstream turbines affect the performance of the small turbine group as a whole. Specifically, various wind turbine arrangements were simulated to better understand how turbine location influences small group wake interactions. The minimization of power losses due to wake interactions certainly plays a significant role in the optimization of wind farms. Since wind turbines extract kinetic energy from the wind, the air passing through a wind turbine decreases in velocity, and turbines downstream of the initial turbine experience flows of lower energy, resultingmore » in reduced power output. Our study proposes two arrangements of turbines that could generate more power by exploiting the momentum of the wind to increase velocity at downstream turbines, while maintaining low wake interactions at the same time. Furthermore, simulations using Computational Fluid Dynamics are used to obtain results much more quickly than methods requiring wind tunnel models or a large scale experimental test.« less

  9. A neuron-astrocyte transistor-like model for neuromorphic dressed neurons.

    PubMed

    Valenza, G; Pioggia, G; Armato, A; Ferro, M; Scilingo, E P; De Rossi, D

    2011-09-01

    Experimental evidences on the role of the synaptic glia as an active partner together with the bold synapse in neuronal signaling and dynamics of neural tissue strongly suggest to investigate on a more realistic neuron-glia model for better understanding human brain processing. Among the glial cells, the astrocytes play a crucial role in the tripartite synapsis, i.e. the dressed neuron. A well-known two-way astrocyte-neuron interaction can be found in the literature, completely revising the purely supportive role for the glia. The aim of this study is to provide a computationally efficient model for neuron-glia interaction. The neuron-glia interactions were simulated by implementing the Li-Rinzel model for an astrocyte and the Izhikevich model for a neuron. Assuming the dressed neuron dynamics similar to the nonlinear input-output characteristics of a bipolar junction transistor, we derived our computationally efficient model. This model may represent the fundamental computational unit for the development of real-time artificial neuron-glia networks opening new perspectives in pattern recognition systems and in brain neurophysiology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. The human factors of workstation telepresence

    NASA Technical Reports Server (NTRS)

    Smith, Thomas J.; Smith, Karl U.

    1990-01-01

    The term workstation telepresence has been introduced to describe human-telerobot compliance, which enables the human operator to effectively project his/her body image and behavioral skills to control of the telerobot itself. Major human-factors considerations for establishing high fidelity workstation telepresence during human-telerobot operation are discussed. Telerobot workstation telepresence is defined by the proficiency and skill with which the operator is able to control sensory feedback from direct interaction with the workstation itself, and from workstation-mediated interaction with the telerobot. Numerous conditions influencing such control have been identified. This raises the question as to what specific factors most critically influence the realization of high fidelity workstation telepresence. The thesis advanced here is that perturbations in sensory feedback represent a major source of variability in human performance during interactive telerobot operation. Perturbed sensory feedback research over the past three decades has established that spatial transformations or temporal delays in sensory feedback engender substantial decrements in interactive task performance, which training does not completely overcome. A recently developed social cybernetic model of human-computer interaction can be used to guide this approach, based on computer-mediated tracking and control of sensory feedback. How the social cybernetic model can be employed for evaluating the various modes, patterns, and integrations of interpersonal, team, and human-computer interactions which play a central role is workstation telepresence are discussed.

  11. Validation of the Concurrent Atomistic-Continuum Method on Screw Dislocation/Stacking Fault Interactions

    DOE PAGES

    Xu, Shuozhi; Xiong, Liming; Chen, Youping; ...

    2017-04-26

    Dislocation/stacking fault interactions play an important role in the plastic deformation of metallic nanocrystals and polycrystals. These interactions have been explored in atomistic models, which are limited in scale length by high computational cost. In contrast, multiscale material modeling approaches have the potential to simulate the same systems at a fraction of the computational cost. In this paper, we validate the concurrent atomistic-continuum (CAC) method on the interactions between a lattice screw dislocation and a stacking fault (SF) in three face-centered cubic metallic materials—Ni, Al, and Ag. Two types of SFs are considered: intrinsic SF (ISF) and extrinsic SF (ESF).more » For the three materials at different strain levels, two screw dislocation/ISF interaction modes (annihilation of the ISF and transmission of the dislocation across the ISF) and three screw dislocation/ESF interaction modes (transformation of the ESF into a three-layer twin, transformation of the ESF into an ISF, and transmission of the dislocation across the ESF) are identified. Here, our results show that CAC is capable of accurately predicting the dislocation/SF interaction modes with greatly reduced DOFs compared to fully-resolved atomistic simulations.« less

  12. Validation of the Concurrent Atomistic-Continuum Method on Screw Dislocation/Stacking Fault Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Shuozhi; Xiong, Liming; Chen, Youping

    Dislocation/stacking fault interactions play an important role in the plastic deformation of metallic nanocrystals and polycrystals. These interactions have been explored in atomistic models, which are limited in scale length by high computational cost. In contrast, multiscale material modeling approaches have the potential to simulate the same systems at a fraction of the computational cost. In this paper, we validate the concurrent atomistic-continuum (CAC) method on the interactions between a lattice screw dislocation and a stacking fault (SF) in three face-centered cubic metallic materials—Ni, Al, and Ag. Two types of SFs are considered: intrinsic SF (ISF) and extrinsic SF (ESF).more » For the three materials at different strain levels, two screw dislocation/ISF interaction modes (annihilation of the ISF and transmission of the dislocation across the ISF) and three screw dislocation/ESF interaction modes (transformation of the ESF into a three-layer twin, transformation of the ESF into an ISF, and transmission of the dislocation across the ESF) are identified. Here, our results show that CAC is capable of accurately predicting the dislocation/SF interaction modes with greatly reduced DOFs compared to fully-resolved atomistic simulations.« less

  13. An experimental-computational platform for investigating microbial interactions and dynamics in communities with two codependent species

    NASA Astrophysics Data System (ADS)

    Fuentes-Cabrera, Miguel; Anderson, John D.; Wilmoth, Jared; Ginovart, Marta; Prats, Clara; Portell-Canal, Xavier; Retterer, Scott

    Microbial interactions are critical for governing community behavior and structure in natural environments. Examination of microbial interactions in the lab involves growth under ideal conditions in batch culture; conditions that occur in nature are, however, characterized by disequilibrium. Of particular interest is the role that system variables play in shaping cell-to-cell interactions and organization at ultrafine spatial scales. We seek to use experiments and agent-based modeling to help discover mechanisms relevant to microbial dynamics and interactions in the environment. Currently, we are using an agent-based model to simulate microbial growth, dynamics and interactions that occur on a microwell-array device developed in our lab. Bacterial cells growing in the microwells of this platform can be studied with high-throughput and high-content image analyses using brightfield and fluorescence microscopy. The agent-based model is written in the language Netlogo, which in turn is ''plugged into'' a computational framework that allows submitting many calculations in parallel for different initial parameters; visualizing the outcomes in an interactive phase-like diagram; and searching, with a genetic algorithm, for the parameters that lead to the most optimal simulation outcome.

  14. Interaction of external conditions with the internal flowfield in liquid rocket engines - A computational study

    NASA Technical Reports Server (NTRS)

    Trinh, H. P.; Gross, K. W.

    1989-01-01

    Computational studies have been conducted to examine the capability of a CFD code by simulating the steady state thrust chamber internal flow. The SSME served as the sample case, and significant parameter profiles are presented and discussed. Performance predictions from TDK, the recommended JANNAF reference computer program, are compared with those from PHOENICS to establish the credibility of its results. The investigation of an overexpanded nozzle flow is particularly addressed since it plays an important role in the area ratio selection of future rocket engines. Experience gained during this uncompleted flow separation study and future steps are outlined.

  15. An introduction to interactive hypermedia.

    PubMed

    Lynch, P J; Jaffe, C C

    1990-01-01

    Current computers can create and display documents that incorporate a variety of audiovisual media, and can be organized to allow the user, guided by curiosity and not by a fixed path through the material, to move through the information in non-linear pathways. These hypermedia documents and the concept of hypertext offer significant new possibilities for the creation of educational materials for the biomedical sciences. If the full capabilities of the computer are to be used to enhance the educational experience for learners, computer professionals need to collaborate with publishing and teaching professionals. Biomedical communications professionals can and should play a role in establishing and evaluating hypermedia documents for medical education.

  16. A visual study of computers on doctors' desks.

    PubMed

    Pearce, Christopher; Walker, Hannah; O'Shea, Carolyn

    2008-01-01

    General practice has rapidly computerised over the past ten years, thereby changing the nature of general practice rooms. Most general practice consulting rooms were designed and created in an era without computer hardware, establishing a pattern of work around maximising the doctor-patient relationship. General practitioners (GPs) and patients have had to integrate the computer into this environment. Twenty GPs allowed access to their rooms and consultations as part of a larger study. The results are based on an analysis of still shots of the consulting rooms. Analysis used dramaturgical methodology; thus the room is described as though it is the setting for a play. First, several desk areas were identified: a shared or patient area, a working area, a clinical area and an administrative area. Then, within that framework, we were able to identify two broad categories of setting, one inclusive of the patient and one exclusive. With the increasing significance of the computer in the three-way doctor-patient-computer relationship, an understanding of the social milieu in which the three players in the consultation interact (the staging) will inform further analysis of the interaction, and allow a framework for assessing the effects of different computer placements.

  17. Audubon Wildlife Adventures. Grizzly Guidebook. School Edition.

    ERIC Educational Resources Information Center

    National Audubon Society, Washington, DC.

    This program introduces the young computer players to the world of the grizzly bear, the largest land carnivore in North America. Through a series of four interactive stories, players learn of the bear's habits and human activities that have brought it close to extinction. Playing the part of a park ranger, a research biologist or a natural…

  18. Plateaus, Dips, and Leaps: Where to Look for Inventions and Discoveries during Skilled Performance

    ERIC Educational Resources Information Center

    Gray, Wayne D.; Lindstedt, John K.

    2017-01-01

    The framework of "plateaus, dips, and leaps" shines light on periods when individuals may be inventing new methods of skilled performance. We begin with a review of the role "performance plateaus" have played in (a) experimental psychology, (b) human-computer interaction, and (c) cognitive science. We then reanalyze two classic…

  19. Electronic Media and Youth Violence: A CDC Issue Brief for Researchers

    ERIC Educational Resources Information Center

    David-Ferdon, Corinne; Hertz, Marci Feldman

    2009-01-01

    Electronic media play an integral role in the lives of all people. Over the years, the rapid evolution of technology in various forms has significantly influenced the way people live and interact. Televisions, record players, computers, and VCRs changed how people learned, were entertained, stayed connected, and explored. In the past two decades,…

  20. Fast prediction of RNA-RNA interaction using heuristic algorithm.

    PubMed

    Montaseri, Soheila

    2015-01-01

    Interaction between two RNA molecules plays a crucial role in many medical and biological processes such as gene expression regulation. In this process, an RNA molecule prohibits the translation of another RNA molecule by establishing stable interactions with it. Some algorithms have been formed to predict the structure of the RNA-RNA interaction. High computational time is a common challenge in most of the presented algorithms. In this context, a heuristic method is introduced to accurately predict the interaction between two RNAs based on minimum free energy (MFE). This algorithm uses a few dot matrices for finding the secondary structure of each RNA and binding sites between two RNAs. Furthermore, a parallel version of this method is presented. We describe the algorithm's concurrency and parallelism for a multicore chip. The proposed algorithm has been performed on some datasets including CopA-CopT, R1inv-R2inv, Tar-Tar*, DIS-DIS, and IncRNA54-RepZ in Escherichia coli bacteria. The method has high validity and efficiency, and it is run in low computational time in comparison to other approaches.

  1. Reliable prediction of three-body intermolecular interactions using dispersion-corrected second-order Møller-Plesset perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yuanhang; Beran, Gregory J. O., E-mail: gregory.beran@ucr.edu

    2015-07-28

    Three-body and higher intermolecular interactions can play an important role in molecular condensed phases. Recent benchmark calculations found problematic behavior for many widely used density functional approximations in treating 3-body intermolecular interactions. Here, we demonstrate that the combination of second-order Møller-Plesset (MP2) perturbation theory plus short-range damped Axilrod-Teller-Muto (ATM) dispersion accurately describes 3-body interactions with reasonable computational cost. The empirical damping function used in the ATM dispersion term compensates both for the absence of higher-order dispersion contributions beyond the triple-dipole ATM term and non-additive short-range exchange terms which arise in third-order perturbation theory and beyond. Empirical damping enables this simplemore » model to out-perform a non-expanded coupled Kohn-Sham dispersion correction for 3-body intermolecular dispersion. The MP2 plus ATM dispersion model approaches the accuracy of O(N{sup 6}) methods like MP2.5 or even spin-component-scaled coupled cluster models for 3-body intermolecular interactions with only O(N{sup 5}) computational cost.« less

  2. Interactive computer training to teach discrete-trial instruction to undergraduates and special educators in Brazil: A replication and extension.

    PubMed

    Higbee, Thomas S; Aporta, Ana Paula; Resende, Alice; Nogueira, Mateus; Goyos, Celso; Pollard, Joy S

    2016-12-01

    Discrete-trial instruction (DTI) is a behavioral method of teaching young children with autism spectrum disorders (ASD) that has received a significant amount of research support. Because of a lack of qualified trainers in many areas of the world, researchers have recently begun to investigate alternative methods of training professionals to implement behavioral teaching procedures. One promising training method is interactive computer training, in which slides with recorded narration, video modeling, and embedded evaluation of content knowledge are used to teach a skill. In the present study, the effectiveness of interactive computer training developed by Pollard, Higbee, Akers, and Brodhead (2014), translated into Brazilian Portuguese, was evaluated with 4 university students (Study 1) and 4 special education teachers (Study 2). We evaluated the effectiveness of training on DTI skills during role-plays with research assistants (Study 1) and during DTI sessions with young children with ASD (Studies 1 and 2) using a multiple baseline design. All participants acquired DTI skills after interactive computer training, although 5 of 8 participants required some form of feedback to reach proficiency. Responding generalized to untaught teaching programs for all participants. We evaluated maintenance with the teachers in Study 2, and DTI skills were maintained with 3 of 4 participants. © 2016 Society for the Experimental Analysis of Behavior.

  3. Cognitive Model of Trust Dynamics Predicts Human Behavior within and between Two Games of Strategic Interaction with Computerized Confederate Agents

    PubMed Central

    Collins, Michael G.; Juvina, Ion; Gluck, Kevin A.

    2016-01-01

    When playing games of strategic interaction, such as iterated Prisoner's Dilemma and iterated Chicken Game, people exhibit specific within-game learning (e.g., learning a game's optimal outcome) as well as transfer of learning between games (e.g., a game's optimal outcome occurring at a higher proportion when played after another game). The reciprocal trust players develop during the first game is thought to mediate transfer of learning effects. Recently, a computational cognitive model using a novel trust mechanism has been shown to account for human behavior in both games, including the transfer between games. We present the results of a study in which we evaluate the model's a priori predictions of human learning and transfer in 16 different conditions. The model's predictive validity is compared against five model variants that lacked a trust mechanism. The results suggest that a trust mechanism is necessary to explain human behavior across multiple conditions, even when a human plays against a non-human agent. The addition of a trust mechanism to the other learning mechanisms within the cognitive architecture, such as sequence learning, instance-based learning, and utility learning, leads to better prediction of the empirical data. It is argued that computational cognitive modeling is a useful tool for studying trust development, calibration, and repair. PMID:26903892

  4. Interactive Therapeutic Multi-sensory Environment for Cerebral Palsy People

    NASA Astrophysics Data System (ADS)

    Mauri, Cesar; Solanas, Agusti; Granollers, Toni; Bagés, Joan; García, Mabel

    The Interactive Therapeutic Sensory Environment (ITSE) research project offers new opportunities on stimulation, interaction and interactive creation for people with moderate and severe mental and physical disabilities. Mainly based on computer vision techniques, the ITSE project allows the gathering of users’ gestures and their transformation into images, sounds and vibrations. Currently, in the APPC, we are working in a prototype that is capable of generating sounds based on the users’ motion and to process digitally the vocal sounds of the users. Tests with impaired users show that ITSE promotes participation, engagement and play. In this paper, we briefly describe the ITSE system, the experimental methodology, the preliminary results and some future goals.

  5. Design of Mariner 9 Science Sequences using Interactive Graphics Software

    NASA Technical Reports Server (NTRS)

    Freeman, J. E.; Sturms, F. M, Jr.; Webb, W. A.

    1973-01-01

    This paper discusses the analyst/computer system used to design the daily science sequences required to carry out the desired Mariner 9 science plan. The Mariner 9 computer environment, the development and capabilities of the science sequence design software, and the techniques followed in the daily mission operations are discussed. Included is a discussion of the overall mission operations organization and the individual components which played an essential role in the sequence design process. A summary of actual sequences processed, a discussion of problems encountered, and recommendations for future applications are given.

  6. The effect of opponent type on human performance in a three-alternative choice task.

    PubMed

    Lie, Celia; Baxter, Jennifer; Alsop, Brent

    2013-10-01

    Adult participants played computerised games of "Paper Scissors Rock". Participants in one group were told that they were playing against the computer, and those in the other group were told that they were playing against another participant in the adjacent room. The participant who won the most games would receive a $50 prize. For both groups however, the opponent's responses (paper, scissors, or rock) were generated by the computer, and the distribution of these responses was varied across four blocks of 126 trials. Results were analysed using the generalised matching law for the three possible pairs of alternatives (paper vs. scissors, paper vs. rock, and scissors vs. rock) across all participants in each group. Overall, significantly higher estimates of sensitivity to the distribution of opponent's responses were obtained from participants who were told their opponent was a computer compared to participants who were told their opponent was another participant. While adding to the existing literature showing that the generalised matching law is an adequate descriptor of human three-alternative choice behaviour, these findings show that external factors such as perceived opponent type can affect the efficacy of reinforcer contingencies on human behaviour. This suggests that generalising the results from tasks performed against a computer to real-life human-to-human interactions warrants some caution. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Premonitory urges and tics in Tourette syndrome: computational mechanisms and neural correlates.

    PubMed

    Conceição, Vasco A; Dias, Ângelo; Farinha, Ana C; Maia, Tiago V

    2017-10-01

    Tourette syndrome is characterized by open motor behaviors - tics - but another crucial aspect of the disorder is the presence of premonitory urges: uncomfortable sensations that typically precede tics and are temporarily alleviated by tics. We review the evidence implicating the somatosensory cortices and the insula in premonitory urges and the motor cortico-basal ganglia-thalamo-cortical loop in tics. We consider how these regions interact during tic execution, suggesting that the insula plays an important role as a nexus linking the sensory and emotional character of premonitory urges with their translation into tics. We also consider how these regions interact during tic learning, integrating the neural evidence with a computational perspective on how premonitory-urge alleviation reinforces tics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Predicting protein structures with a multiplayer online game.

    PubMed

    Cooper, Seth; Khatib, Firas; Treuille, Adrien; Barbero, Janos; Lee, Jeehyung; Beenen, Michael; Leaver-Fay, Andrew; Baker, David; Popović, Zoran; Players, Foldit

    2010-08-05

    People exert large amounts of problem-solving effort playing computer games. Simple image- and text-recognition tasks have been successfully 'crowd-sourced' through games, but it is not clear if more complex scientific problems can be solved with human-directed computing. Protein structure prediction is one such problem: locating the biologically relevant native conformation of a protein is a formidable computational challenge given the very large size of the search space. Here we describe Foldit, a multiplayer online game that engages non-scientists in solving hard prediction problems. Foldit players interact with protein structures using direct manipulation tools and user-friendly versions of algorithms from the Rosetta structure prediction methodology, while they compete and collaborate to optimize the computed energy. We show that top-ranked Foldit players excel at solving challenging structure refinement problems in which substantial backbone rearrangements are necessary to achieve the burial of hydrophobic residues. Players working collaboratively develop a rich assortment of new strategies and algorithms; unlike computational approaches, they explore not only the conformational space but also the space of possible search strategies. The integration of human visual problem-solving and strategy development capabilities with traditional computational algorithms through interactive multiplayer games is a powerful new approach to solving computationally-limited scientific problems.

  9. A cognitive-consistency based model of population wide attitude change.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lakkaraju, Kiran; Speed, Ann Elizabeth

    Attitudes play a significant role in determining how individuals process information and behave. In this paper we have developed a new computational model of population wide attitude change that captures the social level: how individuals interact and communicate information, and the cognitive level: how attitudes and concept interact with each other. The model captures the cognitive aspect by representing each individuals as a parallel constraint satisfaction network. The dynamics of this model are explored through a simple attitude change experiment where we vary the social network and distribution of attitudes in a population.

  10. Noise Effects on Entangled Coherent State Generated via Atom-Field Interaction and Beam Splitter

    NASA Astrophysics Data System (ADS)

    Najarbashi, G.; Mirzaei, S.

    2016-05-01

    In this paper, we introduce a controllable method for producing two and three-mode entangled coherent states (ECS's) using atom-field interaction in cavity QED and beam splitter. The generated states play central roles in linear optics, quantum computation and teleportation. We especially focus on qubit, qutrit and qufit like ECS's and investigate their entanglement by concurrence measure. Moreover, we illustrate decoherence properties of ECS's due to noisy channels, using negativity measure. At the end the effect of noise on monogamy inequality is discussed.

  11. Current Status on the use of Parallel Computing in Turbulent Reacting Flow Computations Involving Sprays, Monte Carlo PDF and Unstructured Grids. Chapter 4

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    1998-01-01

    The state of the art in multidimensional combustor modeling as evidenced by the level of sophistication employed in terms of modeling and numerical accuracy considerations, is also dictated by the available computer memory and turnaround times afforded by present-day computers. With the aim of advancing the current multi-dimensional computational tools used in the design of advanced technology combustors, a solution procedure is developed that combines the novelty of the coupled CFD/spray/scalar Monte Carlo PDF (Probability Density Function) computations on unstructured grids with the ability to run on parallel architectures. In this approach, the mean gas-phase velocity and turbulence fields are determined from a standard turbulence model, the joint composition of species and enthalpy from the solution of a modeled PDF transport equation, and a Lagrangian-based dilute spray model is used for the liquid-phase representation. The gas-turbine combustor flows are often characterized by a complex interaction between various physical processes associated with the interaction between the liquid and gas phases, droplet vaporization, turbulent mixing, heat release associated with chemical kinetics, radiative heat transfer associated with highly absorbing and radiating species, among others. The rate controlling processes often interact with each other at various disparate time 1 and length scales. In particular, turbulence plays an important role in determining the rates of mass and heat transfer, chemical reactions, and liquid phase evaporation in many practical combustion devices.

  12. The adsorption of CH3 and C6H6 on corundum-type sesquioxides: The role of van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Dabaghmanesh, Samira; Partoens, Bart; Neyts, Erik

    Van der Waals (vdW) interactions play an important role in the adsorption of atoms and molecules on the surface of solids. This role becomes more significant whenever the interaction between the adsorbate and surface is physisorption. Thanks to recent developments in density functional theory (DFT), we are now able to employ different vdW methods that helps us to account for the long-range vdW forces. However, the choice of the most efficient vdW functional for different materials is still an open question. In our study, we examine different vdW approaches to compute bulk and molecular adsorption properties of M2O3 oxides (M: Cr, Fe, and Al) as well-known examples of the corundum family. For the bulk properties, we compare our results for the heat of formation, cohesive energy, lattice parameters and bond distances as obtained using the different vdW functionals and available experimental data. Next we compute the adsorption energies of the benzene molecule (as an example of physisorption) and CH3 (as an example of chemisorption) on top of the (0001) M-terminated and MO-terminated surfaces. Calculating the vdW contributions into the adsorption energies, we find that the vdW functionals play important role not just in the weak adsorptions but even in strong adsorption.

  13. The effect of model uncertainty on cooperation in sensorimotor interactions

    PubMed Central

    Grau-Moya, J.; Hez, E.; Pezzulo, G.; Braun, D. A.

    2013-01-01

    Decision-makers have been shown to rely on probabilistic models for perception and action. However, these models can be incorrect or partially wrong in which case the decision-maker has to cope with model uncertainty. Model uncertainty has recently also been shown to be an important determinant of sensorimotor behaviour in humans that can lead to risk-sensitive deviations from Bayes optimal behaviour towards worst-case or best-case outcomes. Here, we investigate the effect of model uncertainty on cooperation in sensorimotor interactions similar to the stag-hunt game, where players develop models about the other player and decide between a pay-off-dominant cooperative solution and a risk-dominant, non-cooperative solution. In simulations, we show that players who allow for optimistic deviations from their opponent model are much more likely to converge to cooperative outcomes. We also implemented this agent model in a virtual reality environment, and let human subjects play against a virtual player. In this game, subjects' pay-offs were experienced as forces opposing their movements. During the experiment, we manipulated the risk sensitivity of the computer player and observed human responses. We found not only that humans adaptively changed their level of cooperation depending on the risk sensitivity of the computer player but also that their initial play exhibited characteristic risk-sensitive biases. Our results suggest that model uncertainty is an important determinant of cooperation in two-player sensorimotor interactions. PMID:23945266

  14. Using Dynamic Geometry and Computer Algebra Systems in Problem Based Courses for Future Engineers

    ERIC Educational Resources Information Center

    Tomiczková, Svetlana; Lávicka, Miroslav

    2015-01-01

    It is a modern trend today when formulating the curriculum of a geometric course at the technical universities to start from a real-life problem originated in technical praxis and subsequently to define which geometric theories and which skills are necessary for its solving. Nowadays, interactive and dynamic geometry software plays a more and more…

  15. Flow visualization of CFD using graphics workstations

    NASA Technical Reports Server (NTRS)

    Lasinski, Thomas; Buning, Pieter; Choi, Diana; Rogers, Stuart; Bancroft, Gordon

    1987-01-01

    High performance graphics workstations are used to visualize the fluid flow dynamics obtained from supercomputer solutions of computational fluid dynamic programs. The visualizations can be done independently on the workstation or while the workstation is connected to the supercomputer in a distributed computing mode. In the distributed mode, the supercomputer interactively performs the computationally intensive graphics rendering tasks while the workstation performs the viewing tasks. A major advantage of the workstations is that the viewers can interactively change their viewing position while watching the dynamics of the flow fields. An overview of the computer hardware and software required to create these displays is presented. For complex scenes the workstation cannot create the displays fast enough for good motion analysis. For these cases, the animation sequences are recorded on video tape or 16 mm film a frame at a time and played back at the desired speed. The additional software and hardware required to create these video tapes or 16 mm movies are also described. Photographs illustrating current visualization techniques are discussed. Examples of the use of the workstations for flow visualization through animation are available on video tape.

  16. Mechanical interactions in bacterial colonies and the surfing probability of beneficial mutations

    PubMed Central

    Farrell, Fred D.

    2017-01-01

    Bacterial conglomerates such as biofilms and microcolonies are ubiquitous in nature and play an important role in industry and medicine. In contrast to well-mixed cultures routinely used in microbial research, bacteria in a microcolony interact mechanically with one another and with the substrate to which they are attached. Here, we use a computer model of a microbial colony of rod-shaped cells to investigate how physical interactions between cells determine their motion in the colony and how this affects biological evolution. We show that the probability that a faster-growing mutant ‘surfs’ at the colony's frontier and creates a macroscopic sector depends on physical properties of cells (shape, elasticity and friction). Although all these factors contribute to the surfing probability in seemingly different ways, their effects can be summarized by two summary statistics that characterize the front roughness and cell alignment. Our predictions are confirmed by experiments in which we measure the surfing probability for colonies of different front roughness. Our results show that physical interactions between bacterial cells play an important role in biological evolution of new traits, and suggest that these interactions may be relevant to processes such as de novo evolution of antibiotic resistance. PMID:28592660

  17. Mechanical interactions in bacterial colonies and the surfing probability of beneficial mutations.

    PubMed

    Farrell, Fred D; Gralka, Matti; Hallatschek, Oskar; Waclaw, Bartlomiej

    2017-06-01

    Bacterial conglomerates such as biofilms and microcolonies are ubiquitous in nature and play an important role in industry and medicine. In contrast to well-mixed cultures routinely used in microbial research, bacteria in a microcolony interact mechanically with one another and with the substrate to which they are attached. Here, we use a computer model of a microbial colony of rod-shaped cells to investigate how physical interactions between cells determine their motion in the colony and how this affects biological evolution. We show that the probability that a faster-growing mutant 'surfs' at the colony's frontier and creates a macroscopic sector depends on physical properties of cells (shape, elasticity and friction). Although all these factors contribute to the surfing probability in seemingly different ways, their effects can be summarized by two summary statistics that characterize the front roughness and cell alignment. Our predictions are confirmed by experiments in which we measure the surfing probability for colonies of different front roughness. Our results show that physical interactions between bacterial cells play an important role in biological evolution of new traits, and suggest that these interactions may be relevant to processes such as de novo evolution of antibiotic resistance. © 2017 The Author(s).

  18. Cerebro-cerebellar interactions underlying temporal information processing.

    PubMed

    Aso, Kenji; Hanakawa, Takashi; Aso, Toshihiko; Fukuyama, Hidenao

    2010-12-01

    The neural basis of temporal information processing remains unclear, but it is proposed that the cerebellum plays an important role through its internal clock or feed-forward computation functions. In this study, fMRI was used to investigate the brain networks engaged in perceptual and motor aspects of subsecond temporal processing without accompanying coprocessing of spatial information. Direct comparison between perceptual and motor aspects of time processing was made with a categorical-design analysis. The right lateral cerebellum (lobule VI) was active during a time discrimination task, whereas the left cerebellar lobule VI was activated during a timed movement generation task. These findings were consistent with the idea that the cerebellum contributed to subsecond time processing in both perceptual and motor aspects. The feed-forward computational theory of the cerebellum predicted increased cerebro-cerebellar interactions during time information processing. In fact, a psychophysiological interaction analysis identified the supplementary motor and dorsal premotor areas, which had a significant functional connectivity with the right cerebellar region during a time discrimination task and with the left lateral cerebellum during a timed movement generation task. The involvement of cerebro-cerebellar interactions may provide supportive evidence that temporal information processing relies on the simulation of timing information through feed-forward computation in the cerebellum.

  19. Mentalizing and motivation neural function during social interactions in autism spectrum disorders☆

    PubMed Central

    Assaf, Michal; Hyatt, Christopher J.; Wong, Christina G.; Johnson, Matthew R.; Schultz, Robert T.; Hendler, Talma; Pearlson, Godfrey D.

    2013-01-01

    Autism Spectrum Disorders (ASDs) are characterized by core deficits in social functions. Two theories have been suggested to explain these deficits: mind-blindness theory posits impaired mentalizing processes (i.e. decreased ability for establishing a representation of others' state of mind), while social motivation theory proposes that diminished reward value for social information leads to reduced social attention, social interactions, and social learning. Mentalizing and motivation are integral to typical social interactions, and neuroimaging evidence points to independent brain networks that support these processes in healthy individuals. However, the simultaneous function of these networks has not been explored in individuals with ASDs. We used a social, interactive fMRI task, the Domino game, to explore mentalizing- and motivation-related brain activation during a well-defined interval where participants respond to rewards or punishments (i.e. motivation) and concurrently process information about their opponent's potential next actions (i.e. mentalizing). Thirteen individuals with high-functioning ASDs, ages 12–24, and 14 healthy controls played fMRI Domino games against a computer-opponent and separately, what they were led to believe was a human-opponent. Results showed that while individuals with ASDs understood the game rules and played similarly to controls, they showed diminished neural activity during the human-opponent runs only (i.e. in a social context) in bilateral middle temporal gyrus (MTG) during mentalizing and right Nucleus Accumbens (NAcc) during reward-related motivation (Pcluster < 0.05 FWE). Importantly, deficits were not observed in these areas when playing against a computer-opponent or in areas related to motor and visual processes. These results demonstrate that while MTG and NAcc, which are critical structures in the mentalizing and motivation networks, respectively, activate normally in a non-social context, they fail to respond in an otherwise identical social context in ASD compared to controls. We discuss implications to both the mind-blindness and social motivation theories of ASD and the importance of social context in research and treatment protocols. PMID:24273716

  20. Many-body van der Waals interactions in molecules and condensed matter.

    PubMed

    DiStasio, Robert A; Gobre, Vivekanand V; Tkatchenko, Alexandre

    2014-05-28

    This work reviews the increasing evidence that many-body van der Waals (vdW) or dispersion interactions play a crucial role in the structure, stability and function of a wide variety of systems in biology, chemistry and physics. Starting with the exact expression for the electron correlation energy provided by the adiabatic connection fluctuation-dissipation theorem, we derive both pairwise and many-body interatomic methods for computing the long-range dispersion energy by considering a model system of coupled quantum harmonic oscillators within the random-phase approximation. By coupling this approach to density functional theory, the resulting many-body dispersion (MBD) method provides an accurate and efficient scheme for computing the frequency-dependent polarizability and many-body vdW energy in molecules and materials with a finite electronic gap. A select collection of applications are presented that ascertain the fundamental importance of these non-bonded interactions across the spectrum of intermolecular (the S22 and S66 benchmark databases), intramolecular (conformational energies of alanine tetrapeptide) and supramolecular (binding energy of the 'buckyball catcher') complexes, as well as molecular crystals (cohesive energies in oligoacenes). These applications demonstrate that electrodynamic response screening and beyond-pairwise many-body vdW interactions--both captured at the MBD level of theory--play a quantitative, and sometimes even qualitative, role in describing the properties considered herein. This work is then concluded with an in-depth discussion of the challenges that remain in the future development of reliable (accurate and efficient) methods for treating many-body vdW interactions in complex materials and provides a roadmap for navigating many of the research avenues that are yet to be explored.

  1. The home electronic media environment and parental safety concerns: relationships with outdoor time after school and over the weekend among 9-11 year old children.

    PubMed

    Wilkie, Hannah J; Standage, Martyn; Gillison, Fiona B; Cumming, Sean P; Katzmarzyk, Peter T

    2018-04-05

    Time spent outdoors is associated with higher physical activity levels among children, yet it may be threatened by parental safety concerns and the attraction of indoor sedentary pursuits. The purpose of this study was to explore the relationships between these factors and outdoor time during children's discretionary periods (i.e., after school and over the weekend). Data from 462 children aged 9-11 years old were analysed using generalised linear mixed models. The odds of spending > 1 h outdoors after school, and > 2 h outdoors on a weekend were computed, according to demographic variables, screen-based behaviours, media access, and parental safety concerns. Interactions with sex and socioeconomic status (SES) were explored. Boys, low SES participants, and children who played on their computer for < 2 h on a school day had higher odds of spending > 1 h outside after school than girls, high SES children and those playing on a computer for ≥2 h, respectively. Counterintuitive results were found for access to media devices and crime-related safety concerns as both of these were positively associated with time spent outdoors after school. A significant interaction for traffic-related concerns*sex was found; higher road safety concerns were associated with lower odds of outdoor time after school in boys only. Age was associated with weekend outdoor time, which interacted with sex and SES; older children were more likely to spend > 2 h outside on weekends but this was only significant among girls and high SES participants. Our results suggest that specific groups of children are less likely to spend their free time outside, and it would seem that only prolonged recreational computer use has a negative association with children's outdoor time after school. Further research is needed to explore potential underlying mechanisms, and parental safety concerns in more detail.

  2. Computer Class Role Playing Games, an innovative teaching methodology based on STEM and ICT: first experimental results

    NASA Astrophysics Data System (ADS)

    Maraffi, S.

    2016-12-01

    Context/PurposeWe experienced a new teaching and learning technology: a Computer Class Role Playing Game (RPG) to perform educational activity in classrooms through an interactive game. This approach is new, there are some experiences on educational games, but mainly individual and not class-based. Gaming all together in a class, with a single scope for the whole class, it enhances peer collaboration, cooperative problem solving and friendship. MethodsTo perform the research we experimented the games in several classes of different degrees, acquiring specific questionnaire by teachers and pupils. Results Experimental results were outstanding: RPG, our interactive activity, exceed by 50% the overall satisfaction compared to traditional lessons or Power Point supported teaching. InterpretationThe appreciation of RPG was in agreement with the class level outcome identified by the teacher after the experimentation. Our work experience get excellent feedbacks by teachers, in terms of efficacy of this new teaching methodology and of achieved results. Using new methodology more close to the student point of view improves the innovation and creative capacities of learners, and it support the new role of teacher as learners' "coach". ConclusionThis paper presents the first experimental results on the application of this new technology based on a Computer game which project on a wall in the class an adventure lived by the students. The plots of the actual adventures are designed for deeper learning of Science, Technology, Engineering, Mathematics (STEM) and Social Sciences & Humanities (SSH). The participation of the pupils it's based on the interaction with the game by the use of their own tablets or smartphones. The game is based on a mixed reality learning environment, giving the students the feel "to be IN the adventure".

  3. VBOT: Motivating computational and complex systems fluencies with constructionist virtual/physical robotics

    NASA Astrophysics Data System (ADS)

    Berland, Matthew W.

    As scientists use the tools of computational and complex systems theory to broaden science perspectives (e.g., Bar-Yam, 1997; Holland, 1995; Wolfram, 2002), so can middle-school students broaden their perspectives using appropriate tools. The goals of this dissertation project are to build, study, evaluate, and compare activities designed to foster both computational and complex systems fluencies through collaborative constructionist virtual and physical robotics. In these activities, each student builds an agent (e.g., a robot-bird) that must interact with fellow students' agents to generate a complex aggregate (e.g., a flock of robot-birds) in a participatory simulation environment (Wilensky & Stroup, 1999a). In a participatory simulation, students collaborate by acting in a common space, teaching each other, and discussing content with one another. As a result, the students improve both their computational fluency and their complex systems fluency, where fluency is defined as the ability to both consume and produce relevant content (DiSessa, 2000). To date, several systems have been designed to foster computational and complex systems fluencies through computer programming and collaborative play (e.g., Hancock, 2003; Wilensky & Stroup, 1999b); this study suggests that, by supporting the relevant fluencies through collaborative play, they become mutually reinforcing. In this work, I will present both the design of the VBOT virtual/physical constructionist robotics learning environment and a comparative study of student interaction with the virtual and physical environments across four middle-school classrooms, focusing on the contrast in systems perspectives differently afforded by the two environments. In particular, I found that while performance gains were similar overall, the physical environment supported agent perspectives on aggregate behavior, and the virtual environment supported aggregate perspectives on agent behavior. The primary research questions are: (1) What are the relative affordances of virtual and physical constructionist robotics systems towards computational and complex systems fluencies? (2) What can middle school students learn using computational/complex systems learning environments in a collaborative setting? (3) In what ways are these environments and activities effective in teaching students computational and complex systems fluencies?

  4. Design and evaluation of a computer game to promote a healthy diet for young adults.

    PubMed

    Peng, Wei

    2009-03-01

    This article reports the development and evaluation of a computer game (RightWay Café) as a special medium to promote a healthy diet for young adults. Structural features of computer games, such as interactive tailoring, role playing, the element of fun, and narrative, were operationalized in the RightWay Café game to afford behavior rehearsal in a safe and entertaining way. Theories such as the health belief model, social cognitive theory, and theory of reasoned action guided the content design of the game to influence mediators of behavior change, including self-efficacy, perceived benefits, perceived barriers, and behavior change intention. A randomized controlled evaluation study with pretest, posttest, and follow-up design demonstrated that this game was effective in teaching nutrition and weight management knowledge and increasing people's self-efficacy and perceived benefits of healthy eating, as well as their intention to be on a healthy diet. Limited long-term effects were also found: participants in the game-playing group had greater self-efficacy than participants in the control group after 1 month. This study validates the computer game-based approach to health promotion for young adults. Limitations and implications are also discussed.

  5. Computational Social Creativity.

    PubMed

    Saunders, Rob; Bown, Oliver

    2015-01-01

    This article reviews the development of computational models of creativity where social interactions are central. We refer to this area as computational social creativity. Its context is described, including the broader study of creativity, the computational modeling of other social phenomena, and computational models of individual creativity. Computational modeling has been applied to a number of areas of social creativity and has the potential to contribute to our understanding of creativity. A number of requirements for computational models of social creativity are common in artificial life and computational social science simulations. Three key themes are identified: (1) computational social creativity research has a critical role to play in understanding creativity as a social phenomenon and advancing computational creativity by making clear epistemological contributions in ways that would be challenging for other approaches; (2) the methodologies developed in artificial life and computational social science carry over directly to computational social creativity; and (3) the combination of computational social creativity with individual models of creativity presents significant opportunities and poses interesting challenges for the development of integrated models of creativity that have yet to be realized.

  6. Toward an integrated software platform for systems pharmacology

    PubMed Central

    Ghosh, Samik; Matsuoka, Yukiko; Asai, Yoshiyuki; Hsin, Kun-Yi; Kitano, Hiroaki

    2013-01-01

    Understanding complex biological systems requires the extensive support of computational tools. This is particularly true for systems pharmacology, which aims to understand the action of drugs and their interactions in a systems context. Computational models play an important role as they can be viewed as an explicit representation of biological hypotheses to be tested. A series of software and data resources are used for model development, verification and exploration of the possible behaviors of biological systems using the model that may not be possible or not cost effective by experiments. Software platforms play a dominant role in creativity and productivity support and have transformed many industries, techniques that can be applied to biology as well. Establishing an integrated software platform will be the next important step in the field. © 2013 The Authors. Biopharmaceutics & Drug Disposition published by John Wiley & Sons, Ltd. PMID:24150748

  7. User's guide for ENSAERO: A multidisciplinary program for fluid/structural/control interaction studies of aircraft (release 1)

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    1994-01-01

    Strong interactions can occur between the flow about an aerospace vehicle and its structural components resulting in several important aeroelastic phenomena. These aeroelastic phenomena can significantly influence the performance of the vehicle. At present, closed-form solutions are available for aeroelastic computations when flows are in either the linear subsonic or supersonic range. However, for aeroelasticity involving complex nonlinear flows with shock waves, vortices, flow separations, and aerodynamic heating, computational methods are still under development. These complex aeroelastic interactions can be dangerous and limit the performance of aircraft. Examples of these detrimental effects are aircraft with highly swept wings experiencing vortex-induced aeroelastic oscillations, transonic regime at which the flutter speed is low, aerothermoelastic loads that play a critical role in the design of high-speed vehicles, and flow separations that often lead to buffeting with undesirable structural oscillations. The simulation of these complex aeroelastic phenomena requires an integrated analysis of fluids and structures. This report presents a summary of the development, applications, and procedures to use the multidisciplinary computer code ENSAERO. This code is based on the Euler/Navier-Stokes flow equations and modal/finite-element structural equations.

  8. Prefrontal neurons represent winning and losing during competitive video shooting games between monkeys.

    PubMed

    Hosokawa, Takayuki; Watanabe, Masataka

    2012-05-30

    Humans and animals must work to support their survival and reproductive needs. Because resources are limited in the natural environment, competition is inevitable, and competing successfully is vitally important. However, the neuronal mechanisms of competitive behavior are poorly studied. We examined whether neurons in the lateral prefrontal cortex (LPFC) showed response sensitivity related to a competitive game. In this study, monkeys played a video shooting game, either competing with another monkey or the computer, or playing alone without a rival. Monkeys performed more quickly and more accurately in the competitive than in the noncompetitive games, indicating that they were more motivated in the competitive than in the noncompetitive games. LPFC neurons showed differential activity between the competitive and noncompetitive games showing winning- and losing-related activity. Furthermore, activities of prefrontal neurons differed depending on whether the competition was between monkeys or between the monkey and the computer. These results indicate that LPFC neurons may play an important role in monitoring the outcome of competition and enabling animals to adapt their behavior to increase their chances of obtaining a reward in a socially interactive environment.

  9. Learning by gaming - evaluation of an online game for children.

    PubMed

    Lazareck, Lisa J; Farrell, David; Kostkova, Patty; Lecky, Donna M; McNulty, Cliodna A M; Weerasinghe, Dasun

    2010-01-01

    Playing computer games is widely popular among children and teenagers as an entertainment activity; meanwhile, playing computer games also provides a learning opportunity. For example, the rules of the game have to be learned by the player in order to improve his/her performance. Based on that principle, the City eHealth Research Centre (CeRC) developed a web game for 13-15 year olds, whereby the player becomes an investigator who attends the scene of an incident that involves microbes. There are four missions in total, each involving a mystery that the player needs to solve and learning objectives that need to be taught - such as antibiotic resistance and the importance of hygiene. This paper presents the results from a game evaluation that took place between July of 2009, in four UK schools (Glasgow, Gloucester, London), with 129 students; whereby 98% of the students commented positively about playing the game. Subsequently, CeRC has improved the game and developed an interactive educational games portal (www.edugames4all.com) for different age groups of web game enthusiasts.

  10. Atomistic Computer Simulations of Water Interactions and Dissolution of Inorganic Glasses

    DOE PAGES

    Du, Jincheng; Rimsza, Jessica

    2017-09-01

    Computational simulations at the atomistic level play an increasing important role in understanding the structures, behaviors, and the structure-property relationships of glass and amorphous materials. In this paper, we reviewed atomistic simulation methods ranging from first principles calculations and ab initio molecular dynamics (AIMD), to classical molecular dynamics (MD) and meso-scale kinetic Monte Carlo (KMC) simulations and their applications to glass-water interactions and glass dissolutions. Particularly, the use of these simulation methods in understanding the reaction mechanisms of water with oxide glasses, water-glass interfaces, hydrated porous silica gels formation, the structure and properties of multicomponent glasses, and microstructure evolution aremore » reviewed. Here, the advantages and disadvantageous of these methods are discussed and the current challenges and future direction of atomistic simulations in glass dissolution are presented.« less

  11. Squeezed Dirac and topological magnons in a bosonic honeycomb optical lattice

    NASA Astrophysics Data System (ADS)

    Owerre, S. A.; Nsofini, J.

    2017-11-01

    Quantum information storage using charge-neutral quasiparticles is expected to play a crucial role in the future of quantum computers. In this regard, magnons or collective spin-wave excitations in solid-state materials are promising candidates in the future of quantum computing. Here, we study the quantum squeezing of Dirac and topological magnons in a bosonic honeycomb optical lattice with spin-orbit interaction by utilizing the mapping to quantum spin-1/2 XYZ Heisenberg model on the honeycomb lattice with discrete Z2 symmetry and a Dzyaloshinskii-Moriya interaction. We show that the squeezed magnons can be controlled by the Z2 anisotropy and demonstrate how the noise in the system is periodically modified in the ferromagnetic and antiferromagnetic phases of the model. Our results also apply to solid-state honeycomb (anti)ferromagnetic insulators.

  12. Squeezed Dirac and Topological Magnons in a Bosonic Honeycomb Optical Lattice.

    PubMed

    Owerre, Solomon; Nsofini, Joachim

    2017-09-20

    Quantum information storage using charge-neutral quasiparticles are expected to play a crucial role in the future of quantum computers. In this regard, magnons or collective spin-wave excitations in solid-state materials are promising candidates in the future of quantum computing. Here, we study the quantum squeezing of Dirac and topological magnons in a bosonic honeycomb optical lattice with spin-orbit interaction by utilizing the mapping to quantum spin-$1/2$ XYZ Heisenberg model on the honeycomb lattice with discrete Z$_2$ symmetry and a Dzyaloshinskii-Moriya interaction. We show that the squeezed magnons can be controlled by the Z$_2$ anisotropy and demonstrate how the noise in the system is periodically modified in the ferromagnetic and antiferromagnetic phases of the model. Our results also apply to solid-state honeycomb (anti)ferromagnetic insulators. . © 2017 IOP Publishing Ltd.

  13. Squeezed Dirac and topological magnons in a bosonic honeycomb optical lattice.

    PubMed

    Owerre, S A; Nsofini, J

    2017-10-19

    Quantum information storage using charge-neutral quasiparticles is expected to play a crucial role in the future of quantum computers. In this regard, magnons or collective spin-wave excitations in solid-state materials are promising candidates in the future of quantum computing. Here, we study the quantum squeezing of Dirac and topological magnons in a bosonic honeycomb optical lattice with spin-orbit interaction by utilizing the mapping to quantum spin-[Formula: see text] XYZ Heisenberg model on the honeycomb lattice with discrete Z 2 symmetry and a Dzyaloshinskii-Moriya interaction. We show that the squeezed magnons can be controlled by the Z 2 anisotropy and demonstrate how the noise in the system is periodically modified in the ferromagnetic and antiferromagnetic phases of the model. Our results also apply to solid-state honeycomb (anti)ferromagnetic insulators.

  14. Systematic size study of an insect antifreeze protein and its interaction with ice.

    PubMed

    Liu, Kai; Jia, Zongchao; Chen, Guangju; Tung, Chenho; Liu, Ruozhuang

    2005-02-01

    Because of their remarkable ability to depress the freezing point of aqueous solutions, antifreeze proteins (AFPs) play a critical role in helping many organisms survive subzero temperatures. The beta-helical insect AFP structures solved to date, consisting of multiple repeating circular loops or coils, are perhaps the most regular protein structures discovered thus far. Taking an exceptional advantage of the unusually high structural regularity of insect AFPs, we have employed both semiempirical and quantum mechanics computational approaches to systematically investigate the relationship between the number of AFP coils and the AFP-ice interaction energy, an indicator of antifreeze activity. We generated a series of AFP models with varying numbers of 12-residue coils (sequence TCTxSxxCxxAx) and calculated their interaction energies with ice. Using several independent computational methods, we found that the AFP-ice interaction energy increased as the number of coils increased, until an upper bound was reached. The increase of interaction energy was significant for each of the first five coils, and there was a clear synergism that gradually diminished and even decreased with further increase of the number of coils. Our results are in excellent agreement with the recently reported experimental observations.

  15. Systematic Size Study of an Insect Antifreeze Protein and Its Interaction with Ice

    PubMed Central

    Liu, Kai; Jia, Zongchao; Chen, Guangju; Tung, Chenho; Liu, Ruozhuang

    2005-01-01

    Because of their remarkable ability to depress the freezing point of aqueous solutions, antifreeze proteins (AFPs) play a critical role in helping many organisms survive subzero temperatures. The β-helical insect AFP structures solved to date, consisting of multiple repeating circular loops or coils, are perhaps the most regular protein structures discovered thus far. Taking an exceptional advantage of the unusually high structural regularity of insect AFPs, we have employed both semiempirical and quantum mechanics computational approaches to systematically investigate the relationship between the number of AFP coils and the AFP-ice interaction energy, an indicator of antifreeze activity. We generated a series of AFP models with varying numbers of 12-residue coils (sequence TCTxSxxCxxAx) and calculated their interaction energies with ice. Using several independent computational methods, we found that the AFP-ice interaction energy increased as the number of coils increased, until an upper bound was reached. The increase of interaction energy was significant for each of the first five coils, and there was a clear synergism that gradually diminished and even decreased with further increase of the number of coils. Our results are in excellent agreement with the recently reported experimental observations. PMID:15713600

  16. Effect of Polycation Structure on Interaction with Lipid Membranes.

    PubMed

    Wilkosz, Natalia; Jamróz, Dorota; Kopeć, Wojciech; Nakai, Keita; Yusa, Shin-Ichi; Wytrwal-Sarna, Magdalena; Bednar, Jan; Nowakowska, Maria; Kepczynski, Mariusz

    2017-08-03

    Interaction of polycations with lipid membranes is a very important issue in many biological and medical applications such as gene delivery or antibacterial usage. In this work, we address the influence of hydrophobic substitution of strong polycations containing quaternary ammonium groups on the polymer-zwitterionic membrane interactions. In particular, we focus on the polymer tendency to adsorb on or/and incorporate into the membrane. We used complementary experimental and computational methods to enhance our understanding of the mechanism of the polycation-membrane interactions. Polycation adsorption on liposomes was assessed using dynamic light scattering (DLS) and zeta potential measurements. The ability of the polymers to form hydrophilic pores in the membrane was evaluated using a calcein-release method. The polymer-membrane interaction at the molecular scale was explored by performing atomistic molecular dynamics (MD) simulations. Our results show that the length of the alkyl side groups plays an essential role in the polycation adhesion on the zwitterionic surface, while the degree of substitution affects the polycation ability to incorporate into the membrane. Both the experimental and computational results show that the membrane permeability can be dramatically affected by the amount of alkyl side groups attached to the polycation main chain.

  17. Effect of computer game playing on baseline laparoscopic simulator skills.

    PubMed

    Halvorsen, Fredrik H; Cvancarova, Milada; Fosse, Erik; Mjåland, Odd

    2013-08-01

    Studies examining the possible association between computer game playing and laparoscopic performance in general have yielded conflicting results and neither has a relationship between computer game playing and baseline performance on laparoscopic simulators been established. The aim of this study was to examine the possible association between previous and present computer game playing and baseline performance on a virtual reality laparoscopic performance in a sample of potential future medical students. The participating students completed a questionnaire covering the weekly amount and type of computer game playing activity during the previous year and 3 years ago. They then performed 2 repetitions of 2 tasks ("gallbladder dissection" and "traverse tube") on a virtual reality laparoscopic simulator. Performance on the simulator were then analyzed for association to their computer game experience. Local high school, Norway. Forty-eight students from 2 high school classes volunteered to participate in the study. No association between prior and present computer game playing and baseline performance was found. The results were similar both for prior and present action game playing and prior and present computer game playing in general. Our results indicate that prior and present computer game playing may not affect baseline performance in a virtual reality simulator.

  18. The Multivoicedness of Game Play: Exploring the Unfolding of a Student's Learning Trajectory in a Gaming Context at School

    ERIC Educational Resources Information Center

    Silseth, Kenneth

    2012-01-01

    The purpose of this article is to gain knowledge about how interactions in a gaming context become constituted as effective resources for a student's learning trajectory. In addition, this detailed study of a learning trajectory documents how a computer game becomes a learning resource for working on a specific topic in school. The article reports…

  19. Controlled English for Effective Communication during Coalition Operations

    DTIC Science & Technology

    2013-06-01

    Linguistic variations and cultural differences often create unexpected challenges for effective communication and thus for Command and Control (C2...CE), and CE-based tools to improve cross- linguistic /cross-cultural communication. We will discuss various types of linguistic variations and cultural...human-computer interaction, reasoning, and explanation CE and CE-based tools can play an important role in facilitating cross- linguistic and cross

  20. The Role of Child Temperament on Head Start Preschoolers' Social Competence in the Context of Cumulative Risk

    ERIC Educational Resources Information Center

    Corapci, Feyza

    2008-01-01

    This study examined the main and interactive effects of cumulative risk and child temperament on teacher ratings of social competence and observer ratings of peer play in a sample of Head Start preschoolers. A cumulative risk index (CRI) was computed by summing the total number of risk factors for each family. There was a difference in the…

  1. An investigation of bleed configurations and their effect on shock wave/boundary layer interactions

    NASA Technical Reports Server (NTRS)

    Hamed, Awatef

    1995-01-01

    The design of high efficiency supersonic inlets is a complex task involving the optimization of a number of performance parameters such as pressure recovery, spillage, drag, and exit distortion profile, over the flight Mach number range. Computational techniques must be capable of accurately simulating the physics of shock/boundary layer interactions, secondary corner flows, flow separation, and bleed if they are to be useful in the design. In particular, bleed and flow separation, play an important role in inlet unstart, and the associated pressure oscillations. Numerical simulations were conducted to investigate some of the basic physical phenomena associated with bleed in oblique shock wave boundary layer interactions that affect the inlet performance.

  2. The Impact of an Interactive Computer Game on the Quality of Life of Children Undergoing Chemotherapy.

    PubMed

    Fazelniya, Zahra; Najafi, Mostafa; Moafi, Alireza; Talakoub, Sedigheh

    2017-01-01

    Quality of life (QOL) of children with cancer reduces right from the diagnosis of disease and the start of treatment. Computer games in medicine are utilized to interact with patients and to improve their health-related behaviors. This study aimed to investigate the effect of an interactive computer game on the QOL of children undergoing chemotherapy. In this clinical trial, 64 children with cancer aged between 8 and12 years were selected through convenience sampling and randomly assigned to experimental or control group. The experimental group played a computer game for 3 hours a week for 4 consecutive weeks and the control group only received routine care. The data collection tool was the Pediatric Quality of Life Inventory (PedsQL) 3.0 Cancer Module Child self-report designed for children aged between 8 to 12 years. Data were analyzed using descriptive and inferential statistics in SPSS software. Before intervention, there was no significant difference between the two groups in terms of mean total QOL score ( p = 0.87). However, immediately after the intervention ( p = 0.02) and 1 month after the intervention ( p < 0.001), the overall mean QOL score was significantly higher in the intervention group than the control group. Based on the findings, computer games seem to be effective as a tool in influencing health-related behavior and improving the QOL of children undergoing chemotherapy. Therefore, according to the findings of this study, computer games can be used to improve the QOL of children undergoing chemotherapy.

  3. The Impact of an Interactive Computer Game on the Quality of Life of Children Undergoing Chemotherapy

    PubMed Central

    Fazelniya, Zahra; Najafi, Mostafa; Moafi, Alireza; Talakoub, Sedigheh

    2017-01-01

    Background: Quality of life (QOL) of children with cancer reduces right from the diagnosis of disease and the start of treatment. Computer games in medicine are utilized to interact with patients and to improve their health-related behaviors. This study aimed to investigate the effect of an interactive computer game on the QOL of children undergoing chemotherapy. Materials and Methods: In this clinical trial, 64 children with cancer aged between 8 and12 years were selected through convenience sampling and randomly assigned to experimental or control group. The experimental group played a computer game for 3 hours a week for 4 consecutive weeks and the control group only received routine care. The data collection tool was the Pediatric Quality of Life Inventory (PedsQL) 3.0 Cancer Module Child self-report designed for children aged between 8 to 12 years. Data were analyzed using descriptive and inferential statistics in SPSS software. Results: Before intervention, there was no significant difference between the two groups in terms of mean total QOL score (p = 0.87). However, immediately after the intervention (p = 0.02) and 1 month after the intervention (p < 0.001), the overall mean QOL score was significantly higher in the intervention group than the control group. Conclusions: Based on the findings, computer games seem to be effective as a tool in influencing health-related behavior and improving the QOL of children undergoing chemotherapy. Therefore, according to the findings of this study, computer games can be used to improve the QOL of children undergoing chemotherapy. PMID:29184580

  4. Evidence for SrHo2O4 and SrDy2O4 as model J1-J2 zigzag chain materials

    NASA Astrophysics Data System (ADS)

    Fennell, A.; Pomjakushin, V. Y.; Uldry, A.; Delley, B.; Prévost, B.; Désilets-Benoit, A.; Bianchi, A. D.; Bewley, R. I.; Hansen, B. R.; Klimczuk, T.; Cava, R. J.; Kenzelmann, M.

    2014-06-01

    Neutron diffraction and inelastic spectroscopy is used to characterize the magnetic Hamiltonian of SrHo2O4 and SrDy2O4. Through a detailed computation of the crystal-field levels we find site-dependent anisotropic single-ion magnetism in both materials, and diffraction measurements show the presence of strong one-dimensional spin correlations. Our measurements indicate that competing interactions of the zigzag chain, combined with frustrated interchain interactions, play a crucial role in stabilizing spin-liquid type correlations in this series.

  5. Reaction-mediated entropic effect on phase separation in a binary polymer system

    NASA Astrophysics Data System (ADS)

    Sun, Shujun; Guo, Miaocai; Yi, Xiaosu; Zhang, Zuoguang

    2017-10-01

    We present a computer simulation to study the phase separation behavior induced by polymerization in a binary system comprising polymer chains and reactive monomers. We examined the influence of interaction parameter between components and monomer concentration on the reaction-induced phase separation. The simulation results demonstrate that increasing interaction parameter (enthalpic effect) would accelerate phase separation, while entropic effect plays a key role in the process of phase separation. Furthermore, scanning electron microscopy observations illustrate identical morphologies as found in theoretical simulation. This study may enrich our comprehension of phase separation in polymer mixture.

  6. Feature Selection in Classification of Eye Movements Using Electrooculography for Activity Recognition

    PubMed Central

    Mala, S.; Latha, K.

    2014-01-01

    Activity recognition is needed in different requisition, for example, reconnaissance system, patient monitoring, and human-computer interfaces. Feature selection plays an important role in activity recognition, data mining, and machine learning. In selecting subset of features, an efficient evolutionary algorithm Differential Evolution (DE), a very efficient optimizer, is used for finding informative features from eye movements using electrooculography (EOG). Many researchers use EOG signals in human-computer interactions with various computational intelligence methods to analyze eye movements. The proposed system involves analysis of EOG signals using clearness based features, minimum redundancy maximum relevance features, and Differential Evolution based features. This work concentrates more on the feature selection algorithm based on DE in order to improve the classification for faultless activity recognition. PMID:25574185

  7. Feature selection in classification of eye movements using electrooculography for activity recognition.

    PubMed

    Mala, S; Latha, K

    2014-01-01

    Activity recognition is needed in different requisition, for example, reconnaissance system, patient monitoring, and human-computer interfaces. Feature selection plays an important role in activity recognition, data mining, and machine learning. In selecting subset of features, an efficient evolutionary algorithm Differential Evolution (DE), a very efficient optimizer, is used for finding informative features from eye movements using electrooculography (EOG). Many researchers use EOG signals in human-computer interactions with various computational intelligence methods to analyze eye movements. The proposed system involves analysis of EOG signals using clearness based features, minimum redundancy maximum relevance features, and Differential Evolution based features. This work concentrates more on the feature selection algorithm based on DE in order to improve the classification for faultless activity recognition.

  8. Neurally and mathematically motivated architecture for language and thought.

    PubMed

    Perlovsky, L I; Ilin, R

    2010-01-01

    Neural structures of interaction between thinking and language are unknown. This paper suggests a possible architecture motivated by neural and mathematical considerations. A mathematical requirement of computability imposes significant constraints on possible architectures consistent with brain neural structure and with a wealth of psychological knowledge. How language interacts with cognition. Do we think with words, or is thinking independent from language with words being just labels for decisions? Why is language learned by the age of 5 or 7, but acquisition of knowledge represented by learning to use this language knowledge takes a lifetime? This paper discusses hierarchical aspects of language and thought and argues that high level abstract thinking is impossible without language. We discuss a mathematical technique that can model the joint language-thought architecture, while overcoming previously encountered difficulties of computability. This architecture explains a contradiction between human ability for rational thoughtful decisions and irrationality of human thinking revealed by Tversky and Kahneman; a crucial role in this contradiction might be played by language. The proposed model resolves long-standing issues: how the brain learns correct words-object associations; why animals do not talk and think like people. We propose the role played by language emotionality in its interaction with thought. We relate the mathematical model to Humboldt's "firmness" of languages; and discuss possible influence of language grammar on its emotionality. Psychological and brain imaging experiments related to the proposed model are discussed. Future theoretical and experimental research is outlined.

  9. Neurally and Mathematically Motivated Architecture for Language and Thought

    PubMed Central

    Perlovsky, L.I; Ilin, R

    2010-01-01

    Neural structures of interaction between thinking and language are unknown. This paper suggests a possible architecture motivated by neural and mathematical considerations. A mathematical requirement of computability imposes significant constraints on possible architectures consistent with brain neural structure and with a wealth of psychological knowledge. How language interacts with cognition. Do we think with words, or is thinking independent from language with words being just labels for decisions? Why is language learned by the age of 5 or 7, but acquisition of knowledge represented by learning to use this language knowledge takes a lifetime? This paper discusses hierarchical aspects of language and thought and argues that high level abstract thinking is impossible without language. We discuss a mathematical technique that can model the joint language-thought architecture, while overcoming previously encountered difficulties of computability. This architecture explains a contradiction between human ability for rational thoughtful decisions and irrationality of human thinking revealed by Tversky and Kahneman; a crucial role in this contradiction might be played by language. The proposed model resolves long-standing issues: how the brain learns correct words-object associations; why animals do not talk and think like people. We propose the role played by language emotionality in its interaction with thought. We relate the mathematical model to Humboldt’s “firmness” of languages; and discuss possible influence of language grammar on its emotionality. Psychological and brain imaging experiments related to the proposed model are discussed. Future theoretical and experimental research is outlined. PMID:21673788

  10. Mesoscopic Effects in an Agent-Based Bargaining Model in Regular Lattices

    PubMed Central

    Poza, David J.; Santos, José I.; Galán, José M.; López-Paredes, Adolfo

    2011-01-01

    The effect of spatial structure has been proved very relevant in repeated games. In this work we propose an agent based model where a fixed finite population of tagged agents play iteratively the Nash demand game in a regular lattice. The model extends the multiagent bargaining model by Axtell, Epstein and Young [1] modifying the assumption of global interaction. Each agent is endowed with a memory and plays the best reply against the opponent's most frequent demand. We focus our analysis on the transient dynamics of the system, studying by computer simulation the set of states in which the system spends a considerable fraction of the time. The results show that all the possible persistent regimes in the global interaction model can also be observed in this spatial version. We also find that the mesoscopic properties of the interaction networks that the spatial distribution induces in the model have a significant impact on the diffusion of strategies, and can lead to new persistent regimes different from those found in previous research. In particular, community structure in the intratype interaction networks may cause that communities reach different persistent regimes as a consequence of the hindering diffusion effect of fluctuating agents at their borders. PMID:21408019

  11. Mesoscopic effects in an agent-based bargaining model in regular lattices.

    PubMed

    Poza, David J; Santos, José I; Galán, José M; López-Paredes, Adolfo

    2011-03-09

    The effect of spatial structure has been proved very relevant in repeated games. In this work we propose an agent based model where a fixed finite population of tagged agents play iteratively the Nash demand game in a regular lattice. The model extends the multiagent bargaining model by Axtell, Epstein and Young modifying the assumption of global interaction. Each agent is endowed with a memory and plays the best reply against the opponent's most frequent demand. We focus our analysis on the transient dynamics of the system, studying by computer simulation the set of states in which the system spends a considerable fraction of the time. The results show that all the possible persistent regimes in the global interaction model can also be observed in this spatial version. We also find that the mesoscopic properties of the interaction networks that the spatial distribution induces in the model have a significant impact on the diffusion of strategies, and can lead to new persistent regimes different from those found in previous research. In particular, community structure in the intratype interaction networks may cause that communities reach different persistent regimes as a consequence of the hindering diffusion effect of fluctuating agents at their borders.

  12. Coupling Protein Side-Chain and Backbone Flexibility Improves the Re-design of Protein-Ligand Specificity.

    PubMed

    Ollikainen, Noah; de Jong, René M; Kortemme, Tanja

    2015-01-01

    Interactions between small molecules and proteins play critical roles in regulating and facilitating diverse biological functions, yet our ability to accurately re-engineer the specificity of these interactions using computational approaches has been limited. One main difficulty, in addition to inaccuracies in energy functions, is the exquisite sensitivity of protein-ligand interactions to subtle conformational changes, coupled with the computational problem of sampling the large conformational search space of degrees of freedom of ligands, amino acid side chains, and the protein backbone. Here, we describe two benchmarks for evaluating the accuracy of computational approaches for re-engineering protein-ligand interactions: (i) prediction of enzyme specificity altering mutations and (ii) prediction of sequence tolerance in ligand binding sites. After finding that current state-of-the-art "fixed backbone" design methods perform poorly on these tests, we develop a new "coupled moves" design method in the program Rosetta that couples changes to protein sequence with alterations in both protein side-chain and protein backbone conformations, and allows for changes in ligand rigid-body and torsion degrees of freedom. We show significantly increased accuracy in both predicting ligand specificity altering mutations and binding site sequences. These methodological improvements should be useful for many applications of protein-ligand design. The approach also provides insights into the role of subtle conformational adjustments that enable functional changes not only in engineering applications but also in natural protein evolution.

  13. Research on Interactive Acquisition and Use of Knowledge.

    DTIC Science & Technology

    1983-11-01

    complex and challenging endeavor. Computer scientists faced with the problem of managing software complexity have de - veloped strict design disciplines...handle most-indeed, probably all-- phenomena in the syntax and semantics of natural language. It has also turned out to be well suited for the classes of...Semantics The previous grammar performs a de facto coordination of syntax and semantics by requiring that the (syntactically) preverbal NP play the

  14. Neurocomputation by Reaction Diffusion

    NASA Astrophysics Data System (ADS)

    Liang, Ping

    1995-08-01

    This Letter demonstrates the possible role nonsynaptic diffusion neurotransmission may play in neurocomputation using an artificial neural network model. A reaction-diffusion neural network model with field-based information-processing mechanisms is proposed. The advantages of nonsynaptic field neurotransmission from a computational viewpoint demonstrated in this Letter include long-range inhibition using only local interaction, nonhardwired and changeable (target specific) long-range communication pathways, and multiple simultaneous spatiotemporal organization processes in the same medium.

  15. Keep your opponents close: social context affects EEG and fEMG linkage in a turn-based computer game.

    PubMed

    Spapé, Michiel M; Kivikangas, J Matias; Järvelä, Simo; Kosunen, Ilkka; Jacucci, Giulio; Ravaja, Niklas

    2013-01-01

    In daily life, we often copy the gestures and expressions of those we communicate with, but recent evidence shows that such mimicry has a physiological counterpart: interaction elicits linkage, which is a concordance between the biological signals of those involved. To find out how the type of social interaction affects linkage, pairs of participants played a turn-based computer game in which the level of competition was systematically varied between cooperation and competition. Linkage in the beta and gamma frequency bands was observed in the EEG, especially when the participants played directly against each other. Emotional expression, measured using facial EMG, reflected this pattern, with the most competitive condition showing enhanced linkage over the facial muscle-regions involved in smiling. These effects were found to be related to self-reported social presence: linkage in positive emotional expression was associated with self-reported shared negative feelings. The observed effects confirmed the hypothesis that the social context affected the degree to which participants had similar reactions to their environment and consequently showed similar patterns of brain activity. We discuss the functional resemblance between linkage, as an indicator of a shared physiology and affect, and the well-known mirror neuron system, and how they relate to social functions like empathy.

  16. A Twist on the Richtmyer-Meshkov Instability

    NASA Astrophysics Data System (ADS)

    Rollin, Bertrand; Koneru, Rahul; Ouellet, Frederick

    2017-11-01

    The Richtmyer-Meshkov instability is caused by the interaction of a shock wave with a perturbed interface between two fluids of different densities. Typical contexts in which it plays a key role include inertial confinement fusion, supernovae or scramjets. However, little is known of the phenomenology of this instability if one of the interacting media is a dense solid-particle phase. In the context of an explosive dispersal of particles, this gas-particle variant of the Richtmyer-Meshkov instability may play a role in the late time formation of aerodynamically stable particle jets. Thus, this numerical experiment aims at shedding some light on this phenomenon with the help of high fidelity numerical simulations. Using a Eulerian-Lagrangian approach, we track trajectories of computational particles composing an initially corrugated solid particle curtain, in a two-dimensional planar geometry. This study explores the effects of the initial shape (designed using single mode and multimode perturbations) and volume fraction of the particle curtain on its subsequent evolution. Complexities associated with compaction of the curtain of particles to the random close packing limit are avoided by constraining simulations to modest initial volume fraction of particles. This work was supported by the U.S. DoE, NNSA, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  17. Addictive Online Games: Examining the Relationship Between Game Genres and Internet Gaming Disorder.

    PubMed

    Lemmens, Jeroen S; Hendriks, Stefan J F

    2016-04-01

    Internet gaming disorder (IGD) is the most recent term used to describe problematic or pathological involvement with computer or video games. This study examined whether this disorder is more likely to involve pathological involvement with online (i.e., Internet) games as opposed to offline games. We also explored the addictive potential of nine video game genres by examining the relationship between IGD and 2,720 games played by a sample of 13- to 40-year olds (N = 2,442). Although time spent playing both online and offline games was related to IGD, online games showed much stronger correlations. This tendency is also reflected within various genres. Disordered gamers spent more than four times as much time playing online role-playing games than nondisordered gamers and more than thrice as much time playing online shooters, whereas no significant differences for offline games from these genres were found. Results are discussed within the frame of social interaction and competition provided by online games.

  18. Online trust, trustworthiness, or assurance?

    PubMed

    Cheshire, Coye

    2011-01-01

    Every day, individuals around the world retrieve, share, and exchange information on the Internet. We interact online to share personal information, find answers to questions, make financial transactions, play social games, and maintain professional and personal relationships. Sometimes our online interactions take place between two or more humans. In other cases, we rely on computers to manage information on our behalf. In each scenario, risk and uncertainty are essential for determining possible actions and outcomes. This essay highlights common deficiencies in our understanding of key concepts such as trust, trustworthiness, cooperation, and assurance in online environments. Empirical evidence from experimental work in computer-mediated environments underscores the promises and perils of overreliance on security and assurance structures as replacements for interpersonal trust. These conceptual distinctions are critical because the future shape of the Internet will depend on whether we build assurance structures to limit and control ambiguity or allow trust to emerge in the presence of risk and uncertainty.

  19. Molecular simulation aspects of amyloid peptides at membrane interface.

    PubMed

    Liu, Yonglan; Ren, Baiping; Zhang, Yanxian; Sun, Yan; Chang, Yung; Liang, Guizhao; Xu, Lijian; Zheng, Jie

    2018-02-06

    The interactions of amyloid peptides with cell membranes play an important role in maintaining the integrity and functionality of cell membrane. A thorough molecular-level understanding of the structure, dynamics, and interactions between amyloid peptides and cell membranes is critical to amyloid aggregation and toxicity mechanisms for the bench-to-bedside applications. Here we review the most recent computational studies of amyloid peptides at model cell membranes. Different mechanisms of action of amyloid peptides on/in cell membranes, targeted by different computational techniques at different lengthscales and timescales, are rationally discussed. Finally, we have proposed some new insights into the remaining challenges and perspectives for future studies to improve our understanding of the activity of amyloid peptides associated with protein-misfolding diseases. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. A Combined Experimental and Computational Study of Vam3, a Derivative of Resveratrol, and Syk Interaction

    PubMed Central

    Jiang, Ming; Liu, Renping; Chen, Ying; Zheng, Qisheng; Fan, Saijun; Liu, Peixun

    2014-01-01

    Spleen tyrosine kinase (Syk) plays an indispensable role through preliminary extracellular antigen-induced crosslinking of Fc receptor (FcR) in the pathogenesis of autoimmune disorders, such as rheumatoid arthritis. In this study, we identify Vam3, a dimeric derivative of resveratrol isolated from grapes, as an ATP-competitive inhibitor of Syk with an IC50 of 62.95 nM in an in vitro kinase assay. Moreover, docking and molecular dynamics simulation approaches were performed to get more detailed information about the binding mode of Vam3 and Syk. The results show that 11b-OH on ring-C and 4b-OH on ring-D could form two hydrogen bonds with Glu449 and Phe382 of Syk, respectively. In addition, arene-cation interaction between ring-D of Vam3 and Lys402 of Syk was also observed. These results indicate that ring-C and D play an essential role in Vam3–Syk interaction. Our studies may be helpful in the structural optimization of Vam3, and also aid the design of novel Syk inhibitors in the future. PMID:25257535

  1. Modeling the Offensive-Defensive Interaction and Resulting Outcomes in Basketball.

    PubMed

    Lamas, Leonardo; Santana, Felipe; Heiner, Matthew; Ugrinowitsch, Carlos; Fellingham, Gilbert

    2015-01-01

    We analyzed the interaction between offensive (i.e. space creation dynamics--SCDs) and defensive (i.e. space protection dynamics--SPDs) actions in six play outcomes (free shot, contested shot, new SCD, reset, foul, and turnover) in Spanish professional basketball games. Data consisted of 1548 SCD-SPD-outcome triples obtained from six play-off games. We used Bayesian methods to compute marginal probabilities of six outcomes following five different SCDs. We also computed probabilities of the six outcomes following the 16 most frequent SCD-SPD combinations. The pick action (e.g. pick and roll, pop and pop) was the most prevalent SCD (33%). However, this SCD did not produce the highest probability of a free shot (0.235). The highest probability of a free shot followed the SCD without ball (0.409). The pick was performed not only to attempt scoring but also to initiate offenses, as it produced the highest probability leading to a new SCD (0.403). Additionally, the SPD performed influenced the outcome of the SCD. This reinforces the notion that the opposition (offensive-defensive interaction) should be considered. To the best of our knowledge, in team sports, this is the first study to successfully model the tactical features involved in offense-defense interactions. Our analyses revealed that the high frequency of occurrence of some SCDs may be justified not only by an associated high probability of free shots but also by the possibility of progressively create more space in the defense (i.e. a new SCD as outcome). In the second case, it evidences offensive strategic features of progressive disruption of the defensive system through the concatenation of subsequent offensive actions.

  2. Modeling the Offensive-Defensive Interaction and Resulting Outcomes in Basketball

    PubMed Central

    Lamas, Leonardo; Santana, Felipe; Heiner, Matthew; Ugrinowitsch, Carlos; Fellingham, Gilbert

    2015-01-01

    Purpose We analyzed the interaction between offensive (i.e. space creation dynamics -SCDs) and defensive (i.e. space protection dynamics—SPDs) actions in six play outcomes (free shot, contested shot, new SCD, reset, foul, and turnover) in Spanish professional basketball games. Method Data consisted of 1548 SCD-SPD-outcome triples obtained from six play-off games. We used Bayesian methods to compute marginal probabilities of six outcomes following five different SCDs. We also computed probabilities of the six outcomes following the 16 most frequent SCD-SPD combinations. Results The pick action (e.g. pick and roll, pop and pop) was the most prevalent SCD (33%). However, this SCD did not produce the highest probability of a free shot (0.235). The highest probability of a free shot followed the SCD without ball (0.409). The pick was performed not only to attempt scoring but also to initiate offenses, as it produced the highest probability leading to a new SCD (0.403). Additionally, the SPD performed influenced the outcome of the SCD. This reinforces the notion that the opposition (offensive-defensive interaction) should be considered. To the best of our knowledge, in team sports, this is the first study to successfully model the tactical features involved in offense-defense interactions. Our analyses revealed that the high frequency of occurrence of some SCDs may be justified not only by an associated high probability of free shots but also by the possibility of progressively create more space in the defense (i.e. a new SCD as outcome). In the second case, it evidences offensive strategic features of progressive disruption of the defensive system through the concatenation of subsequent offensive actions. PMID:26659134

  3. Computer games and fine motor skills.

    PubMed

    Borecki, Lukasz; Tolstych, Katarzyna; Pokorski, Mieczyslaw

    2013-01-01

    The study seeks to determine the influence of computer games on fine motor skills in young adults, an area of incomplete understanding and verification. We hypothesized that computer gaming could have a positive influence on basic motor skills, such as precision, aiming, speed, dexterity, or tremor. We examined 30 habitual game users (F/M - 3/27; age range 20-25 years) of the highly interactive game Counter Strike, in which players impersonate soldiers on a battlefield, and 30 age- and gender-matched subjects who declared never to play games. Selected tests from the Vienna Test System were used to assess fine motor skills and tremor. The results demonstrate that the game users scored appreciably better than the control subjects in all tests employed. In particular, the players did significantly better in the precision of arm-hand movements, as expressed by a lower time of errors, 1.6 ± 0.6 vs. 2.8 ± 0.6 s, a lower error rate, 13.6 ± 0.3 vs. 20.4 ± 2.2, and a shorter total time of performing a task, 14.6 ± 2.9 vs. 32.1 ± 4.5 s in non-players, respectively; p < 0.001 all. The findings demonstrate a positive influence of computer games on psychomotor functioning. We submit that playing computer games may be a useful training tool to increase fine motor skills and movement coordination.

  4. COMPUTATIONAL MITRAL VALVE EVALUATION AND POTENTIAL CLINICAL APPLICATIONS

    PubMed Central

    Chandran, Krishnan B.; Kim, Hyunggun

    2014-01-01

    The mitral valve (MV) apparatus consists of the two asymmetric leaflets, the saddle-shaped annulus, the chordae tendineae, and the papillary muscles. MV function over the cardiac cycle involves complex interaction between the MV apparatus components for efficient blood circulation. Common diseases of the MV include valvular stenosis, regurgitation, and prolapse. MV repair is the most popular and most reliable surgical treatment for early MV pathology. One of the unsolved problems in MV repair is to predict the optimal repair strategy for each patient. Although experimental studies have provided valuable information to improve repair techniques, computational simulations are increasingly playing an important role in understanding the complex MV dynamics, particularly with the availability of patient-specific real-time imaging modalities. This work presents a review of computational simulation studies of MV function employing finite element (FE) structural analysis and fluid-structure interaction (FSI) approach reported in the literature to date. More recent studies towards potential applications of computational simulation approaches in the assessment of valvular repair techniques and potential pre-surgical planning of repair strategies are also discussed. It is anticipated that further advancements in computational techniques combined with the next generations of clinical imaging modalities will enable physiologically more realistic simulations. Such advancement in imaging and computation will allow for patient-specific, disease-specific, and case-specific MV evaluation and virtual prediction of MV repair. PMID:25134487

  5. Computers and Play.

    ERIC Educational Resources Information Center

    Colker, Larry

    Viewing computers in various forms as developmentally appropriate objects for children, this discussion provides a framework for integrating conceptions of computers and conceptions of play. Several instances are cited from the literature in which explicit analogies have been made between computers and playthings or play environments.…

  6. Gender stereotypes, aggression, and computer games: an online survey of women.

    PubMed

    Norris, Kamala O

    2004-12-01

    Computer games were conceptualized as a potential mode of entry into computer-related employment for women. Computer games contain increasing levels of realism and violence, as well as biased gender portrayals. It has been suggested that aggressive personality characteristics attract people to aggressive video games, and that more women do not play computer games because they are socialized to be non-aggressive. To explore gender identity and aggressive personality in the context of computers, an online survey was conducted on women who played computer games and women who used the computer but did not play computer games. Women who played computer games perceived their online environments as less friendly but experienced less sexual harassment online, were more aggressive themselves, and did not differ in gender identity, degree of sex role stereotyping, or acceptance of sexual violence when compared to women who used the computer but did not play video games. Finally, computer gaming was associated with decreased participation in computer-related employment; however, women with high masculine gender identities were more likely to use computers at work.

  7. The role of graphics super-workstations in a supercomputing environment

    NASA Technical Reports Server (NTRS)

    Levin, E.

    1989-01-01

    A new class of very powerful workstations has recently become available which integrate near supercomputer computational performance with very powerful and high quality graphics capability. These graphics super-workstations are expected to play an increasingly important role in providing an enhanced environment for supercomputer users. Their potential uses include: off-loading the supercomputer (by serving as stand-alone processors, by post-processing of the output of supercomputer calculations, and by distributed or shared processing), scientific visualization (understanding of results, communication of results), and by real time interaction with the supercomputer (to steer an iterative computation, to abort a bad run, or to explore and develop new algorithms).

  8. Understanding Emergency Care Delivery Through Computer Simulation Modeling.

    PubMed

    Laker, Lauren F; Torabi, Elham; France, Daniel J; Froehle, Craig M; Goldlust, Eric J; Hoot, Nathan R; Kasaie, Parastu; Lyons, Michael S; Barg-Walkow, Laura H; Ward, Michael J; Wears, Robert L

    2018-02-01

    In 2017, Academic Emergency Medicine convened a consensus conference entitled, "Catalyzing System Change through Health Care Simulation: Systems, Competency, and Outcomes." This article, a product of the breakout session on "understanding complex interactions through systems modeling," explores the role that computer simulation modeling can and should play in research and development of emergency care delivery systems. This article discusses areas central to the use of computer simulation modeling in emergency care research. The four central approaches to computer simulation modeling are described (Monte Carlo simulation, system dynamics modeling, discrete-event simulation, and agent-based simulation), along with problems amenable to their use and relevant examples to emergency care. Also discussed is an introduction to available software modeling platforms and how to explore their use for research, along with a research agenda for computer simulation modeling. Through this article, our goal is to enhance adoption of computer simulation, a set of methods that hold great promise in addressing emergency care organization and design challenges. © 2017 by the Society for Academic Emergency Medicine.

  9. Multimodal interactions in typically and atypically developing children: natural versus artificial environments.

    PubMed

    Giannopulu, Irini

    2013-11-01

    This review addresses the central role played by multimodal interactions in neurocognitive development. We first analyzed our studies of multimodal verbal and nonverbal cognition and emotional interactions within neuronal, that is, natural environments in typically developing children. We then tried to relate them to the topic of creating artificial environments using mobile toy robots to neurorehabilitate severely autistic children. By doing so, both neural/natural and artificial environments are considered as the basis of neuronal organization and reorganization. The common thread underlying the thinking behind this approach revolves around the brain's intrinsic properties: neuroplasticity and the fact that the brain is neurodynamic. In our approach, neural organization and reorganization using natural or artificial environments aspires to bring computational perspectives into cognitive developmental neuroscience.

  10. Multispectroscopic investigation of the interaction of BSA and DNA with the anticancer drug, N-(6-ferrocenyl-2-naphthoyl)-gamma-amino butyric acid methyl ester

    NASA Astrophysics Data System (ADS)

    Rajina, S. R.; Sudhi, Geethu; Austin, P.; Praveen, S. G.; Xavier, T. S.; Kenny, Peter T. M.; Binoy, J.

    2018-05-01

    The interaction of a drug with DNA and BSA play a great role in studying anti cancer activity and drug transport properties, which can be effectively, investigated using vibrational spectroscopy, UV visible spectroscopy and Fluorescence spectroscopy. The present work reports the structural features of N-(6-ferrocenyl-2-naphthoyl)-gamma-amino butyric acid Methyl ester (FNGABME) based on FTIR and FTRaman spectroscopy. The absorption and fluorescence spectroscopic methods were used to study the efficiency of the interaction of the compound FNGABME with BSA and DNA and also molecular docking were performed computationally to validate the results which shows that the title compound may exhibit inhibitory activity against the cancer cells.

  11. Play-Personas: Behaviours and Belief Systems in User-Centred Game Design

    NASA Astrophysics Data System (ADS)

    Canossa, Alessandro; Drachen, Anders

    Game designers attempt to ignite affective, emotional responses from players via engineering game designs to incite definite user experiences. Theories of emotion state that definite emotional responses are individual, and caused by the individual interaction sequence or history. Engendering desired emotions in the audience of traditional audiovisual media is a considerable challenge; however it is potentially even more difficult to achieve the same goal for the audience of interactive entertainment, because a substantial degree of control rests in the hand of the end user rather than the designer. This paper presents a possible solution to the challenge of integrating the user in the design of interactive entertainment such as computer games by employing the "persona" framework introduced by Alan Cooper. This approach is already in use in interaction design. The method can be improved by complementing the traditional narrative description of personas with quantitative, data-oriented models of predicted patterns of user behaviour for a specific computer game Additionally, persona constructs can be applied both as design-oriented metaphors during the development of games, and as analytical lenses to existing games, e.g. for evaluation of patterns of player behaviour.

  12. Applying Knowledge of Enzyme Biochemistry to the Prediction of Functional Sites for Aiding Drug Discovery.

    PubMed

    Pai, Priyadarshini P; Mondal, Sukanta

    2017-01-01

    Enzymes are biological catalysts that play an important role in determining the patterns of chemical transformations pertaining to life. Many milestones have been achieved in unraveling the mechanisms in which the enzymes orchestrate various cellular processes using experimental and computational approaches. Experimental studies generating nearly all possible mutations of target enzymes have been aided by rapid computational approaches aiming at enzyme functional classification, understanding domain organization, functional site identification. The functional architecture, essentially, is involved in binding or interaction with ligands including substrates, products, cofactors, inhibitors, providing for their function, such as in catalysis, ligand mediated cell signaling, allosteric regulation and post-translational modifications. With the increasing availability of enzyme information and advances in algorithm development, computational approaches have now become more capable of providing precise inputs for enzyme engineering, and in the process also making it more efficient. This has led to interesting findings, especially in aberrant enzyme interactions, such as hostpathogen interactions in infection, neurodegenerative diseases, cancer and diabetes. This review aims to summarize in retrospection - the mined knowledge, vivid perspectives and challenging strides in using available experimentally validated enzyme information for characterization. An analytical outlook is presented on the scope of exploring future directions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Real-time 3D human capture system for mixed-reality art and entertainment.

    PubMed

    Nguyen, Ta Huynh Duy; Qui, Tran Cong Thien; Xu, Ke; Cheok, Adrian David; Teo, Sze Lee; Zhou, ZhiYing; Mallawaarachchi, Asitha; Lee, Shang Ping; Liu, Wei; Teo, Hui Siang; Thang, Le Nam; Li, Yu; Kato, Hirokazu

    2005-01-01

    A real-time system for capturing humans in 3D and placing them into a mixed reality environment is presented in this paper. The subject is captured by nine cameras surrounding her. Looking through a head-mounted-display with a camera in front pointing at a marker, the user can see the 3D image of this subject overlaid onto a mixed reality scene. The 3D images of the subject viewed from this viewpoint are constructed using a robust and fast shape-from-silhouette algorithm. The paper also presents several techniques to produce good quality and speed up the whole system. The frame rate of our system is around 25 fps using only standard Intel processor-based personal computers. Besides a remote live 3D conferencing and collaborating system, we also describe an application of the system in art and entertainment, named Magic Land, which is a mixed reality environment where captured avatars of human and 3D computer generated virtual animations can form an interactive story and play with each other. This system demonstrates many technologies in human computer interaction: mixed reality, tangible interaction, and 3D communication. The result of the user study not only emphasizes the benefits, but also addresses some issues of these technologies.

  14. Simulation of Rotary-Wing Near-Wake Vortex Structures Using Navier-Stokes CFD Methods

    NASA Technical Reports Server (NTRS)

    Kenwright, David; Strawn, Roger; Ahmad, Jasim; Duque, Earl; Warmbrodt, William (Technical Monitor)

    1997-01-01

    This paper will use high-resolution Navier-Stokes computational fluid dynamics (CFD) simulations to model the near-wake vortex roll-up behind rotor blades. The locations and strengths of the trailing vortices will be determined from newly-developed visualization and analysis software tools applied to the CFD solutions. Computational results for rotor nearwake vortices will be used to study the near-wake vortex roll up for highly-twisted tiltrotor blades. These rotor blades typically have combinations of positive and negative spanwise loading and complex vortex wake interactions. Results of the computational studies will be compared to vortex-lattice wake models that are frequently used in rotorcraft comprehensive codes. Information from these comparisons will be used to improve the rotor wake models in the Tilt-Rotor Acoustic Code (TRAC) portion of NASA's Short Haul Civil Transport program (SHCT). Accurate modeling of the rotor wake is an important part of this program and crucial to the successful design of future civil tiltrotor aircraft. The rotor wake system plays an important role in blade-vortex interaction noise, a major problem for all rotorcraft including tiltrotors.

  15. Implementing Artificial Intelligence Behaviors in a Virtual World

    NASA Technical Reports Server (NTRS)

    Krisler, Brian; Thome, Michael

    2012-01-01

    In this paper, we will present a look at the current state of the art in human-computer interface technologies, including intelligent interactive agents, natural speech interaction and gestural based interfaces. We describe our use of these technologies to implement a cost effective, immersive experience on a public region in Second Life. We provision our Artificial Agents as a German Shepherd Dog avatar with an external rules engine controlling the behavior and movement. To interact with the avatar, we implemented a natural language and gesture system allowing the human avatars to use speech and physical gestures rather than interacting via a keyboard and mouse. The result is a system that allows multiple humans to interact naturally with AI avatars by playing games such as fetch with a flying disk and even practicing obedience exercises using voice and gesture, a natural seeming day in the park.

  16. Excessive computer game playing among Norwegian adults: self-reported consequences of playing and association with mental health problems.

    PubMed

    Wenzel, H G; Bakken, I J; Johansson, A; Götestam, K G; Øren, Anita

    2009-12-01

    Computer games are the most advanced form of gaming. For most people, the playing is an uncomplicated leisure activity; however, for a minority the gaming becomes excessive and is associated with negative consequences. The aim of the present study was to investigate computer game-playing behaviour in the general adult Norwegian population, and to explore mental health problems and self-reported consequences of playing. The survey includes 3,405 adults 16 to 74 years old (Norway 2007, response rate 35.3%). Overall, 65.5% of the respondents reported having ever played computer games (16-29 years, 93.9%; 30-39 years, 85.0%; 40-59 years, 56.2%; 60-74 years, 25.7%). Among 2,170 players, 89.8% reported playing less than 1 hr. as a daily average over the last month, 5.0% played 1-2 hr. daily, 3.1% played 2-4 hr. daily, and 2.2% reported playing > 4 hr. daily. The strongest risk factor for playing > 4 hr. daily was being an online player, followed by male gender, and single marital status. Reported negative consequences of computer game playing increased strongly with average daily playing time. Furthermore, prevalence of self-reported sleeping problems, depression, suicide ideations, anxiety, obsessions/ compulsions, and alcohol/substance abuse increased with increasing playing time. This study showed that adult populations should also be included in research on computer game-playing behaviour and its consequences.

  17. The effect of user's perceived presence and promotion focus on usability for interacting in virtual environments.

    PubMed

    Sun, Huey-Min; Li, Shang-Phone; Zhu, Yu-Qian; Hsiao, Bo

    2015-09-01

    Technological advance in human-computer interaction has attracted increasing research attention, especially in the field of virtual reality (VR). Prior research has focused on examining the effects of VR on various outcomes, for example, learning and health. However, which factors affect the final outcomes? That is, what kind of VR system design will achieve higher usability? This question remains largely. Furthermore, when we look at VR system deployment from a human-computer interaction (HCI) lens, does user's attitude play a role in achieving the final outcome? This study aims to understand the effect of immersion and involvement, as well as users' regulatory focus on usability for a somatosensory VR learning system. This study hypothesized that regulatory focus and presence can effectively enhance user's perceived usability. Survey data from 78 students in Taiwan indicated that promotion focus is positively related to user's perceived efficiency, whereas involvement and promotion focus are positively related to user's perceived effectiveness. Promotion focus also predicts user satisfaction and overall usability perception. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  18. Metabolic interactions and dynamics in microbial communities

    NASA Astrophysics Data System (ADS)

    Segre', Daniel

    Metabolism, in addition to being the engine of every living cell, plays a major role in the cell-cell and cell-environment relations that shape the dynamics and evolution of microbial communities, e.g. by mediating competition and cross-feeding interactions between different species. Despite the increasing availability of metagenomic sequencing data for numerous microbial ecosystems, fundamental aspects of these communities, such as the unculturability of many isolates, and the conditions necessary for taxonomic or functional stability, are still poorly understood. We are developing mechanistic computational approaches for studying the interactions between different organisms based on the knowledge of their entire metabolic networks. In particular, we have recently built an open source platform for the Computation of Microbial Ecosystems in Time and Space (COMETS), which combines metabolic models with convection-diffusion equations to simulate the spatio-temporal dynamics of metabolism in microbial communities. COMETS has been experimentally tested on small artificial communities, and is scalable to hundreds of species in complex environments. I will discuss recent developments and challenges towards the implementation of models for microbiomes and synthetic microbial communities.

  19. Staying Connected: Computer-Mediated and Face-to-Face Communication in College Students' Dating Relationships.

    PubMed

    Boyle, Andrea M; O'Sullivan, Lucia F

    2016-05-01

    Little is known about the features, depth, and quality of communication in heterosexual dating relationships that include computer-mediated communication (CMC). This study examined these features as well as CMC's potential to facilitate self-disclosure and information-seeking. It also evaluated whether partner CMC interactions play a role in partner intimacy and communication quality. Young adults (N = 359; 18-24) attending postsecondary education institutions completed an online survey about their CMC use. To be included in the study, all participants were in established dating relationships at the time of the study and reported daily communication with their partner. CMC was linked to partners' disclosure of nonintimate information. This personal self-disclosure was linked positively to relationship intimacy and communication quality, beyond contributions from face-to-face interactions. Breadth (not depth) of self-disclosure and positively valenced interactions, in particular, proved key to understanding greater levels of intimacy in dating relationships and better communication quality as a function of CMC. CMC provides opportunities for partners to stay connected and to improve the overall quality of their intimacy and communication.

  20. Description of research interests and current work related to automating software design

    NASA Technical Reports Server (NTRS)

    Kaindl, Hermann

    1992-01-01

    Enclosed is a list of selected and recent publications. Most of these publications concern applied research in the areas of software engineering and human-computer interaction. It is felt that domain-specific knowledge plays a major role in software development. Additionally, it is believed that improvements in the general software development process (e.g., object-oriented approaches) will have to be combined with the use of large domain-specific knowledge bases.

  1. Social Engagement in Public Places: A Tale of One Robot

    DTIC Science & Technology

    2014-03-01

    study we examined a prediction of Computers Are Social Actors (CASA) framework: the more machines present human -like characteristics in a consistent...social cues to increasing levels of social cues during story-telling to human -like game-playing interaction. We found several strong aspects of...support for CASA: the robot that provides even minimal social cues (speech) is more engaging than a robot that does nothing, and the more human -like the

  2. Social Play at the Computer: Preschoolers Scaffold and Support Peers' Computer Competence.

    ERIC Educational Resources Information Center

    Freeman, Nancy K.; Somerindyke, Jennifer

    2001-01-01

    Describes preschoolers' collaboration during free play in a computer lab, focusing on the computer's contribution to active, peer-mediated learning. Discusses these observations in terms of Parten's insights on children's social play and Vygotsky's socio-cultural learning theory, noting that the children scaffolded each other's growing computer…

  3. Computational Analysis of the Interaction Energies between Amino Acid Residues of the Measles Virus Hemagglutinin and Its Receptors.

    PubMed

    Xu, Fengqi; Tanaka, Shigenori; Watanabe, Hirofumi; Shimane, Yasuhiro; Iwasawa, Misako; Ohishi, Kazue; Maruyama, Tadashi

    2018-05-03

    Measles virus (MV) causes an acute and highly devastating contagious disease in humans. Employing the crystal structures of three human receptors, signaling lymphocyte-activation molecule (SLAM), CD46, and Nectin-4, in complex with the measles virus hemagglutinin (MVH), we elucidated computationally the details of binding energies between the amino acid residues of MVH and those of the receptors with an ab initio fragment molecular orbital (FMO) method. The calculated inter-fragment interaction energies (IFIEs) revealed a number of significantly interacting amino acid residues of MVH that played essential roles in binding to the receptors. As predicted from previously reported experiments, some important amino-acid residues of MVH were shown to be common but others were specific to interactions with the three receptors. Particularly, some of the (non-polar) hydrophobic residues of MVH were found to be attractively interacting with multiple receptors, thus indicating the importance of the hydrophobic pocket for intermolecular interactions (especially in the case of Nectin-4). In contrast, the electrostatic interactions tended to be used for specific molecular recognition. Furthermore, we carried out FMO calculations for in silico experiments of amino acid mutations, finding reasonable agreements with virological experiments concerning the substitution effect of residues. Thus, the present study demonstrates that the electron-correlated FMO method is a powerful tool to search exhaustively for amino acid residues that contribute to interactions with receptor molecules. It is also applicable for designing inhibitors of MVH and engineered MVs for cancer therapy.

  4. Opponent Classification in Poker

    NASA Astrophysics Data System (ADS)

    Ahmad, Muhammad Aurangzeb; Elidrisi, Mohamed

    Modeling games has a long history in the Artificial Intelligence community. Most of the games that have been considered solved in AI are perfect information games. Imperfect information games like Poker and Bridge represent a domain where there is a great deal of uncertainty involved and additional challenges with respect to modeling the behavior of the opponent etc. Techniques developed for playing imperfect games also have many real world applications like repeated online auctions, human computer interaction, opponent modeling for military applications etc. In this paper we explore different techniques for playing poker, the core of these techniques is opponent modeling via classifying the behavior of opponent according to classes provided by domain experts. We utilize windows of full observation in the game to classify the opponent. In Poker, the behavior of an opponent is classified into four standard poker-playing styles based on a subjective function.

  5. Investigation of Dendrimer-Membrane Interactions

    NASA Astrophysics Data System (ADS)

    Mecke, Almut; Hessler, Jessica; Lee, Inhan; Banaszak Holl, Mark; Orr, Bradford; Patri, Anil K.; Baker, J. R.

    2003-03-01

    Modified Polyamidoamine (PAMAM) dendrimers show great promise as targeted drug transport agents. Current research efforts point to the possibility of dramatic improvements to conventional chemotherapy by selectively delivering a therapeutic to antigen bearing tumor cells. In order to better understand the uptake mechanism of such devices into cells we are investigating dendrimer-surface adsorption and dendrimer-membrane interactions using atomic force microscopy, light scattering and computer simulations. Model systems consisting of supported DMPC lipid bilayers have shown interesting results suggesting the shape and architecture of nano-devices play an important role for their biologic activity. We are also investigating the effect of targeted drug vehicles on cells in vitro.

  6. Fluid-structure Interaction Modeling of Aneurysmal Conditions with High and Normal Blood Pressures

    NASA Astrophysics Data System (ADS)

    Torii, Ryo; Oshima, Marie; Kobayashi, Toshio; Takagi, Kiyoshi; Tezduyar, Tayfun E.

    2006-09-01

    Hemodynamic factors like the wall shear stress play an important role in cardiovascular diseases. To investigate the influence of hemodynamic factors in blood vessels, the authors have developed a numerical fluid-structure interaction (FSI) analysis technique. The objective is to use numerical simulation as an effective tool to predict phenomena in a living human body. We applied the technique to a patient-specific arterial model, and with that we showed the effect of wall deformation on the WSS distribution. In this paper, we compute the interaction between the blood flow and the arterial wall for a patient-specific cerebral aneurysm with various hemodynamic conditions, such as hypertension. We particularly focus on the effects of hypertensive blood pressure on the interaction and the WSS, because hypertension is reported to be a risk factor in rupture of aneurysms. We also aim to show the possibility of FSI computations with hemodynamic conditions representing those risk factors in cardiovascular disease. The simulations show that the transient behavior of the interaction under hypertensive blood pressure is significantly different from the interaction under normal blood pressure. The transient behavior of the blood-flow velocity, and the resulting WSS and the mechanical stress in the aneurysmal wall, are significantly affected by hypertension. The results imply that hypertension affects the growth of an aneurysm and the damage in arterial tissues.

  7. Designing affective video games to support the social-emotional development of teenagers with autism spectrum disorders.

    PubMed

    Khandaker, Mitu

    2009-01-01

    Autism spectrum disorders (ASD) are a group of developmental neuropsychiatric disorders, comprised of three diagnostic entities - autistic disorder (AD), Asperger's disorder (AS), and Pervasive Developmental Disorder Not Otherwise Specified (including atypical autism) (PDD-NOS). A number of intervention techniques are currently used to reduce some of the associated challenges, with techniques ranging from behavioral therapy to dietary interventions and traditional counseling. This positional paper proposes the use of video games which leverage affective computing technologies as intervention in autism spectrum disorders in the context of the use of traditional play therapy with adolescents, who may feel uncomfortable engaging in traditional play with toys they may be too old for. It aims to explore the potential for greater 'social physics' made possible by affective computing technologies. This involves computationally 'recognizing' emotions in a user, often through the use of multimodal affective sensors, including facial expressions, postural shifts, and physiological signals such as heart rate, skin conductivity, and EEG signals. However, it is suggested that this should be augmented by researching the effect of social game design mechanisms on social-emotional development, particularly for those who experience difficulty with social interaction.

  8. Quantum-mechanical analysis of the energetic contributions to π stacking in nucleic acids versus rise, twist, and slide.

    PubMed

    Parker, Trent M; Hohenstein, Edward G; Parrish, Robert M; Hud, Nicholas V; Sherrill, C David

    2013-01-30

    Symmetry-adapted perturbation theory (SAPT) is applied to pairs of hydrogen-bonded nucleobases to obtain the energetic components of base stacking (electrostatic, exchange-repulsion, induction/polarization, and London dispersion interactions) and how they vary as a function of the helical parameters Rise, Twist, and Slide. Computed average values of Rise and Twist agree well with experimental data for B-form DNA from the Nucleic Acids Database, even though the model computations omitted the backbone atoms (suggesting that the backbone in B-form DNA is compatible with having the bases adopt their ideal stacking geometries). London dispersion forces are the most important attractive component in base stacking, followed by electrostatic interactions. At values of Rise typical of those in DNA (3.36 Å), the electrostatic contribution is nearly always attractive, providing further evidence for the importance of charge-penetration effects in π-π interactions (a term neglected in classical force fields). Comparison of the computed stacking energies with those from model complexes made of the "parent" nucleobases purine and 2-pyrimidone indicates that chemical substituents in DNA and RNA account for 20-40% of the base-stacking energy. A lack of correspondence between the SAPT results and experiment for Slide in RNA base-pair steps suggests that the backbone plays a larger role in determining stacking geometries in RNA than in B-form DNA. In comparisons of base-pair steps with thymine versus uracil, the thymine methyl group tends to enhance the strength of the stacking interaction through a combination of dispersion and electrosatic interactions.

  9. Predicting domain-domain interaction based on domain profiles with feature selection and support vector machines

    PubMed Central

    2010-01-01

    Background Protein-protein interaction (PPI) plays essential roles in cellular functions. The cost, time and other limitations associated with the current experimental methods have motivated the development of computational methods for predicting PPIs. As protein interactions generally occur via domains instead of the whole molecules, predicting domain-domain interaction (DDI) is an important step toward PPI prediction. Computational methods developed so far have utilized information from various sources at different levels, from primary sequences, to molecular structures, to evolutionary profiles. Results In this paper, we propose a computational method to predict DDI using support vector machines (SVMs), based on domains represented as interaction profile hidden Markov models (ipHMM) where interacting residues in domains are explicitly modeled according to the three dimensional structural information available at the Protein Data Bank (PDB). Features about the domains are extracted first as the Fisher scores derived from the ipHMM and then selected using singular value decomposition (SVD). Domain pairs are represented by concatenating their selected feature vectors, and classified by a support vector machine trained on these feature vectors. The method is tested by leave-one-out cross validation experiments with a set of interacting protein pairs adopted from the 3DID database. The prediction accuracy has shown significant improvement as compared to InterPreTS (Interaction Prediction through Tertiary Structure), an existing method for PPI prediction that also uses the sequences and complexes of known 3D structure. Conclusions We show that domain-domain interaction prediction can be significantly enhanced by exploiting information inherent in the domain profiles via feature selection based on Fisher scores, singular value decomposition and supervised learning based on support vector machines. Datasets and source code are freely available on the web at http://liao.cis.udel.edu/pub/svdsvm. Implemented in Matlab and supported on Linux and MS Windows. PMID:21034480

  10. Sig2BioPAX: Java tool for converting flat files to BioPAX Level 3 format.

    PubMed

    Webb, Ryan L; Ma'ayan, Avi

    2011-03-21

    The World Wide Web plays a critical role in enabling molecular, cell, systems and computational biologists to exchange, search, visualize, integrate, and analyze experimental data. Such efforts can be further enhanced through the development of semantic web concepts. The semantic web idea is to enable machines to understand data through the development of protocol free data exchange formats such as Resource Description Framework (RDF) and the Web Ontology Language (OWL). These standards provide formal descriptors of objects, object properties and their relationships within a specific knowledge domain. However, the overhead of converting datasets typically stored in data tables such as Excel, text or PDF into RDF or OWL formats is not trivial for non-specialists and as such produces a barrier to seamless data exchange between researchers, databases and analysis tools. This problem is particularly of importance in the field of network systems biology where biochemical interactions between genes and their protein products are abstracted to networks. For the purpose of converting biochemical interactions into the BioPAX format, which is the leading standard developed by the computational systems biology community, we developed an open-source command line tool that takes as input tabular data describing different types of molecular biochemical interactions. The tool converts such interactions into the BioPAX level 3 OWL format. We used the tool to convert several existing and new mammalian networks of protein interactions, signalling pathways, and transcriptional regulatory networks into BioPAX. Some of these networks were deposited into PathwayCommons, a repository for consolidating and organizing biochemical networks. The software tool Sig2BioPAX is a resource that enables experimental and computational systems biologists to contribute their identified networks and pathways of molecular interactions for integration and reuse with the rest of the research community.

  11. Effective Field Theory of Surface-mediated Forces in Soft Matter

    NASA Astrophysics Data System (ADS)

    Yolcu, Cem

    We propose a field theoretic formalism for describing soft surfaces modified by the presence of inclusions. Examples include particles trapped at a fluid-fluid interface, proteins attached to (or embedded in) a biological membrane, etc. We derive the energy functional for near-flat surfaces by an effective field theory approach. The two disparate length scales, particle sizes and inter-particle separations, afford the expansion parameters for controlling the accuracy of the effective theory, which is arbitrary in principle. We consider the following two surface types: (i) one where tension determines the behavior, such as a fluid-fluid interface (referred to as a film), and (ii) one where bending-elasticity dominates (referred to as a membrane). We also restrict to rigid inclusions with a circular footprint, and discuss generalizations briefly. As a result of the localized constraints imposed on the surface by the inclusions, the free energy of the system depends on their spatial arrangement, i.e. forces arise between them. Such surface-mediated interactions are believed to play an important role in the aggregation behavior of colloidal particles at interfaces and proteins on membranes. The interaction free energy consists of two parts: (i) the ground-state of the surface determined by possible deformations imposed by the particles, and (ii) the fluctuation correction. The former is analogous to classical electrostatics with the height profile of the surface playing the role of the electrostatic potential, while the latter is analogous to the Casimir effect and originates from the mere presence of constraints. We compute both interactions in truncated expansions. The efficiency of the formalism allows us to predict, with remarkable ease, quite a few orders of subleading corrections to existing results which are only valid when the inclusions are infinitely far apart. We also found that the few previous studies on finite distance corrections were incomplete. In addition to pairwise additive interactions, we compute the leading behavior of several many-body interactions, as well as subleading corrections where the leading contribution was previously calculated.

  12. Plug&Play Brain-Computer Interfaces for effective Active and Assisted Living control.

    PubMed

    Mora, Niccolò; De Munari, Ilaria; Ciampolini, Paolo; Del R Millán, José

    2017-08-01

    Brain-Computer Interfaces (BCI) rely on the interpretation of brain activity to provide people with disabilities with an alternative/augmentative interaction path. In light of this, BCI could be considered as enabling technology in many fields, including Active and Assisted Living (AAL) systems control. Interaction barriers could be removed indeed, enabling user with severe motor impairments to gain control over a wide range of AAL features. In this paper, a cost-effective BCI solution, targeted (but not limited) to AAL system control is presented. A custom hardware module is briefly reviewed, while signal processing techniques are covered in more depth. Steady-state visual evoked potentials (SSVEP) are exploited in this work as operating BCI protocol. In contrast with most common SSVEP-BCI approaches, we propose the definition of a prediction confidence indicator, which is shown to improve overall classification accuracy. The confidence indicator is derived without any subject-specific approach and is stable across users: it can thus be defined once and then shared between different persons. This allows some kind of Plug&Play interaction. Furthermore, by modelling rest/idle periods with the confidence indicator, it is possible to detect active control periods and separate them from "background activity": this is capital for real-time, self-paced operation. Finally, the indicator also allows to dynamically choose the most appropriate observation window length, improving system's responsiveness and user's comfort. Good results are achieved under such operating conditions, achieving, for instance, a false positive rate of 0.16 min -1 , which outperform current literature findings.

  13. Computational investigation of non-covalent interactions in 1-butyl 3-methylimidazolium/bis(trifluoromethylsulfonyl)imide [bmim][Tf2N] in EMD and NEMD

    NASA Astrophysics Data System (ADS)

    Blanco-Díaz, Edgar G.; Vázquez-Montelongo, Erik A.; Cisneros, G. Andrés; Castrejón-González, Edgar Omar

    2018-02-01

    Non-covalent interactions (NCIs) play a crucial role in the behavior and properties of ionic liquids (ILs). These interactions are particularly important for non-equilibrium properties such as the change in viscosity due to shearing forces (shear viscosity). Therefore, a detailed understanding of these interactions can improve our understanding of these important classes of liquids. Here, we have employed quantum mechanical energy decomposition analysis (EDA) and NCI analysis to investigate a series of representative 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([bmim][Tf2N]) ion pairs extracted from classical equilibrium and non-equilibrium molecular dynamics simulations. EDA based on symmetry-adapted perturbation theory (SAPT) for the complete monomers, as well as fragment SAPT (FSAPT), for the functional fragments has been carried out. In general, the electrostatic component comprises ≈80% of the intermolecular interaction, and significant contributions from other components (induction and dispersion) are also observed, especially for interactions involving bifurcated hydrogen bonds. The FSAPT analysis suggests that caution is warranted when employing simplified assumptions for non-bonded interactions, e.g., focusing only on hydrogen bonds between functional fragments, since this view may not provide a complete picture of the complicated interactions between the ions. In non-equilibrium molecular dynamics, the total interaction energies of some fragments have a significant qualitative change as the shear rate increases. Our results indicate that the inter-fragment interactions play a fundamental role in the viscous behavior of ILs, suggesting that the exclusive use of geometric criteria to analyze inter-molecular interactions in these systems is not sufficient to investigate shear-thinning effects.

  14. Impact of singular excessive computer game and television exposure on sleep patterns and memory performance of school-aged children.

    PubMed

    Dworak, Markus; Schierl, Thomas; Bruns, Thomas; Strüder, Heiko Klaus

    2007-11-01

    Television and computer game consumption are a powerful influence in the lives of most children. Previous evidence has supported the notion that media exposure could impair a variety of behavioral characteristics. Excessive television viewing and computer game playing have been associated with many psychiatric symptoms, especially emotional and behavioral symptoms, somatic complaints, attention problems such as hyperactivity, and family interaction problems. Nevertheless, there is insufficient knowledge about the relationship between singular excessive media consumption on sleep patterns and linked implications on children. The aim of this study was to investigate the effects of singular excessive television and computer game consumption on sleep patterns and memory performance of children. Eleven school-aged children were recruited for this polysomnographic study. Children were exposed to voluntary excessive television and computer game consumption. In the subsequent night, polysomnographic measurements were conducted to measure sleep-architecture and sleep-continuity parameters. In addition, a visual and verbal memory test was conducted before media stimulation and after the subsequent sleeping period to determine visuospatial and verbal memory performance. Only computer game playing resulted in significant reduced amounts of slow-wave sleep as well as significant declines in verbal memory performance. Prolonged sleep-onset latency and more stage 2 sleep were also detected after previous computer game consumption. No effects on rapid eye movement sleep were observed. Television viewing reduced sleep efficiency significantly but did not affect sleep patterns. The results suggest that television and computer game exposure affect children's sleep and deteriorate verbal cognitive performance, which supports the hypothesis of the negative influence of media consumption on children's sleep, learning, and memory.

  15. Energy expenditure in adolescents playing new generation computer games.

    PubMed

    Graves, Lee; Stratton, Gareth; Ridgers, N D; Cable, N T

    2008-07-01

    To compare the energy expenditure of adolescents when playing sedentary and new generation active computer games. Cross sectional comparison of four computer games. Setting Research laboratories. Six boys and five girls aged 13-15 years. Participants were fitted with a monitoring device validated to predict energy expenditure. They played four computer games for 15 minutes each. One of the games was sedentary (XBOX 360) and the other three were active (Wii Sports). Predicted energy expenditure, compared using repeated measures analysis of variance. Mean (standard deviation) predicted energy expenditure when playing Wii Sports bowling (190.6 (22.2) kl/kg/min), tennis (202.5 (31.5) kl/kg/min), and boxing (198.1 (33.9) kl/kg/min) was significantly greater than when playing sedentary games (125.5 (13.7) kl/kg/min) (P<0.001). Predicted energy expenditure was at least 65.1 (95% confidence interval 47.3 to 82.9) kl/kg/min greater when playing active rather than sedentary games. Playing new generation active computer games uses significantly more energy than playing sedentary computer games but not as much energy as playing the sport itself. The energy used when playing active Wii Sports games was not of high enough intensity to contribute towards the recommended daily amount of exercise in children.

  16. Child-Computer Interaction at the Beginner Stage of Music Learning: Effects of Reflexive Interaction on Children's Musical Improvisation.

    PubMed

    Addessi, Anna Rita; Anelli, Filomena; Benghi, Diber; Friberg, Anders

    2017-01-01

    In this article children's musical improvisation is investigated through the "reflexive interaction" paradigm. We used a particular system, the MIROR-Impro, implemented in the framework of the MIROR project (EC-FP7), which is able to reply to the child playing a keyboard by a "reflexive" output, mirroring (with repetitions and variations) her/his inputs. The study was conducted in a public primary school, with 47 children, aged 6-7. The experimental design used the convergence procedure, based on three sample groups allowing us to verify if the reflexive interaction using the MIROR-Impro is necessary and/or sufficient to improve the children's abilities to improvise. The following conditions were used as independent variables: to play only the keyboard, the keyboard with the MIROR-Impro but with not-reflexive reply, the keyboard with the MIROR-Impro with reflexive reply. As dependent variables we estimated the children's ability to improvise in solos, and in duets. Each child carried out a training program consisting of 5 weekly individual 12 min sessions. The control group played the complete package of independent variables; Experimental Group 1 played the keyboard and the keyboard with the MIROR-Impro with not-reflexive reply; Experimental Group 2 played only the keyboard with the reflexive system. One week after, the children were asked to improvise a musical piece on the keyboard alone (Solo task), and in pairs with a friend (Duet task). Three independent judges assessed the Solo and the Duet tasks by means of a grid based on the TAI-Test for Ability to Improvise rating scale. The EG2, which trained only with the reflexive system, reached the highest average results and the difference with EG1, which did not used the reflexive system, is statistically significant when the children improvise in a duet. The results indicate that in the sample of participants the reflexive interaction alone could be sufficient to increase the improvisational skills, and necessary when they improvise in duets. However, these results are in general not statistically significant. The correlation between Reflexive Interaction and the ability to improvise is statistically significant. The results are discussed on the light of the recent literature in neuroscience and music education.

  17. Greater than the sum of its parts? Modelling population contact and interaction of cultural repertoires

    PubMed Central

    Kolodny, Oren; Feldman, Marcus W.

    2017-01-01

    Evidence for interactions between populations plays a prominent role in the reconstruction of historical and prehistoric human dynamics; these interactions are usually interpreted to reflect cultural practices or demographic processes. The sharp increase in long-distance transportation of lithic material between the Middle and Upper Palaeolithic, for example, is seen as a manifestation of the cultural revolution that defined the transition between these epochs. Here, we propose that population interaction is not only a reflection of cultural change but also a potential driver of it. We explore the possible effects of inter-population migration on cultural evolution when migrating individuals possess core technological knowledge from their original population. Using a computational framework of cultural evolution that incorporates realistic aspects of human innovation processes, we show that migration can lead to a range of outcomes, including punctuated but transient increases in cultural complexity, an increase of cultural complexity to an elevated steady state and the emergence of a positive feedback loop that drives ongoing acceleration in cultural accumulation. Our findings suggest that population contact may have played a crucial role in the evolution of hominin cultures and propose explanations for observations of Palaeolithic cultural change whose interpretations have been hotly debated. PMID:28468920

  18. Computer Aided Grid Interface: An Interactive CFD Pre-Processor

    NASA Technical Reports Server (NTRS)

    Soni, Bharat K.

    1997-01-01

    NASA maintains an applications oriented computational fluid dynamics (CFD) efforts complementary to and in support of the aerodynamic-propulsion design and test activities. This is especially true at NASA/MSFC where the goal is to advance and optimize present and future liquid-fueled rocket engines. Numerical grid generation plays a significant role in the fluid flow simulations utilizing CFD. An overall goal of the current project was to develop a geometry-grid generation tool that will help engineers, scientists and CFD practitioners to analyze design problems involving complex geometries in a timely fashion. This goal is accomplished by developing the CAGI: Computer Aided Grid Interface system. The CAGI system is developed by integrating CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) geometric system output and/or Initial Graphics Exchange Specification (IGES) files (including all the NASA-IGES entities), geometry manipulations and generations associated with grid constructions, and robust grid generation methodologies. This report describes the development process of the CAGI system.

  19. Computer Aided Grid Interface: An Interactive CFD Pre-Processor

    NASA Technical Reports Server (NTRS)

    Soni, Bharat K.

    1996-01-01

    NASA maintains an applications oriented computational fluid dynamics (CFD) efforts complementary to and in support of the aerodynamic-propulsion design and test activities. This is especially true at NASA/MSFC where the goal is to advance and optimize present and future liquid-fueled rocket engines. Numerical grid generation plays a significant role in the fluid flow simulations utilizing CFD. An overall goal of the current project was to develop a geometry-grid generation tool that will help engineers, scientists and CFD practitioners to analyze design problems involving complex geometries in a timely fashion. This goal is accomplished by developing the Computer Aided Grid Interface system (CAGI). The CAGI system is developed by integrating CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) geometric system output and / or Initial Graphics Exchange Specification (IGES) files (including all the NASA-IGES entities), geometry manipulations and generations associated with grid constructions, and robust grid generation methodologies. This report describes the development process of the CAGI system.

  20. Leveraging Social Computing for Personalized Crisis Communication using Social Media.

    PubMed

    Leykin, Dmitry; Aharonson-Daniel, Limor; Lahad, Mooli

    2016-03-24

    The extensive use of social media in modern life redefines social interaction and communication. Communication plays an important role in mitigating, or exacerbating, the psychological and behavioral responses to critical incidents and disasters. As recent disasters demonstrated, people tend to converge to social media during and following emergencies. Authorities can then use this media and other computational methods to gain insights from the public, mainly to enhance situational awareness, but also to improve their communication with the public and public adherence to instructions. The current review presents a conceptual framework for studying psychological aspects of crisis and risk communication using the social media through social computing. Advanced analytical tools can be integrated in the processes and objectives of crisis communication. The availability of the computational techniques can improve communication with the public by a process of Hyper-Targeted Crisis Communication. The review suggests that using advanced computational tools for target-audience profiling and linguistic matching in social media, can facilitate more sensitive and personalized emergency communication.

  1. Structural investigation of nucleophosmin interaction with the tumor suppressor Fbw7γ.

    PubMed

    Di Matteo, A; Franceschini, M; Paiardini, A; Grottesi, A; Chiarella, S; Rocchio, S; Di Natale, C; Marasco, D; Vitagliano, L; Travaglini-Allocatelli, C; Federici, L

    2017-09-18

    Nucleophosmin (NPM1) is a multifunctional nucleolar protein implicated in ribogenesis, centrosome duplication, cell cycle control, regulation of DNA repair and apoptotic response to stress stimuli. The majority of these functions are played through the interactions with a variety of protein partners. NPM1 is frequently overexpressed in solid tumors of different histological origin. Furthermore NPM1 is the most frequently mutated protein in acute myeloid leukemia (AML) patients. Mutations map to the C-terminal domain and lead to the aberrant and stable localization of the protein in the cytoplasm of leukemic blasts. Among NPM1 protein partners, a pivotal role is played by the tumor suppressor Fbw7γ, an E3-ubiquitin ligase that degrades oncoproteins like c-MYC, cyclin E, Notch and c-jun. In AML with NPM1 mutations, Fbw7γ is degraded following its abnormal cytosolic delocalization by mutated NPM1. This mechanism also applies to other tumor suppressors and it has been suggested that it may play a key role in leukemogenesis. Here we analyse the interaction between NPM1 and Fbw7γ, by identifying the protein surfaces implicated in recognition and key aminoacids involved. Based on the results of computational methods, we propose a structural model for the interaction, which is substantiated by experimental findings on several site-directed mutants. We also extend the analysis to two other NPM1 partners (HIV Tat and CENP-W) and conclude that NPM1 uses the same molecular surface as a platform for recognizing different protein partners. We suggest that this region of NPM1 may be targeted for cancer treatment.

  2. Scoring functions for protein-protein interactions.

    PubMed

    Moal, Iain H; Moretti, Rocco; Baker, David; Fernández-Recio, Juan

    2013-12-01

    The computational evaluation of protein-protein interactions will play an important role in organising the wealth of data being generated by high-throughput initiatives. Here we discuss future applications, report recent developments and identify areas requiring further investigation. Many functions have been developed to quantify the structural and energetic properties of interacting proteins, finding use in interrelated challenges revolving around the relationship between sequence, structure and binding free energy. These include loop modelling, side-chain refinement, docking, multimer assembly, affinity prediction, affinity change upon mutation, hotspots location and interface design. Information derived from models optimised for one of these challenges can be used to benefit the others, and can be unified within the theoretical frameworks of multi-task learning and Pareto-optimal multi-objective learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Implementation of a Career Decision Game on a Time Shared Computer: An Exploration of Its Value in a Simulated Guidance Environment. Information System for Vocational Decisions.

    ERIC Educational Resources Information Center

    Roman, Richard Allan

    The Information System for Vocational Decisions (ISVD) places Boocock's (1967) Life Career Game in the core of its operating system. This paper considers the types of interaction that will be required of the system, and discusses the role that a career decision game might play in its total context. The paper takes an into-the-future look at the…

  4. A randomised controlled trial of a computerised intervention for children with social communication difficulties to support peer collaboration.

    PubMed

    Murphy, Suzanne M; Faulkner, Dorothy M; Reynolds, Laura R

    2014-11-01

    An intervention aiming to support children with social communication difficulties was tested using a randomised controlled design. Children aged 5-6 years old (n=32) were tested and selected for participation on the basis of their scores on the Test of Pragmatic Skills (TPS) and were then randomly assigned to the intervention arm or to the delayed intervention control group. Following previous research which suggested that computer technology may be particularly useful for this group of children, the intervention included a collaborative computer game which the children played with an adult. Subsequently, children's performance as they played the game with a classmate was observed. Micro-analytic observational methods were used to analyse the audio-recorded interaction of the children as they played. Pre- and post-intervention measures comprised the Test of Pragmatic Skills, children's performance on the computer game and verbal communication measures that the children used during the game. This evaluation of the intervention shows promise. At post-test, the children who had received the intervention, by comparison to the control group who had not, showed significant gains in their scores on the Test of Pragmatic Skills (p=.009, effect size r=-.42), a significant improvement in their performance on the computer game (p=.03, r=-.32) and significantly greater use of high-quality questioning during collaboration (p<.001, r=-.60). Furthermore, the children who received the intervention made significantly more positive statements about the game and about their partners (p=.02, r=-.34) suggesting that the intervention increased their confidence and enjoyment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Verbal Play as an Interactional Discourse Resource in Early Stage Alzheimer’s Disease

    PubMed Central

    Shune, Samantha; Duff, Melissa C.

    2012-01-01

    Background Verbal play, the creative and playful use of language to make puns, rhyme words, and tease, is a pervasive and enjoyable component of social communication and serves important interpersonal functions. The current study examines the use of verbal play in the communicative interactions of individuals with Alzheimer’s disease as part of a broader program of research on language-and-memory-in-use. Aims To document the frequency of verbal play in the communicative interactions of individuals with very mild Alzheimer’s disease (AD) and their familiar communication partners. To characterize the interactional forms, resources, and functions of playful episodes. Methods Using quantitative group comparisons and detailed discourse analysis, we analyzed verbal play in the interactional discourse of five participants with very mild AD and five healthy (demographically matched) comparison participants. Each participant interacted with a familiar partner while completing a collaborative referencing task, and with a researcher between task trials. Results A total of 1,098 verbal play episodes were coded. Despite being in the early stages of AD, all the AD participants used verbal play. There were no significant group differences in the frequency of verbal play episodes or in the interactional forms, resources, or functions of those playful episodes between AD and healthy comparison pair sessions. Conclusions The successful use of verbal play in the interactions of individuals with very mild AD and their partners highlights an area of preserved social communication. These findings represent an important step, both clinically and for research, in documenting the rich ways that individuals with early stage AD orchestrate interactionally meaningful communication with their partners through the use of interactional discourse resources like verbal play. This work also offers a promising clinical tool for tracking and targeting verbal play across disease progression. PMID:23129879

  6. Comparison of energy expenditure in adolescents when playing new generation and sedentary computer games: cross sectional study

    PubMed Central

    2007-01-01

    Objective To compare the energy expenditure of adolescents when playing sedentary and new generation active computer games. Design Cross sectional comparison of four computer games. Setting Research laboratories. Participants Six boys and five girls aged 13-15 years. Procedure Participants were fitted with a monitoring device validated to predict energy expenditure. They played four computer games for 15 minutes each. One of the games was sedentary (XBOX 360) and the other three were active (Wii Sports). Main outcome measure Predicted energy expenditure, compared using repeated measures analysis of variance. Results Mean (standard deviation) predicted energy expenditure when playing Wii Sports bowling (190.6 (22.2) kJ/kg/min), tennis (202.5 (31.5) kJ/kg/min), and boxing (198.1 (33.9) kJ/kg/min) was significantly greater than when playing sedentary games (125.5 (13.7) kJ/kg/min) (P<0.001). Predicted energy expenditure was at least 65.1 (95% confidence interval 47.3 to 82.9) kJ/kg/min greater when playing active rather than sedentary games. Conclusions Playing new generation active computer games uses significantly more energy than playing sedentary computer games but not as much energy as playing the sport itself. The energy used when playing active Wii Sports games was not of high enough intensity to contribute towards the recommended daily amount of exercise in children. PMID:18156227

  7. Comparison of energy expenditure in adolescents when playing new generation and sedentary computer games: cross sectional study.

    PubMed

    Graves, Lee; Stratton, Gareth; Ridgers, N D; Cable, N T

    2007-12-22

    To compare the energy expenditure of adolescents when playing sedentary and new generation active computer games. Cross sectional comparison of four computer games. Research laboratories. Six boys and five girls aged 13-15 years. Procedure Participants were fitted with a monitoring device validated to predict energy expenditure. They played four computer games for 15 minutes each. One of the games was sedentary (XBOX 360) and the other three were active (Wii Sports). Predicted energy expenditure, compared using repeated measures analysis of variance. Mean (standard deviation) predicted energy expenditure when playing Wii Sports bowling (190.6 (22.2) kJ/kg/min), tennis (202.5 (31.5) kJ/kg/min), and boxing (198.1 (33.9) kJ/kg/min) was significantly greater than when playing sedentary games (125.5 (13.7) kJ/kg/min) (P<0.001). Predicted energy expenditure was at least 65.1 (95% confidence interval 47.3 to 82.9) kJ/kg/min greater when playing active rather than sedentary games. Playing new generation active computer games uses significantly more energy than playing sedentary computer games but not as much energy as playing the sport itself. The energy used when playing active Wii Sports games was not of high enough intensity to contribute towards the recommended daily amount of exercise in children.

  8. Sky-blue emitting bridged diiridium complexes: beneficial effects of intramolecular π-π stacking.

    PubMed

    Congrave, Daniel G; Hsu, Yu-Ting; Batsanov, Andrei S; Beeby, Andrew; Bryce, Martin R

    2018-02-06

    The potential of intramolecular π-π interactions to influence the photophysical properties of diiridium complexes is an unexplored topic, and provides the motivation for the present study. A series of diarylhydrazide-bridged diiridium complexes functionalised with phenylpyridine (ppy)-based cyclometalating ligands is reported. It is shown by NMR studies in solution and single crystal X-ray analysis that intramolecular π-π interactions between the bridging and cyclometalating ligands rigidify the complexes leading to high luminescence quantum efficiencies in solution and in doped films. Fluorine substituents on the phenyl rings of the bridge promote the intramolecular π-π interactions. Notably, these non-covalent interactions are harnessed in the rational design and synthesis of the first examples of highly emissive sky-blue diiridium complexes featuring conjugated bridging ligands, for which they play a vital role in the structural and photophysical properties. Experimental results are supported by computational studies.

  9. Models of S/π interactions in protein structures: Comparison of the H2S–benzene complex with PDB data

    PubMed Central

    Ringer, Ashley L.; Senenko, Anastasia; Sherrill, C. David

    2007-01-01

    S/π interactions are prevalent in biochemistry and play an important role in protein folding and stabilization. Geometries of cysteine/aromatic interactions found in crystal structures from the Brookhaven Protein Data Bank (PDB) are analyzed and compared with the equilibrium configurations predicted by high-level quantum mechanical results for the H2S–benzene complex. A correlation is observed between the energetically favorable configurations on the quantum mechanical potential energy surface of the H2S–benzene model and the cysteine/aromatic configurations most frequently found in crystal structures of the PDB. In contrast to some previous PDB analyses, configurations with the sulfur over the aromatic ring are found to be the most important. Our results suggest that accurate quantum computations on models of noncovalent interactions may be helpful in understanding the structures of proteins and other complex systems. PMID:17766371

  10. "Prey Play": Learning about Predators and Prey through an Interactive, Role-Play Game

    ERIC Educational Resources Information Center

    Deaton, Cynthia C. M.; Dodd, Kristen; Drennon, Katherine; Nagle, Jack

    2012-01-01

    "Prey Play" is an interactive role-play activity that provides fifth-grade students with opportunities to examine predator-prey interactions. This four-part, role-play activity allows students to take on the role of a predator and prey as they reflect on the behaviors animals exhibit as they collect food and interact with one another, as well as…

  11. An Exploratory Case Study of Young Children's Interactive Play Behaviours with a Non-English Speaking Child

    ERIC Educational Resources Information Center

    Lee, Joohi; Md-Yunus, Sham'ah; Son, Won In; Meadows, Michelle

    2009-01-01

    This study is an examination of preschool-age English speaking children's interactive play behaviours with a non-English speaking child (NEC). The play types of a NEC were reported using the Parten's categories of solitary, parallel and interactive play. In addition, English-speaking children's interactive play with a NEC were reported in this…

  12. Sociocultural Influences On Undergraduate Women's Entry into a Computer Science Major

    NASA Astrophysics Data System (ADS)

    Lyon, Louise Ann

    Computer science not only displays the pattern of underrepresentation of many other science, technology, engineering, and math (STEM) fields, but has actually experienced a decline in the number of women choosing the field over the past two decades. Broken out by gender and race, the picture becomes more nuanced, with the ratio of females to males receiving bachelor's degrees in computer science higher for non-White ethnic groups than for Whites. This dissertation explores the experiences of university women differing along the axis of race, class, and culture who are considering majoring in computer science in order to highlight how well-prepared women are persuaded that they belong (or not) in the field and how the confluence of social categories plays out in their decision. This study focuses on a university seminar entitled "Women in Computer Science and Engineering" open to women concurrently enrolled in introductory programming and uses an ethnographic approach including classroom participant observation, interviews with seminar students and instructors, observations of students in other classes, and interviews with parents of students. Three stand-alone but related articles explore various aspects of the experiences of women who participated in the study using Rom Harre's positioning theory as a theoretical framework. The first article uses data from twenty-two interviews to uncover how interactions with others and patterns in society position women in relation to a computer science major, and how these women have arrived at the point of considering the major despite messages that they do not belong. The second article more deeply explores the cases of three women who vary greatly along the axes of race, class, and culture in order to uncover pattern and interaction differences for women based on their ethnic background. The final article focuses on the attitudes and expectations of the mothers of three students of contrasting ethnicities and how reported interactions between mothers and daughters either constrain or afford opportunities for the daughters to choose a computer science major.

  13. Computational models for predicting interactions with membrane transporters.

    PubMed

    Xu, Y; Shen, Q; Liu, X; Lu, J; Li, S; Luo, C; Gong, L; Luo, X; Zheng, M; Jiang, H

    2013-01-01

    Membrane transporters, including two members: ATP-binding cassette (ABC) transporters and solute carrier (SLC) transporters are proteins that play important roles to facilitate molecules into and out of cells. Consequently, these transporters can be major determinants of the therapeutic efficacy, toxicity and pharmacokinetics of a variety of drugs. Considering the time and expense of bio-experiments taking, research should be driven by evaluation of efficacy and safety. Computational methods arise to be a complementary choice. In this article, we provide an overview of the contribution that computational methods made in transporters field in the past decades. At the beginning, we present a brief introduction about the structure and function of major members of two families in transporters. In the second part, we focus on widely used computational methods in different aspects of transporters research. In the absence of a high-resolution structure of most of transporters, homology modeling is a useful tool to interpret experimental data and potentially guide experimental studies. We summarize reported homology modeling in this review. Researches in computational methods cover major members of transporters and a variety of topics including the classification of substrates and/or inhibitors, prediction of protein-ligand interactions, constitution of binding pocket, phenotype of non-synonymous single-nucleotide polymorphisms, and the conformation analysis that try to explain the mechanism of action. As an example, one of the most important transporters P-gp is elaborated to explain the differences and advantages of various computational models. In the third part, the challenges of developing computational methods to get reliable prediction, as well as the potential future directions in transporter related modeling are discussed.

  14. Identification and Characterization of Noncovalent Interactions That Drive Binding and Specificity in DD-Peptidases and β-Lactamases.

    PubMed

    Hargis, Jacqueline C; Vankayala, Sai Lakshmana; White, Justin K; Woodcock, H Lee

    2014-02-11

    Bacterial resistance to standard (i.e., β-lactam-based) antibiotics has become a global pandemic. Simultaneously, research into the underlying causes of resistance has slowed substantially, although its importance is universally recognized. Key to unraveling critical details is characterization of the noncovalent interactions that govern binding and specificity (DD-peptidases, antibiotic targets, versus β-lactamases, the evolutionarily derived enzymes that play a major role in resistance) and ultimately resistance as a whole. Herein, we describe a detailed investigation that elicits new chemical insights into these underlying intermolecular interactions. Benzylpenicillin and a novel β-lactam peptidomimetic complexed to the Stremptomyces R61 peptidase are examined using an arsenal of computational techniques: MD simulations, QM/MM calculations, charge perturbation analysis, QM/MM orbital analysis, bioinformatics, flexible receptor/flexible ligand docking, and computational ADME predictions. Several key molecular level interactions are identified that not only shed light onto fundamental resistance mechanisms, but also offer explanations for observed specificity. Specifically, an extended π-π network is elucidated that suggests antibacterial resistance has evolved, in part, due to stabilizing aromatic interactions. Additionally, interactions between the protein and peptidomimetic substrate are identified and characterized. Of particular interest is a water-mediated salt bridge between Asp217 and the positively charged N-terminus of the peptidomimetic, revealing an interaction that may significantly contribute to β-lactam specificity. Finally, interaction information is used to suggest modifications to current β-lactam compounds that should both improve binding and specificity in DD-peptidases and their physiochemical properties.

  15. Discovery of a small-molecule inhibitor of Dvl-CXXC5 interaction by computational approaches

    NASA Astrophysics Data System (ADS)

    Ma, Songling; Choi, Jiwon; Jin, Xuemei; Kim, Hyun-Yi; Yun, Ji-Hye; Lee, Weontae; Choi, Kang-Yell; No, Kyoung Tai

    2018-05-01

    The Wnt/β-catenin signaling pathway plays a significant role in the control of osteoblastogenesis and bone formation. CXXC finger protein 5 (CXXC5) has been recently identified as a negative feedback regulator of osteoblast differentiation through a specific interaction with Dishevelled (Dvl) protein. It was reported that targeting the Dvl-CXXC5 interaction could be a novel anabolic therapeutic target for osteoporosis. In this study, complex structure of Dvl PDZ domain and CXXC5 peptide was simulated with molecular dynamics (MD). Based on the structural analysis of binding modes of MD-simulated Dvl PDZ domain with CXXC5 peptide and crystal Dvl PDZ domain with synthetic peptide-ligands, we generated two different pharmacophore models and applied pharmacophore-based virtual screening to discover potent inhibitors of the Dvl-CXXC5 interaction for the anabolic therapy of osteoporosis. Analysis of 16 compounds selected by means of a virtual screening protocol yielded four compounds that effectively disrupted the Dvl-CXXC5 interaction in the fluorescence polarization assay. Potential compounds were validated by fluorescence spectroscopy and nuclear magnetic resonance. We successfully identified a highly potent inhibitor, BMD4722, which directly binds to the Dvl PDZ domain and disrupts the Dvl-CXXC5 interaction. Overall, CXXC5-Dvl PDZ domain complex based pharmacophore combined with various traditional and simple computational methods is a promising approach for the development of modulators targeting the Dvl-CXXC5 interaction, and the potent inhibitor BMD4722 could serve as a starting point to discover or design more potent and specific the Dvl-CXXC5 interaction disruptors.

  16. Discovery of a small-molecule inhibitor of Dvl-CXXC5 interaction by computational approaches.

    PubMed

    Ma, Songling; Choi, Jiwon; Jin, Xuemei; Kim, Hyun-Yi; Yun, Ji-Hye; Lee, Weontae; Choi, Kang-Yell; No, Kyoung Tai

    2018-05-01

    The Wnt/β-catenin signaling pathway plays a significant role in the control of osteoblastogenesis and bone formation. CXXC finger protein 5 (CXXC5) has been recently identified as a negative feedback regulator of osteoblast differentiation through a specific interaction with Dishevelled (Dvl) protein. It was reported that targeting the Dvl-CXXC5 interaction could be a novel anabolic therapeutic target for osteoporosis. In this study, complex structure of Dvl PDZ domain and CXXC5 peptide was simulated with molecular dynamics (MD). Based on the structural analysis of binding modes of MD-simulated Dvl PDZ domain with CXXC5 peptide and crystal Dvl PDZ domain with synthetic peptide-ligands, we generated two different pharmacophore models and applied pharmacophore-based virtual screening to discover potent inhibitors of the Dvl-CXXC5 interaction for the anabolic therapy of osteoporosis. Analysis of 16 compounds selected by means of a virtual screening protocol yielded four compounds that effectively disrupted the Dvl-CXXC5 interaction in the fluorescence polarization assay. Potential compounds were validated by fluorescence spectroscopy and nuclear magnetic resonance. We successfully identified a highly potent inhibitor, BMD4722, which directly binds to the Dvl PDZ domain and disrupts the Dvl-CXXC5 interaction. Overall, CXXC5-Dvl PDZ domain complex based pharmacophore combined with various traditional and simple computational methods is a promising approach for the development of modulators targeting the Dvl-CXXC5 interaction, and the potent inhibitor BMD4722 could serve as a starting point to discover or design more potent and specific the Dvl-CXXC5 interaction disruptors.

  17. Discovery of a small-molecule inhibitor of Dvl-CXXC5 interaction by computational approaches

    NASA Astrophysics Data System (ADS)

    Ma, Songling; Choi, Jiwon; Jin, Xuemei; Kim, Hyun-Yi; Yun, Ji-Hye; Lee, Weontae; Choi, Kang-Yell; No, Kyoung Tai

    2018-04-01

    The Wnt/β-catenin signaling pathway plays a significant role in the control of osteoblastogenesis and bone formation. CXXC finger protein 5 (CXXC5) has been recently identified as a negative feedback regulator of osteoblast differentiation through a specific interaction with Dishevelled (Dvl) protein. It was reported that targeting the Dvl-CXXC5 interaction could be a novel anabolic therapeutic target for osteoporosis. In this study, complex structure of Dvl PDZ domain and CXXC5 peptide was simulated with molecular dynamics (MD). Based on the structural analysis of binding modes of MD-simulated Dvl PDZ domain with CXXC5 peptide and crystal Dvl PDZ domain with synthetic peptide-ligands, we generated two different pharmacophore models and applied pharmacophore-based virtual screening to discover potent inhibitors of the Dvl-CXXC5 interaction for the anabolic therapy of osteoporosis. Analysis of 16 compounds selected by means of a virtual screening protocol yielded four compounds that effectively disrupted the Dvl-CXXC5 interaction in the fluorescence polarization assay. Potential compounds were validated by fluorescence spectroscopy and nuclear magnetic resonance. We successfully identified a highly potent inhibitor, BMD4722, which directly binds to the Dvl PDZ domain and disrupts the Dvl-CXXC5 interaction. Overall, CXXC5-Dvl PDZ domain complex based pharmacophore combined with various traditional and simple computational methods is a promising approach for the development of modulators targeting the Dvl-CXXC5 interaction, and the potent inhibitor BMD4722 could serve as a starting point to discover or design more potent and specific the Dvl-CXXC5 interaction disruptors.

  18. Action and language integration: from humans to cognitive robots.

    PubMed

    Borghi, Anna M; Cangelosi, Angelo

    2014-07-01

    The topic is characterized by a highly interdisciplinary approach to the issue of action and language integration. Such an approach, combining computational models and cognitive robotics experiments with neuroscience, psychology, philosophy, and linguistic approaches, can be a powerful means that can help researchers disentangle ambiguous issues, provide better and clearer definitions, and formulate clearer predictions on the links between action and language. In the introduction we briefly describe the papers and discuss the challenges they pose to future research. We identify four important phenomena the papers address and discuss in light of empirical and computational evidence: (a) the role played not only by sensorimotor and emotional information but also of natural language in conceptual representation; (b) the contextual dependency and high flexibility of the interaction between action, concepts, and language; (c) the involvement of the mirror neuron system in action and language processing; (d) the way in which the integration between action and language can be addressed by developmental robotics and Human-Robot Interaction. Copyright © 2014 Cognitive Science Society, Inc.

  19. AESOP: A Python Library for Investigating Electrostatics in Protein Interactions.

    PubMed

    Harrison, Reed E S; Mohan, Rohith R; Gorham, Ronald D; Kieslich, Chris A; Morikis, Dimitrios

    2017-05-09

    Electric fields often play a role in guiding the association of protein complexes. Such interactions can be further engineered to accelerate complex association, resulting in protein systems with increased productivity. This is especially true for enzymes where reaction rates are typically diffusion limited. To facilitate quantitative comparisons of electrostatics in protein families and to describe electrostatic contributions of individual amino acids, we previously developed a computational framework called AESOP. We now implement this computational tool in Python with increased usability and the capability of performing calculations in parallel. AESOP utilizes PDB2PQR and Adaptive Poisson-Boltzmann Solver to generate grid-based electrostatic potential files for protein structures provided by the end user. There are methods within AESOP for quantitatively comparing sets of grid-based electrostatic potentials in terms of similarity or generating ensembles of electrostatic potential files for a library of mutants to quantify the effects of perturbations in protein structure and protein-protein association. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. BIM-Sim: Interactive Simulation of Broadband Imaging Using Mie Theory

    NASA Astrophysics Data System (ADS)

    Berisha, Sebastian; van Dijk, Thomas; Bhargava, Rohit; Carney, P. Scott; Mayerich, David

    2017-02-01

    Understanding the structure of a scattered electromagnetic (EM) field is critical to improving the imaging process. Mechanisms such as diffraction, scattering, and interference affect an image, limiting the resolution and potentially introducing artifacts. Simulation and visualization of scattered fields thus plays an important role in imaging science. However, the calculation of scattered fields is extremely time-consuming on desktop systems and computationally challenging on task-parallel systems such as supercomputers and cluster systems. In addition, EM fields are high-dimensional, making them difficult to visualize. In this paper, we present a framework for interactively computing and visualizing EM fields scattered by micro and nano-particles. Our software uses graphics hardware for evaluating the field both inside and outside of these particles. We then use Monte-Carlo sampling to reconstruct and visualize the three-dimensional structure of the field, spectral profiles at individual points, the structure of the field at the surface of the particle, and the resulting image produced by an optical system.

  1. Mechanism of curcumin-induced trypsin inhibition: Computational and experimental studies

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Qing; Zhang, Hong-Mei; Kang, Yi-Jun; Gu, Yun-Lan; Cao, Jian

    2016-03-01

    In the present study, the experimental and theoretical methods were used to analyze the binding interaction of food dye, curcumin with trypsin. The results of fluorescence spectroscopic measurements indicated that curcumin binding resulted in the obviously intrinsic fluorescence quenching with the increase concentration of curcumin. This binding interaction is a spontaneous process with the estimated enthalpy and entropy changes being -15.70 kJ mol-1 and 40.25 J mol-1 K-1, respectively. Hydrogen bonds and hydrophobic forces played an important role in the complex formation between curcumin and trypsin. Moreover, curcumin could enter into the primary substrate-binding pocket and makes the activity of trypsin decrease remarkably with the increasing concentration of curcumin.

  2. Home Media and Children’s Achievement and Behavior

    PubMed Central

    Hofferth, Sandra L.

    2010-01-01

    This study provides a national picture of the time American 6–12 year olds spent playing video games, using the computer, and watching television at home in 1997 and 2003 and the association of early use with their achievement and behavior as adolescents. Girls benefited from computers more than boys and Black children’s achievement benefited more from greater computer use than did that of White children. Greater computer use in middle childhood was associated with increased achievement for White and Black girls and Black boys, but not White boys. Greater computer play was also associated with a lower risk of becoming socially isolated among girls. Computer use does not crowd out positive learning-related activities, whereas video game playing does. Consequently, increased video game play had both positive and negative associations with the achievement of girls but not boys. For boys, increased video game play was linked to increased aggressive behavior problems. PMID:20840243

  3. Assessing the effects of manual dexterity and playing computer games on catheter-wire manipulation for inexperienced operators.

    PubMed

    Alsafi, Z; Hameed, Y; Amin, P; Shamsad, S; Raja, U; Alsafi, A; Hamady, M S

    2017-09-01

    To investigate the effect of playing computer games and manual dexterity on catheter-wire manipulation in a mechanical aortic model. Medical student volunteers filled in a preprocedure questionnaire assessing their exposure to computer games. Their manual dexterity was measured using a smartphone game. They were then shown a video clip demonstrating renal artery cannulation and were asked to reproduce this. All attempts were timed. Two-tailed Student's t-test was used to compare continuous data, while Fisher's exact test was used for categorical data. Fifty students aged 18-22 years took part in the study. Forty-six completed the task at an average of 168 seconds (range 103-301 seconds). There was no significant difference in the dexterity score or time to cannulate the renal artery between male and female students. Students who played computer games for >10 hours per week had better dexterity scores than those who did not play computer games: 9.1 versus 10.2 seconds (p=0.0237). Four of 19 students who did not play computer games failed to complete the task, while all of those who played computer games regularly completed the task (p=0.0168). Playing computer games is associated with better manual dexterity and ability to complete a basic interventional radiology task for novices. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  4. Highly stretchable, transparent ionic touch panel

    NASA Astrophysics Data System (ADS)

    Kim, Chong-Chan; Lee, Hyun-Hee; Oh, Kyu Hwan; Sun, Jeong-Yun

    2016-08-01

    Because human-computer interactions are increasingly important, touch panels may require stretchability and biocompatibility in order to allow integration with the human body. However, most touch panels have been developed based on stiff and brittle electrodes. We demonstrate an ionic touch panel based on a polyacrylamide hydrogel containing lithium chloride salts. The panel is soft and stretchable, so it can sustain a large deformation. The panel can freely transmit light information because the hydrogel is transparent, with 98% transmittance for visible light. A surface-capacitive touch system was adopted to sense a touched position. The panel can be operated under more than 1000% areal strain without sacrificing its functionalities. Epidermal touch panel use on skin was demonstrated by writing words, playing a piano, and playing games.

  5. Computer Use within a Play-Based Early Years Curriculum

    ERIC Educational Resources Information Center

    Howard, Justine; Miles, Gareth E.; Rees-Davies, Laura

    2012-01-01

    Early years curricula promote learning through play and in addition emphasise the development of computer literacy. Previous research, however, has described that teachers feel unprepared to integrate Information and Communication Technology (ICT) and play. Also, whereas research has suggested that effective computer use in the early years is…

  6. Dust grain characterization — Direct measurement of light scattering

    NASA Astrophysics Data System (ADS)

    BartoÅ, P.; Pavlů, J.

    2018-01-01

    Dust grains play a key role in dusty plasma since they interact with the plasma we can use them to study plasma itself. The grains are illuminated by visible light (e.g., a laser sheet) and the situation is captured with camera. Despite of simplicity, light scattering on similar-to-wavelength sized grains is complex phenomenon. Interaction of the electromagnetic wave with material has to be computed with respect to Maxwell equations — analytic solution is nowadays available only for several selected shapes like sphere, coated sphere, or infinite cylinder. Moreover, material constants needed for computations are usually unknown. For computation result verification and material constant determination, we designed and developed a device directly measur­ing light scattering profiles. Single dust grains are trapped in the ultrasonic field (so called "acoustic levitation") and illuminated by the laser beam. Scattered light is then measured by a photodiode mounted on rotating platform. Synchronous detection is employed for a noise reduction. This setup brings several benefits against conventional methods: (1) it works in the free air, (2) the measured grain is captured for a long time, and (3) the grain could be of arbitrary shape.

  7. Live interactive computer music performance practice

    NASA Astrophysics Data System (ADS)

    Wessel, David

    2002-05-01

    A live-performance musical instrument can be assembled around current lap-top computer technology. One adds a controller such as a keyboard or other gestural input device, a sound diffusion system, some form of connectivity processor(s) providing for audio I/O and gestural controller input, and reactive real-time native signal processing software. A system consisting of a hand gesture controller; software for gesture analysis and mapping, machine listening, composition, and sound synthesis; and a controllable radiation pattern loudspeaker are described. Interactivity begins in the set up wherein the speaker-room combination is tuned with an LMS procedure. This system was designed for improvisation. It is argued that software suitable for carrying out an improvised musical dialog with another performer poses special challenges. The processes underlying the generation of musical material must be very adaptable, capable of rapid changes in musical direction. Machine listening techniques are used to help the performer adapt to new contexts. Machine learning can play an important role in the development of such systems. In the end, as with any musical instrument, human skill is essential. Practice is required not only for the development of musically appropriate human motor programs but for the adaptation of the computer-based instrument as well.

  8. A Systematic Prediction of Drug-Target Interactions Using Molecular Fingerprints and Protein Sequences.

    PubMed

    Huang, Yu-An; You, Zhu-Hong; Chen, Xing

    2018-01-01

    Drug-Target Interactions (DTI) play a crucial role in discovering new drug candidates and finding new proteins to target for drug development. Although the number of detected DTI obtained by high-throughput techniques has been increasing, the number of known DTI is still limited. On the other hand, the experimental methods for detecting the interactions among drugs and proteins are costly and inefficient. Therefore, computational approaches for predicting DTI are drawing increasing attention in recent years. In this paper, we report a novel computational model for predicting the DTI using extremely randomized trees model and protein amino acids information. More specifically, the protein sequence is represented as a Pseudo Substitution Matrix Representation (Pseudo-SMR) descriptor in which the influence of biological evolutionary information is retained. For the representation of drug molecules, a novel fingerprint feature vector is utilized to describe its substructure information. Then the DTI pair is characterized by concatenating the two vector spaces of protein sequence and drug substructure. Finally, the proposed method is explored for predicting the DTI on four benchmark datasets: Enzyme, Ion Channel, GPCRs and Nuclear Receptor. The experimental results demonstrate that this method achieves promising prediction accuracies of 89.85%, 87.87%, 82.99% and 81.67%, respectively. For further evaluation, we compared the performance of Extremely Randomized Trees model with that of the state-of-the-art Support Vector Machine classifier. And we also compared the proposed model with existing computational models, and confirmed 15 potential drug-target interactions by looking for existing databases. The experiment results show that the proposed method is feasible and promising for predicting drug-target interactions for new drug candidate screening based on sizeable features. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Development and use of behavior and social interaction software installed on Palm handheld for observation of a child's social interactions with the environment.

    PubMed

    Sarkar, Archana; Dutta, Arup; Dhingra, Usha; Dhingra, Pratibha; Verma, Priti; Juyal, Rakesh; Black, Robert E; Menon, Venugopal P; Kumar, Jitendra; Sazawal, Sunil

    2006-08-01

    In settings in developing countries, children often socialize with multiple socializing agents (peers, siblings, neighbors) apart from their parents, and thus, a measurement of a child's social interactions should be expanded beyond parental interactions. Since the environment plays a role in shaping a child's development, the measurement of child-socializing agents' interactions is important. We developed and used a computerized observational software Behavior and Social Interaction Software (BASIS) with a preloaded coding scheme installed on a handheld Palm device to record complex observations of interactions between children and socializing agents. Using BASIS, social interaction assessments were conducted on 573 preschool children for 1 h in their natural settings. Multiple screens with a set of choices in each screen were designed that included the child's location, broad activity, state, and interactions with child-socializing agents. Data were downloaded onto a computer and systematically analyzed. BASIS, installed on Palm OS (M-125), enabled the recording of the complex interactions of child-socializing agents that could not be recorded with manual forms. Thus, this tool provides an innovative and relatively accurate method for the systematic recording of social interactions in an unrestricted environment.

  10. Modal control theory and application to aircraft lateral handling qualities design

    NASA Technical Reports Server (NTRS)

    Srinathkumar, S.

    1978-01-01

    A multivariable synthesis procedure based on eigenvalue/eigenvector assignment is reviewed and is employed to develop a systematic design procedure to meet the lateral handling qualities design objectives of a fighter aircraft over a wide range of flight conditions. The closed loop modal characterization developed provides significant insight into the design process and plays a pivotal role in the synthesis of robust feedback systems. The simplicity of the synthesis algorithm yields an efficient computer aided interactive design tool for flight control system synthesis.

  11. Viewpoint Integration for Hand-Based Recognition of Social Interactions from a First-Person View.

    PubMed

    Bambach, Sven; Crandall, David J; Yu, Chen

    2015-11-01

    Wearable devices are becoming part of everyday life, from first-person cameras (GoPro, Google Glass), to smart watches (Apple Watch), to activity trackers (FitBit). These devices are often equipped with advanced sensors that gather data about the wearer and the environment. These sensors enable new ways of recognizing and analyzing the wearer's everyday personal activities, which could be used for intelligent human-computer interfaces and other applications. We explore one possible application by investigating how egocentric video data collected from head-mounted cameras can be used to recognize social activities between two interacting partners (e.g. playing chess or cards). In particular, we demonstrate that just the positions and poses of hands within the first-person view are highly informative for activity recognition, and present a computer vision approach that detects hands to automatically estimate activities. While hand pose detection is imperfect, we show that combining evidence across first-person views from the two social partners significantly improves activity recognition accuracy. This result highlights how integrating weak but complimentary sources of evidence from social partners engaged in the same task can help to recognize the nature of their interaction.

  12. Viewpoint Integration for Hand-Based Recognition of Social Interactions from a First-Person View

    PubMed Central

    Bambach, Sven; Crandall, David J.; Yu, Chen

    2016-01-01

    Wearable devices are becoming part of everyday life, from first-person cameras (GoPro, Google Glass), to smart watches (Apple Watch), to activity trackers (FitBit). These devices are often equipped with advanced sensors that gather data about the wearer and the environment. These sensors enable new ways of recognizing and analyzing the wearer’s everyday personal activities, which could be used for intelligent human-computer interfaces and other applications. We explore one possible application by investigating how egocentric video data collected from head-mounted cameras can be used to recognize social activities between two interacting partners (e.g. playing chess or cards). In particular, we demonstrate that just the positions and poses of hands within the first-person view are highly informative for activity recognition, and present a computer vision approach that detects hands to automatically estimate activities. While hand pose detection is imperfect, we show that combining evidence across first-person views from the two social partners significantly improves activity recognition accuracy. This result highlights how integrating weak but complimentary sources of evidence from social partners engaged in the same task can help to recognize the nature of their interaction. PMID:28966999

  13. Visualization of particle interactions in granular media.

    PubMed

    Meier, Holger A; Schlemmer, Michael; Wagner, Christian; Kerren, Andreas; Hagen, Hans; Kuhl, Ellen; Steinmann, Paul

    2008-01-01

    Interaction between particles in so-called granular media, such as soil and sand, plays an important role in the context of geomechanical phenomena and numerous industrial applications. A two scale homogenization approach based on a micro and a macro scale level is briefly introduced in this paper. Computation of granular material in such a way gives a deeper insight into the context of discontinuous materials and at the same time reduces the computational costs. However, the description and the understanding of the phenomena in granular materials are not yet satisfactory. A sophisticated problem-specific visualization technique would significantly help to illustrate failure phenomena on the microscopic level. As main contribution, we present a novel 2D approach for the visualization of simulation data, based on the above outlined homogenization technique. Our visualization tool supports visualization on micro scale level as well as on macro scale level. The tool shows both aspects closely arranged in form of multiple coordinated views to give users the possibility to analyze the particle behavior effectively. A novel type of interactive rose diagrams was developed to represent the dynamic contact networks on the micro scale level in a condensed and efficient way.

  14. PRMT7 Interacts with ASS1 and Citrullinemia Mutations Disrupt the Interaction.

    PubMed

    Verma, Mamta; Charles, Ramya Chandar M; Chakrapani, Baskar; Coumar, Mohane Selvaraj; Govindaraju, Gayathri; Rajavelu, Arumugam; Chavali, Sreenivas; Dhayalan, Arunkumar

    2017-07-21

    Protein arginine methyltransferase 7 (PRMT7) catalyzes the introduction of monomethylation marks at the arginine residues of substrate proteins. PRMT7 plays important roles in the regulation of gene expression, splicing, DNA damage, paternal imprinting, cancer and metastasis. However, little is known about the interaction partners of PRMT7. To address this, we performed yeast two-hybrid screening of PRMT7 and identified argininosuccinate synthetase (ASS1) as a potential interaction partner of PRMT7. We confirmed that PRMT7 directly interacts with ASS1 using pull-down studies. ASS1 catalyzes the rate-limiting step of arginine synthesis in urea cycle and citrulline-nitric oxide cycle. We mapped the interface of PRMT7-ASS1 complex through computational approaches and validated the predicted interface in vivo by site-directed mutagenesis. Evolutionary analysis revealed that the ASS1 residues important for PRMT7-ASS1 interaction have co-evolved with PRMT7. We showed that ASS1 mutations linked to type I citrullinemia disrupt the ASS1-PRMT7 interaction, which might explain the molecular pathogenesis of the disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Playing Violent Video and Computer Games and Adolescent Self-Concept.

    ERIC Educational Resources Information Center

    Funk, Jeanne B.; Buchman, Debra D.

    1996-01-01

    Documents current adolescent electronic game-playing habits, exploring associations among preference for violent games, frequency and location of play, and self-concept. Identifies marked gender differences in game-playing habits and in scores on a self-perception profile. Finds that for girls, more time playing video or computer games is…

  16. Association between playing computer games and mental and social health among male adolescents in Iran in 2014.

    PubMed

    Mohammadi, Mehrnoosh; RezaeiDehaghani, Abdollah; Mehrabi, Tayebeh; RezaeiDehaghani, Ali

    2016-01-01

    As adolescents spend much time on playing computer games, their mental and social effects should be considered. The present study aimed to investigate the association between playing computer games and the mental and social health among male adolescents in Iran in 2014. This is a cross-sectional study conducted on 210 adolescents selected by multi-stage random sampling. Data were collected by Goldberg and Hillier general health (28 items) and Kiez social health questionnaires. The association was tested by Pearson and Spearman correlation coefficients, one-way analysis of variance (ANOVA), and independent t-test. Computer games related factors such as the location, type, length, the adopted device, and mode of playing games were investigated. Results showed that 58.9% of the subjects played games on a computer alone for 1 h at home. Results also revealed that the subjects had appropriate mental health and 83.2% had moderate social health. Results showed a poor significant association between the length of games and social health (r = -0.15, P = 0.03), the type of games and mental health (r = -0.16, P = 0.01), and the device used in playing games and social health (F = 0.95, P = 0.03). The findings showed that adolescents' mental and social health is negatively associated with their playing computer games. Therefore, to promote their health, educating them about the correct way of playing computer games is essential and their parents and school authorities, including nurses working at schools, should determine its relevant factors such as the type, length, and device used in playing such games.

  17. Engineering Play: A Cultural History of Children's Software

    ERIC Educational Resources Information Center

    Ito, Mizuko

    2009-01-01

    Today, computers are part of kids' everyday lives, used both for play and for learning. We envy children's natural affinity for computers, the ease with which they click in and out of digital worlds. Thirty years ago, however, the computer belonged almost exclusively to business, the military, and academia. In "Engineering Play," Mizuko Ito…

  18. Preschool Teacher's Conceptions of Computers and Play

    ERIC Educational Resources Information Center

    Sandberg, Anette

    2002-01-01

    There are many dimensions of play and play's significance for children's development and learning is often emphasized, but how do preschool teachers see children's use of computers in preschool? A qualitative study was done with 13 Swedish preschool teachers that had experience working with computers in preschool. The overall aim of this study was…

  19. Anthropometric and Somatotype Characteristics of Young Soccer Players: Differences Among Categories, Subcategories, and Playing Position.

    PubMed

    Perroni, Fabrizio; Vetrano, Mario; Camolese, Giancarlo; Guidetti, Laura; Baldari, Carlo

    2015-08-01

    Considering that anthropometric parameters are important factors in the performance of the soccer players, the aim of this study was to explore the differences in anthropometric and somatotype characteristics of Italian young soccer players. Weight, height, body mass index, and somatotype of 112 young soccer players, grouped in Giovanissimi "A" (14 years), "B" (13 years), and "C" (12 years) as well as Allievi "B" (15 years) and "A" (16 years) and "Juniores" (older than 17 years), were evaluated. Statistical analysis tests were computed at p ≤ 0.05, and an analysis of variance for each somatotype was calculated to analyze the main effects and interactions of the factors: categories, subcategories, and playing position. Bonferroni's post hoc analysis was used to identify differences among mean values. Considering all subjects, we have found significant differences in categories, subcategories, and playing position between anthropometric values and a somatotype value of 2.8-3.8-2.9. Significant differences have found among goalkeepers and the others playing position in endomorphy (p ≤ 0.001) and with defenders and midfielders in ectomorphy (p < 0.01) components, whereas no differences in mesomorphy. Analyzing the interaction between subcategories and playing position factors, a significant effect was found only in the endomorphy component (p = 0.05). The analysis of anthropometric characteristic of Italian young soccer players indicates that players have high muscularity value and low adiposity. This study showed the presence of somatotype differences for playing position within categories also in the youngest categories and subcategories, in particular, in the endomorphy component. Young soccer players should be trained with more appropriate and specific training load to avoid the increased injury risk during adolescence.

  20. Child–Computer Interaction at the Beginner Stage of Music Learning: Effects of Reflexive Interaction on Children’s Musical Improvisation

    PubMed Central

    Addessi, Anna Rita; Anelli, Filomena; Benghi, Diber; Friberg, Anders

    2017-01-01

    In this article children’s musical improvisation is investigated through the “reflexive interaction” paradigm. We used a particular system, the MIROR-Impro, implemented in the framework of the MIROR project (EC-FP7), which is able to reply to the child playing a keyboard by a “reflexive” output, mirroring (with repetitions and variations) her/his inputs. The study was conducted in a public primary school, with 47 children, aged 6–7. The experimental design used the convergence procedure, based on three sample groups allowing us to verify if the reflexive interaction using the MIROR-Impro is necessary and/or sufficient to improve the children’s abilities to improvise. The following conditions were used as independent variables: to play only the keyboard, the keyboard with the MIROR-Impro but with not-reflexive reply, the keyboard with the MIROR-Impro with reflexive reply. As dependent variables we estimated the children’s ability to improvise in solos, and in duets. Each child carried out a training program consisting of 5 weekly individual 12 min sessions. The control group played the complete package of independent variables; Experimental Group 1 played the keyboard and the keyboard with the MIROR-Impro with not-reflexive reply; Experimental Group 2 played only the keyboard with the reflexive system. One week after, the children were asked to improvise a musical piece on the keyboard alone (Solo task), and in pairs with a friend (Duet task). Three independent judges assessed the Solo and the Duet tasks by means of a grid based on the TAI-Test for Ability to Improvise rating scale. The EG2, which trained only with the reflexive system, reached the highest average results and the difference with EG1, which did not used the reflexive system, is statistically significant when the children improvise in a duet. The results indicate that in the sample of participants the reflexive interaction alone could be sufficient to increase the improvisational skills, and necessary when they improvise in duets. However, these results are in general not statistically significant. The correlation between Reflexive Interaction and the ability to improvise is statistically significant. The results are discussed on the light of the recent literature in neuroscience and music education. PMID:28184205

  1. Examining Belief and Confidence in Schizophrenia

    PubMed Central

    Joyce, Dan W.; Averbeck, Bruno B.; Frith, Chris D.; Shergill, Sukhwinder S.

    2018-01-01

    Background People with psychoses often report fixed, delusional beliefs that are sustained even in the presence of unequivocal contrary evidence. Such delusional beliefs are the result of integrating new and old evidence inappropriately in forming a cognitive model. We propose and test a cognitive model of belief formation using experimental data from an interactive “Rock Paper Scissors” game. Methods Participants (33 controls and 27 people with schizophrenia) played a competitive, time-pressured interactive two-player game (Rock, Paper, Scissors). Participant’s behavior was modeled by a generative computational model using leaky-integrator and temporal difference methods. This model describes how new and old evidence is integrated to form both a playing strategy to beat the opponent and provide a mechanism for reporting confidence in one’s playing strategy to win against the opponent Results People with schizophrenia fail to appropriately model their opponent’s play despite consistent (rather than random) patterns that can be exploited in the simulated opponent’s play. This is manifest as a failure to weigh existing evidence appropriately against new evidence. Further, participants with schizophrenia show a ‘jumping to conclusions’ bias, reporting successful discovery of a winning strategy with insufficient evidence. Conclusions The model presented suggests two tentative mechanisms in delusional belief formation – i) one for modeling patterns in other’s behavior, where people with schizophrenia fail to use old evidence appropriately and ii) a meta-cognitive mechanism for ‘confidence’ in such beliefs where people with schizophrenia overweight recent reward history in deciding on the value of beliefs about the opponent. PMID:23521846

  2. Computations of Lifshitz-van der Waals interaction energies between irregular particles and surfaces at all separations for resuspension modelling

    NASA Astrophysics Data System (ADS)

    Priye, Aashish; Marlow, William H.

    2013-10-01

    The phenomenon of particle resuspension plays a vital role in numerous fields. Among many aspects of particle resuspension dynamics, a dominant concern is the accurate description and formulation of the van der Waals (vdW) interactions between the particle and substrate. Current models treat adhesion by incorporating a material-dependent Hamaker's constant which relies on the heuristic Hamaker's two-body interactions. However, this assumption of pairwise summation of interaction energies can lead to significant errors in condensed matter as it does not take into account the many-body interaction and retardation effects. To address these issues, an approach based on Lifshitz continuum theory of vdW interactions has been developed to calculate the principal many-body interactions between arbitrary geometries at all separation distances to a high degree of accuracy through Lifshitz's theory. We have applied this numerical implementation to calculate the many-body vdW interactions between spherical particles and surfaces with sinusoidally varying roughness profile and also to non-spherical particles (cubes, cylinders, tetrahedron etc) orientated differently with respect to the surface. Our calculations revealed that increasing the surface roughness amplitude decreases the adhesion force and non-spherical particles adhere to the surfaces more strongly when their flatter sides are oriented towards the surface. Such practical shapes and structures of particle-surface systems have not been previously considered in resuspension models and this rigorous treatment of vdW interactions provides more realistic adhesion forces between the particle and the surface which can then be coupled with computational fluid dynamics models to improve the predictive capabilities of particle resuspension dynamics.

  3. The relationship between playing computer or video games with mental health and social relationships among students in guidance schools, Kermanshah.

    PubMed

    Reshadat, S; Ghasemi, S R; Ahmadian, M; RajabiGilan, N

    2014-01-09

    Computer or video games are a popular recreational activity and playing them may constitute a large part of leisure time. This cross-sectional study aimed to evaluate the relationship between playing computer or video games with mental health and social relationships among students in guidance schools in Kermanshah, Islamic Republic of Iran, in 2012. Our total sample was 573 students and our tool was the General Health Questionnaire (GHQ-28) and social relationships questionnaires. Survey respondents reported spending an average of 71.07 (SD 72.1) min/day on computer or video games. There was a significant relationship between time spent playing games and general mental health (P < 0.04) and depression (P < 0.03). There was also a significant difference between playing and not playing computer or video games with social relationships and their subscales, including trans-local relationships (P < 0.0001) and association relationships (P < 0.01) among all participants. There was also a significant relationship between social relationships and time spent playing games (P < 0.02) and its dimensions, except for family relationships.

  4. Structural investigation of nucleophosmin interaction with the tumor suppressor Fbw7γ

    PubMed Central

    Di Matteo, A; Franceschini, M; Paiardini, A; Grottesi, A; Chiarella, S; Rocchio, S; Di Natale, C; Marasco, D; Vitagliano, L; Travaglini-Allocatelli, C; Federici, L

    2017-01-01

    Nucleophosmin (NPM1) is a multifunctional nucleolar protein implicated in ribogenesis, centrosome duplication, cell cycle control, regulation of DNA repair and apoptotic response to stress stimuli. The majority of these functions are played through the interactions with a variety of protein partners. NPM1 is frequently overexpressed in solid tumors of different histological origin. Furthermore NPM1 is the most frequently mutated protein in acute myeloid leukemia (AML) patients. Mutations map to the C-terminal domain and lead to the aberrant and stable localization of the protein in the cytoplasm of leukemic blasts. Among NPM1 protein partners, a pivotal role is played by the tumor suppressor Fbw7γ, an E3-ubiquitin ligase that degrades oncoproteins like c-MYC, cyclin E, Notch and c-jun. In AML with NPM1 mutations, Fbw7γ is degraded following its abnormal cytosolic delocalization by mutated NPM1. This mechanism also applies to other tumor suppressors and it has been suggested that it may play a key role in leukemogenesis. Here we analyse the interaction between NPM1 and Fbw7γ, by identifying the protein surfaces implicated in recognition and key aminoacids involved. Based on the results of computational methods, we propose a structural model for the interaction, which is substantiated by experimental findings on several site-directed mutants. We also extend the analysis to two other NPM1 partners (HIV Tat and CENP-W) and conclude that NPM1 uses the same molecular surface as a platform for recognizing different protein partners. We suggest that this region of NPM1 may be targeted for cancer treatment. PMID:28920929

  5. A real-time architecture for time-aware agents.

    PubMed

    Prouskas, Konstantinos-Vassileios; Pitt, Jeremy V

    2004-06-01

    This paper describes the specification and implementation of a new three-layer time-aware agent architecture. This architecture is designed for applications and environments where societies of humans and agents play equally active roles, but interact and operate in completely different time frames. The architecture consists of three layers: the April real-time run-time (ART) layer, the time aware layer (TAL), and the application agents layer (AAL). The ART layer forms the underlying real-time agent platform. An original online, real-time, dynamic priority-based scheduling algorithm is described for scheduling the computation time of agent processes, and it is shown that the algorithm's O(n) complexity and scalable performance are sufficient for application in real-time domains. The TAL layer forms an abstraction layer through which human and agent interactions are temporally unified, that is, handled in a common way irrespective of their temporal representation and scale. A novel O(n2) interaction scheduling algorithm is described for predicting and guaranteeing interactions' initiation and completion times. The time-aware predicting component of a workflow management system is also presented as an instance of the AAL layer. The described time-aware architecture addresses two key challenges in enabling agents to be effectively configured and applied in environments where humans and agents play equally active roles. It provides flexibility and adaptability in its real-time mechanisms while placing them under direct agent control, and it temporally unifies human and agent interactions.

  6. Effects of a computer-based intervention program on the communicative functions of children with autism.

    PubMed

    Hetzroni, Orit E; Tannous, Juman

    2004-04-01

    This study investigated the use of computer-based intervention for enhancing communication functions of children with autism. The software program was developed based on daily life activities in the areas of play, food, and hygiene. The following variables were investigated: delayed echolalia, immediate echolalia, irrelevant speech, relevant speech, and communicative initiations. Multiple-baseline design across settings was used to examine the effects of the exposure of five children with autism to activities in a structured and controlled simulated environment on the communication manifested in their natural environment. Results indicated that after exposure to the simulations, all children produced fewer sentences with delayed and irrelevant speech. Most of the children engaged in fewer sentences involving immediate echolalia and increased the number of communication intentions and the amount of relevant speech they produced. Results indicated that after practicing in a controlled and structured setting that provided the children with opportunities to interact in play, food, and hygiene activities, the children were able to transfer their knowledge to the natural classroom environment. Implications and future research directions are discussed.

  7. [Parallel virtual reality visualization of extreme large medical datasets].

    PubMed

    Tang, Min

    2010-04-01

    On the basis of a brief description of grid computing, the essence and critical techniques of parallel visualization of extreme large medical datasets are discussed in connection with Intranet and common-configuration computers of hospitals. In this paper are introduced several kernel techniques, including the hardware structure, software framework, load balance and virtual reality visualization. The Maximum Intensity Projection algorithm is realized in parallel using common PC cluster. In virtual reality world, three-dimensional models can be rotated, zoomed, translated and cut interactively and conveniently through the control panel built on virtual reality modeling language (VRML). Experimental results demonstrate that this method provides promising and real-time results for playing the role in of a good assistant in making clinical diagnosis.

  8. The role of correlation and solvation in ion interactions with B-DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sushko, Maria L.; Thomas, Dennis G.; Pabit, Suzette

    Ionic atmosphere around nucleic acids plays important roles in biological function. Large-scale explicit solvent simulations coupled to experimental assays such as anomalous small-angle X-ray scattering (ASAXS) can provide important insights into the structure and energetics of the ionic atmosphere but are time- and resource-intensive. In this paper, we demonstrate the use of classical density functional theory to model DNA-ion interactions and explore the balance between ion-DNA, ion-water, and ion-ion interactions. In particular, we compute the distribution of RbCl, SrCl2, and CoHexCl3 (cobalt hexammine chlo- ride) around a B-form DNA molecule. The accuracy of the DFT calculations was assessed by comparisonmore » between simulated and experimental ASAXS curves. As expected, these calculations revealed significant differences between the monovalent, divalent, and trivalent cations. About half of the DNA-bound Rb+ ions penetrate into the minor groove of the DNA and half adsorb on the DNA strands. The fraction of cations in the minor groove decreases for the larger Sr2+ ions and becomes zero for CoHex3+ ions, which all adsorb on the DNA strands. The distribution of CoHex3+ ions is mainly determined by Coulomb interactions, while ion-correlation forces play a central role in the monovalent Rb+ distribution and a combination of ion-correlation and hydration forces affect the Sr2+ distribution around DNA.« less

  9. [Molecular dynamics of immune complex of photoadduct-containing DNA with Fab-Anti-DNA antibody fragment].

    PubMed

    Akberova, N I; Zhmurov, A A; Nevzorova, T A; Litvinov, R I

    2016-01-01

    Antibodies to DNA play an important role in the pathogenesis of autoimmune diseases. The elucidation of structural mechanisms of both the antigen recognition and the interaction of anti-DNA antibodies with DNA will help to understand the role of DNA-containing immune complexes in various pathologies and can provide a basis for new treatment modalities. Moreover, the DNA-antibody complex is an analog of specific intracellular DNA-protein interactions. In this work, we used in silico molecular dynamic simulations of bimolecular complexes of the dsDNA segment containing the Fab fragment of an anti-DNA antibody to obtain the detailed thermodynamic and structural characteristics of dynamic intermolecular interactions. Using computationally modified crystal structure of the Fab-DNA complex (PDB ID: 3VW3), we studied the equilibrium molecular dynamics of the 64M-5 antibody Fab fragment associated with the dsDNA fragment containing the thymine dimer, the product of DNA photodamage. Amino acid residues that constitute paratopes and the complementary nucleotide epitopes for the Fab-DNA construct were identified. Stacking and electrostatic interactions were found to play the main role in mediating the most specific antibody-dsDNA contacts, while hydrogen bonds were less significant. These findings may shed light on the formation and properties of pathogenic anti-DNA antibodies in autoimmune diseases, such as systemic lupus erythematosus associated with skin photosensitivity and DNA photodamage.

  10. Nature apps: Waiting for the revolution.

    PubMed

    Jepson, Paul; Ladle, Richard J

    2015-12-01

    Apps are small task-orientated programs with the potential to integrate the computational and sensing capacities of smartphones with the power of cloud computing, social networking, and crowdsourcing. They have the potential to transform how humans interact with nature, cause a step change in the quantity and resolution of biodiversity data, democratize access to environmental knowledge, and reinvigorate ways of enjoying nature. To assess the extent to which this potential is being exploited in relation to nature, we conducted an automated search of the Google Play Store using 96 nature-related terms. This returned data on ~36 304 apps, of which ~6301 were nature-themed. We found that few of these fully exploit the full range of capabilities inherent in the technology and/or have successfully captured the public imagination. Such breakthroughs will only be achieved by increasing the frequency and quality of collaboration between environmental scientists, information engineers, computer scientists, and interested publics.

  11. Identification of new allosteric sites and modulators of AChE through computational and experimental tools.

    PubMed

    Roca, Carlos; Requena, Carlos; Sebastián-Pérez, Víctor; Malhotra, Sony; Radoux, Chris; Pérez, Concepción; Martinez, Ana; Antonio Páez, Juan; Blundell, Tom L; Campillo, Nuria E

    2018-12-01

    Allosteric sites on proteins are targeted for designing more selective inhibitors of enzyme activity and to discover new functions. Acetylcholinesterase (AChE), which is most widely known for the hydrolysis of the neurotransmitter acetylcholine, has a peripheral allosteric subsite responsible for amyloidosis in Alzheimer's disease through interaction with amyloid β-peptide. However, AChE plays other non-hydrolytic functions. Here, we identify and characterise using computational tools two new allosteric sites in AChE, which have allowed us to identify allosteric inhibitors by virtual screening guided by structure-based and fragment hotspot strategies. The identified compounds were also screened for in vitro inhibition of AChE and three were observed to be active. Further experimental (kinetic) and computational (molecular dynamics) studies have been performed to verify the allosteric activity. These new compounds may be valuable pharmacological tools in the study of non-cholinergic functions of AChE.

  12. Protein Aggregation and Molecular Crowding: Perspectives From Multiscale Simulations.

    PubMed

    Musiani, F; Giorgetti, A

    2017-01-01

    Cells are extremely crowded environments, thus the use of diluted salted aqueous solutions containing a single protein is too simplistic to mimic the real situation. Macromolecular crowding might affect protein structure, folding, shape, conformational stability, binding of small molecules, enzymatic activity, interactions with cognate biomolecules, and pathological aggregation. The latter phenomenon typically leads to the formation of amyloid fibrils that are linked to several lethal neurodegenerative diseases, but that can also play a functional role in certain organisms. The majority of molecular simulations performed before the last few years were conducted in diluted solutions and were restricted both in the timescales and in the system dimensions by the available computational resources. In recent years, several computational solutions were developed to get close to physiological conditions. In this review we summarize the main computational techniques used to tackle the issue of protein aggregation both in a diluted and in a crowded environment. © 2017 Elsevier Inc. All rights reserved.

  13. Relations between parents' interactive style in dyadic and triadic play and toddlers' symbolic capacity.

    PubMed

    Keren, M; Feldman, R; Namdari-Weinbaum, I; Spitzer, S; Tyano, S

    2005-10-01

    Play has a major role in the evaluation and treatment of young children referred to mental health clinicians. The present study examined parental correlates of preschoolers' symbolic play during dyadic and triadic play interactions. Boys' play contained more aggressive themes, and girls' contained more nurturing themes. Mothers displayed more caring themes during play with both sons and daughters, and fathers displayed more repair and construction themes. Mothers' and fathers' facilitative- creative interaction style in dyadic play predicted the level of the child's symbolic play. Co-parenting style marked by cooperation and autonomy predicted symbolic play during a triadic family session. Child intelligence predicted symbolic play beyond the parent's style during triadic but not dyadic interactions. The findings have implications for early intervention directed at increasing symbolic play in young children.

  14. Short-term effects of playing computer games on attention.

    PubMed

    Tahiroglu, Aysegul Yolga; Celik, Gonca Gul; Avci, Ayse; Seydaoglu, Gulsah; Uzel, Mehtap; Altunbas, Handan

    2010-05-01

    The main aim of the present study is to investigate the short-term cognitive effects of computer games in children with different psychiatric disorders and normal controls. One hundred one children are recruited for the study (aged between 9 and 12 years). All participants played a motor-racing game on the computer for 1 hour. The TBAG form of the Stroop task was administered to all participants twice, before playing and immediately after playing the game. Participants with improved posttest scores, compared to their pretest scores, used the computer on average 0.67 +/- 1.1 hr/day, while the average administered was measured at 1.6 +/- 1.4 hr/day and 1.3 +/- 0.9 hr/day computer use for participants with worse or unaltered scores, respectively. According to the regression model, male gender, younger ages, duration of daily computer use, and ADHD inattention type were found to be independent risk factors for worsened posttest scores. Time spent playing computer games can exert a short-term effect on attention as measured by the Stroop test.

  15. The challenge of big data in public health: an opportunity for visual analytics.

    PubMed

    Ola, Oluwakemi; Sedig, Kamran

    2014-01-01

    Public health (PH) data can generally be characterized as big data. The efficient and effective use of this data determines the extent to which PH stakeholders can sufficiently address societal health concerns as they engage in a variety of work activities. As stakeholders interact with data, they engage in various cognitive activities such as analytical reasoning, decision-making, interpreting, and problem solving. Performing these activities with big data is a challenge for the unaided mind as stakeholders encounter obstacles relating to the data's volume, variety, velocity, and veracity. Such being the case, computer-based information tools are needed to support PH stakeholders. Unfortunately, while existing computational tools are beneficial in addressing certain work activities, they fall short in supporting cognitive activities that involve working with large, heterogeneous, and complex bodies of data. This paper presents visual analytics (VA) tools, a nascent category of computational tools that integrate data analytics with interactive visualizations, to facilitate the performance of cognitive activities involving big data. Historically, PH has lagged behind other sectors in embracing new computational technology. In this paper, we discuss the role that VA tools can play in addressing the challenges presented by big data. In doing so, we demonstrate the potential benefit of incorporating VA tools into PH practice, in addition to highlighting the need for further systematic and focused research.

  16. The Challenge of Big Data in Public Health: An Opportunity for Visual Analytics

    PubMed Central

    Ola, Oluwakemi; Sedig, Kamran

    2014-01-01

    Public health (PH) data can generally be characterized as big data. The efficient and effective use of this data determines the extent to which PH stakeholders can sufficiently address societal health concerns as they engage in a variety of work activities. As stakeholders interact with data, they engage in various cognitive activities such as analytical reasoning, decision-making, interpreting, and problem solving. Performing these activities with big data is a challenge for the unaided mind as stakeholders encounter obstacles relating to the data’s volume, variety, velocity, and veracity. Such being the case, computer-based information tools are needed to support PH stakeholders. Unfortunately, while existing computational tools are beneficial in addressing certain work activities, they fall short in supporting cognitive activities that involve working with large, heterogeneous, and complex bodies of data. This paper presents visual analytics (VA) tools, a nascent category of computational tools that integrate data analytics with interactive visualizations, to facilitate the performance of cognitive activities involving big data. Historically, PH has lagged behind other sectors in embracing new computational technology. In this paper, we discuss the role that VA tools can play in addressing the challenges presented by big data. In doing so, we demonstrate the potential benefit of incorporating VA tools into PH practice, in addition to highlighting the need for further systematic and focused research. PMID:24678376

  17. Association between playing computer games and mental and social health among male adolescents in Iran in 2014

    PubMed Central

    Mohammadi, Mehrnoosh; RezaeiDehaghani, Abdollah; Mehrabi, Tayebeh; RezaeiDehaghani, Ali

    2016-01-01

    Background: As adolescents spend much time on playing computer games, their mental and social effects should be considered. The present study aimed to investigate the association between playing computer games and the mental and social health among male adolescents in Iran in 2014. Materials and Methods: This is a cross-sectional study conducted on 210 adolescents selected by multi-stage random sampling. Data were collected by Goldberg and Hillier general health (28 items) and Kiez social health questionnaires. The association was tested by Pearson and Spearman correlation coefficients, one-way analysis of variance (ANOVA), and independent t-test. Computer games related factors such as the location, type, length, the adopted device, and mode of playing games were investigated. Results: Results showed that 58.9% of the subjects played games on a computer alone for 1 h at home. Results also revealed that the subjects had appropriate mental health and 83.2% had moderate social health. Results showed a poor significant association between the length of games and social health (r = −0.15, P = 0.03), the type of games and mental health (r = −0.16, P = 0.01), and the device used in playing games and social health (F = 0.95, P = 0.03). Conclusions: The findings showed that adolescents’ mental and social health is negatively associated with their playing computer games. Therefore, to promote their health, educating them about the correct way of playing computer games is essential and their parents and school authorities, including nurses working at schools, should determine its relevant factors such as the type, length, and device used in playing such games. PMID:27095988

  18. Computational studies of Ras and PI3K

    NASA Technical Reports Server (NTRS)

    Ren, Lei; Cucinotta, Francis A.

    2004-01-01

    Until recently, experimental techniques in molecular cell biology have been the primary means to investigate biological risk upon space radiation. However, computational modeling provides an alternative theoretical approach, which utilizes various computational tools to simulate proteins, nucleotides, and their interactions. In this study, we are focused on using molecular mechanics (MM) and molecular dynamics (MD) to study the mechanism of protein-protein binding and to estimate the binding free energy between proteins. Ras is a key element in a variety of cell processes, and its activation of phosphoinositide 3-kinase (PI3K) is important for survival of transformed cells. Different computational approaches for this particular study are presented to calculate the solvation energies and binding free energies of H-Ras and PI3K. The goal of this study is to establish computational methods to investigate the roles of different proteins played in the cellular responses to space radiation, including modification of protein function through gene mutation, and to support the studies in molecular cell biology and theoretical kinetics models for our risk assessment project.

  19. A psychosocial comparison of computer-mediated and face-to-face language use among severely disturbed adolescents.

    PubMed

    Zimmerman, D P

    1987-01-01

    This study analyzes the content of communications among 18 severely disturbed adolescents. Interactions were recorded from two sources: computer-based "conferences" for the group, and small group face-to-face sessions which addressed similar topics. The purpose was to determine whether there are important differences in indications of psychological state, interpersonal interest, and expressive style. The research was significant, given the strong attraction of computers to many adolescents and the paucity of research on social-psychological effects of this technology. A content analysis based on a total sample of 10,224 words was performed using the Harvard IV Psychosociological Dictionary. Results indicated that computer-mediated communication was more expressive of feelings and made more frequent mention of interpersonal issues. Further, it displayed a more positive object-relations stance, was less negative in expressive style, and appeared to diminish certain traditional gender differences in group communication. These findings suggest that the computer may have an interesting adjunct role to play in reducing communication deficits commonly observed in severely disturbed adolescent clinical populations.

  20. Leveraging Social Computing for Personalized Crisis Communication using Social Media

    PubMed Central

    Leykin, Dmitry; Aharonson-Daniel, Limor; Lahad, Mooli

    2016-01-01

    Introduction: The extensive use of social media in modern life redefines social interaction and communication. Communication plays an important role in mitigating, or exacerbating, the psychological and behavioral responses to critical incidents and disasters. As recent disasters demonstrated, people tend to converge to social media during and following emergencies. Authorities can then use this media and other computational methods to gain insights from the public, mainly to enhance situational awareness, but also to improve their communication with the public and public adherence to instructions. Methods: The current review presents a conceptual framework for studying psychological aspects of crisis and risk communication using the social media through social computing. Results: Advanced analytical tools can be integrated in the processes and objectives of crisis communication. The availability of the computational techniques can improve communication with the public by a process of Hyper-Targeted Crisis Communication. Discussion: The review suggests that using advanced computational tools for target-audience profiling and linguistic matching in social media, can facilitate more sensitive and personalized emergency communication. PMID:27092290

  1. GAMMON: An Approach to the Concept of Strategy in Game-Playing Programs.

    ERIC Educational Resources Information Center

    Bushey, William Edward

    In order to investigate the use of strategies in a game-playing computer program, "Gammon," a computer program that plays Backgammon, was developed. It focuses on the play of a given strategy, as well as the process of strategy selection, and examines the concept of strategy as an integrating and driving force in the play of a game. A…

  2. Development of Computer Play Pedagogy Intervention for Children with Low Conceptual Understanding in Basic Mathematics Operation Using the Dyscalculia Feature Approach

    ERIC Educational Resources Information Center

    Mohd Syah, Nor Elleeiana; Hamzaid, Nur Azah; Murphy, Belinda Pingguan; Lim, Einly

    2016-01-01

    This study describes the development of a basic computer-based play pedagogy intervention using a dyscalculia-remedy-oriented approach such as repetition and number orientation manipulation, and the investigation of its effect on children displaying dyscalculia characteristics. This computer play was evaluated in a group of 50 seven-year-old…

  3. Oligomerization of G protein-coupled receptors: computational methods.

    PubMed

    Selent, J; Kaczor, A A

    2011-01-01

    Recent research has unveiled the complexity of mechanisms involved in G protein-coupled receptor (GPCR) functioning in which receptor dimerization/oligomerization may play an important role. Although the first high-resolution X-ray structure for a likely functional chemokine receptor dimer has been deposited in the Protein Data Bank, the interactions and mechanisms of dimer formation are not yet fully understood. In this respect, computational methods play a key role for predicting accurate GPCR complexes. This review outlines computational approaches focusing on sequence- and structure-based methodologies as well as discusses their advantages and limitations. Sequence-based approaches that search for possible protein-protein interfaces in GPCR complexes have been applied with success in several studies, but did not yield always consistent results. Structure-based methodologies are a potent complement to sequence-based approaches. For instance, protein-protein docking is a valuable method especially when guided by experimental constraints. Some disadvantages like limited receptor flexibility and non-consideration of the membrane environment have to be taken into account. Molecular dynamics simulation can overcome these drawbacks giving a detailed description of conformational changes in a native-like membrane. Successful prediction of GPCR complexes using computational approaches combined with experimental efforts may help to understand the role of dimeric/oligomeric GPCR complexes for fine-tuning receptor signaling. Moreover, since such GPCR complexes have attracted interest as potential drug target for diverse diseases, unveiling molecular determinants of dimerization/oligomerization can provide important implications for drug discovery.

  4. The Importance of Mixing Virtual and Real Information in Games

    NASA Astrophysics Data System (ADS)

    Gaonach, H.

    2014-12-01

    Educational technology is rapidly evolving, today's classrooms are replete with ipads, iphones, interactive white boards, and other Internet tools and gadgets. However we mustn't be diverted by the technology and lose the basic focus on the communication of scientific ideas to the students. What do we want to teach them? I will present new educational kits including games about active volcanoes as well as climates and climate change. These tools have been created for 8-12 year olds who play on teams. The teams use question-cards and basic geographic knowledge to move on a regular play board by answering scientific questions. In addition to learning the science, through interpreting latitudes and longitudes, children will better understand the link between Google map and the world map after such exercises! With their teacher, they will be able to play with traditional pieces but also use tablets or computers to listen to videos as well as obtain additional subject related questions and activities. In this way, the Web is an infinite extension of the regular game played on a table with physical pieces. Let's see how it works!

  5. Role of the oxyallyl substructure in the near infrared (NIR) absorption in symmetrical dye derivatives: A computational study.

    PubMed

    Prabhakar, Ch; Chaitanya, G Krishna; Sitha, Sanyasi; Bhanuprakash, K; Rao, V Jayathirtha

    2005-03-24

    It is well-known from experimental studies that the oxyallyl-substructure-based squarylium and croconium dyes absorb in the NIR region of the spectrum. Recently, another dye has been reported (J. Am. Chem. Soc. 2003, 125, 348) which contains the same basic chromophore, but the absorption is red-shifted by at least 300 nm compared to the former dyes and is observed near 1100 nm. To analyze the reasons behind the large red shift, in this work we have carried out symmetry-adapted cluster-configuration interaction (SAC-CI) studies on some of these NIR dyes which contain the oxyallyl substructure. From this study, contrary to the earlier reports, it is seen that the donor groups do not seem to play a major role in the red-shift of the absorption. On the other hand, on the basis of the results of the high-level calculations carried out here and using qualitative molecular orbital theory, it is observed that the orbital interactions play a key role in the red shift. Finally, design principles for the oxyallyl-substructure-based NIR dyes are suggested.

  6. Molecular understanding of osmosis in semipermeable membranes.

    PubMed

    Raghunathan, A V; Aluru, N R

    2006-07-14

    We investigate single-file osmosis of water through a semipermeable membrane with an uncharged, a positively and a negatively charged nanopore. Molecular dynamics simulations indicate that the osmotic flux through a negatively charged pore (J_) is higher compared to the osmotic flux in a positively charged pore (J+) followed by the osmotic flux in the uncharged pore (J(0)), i.e., J_ > J+ > J(0). The molecular mechanisms governing osmosis, steady state osmosis, and the observed osmotic flux dependence on the nanopore charge are explained by computing all the molecular interactions involved and identifying the molecular interactions that play an important role during and after osmosis. This study helps in a fundamental understanding of osmosis and in the design of advanced nanoporous membranes for various applications of osmosis.

  7. Schottky barrier at graphene/metal oxide interfaces: insight from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Cheng, Kai; Han, Nannan; Su, Yan; Zhang, Junfeng; Zhao, Jijun

    2017-02-01

    Anode materials play an important role in determining the performance of lithium ion batteries. In experiment, graphene (GR)/metal oxide (MO) composites possess excellent electrochemical properties and are promising anode materials. Here we perform density functional theory calculations to explore the interfacial interaction between GR and MO. Our result reveals generally weak physical interactions between GR and several MOs (including Cu2O, NiO). The Schottky barrier height (SBH) in these metal/semiconductor heterostructures are computed using the macroscopically averaged electrostatic potential method, and the role of interfacial dipole is discussed. The calculated SBHs below 1 eV suggest low contact resistance; thus these GR/MO composites are favorable anode materials for better lithium ion batteries.

  8. Schottky barrier at graphene/metal oxide interfaces: insight from first-principles calculations.

    PubMed

    Cheng, Kai; Han, Nannan; Su, Yan; Zhang, Junfeng; Zhao, Jijun

    2017-02-06

    Anode materials play an important role in determining the performance of lithium ion batteries. In experiment, graphene (GR)/metal oxide (MO) composites possess excellent electrochemical properties and are promising anode materials. Here we perform density functional theory calculations to explore the interfacial interaction between GR and MO. Our result reveals generally weak physical interactions between GR and several MOs (including Cu2O, NiO). The Schottky barrier height (SBH) in these metal/semiconductor heterostructures are computed using the macroscopically averaged electrostatic potential method, and the role of interfacial dipole is discussed. The calculated SBHs below 1 eV suggest low contact resistance; thus these GR/MO composites are favorable anode materials for better lithium ion batteries.

  9. How do we think machines think? An fMRI study of alleged competition with an artificial intelligence

    PubMed Central

    Chaminade, Thierry; Rosset, Delphine; Da Fonseca, David; Nazarian, Bruno; Lutcher, Ewald; Cheng, Gordon; Deruelle, Christine

    2012-01-01

    Mentalizing is defined as the inference of mental states of fellow humans, and is a particularly important skill for social interactions. Here we assessed whether activity in brain areas involved in mentalizing is specific to the processing of mental states or can be generalized to the inference of non-mental states by comparing brain responses during the interaction with an intentional and an artificial agent. Participants were scanned using fMRI during interactive rock-paper-scissors games while believing their opponent was a fellow human (Intentional agent, Int), a humanoid robot endowed with an artificial intelligence (Artificial agent, Art), or a computer playing randomly (Random agent, Rnd). Participants' subjective reports indicated that they adopted different stances against the three agents. The contrast of brain activity during interaction with the artificial and the random agents didn't yield any cluster at the threshold used, suggesting the absence of a reproducible stance when interacting with an artificial intelligence. We probed response to the artificial agent in regions of interest corresponding to clusters found in the contrast between the intentional and the random agents. In the precuneus involved in working memory, the posterior intraparietal suclus, in the control of attention and the dorsolateral prefrontal cortex, in executive functions, brain activity for Art was larger than for Rnd but lower than for Int, supporting the intrinsically engaging nature of social interactions. A similar pattern in the left premotor cortex and anterior intraparietal sulcus involved in motor resonance suggested that participants simulated human, and to a lesser extend humanoid robot actions, when playing the game. Finally, mentalizing regions, the medial prefrontal cortex and right temporoparietal junction, responded to the human only, supporting the specificity of mentalizing areas for interactions with intentional agents. PMID:22586381

  10. How do we think machines think? An fMRI study of alleged competition with an artificial intelligence.

    PubMed

    Chaminade, Thierry; Rosset, Delphine; Da Fonseca, David; Nazarian, Bruno; Lutcher, Ewald; Cheng, Gordon; Deruelle, Christine

    2012-01-01

    Mentalizing is defined as the inference of mental states of fellow humans, and is a particularly important skill for social interactions. Here we assessed whether activity in brain areas involved in mentalizing is specific to the processing of mental states or can be generalized to the inference of non-mental states by comparing brain responses during the interaction with an intentional and an artificial agent. Participants were scanned using fMRI during interactive rock-paper-scissors games while believing their opponent was a fellow human (Intentional agent, Int), a humanoid robot endowed with an artificial intelligence (Artificial agent, Art), or a computer playing randomly (Random agent, Rnd). Participants' subjective reports indicated that they adopted different stances against the three agents. The contrast of brain activity during interaction with the artificial and the random agents didn't yield any cluster at the threshold used, suggesting the absence of a reproducible stance when interacting with an artificial intelligence. We probed response to the artificial agent in regions of interest corresponding to clusters found in the contrast between the intentional and the random agents. In the precuneus involved in working memory, the posterior intraparietal suclus, in the control of attention and the dorsolateral prefrontal cortex, in executive functions, brain activity for Art was larger than for Rnd but lower than for Int, supporting the intrinsically engaging nature of social interactions. A similar pattern in the left premotor cortex and anterior intraparietal sulcus involved in motor resonance suggested that participants simulated human, and to a lesser extend humanoid robot actions, when playing the game. Finally, mentalizing regions, the medial prefrontal cortex and right temporoparietal junction, responded to the human only, supporting the specificity of mentalizing areas for interactions with intentional agents.

  11. The Effects of Computer Games on the Achievement of Basic Mathematical Skills

    ERIC Educational Resources Information Center

    Sayan, Hamiyet

    2015-01-01

    This study aims to analyze the relationship between playing computer games and learning basic mathematics skills. It shows the role computer games play in the learning and achievement of basic mathematical skills by students. Nowadays it is clear that individuals, especially young persons are very fond of computer and computer games. Since…

  12. Verbal play as a discourse resource in the social interactions of older and younger communication pairs.

    PubMed

    Shune, Samantha; Duff, Melissa Collins

    2014-01-01

    Verbal play, or the playful manipulation of elements of language, is a pervasive component of social interaction, serving important interpersonal functions. We analyzed verbal play in the interactional discourse of ten healthy younger pairs and ten healthy older pairs as they completed a collaborative referencing task. A total of 1,893 verbal play episodes were coded. While there were no group differences in verbal play frequency, age-related differences in the quality and function of these episodes emerged. While older participants engaged in more complex, extended, and reciprocal episodes that supported the social nature of communicative interactions (e.g., teasing), younger participants were more likely to engage in verbal play episodes for the purpose of successful task completion. Despite these age-related variations in the deployment of verbal play, verbal play is a robust interactional discourse resource in healthy aging, highlighting an element of human cognition that does not appear to decline with age.

  13. Verbal play as a discourse resource in the social interactions of older and younger communication pairs

    PubMed Central

    Shune, Samantha; Duff, Melissa Collins

    2014-01-01

    Verbal play, or the playful manipulation of elements of language, is a pervasive component of social interaction, serving important interpersonal functions. We analyzed verbal play in the interactional discourse of ten healthy younger pairs and ten healthy older pairs as they completed a collaborative referencing task. A total of 1,893 verbal play episodes were coded. While there were no group differences in verbal play frequency, age-related differences in the quality and function of these episodes emerged. While older participants engaged in more complex, extended, and reciprocal episodes that supported the social nature of communicative interactions (e.g., teasing), younger participants were more likely to engage in verbal play episodes for the purpose of successful task completion. Despite these age-related variations in the deployment of verbal play, verbal play is a robust interactional discourse resource in healthy aging, highlighting an element of human cognition that does not appear to decline with age. PMID:25485072

  14. A Novel Terpenoid from Elephantopus Scaber – Antibacterial Activity on Staphylococcus Aureus: A Substantiate Computational Approach

    PubMed Central

    Daisy, P.; Mathew, Salu; Suveena, S.; Rayan, Nirmala A.

    2008-01-01

    Staphylococcus aureus has gained much attention in the last decade as it is a major cause of the Urinary Tract Infection in Diabetic patients. The Extended Spectrum β-Lactamases (ESβL) producers are highly resistant to several conventional antibiotics. This limits the therapeutic options.Hence efforts are now taken to screen few medicinal plants, which are both economic and less toxic. Among the several plants screened, we have chosen the acetone extract of Elephantopus scaber from which we purified a new terpenoid for our study. Its structure was generated using CHEMSKETCH software and the activity prediction was done using PASS PREDICTION software. We have confirmed the mechanism of anti-bacterial effect of terpenoid using Computer – Aided Drug Design (CADD) with computational methods to simulate drug – receptor interactions. The Protein-Ligand interaction plays a significant role in the structural based drug designing. In this present study we have taken the Autolysin, the bacteriolytic enzyme, that digest the cell wall peptidoglycon. The autolysin and terpenoid were docked using HEX docking software and the docking score with minimum energy value of -209.54 was calculated. It infers that the terpenoid can inhibit the activity of autolysin by forming a strong atomic interaction with the active site residues. Hence the terpenoid can act as a drug for bacterial infections. Further investigations can be carried out to predict the activity of terpeniod on other targets. PMID:23675090

  15. An exploratory study on the driving method of speech synthesis based on the human eye reading imaging data

    NASA Astrophysics Data System (ADS)

    Gao, Pei-pei; Liu, Feng

    2016-10-01

    With the development of information technology and artificial intelligence, speech synthesis plays a significant role in the fields of Human-Computer Interaction Techniques. However, the main problem of current speech synthesis techniques is lacking of naturalness and expressiveness so that it is not yet close to the standard of natural language. Another problem is that the human-computer interaction based on the speech synthesis is too monotonous to realize mechanism of user subjective drive. This thesis introduces the historical development of speech synthesis and summarizes the general process of this technique. It is pointed out that prosody generation module is an important part in the process of speech synthesis. On the basis of further research, using eye activity rules when reading to control and drive prosody generation was introduced as a new human-computer interaction method to enrich the synthetic form. In this article, the present situation of speech synthesis technology is reviewed in detail. Based on the premise of eye gaze data extraction, using eye movement signal in real-time driving, a speech synthesis method which can express the real speech rhythm of the speaker is proposed. That is, when reader is watching corpora with its eyes in silent reading, capture the reading information such as the eye gaze duration per prosodic unit, and establish a hierarchical prosodic pattern of duration model to determine the duration parameters of synthesized speech. At last, after the analysis, the feasibility of the above method is verified.

  16. The VLab repository of thermodynamics and thermoelastic properties of minerals

    NASA Astrophysics Data System (ADS)

    Da Silveira, P. R.; Sarkar, K.; Wentzcovitch, R. M.; Shukla, G.; Lindemann, W.; Wu, Z.

    2015-12-01

    Thermodynamics and thermoelastic properties of minerals at planetary interior conditions are essential as input for geodynamics simulations and for interpretation of seismic tomography models. Precise experimental determination of these properties at such extreme conditions is very challenging. Therefore, ab initio calculations play an essential role in this context, but at the cost of great computational effort and memory use. Setting up a widely accessible and versatile mineral physics database can relax unnecessary repetition of such computationally intensive calculations. Access to such data facilitates transactional interaction across fields and can advance more quickly insights about deep Earth processes. Hosted by the Minnesota Supercomputing Institute, the Virtual Laboratory for Earth and Planetary Materials (VLab) was designed to develop and promote the theory of planetary materials using distributed, high-throughput quantum calculations. VLab hosts an interactive database of thermodynamics and thermoelastic properties or minerals computed by ab initio. Such properties can be obtained according to user's preference. The database is accompanied by interactive visualization tools, allowing users to repeat and build upon previously published results. Using VLab2015, we have evaluated thermoelastic properties, such as elastic coefficients (Cij), Voigt, Reuss, and Voigt-Reuss-Hill aggregate averages for bulk (K) and shear modulus (G), shear wave velocity (VS), longitudinal wave velocity (Vp), and bulk sound velocity (V0) for several important minerals. Developed web services are general and can be used for crystals of any symmetry. Results can be tabulated, plotted, or downloaded from the VLab website according to user's preference.

  17. Mother-Infant and Extra-Dyadic Interactions with a New Social Partner: Developmental Trajectories of Early Social Abilities during Play.

    PubMed

    Fadda, Roberta; Lucarelli, Loredana

    2017-01-01

    Mother-infant interactions during feeding and play are pivotal experiences in the development of infants' early social abilities (Stern, 1985, 1995; Biringen, 2000). Stern indicated distinctive characteristics of mother-infant interactions, respectively, during feeding and play, suggesting to evaluate both to better describe the complexity of such early affective and social experiences (Stern, 1996). Moreover, during the first years of life, infants acquire cognitive and social skills that allow them to interact with new social partners in extra-dyadic interactions. However, the relations between mother-child interactions and infants' social skills in extra-dyadic interactions are still unknown. We investigated longitudinally the relations between mother-child interactions during feeding and play and child's pre-verbal communicative abilities in extra-dyadic interactions during play. 20 dyads were evaluated at T 1 (infants aged between 9-22 months) and 6 months later, at T 2 . The interdyadic differences in mother-infant interactions during feeding and play were evaluated, respectively, with the "Feeding Scale" (Chatoor et al., 1997) and with the "Play Scale" (Chatoor, 2006) and the socio-communicative abilities of children with a new social partner during play were evaluated with the "Early Social Communication Scales" (Mundy et al., 2003). We distinguished the dyads into two categories: dyads with functional interactions (high dyadic reciprocity, low dyadic conflict) and dyads with dysfunctional interactions (lower dyadic reciprocity, higher dyadic conflict). At T 1 , infants belonging to dyads with dysfunctional interactions were significantly lower in "Initiating Joint Attention" and in "Responding to Joint Attention" in interaction with a new social partner compared to the infants belonging to dyads with functional interactions. At T 2 , infants belonging to dyads with dysfunctional interactions were significantly lower in "Initiating Social Interactions" with a new social partner compared to the infants belonging to dyads with functional interactions. There were significant correlations between the quality of mother-infant interactions during feeding and infants' social abilities in interaction with a stranger both at T 1 and at T 2 . This study showed a stable relation over time between mother-child interactions and child's social communicative skills in extra-dyadic interactions.

  18. Playing Computer Games Versus Better Learning.

    ERIC Educational Resources Information Center

    Din, Feng S.; Caleo, Josephine

    This study investigated whether kindergarten students who played Sony Play Station (Lightspan) computer games learned better than peers who did not play such games. Participants were 47 African-American kindergartners from two classes of an urban school in the Northeast. A pretest and posttest with control group design was used in the study. The…

  19. Simulation of Laser Cooling and Trapping in Engineering Applications

    NASA Technical Reports Server (NTRS)

    Ramirez-Serrano, Jaime; Kohel, James; Thompson, Robert; Yu, Nan; Lunblad, Nathan

    2005-01-01

    An advanced computer code is undergoing development for numerically simulating laser cooling and trapping of large numbers of atoms. The code is expected to be useful in practical engineering applications and to contribute to understanding of the roles that light, atomic collisions, background pressure, and numbers of particles play in experiments using laser-cooled and -trapped atoms. The code is based on semiclassical theories of the forces exerted on atoms by magnetic and optical fields. Whereas computer codes developed previously for the same purpose account for only a few physical mechanisms, this code incorporates many more physical mechanisms (including atomic collisions, sub-Doppler cooling mechanisms, Stark and Zeeman energy shifts, gravitation, and evanescent-wave phenomena) that affect laser-matter interactions and the cooling of atoms to submillikelvin temperatures. Moreover, whereas the prior codes can simulate the interactions of at most a few atoms with a resonant light field, the number of atoms that can be included in a simulation by the present code is limited only by computer memory. Hence, the present code represents more nearly completely the complex physics involved when using laser-cooled and -trapped atoms in engineering applications. Another advantage that the code incorporates is the possibility to analyze the interaction between cold atoms of different atomic number. Some properties that cold atoms of different atomic species have, like cross sections and the particular excited states they can occupy when interacting with each other and light fields, play important roles not yet completely understood in the new experiments that are under way in laboratories worldwide to form ultracold molecules. Other research efforts use cold atoms as holders of quantum information, and more recent developments in cavity quantum electrodynamics also use ultracold atoms to explore and expand new information-technology ideas. These experiments give a hint on the wide range of applications and technology developments that can be tackled using cold atoms and light fields. From more precise atomic clocks and gravity sensors to the development of quantum computers, there will be a need to completely understand the whole ensemble of physical mechanisms that play a role in the development of such technologies. The code also permits the study of the dynamic and steady-state operations of technologies that use cold atoms. The physical characteristics of lasers and fields can be time-controlled to give a realistic simulation of the processes involved such that the design process can determine the best control features to use. It is expected that with the features incorporated into the code it will become a tool for the useful application of ultracold atoms in engineering applications. Currently, the software is being used for the analysis and understanding of simple experiments using cold atoms, and for the design of a modular compact source of cold atoms to be used in future research and development projects. The results so far indicate that the code is a useful design instrument that shows good agreement with experimental measurements (see figure), and a Windows-based user-friendly interface is also under development.

  20. Molecular Simulations of Carbohydrates with a Fucose-Binding Burkholderia ambifaria Lectin Suggest Modulation by Surface Residues Outside the Fucose-Binding Pocket

    PubMed Central

    Dingjan, Tamir; Imberty, Anne; Pérez, Serge; Yuriev, Elizabeth; Ramsland, Paul A.

    2017-01-01

    Burkholderia ambifaria is an opportunistic respiratory pathogen belonging to the Burkholderia cepacia complex, a collection of species responsible for the rapidly fatal cepacia syndrome in cystic fibrosis patients. A fucose-binding lectin identified in the B. ambifaria genome, BambL, is able to adhere to lung tissue, and may play a role in respiratory infection. X-ray crystallography has revealed the bound complex structures for four fucosylated human blood group epitopes (blood group B, H type 1, H type 2, and Lex determinants). The present study employed computational approaches, including docking and molecular dynamics (MD), to extend the structural analysis of BambL-oligosaccharide complexes to include four additional blood group saccharides (A, Lea, Leb, and Ley) and a library of blood-group-related carbohydrates. Carbohydrate recognition is dominated by interactions with fucose via a hydrogen-bonding network involving Arg15, Glu26, Ala38, and Trp79 and a stacking interaction with Trp74. Additional hydrogen bonds to non-fucose residues are formed with Asp30, Tyr35, Thr36, and Trp74. BambL recognition is dominated by interactions with fucose, but also features interactions with other parts of the ligands that may modulate specificity or affinity. The detailed computational characterization of the BambL carbohydrate-binding site provides guidelines for the future design of lectin inhibitors. PMID:28680402

  1. Child-Mother and Child-Father Play Interaction Patterns with Preschoolers

    ERIC Educational Resources Information Center

    John, Aesha; Halliburton, Amy; Humphrey, Jeremy

    2013-01-01

    The study focused on qualitative and quantitative differences between maternal and paternal play interaction behaviours with their preschool children. Home observations of 18 child-mother and child-father play interactions were qualitatively analysed to derive interaction themes. In addition, the quality of child-mother and child-father…

  2. Validation of a 3D computational fluid-structure interaction model simulating flow through an elastic aperture.

    PubMed

    Quaini, A; Canic, S; Glowinski, R; Igo, S; Hartley, C J; Zoghbi, W; Little, S

    2012-01-10

    This work presents a validation of a fluid-structure interaction computational model simulating the flow conditions in an in vitro mock heart chamber modeling mitral valve regurgitation during the ejection phase during which the trans-valvular pressure drop and valve displacement are not as large. The mock heart chamber was developed to study the use of 2D and 3D color Doppler techniques in imaging the clinically relevant complex intra-cardiac flow events associated with mitral regurgitation. Computational models are expected to play an important role in supporting, refining, and reinforcing the emerging 3D echocardiographic applications. We have developed a 3D computational fluid-structure interaction algorithm based on a semi-implicit, monolithic method, combined with an arbitrary Lagrangian-Eulerian approach to capture the fluid domain motion. The mock regurgitant mitral valve corresponding to an elastic plate with a geometric orifice, was modeled using 3D elasticity, while the blood flow was modeled using the 3D Navier-Stokes equations for an incompressible, viscous fluid. The two are coupled via the kinematic and dynamic conditions describing the two-way coupling. The pressure, the flow rate, and orifice plate displacement were measured and compared with numerical simulation results. In-line flow meter was used to measure the flow, pressure transducers were used to measure the pressure, and a Doppler method developed by one of the authors was used to measure the axial displacement of the orifice plate. The maximum recorded difference between experiment and numerical simulation for the flow rate was 4%, the pressure 3.6%, and for the orifice displacement 15%, showing excellent agreement between the two. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. The Interactive Minority Game: a Web-based investigation of human market interactions

    NASA Astrophysics Data System (ADS)

    Laureti, Paolo; Ruch, Peter; Wakeling, Joseph; Zhang, Yi-Cheng

    2004-01-01

    The unprecedented access offered by the World Wide Web brings with it the potential to gather huge amounts of data on human activities. Here we exploit this by using a toy model of financial markets, the Minority Game (MG), to investigate human speculative trading behaviour and information capacity. Hundreds of individuals have played a total of tens of thousands of game turns against computer-controlled agents in the Web-based Interactive Minority Game. The analytical understanding of the MG permits fine-tuning of the market situations encountered, allowing for investigation of human behaviour in a variety of controlled environments. In particular, our results indicate a transition in players’ decision-making, as the markets become more difficult, between deductive behaviour making use of short-term trends in the market, and highly repetitive behaviour that ignores entirely the market history, yet outperforms random decision-making.

  4. RFDT: A Rotation Forest-based Predictor for Predicting Drug-Target Interactions Using Drug Structure and Protein Sequence Information.

    PubMed

    Wang, Lei; You, Zhu-Hong; Chen, Xing; Yan, Xin; Liu, Gang; Zhang, Wei

    2018-01-01

    Identification of interaction between drugs and target proteins plays an important role in discovering new drug candidates. However, through the experimental method to identify the drug-target interactions remain to be extremely time-consuming, expensive and challenging even nowadays. Therefore, it is urgent to develop new computational methods to predict potential drugtarget interactions (DTI). In this article, a novel computational model is developed for predicting potential drug-target interactions under the theory that each drug-target interaction pair can be represented by the structural properties from drugs and evolutionary information derived from proteins. Specifically, the protein sequences are encoded as Position-Specific Scoring Matrix (PSSM) descriptor which contains information of biological evolutionary and the drug molecules are encoded as fingerprint feature vector which represents the existence of certain functional groups or fragments. Four benchmark datasets involving enzymes, ion channels, GPCRs and nuclear receptors, are independently used for establishing predictive models with Rotation Forest (RF) model. The proposed method achieved the prediction accuracy of 91.3%, 89.1%, 84.1% and 71.1% for four datasets respectively. In order to make our method more persuasive, we compared our classifier with the state-of-theart Support Vector Machine (SVM) classifier. We also compared the proposed method with other excellent methods. Experimental results demonstrate that the proposed method is effective in the prediction of DTI, and can provide assistance for new drug research and development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Boosting compound-protein interaction prediction by deep learning.

    PubMed

    Tian, Kai; Shao, Mingyu; Wang, Yang; Guan, Jihong; Zhou, Shuigeng

    2016-11-01

    The identification of interactions between compounds and proteins plays an important role in network pharmacology and drug discovery. However, experimentally identifying compound-protein interactions (CPIs) is generally expensive and time-consuming, computational approaches are thus introduced. Among these, machine-learning based methods have achieved a considerable success. However, due to the nonlinear and imbalanced nature of biological data, many machine learning approaches have their own limitations. Recently, deep learning techniques show advantages over many state-of-the-art machine learning methods in some applications. In this study, we aim at improving the performance of CPI prediction based on deep learning, and propose a method called DL-CPI (the abbreviation of Deep Learning for Compound-Protein Interactions prediction), which employs deep neural network (DNN) to effectively learn the representations of compound-protein pairs. Extensive experiments show that DL-CPI can learn useful features of compound-protein pairs by a layerwise abstraction, and thus achieves better prediction performance than existing methods on both balanced and imbalanced datasets. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Interactions of carbon dioxide with model organic molecules: A comparative theoretical study

    NASA Astrophysics Data System (ADS)

    Trung, Nguyen Tien; Nguyen, Minh Tho

    2013-08-01

    Interaction energies obtained using CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ computations including both ZPE and BSSE corrections range from -2.9 to -14.2 kJ mol-1. While formic acid forms the most stable complex with CO2, formaldehyde yields the least stable complex. Lewis acid-base interaction such as C-N⋯C(CO2), Cdbnd O⋯C(CO2), which overcomes C-H⋯O blue-shifting hydrogen bond, plays a significant role in stabilizing most complexes. However, the strength of (HCOOH, CO2) is mainly determined by O-H⋯O red-shifting hydrogen bond. The C-H⋯O blue-shifting hydrogen bond is revealed upon complexation of CH3OH, HCHO, HCOOH, CH3COCH3 and HCOOCH3 with CO2. Remarkably, existence of weak hydrogen bonded C-H⋯O interaction is not found in the (CH3OCH3, CO2) and (CH3NH2, CO2) pairs.

  7. Plasmon-modulated bistable four-wave mixing signals from a metal nanoparticle-monolayer MoS2 nanoresonator hybrid system

    NASA Astrophysics Data System (ADS)

    Li, Jian-Bo; Tan, Xiao-Long; Ma, Jin-Hong; Xu, Si-Qin; Kuang, Zhi-Wei; Liang, Shan; Xiao, Si; He, Meng-Dong; Kim, Nam-Chol; Luo, Jian-Hua; Chen, Li-Qun

    2018-06-01

    We present a study for the impact of exciton-phonon and exciton-plasmon interactions on bistable four-wave mixing (FWM) signals in a metal nanoparticle (MNP)-monolayer MoS2 nanoresonator hybrid system. Via tracing the FWM response we predict that, depending on the excitation conditions and the system parameters, such a system exhibits ‘U-shaped’ bistable FWM signals. We also map out bistability phase diagrams within the system’s parameter space. Especially, we show that compared with the exciton-phonon interaction, a strong exciton-plasmon interaction plays a dominant role in the generation of optical bistability, and the bistable region will be greatly broadened by shortening the distance between the MNP and the monolayer MoS2 nanoresonator. In the weak exciton-plasmon coupling regime, the impact of exciton-phonon interaction on optical bistability will become obvious. The scheme proposed may be used for building optical switches and logic-gate devices for optical computing and quantum information processing.

  8. PyMercury: Interactive Python for the Mercury Monte Carlo Particle Transport Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iandola, F N; O'Brien, M J; Procassini, R J

    2010-11-29

    Monte Carlo particle transport applications are often written in low-level languages (C/C++) for optimal performance on clusters and supercomputers. However, this development approach often sacrifices straightforward usability and testing in the interest of fast application performance. To improve usability, some high-performance computing applications employ mixed-language programming with high-level and low-level languages. In this study, we consider the benefits of incorporating an interactive Python interface into a Monte Carlo application. With PyMercury, a new Python extension to the Mercury general-purpose Monte Carlo particle transport code, we improve application usability without diminishing performance. In two case studies, we illustrate how PyMercury improvesmore » usability and simplifies testing and validation in a Monte Carlo application. In short, PyMercury demonstrates the value of interactive Python for Monte Carlo particle transport applications. In the future, we expect interactive Python to play an increasingly significant role in Monte Carlo usage and testing.« less

  9. Molecular insights into the binding of phosphoinositides to the TH domain region of TIPE proteins.

    PubMed

    Antony, Priya; Baby, Bincy; Vijayan, Ranjit

    2016-11-01

    Phosphatidylinositols and their phosphorylated derivatives, phosphoinositides, play a central role in regulating diverse cellular functions. These phospholipids have been shown to interact with the hydrophobic TH domain of the tumor necrosis factor (TNF)-α-induced protein 8 (TIPE) family of proteins. However, the precise mechanism of interaction of these lipids is unclear. Here we report the binding mode and interactions of these phospholipids in the TH domain, as elucidated using molecular docking and simulations. Results indicate that phosphoinositides bind to the TH domain in a similar way by inserting their lipid tails in the hydrophobic cavity. The exposed head group is stabilized by interactions with critical positively charged residues on the surface of these proteins. Further MD simulations confirmed the dynamic stability of these lipids in the TH domain. This computational analysis thus provides insight into the binding mode of phospholipids in the TH domain of the TIPE family of proteins. Graphical abstract A phosphoinositide (phosphatidylinositol 4-phosphate; PtdIns4P) docked to TIPE2.

  10. Plasmon-modulated bistable four-wave mixing signals from a metal nanoparticle-monolayer MoS2 nanoresonator hybrid system.

    PubMed

    Li, Jian-Bo; Tan, Xiao-Long; Ma, Jin-Hong; Xu, Si-Qin; Kuang, Zhi-Wei; Liang, Shan; Xiao, Si; He, Meng-Dong; Kim, Nam-Chol; Luo, Jian-Hua; Chen, Li-Qun

    2018-06-22

    We present a study for the impact of exciton-phonon and exciton-plasmon interactions on bistable four-wave mixing (FWM) signals in a metal nanoparticle (MNP)-monolayer MoS 2 nanoresonator hybrid system. Via tracing the FWM response we predict that, depending on the excitation conditions and the system parameters, such a system exhibits 'U-shaped' bistable FWM signals. We also map out bistability phase diagrams within the system's parameter space. Especially, we show that compared with the exciton-phonon interaction, a strong exciton-plasmon interaction plays a dominant role in the generation of optical bistability, and the bistable region will be greatly broadened by shortening the distance between the MNP and the monolayer MoS 2 nanoresonator. In the weak exciton-plasmon coupling regime, the impact of exciton-phonon interaction on optical bistability will become obvious. The scheme proposed may be used for building optical switches and logic-gate devices for optical computing and quantum information processing.

  11. Sharp Interface Tracking in Rotating Microflows of Solvent Extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glimm, James; Almeida, Valmor de; Jiao, Xiangmin

    2013-01-08

    The objective of this project is to develop a specialized sharp interface tracking simulation capability for predicting interaction of micron-sized drops and bubbles in rotating flows relevant to optimized design of contactor devices used in solvent extraction processes of spent nuclear fuel reprocessing. The primary outcomes of this project include the capability to resolve drops and bubbles micro-hydrodynamics in solvent extraction contactors, determining from first principles continuum fluid mechanics how micro-drops and bubbles interact with each other and the surrounding shearing fluid for realistic flows. In the near term, this effort will play a central role in providing parameters andmore » insight into the flow dynamics of models that average over coarser scales, say at the millimeter unit length. In the longer term, it will prove to be the platform to conduct full-device, detailed simulations as parallel computing power reaches the exaflop level. The team will develop an accurate simulation tool for flows containing interacting droplets and bubbles with sharp interfaces under conditions that mimic those found in realistic contactor operations. The main objective is to create an off-line simulation capability to model drop and bubble interactions in a domain representative of the averaged length scale. The technical approach is to combine robust interface tracking software, subgrid modeling, validation quality experiments, powerful computational hardware, and a team with simulation modeling, physical modeling and technology integration experience. Simulations will then fully resolve the microflow of drops and bubbles at the microsecond time scale. This approach is computationally intensive but very accurate in treating important coupled physical phenomena in the vicinity of interfaces. The method makes it possible to resolve spatial scales smaller than the typical distance between bubbles and to model some non-equilibrium thermodynamic features such as finite critical tension in cavitating liquids« less

  12. Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies.

    PubMed

    Kührová, Petra; Best, Robert B; Bottaro, Sandro; Bussi, Giovanni; Šponer, Jiří; Otyepka, Michal; Banáš, Pavel

    2016-09-13

    The computer-aided folding of biomolecules, particularly RNAs, is one of the most difficult challenges in computational structural biology. RNA tetraloops are fundamental RNA motifs playing key roles in RNA folding and RNA-RNA and RNA-protein interactions. Although state-of-the-art Molecular Dynamics (MD) force fields correctly describe the native state of these tetraloops as a stable free-energy basin on the microsecond time scale, enhanced sampling techniques reveal that the native state is not the global free energy minimum, suggesting yet unidentified significant imbalances in the force fields. Here, we tested our ability to fold the RNA tetraloops in various force fields and simulation settings. We employed three different enhanced sampling techniques, namely, temperature replica exchange MD (T-REMD), replica exchange with solute tempering (REST2), and well-tempered metadynamics (WT-MetaD). We aimed to separate problems caused by limited sampling from those due to force-field inaccuracies. We found that none of the contemporary force fields is able to correctly describe folding of the 5'-GAGA-3' tetraloop over a range of simulation conditions. We thus aimed to identify which terms of the force field are responsible for this poor description of TL folding. We showed that at least two different imbalances contribute to this behavior, namely, overstabilization of base-phosphate and/or sugar-phosphate interactions and underestimated stability of the hydrogen bonding interaction in base pairing. The first artifact stabilizes the unfolded ensemble, while the second one destabilizes the folded state. The former problem might be partially alleviated by reparametrization of the van der Waals parameters of the phosphate oxygens suggested by Case et al., while in order to overcome the latter effect we suggest local potentials to better capture hydrogen bonding interactions.

  13. Automatic prediction of facial trait judgments: appearance vs. structural models.

    PubMed

    Rojas, Mario; Masip, David; Todorov, Alexander; Vitria, Jordi

    2011-01-01

    Evaluating other individuals with respect to personality characteristics plays a crucial role in human relations and it is the focus of attention for research in diverse fields such as psychology and interactive computer systems. In psychology, face perception has been recognized as a key component of this evaluation system. Multiple studies suggest that observers use face information to infer personality characteristics. Interactive computer systems are trying to take advantage of these findings and apply them to increase the natural aspect of interaction and to improve the performance of interactive computer systems. Here, we experimentally test whether the automatic prediction of facial trait judgments (e.g. dominance) can be made by using the full appearance information of the face and whether a reduced representation of its structure is sufficient. We evaluate two separate approaches: a holistic representation model using the facial appearance information and a structural model constructed from the relations among facial salient points. State of the art machine learning methods are applied to a) derive a facial trait judgment model from training data and b) predict a facial trait value for any face. Furthermore, we address the issue of whether there are specific structural relations among facial points that predict perception of facial traits. Experimental results over a set of labeled data (9 different trait evaluations) and classification rules (4 rules) suggest that a) prediction of perception of facial traits is learnable by both holistic and structural approaches; b) the most reliable prediction of facial trait judgments is obtained by certain type of holistic descriptions of the face appearance; and c) for some traits such as attractiveness and extroversion, there are relationships between specific structural features and social perceptions.

  14. Computational modeling identifies key gene regulatory interactions underlying phenobarbital-mediated tumor promotion

    PubMed Central

    Luisier, Raphaëlle; Unterberger, Elif B.; Goodman, Jay I.; Schwarz, Michael; Moggs, Jonathan; Terranova, Rémi; van Nimwegen, Erik

    2014-01-01

    Gene regulatory interactions underlying the early stages of non-genotoxic carcinogenesis are poorly understood. Here, we have identified key candidate regulators of phenobarbital (PB)-mediated mouse liver tumorigenesis, a well-characterized model of non-genotoxic carcinogenesis, by applying a new computational modeling approach to a comprehensive collection of in vivo gene expression studies. We have combined our previously developed motif activity response analysis (MARA), which models gene expression patterns in terms of computationally predicted transcription factor binding sites with singular value decomposition (SVD) of the inferred motif activities, to disentangle the roles that different transcriptional regulators play in specific biological pathways of tumor promotion. Furthermore, transgenic mouse models enabled us to identify which of these regulatory activities was downstream of constitutive androstane receptor and β-catenin signaling, both crucial components of PB-mediated liver tumorigenesis. We propose novel roles for E2F and ZFP161 in PB-mediated hepatocyte proliferation and suggest that PB-mediated suppression of ESR1 activity contributes to the development of a tumor-prone environment. Our study shows that combining MARA with SVD allows for automated identification of independent transcription regulatory programs within a complex in vivo tissue environment and provides novel mechanistic insights into PB-mediated hepatocarcinogenesis. PMID:24464994

  15. Quantum algorithms for quantum field theories.

    PubMed

    Jordan, Stephen P; Lee, Keith S M; Preskill, John

    2012-06-01

    Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (φ(4) theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm.

  16. In Silico Analysis for the Study of Botulinum Toxin Structure

    NASA Astrophysics Data System (ADS)

    Suzuki, Tomonori; Miyazaki, Satoru

    2010-01-01

    Protein-protein interactions play many important roles in biological function. Knowledge of protein-protein complex structure is required for understanding the function. The determination of protein-protein complex structure by experimental studies remains difficult, therefore computational prediction of protein structures by structure modeling and docking studies is valuable method. In addition, MD simulation is also one of the most popular methods for protein structure modeling and characteristics. Here, we attempt to predict protein-protein complex structure and property using some of bioinformatic methods, and we focus botulinum toxin complex as target structure.

  17. Content and cultural validity in the development of the Indigenous Play Partner Scale.

    PubMed

    Dender, Alma M; Stagnitti, Karen E

    2017-08-01

    Culturally relevant assessments of Australian Indigenous children's social pretend play do not exist. This study investigated the content validity and cultural validity of the Indigenous Play Partner Scale (I-PPS). Six pairs of children (i.e. 12 children) aged four-six years from a remote Australian town were videoed playing in pairs, and 14 community elders and mothers participated across three focus groups. The social interactions between the children were transcribed from the videos. Nineteen verbs, grouped into five categories of social interaction, described the social interactions between the pairs of children. The descriptions of the social interaction verbs were presented to the community elders and mothers in a focus group. The themes from the focus groups were 'background of Indigenous understanding of play' and 'proposed social interaction verbs'. The first theme reflected community collaboration, children playing in multi-aged groups and the role of older children within the play. Guided by the focus group discussion, the videos were re-analysed and 20 social interaction verbs were described that reflected the cultural context of play. The content and cultural validity of the I-PPS was established through community consultation. Twenty social interaction verbs, which form the basis of the items of the I-PPS, reflected Indigenous cultural values of being non-judgemental of Indigenous children's social interactions during pretend play. Culturally relevant assessments for Australian Indigenous children do not disadvantage this population group and are essential for practice in occupational therapy. © 2017 Occupational Therapy Australia.

  18. Preschool Peer Interactions and Readiness To Learn: Relationships between Classroom Peer Play and Learning Behaviors and Conduct.

    ERIC Educational Resources Information Center

    Coolahan, Kathleen; Fantuzzo, John; Mendez, Julia; McDermott, Paul

    2000-01-01

    Examines whether low-income preschool children's peer play interactions relate to learning behaviors and problem behaviors, and differ according to age and gender. Positive interactive play behavior was associated with active engagement in classroom learning activities, whereas disconnection in play related to inattention, passivity, and lack of…

  19. Protein Hydration Thermodynamics: The Influence of Flexibility and Salt on Hydrophobin II Hydration.

    PubMed

    Remsing, Richard C; Xi, Erte; Patel, Amish J

    2018-04-05

    The solubility of proteins and other macromolecular solutes plays an important role in numerous biological, chemical, and medicinal processes. An important determinant of protein solubility is the solvation free energy of the protein, which quantifies the overall strength of the interactions between the protein and the aqueous solution that surrounds it. Here we present an all-atom explicit-solvent computational framework for the rapid estimation of protein solvation free energies. Using this framework, we estimate the hydration free energy of hydrophobin II, an amphiphilic fungal protein, in a computationally efficient manner. We further explore how the protein hydration free energy is influenced by enhancing flexibility and by the addition of sodium chloride, and find that it increases in both cases, making protein hydration less favorable.

  20. Social Gaming and Learning Applications: A Driving Force for the Future of Virtual and Augmented Reality?

    NASA Astrophysics Data System (ADS)

    Dörner, Ralf; Lok, Benjamin; Broll, Wolfgang

    Backed by a large consumer market, entertainment and education applications have spurred developments in the fields of real-time rendering and interactive computer graphics. Relying on Computer Graphics methodologies, Virtual Reality and Augmented Reality benefited indirectly from this; however, there is no large scale demand for VR and AR in gaming and learning. What are the shortcomings of current VR/AR technology that prevent a widespread use in these application areas? What advances in VR/AR will be necessary? And what might future “VR-enhanced” gaming and learning look like? Which role can and will Virtual Humans play? Concerning these questions, this article analyzes the current situation and provides an outlook on future developments. The focus is on social gaming and learning.

  1. A Micro-Computed Tomography Technique to Study the Quality of Fibre Optics Embedded in Composite Materials

    PubMed Central

    Chiesura, Gabriele; Luyckx, Geert; Voet, Eli; Lammens, Nicolas; Van Paepegem, Wim; Degrieck, Joris; Dierick, Manuel; Van Hoorebeke, Luc; Vanderniepen, Pieter; Sulejmani, Sanne; Sonnenfeld, Camille; Geernaert, Thomas; Berghmans, Francis

    2015-01-01

    Quality of embedment of optical fibre sensors in carbon fibre-reinforced polymers plays an important role in the resultant properties of the composite, as well as for the correct monitoring of the structure. Therefore, availability of a tool able to check the optical fibre sensor-composite interaction becomes essential. High-resolution 3D X-ray Micro-Computed Tomography, or Micro-CT, is a relatively new non-destructive inspection technique which enables investigations of the internal structure of a sample without actually compromising its integrity. In this work the feasibility of inspecting the position, the orientation and, more generally, the quality of the embedment of an optical fibre sensor in a carbon fibre reinforced laminate at unit cell level have been proven. PMID:25961383

  2. Gaming Device Usage Patterns Predict Internet Gaming Disorder: Comparison across Different Gaming Device Usage Patterns.

    PubMed

    Paik, Soo-Hyun; Cho, Hyun; Chun, Ji-Won; Jeong, Jo-Eun; Kim, Dai-Jin

    2017-12-05

    Gaming behaviors have been significantly influenced by smartphones. This study was designed to explore gaming behaviors and clinical characteristics across different gaming device usage patterns and the role of the patterns on Internet gaming disorder (IGD). Responders of an online survey regarding smartphone and online game usage were classified by different gaming device usage patterns: (1) individuals who played only computer games; (2) individuals who played computer games more than smartphone games; (3) individuals who played computer and smartphone games evenly; (4) individuals who played smartphone games more than computer games; (5) individuals who played only smartphone games. Data on demographics, gaming-related behaviors, and scales for Internet and smartphone addiction, depression, anxiety disorder, and substance use were collected. Combined users, especially those who played computer and smartphone games evenly, had higher prevalence of IGD, depression, anxiety disorder, and substance use disorder. These subjects were more prone to develop IGD than reference group (computer only gamers) (B = 0.457, odds ratio = 1.579). Smartphone only gamers had the lowest prevalence of IGD, spent the least time and money on gaming, and showed lowest scores of Internet and smartphone addiction. Our findings suggest that gaming device usage patterns may be associated with the occurrence, course, and prognosis of IGD.

  3. Gaming Device Usage Patterns Predict Internet Gaming Disorder: Comparison across Different Gaming Device Usage Patterns

    PubMed Central

    Cho, Hyun; Chun, Ji-Won; Jeong, Jo-Eun; Kim, Dai-Jin

    2017-01-01

    Gaming behaviors have been significantly influenced by smartphones. This study was designed to explore gaming behaviors and clinical characteristics across different gaming device usage patterns and the role of the patterns on Internet gaming disorder (IGD). Responders of an online survey regarding smartphone and online game usage were classified by different gaming device usage patterns: (1) individuals who played only computer games; (2) individuals who played computer games more than smartphone games; (3) individuals who played computer and smartphone games evenly; (4) individuals who played smartphone games more than computer games; (5) individuals who played only smartphone games. Data on demographics, gaming-related behaviors, and scales for Internet and smartphone addiction, depression, anxiety disorder, and substance use were collected. Combined users, especially those who played computer and smartphone games evenly, had higher prevalence of IGD, depression, anxiety disorder, and substance use disorder. These subjects were more prone to develop IGD than reference group (computer only gamers) (B = 0.457, odds ratio = 1.579). Smartphone only gamers had the lowest prevalence of IGD, spent the least time and money on gaming, and showed lowest scores of Internet and smartphone addiction. Our findings suggest that gaming device usage patterns may be associated with the occurrence, course, and prognosis of IGD. PMID:29206183

  4. Smart Classroom: Bringing Pervasive Computing into Distance Learning

    NASA Astrophysics Data System (ADS)

    Shi, Yuanchun; Qin, Weijun; Suo, Yue; Xiao, Xin

    In recent years, distance learning has increasingly become one of themost important applications on the internet and is being discussed and studied by various universities, institutes and companies. The Web/Internet provides relatively easy ways to publish hyper-linked multimedia content for more audiences. Yet, we find that most of the courseware are simply shifted from textbook to HTML files. However, in ost cases the teacher's live instruction is very important for catching the attention and interest of the students. That's why Real-Time Interactive Virtual Classroom (RTIVC) always plays an indispensable role in distance learning, where teachers nd students located in different places can take part in the class synchronously through certain multimedia communication systems and obtain real-time and mediarich interactions using Pervasive Computing technologies [1]. The Classroom 2000 project [2] at GIT has been devoted to the automated capturing of the classroom experience. Likewise, the Smart Classroom project [3] at our institute is focused on Tele-education. Most currently deployed real-time Tele-education systems are desktop-based, in which the teacher's experience is totally different from teaching in a real classroom.

  5. Computer simulation and experimental self-assembly of irradiated glycine amino acid under magnetic fields: Its possible significance in prebiotic chemistry.

    PubMed

    Heredia, Alejandro; Colín-García, María; Puig, Teresa Pi I; Alba-Aldave, Leticia; Meléndez, Adriana; Cruz-Castañeda, Jorge A; Basiuk, Vladimir A; Ramos-Bernal, Sergio; Mendoza, Alicia Negrón

    2017-12-01

    Ionizing radiation may have played a relevant role in chemical reactions for prebiotic biomolecule formation on ancient Earth. Environmental conditions such as the presence of water and magnetic fields were possibly relevant in the formation of organic compounds such as amino acids. ATR-FTIR, Raman, EPR and X-ray spectroscopies provide valuable information about molecular organization of different glycine polymorphs under static magnetic fields. γ-glycine polymorph formation increases in irradiated samples interacting with static magnetic fields. The increase in γ-glycine polymorph agrees with the computer simulations. The AM1 semi-empirical simulations show a change in the catalyst behavior and dipole moment values in α and γ-glycine interaction with the static magnetic field. The simulated crystal lattice energy in α-glycine is also affected by the free radicals under the magnetic field, which decreases its stability. Therefore, solid α and γ-glycine containing free radicals under static magnetic fields might have affected the prebiotic scenario on ancient Earth by causing the oligomerization of glycine in prebiotic reactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Modeling protein structure at near atomic resolutions with Gorgon.

    PubMed

    Baker, Matthew L; Abeysinghe, Sasakthi S; Schuh, Stephen; Coleman, Ross A; Abrams, Austin; Marsh, Michael P; Hryc, Corey F; Ruths, Troy; Chiu, Wah; Ju, Tao

    2011-05-01

    Electron cryo-microscopy (cryo-EM) has played an increasingly important role in elucidating the structure and function of macromolecular assemblies in near native solution conditions. Typically, however, only non-atomic resolution reconstructions have been obtained for these large complexes, necessitating computational tools for integrating and extracting structural details. With recent advances in cryo-EM, maps at near-atomic resolutions have been achieved for several macromolecular assemblies from which models have been manually constructed. In this work, we describe a new interactive modeling toolkit called Gorgon targeted at intermediate to near-atomic resolution density maps (10-3.5 Å), particularly from cryo-EM. Gorgon's de novo modeling procedure couples sequence-based secondary structure prediction with feature detection and geometric modeling techniques to generate initial protein backbone models. Beyond model building, Gorgon is an extensible interactive visualization platform with a variety of computational tools for annotating a wide variety of 3D volumes. Examples from cryo-EM maps of Rotavirus and Rice Dwarf Virus are used to demonstrate its applicability to modeling protein structure. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Influence of nonelectrostatic ion-ion interactions on double-layer capacitance

    NASA Astrophysics Data System (ADS)

    Zhao, Hui

    2012-11-01

    Recently a Poisson-Helmholtz-Boltzmann (PHB) model [Bohinc , Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.85.031130 85, 031130 (2012)] was developed by accounting for solvent-mediated nonelectrostatic ion-ion interactions. Nonelectrostatic interactions are described by a Yukawa-like pair potential. In the present work, we modify the PHB model by adding steric effects (finite ion size) into the free energy to derive governing equations. The modified PHB model is capable of capturing both ion specificity and ion crowding. This modified model is then employed to study the capacitance of the double layer. More specifically, we focus on the influence of nonelectrostatic ion-ion interactions on charging a double layer near a flat surface in the presence of steric effects. We numerically compute the differential capacitance as a function of the voltage under various conditions. At small voltages and low salt concentrations (dilute solution), we find out that the predictions from the modified PHB model are the same as those from the classical Poisson-Boltzmann theory, indicating that nonelectrostatic ion-ion interactions and steric effects are negligible. At moderate voltages, nonelectrostatic ion-ion interactions play an important role in determining the differential capacitance. Generally speaking, nonelectrostatic interactions decrease the capacitance because of additional nonelectrostatic repulsion among excess counterions inside the double layer. However, increasing the voltage gradually favors steric effects, which induce a condensed layer with crowding of counterions near the electrode. Accordingly, the predictions from the modified PHB model collapse onto those computed by the modified Poisson-Boltzmann theory considering steric effects alone. Finally, theoretical predictions are compared and favorably agree with experimental data, in particular, in concentrated solutions, leading one to conclude that the modified PHB model adequately predicts the diffuse-charge dynamics of the double layer with ion specificity and steric effects.

  8. Play along: effects of music and social interaction on word learning.

    PubMed

    Verga, Laura; Bigand, Emmanuel; Kotz, Sonja A

    2015-01-01

    Learning new words is an increasingly common necessity in everyday life. External factors, among which music and social interaction are particularly debated, are claimed to facilitate this task. Due to their influence on the learner's temporal behavior, these stimuli are able to drive the learner's attention to the correct referent of new words at the correct point in time. However, do music and social interaction impact learning behavior in the same way? The current study aims to answer this question. Native German speakers (N = 80) were requested to learn new words (pseudo-words) during a contextual learning game. This learning task was performed alone with a computer or with a partner, with or without music. Results showed that music and social interaction had a different impact on the learner's behavior: Participants tended to temporally coordinate their behavior more with a partner than with music, and in both cases more than with a computer. However, when both music and social interaction were present, this temporal coordination was hindered. These results suggest that while music and social interaction do influence participants' learning behavior, they have a different impact. Moreover, impaired behavior when both music and a partner are present suggests that different mechanisms are employed to coordinate with the two types of stimuli. Whether one or the other approach is more efficient for word learning, however, is a question still requiring further investigation, as no differences were observed between conditions in a retrieval phase, which took place immediately after the learning session. This study contributes to the literature on word learning in adults by investigating two possible facilitating factors, and has important implications for situations such as music therapy, in which music and social interaction are present at the same time.

  9. Play along: effects of music and social interaction on word learning

    PubMed Central

    Verga, Laura; Bigand, Emmanuel; Kotz, Sonja A.

    2015-01-01

    Learning new words is an increasingly common necessity in everyday life. External factors, among which music and social interaction are particularly debated, are claimed to facilitate this task. Due to their influence on the learner’s temporal behavior, these stimuli are able to drive the learner’s attention to the correct referent of new words at the correct point in time. However, do music and social interaction impact learning behavior in the same way? The current study aims to answer this question. Native German speakers (N = 80) were requested to learn new words (pseudo-words) during a contextual learning game. This learning task was performed alone with a computer or with a partner, with or without music. Results showed that music and social interaction had a different impact on the learner’s behavior: Participants tended to temporally coordinate their behavior more with a partner than with music, and in both cases more than with a computer. However, when both music and social interaction were present, this temporal coordination was hindered. These results suggest that while music and social interaction do influence participants’ learning behavior, they have a different impact. Moreover, impaired behavior when both music and a partner are present suggests that different mechanisms are employed to coordinate with the two types of stimuli. Whether one or the other approach is more efficient for word learning, however, is a question still requiring further investigation, as no differences were observed between conditions in a retrieval phase, which took place immediately after the learning session. This study contributes to the literature on word learning in adults by investigating two possible facilitating factors, and has important implications for situations such as music therapy, in which music and social interaction are present at the same time. PMID:26388818

  10. An anti-DNA antibody prefers damaged dsDNA over native.

    PubMed

    Akberova, N I; Zhmurov, A A; Nevzorova, T A; Litvinov, R I

    2017-01-01

    DNA-protein interactions, including DNA-antibody complexes, have both fundamental and practical significance. In particular, antibodies against double-stranded DNA play an important role in the pathogenesis of autoimmune diseases. Elucidation of structural mechanisms of an antigen recognition and interaction of anti-DNA antibodies provides a basis for understanding the role of DNA-containing immune complexes in human pathologies and for new treatments. Here we used Molecular Dynamic simulations of bimolecular complexes of a segment of dsDNA with a monoclonal anti-DNA antibody's Fab-fragment to obtain detailed structural and physical characteristics of the dynamic intermolecular interactions. Using a computationally modified crystal structure of a Fab-DNA complex (PDB: 3VW3), we studied in silico equilibrium Molecular Dynamics of the Fab-fragment associated with two homologous dsDNA fragments, containing or not containing dimerized thymine, a product of DNA photodamage. The Fab-fragment interactions with the thymine dimer-containing DNA was thermodynamically more stable than with the native DNA. The amino acid residues constituting a paratope and the complementary nucleotide epitopes for both Fab-DNA constructs were identified. Stacking and electrostatic interactions were shown to play the main role in the antibody-dsDNA contacts, while hydrogen bonds were less significant. The aggregate of data show that the chemically modified dsDNA (containing a covalent thymine dimer) has a higher affinity toward the antibody and forms a stronger immune complex. These findings provide a mechanistic insight into formation and properties of the pathogenic anti-DNA antibodies in autoimmune diseases, such as systemic lupus erythematosus, associated with skin photosensibilization and DNA photodamage.

  11. Numerical Study of Charged Inertial Particles in Turbulence using a Coupled Fluid-P3M Approach

    NASA Astrophysics Data System (ADS)

    Yao, Yuan; Capecelatro, Jesse

    2017-11-01

    Non-trivial interactions between charged particles and turbulence play an important role in many engineering and environmental flows, including clouds, fluidized bed reactors, charged hydrocarbon sprays and dusty plasmas. Due to the long-range nature of electrostatic forces, Coulomb interactions in systems with many particles must be handled carefully to avoid O(N2) computations. The particle-mesh (PM) method is typically employed in Eulerian-Lagrangian (EL) simulations as it avoids computing direct pairwise sums, but it fails to capture short-range interactions that are anticipated to be important when particles cluster. In this presentation, the particle-particle-particle-mesh (P3M) method that scales with O(NlogN) is implemented within a EL framework to simulate charged particles accurately in a tractable manner. The EL-P3M method is used to assess the competition between drag and Coulomb forces for a range of Stokes numbers and charges. Simulations of like- and oppositely-charged particles suspended in a two-dimensional Taylor-Green vortex and three-dimensional homogeneous isotropic turbulence are reported. One-point and two-point statistics obtained using PM and P3M are compared to assess the effect of added accuracy on collision rate and clustering.

  12. Modelling of Dispersed Gas-Liquid Flow using LBGK and LPT Approach

    NASA Astrophysics Data System (ADS)

    Agarwal, Alankar; Prakash, Akshay; Ravindra, B.

    2017-11-01

    The dynamics of gas bubbles play a significant, if not crucial, role in a large variety of industrial process that involves using reactors. Many of these processes are still not well understood in terms of optimal scale-up strategies.An accurate modeling of bubbles and bubble swarms become important for high fidelity bioreactor simulations. This study is a part of the development of robust bubble fluid interaction modules for simulation of industrial-scale reactors. The work presents the simulation of a single bubble rising in a quiescent water tank using current models presented in the literature for bubble-fluid interaction. In this multiphase benchmark problem, the continuous phase (water) is discretized using the Lattice Bhatnagar-Gross and Krook (LBGK) model of Lattice Boltzmann Method (LBM), while the dispersed gas phase (i.e. air-bubble) modeled with the Lagrangian particle tracking (LPT) approach. The cheap clipped fourth order polynomial function is used to model the interaction between two phases. The model is validated by comparing the simulation results for terminal velocity of a bubble at varying bubble diameter and the influence of bubble motion in liquid velocity with the theoretical and previously available experimental data. This work is supported by the ``Centre for Development of Advanced Computing (C-DAC), Pune'' by providing the advanced computational facility in PARAM Yuva-II.

  13. The Development of an Interactive Computer-Based Training Program for Timely and Humane On-Farm Pig Euthanasia.

    PubMed

    Mullins, Caitlyn R; Pairis-Garcia, Monique D; Campler, Magnus R; Anthony, Raymond; Johnson, Anna K; Coleman, Grahame J; Rault, Jean-Loup

    2018-02-05

    With extensive knowledge and training in the prevention, management, and treatment of disease conditions in animals, veterinarians play a critical role in ensuring good welfare on swine farms by training caretakers on the importance of timely euthanasia. To assist veterinarians and other industry professionals in training new and seasoned caretakers, an interactive computer-based training program was created. It consists of three modules, each containing five case studies, which cover three distinct production stages (breeding stock, piglets, and wean to grower-finisher pigs). Case study development was derived from five specific euthanasia criteria defined in the 2015 Common Swine Industry Audit, a nationally recognized auditing program used in the US. Case studies provide information regarding treatment history, clinical signs, and condition severity of the pig and prompt learners to make management decisions regarding pig treatment and care. Once a decision is made, feedback is provided so learners understand the appropriateness of their decision compared to current industry guidelines. In addition to training farm personnel, this program may also be a valuable resource if incorporated into veterinary, graduate, and continuing education curricula. This innovative tool represents the first interactive euthanasia-specific training program in the US swine industry and offers the potential to improve timely and humane on-farm pig euthanasia.

  14. Hydrodynamic interaction of two deformable drops in confined shear flow.

    PubMed

    Chen, Yongping; Wang, Chengyao

    2014-09-01

    We investigate hydrodynamic interaction between two neutrally buoyant circular drops in a confined shear flow based on a computational fluid dynamics simulation using the volume-of-fluid method. The rheological behaviors of interactive drops and the flow regimes are explored with a focus on elucidation of underlying physical mechanisms. We find that two types of drop behaviors during interaction occur, including passing-over motion and reversing motion, which are governed by the competition between the drag of passing flow and the entrainment of reversing flow in matrix fluid. With the increasing confinement, the drop behavior transits from the passing-over motion to reversing motion, because the entrainment of the reversing-flow matrix fluid turns to play the dominant role. The drag of the ambient passing flow is increased by enlarging the initial lateral separation due to the departure of the drop from the reversing flow in matrix fluid, resulting in the emergence of passing-over motion. In particular, a corresponding phase diagram is plotted to quantitatively illustrate the dependence of drop morphologies during interaction on confinement and initial lateral separation.

  15. Playfulness and Interaction: An Exploratory Study of Past and Current Exposure to Domestic Violence.

    PubMed

    Waldman-Levi, Amiya; Bundy, Anita; Katz, Noomi

    2015-04-01

    Violence against women affects mother-child interactions, which may in turn affect their children's playfulness. We examined the effect of a history of violence against mothers on mother-child interactions and children's playfulness. This cross-sectional pilot study consisted of 36 mother-child dyads residing in family crisis shelters due to serious violence from an intimate partner. One subgroup had experienced violence during childhood, another had posttraumatic stress disorder (PTSD). Instruments included Posttraumatic Diagnostic Scale, Test of Playfulness, and Coding Interactive Behavior System. Mann-Whitney test and Spearman's rank correlation coefficients were calculated. Results indicated that children of mothers without PTSD were more playful than children of mothers with PTSD. Mothers who had not reported of childhood exposure to violence and who did not have PTSD had better interactions with more playful children.

  16. Blocking the interaction between HIV-1 integrase and human LEDGF/p75: mutational studies, virtual screening and molecular dynamics simulations.

    PubMed

    Reddy, Karnati Konda; Singh, Poonam; Singh, Sanjeev Kumar

    2014-03-04

    HIV-1 integrase (IN) mediates integration of viral cDNA into the host cell genome, an essential step in the retroviral life cycle. The human lens epithelium-derived growth factor (LEDGF/p75) is a co-factor of HIV-1 IN that plays a crucial role in viral integration. Because of its crucial role in early steps of HIV replication, the IN-LEDGF/p75 interaction represents an attractive target for anti-HIV drug discovery. In this study, the IN-LEDGF/p75 interaction was studied by in silico mutational studies and molecular dynamics simulations. The results showed that all of the key residues in the LEDGF/p75 binding pocket of IN protein are important for stabilization of the complex. Structure-based virtual screening against HIV-1 IN using the ChemBridge database was performed through three different protocols of docking simulations with varying precisions and computational intensities. Six compounds based on the docking score, binding affinity and pharmacokinetic parameters were selected and an analysis of the interactions with key amino acid residues of IN was carried out. Subsequently, molecular dynamics simulations of these compounds in the LEDGF/p75 binding site of IN were carried out in order to study the stability of complexes and their hydrogen bonding interactions. IN residues Glu170, His171, and Thr174 in chain A as well as Gln95 and Thr125 in chain B were discovered to play important roles in the binding of compounds. These findings could be helpful for blocking IN-LEDGF/p75 interaction, and provide a method for avoiding viral resistance and cross-resistance.

  17. Validation of the Penn Interactive Peer Play Scale with Preschool Children in Low-Income Families in Hong Kong

    ERIC Educational Resources Information Center

    Leung, Chi-Hung

    2014-01-01

    Play is a primary context for fostering young children's positive peer interactions. Through play, children develop the social, emotional, cognitive and language skills that contribute to the ability to establish effective relationships with peers. The Penn Interactive Peer Play Scale (PIPPS) was first developed by Fantuzzo to assess the quality…

  18. Computer Game-Based Learning: Perceptions and Experiences of Senior Chinese Adults

    ERIC Educational Resources Information Center

    Wang, Feihong; Lockee, Barbara B.; Burton, John K.

    2012-01-01

    The purpose of this study was to investigate senior Chinese adults' potential acceptance of computer game-based learning (CGBL) by probing their perceptions of computer game play and their perceived impacts of game play on their learning of computer skills and life satisfaction. A total of 60 senior adults from a local senior adult learning center…

  19. Mathematical Modeling of E6-p53 interactions in Cervical Cancer

    PubMed

    Khattak, Faryal; Haseeb, Muhammad; Fazal, Sahar; Bhatti, A I; Ullah, Mukhtar

    2017-04-01

    Background: Cervical cancer is the third most common cancer in women throughout the world. The human papillomavirus (HPV) E6 viral protein plays an essential role in proteasomal degradation of the cancer suppressant protein p53. As a result, p53 negative regulation and apoptosis relevant activities are abrogated, facilitating development of cervical cancer. Methods: A mathematical model of E6-p53 interactions was developed using mathematical laws. In-silico simulations were carried out on CellDesigner and as a test case the small molecule drug RITA was considered for its ability to rescue the functions of tumor suppressor p53 by inhibiting E6 mediated proteasomal degradation. Results: Using a computational model we scrutinized how p53 responds to RITA, and chemical reactions of this small molecule drug were incorporated to perceive the full effects. The evolved strategy allowed the p53 response and rescue of its tumor suppressor function to be delineated, RITA being found to block p53 interactions with E6 associated proteins. Conclusion: We could develop a model of E6-p53 interactions with incorporation of actions of the small molecule drug RITA. Suppression of E6 associated proteins by RITA induces accumulation of tumor suppressant p53. Using CellDesigner to encode the model ensured that it can be easily modified and extended as more data become available. This strategy should play an effective role in the development of therapies against cancer. Creative Commons Attribution License

  20. Mathematical Modeling of E6-p53 interactions in Cervical Cancer

    PubMed Central

    Khattak, Faryal; Haseeb, Muhammad; Fazal, Sahar; Bhatti, AI; Ullah, Mukhtar

    2017-01-01

    Background: Cervical cancer is the third most common cancer in women throughout the world. The human papillomavirus (HPV) E6 viral protein plays an essential role in proteasomal degradation of the cancer suppressant protein p53. As a result, p53 negative regulation and apoptosis relevant activities are abrogated, facilitating development of cervical cancer. Methods: A mathematical model of E6-p53 interactions was developed using mathematical laws. In-silico simulations were carried out on CellDesigner and as a test case the small molecule drug RITA was considered for its ability to rescue the functions of tumor suppressor p53 by inhibiting E6 mediated proteasomal degradation. Results: Using a computational model we scrutinized how p53 responds to RITA, and chemical reactions of this small molecule drug were incorporated to perceive the full effects. The evolved strategy allowed the p53 response and rescue of its tumor suppressor function to be delineated, RITA being found to block p53 interactions with E6 associated proteins. Conclusion: We could develop a model of E6-p53 interactions with incorporation of actions of the small molecule drug RITA. Suppression of E6 associated proteins by RITA induces accumulation of tumor suppressant p53. Using CellDesigner to encode the model ensured that it can be easily modified and extended as more data become available. This strategy should play an effective role in the development of therapies against cancer. PMID:28547941

  1. Improving Children's Mental Health with a Digital Social Skills Development Game: A Randomized Controlled Efficacy Trial of Adventures aboard the S.S. GRIN.

    PubMed

    Sanchez, Rebecca; Brown, Emily; Kocher, Kelly; DeRosier, Melissa

    2017-02-01

    The purpose of this study was to investigate whether a computer-based game to improve social skills and mental health in children with social skills deficits would be efficacious. The program, Adventures aboard the S.S. GRIN, translates a proven in-person intervention into a nine-episode interactive online adventure game that provides opportunity for knowledge acquisition and skill practice. Participants (children aged 7-11 years with social skills challenges) were randomly assigned to immediate treatment group (n = 33) or waitlist control group (n = 36). Children in the immediate treatment condition completed the game at home over the course of 9 weeks. Before playing the game and again within 1 week of game completion, children completed surveys about social literacy, social anxiety, bullying, social self-efficacy, and social satisfaction. Children who played Adventures improved significantly more from pretest to posttest than children who did not play the game in social literacy, social anxiety, bullying victimization, and social satisfaction. Online interactive games can be effective in improving mental health for children who struggle with social skills. For children who can access them, serious games have the potential to increase the reach of effective programs by overcoming the logistical and implementation barriers (such as cost, travel, and accessibility) that limit traditionally delivered mental health interventions.

  2. MusicGlove: motivating and quantifying hand movement rehabilitation by using functional grips to play music.

    PubMed

    Friedman, Nizan; Chan, Vicky; Zondervan, Danny; Bachman, Mark; Reinkensmeyer, David J

    2011-01-01

    People with stroke typically must perform much of their hand exercise at home without professional assistance as soon as two weeks after the stroke. Without feedback and encouragement, individuals often lose motivation to practice using the affected hand, and this disuse contributes to further declines in hand function. We developed the MusicGlove as a way to facilitate and motivate at home practice of hand movement. This low-cost device uses music as an interactive and motivating medium to guide hand exercise and to quantitatively assess hand movement recovery. It requires the user to practice functional movements, including pincer grip, key-pinch grip, and finger-thumb opposition, by using those movements to play different musical notes, played along to songs displayed by an interactive computer game. We report here the design of the glove and the results of a single-session experiment with 10 participants with chronic stroke. We found that the glove is well suited for use by people with an impairment level quantified by a Box and Blocks score of at least around 7; that the glove can be used to obtain a measure of hand dexterity (% of notes hit) that correlates strongly with the Box and Blocks score; and that the incorporation of music into training significantly improved both objective measures of hand motor performance and self-ratings of motivation for training in the single session.

  3. Computer and video game addiction-a comparison between game users and non-game users.

    PubMed

    Weinstein, Aviv Malkiel

    2010-09-01

    Computer game addiction is excessive or compulsive use of computer and video games that may interfere with daily life. It is not clear whether video game playing meets diagnostic criteria for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV). First objective is to review the literature on computer and video game addiction over the topics of diagnosis, phenomenology, epidemiology, and treatment. Second objective is to describe a brain imaging study measuring dopamine release during computer game playing. Article search of 15 published articles between 2000 and 2009 in Medline and PubMed on computer and video game addiction. Nine abstinent "ecstasy" users and 8 control subjects were scanned at baseline and after performing on a motorbike riding computer game while imaging dopamine release in vivo with [123I] IBZM and single photon emission computed tomography (SPECT). Psycho-physiological mechanisms underlying computer game addiction are mainly stress coping mechanisms, emotional reactions, sensitization, and reward. Computer game playing may lead to long-term changes in the reward circuitry that resemble the effects of substance dependence. The brain imaging study showed that healthy control subjects had reduced dopamine D2 receptor occupancy of 10.5% in the caudate after playing a motorbike riding computer game compared with baseline levels of binding consistent with increased release and binding to its receptors. Ex-chronic "ecstasy" users showed no change in levels of dopamine D2 receptor occupancy after playing this game. This evidence supports the notion that psycho-stimulant users have decreased sensitivity to natural reward. Computer game addicts or gamblers may show reduced dopamine response to stimuli associated with their addiction presumably due to sensitization.

  4. Concepts and Relations in Neurally Inspired In Situ Concept-Based Computing

    PubMed Central

    van der Velde, Frank

    2016-01-01

    In situ concept-based computing is based on the notion that conceptual representations in the human brain are “in situ.” In this way, they are grounded in perception and action. Examples are neuronal assemblies, whose connection structures develop over time and are distributed over different brain areas. In situ concepts representations cannot be copied or duplicated because that will disrupt their connection structure, and thus the meaning of these concepts. Higher-level cognitive processes, as found in language and reasoning, can be performed with in situ concepts by embedding them in specialized neurally inspired “blackboards.” The interactions between the in situ concepts and the blackboards form the basis for in situ concept computing architectures. In these architectures, memory (concepts) and processing are interwoven, in contrast with the separation between memory and processing found in Von Neumann architectures. Because the further development of Von Neumann computing (more, faster, yet power limited) is questionable, in situ concept computing might be an alternative for concept-based computing. In situ concept computing will be illustrated with a recently developed BABI reasoning task. Neurorobotics can play an important role in the development of in situ concept computing because of the development of in situ concept representations derived in scenarios as needed for reasoning tasks. Neurorobotics would also benefit from power limited and in situ concept computing. PMID:27242504

  5. Concepts and Relations in Neurally Inspired In Situ Concept-Based Computing.

    PubMed

    van der Velde, Frank

    2016-01-01

    In situ concept-based computing is based on the notion that conceptual representations in the human brain are "in situ." In this way, they are grounded in perception and action. Examples are neuronal assemblies, whose connection structures develop over time and are distributed over different brain areas. In situ concepts representations cannot be copied or duplicated because that will disrupt their connection structure, and thus the meaning of these concepts. Higher-level cognitive processes, as found in language and reasoning, can be performed with in situ concepts by embedding them in specialized neurally inspired "blackboards." The interactions between the in situ concepts and the blackboards form the basis for in situ concept computing architectures. In these architectures, memory (concepts) and processing are interwoven, in contrast with the separation between memory and processing found in Von Neumann architectures. Because the further development of Von Neumann computing (more, faster, yet power limited) is questionable, in situ concept computing might be an alternative for concept-based computing. In situ concept computing will be illustrated with a recently developed BABI reasoning task. Neurorobotics can play an important role in the development of in situ concept computing because of the development of in situ concept representations derived in scenarios as needed for reasoning tasks. Neurorobotics would also benefit from power limited and in situ concept computing.

  6. Modeling and prediction of human word search behavior in interactive machine translation

    NASA Astrophysics Data System (ADS)

    Ji, Duo; Yu, Bai; Ma, Bin; Ye, Na

    2017-12-01

    As a kind of computer aided translation method, Interactive Machine Translation technology reduced manual translation repetitive and mechanical operation through a variety of methods, so as to get the translation efficiency, and played an important role in the practical application of the translation work. In this paper, we regarded the behavior of users' frequently searching for words in the translation process as the research object, and transformed the behavior to the translation selection problem under the current translation. The paper presented a prediction model, which is a comprehensive utilization of alignment model, translation model and language model of the searching words behavior. It achieved a highly accurate prediction of searching words behavior, and reduced the switching of mouse and keyboard operations in the users' translation process.

  7. All-Electronic Quantification of Neuropeptide-Receptor Interaction Using a Bias-Free Functionalized Graphene Microelectrode.

    PubMed

    Ping, Jinglei; Vishnubhotla, Ramya; Xi, Jin; Ducos, Pedro; Saven, Jeffery G; Liu, Renyu; Johnson, Alan T Charlie

    2018-05-22

    Opioid neuropeptides play a significant role in pain perception, appetite regulation, sleep, memory, and learning. Advances in understanding of opioid peptide physiology are held back by the lack of methodologies for real-time quantification of affinities and kinetics of the opioid neuropeptide-receptor interaction at levels typical of endogenous secretion (<50 pM) in biosolutions with physiological ionic strength. To address this challenge, we developed all-electronic opioid-neuropeptide biosensors based on graphene microelectrodes functionalized with a computationally redesigned water-soluble μ-opioid receptor. We used the functionalized microelectrode in a bias-free charge measurement configuration to measure the binding kinetics and equilibrium binding properties of the engineered receptor with [d-Ala 2 , N-MePhe 4 , Gly-ol]-enkephalin and β-endorphin at picomolar levels in real time.

  8. Effects of virtual reality immersion and audiovisual distraction techniques for patients with pruritus

    PubMed Central

    Leibovici, Vera; Magora, Florella; Cohen, Sarale; Ingber, Arieh

    2009-01-01

    BACKGROUND: Virtual reality immersion (VRI), an advanced computer-generated technique, decreased subjective reports of pain in experimental and procedural medical therapies. Furthermore, VRI significantly reduced pain-related brain activity as measured by functional magnetic resonance imaging. Resemblance between anatomical and neuroendocrine pathways of pain and pruritus may prove VRI to be a suitable adjunct for basic and clinical studies of the complex aspects of pruritus. OBJECTIVES: To compare effects of VRI with audiovisual distraction (AVD) techniques for attenuation of pruritus in patients with atopic dermatitis and psoriasis vulgaris. METHODS: Twenty-four patients suffering from chronic pruritus – 16 due to atopic dermatitis and eight due to psoriasis vulgaris – were randomly assigned to play an interactive computer game using a special visor or a computer screen. Pruritus intensity was self-rated before, during and 10 min after exposure using a visual analogue scale ranging from 0 to 10. The interviewer rated observed scratching on a three-point scale during each distraction program. RESULTS: Student’s t tests were significant for reduction of pruritus intensity before and during VRI and AVD (P=0.0002 and P=0.01, respectively) and were significant only between ratings before and after VRI (P=0.017). Scratching was mostly absent or mild during both programs. CONCLUSIONS: VRI and AVD techniques demonstrated the ability to diminish itching sensations temporarily. Further studies on the immediate and late effects of interactive computer distraction techniques to interrupt itching episodes will open potential paths for future pruritus research. PMID:19714267

  9. Electromagnetomechanical elastodynamic model for Lamb wave damage quantification in composites

    NASA Astrophysics Data System (ADS)

    Borkowski, Luke; Chattopadhyay, Aditi

    2014-03-01

    Physics-based wave propagation computational models play a key role in structural health monitoring (SHM) and the development of improved damage quantification methodologies. Guided waves (GWs), such as Lamb waves, provide the capability to monitor large plate-like aerospace structures with limited actuators and sensors and are sensitive to small scale damage; however due to the complex nature of GWs, accurate and efficient computation tools are necessary to investigate the mechanisms responsible for dispersion, coupling, and interaction with damage. In this paper, the local interaction simulation approach (LISA) coupled with the sharp interface model (SIM) solution methodology is used to solve the fully coupled electro-magneto-mechanical elastodynamic equations for the piezoelectric and piezomagnetic actuation and sensing of GWs in fiber reinforced composite material systems. The final framework provides the full three-dimensional displacement as well as electrical and magnetic potential fields for arbitrary plate and transducer geometries and excitation waveform and frequency. The model is validated experimentally and proven computationally efficient for a laminated composite plate. Studies are performed with surface bonded piezoelectric and embedded piezomagnetic sensors to gain insight into the physics of experimental techniques used for SHM. The symmetric collocation of piezoelectric actuators is modeled to demonstrate mode suppression in laminated composites for the purpose of damage detection. The effect of delamination and damage (i.e., matrix cracking) on the GW propagation is demonstrated and quantified. The developed model provides a valuable tool for the improvement of SHM techniques due to its proven accuracy and computational efficiency.

  10. In vitro flow assessment: from PC-MRI to computational fluid dynamics including fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Kratzke, Jonas; Rengier, Fabian; Weis, Christian; Beller, Carsten J.; Heuveline, Vincent

    2016-04-01

    Initiation and development of cardiovascular diseases can be highly correlated to specific biomechanical parameters. To examine and assess biomechanical parameters, numerical simulation of cardiovascular dynamics has the potential to complement and enhance medical measurement and imaging techniques. As such, computational fluid dynamics (CFD) have shown to be suitable to evaluate blood velocity and pressure in scenarios, where vessel wall deformation plays a minor role. However, there is a need for further validation studies and the inclusion of vessel wall elasticity for morphologies being subject to large displacement. In this work, we consider a fluid-structure interaction (FSI) model including the full elasticity equation to take the deformability of aortic wall soft tissue into account. We present a numerical framework, in which either a CFD study can be performed for less deformable aortic segments or an FSI simulation for regions of large displacement such as the aortic root and arch. Both of the methods are validated by means of an aortic phantom experiment. The computational results are in good agreement with 2D phase-contrast magnetic resonance imaging (PC-MRI) velocity measurements as well as catheter-based pressure measurements. The FSI simulation shows a characteristic vessel compliance effect on the flow field induced by the elasticity of the vessel wall, which the CFD model is not capable of. The in vitro validated FSI simulation framework can enable the computation of complementary biomechanical parameters such as the stress distribution within the vessel wall.

  11. He just wants to play: how goals determine the influence of violent computer games on aggression.

    PubMed

    Denzler, Markus; Häfner, Michael; Förster, Jens

    2011-12-01

    Generally, the accessibility of goal-related constructs is inhibited upon goal fulfillment. In line with this notion, the current studies explored whether violent computer games may reduce relative accessibility of aggression if the game involves the fulfillment of an aggressive goal. Specifically, in Study 1, participants who watched a trailer for a violent computer game that fulfilled the goal of venting anger showed less relative accessibility of aggression compared to participants who watched the trailer without goal fulfillment. In Study 2, actually playing a violent computer game to vent anger also decreased the relative accessibility of aggression compared to a control condition in which the game was played without such a goal. Lastly, in Study 3, the relative accessibility of aggression was reduced after playing a violent computer game for participants who reported a high general tendency to vent their anger.

  12. Promoting Positive Peer Interactions in the Preschool Classroom: The Role and the Responsibility of the Teacher in Supporting Children's Sociodramatic Play

    ERIC Educational Resources Information Center

    Stanton-Chapman, Tina L.

    2015-01-01

    Teachers play an important role in expanding and supporting children's play and interactions with peers. This manuscript provides specific guidelines for interventions teachers can use to promote successful peer interactions in preschool settings. The strategies discussed include: (a) preparing the physical environment for play (e.g., toy…

  13. A transported probability density function/photon Monte Carlo method for high-temperature oxy-natural gas combustion with spectral gas and wall radiation

    NASA Astrophysics Data System (ADS)

    Zhao, X. Y.; Haworth, D. C.; Ren, T.; Modest, M. F.

    2013-04-01

    A computational fluid dynamics model for high-temperature oxy-natural gas combustion is developed and exercised. The model features detailed gas-phase chemistry and radiation treatments (a photon Monte Carlo method with line-by-line spectral resolution for gas and wall radiation - PMC/LBL) and a transported probability density function (PDF) method to account for turbulent fluctuations in composition and temperature. The model is first validated for a 0.8 MW oxy-natural gas furnace, and the level of agreement between model and experiment is found to be at least as good as any that has been published earlier. Next, simulations are performed with systematic model variations to provide insight into the roles of individual physical processes and their interplay in high-temperature oxy-fuel combustion. This includes variations in the chemical mechanism and the radiation model, and comparisons of results obtained with versus without the PDF method to isolate and quantify the effects of turbulence-chemistry interactions and turbulence-radiation interactions. In this combustion environment, it is found to be important to account for the interconversion of CO and CO2, and radiation plays a dominant role. The PMC/LBL model allows the effects of molecular gas radiation and wall radiation to be clearly separated and quantified. Radiation and chemistry are tightly coupled through the temperature, and correct temperature prediction is required for correct prediction of the CO/CO2 ratio. Turbulence-chemistry interactions influence the computed flame structure and mean CO levels. Strong local effects of turbulence-radiation interactions are found in the flame, but the net influence of TRI on computed mean temperature and species profiles is small. The ultimate goal of this research is to simulate high-temperature oxy-coal combustion, where accurate treatments of chemistry, radiation and turbulence-chemistry-particle-radiation interactions will be even more important.

  14. Physiological Signal Analysis for Evaluating Flow during Playing of Computer Games of Varying Difficulty.

    PubMed

    Tian, Yu; Bian, Yulong; Han, Piguo; Wang, Peng; Gao, Fengqiang; Chen, Yingmin

    2017-01-01

    Flow is the experience of effortless attention, reduced self-consciousness, and a deep sense of control that typically occurs during the optimal performance of challenging tasks. On the basis of the person-artifact-task model, we selected computer games (tasks) with varying levels of difficulty (difficult, medium, and easy) and shyness (personality) as flow precursors to study the physiological activity of users in a flow state. Cardiac and respiratory activity and mean changes in skin conductance (SC) were measured continuously while the participants ( n = 40) played the games. Moreover, the associations between self-reported psychological flow and physiological measures were investigated through a series of repeated-measures analyses. The results showed that the flow experience is related to a faster respiratory rate, deeper respiration, moderate heart rate (HR), moderate HR variability, and moderate SC. The main effect of shyness was non-significant, whereas the interaction of shyness and difficulty influenced the flow experience. These findings are discussed in relation to current models of arousal and valence. The results indicate that the flow state is a state of moderate mental effort that arises through the increased parasympathetic modulation of sympathetic activity.

  15. Physiological Signal Analysis for Evaluating Flow during Playing of Computer Games of Varying Difficulty

    PubMed Central

    Tian, Yu; Bian, Yulong; Han, Piguo; Wang, Peng; Gao, Fengqiang; Chen, Yingmin

    2017-01-01

    Flow is the experience of effortless attention, reduced self-consciousness, and a deep sense of control that typically occurs during the optimal performance of challenging tasks. On the basis of the person–artifact–task model, we selected computer games (tasks) with varying levels of difficulty (difficult, medium, and easy) and shyness (personality) as flow precursors to study the physiological activity of users in a flow state. Cardiac and respiratory activity and mean changes in skin conductance (SC) were measured continuously while the participants (n = 40) played the games. Moreover, the associations between self-reported psychological flow and physiological measures were investigated through a series of repeated-measures analyses. The results showed that the flow experience is related to a faster respiratory rate, deeper respiration, moderate heart rate (HR), moderate HR variability, and moderate SC. The main effect of shyness was non-significant, whereas the interaction of shyness and difficulty influenced the flow experience. These findings are discussed in relation to current models of arousal and valence. The results indicate that the flow state is a state of moderate mental effort that arises through the increased parasympathetic modulation of sympathetic activity. PMID:28725206

  16. Photoabsorption in sodium clusters: first principles configuration interaction calculations

    NASA Astrophysics Data System (ADS)

    Priya, Pradip Kumar; Rai, Deepak Kumar; Shukla, Alok

    2017-05-01

    We present systematic and comprehensive correlated-electron calculations of the linear photoabsorption spectra of small neutral closed- and open-shell sodium clusters (Nan, n = 2 - 6), as well as closed-shell cation clusters (Nan+, n = 3, 5). We have employed the configuration interaction (CI) methodology at the full CI (FCI) and quadruple CI (QCI) levels to compute the ground, and the low-lying excited states of the clusters. For most clusters, besides the minimum energy structures, we also consider their energetically close isomers. The photoabsorption spectra were computed under the electric-dipole approximation, employing the dipole-matrix elements connecting the ground state with the excited states of each isomer. Our calculations were tested rigorously for convergence with respect to the basis set, as well as with respect to the size of the active orbital space employed in the CI calculations. These calculations reveal that as far as electron-correlation effects are concerned, core excitations play an important role in determining the optimized ground state geometries of various clusters, thereby requiring all-electron correlated calculations. But, when it comes to low-lying optical excitations, only valence electron correlation effects play an important role, and excellent agreement with the experimental results is obtained within the frozen-core approximation. For the case of Na6, the largest cluster studied in this work, we also discuss the possibility of occurrence of plasmonic resonance in the optical absorption spectrum. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-70728-3

  17. Dynamic Human-Computer Collaboration in Real-time Unmanned Vehicle Scheduling

    DTIC Science & Technology

    2010-06-01

    Rarely play games Play games once a month Weekly gamer A few times a week gamer Daily gamer Types of games played: 9. Rate...Algorithm, Alchemy , or Apostasy?," International Journal of Human-Computer Studies, vol. 52, pp. 203-216, 2000. [52] J.-M. Hoc, "From Human

  18. Distinguishing humans from computers in the game of go: A complex network approach

    NASA Astrophysics Data System (ADS)

    Coquidé, C.; Georgeot, B.; Giraud, O.

    2017-08-01

    We compare complex networks built from the game of go and obtained from databases of human-played games with those obtained from computer-played games. Our investigations show that statistical features of the human-based networks and the computer-based networks differ, and that these differences can be statistically significant on a relatively small number of games using specific estimators. We show that the deterministic or stochastic nature of the computer algorithm playing the game can also be distinguished from these quantities. This can be seen as a tool to implement a Turing-like test for go simulators.

  19. Adolescents' responses to online peer conflict: How self-evaluation and ethnicity matter.

    PubMed

    Novin, Sheida; Bos, Marieke G N; Stevenson, Claire E; Rieffe, Carolien

    2018-01-01

    For parents, online platforms where their children interact with others often feel like a "black box" in terms of what exactly is happening. In this study, we developed an ecologically valid online computer game in which a (computer-generated) peer teammate tried to provoke frustration, in order to examine (a) adolescents' responses and (b) how indices of self-evaluation (i.e., sense of coherence and self-esteem) and demographic variables (i.e., gender and ethnicity) matter to these responses. Like gender, being a member of a minority or majority group may influence how provocations by peers are interpreted, influencing how one responds. Fifteen-year-old Dutch and Moroccan-Dutch adolescents (N = 167) completed self-reports and played the online computer game. The game indeed elicited frustration, with increased self-reported anger. Moreover, expressions of displeasure were much more common during and after provocation than before provocation. Crucially, perceived self-evaluation mattered; higher levels of sense of coherence but lower levels of self-esteem (only in Moroccan-Dutch group) contributed to fewer expressions of displeasure. Gender did not play a moderating role. Our findings provide initial insights into individual differences in adolescents' responses in an online peer-conflict situation. We studied Dutch and Moroccan-Dutch adolescents' responses during online peer provocation and how self-evaluation and demographic variables matter.Provocation by the (computer-generated) peer teammate increased expressions of displeasure.More sense of coherence but less self-esteem was associated with fewer expressions of displeasure, but ethnicity moderated the effect with self-esteem.

  20. Developing 21st Century Skills through Gameplay: To What Extent Are Young People Who Play the Online Computer Game Minecraft Acquiring and Developing Media Literacy and the Four Cs Skills?

    ERIC Educational Resources Information Center

    Morgan, Mia Lynn

    2015-01-01

    Two questions drove this case study. 1) To what extent does playing the online computer game Minecraft at home in a multiplayer environment impact a player's media literacy skills of analysis, evaluation, and access? 2) To what extent does playing the online computer game Minecraft at home in a multiplayer environment impact a player's 21st…

  1. Virtual plagues and real-world pandemics: reflecting on the potential for online computer role-playing games to inform real world epidemic research.

    PubMed

    Oultram, Stuart

    2013-12-01

    In the wake of the Corrupted Blood incident, which afflicted the massively multiplayer online computer role-playing game World of Warcraft in 2005, it has been suggested that both, the incident itself and massively multiplayer online computer role-playing games in general, can be utilised to inform and assist real-world epidemic and public health research. In this paper, I engage critically with these claims.

  2. The GI Project: a prototype electronic textbook for high school biology.

    PubMed

    Calhoun, P S; Fishman, E K

    1997-01-01

    A prototype electronic science textbook for secondary education was developed to help bridge the gap between state-of-the-art medical technology and the basic science classroom. The prototype combines the latest in radiologic imaging techniques with a user-friendly multimedia computer program to teach the anatomy, physiology, and diseases of the gastrointestinal (GI) tract. The program includes original text, illustrations, photographs, animations, images from upper GI studies, plain radiographs, computed tomographic images, and three-dimensional reconstructions. These features are intended to create a stimulus-rich environment in which the high school science student can enjoy a variety of interactive experiences that will facilitate the learning process. The computer-based book is a new educational tool that promises to play a prominent role in the coming years. Current research suggests that computer-based books are valuable as an alternative educational medium. Although it is not yet clear what form textbooks will take in the future, computer-based books are already proving valuable as an alternative educational medium. For beginning students, they reinforce the material found in traditional textbooks and class presentations; for advanced students, they provide motivation to learn outside the traditional classroom.

  3. Nicholas Metropolis Award Talk for Outstanding Doctoral Thesis Work in Computational Physics: Computational biophysics and multiscale modeling of blood cells and blood flow in health and disease

    NASA Astrophysics Data System (ADS)

    Fedosov, Dmitry

    2011-03-01

    Computational biophysics is a large and rapidly growing area of computational physics. In this talk, we will focus on a number of biophysical problems related to blood cells and blood flow in health and disease. Blood flow plays a fundamental role in a wide range of physiological processes and pathologies in the organism. To understand and, if necessary, manipulate the course of these processes it is essential to investigate blood flow under realistic conditions including deformability of blood cells, their interactions, and behavior in the complex microvascular network. Using a multiscale cell model we are able to accurately capture red blood cell mechanics, rheology, and dynamics in agreement with a number of single cell experiments. Further, this validated model yields accurate predictions of the blood rheological properties, cell migration, cell-free layer, and hemodynamic resistance in microvessels. In addition, we investigate blood related changes in malaria, which include a considerable stiffening of red blood cells and their cytoadherence to endothelium. For these biophysical problems computational modeling is able to provide new physical insights and capabilities for quantitative predictions of blood flow in health and disease.

  4. Accelerating sino-atrium computer simulations with graphic processing units.

    PubMed

    Zhang, Hong; Xiao, Zheng; Lin, Shien-fong

    2015-01-01

    Sino-atrial node cells (SANCs) play a significant role in rhythmic firing. To investigate their role in arrhythmia and interactions with the atrium, computer simulations based on cellular dynamic mathematical models are generally used. However, the large-scale computation usually makes research difficult, given the limited computational power of Central Processing Units (CPUs). In this paper, an accelerating approach with Graphic Processing Units (GPUs) is proposed in a simulation consisting of the SAN tissue and the adjoining atrium. By using the operator splitting method, the computational task was made parallel. Three parallelization strategies were then put forward. The strategy with the shortest running time was further optimized by considering block size, data transfer and partition. The results showed that for a simulation with 500 SANCs and 30 atrial cells, the execution time taken by the non-optimized program decreased 62% with respect to a serial program running on CPU. The execution time decreased by 80% after the program was optimized. The larger the tissue was, the more significant the acceleration became. The results demonstrated the effectiveness of the proposed GPU-accelerating methods and their promising applications in more complicated biological simulations.

  5. Experimental Tests of Normative Group Influence and Representation Effects in Computer-Mediated Communication: When Interacting Via Computers Differs from Interacting With Computers.

    ERIC Educational Resources Information Center

    Lee, Eun-Ju; Nass, Clifford

    2002-01-01

    Presents two experiments to address the questions of if and how normative social influence operates in anonymous computer-mediated communication and human-computer interaction. Finds that the perception of interaction partner (human vs. computer) moderated the group conformity effect such that the undergraduate student subjects expressed greater…

  6. Analysing the Effect of Mutation on Protein Function and Discovering Potential Inhibitors of CDK4: Molecular Modelling and Dynamics Studies

    PubMed Central

    N, Nagasundaram; Zhu, Hailong; Liu, Jiming; V, Karthick; C, George Priya Doss; Chakraborty, Chiranjib; Chen, Luonan

    2015-01-01

    The cyclin-dependent kinase 4 (CDK4)-cyclin D1 complex plays a crucial role in the transition from the G1 phase to S phase of the cell cycle. Among the CDKs, CDK4 is one of the genes most frequently affected by somatic genetic variations that are associated with various forms of cancer. Thus, because the abnormal function of the CDK4-cyclin D1 protein complex might play a vital role in causing cancer, CDK4 can be considered a genetically validated therapeutic target. In this study, we used a systematic, integrated computational approach to identify deleterious nsSNPs and predict their effects on protein-protein (CDK4-cyclin D1) and protein-ligand (CDK4-flavopiridol) interactions. This analysis resulted in the identification of possible inhibitors of mutant CDK4 proteins that bind the conformations induced by deleterious nsSNPs. Using computational prediction methods, we identified five nsSNPs as highly deleterious: R24C, Y180H, A205T, R210P, and R246C. From molecular docking and molecular dynamic studies, we observed that these deleterious nsSNPs affected CDK4-cyclin D1 and CDK4-flavopiridol interactions. Furthermore, in a virtual screening approach, the drug 5_7_DIHYDROXY_ 2_ (3_4_5_TRI HYDROXYPHENYL) _4H_CHROMEN_ 4_ONE displayed good binding affinity for proteins with the mutations R24C or R246C, the drug diosmin displayed good binding affinity for the protein with the mutation Y180H, and the drug rutin displayed good binding affinity for proteins with the mutations A205T and R210P. Overall, this computational investigation of the CDK4 gene highlights the link between genetic variation and biological phenomena in human cancer and aids in the discovery of molecularly targeted therapies for personalized treatment. PMID:26252490

  7. Genome wide approaches to identify protein-DNA interactions.

    PubMed

    Ma, Tao; Ye, Zhenqing; Wang, Liguo

    2018-05-29

    Transcription factors are DNA-binding proteins that play key roles in many fundamental biological processes. Unraveling their interactions with DNA is essential to identify their target genes and understand the regulatory network. Genome-wide identification of their binding sites became feasible thanks to recent progress in experimental and computational approaches. ChIP-chip, ChIP-seq, and ChIP-exo are three widely used techniques to demarcate genome-wide transcription factor binding sites. This review aims to provide an overview of these three techniques including their experiment procedures, computational approaches, and popular analytic tools. ChIP-chip, ChIP-seq, and ChIP-exo have been the major techniques to study genome-wide in vivo protein-DNA interaction. Due to the rapid development of next-generation sequencing technology, array-based ChIP-chip is deprecated and ChIP-seq has become the most widely used technique to identify transcription factor binding sites in genome-wide. The newly developed ChIP-exo further improves the spatial resolution to single nucleotide. Numerous tools have been developed to analyze ChIP-chip, ChIP-seq and ChIP-exo data. However, different programs may employ different mechanisms or underlying algorithms thus each will inherently include its own set of statistical assumption and bias. So choosing the most appropriate analytic program for a given experiment needs careful considerations. Moreover, most programs only have command line interface so their installation and usage will require basic computation expertise in Unix/Linux. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Small-scale collisions with big-scale effects: Direct numerical simulations of crystal interactions in dense suspensions and ramifications for magmatic differentiation

    NASA Astrophysics Data System (ADS)

    Sethian, J.; Suckale, J.; Yu, J.; Elkins-Tanton, L. T.

    2011-12-01

    Numerous problems in the Earth sciences involve the dynamic interaction between solid bodies and viscous flow. The goal of this contribution is to develop and validate a computational methodology for modeling complex solid-fluid interactions with minimal simplifying assumptions. The approach we develop is general enough to be applicable in a wide range of geophysical systems ranging from crystal-bearing lava flows to sediment-rich rivers and aerosol transport. Our algorithm relies on a two-step projection scheme: In the first step, we solve the multiple-phase Navier-Stokes or Stokes equation, respectively, in both domains. In the second step, we project the velocity field in the solid domain onto a rigid-body motion by enforcing that the deformation tensor in the respective domain is zero. An important component of the numerical scheme is the accurate treatment of collisions between an arbitrary number of suspended solid bodies based on the impact Stokes number and the elasticity parameters of the solid phase. We perform several benchmark computations to validate our computations including wake formation behind fixed and mobile cylinders and cuboids, the settling speed of particles, and laboratory experiments of collision modes. Finally, we apply our method to investigate the competing effect of entrainment and fractionation in crystalline suspensions - an important question in the context of magma differentiation processes in magma chambers and magma oceans. We find that the properties and volume fraction of the crystalline phase play an important role for evaluating differentiation efficiency.

  9. Effects of hydrophobic and dipole-dipole interactions on the conformational transitions of a model polypeptide

    NASA Astrophysics Data System (ADS)

    Mu, Yan; Gao, Yi Qin

    2007-09-01

    We studied the effects of hydrophobicity and dipole-dipole interactions between the nearest-neighbor amide planes on the secondary structures of a model polypeptide by calculating the free energy differences between different peptide structures. The free energy calculations were performed with low computational costs using the accelerated Monte Carlo simulation (umbrella sampling) method, with a bias-potential method used earlier in our accelerated molecular dynamics simulations. It was found that the hydrophobic interaction enhances the stability of α helices at both low and high temperatures but stabilizes β structures only at high temperatures at which α helices are not stable. The nearest-neighbor dipole-dipole interaction stabilizes β structures under all conditions, especially in the low temperature region where α helices are the stable structures. Our results indicate clearly that the dipole-dipole interaction between the nearest neighboring amide planes plays an important role in determining the peptide structures. Current research provides a more unified and quantitative picture for understanding the effects of different forms of interactions on polypeptide structures. In addition, the present model can be extended to describe DNA/RNA, polymer, copolymer, and other chain systems.

  10. Dynamics of Entangled Polymers: Role of Attractive Interactions

    NASA Astrophysics Data System (ADS)

    Grest, Gary S.; Koski, Jason

    The coupled dynamics of entangled polymers, which span broad time and length scales, govern their unique viscoelastic properties. Numerical simulations of highly coarse grained models are often used to follow chain mobility from the intermediate Rouse and reptation regimes to the late time diffusive regime. In these models, purely repulsive interactions between monomers are typically used because it is less computationally expensive than including attractive interactions. The effect of including the attractive interaction on the local and macroscopic properties of entangled polymer melts is explored over a wide temperature range using large scale molecular dynamics simulations. Attractive interactions are shown to have little effect on the local packing for all temperatures T and chain mobility for T higher than about twice the glass transition Tg. For lower T, the attractive interactions play a significant role, reducing the chain mobility compared to the repulsive case. As T approaches Tg breakdown of time-temperature superposition for the stress autocorrelation function is observed. Sandia National Labs is a multiprogram laboratory managed and operated by Sandia Corporation, a Lockheed-Martin Company, for the U.S. Dept of Energy under Contract No. DEAC04-94AL85000.

  11. What can we learn from in-soil imaging of a live plant: X-ray Computed Tomography and 3D numerical simulation of root-soil system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofan; Varga, Tamas; Liu, Chongxuan

    Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere. X-ray Computed Tomography (XCT) has been proven to be an effective tool for non-invasive root imaging and analysis. A combination of XCT, open-source software, and in-house developed code was used to non-invasively image a prairie dropseed (Sporobolus heterolepis) specimen, segment the root data to obtain a 3D image of the root structure, and extract quantitative information from the 3D data, respectively. Based on the explicitly-resolved root structure, pore-scale computational fluid dynamics (CFD) simulations were applied to numerically investigate the root-soil-groundwater system. The plant root conductivity, soilmore » hydraulic conductivity and transpiration rate were shown to control the groundwater distribution. Furthermore, the coupled imaging-modeling approach demonstrates a realistic platform to investigate rhizosphere flow processes and would be feasible to provide useful information linked to upscaled models.« less

  12. What can we learn from in-soil imaging of a live plant: X-ray Computed Tomography and 3D numerical simulation of root-soil system

    DOE PAGES

    Yang, Xiaofan; Varga, Tamas; Liu, Chongxuan; ...

    2017-05-04

    Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere. X-ray Computed Tomography (XCT) has been proven to be an effective tool for non-invasive root imaging and analysis. A combination of XCT, open-source software, and in-house developed code was used to non-invasively image a prairie dropseed (Sporobolus heterolepis) specimen, segment the root data to obtain a 3D image of the root structure, and extract quantitative information from the 3D data, respectively. Based on the explicitly-resolved root structure, pore-scale computational fluid dynamics (CFD) simulations were applied to numerically investigate the root-soil-groundwater system. The plant root conductivity, soilmore » hydraulic conductivity and transpiration rate were shown to control the groundwater distribution. Furthermore, the coupled imaging-modeling approach demonstrates a realistic platform to investigate rhizosphere flow processes and would be feasible to provide useful information linked to upscaled models.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alí-Torres, Jorge; Mirats, Andrea; Maréchal, Jean-Didier

    Amyloid plaques formation and oxidative stress are two key events in the pathology of the Alzheimer disease (AD), in which metal cations have been shown to play an important role. In particular, the interaction of the redox active Cu{sup 2+} metal cation with Aβ has been found to interfere in amyloid aggregation and to lead to reactive oxygen species (ROS). A detailed knowledge of the electronic and molecular structure of Cu{sup 2+}-Aβ complexes is thus important to get a better understanding of the role of these complexes in the development and progression of the AD disease. The computational treatment ofmore » these systems requires a combination of several available computational methodologies, because two fundamental aspects have to be addressed: the metal coordination sphere and the conformation adopted by the peptide upon copper binding. In this paper we review the main computational strategies used to deal with the Cu{sup 2+}-Aβ coordination and build plausible Cu{sup 2+}-Aβ models that will afterwards allow determining physicochemical properties of interest, such as their redox potential.« less

  14. Translating an effective group-based HIV prevention program to a program delivered primarily by a computer: methods and outcomes.

    PubMed

    Card, Josefina J; Kuhn, Tamara; Solomon, Julie; Benner, Tabitha A; Wingood, Gina M; DiClemente, Ralph J

    2011-04-01

    We describe development of SAHARA (SISTAS Accessing HIV/AIDS Resources At-a-click), an innovative HIV prevention program that uses a computer to deliver an updated version of SiSTA, a widely used, effective group-level HIV prevention intervention for African American women ages 18-29. Fidelity to SiSTA's core components was achieved using: (1) video clips featuring group discussions and modeling of appropriate sexual- and contraceptive-related behavior; and (2) interactive Flash modules facilitating cognitive rehearsal, providing learning experiences through games and quizzes, and providing opportunities for simulated role-play. A preliminary outcome study of SAHARA conducted at Planned Parenthood, Atlanta, found that SAHARA, when followed by a brief 20-minute wrap-up group session facilitated by a health educator, was effective in promoting consistent condom use for vaginal sex. We discuss the potential advantages and challenges of an intervention like SAHARA delivered by computer to an individual, versus one like SiSTA delivered by a health educator to a small group.

  15. A Computational Model of Linguistic Humor in Puns.

    PubMed

    Kao, Justine T; Levy, Roger; Goodman, Noah D

    2016-07-01

    Humor plays an essential role in human interactions. Precisely what makes something funny, however, remains elusive. While research on natural language understanding has made significant advancements in recent years, there has been little direct integration of humor research with computational models of language understanding. In this paper, we propose two information-theoretic measures-ambiguity and distinctiveness-derived from a simple model of sentence processing. We test these measures on a set of puns and regular sentences and show that they correlate significantly with human judgments of funniness. Moreover, within a set of puns, the distinctiveness measure distinguishes exceptionally funny puns from mediocre ones. Our work is the first, to our knowledge, to integrate a computational model of general language understanding and humor theory to quantitatively predict humor at a fine-grained level. We present it as an example of a framework for applying models of language processing to understand higher level linguistic and cognitive phenomena. © 2015 The Authors. Cognitive Science published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society.

  16. Force fields and scoring functions for carbohydrate simulation.

    PubMed

    Xiong, Xiuming; Chen, Zhaoqiang; Cossins, Benjamin P; Xu, Zhijian; Shao, Qiang; Ding, Kai; Zhu, Weiliang; Shi, Jiye

    2015-01-12

    Carbohydrate dynamics plays a vital role in many biological processes, but we are not currently able to probe this with experimental approaches. The highly flexible nature of carbohydrate structures differs in many aspects from other biomolecules, posing significant challenges for studies employing computational simulation. Over past decades, computational study of carbohydrates has been focused on the development of structure prediction methods, force field optimization, molecular dynamics simulation, and scoring functions for carbohydrate-protein interactions. Advances in carbohydrate force fields and scoring functions can be largely attributed to enhanced computational algorithms, application of quantum mechanics, and the increasing number of experimental structures determined by X-ray and NMR techniques. The conformational analysis of carbohydrates is challengeable and has gone into intensive study in elucidating the anomeric, the exo-anomeric, and the gauche effects. Here, we review the issues associated with carbohydrate force fields and scoring functions, which will have a broad application in the field of carbohydrate-based drug design. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Biophysics of object segmentation in a collision-detecting neuron

    PubMed Central

    Dewell, Richard Burkett

    2018-01-01

    Collision avoidance is critical for survival, including in humans, and many species possess visual neurons exquisitely sensitive to objects approaching on a collision course. Here, we demonstrate that a collision-detecting neuron can detect the spatial coherence of a simulated impending object, thereby carrying out a computation akin to object segmentation critical for proper escape behavior. At the cellular level, object segmentation relies on a precise selection of the spatiotemporal pattern of synaptic inputs by dendritic membrane potential-activated channels. One channel type linked to dendritic computations in many neural systems, the hyperpolarization-activated cation channel, HCN, plays a central role in this computation. Pharmacological block of HCN channels abolishes the neuron's spatial selectivity and impairs the generation of visually guided escape behaviors, making it directly relevant to survival. Additionally, our results suggest that the interaction of HCN and inactivating K+ channels within active dendrites produces neuronal and behavioral object specificity by discriminating between complex spatiotemporal synaptic activation patterns. PMID:29667927

  18. Bioinformatics approaches to predict target genes from transcription factor binding data.

    PubMed

    Essebier, Alexandra; Lamprecht, Marnie; Piper, Michael; Bodén, Mikael

    2017-12-01

    Transcription factors regulate gene expression and play an essential role in development by maintaining proliferative states, driving cellular differentiation and determining cell fate. Transcription factors are capable of regulating multiple genes over potentially long distances making target gene identification challenging. Currently available experimental approaches to detect distal interactions have multiple weaknesses that have motivated the development of computational approaches. Although an improvement over experimental approaches, existing computational approaches are still limited in their application, with different weaknesses depending on the approach. Here, we review computational approaches with a focus on data dependency, cell type specificity and usability. With the aim of identifying transcription factor target genes, we apply available approaches to typical transcription factor experimental datasets. We show that approaches are not always capable of annotating all transcription factor binding sites; binding sites should be treated disparately; and a combination of approaches can increase the biological relevance of the set of genes identified as targets. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Neural correlate of human reciprocity in social interactions

    PubMed Central

    Sakaiya, Shiro; Shiraito, Yuki; Kato, Junko; Ide, Hiroko; Okada, Kensuke; Takano, Kouji; Kansaku, Kenji

    2013-01-01

    Reciprocity plays a key role maintaining cooperation in society. However, little is known about the neural process that underpins human reciprocity during social interactions. Our neuroimaging study manipulated partner identity (computer, human) and strategy (random, tit-for-tat) in repeated prisoner's dilemma games and investigated the neural correlate of reciprocal interaction with humans. Reciprocal cooperation with humans but exploitation of computers by defection was associated with activation in the left amygdala. Amygdala activation was also positively and negatively correlated with a preference change for human partners following tit-for-tat and random strategies, respectively. The correlated activation represented the intensity of positive feeling toward reciprocal and negative feeling toward non-reciprocal partners, and so reflected reciprocity in social interaction. Reciprocity in social interaction, however, might plausibly be misinterpreted and so we also examined the neural coding of insight into the reciprocity of partners. Those with and without insight revealed differential brain activation across the reward-related circuitry (i.e., the right middle dorsolateral prefrontal cortex and dorsal caudate) and theory of mind (ToM) regions [i.e., ventromedial prefrontal cortex (VMPFC) and precuneus]. Among differential activations, activation in the precuneus, which accompanied deactivation of the VMPFC, was specific to those without insight into human partners who were engaged in a tit-for-tat strategy. This asymmetric (de)activation might involve specific contributions of ToM regions to the human search for reciprocity. Consequently, the intensity of emotion attached to human reciprocity was represented in the amygdala, whereas insight into the reciprocity of others was reflected in activation across the reward-related and ToM regions. This suggests the critical role of mentalizing, which was not equated with reward expectation during social interactions. PMID:24381534

  20. Neural correlate of human reciprocity in social interactions.

    PubMed

    Sakaiya, Shiro; Shiraito, Yuki; Kato, Junko; Ide, Hiroko; Okada, Kensuke; Takano, Kouji; Kansaku, Kenji

    2013-01-01

    Reciprocity plays a key role maintaining cooperation in society. However, little is known about the neural process that underpins human reciprocity during social interactions. Our neuroimaging study manipulated partner identity (computer, human) and strategy (random, tit-for-tat) in repeated prisoner's dilemma games and investigated the neural correlate of reciprocal interaction with humans. Reciprocal cooperation with humans but exploitation of computers by defection was associated with activation in the left amygdala. Amygdala activation was also positively and negatively correlated with a preference change for human partners following tit-for-tat and random strategies, respectively. The correlated activation represented the intensity of positive feeling toward reciprocal and negative feeling toward non-reciprocal partners, and so reflected reciprocity in social interaction. Reciprocity in social interaction, however, might plausibly be misinterpreted and so we also examined the neural coding of insight into the reciprocity of partners. Those with and without insight revealed differential brain activation across the reward-related circuitry (i.e., the right middle dorsolateral prefrontal cortex and dorsal caudate) and theory of mind (ToM) regions [i.e., ventromedial prefrontal cortex (VMPFC) and precuneus]. Among differential activations, activation in the precuneus, which accompanied deactivation of the VMPFC, was specific to those without insight into human partners who were engaged in a tit-for-tat strategy. This asymmetric (de)activation might involve specific contributions of ToM regions to the human search for reciprocity. Consequently, the intensity of emotion attached to human reciprocity was represented in the amygdala, whereas insight into the reciprocity of others was reflected in activation across the reward-related and ToM regions. This suggests the critical role of mentalizing, which was not equated with reward expectation during social interactions.

  1. Sensitivity Analysis of an ENteric Immunity SImulator (ENISI)-Based Model of Immune Responses to Helicobacter pylori Infection

    PubMed Central

    Alam, Maksudul; Deng, Xinwei; Philipson, Casandra; Bassaganya-Riera, Josep; Bisset, Keith; Carbo, Adria; Eubank, Stephen; Hontecillas, Raquel; Hoops, Stefan; Mei, Yongguo; Abedi, Vida; Marathe, Madhav

    2015-01-01

    Agent-based models (ABM) are widely used to study immune systems, providing a procedural and interactive view of the underlying system. The interaction of components and the behavior of individual objects is described procedurally as a function of the internal states and the local interactions, which are often stochastic in nature. Such models typically have complex structures and consist of a large number of modeling parameters. Determining the key modeling parameters which govern the outcomes of the system is very challenging. Sensitivity analysis plays a vital role in quantifying the impact of modeling parameters in massively interacting systems, including large complex ABM. The high computational cost of executing simulations impedes running experiments with exhaustive parameter settings. Existing techniques of analyzing such a complex system typically focus on local sensitivity analysis, i.e. one parameter at a time, or a close “neighborhood” of particular parameter settings. However, such methods are not adequate to measure the uncertainty and sensitivity of parameters accurately because they overlook the global impacts of parameters on the system. In this article, we develop novel experimental design and analysis techniques to perform both global and local sensitivity analysis of large-scale ABMs. The proposed method can efficiently identify the most significant parameters and quantify their contributions to outcomes of the system. We demonstrate the proposed methodology for ENteric Immune SImulator (ENISI), a large-scale ABM environment, using a computational model of immune responses to Helicobacter pylori colonization of the gastric mucosa. PMID:26327290

  2. A Deep Learning Framework for Robust and Accurate Prediction of ncRNA-Protein Interactions Using Evolutionary Information.

    PubMed

    Yi, Hai-Cheng; You, Zhu-Hong; Huang, De-Shuang; Li, Xiao; Jiang, Tong-Hai; Li, Li-Ping

    2018-06-01

    The interactions between non-coding RNAs (ncRNAs) and proteins play an important role in many biological processes, and their biological functions are primarily achieved by binding with a variety of proteins. High-throughput biological techniques are used to identify protein molecules bound with specific ncRNA, but they are usually expensive and time consuming. Deep learning provides a powerful solution to computationally predict RNA-protein interactions. In this work, we propose the RPI-SAN model by using the deep-learning stacked auto-encoder network to mine the hidden high-level features from RNA and protein sequences and feed them into a random forest (RF) model to predict ncRNA binding proteins. Stacked assembling is further used to improve the accuracy of the proposed method. Four benchmark datasets, including RPI2241, RPI488, RPI1807, and NPInter v2.0, were employed for the unbiased evaluation of five established prediction tools: RPI-Pred, IPMiner, RPISeq-RF, lncPro, and RPI-SAN. The experimental results show that our RPI-SAN model achieves much better performance than other methods, with accuracies of 90.77%, 89.7%, 96.1%, and 99.33%, respectively. It is anticipated that RPI-SAN can be used as an effective computational tool for future biomedical researches and can accurately predict the potential ncRNA-protein interacted pairs, which provides reliable guidance for biological research. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Sensitivity Analysis of an ENteric Immunity SImulator (ENISI)-Based Model of Immune Responses to Helicobacter pylori Infection.

    PubMed

    Alam, Maksudul; Deng, Xinwei; Philipson, Casandra; Bassaganya-Riera, Josep; Bisset, Keith; Carbo, Adria; Eubank, Stephen; Hontecillas, Raquel; Hoops, Stefan; Mei, Yongguo; Abedi, Vida; Marathe, Madhav

    2015-01-01

    Agent-based models (ABM) are widely used to study immune systems, providing a procedural and interactive view of the underlying system. The interaction of components and the behavior of individual objects is described procedurally as a function of the internal states and the local interactions, which are often stochastic in nature. Such models typically have complex structures and consist of a large number of modeling parameters. Determining the key modeling parameters which govern the outcomes of the system is very challenging. Sensitivity analysis plays a vital role in quantifying the impact of modeling parameters in massively interacting systems, including large complex ABM. The high computational cost of executing simulations impedes running experiments with exhaustive parameter settings. Existing techniques of analyzing such a complex system typically focus on local sensitivity analysis, i.e. one parameter at a time, or a close "neighborhood" of particular parameter settings. However, such methods are not adequate to measure the uncertainty and sensitivity of parameters accurately because they overlook the global impacts of parameters on the system. In this article, we develop novel experimental design and analysis techniques to perform both global and local sensitivity analysis of large-scale ABMs. The proposed method can efficiently identify the most significant parameters and quantify their contributions to outcomes of the system. We demonstrate the proposed methodology for ENteric Immune SImulator (ENISI), a large-scale ABM environment, using a computational model of immune responses to Helicobacter pylori colonization of the gastric mucosa.

  4. Virtual reality on the web: the potentials of different methodologies and visualization techniques for scientific research and medical education.

    PubMed

    Kling-Petersen, T; Pascher, R; Rydmark, M

    1999-01-01

    Academic and medical imaging are increasingly using computer based 3D reconstruction and/or visualization. Three-dimensional interactive models play a major role in areas such as preclinical medical education, clinical visualization and medical research. While 3D is comparably easy to do on a high end workstations, distribution and use of interactive 3D graphics necessitate the use of personal computers and the web. Several new techniques have been demonstrated providing interactive 3D via a web browser thereby allowing a limited version of VR to be experienced by a larger majority of students, medical practitioners and researchers. These techniques include QuickTimeVR2 (QTVR), VRML2, QuickDraw3D, OpenGL and Java3D. In order to test the usability of the different techniques, Mednet have initiated a number of projects designed to evaluate the potentials of 3D techniques for scientific reporting, clinical visualization and medical education. These include datasets created by manual tracing followed by triangulation, smoothing and 3D visualization, MRI or high-resolution laserscanning. Preliminary results indicate that both VRML and QTVR fulfills most of the requirements of web based, interactive 3D visualization, whereas QuickDraw3D is too limited. Presently, the JAVA 3D has not yet reached a level where in depth testing is possible. The use of high-resolution laserscanning is an important addition to 3D digitization.

  5. The Impacts of Attitudes and Engagement on Electronic Word of Mouth (eWOM) of Mobile Sensor Computing Applications.

    PubMed

    Zhao, Yu; Liu, Yide; Lai, Ivan K W; Zhang, Hongfeng; Zhang, Yi

    2016-03-18

    As one of the latest revolutions in networking technology, social networks allow users to keep connected and exchange information. Driven by the rapid wireless technology development and diffusion of mobile devices, social networks experienced a tremendous change based on mobile sensor computing. More and more mobile sensor network applications have appeared with the emergence of a huge amount of users. Therefore, an in-depth discussion on the human-computer interaction (HCI) issues of mobile sensor computing is required. The target of this study is to extend the discussions on HCI by examining the relationships of users' compound attitudes (i.e., affective attitudes, cognitive attitude), engagement and electronic word of mouth (eWOM) behaviors in the context of mobile sensor computing. A conceptual model is developed, based on which, 313 valid questionnaires are collected. The research discusses the level of impact on the eWOM of mobile sensor computing by considering user-technology issues, including the compound attitude and engagement, which can bring valuable discussions on the HCI of mobile sensor computing in further study. Besides, we find that user engagement plays a mediating role between the user's compound attitudes and eWOM. The research result can also help the mobile sensor computing industry to develop effective strategies and build strong consumer user-product (brand) relationships.

  6. The Impacts of Attitudes and Engagement on Electronic Word of Mouth (eWOM) of Mobile Sensor Computing Applications

    PubMed Central

    Zhao, Yu; Liu, Yide; Lai, Ivan K. W.; Zhang, Hongfeng; Zhang, Yi

    2016-01-01

    As one of the latest revolutions in networking technology, social networks allow users to keep connected and exchange information. Driven by the rapid wireless technology development and diffusion of mobile devices, social networks experienced a tremendous change based on mobile sensor computing. More and more mobile sensor network applications have appeared with the emergence of a huge amount of users. Therefore, an in-depth discussion on the human–computer interaction (HCI) issues of mobile sensor computing is required. The target of this study is to extend the discussions on HCI by examining the relationships of users’ compound attitudes (i.e., affective attitudes, cognitive attitude), engagement and electronic word of mouth (eWOM) behaviors in the context of mobile sensor computing. A conceptual model is developed, based on which, 313 valid questionnaires are collected. The research discusses the level of impact on the eWOM of mobile sensor computing by considering user-technology issues, including the compound attitude and engagement, which can bring valuable discussions on the HCI of mobile sensor computing in further study. Besides, we find that user engagement plays a mediating role between the user’s compound attitudes and eWOM. The research result can also help the mobile sensor computing industry to develop effective strategies and build strong consumer user—product (brand) relationships. PMID:26999155

  7. Wireless Adaptive Therapeutic TeleGaming in a Pervasive Computing Environment

    NASA Astrophysics Data System (ADS)

    Peters, James F.; Szturm, Tony; Borkowski, Maciej; Lockery, Dan; Ramanna, Sheela; Shay, Barbara

    This chapter introduces a wireless, pervasive computing approach to adaptive therapeutic telegaming considered in the context of near set theory. Near set theory provides a formal basis for observation, comparison and classification of perceptual granules. A perceptual granule is defined by a collection of objects that are graspable by the senses or by the mind. In the proposed pervasive computing approach to telegaming, a handicapped person (e.g., stroke patient with limited hand, finger, arm function) plays a video game by interacting with familiar instrumented objects such as cups, cutlery, soccer balls, nozzles, screw top-lids, spoons, so that the technology that makes therapeutic exercise game-playing possible is largely invisible (Archives of Physical Medicine and Rehabilitation 89:2213-2217, 2008). The basic approach to adaptive learning (AL) in the proposed telegaming environment is ethology-inspired and is quite different from the traditional approach to reinforcement learning. In biologically-inspired learning, organisms learn to achieve some goal by durable modification of behaviours in response to signals from the environment resulting from specific experiences (Animal Behavior, 1995). The term adaptive is used here in an ethological sense, where learning by an organism results from modifying behaviour in response to perceived changes in the environment. To instill adaptivity in a video game, it is assumed that learning by a video game is episodic. During an episode, the behaviour of a player is measured indirectly by tracking the occurrence of gaming events such as a hit or a miss of a target (e.g., hitting a moving ball with a game paddle). An ethogram provides a record of behaviour feature values that provide a basis a functional registry for handicapped players for gaming adaptivity. An important practical application of adaptive gaming is therapeutic rehabilitation exercise carried out in parallel with playing action video games. Enjoyable and engaging interactive gaming will motivate patients to complete the rehabilitation process. Adaptivity is seen as a way to make action games more accessible to those who have physical and cognitive impairments. The telegaming system connects to the internet and implements a feed-and-forward mechanism that transmits gaming session tables after each gaming session to a remote registry accessible to therapists and researchers. The contribution of this chapter is the introduction of a framework for wireless telegaming useful in therapeutic rehabilitation.

  8. Novel dimer based descriptors with solvational computation for QSAR study of oxadiazoylbenzoyl-ureas as novel insect-growth regulators.

    PubMed

    Fan, Feng; Cheng, Jiagao; Li, Zhong; Xu, Xiaoyong; Qian, Xuhong

    2010-02-01

    Molecular aggregation state of bioactive compounds plays a key role in its bio-interactive procedure. In this article, based on the structure information of dimers, the simplest model of molecular aggregation state, and combined with solvational computation, total four descriptors (DeltaV, MR2, DeltaE(1), and DeltaE(2)) were calculated for QSAR study of a novel insect-growth regulator, N-(5-phenyl-1,3,4-oxadiazol-2-yl)-N'-benzoyl urea. Two QSAR models were constructed with r(2) = 0.671, q(2) = 0.516 and r(2) = 0.816, q(2) = 0.695, respectively. It implicates that the bioactivity may strongly depend on the characters of molecular aggregation state, especially on the dimeric transport ability from oil phase to water phase. Copyright 2009 Wiley Periodicals, Inc.

  9. Social Computing and the Attention Economy

    NASA Astrophysics Data System (ADS)

    Huberman, Bernardo A.

    2013-04-01

    Social computing focuses on the interaction between social behavior and information, especially on how the latter propagates across social networks and is consumed and transformed in the process. At the same time the ubiquity of information has left it devoid of much monetary value. The scarce, and therefore valuable, resource is now attention, and its allocation gives rise to an attention economy that determines how content is consumed and propagated. Since two major factors involved in getting attention are novelty and popularity, we analyze the role that both play in attracting attention to web content and how to prioritize them in order to maximize it. We also demonstrate that the relative performance of strategies based on prioritizing either popularity or novelty exhibit an abrupt change around a critical value of the novelty decay time, resembling a phase transition.

  10. Pair plasma relaxation time scales.

    PubMed

    Aksenov, A G; Ruffini, R; Vereshchagin, G V

    2010-04-01

    By numerically solving the relativistic Boltzmann equations, we compute the time scale for relaxation to thermal equilibrium for an optically thick electron-positron plasma with baryon loading. We focus on the time scales of electromagnetic interactions. The collisional integrals are obtained directly from the corresponding QED matrix elements. Thermalization time scales are computed for a wide range of values of both the total-energy density (over 10 orders of magnitude) and of the baryonic loading parameter (over 6 orders of magnitude). This also allows us to study such interesting limiting cases as the almost purely electron-positron plasma or electron-proton plasma as well as intermediate cases. These results appear to be important both for laboratory experiments aimed at generating optically thick pair plasmas as well as for astrophysical models in which electron-positron pair plasmas play a relevant role.

  11. [Violent computergames: distribution via and discussion on the Internet].

    PubMed

    Nagenborg, Michael

    2005-11-01

    The spread and use of computer-games including (interactive) depictions of violence are considered a moral problem, particularly if played by children and youths. This essay expresses an opinion on H. Volper's (2004) demand of condemning certain contents by media ethics. At the same time, an overview on the spread and use of "violent games" by children and youths is offered. As a matter of fact, the share of these titles in the complete range must not be estimated too high, certain titles on the other hand are extremely wide-spread. Finally, Fritz's and Fehr's thesis of the cultural conflict "computer game" (2004) is discussed, demonstrated at the example of the discussion on the Internet, and on the basis of this thesis a mediating position between the two cultures including audience ethics (Funiok 1999) is presented.

  12. Media use as a reason for meal skipping and fast eating in secondary school children.

    PubMed

    Van den Bulck, J; Eggermont, S

    2006-04-01

    This study examined self-reported meal skipping and eating faster than usual with the goal of watching television or playing computer games. Respondents reported their media use and indicated how often they skipped a meal to watch a favourite television programme or to play a computer game, and how often they ate faster than usual in order to watch television or play a computer game. Respondents were 2546 adolescents of 13 (first year of secondary school) and 16 years (fourth year of secondary school) of age. About one respondent in 10 skipped at least one meal every week for either television viewing or computer game playing. Weekly meal skipping for television viewing occurs more regularly in boys and first-year students, but particularly in teenagers who view 5 h or more daily (15% of the sample). The category of teenagers who play computer games four times a week or more (25.3% of the sample) is at increased risk of meal skipping; those who play more than four times a week are 10 times more likely weekly to skip a meal. A quarter of the adolescents eat faster at least once a week to be able to watch television or play a computer game. Regardless of gender and school year, teenagers' risk of eating faster progressively increases with their use of the media. Those who watch 4 h or more daily are about seven times more likely to skip a meal for television and those who play computer games at least four times a week are nine times more likely weekly to skip a meal. Unhealthy eating habits can be a side effect of heavy or excessive media use. Teenagers' use of television or game computers during nonworking or out-of-school hours partly displaces the amount of time that needs to be spent at meals. Practitioners and educators may try to encourage or restore a pattern of healthful meal consumption habits by reducing the amount of media use, and by supporting parental rule-making regarding children's eating habits and media use.

  13. Computers and Play in Early Childhood: Affordances and Limitations

    ERIC Educational Resources Information Center

    Verenikina, Irina; Herrington, Jan; Peterson, Rob; Mantei, Jessica

    2010-01-01

    The widespread proliferation of computer games for children as young as six months of age, merits a reexamination of their manner of use and a review of their facility to provide opportunities for developmental play. This article describes a research study conducted to explore the use of computer games by young children, specifically to…

  14. Awareware: Narrowcasting Attributes for Selective Attention, Privacy, and Multipresence

    NASA Astrophysics Data System (ADS)

    Cohen, Michael; Newton Fernando, Owen Noel

    The domain of cscw, computer-supported collaborative work, and DSC, distributed synchronous collaboration, spans real-time interactive multiuser systems, shared information spaces, and applications for teleexistence and artificial reality, including collaborative virtual environments ( cves) (Benford et al., 2001). As presence awareness systems emerge, it is important to develop appropriate interfaces and architectures for managing multimodal multiuser systems. Especially in consideration of the persistent connectivity enabled by affordable networked communication, shared distributed environments require generalized control of media streams, techniques to control source → sink transmissions in synchronous groupware, including teleconferences and chatspaces, online role-playing games, and virtual concerts.

  15. Using game theory to investigate the epigenetic control mechanisms of embryo development. Comment on: ;Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition; by Qian Wang et al.

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Zhang, Shaoxiang

    2017-03-01

    A body of research [1-7] has already shown that epigenetic reprogramming plays a critical role in maintaining the normal development of embryos. However, the mechanistic quantitation of the epigenetic interactions between sperms and oocytes and the related impact on embryo development are still not clear [6,7]. In this study, Wang et al., [8] develop a modeling framework that addresses this question by integrating game theory and the latest discoveries of the epigenetic control of embryo development.

  16. Satellite -Based Networks for U-Health & U-Learning

    NASA Astrophysics Data System (ADS)

    Graschew, G.; Roelofs, T. A.; Rakowsky, S.; Schlag, P. M.

    2008-08-01

    The use of modern Information and Communication Technologies (ICT) as enabling tools for healthcare services (eHealth) introduces new ways of creating ubiquitous access to high-level medical care for all, anytime and anywhere (uHealth). Satellite communication constitutes one of the most flexible methods of broadband communication offering high reliability and cost-effectiveness of connections meeting telemedicine communication requirements. Global networks and the use of computers for educational purposes stimulate and support the development of virtual universities for e-learning. Especially real-time interactive applications can play an important role in tailored and personalised services.

  17. Space Age Training

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Teledyne Brown developed a computer-based interactive multimedia training system for use with the Crystal Growth Furnace in the U.S. Microgravity Laboratory-2 mission on the Space Shuttle. Teledyne Brown commercialized the system and customized it for PPG Industries Aircraft Products. The system challenges learners with role-playing scenarios and software-driven simulations engaging all the senses using text, video, animation, voice, sounds and music. The transfer of this technology to commercial industrial process training has resulted in significant improvements in effectiveness, standardization, and quality control, as well as cost reductions over the usual classroom and on-the- job training approaches.

  18. Petri net modelling of biological networks.

    PubMed

    Chaouiya, Claudine

    2007-07-01

    Mathematical modelling is increasingly used to get insights into the functioning of complex biological networks. In this context, Petri nets (PNs) have recently emerged as a promising tool among the various methods employed for the modelling and analysis of molecular networks. PNs come with a series of extensions, which allow different abstraction levels, from purely qualitative to more complex quantitative models. Noteworthily, each of these models preserves the underlying graph, which depicts the interactions between the biological components. This article intends to present the basics of the approach and to foster the potential role PNs could play in the development of the computational systems biology.

  19. Neuroscience-Inspired Artificial Intelligence.

    PubMed

    Hassabis, Demis; Kumaran, Dharshan; Summerfield, Christopher; Botvinick, Matthew

    2017-07-19

    The fields of neuroscience and artificial intelligence (AI) have a long and intertwined history. In more recent times, however, communication and collaboration between the two fields has become less commonplace. In this article, we argue that better understanding biological brains could play a vital role in building intelligent machines. We survey historical interactions between the AI and neuroscience fields and emphasize current advances in AI that have been inspired by the study of neural computation in humans and other animals. We conclude by highlighting shared themes that may be key for advancing future research in both fields. Copyright © 2017. Published by Elsevier Inc.

  20. The effects of scripted peer tutoring and programming common stimuli on social interactions of a student with autism spectrum disorder.

    PubMed

    Petursdottir, Anna-Lind; McComas, Jennifer; McMaster, Kristen; Horner, Kathy

    2007-01-01

    This study examined the effects of scripted peer-tutoring reading activities, with and without programmed common play-related stimuli, on social interactions between a kindergartner with autism spectrum disorder and his typically developing peer-tutoring partners during free play. A withdrawal design with multiple baselines across peers showed no effects of peer tutoring on social interactions. A withdrawal design with 1 peer and continuing baselines across the other 2 peers showed that adding play-related common stimuli to the peer-tutoring activity increased social interactions during free play.

  1. The Effects of Scripted Peer Tutoring and Programming Common Stimuli on Social Interactions of a Student with Autism Spectrum Disorder

    PubMed Central

    Petursdottir, Anna-Lind; McComas, Jennifer; McMaster, Kristen; Horner, Kathy

    2007-01-01

    This study examined the effects of scripted peer-tutoring reading activities, with and without programmed common play-related stimuli, on social interactions between a kindergartner with autism spectrum disorder and his typically developing peer-tutoring partners during free play. A withdrawal design with multiple baselines across peers showed no effects of peer tutoring on social interactions. A withdrawal design with 1 peer and continuing baselines across the other 2 peers showed that adding play-related common stimuli to the peer-tutoring activity increased social interactions during free play. PMID:17624077

  2. Structural investigation of C4b-binding protein by molecular modeling: localization of putative binding sites.

    PubMed

    Villoutreix, B O; Härdig, Y; Wallqvist, A; Covell, D G; García de Frutos, P; Dahlbäck, B

    1998-06-01

    C4b-binding protein (C4BP) contributes to the regulation of the classical pathway of the complement system and plays an important role in blood coagulation. The main human C4BP isoform is composed of one beta-chain and seven alpha-chains essentially built from three and eight complement control protein (CCP) modules, respectively, followed by a nonrepeat carboxy-terminal region involved in polymerization of the chains. C4BP is known to interact with heparin, C4b, complement factor I, serum amyloid P component, streptococcal Arp and Sir proteins, and factor VIII/VIIIa via its alpha-chains and with protein S through its beta-chain. The principal aim of the present study was to localize regions of C4BP involved in the interaction with C4b, Arp, and heparin. For this purpose, a computer model of the 8 CCP modules of C4BP alpha-chain was constructed, taking into account data from previous electron microscopy (EM) studies. This structure was investigated in the context of known and/or new experimental data. Analysis of the alpha-chain model, together with monoclonal antibody studies and heparin binding experiments, suggests that a patch of positively charged residues, at the interface between the first and second CCP modules, plays an important role in the interaction between C4BP and C4b/Arp/Sir/heparin. Putative binding sites, secondary-structure prediction for the central core, and an overall reevaluation of the size of the C4BP molecule are also presented. An understanding of these intermolecular interactions should contribute to the rational design of potential therapeutic agents aiming at interfering specifically some of these protein-protein interactions.

  3. Structural modeling and molecular simulation analysis of HvAP2/EREBP from barley.

    PubMed

    Pandey, Bharati; Sharma, Pradeep; Tyagi, Chetna; Goyal, Sukriti; Grover, Abhinav; Sharma, Indu

    2016-06-01

    AP2/ERF transcription factors play a critical role in plant development and stress adaptation. This study reports the three-dimensional ab initio-based model of AP2/EREBP protein of barley and its interaction with DNA. Full-length coding sequence of HvAP2/EREBP gene isolated from two Indian barley cultivars, RD 2503 and RD 31, was used to model the protein. Of five protein models obtained, the one with lowest C-score was chosen for further analysis. The N- and C-terminal regions of HvAP2 protein were found to be highly disordered. The dynamic properties of AP2/EREBP and its interaction with DNA were investigated by molecular dynamics simulation. Analysis of trajectories from simulation yielded the equilibrated conformation between 2-10ns for protein and 7-15ns for protein-DNA complex. We established relationship between DNA having GCC box and DNA-binding domain of HvAP2/EREBP was established by modeling 11-base-pair-long nucleotide sequence and HvAP2/EREBP protein using ab initio method. Analysis of protein-DNA interaction showed that a β-sheet motif constituting amino acid residues THR105, ARG100, ARG93, and ARG83 seems to play important role in stabilizing the complex as they form strong hydrogen bond interactions with the DNA motif. Taken together, this study provides first-hand comprehensive information detailing structural conformation and interactions of HvAP2/EREBP proteins in barley. The study intensifies the role of computational approaches for preliminary examination of unknown proteins in the absence of experimental information. It also provides molecular insight into protein-DNA binding for understanding and enhancing abiotic stress resistance for improving the water use efficiency in crop plants.

  4. After-effects of human-computer interaction indicated by P300 of the event-related brain potential.

    PubMed

    Trimmel, M; Huber, R

    1998-05-01

    After-effects of human-computer interaction (HCI) were investigated by using the P300 component of the event-related brain potential (ERP). Forty-nine subjects (naive non-users, beginners, experienced users, programmers) completed three paper/pencil tasks (text editing, solving intelligence test items, filling out a questionnaire on sensation seeking) and three HCI tasks (text editing, executing a tutor program or programming, playing Tetris). The sequence of 7-min tasks was randomized between subjects and balanced between groups. After each experimental condition ERPs were recorded during an acoustic discrimination task at F3, F4, Cz, P3 and P4. Data indicate that: (1) mental after-effects of HCI can be detected by P300 of the ERP; (2) HCI showed in general a reduced amplitude; (3) P300 amplitude varied also with type of task, mainly at F4 where it was smaller after cognitive tasks (intelligence test/programming) and larger after emotion-based tasks (sensation seeking/Tetris); (4) cognitive tasks showed shorter latencies; (5) latencies were widely location-independent (within the range of 356-358 ms at F3, F4, P3 and P4) after executing the tutor program or programming; and (6) all observed after-effects were independent of the user's experience in operating computers and may therefore reflect short-term after-effects only and no structural changes of information processing caused by HCI.

  5. Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information.

    PubMed

    Li, Min; Li, Wenkai; Wu, Fang-Xiang; Pan, Yi; Wang, Jianxin

    2018-06-14

    Essential proteins are important participants in various life activities and play a vital role in the survival and reproduction of living organisms. Identification of essential proteins from protein-protein interaction (PPI) networks has great significance to facilitate the study of human complex diseases, the design of drugs and the development of bioinformatics and computational science. Studies have shown that highly connected proteins in a PPI network tend to be essential. A series of computational methods have been proposed to identify essential proteins by analyzing topological structures of PPI networks. However, the high noise in the PPI data can degrade the accuracy of essential protein prediction. Moreover, proteins must be located in the appropriate subcellular localization to perform their functions, and only when the proteins are located in the same subcellular localization, it is possible that they can interact with each other. In this paper, we propose a new network-based essential protein discovery method based on sub-network partition and prioritization by integrating subcellular localization information, named SPP. The proposed method SPP was tested on two different yeast PPI networks obtained from DIP database and BioGRID database. The experimental results show that SPP can effectively reduce the effect of false positives in PPI networks and predict essential proteins more accurately compared with other existing computational methods DC, BC, CC, SC, EC, IC, NC. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Negative correlates of computer game play in adolescents.

    PubMed

    Colwell, J; Payne, J

    2000-08-01

    There is some concern that playing computer games may be associated with social isolation, lowered self-esteem, and aggression among adolescents. Measures of these variables were included in a questionnaire completed by 204 year eight students at a North London comprehensive school. Principal components analysis of a scale to assess needs fulfilled by game play provided some support for the notion of 'electronic friendship' among boys, but there was no evidence that game play leads to social isolation. Play was not linked to self-esteem in girls, but a negative relationship was obtained between self-esteem and frequency of play in boys. However, self-esteem was not associated with total exposure to game play. Aggression scores were not related to the number of games with aggressive content named among three favourite games, but they were positively correlated with total exposure to game play. A multiple regression analysis revealed that sex and total game play exposure each accounted for a significant but small amount of the variance in aggression scores. The positive correlation between playing computer games and aggression provides some justification for further investigation of the causal hypothesis, and possible methodologies are discussed.

  7. The kids got game: Computer/video games, gender and learning outcomes in science classrooms

    NASA Astrophysics Data System (ADS)

    Anderson, Janice Lyn

    In recent years educators have begun to explore how to purposively design computer/video games to support student learning. This interest in video games has arisen in part because educational video games appear to have the potential to improve student motivation and interest in technology, and engage students in learning through the use of a familiar medium (Squire, 2005; Shaffer, 2006; Gee, 2005). The purpose of this dissertation research is to specifically address the issue of student learning through the use of educational computer/video games. Using the Quest Atlantis computer game, this study involved a mixed model research strategy that allowed for both broad understandings of classroom practices and specific analysis of outcomes through the themes that emerged from the case studies of the gendered groups using the game. Specifically, this study examined how fifth-grade students learning about science concepts, such as water quality and ecosystems, unfolds over time as they participate in the Quest Atlantis computer game. Data sources included classroom observations and video, pre- and post-written assessments, pre- and post- student content interviews, student field notebooks, field reports and the field notes of the researcher. To make sense of how students learning unfolded, video was analyzed using a framework of interaction analysis and small group interactions (Jordan & Henderson, 1995; Webb, 1995). These coded units were then examined with respect to student artifacts and assessments and patterns of learning trajectories analyzed. The analysis revealed that overall, student learning outcomes improved from pre- to post-assessments for all students. While there were no observable gendered differences with respect to the test scores and content interviews, there were gendered differences with respect to game play. Implications for game design, use of external scaffolds, games as tools for learning and gendered findings are discussed.

  8. Use of information and communication technology and prevalence of overweight and obesity among adolescents.

    PubMed

    Kautiainen, S; Koivusilta, L; Lintonen, T; Virtanen, S M; Rimpelä, A

    2005-08-01

    The prevalence of overweight and obesity has increased among children and adolescents, as well as among adults, and television viewing has been suggested as one cause. Playing digital games (video, computer and console games), or using computer may be other sedentary behaviors related to the development of overweight and obesity. To study the relationships of times spent on viewing television, playing digital games and using computer to overweight among Finnish adolescents. Mailed cross-sectional survey. Nationally representative samples of 14-, 16-, and 18-y-old (N=6515, response rate 70%) in 2001. Overweight and obesity were assessed by body mass index (BMI). The respondents reported times spent daily on viewing television, playing digital games (video, computer and console games) and using computer (for e-mail, writing and surfing). Data on timing of biological maturation, intensity of weekly physical activity and family's socio economic status were taken into account in the statistical analyses. Increased times spent on viewing television and using computer were associated with increased prevalence of overweight (obesity inclusive) among girls: compared to girls viewing television <1 h daily, the adjusted odds ratio (OR) for being overweight was 1.4 when spending 1-3 h, and 2.0 when spending > or =4 h daily on viewing television. In girls using computer > or =1 h daily, the OR for being overweight was 1.5 compared to girls using computer <1 h daily. The results were similar in boys, although not statistically significant. Time spent on playing digital games was not associated with overweight. Overweight was associated with using information and communication technology (ICT), but only with certain forms of ICT. Increased use of ICT may be one factor explaining the increased prevalence of overweight and obesity at the population level, at least in girls. Playing digital games was not related to overweight, perhaps by virtue of game playing being less sedentary or related to a different lifestyle than viewing television and using computer.

  9. The Play Theory and Computer Games Using in Early Childhood Education

    ERIC Educational Resources Information Center

    Gerkushenko, Svetlana; Gerkushenko, Georgy

    2014-01-01

    The article describes the role of play in child's development and identifies the characteristics of mature play in preschool age. The paper gives an overview of the computer games for preschool children used in Russian kindergartens. The research conducted with 50 Russian kindergarten teachers provides the analysis of the most important factors of…

  10. Playing with Technology: Is It All Bad?

    ERIC Educational Resources Information Center

    Slutsky, Ruslan; Slutsky, Mindy; DeShelter, Lori M.

    2014-01-01

    Technology now plays a very large role in the way children of all ages play. Children want access to technology, so parents and teachers must determine the best ways to present it to them. Computers are a popular form of technology for children as young as age three. With that in mind, computer games should be problem-solving oriented and…

  11. A Preliminary Study of Low-Income African American Fathers' Play Interactions with Their Preschool-Age Children.

    ERIC Educational Resources Information Center

    Fagan, Jay

    1996-01-01

    Examined play interactions of 33 low-income African American fathers with their preschool-age children in relation to the fathers' psychological characteristics, love for the child's mother, employment status, education, and coresidence with the child. The fathers' self-esteem was the best predictor of play interactions. Coresidence with the child…

  12. Peer Play Interactions and Learning for Low-Income Preschool Children: The Moderating Role of Classroom Quality

    ERIC Educational Resources Information Center

    Bulotsky-Shearer, Rebecca J.; Bell, Elizabeth R.; Carter, Tracy M.; Dietrich, Sandy L. R.

    2014-01-01

    Research Findings: The present study examined the degree to which the association between interactive peer play and academic skills was dependent upon the level of classroom quality for a representative sample of culturally and linguistically diverse urban Head Start children (N = 304 children across 53 classrooms). Peer play interactions within…

  13. Relating testosterone levels and free play social behavior in male and female preschool children.

    PubMed

    Sánchez-Martín, J R; Fano, E; Ahedo, L; Cardas, J; Brain, P F; Azpíroz, A

    2000-11-01

    This study assessed potential relationships between a series of behavioral measures seen in the interactions of preschool children with their peers (particularly aggressive behavior) and testosterone levels. 28 boys and 20 girls of preschool age were videotaped in free play interactions. Their behavior was then evaluated with particular emphasis on aggression and affiliation in play and social interactions. Testosterone levels were measured using radioimmunoassay in saliva samples. Correlation analysis revealed a positive relationship in boys between testosterone and giving and receiving aggression in the context of 'social interactions' (serious aggression), but not in the context of play (playful aggresstion). Testosterone can be a useful biological marker for serious aggression (and behavioral patterns reflecting different levels of sociability) in preschool boys.

  14. Uncertainty and Cognitive Control

    PubMed Central

    Mushtaq, Faisal; Bland, Amy R.; Schaefer, Alexandre

    2011-01-01

    A growing trend of neuroimaging, behavioral, and computational research has investigated the topic of outcome uncertainty in decision-making. Although evidence to date indicates that humans are very effective in learning to adapt to uncertain situations, the nature of the specific cognitive processes involved in the adaptation to uncertainty are still a matter of debate. In this article, we reviewed evidence suggesting that cognitive control processes are at the heart of uncertainty in decision-making contexts. Available evidence suggests that: (1) There is a strong conceptual overlap between the constructs of uncertainty and cognitive control; (2) There is a remarkable overlap between the neural networks associated with uncertainty and the brain networks subserving cognitive control; (3) The perception and estimation of uncertainty might play a key role in monitoring processes and the evaluation of the “need for control”; (4) Potential interactions between uncertainty and cognitive control might play a significant role in several affective disorders. PMID:22007181

  15. Investigation of Trimethyllysine Binding by the HP1 Chromodomain via Unnatural Amino Acid Mutagenesis.

    PubMed

    Baril, Stefanie A; Koenig, Amber L; Krone, Mackenzie W; Albanese, Katherine I; He, Cyndi Qixin; Lee, Ga Young; Houk, Kendall N; Waters, Marcey L; Brustad, Eric M

    2017-12-06

    Trimethyllysine (Kme3) reader proteins are targets for inhibition due to their role in mediating gene expression. Although all such reader proteins bind Kme3 in an aromatic cage, the driving force for binding may differ; some readers exhibit evidence for cation-π interactions whereas others do not. We report a general unnatural amino acid mutagenesis approach to quantify the contribution of individual tyrosines to cation binding using the HP1 chromodomain as a model system. We demonstrate that two tyrosines (Y24 and Y48) bind to a Kme3-histone tail peptide via cation-π interactions, but linear free energy trends suggest they do not contribute equally to binding. X-ray structures and computational analysis suggest that the distance and degree of contact between Tyr residues and Kme3 plays an important role in tuning cation-π-mediated Kme3 recognition. Although cation-π interactions have been studied in a number of proteins, this work is the first to utilize direct binding assays, X-ray crystallography, and modeling, to pinpoint factors that influence the magnitude of the individual cation-π interactions.

  16. Play Behaviors of Parents and Their Young Children with Disabilities

    ERIC Educational Resources Information Center

    Childress, Dana C.

    2011-01-01

    Learning to explore, communicate, and interact with others and the environment through play can be problematic for young children with disabilities, but with parental support, children can learn and interact successfully during play activities. To determine how parents engage their preschool children with disabilities in play and what behaviors…

  17. Playing with Technology: Mother-Toddler Interaction Scores Lower during Play with Electronic Toys

    ERIC Educational Resources Information Center

    Wooldridge, Michaela B.; Shapka, Jennifer

    2012-01-01

    To investigate play with electronic toys (battery-operated or digital), 25 mother-toddler (16-24 months old) dyads were videotaped in their homes playing with sets of age-appropriate electronic and non-electronic toys for approximately 10 min each. Parent-child interactions were coded from recorded segments of both of the play conditions using the…

  18. "Don't Ruin My Pretend": Kids Sustaining Play Interactions in Out-of-School Settings

    ERIC Educational Resources Information Center

    Eyerman, Suzanne

    2011-01-01

    As much as play is researched and discussed by people interested in children and childhood, studies often fail to examine closely the ways that kids accomplish their play. This study sought to answer the question of how children sustain their play interactions. By making use of qualitative methods to collect and analyze data, the play of…

  19. Help me if I can't: Social interaction effects in adult contextual word learning.

    PubMed

    Verga, Laura; Kotz, Sonja A

    2017-11-01

    A major challenge in second language acquisition is to build up new vocabulary. How is it possible to identify the meaning of a new word among several possible referents? Adult learners typically use contextual information, which reduces the number of possible referents a new word can have. Alternatively, a social partner may facilitate word learning by directing the learner's attention toward the correct new word meaning. While much is known about the role of this form of 'joint attention' in first language acquisition, little is known about its efficacy in second language acquisition. Consequently, we introduce and validate a novel visual word learning game to evaluate how joint attention affects the contextual learning of new words in a second language. Adult learners either acquired new words in a constant or variable sentence context by playing the game with a knowledgeable partner, or by playing the game alone on a computer. Results clearly show that participants who learned new words in social interaction (i) are faster in identifying a correct new word referent in variable sentence contexts, and (ii) temporally coordinate their behavior with a social partner. Testing the learned words in a post-learning recall or recognition task showed that participants, who learned interactively, better recognized words originally learned in a variable context. While this result may suggest that interactive learning facilitates the allocation of attention to a target referent, the differences in the performance during recognition and recall call for further studies investigating the effect of social interaction on learning performance. In summary, we provide first evidence on the role joint attention in second language learning. Furthermore, the new interactive learning game offers itself to further testing in complex neuroimaging research, where the lack of appropriate experimental set-ups has so far limited the investigation of the neural basis of adult word learning in social interaction. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Free-energy landscape of protein oligomerization from atomistic simulations

    PubMed Central

    Barducci, Alessandro; Bonomi, Massimiliano; Prakash, Meher K.; Parrinello, Michele

    2013-01-01

    In the realm of protein–protein interactions, the assembly process of homooligomers plays a fundamental role because the majority of proteins fall into this category. A comprehensive understanding of this multistep process requires the characterization of the driving molecular interactions and the transient intermediate species. The latter are often short-lived and thus remain elusive to most experimental investigations. Molecular simulations provide a unique tool to shed light onto these complex processes complementing experimental data. Here we combine advanced sampling techniques, such as metadynamics and parallel tempering, to characterize the oligomerization landscape of fibritin foldon domain. This system is an evolutionarily optimized trimerization motif that represents an ideal model for experimental and computational mechanistic studies. Our results are fully consistent with previous experimental nuclear magnetic resonance and kinetic data, but they provide a unique insight into fibritin foldon assembly. In particular, our simulations unveil the role of nonspecific interactions and suggest that an interplay between thermodynamic bias toward native structure and residual conformational disorder may provide a kinetic advantage. PMID:24248370

  1. Kinetic theory of transport for inhomogeneous electron fluids

    NASA Astrophysics Data System (ADS)

    Lucas, Andrew; Hartnoll, Sean A.

    2018-01-01

    The interplay between electronic interactions and disorder is neglected in the conventional Boltzmann theory of transport, yet can play an essential role in determining the resistivity of unconventional metals. When quasiparticles are long lived, one can account for these intertwined effects by solving spatially inhomogeneous Boltzmann equations. Assuming smooth disorder and neglecting umklapp scattering, we solve these inhomogeneous kinetic equations and compute the electrical resistivity across the ballistic-to-hydrodynamic transition. An important consequence of electron-electron interactions is the modification of the momentum-relaxation time; this effect is ignored in the homogeneous theory. We characterize precisely when interactions enhance the momentum scattering rate, and when they decrease it. Our approach unifies existing semiclassical theories of transport, and explains how the resistivity can be proportional to the rate of momentum-conserving collisions without Baber scattering. We compare this result with existing transport mysteries, including the disorder-independent T2 resistivity of many Fermi liquids, and the linear-in-T "Planckian-limited" resistivity of many strange metals.

  2. Ferrotoroidic ground state in a heterometallic {CrIIIDyIII6} complex displaying slow magnetic relaxation.

    PubMed

    Vignesh, Kuduva R; Soncini, Alessandro; Langley, Stuart K; Wernsdorfer, Wolfgang; Murray, Keith S; Rajaraman, Gopalan

    2017-10-18

    Toroidal quantum states are most promising for building quantum computing and information storage devices, as they are insensitive to homogeneous magnetic fields, but interact with charge and spin currents, allowing this moment to be manipulated purely by electrical means. Coupling molecular toroids into larger toroidal moments via ferrotoroidic interactions can be pivotal not only to enhance ground state toroidicity, but also to develop materials displaying ferrotoroidic ordered phases, which sustain linear magneto-electric coupling and multiferroic behavior. However, engineering ferrotoroidic coupling is known to be a challenging task. Here we have isolated a {Cr III Dy III 6 } complex that exhibits the much sought-after ferrotoroidic ground state with an enhanced toroidal moment, solely arising from intramolecular dipolar interactions. Moreover, a theoretical analysis of the observed sub-Kelvin zero-field hysteretic spin dynamics of {Cr III Dy III 6 } reveals the pivotal role played by ferrotoroidic states in slowing down the magnetic relaxation, in spite of large calculated single-ion quantum tunneling rates.

  3. Neuromodulatory Systems and Their Interactions: A Review of Models, Theories, and Experiments

    PubMed Central

    Avery, Michael C.; Krichmar, Jeffrey L.

    2017-01-01

    Neuromodulatory systems, including the noradrenergic, serotonergic, dopaminergic, and cholinergic systems, track environmental signals, such as risks, rewards, novelty, effort, and social cooperation. These systems provide a foundation for cognitive function in higher organisms; attention, emotion, goal-directed behavior, and decision-making derive from the interaction between the neuromodulatory systems and brain areas, such as the amygdala, frontal cortex, hippocampus, and sensory cortices. Given their strong influence on behavior and cognition, these systems also play a key role in disease states and are the primary target of many current treatment strategies. The fact that these systems interact with each other either directly or indirectly, however, makes it difficult to understand how a failure in one or more systems can lead to a particular symptom or pathology. In this review, we explore experimental evidence, as well as focus on computational and theoretical models of neuromodulation. Better understanding of neuromodulatory systems may lead to the development of novel treatment strategies for a number of brain disorders. PMID:29311844

  4. Free-energy landscape of protein oligomerization from atomistic simulations.

    PubMed

    Barducci, Alessandro; Bonomi, Massimiliano; Prakash, Meher K; Parrinello, Michele

    2013-12-03

    In the realm of protein-protein interactions, the assembly process of homooligomers plays a fundamental role because the majority of proteins fall into this category. A comprehensive understanding of this multistep process requires the characterization of the driving molecular interactions and the transient intermediate species. The latter are often short-lived and thus remain elusive to most experimental investigations. Molecular simulations provide a unique tool to shed light onto these complex processes complementing experimental data. Here we combine advanced sampling techniques, such as metadynamics and parallel tempering, to characterize the oligomerization landscape of fibritin foldon domain. This system is an evolutionarily optimized trimerization motif that represents an ideal model for experimental and computational mechanistic studies. Our results are fully consistent with previous experimental nuclear magnetic resonance and kinetic data, but they provide a unique insight into fibritin foldon assembly. In particular, our simulations unveil the role of nonspecific interactions and suggest that an interplay between thermodynamic bias toward native structure and residual conformational disorder may provide a kinetic advantage.

  5. Neuromodulatory Systems and Their Interactions: A Review of Models, Theories, and Experiments.

    PubMed

    Avery, Michael C; Krichmar, Jeffrey L

    2017-01-01

    Neuromodulatory systems, including the noradrenergic, serotonergic, dopaminergic, and cholinergic systems, track environmental signals, such as risks, rewards, novelty, effort, and social cooperation. These systems provide a foundation for cognitive function in higher organisms; attention, emotion, goal-directed behavior, and decision-making derive from the interaction between the neuromodulatory systems and brain areas, such as the amygdala, frontal cortex, hippocampus, and sensory cortices. Given their strong influence on behavior and cognition, these systems also play a key role in disease states and are the primary target of many current treatment strategies. The fact that these systems interact with each other either directly or indirectly, however, makes it difficult to understand how a failure in one or more systems can lead to a particular symptom or pathology. In this review, we explore experimental evidence, as well as focus on computational and theoretical models of neuromodulation. Better understanding of neuromodulatory systems may lead to the development of novel treatment strategies for a number of brain disorders.

  6. Game Design to Measure Reflexes and Attention Based on Biofeedback Multi-Sensor Interaction

    PubMed Central

    Ortiz-Vigon Uriarte, Inigo de Loyola; Garcia-Zapirain, Begonya; Garcia-Chimeno, Yolanda

    2015-01-01

    This paper presents a multi-sensor system for implementing biofeedback as a human-computer interaction technique in a game involving driving cars in risky situations. The sensors used are: Eye Tracker, Kinect, pulsometer, respirometer, electromiography (EMG) and galvanic skin resistance (GSR). An algorithm has been designed which gives rise to an interaction logic with the game according to the set of physiological constants obtained from the sensors. The results reflect a 72.333 response to the System Usability Scale (SUS), a significant difference of p = 0.026 in GSR values in terms of the difference between the start and end of the game, and an r = 0.659 and p = 0.008 correlation while playing with the Kinect between the breathing level and the energy and joy factor. All the sensors used had an impact on the end results, whereby none of them should be disregarded in future lines of research, even though it would be interesting to obtain separate breathing values from that of the cardio. PMID:25789493

  7. Systematic Prediction of Scaffold Proteins Reveals New Design Principles in Scaffold-Mediated Signal Transduction

    PubMed Central

    Hu, Jianfei; Neiswinger, Johnathan; Zhang, Jin; Zhu, Heng; Qian, Jiang

    2015-01-01

    Scaffold proteins play a crucial role in facilitating signal transduction in eukaryotes by bringing together multiple signaling components. In this study, we performed a systematic analysis of scaffold proteins in signal transduction by integrating protein-protein interaction and kinase-substrate relationship networks. We predicted 212 scaffold proteins that are involved in 605 distinct signaling pathways. The computational prediction was validated using a protein microarray-based approach. The predicted scaffold proteins showed several interesting characteristics, as we expected from the functionality of scaffold proteins. We found that the scaffold proteins are likely to interact with each other, which is consistent with previous finding that scaffold proteins tend to form homodimers and heterodimers. Interestingly, a single scaffold protein can be involved in multiple signaling pathways by interacting with other scaffold protein partners. Furthermore, we propose two possible regulatory mechanisms by which the activity of scaffold proteins is coordinated with their associated pathways through phosphorylation process. PMID:26393507

  8. Nonlinear Optics and Applications

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin A. (Editor); Frazier, Donald O. (Editor)

    2007-01-01

    Nonlinear optics is the result of laser beam interaction with materials and started with the advent of lasers in the early 1960s. The field is growing daily and plays a major role in emerging photonic technology. Nonlinear optics play a major role in many of the optical applications such as optical signal processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser amplifiers, and many others. This special review volume on Nonlinear Optics and Applications is intended for those who want to be aware of the most recent technology. This book presents a survey of the recent advances of nonlinear optical applications. Emphasis will be on novel devices and materials, switching technology, optical computing, and important experimental results. Recent developments in topics which are of historical interest to researchers, and in the same time of potential use in the fields of all-optical communication and computing technologies, are also included. Additionally, a few new related topics which might provoke discussion are presented. The book includes chapters on nonlinear optics and applications; the nonlinear Schrodinger and associated equations that model spatio-temporal propagation; the supercontinuum light source; wideband ultrashort pulse fiber laser sources; lattice fabrication as well as their linear and nonlinear light guiding properties; the second-order EO effect (Pockels), the third-order (Kerr) and thermo-optical effects in optical waveguides and their applications in optical communication; and, the effect of magnetic field and its role in nonlinear optics, among other chapters.

  9. Associative (not Hebbian) learning and the mirror neuron system.

    PubMed

    Cooper, Richard P; Cook, Richard; Dickinson, Anthony; Heyes, Cecilia M

    2013-04-12

    The associative sequence learning (ASL) hypothesis suggests that sensorimotor experience plays an inductive role in the development of the mirror neuron system, and that it can play this crucial role because its effects are mediated by learning that is sensitive to both contingency and contiguity. The Hebbian hypothesis proposes that sensorimotor experience plays a facilitative role, and that its effects are mediated by learning that is sensitive only to contiguity. We tested the associative and Hebbian accounts by computational modelling of automatic imitation data indicating that MNS responsivity is reduced more by contingent and signalled than by non-contingent sensorimotor training (Cook et al. [7]). Supporting the associative account, we found that the reduction in automatic imitation could be reproduced by an existing interactive activation model of imitative compatibility when augmented with Rescorla-Wagner learning, but not with Hebbian or quasi-Hebbian learning. The work argues for an associative, but against a Hebbian, account of the effect of sensorimotor training on automatic imitation. We argue, by extension, that associative learning is potentially sufficient for MNS development. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Exploring the structural basis of the selective inhibition of monoamine oxidase A by dicarbonitrile aminoheterocycles: role of Asn181 and Ile335 validated by spectroscopic and computational studies.

    PubMed

    Juárez-Jiménez, Jordi; Mendes, Eduarda; Galdeano, Carles; Martins, Carla; Silva, Daniel B; Marco-Contelles, José; do Carmo Carreiras, Maria; Luque, F Javier; Ramsay, Rona R

    2014-02-01

    Since cyanide potentiates the inhibitory activity of several monoamine oxidase (MAO) inhibitors, a series of carbonitrile-containing aminoheterocycles was examined to explore the role of nitriles in determining the inhibitory activity against MAO. Dicarbonitrile aminofurans were found to be potent, selective inhibitors against MAO A. The origin of the MAO A selectivity was identified by combining spectroscopic and computational methods. Spectroscopic changes induced in MAO A by mono- and dicarbonitrile inhibitors were different, providing experimental evidence for distinct binding modes to the enzyme. Similar differences were also found between the binding of dicarbonitrile compounds to MAO A and to MAO B. Stabilization of the flavin anionic semiquinone by monocarbonitrile compounds, but destabilization by dicarbonitriles, provided further support to the distinct binding modes of these compounds and their interaction with the flavin ring. Molecular modeling studies supported the role played by the nitrile and amino groups in anchoring the inhibitor to the binding cavity. In particular, the results highlight the role of Asn181 and Ile335 in assisting the interaction of the nitrile-containing aminofuran ring. The network of interactions afforded by the specific attachment of these functional groups provides useful guidelines for the design of selective, reversible MAO A inhibitors. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Higher-order semantic structures in an African Grey parrot's vocalizations: evidence from the hyperspace analog to language (HAL) model.

    PubMed

    Kaufman, Allison B; Colbert-White, Erin N; Burgess, Curt

    2013-09-01

    Previous research has described the significant role that social interaction plays in both the acquisition and use of speech by parrots. The current study analyzed the speech of one home-raised African Grey parrot (Psittacus erithacus erithacus) across three different social contexts: owner interacting with parrot in the same room, owner and parrot interacting out of view in adjacent rooms, and parrot home alone. The purpose was to determine the extent to which the subject's speech reflected an understanding of the contextual substitutability (e.g., the word street can be substituted in context for the word road) of the vocalizations that comprised the units in her repertoire (i.e., global co-occurrence of repertoire units; Burgess in Behav Res Methods Instrum Comput 30:188-198, 1998; Lund and Burgess in Behav Res Methods Instrum Comput 28:203-208, 1996). This was accomplished via the human language model hyperspace analog to language (HAL). HAL is contextually driven and bootstraps language "rules" from input without human intervention. Because HAL does not require human tutelage, it provided an objective measure to empirically examine the parrot's vocalizations. Results indicated that the subject's vocalization patterns did contain global co-occurrence. The presence of this quality in this nonhuman's speech may be strongly indicative of higher-order cognitive skills.

  12. Autism spectrum disorder

    MedlinePlus

    ... with ASD often have problems with: Pretend play Social interactions Verbal and nonverbal communication Some children seem normal ... Repeats words or memorized passages, such as commercials Social interaction: Doesn't make friends Doesn't play interactive ...

  13. Computer Games and Instruction

    ERIC Educational Resources Information Center

    Tobias, Sigmund, Ed.; Fletcher, J. D., Ed.

    2011-01-01

    There is intense interest in computer games. A total of 65 percent of all American households play computer games, and sales of such games increased 22.9 percent last year. The average amount of game playing time was found to be 13.2 hours per week. The popularity and market success of games is evident from both the increased earnings from games,…

  14. Short-Term Effects of Playing Computer Games on Attention

    ERIC Educational Resources Information Center

    Tahiroglu, Aysegul Yolga; Celik, Gonca Gul; Avci, Ayse; Seydaoglu, Gulsah; Uzel, Mehtap; Altunbas, Handan

    2010-01-01

    Objective: The main aim of the present study is to investigate the short-term cognitive effects of computer games in children with different psychiatric disorders and normal controls. Method: One hundred one children are recruited for the study (aged between 9 and 12 years). All participants played a motor-racing game on the computer for 1 hour.…

  15. Finding the probability of infection in an SIR network is NP-Hard

    PubMed Central

    Shapiro, Michael; Delgado-Eckert, Edgar

    2012-01-01

    It is the purpose of this article to review results that have long been known to communications network engineers and have direct application to epidemiology on networks. A common approach in epidemiology is to study the transmission of a disease in a population where each individual is initially susceptible (S), may become infective (I) and then removed or recovered (R) and plays no further epidemiological role. Much of the recent work gives explicit consideration to the network of social interactions or disease-transmitting contacts and attendant probability of transmission for each interacting pair. The state of such a network is an assignment of the values {S, I, R} to its members. Given such a network, an initial state and a particular susceptible individual, we would like to compute their probability of becoming infected in the course of an epidemic. It turns out that this and related problems are NP-hard. In particular, it belongs in a class of problems for which no efficient algorithms for their solution are known. Moreover, finding an efficient algorithm for the solution of any problem in this class would entail a major breakthrough in theoretical computer science. PMID:22824138

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellissima, Stefano; González, Miguel A.; Bafile, Ubaldo

    Hydrogen bonding plays an essential role on intermolecular forces, and consequently on the thermodynamics of materials defined by this elusive bonding character. It determines the property of a vital liquid as water as well as many processes crucial for life. The longstanding controversy on the nature of the hydrogen bond (HB) can be settled by looking at the effect of a vanishing HB interaction on the microscopic properties of a given hydrogen-bonded fluid. This task suits the capabilities of computer simulations techniques, which allow to easily switch off HB interactions. We then use molecular dynamics to study the microscopic propertiesmore » of methanol, a prototypical HB liquid. Fundamental aspects of the dynamics of methanol at room temperature were contextualised only very recently and its rich dynamics was found to have striking analogies with that of water. The lower temperature (200 K) considered in the present study led us to observe that the molecular centre-of-mass dynamics is dominated by four modes. Most importantly, the computational ability to switch on and off hydrogen bonds permitted us to identify which, among these modes, have a pure HB-origin. This clarifies the role of hydrogen bonds in liquid dynamics, disclosing new research opportunities and unexplored interpretation schemes.« less

  17. Transition in a Supersonic Boundary-Layer Due to Roughness and Acoustic Disturbances

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2003-01-01

    The transition process induced by the interaction of an isolated roughness with acoustic disturbances in the free stream is numerically investigated for a boundary layer over a flat plate with a blunted leading edge at a free stream Mach number of 3.5. The roughness is assumed to be of Gaussian shape and the acoustic disturbances are introduced as boundary condition at the outer field. The governing equations are solved using the 5'h-rder accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third- order total-variation-diminishing (TVD) Runge- Kutta scheme for time integration. The steady field induced by the two and three-dimensional roughness is also computed. The flow field induced by two-dimensional roughness exhibits different characteristics depending on the roughness heights. At small roughness heights the flow passes smoothly over the roughness, at moderate heights the flow separates downstream of the roughness and at larger roughness heights the flow separates upstream and downstream of the roughness. Computations also show that disturbances inside the boundary layer is due to the direct interaction of the acoustic waves and isolated roughness plays a minor role in generating instability waves.

  18. Physical modeling of Tibetan bowls

    NASA Astrophysics Data System (ADS)

    Antunes, Jose; Inacio, Octavio

    2004-05-01

    Tibetan bowls produce rich penetrating sounds, used in musical contexts and to induce a state of relaxation for meditation or therapy purposes. To understand the dynamics of these instruments under impact and rubbing excitation, we developed a simulation method based on the modal approach, following our previous papers on physical modeling of plucked/bowed strings and impacted/bowed bars. This technique is based on a compact representation of the system dynamics, in terms of the unconstrained bowl modes. Nonlinear contact/friction interaction forces, between the exciter (puja) and the bowl, are computed at each time step and projected on the bowl modal basis, followed by step integration of the modal equations. We explore the behavior of two different-sized bowls, for extensive ranges of excitation conditions (contact/friction parameters, normal force, and tangential puja velocity). Numerical results and experiments show that various self-excited motions may arise depending on the playing conditions and, mainly, on the contact/friction interaction parameters. Indeed, triggering of a given bowl modal frequency mainly depends on the puja material. Computed animations and experiments demonstrate that self-excited modes spin, following the puja motion. Accordingly, the sensed pressure field pulsates, with frequency controlled by the puja spinning velocity and the spatial pattern of the singing mode.

  19. Geometric control of capillary architecture via cell-matrix mechanical interactions.

    PubMed

    Sun, Jian; Jamilpour, Nima; Wang, Fei-Yue; Wong, Pak Kin

    2014-03-01

    Capillary morphogenesis is a multistage, multicellular activity that plays a pivotal role in various developmental and pathological situations. In-depth understanding of the regulatory mechanism along with the capability of controlling the morphogenic process will have direct implications on tissue engineering and therapeutic angiogenesis. Extensive research has been devoted to elucidate the biochemical factors that regulate capillary morphogenesis. The roles of geometric confinement and cell-matrix mechanical interactions on the capillary architecture, nevertheless, remain largely unknown. Here, we show geometric control of endothelial network topology by creating physical confinements with microfabricated fences and wells. Decreasing the thickness of the matrix also results in comparable modulation of the network architecture, supporting the boundary effect is mediated mechanically. The regulatory role of cell-matrix mechanical interaction on the network topology is further supported by alternating the matrix stiffness by a cell-inert PEG-dextran hydrogel. Furthermore, reducing the cell traction force with a Rho-associated protein kinase inhibitor diminishes the boundary effect. Computational biomechanical analysis delineates the relationship between geometric confinement and cell-matrix mechanical interaction. Collectively, these results reveal a mechanoregulation scheme of endothelial cells to regulate the capillary network architecture via cell-matrix mechanical interactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Using multimedia information and communication technology (ICT) to provide added value to reminiscence therapy for people with dementia : Lessons learned from three field studies.

    PubMed

    Bejan, Alexander; Gündogdu, Ramazan; Butz, Katherina; Müller, Nadine; Kunze, Christophe; König, Peter

    2018-01-01

    In the care of people with dementia (PwD), occupational therapies and activities aiming at maintaining the quality of life of PwD, such as reminiscence therapy (RT), are taking on a more and more important role. Information and communication technology (ICT) has the potential to improve and to facilitate RT by facilitating access to and selection of biographical information and related contents or by providing novel multimodal interaction forms to trigger memories; however, interactive multimedia technology is barely used in practice. This article presents three exploratory field studies that evaluated different aspects of RT technology use for PwD in care homes, including the utilization of online movie databases, interactive surface touch computers as well as natural user interfaces allowing gestures and haptic interaction. In these studies, the usage of prototype systems was observed in occupational sessions by 5, 12 and 16 PwD. The results indicate positive effects of technology use, e. g. in the form of verbally elicited reminiscence statements, expressed joy and playful interaction. Lessons learned for the design of technology-based RT interventions are presented and discussed.

  1. Exploring Binding Properties of Agonists Interacting with a δ-Opioid Receptor

    PubMed Central

    Collu, Francesca; Ceccarelli, Matteo; Ruggerone, Paolo

    2012-01-01

    Ligand-receptor interactions are at the basis of the mediation of our physiological responses to a large variety of ligands, such as hormones, neurotransmitters and environmental stimulants, and their tuning represents the goal of a large variety of therapies. Several molecular details of these interactions are still largely unknown. In an effort to shed some light on this important issue, we performed a computational study on the interaction of two related compounds differing by a single methyl group (clozapine and desmethylclozapine) with a -opioid receptor. According to experiments, desmethylclozapine is more active than clozapine, providing a system well suited for a comparative study. We investigated stable configurations of the two drugs inside the receptor by simulating their escape routes by molecular dynamics simulations. Our results point out that the action of the compounds might be related to the spatial and temporal distribution of the affinity sites they visit during their permanency. Moreover, no particularly pronounced structural perturbations of the receptor were detected during the simulations, reinforcing the idea of a strong dynamical character of the interaction process, with an important role played by the solvent in addition. PMID:23300729

  2. Binding free energy predictions of farnesoid X receptor (FXR) agonists using a linear interaction energy (LIE) approach with reliability estimation: application to the D3R Grand Challenge 2

    NASA Astrophysics Data System (ADS)

    Rifai, Eko Aditya; van Dijk, Marc; Vermeulen, Nico P. E.; Geerke, Daan P.

    2018-01-01

    Computational protein binding affinity prediction can play an important role in drug research but performing efficient and accurate binding free energy calculations is still challenging. In the context of phase 2 of the Drug Design Data Resource (D3R) Grand Challenge 2 we used our automated eTOX ALLIES approach to apply the (iterative) linear interaction energy (LIE) method and we evaluated its performance in predicting binding affinities for farnesoid X receptor (FXR) agonists. Efficiency was obtained by our pre-calibrated LIE models and molecular dynamics (MD) simulations at the nanosecond scale, while predictive accuracy was obtained for a small subset of compounds. Using our recently introduced reliability estimation metrics, we could classify predictions with higher confidence by featuring an applicability domain (AD) analysis in combination with protein-ligand interaction profiling. The outcomes of and agreement between our AD and interaction-profile analyses to distinguish and rationalize the performance of our predictions highlighted the relevance of sufficiently exploring protein-ligand interactions during training and it demonstrated the possibility to quantitatively and efficiently evaluate if this is achieved by using simulation data only.

  3. Geometric measures of large biomolecules: surface, volume, and pockets.

    PubMed

    Mach, Paul; Koehl, Patrice

    2011-11-15

    Geometry plays a major role in our attempts to understand the activity of large molecules. For example, surface area and volume are used to quantify the interactions between these molecules and the water surrounding them in implicit solvent models. In addition, the detection of pockets serves as a starting point for predictive studies of biomolecule-ligand interactions. The alpha shape theory provides an exact and robust method for computing these geometric measures. Several implementations of this theory are currently available. We show however that these implementations fail on very large macromolecular systems. We show that these difficulties are not theoretical; rather, they are related to the architecture of current computers that rely on the use of cache memory to speed up calculation. By rewriting the algorithms that implement the different steps of the alpha shape theory such that we enforce locality, we show that we can remediate these cache problems; the corresponding code, UnionBall has an apparent O(n) behavior over a large range of values of n (up to tens of millions), where n is the number of atoms. As an example, it takes 136 sec with UnionBall to compute the contribution of each atom to the surface area and volume of a viral capsid with more than five million atoms on a commodity PC. UnionBall includes functions for computing analytically the surface area and volume of the intersection of two, three and four spheres that are fully detailed in an appendix. UnionBall is available as an OpenSource software. Copyright © 2011 Wiley Periodicals, Inc.

  4. Geometric Measures of Large Biomolecules: Surface, Volume and Pockets

    PubMed Central

    Mach, Paul; Koehl, Patrice

    2011-01-01

    Geometry plays a major role in our attempt to understand the activity of large molecules. For example, surface area and volume are used to quantify the interactions between these molecules and the water surrounding them in implicit solvent models. In addition, the detection of pockets serves as a starting point for predictive studies of biomolecule-ligand interactions. The alpha shape theory provides an exact and robust method for computing these geometric measures. Several implementations of this theory are currently available. We show however that these implementations fail on very large macromolecular systems. We show that these difficulties are not theoretical; rather, they are related to the architecture of current computers that rely on the use of cache memory to speed up calculation. By rewriting the algorithms that implement the different steps of the alpha shape theory such that we enforce locality, we show that we can remediate these cache problems; the corresponding code, UnionBall has an apparent (n) behavior over a large range of values of n (up to tens of millions), where n is the number of atoms. As an example, it takes 136 seconds with UnionBall to compute the contribution of each atom to the surface area and volume of a viral capsid with more than five million atoms on a commodity PC. UnionBall includes functions for computing the surface area and volume of the intersection of two, three and four spheres that are fully detailed in an appendix. UnionBall is available as an OpenSource software. PMID:21823134

  5. High-Quality Interactions with Infants: Relationships with Early-Childhood Practitioners' Interpretations and Qualification Levels in Play and Routine Contexts

    ERIC Educational Resources Information Center

    Degotardi, Sheila

    2010-01-01

    This study investigated factors related to the quality of early-childhood practitioners' interactions with infants in play and routine contexts. Participants were 24 practitioners working with 9-20-month-old infants in long day-care infant programmes. Video-recordings of their interactions with a nominated infant during play and in routine…

  6. Methodical and technological aspects of creation of interactive computer learning systems

    NASA Astrophysics Data System (ADS)

    Vishtak, N. M.; Frolov, D. A.

    2017-01-01

    The article presents a methodology for the development of an interactive computer training system for training power plant. The methods used in the work are a generalization of the content of scientific and methodological sources on the use of computer-based training systems in vocational education, methods of system analysis, methods of structural and object-oriented modeling of information systems. The relevance of the development of the interactive computer training systems in the preparation of the personnel in the conditions of the educational and training centers is proved. Development stages of the computer training systems are allocated, factors of efficient use of the interactive computer training system are analysed. The algorithm of work performance at each development stage of the interactive computer training system that enables one to optimize time, financial and labor expenditure on the creation of the interactive computer training system is offered.

  7. Cultural Differences in Korean- and Anglo-American Preschoolers' Social Interaction and Play Behaviors.

    ERIC Educational Resources Information Center

    Farver, Jo Ann M.; And Others

    1995-01-01

    Compared Korean American and Anglo-American preschoolers' social and play behavior to determine the influence of culture on early development and to understand how culture shapes and organizes the environment in which children's social and play activities take place. Suggests that children's social interaction and pretend play are influenced by…

  8. A Sociocultural Investigation of the Effects of Peer Interaction on Play

    ERIC Educational Resources Information Center

    Sluss, Dorothy J.; Stremmel, Andrew J.

    2004-01-01

    This study examined Vygotsky's theoretical notion that play creates the zone of proximal development by investigating the effects of peer interaction within the context of constructive play with blocks. The authors used the Play Observation Scale (Rubin, 1989) to observe 100 four-year-olds in naturalistic settings. Forty-eight children were…

  9. 2003 Navy MWR Customer Survey

    DTIC Science & Technology

    2007-06-01

    entertainment opportunities would you participate in? 12 %17%Play interactive trivia games 8%20%Play interactive sports games 9%32%Play electronic video games 22... 12 Least Used Facilities/Services...large change in results may be due to this change in wording. 12 N P R S T Moderately Used Facilities/Services: All Respondents 33%Playing

  10. Effects of a computer-based cognitive exercise program on age-related cognitive decline.

    PubMed

    Bozoki, Andrea; Radovanovic, Mirjana; Winn, Brian; Heeter, Carrie; Anthony, James C

    2013-01-01

    We developed a 'senior friendly' suite of online 'games for learning' with interactive calibration for increasing difficulty, and evaluated the feasibility of a randomized clinical trial to test the hypothesis that seniors aged 60-80 can improve key aspects of cognitive ability with the aid of such games. Sixty community-dwelling senior volunteers were randomized to either an online game suite designed to train multiple cognitive abilities, or to a control arm with online activities that simulated the look and feel of the games but with low level interactivity and no calibration of difficulty. Study assessment included measures of recruitment, retention and play-time. Cognitive change was measured with a computerized assessment battery administered just before and within two weeks after completion of the six-week intervention. Impediments to feasibility included: limited access to in-home high-speed internet, large variations in the amount of time devoted to game play, and a reluctance to pursue more challenging levels. Overall analysis was negative for assessed performance (transference effects) even though subjects improved on the games themselves. Post hoc analyses suggest that some types of games may have more value than others, but these effects would need to be replicated in a study designed for that purpose. We conclude that a six-week, moderate-intensity computer game-based cognitive intervention can be implemented with high-functioning seniors, but the effect size is relatively small. Our findings are consistent with Owen et al. (2010), but there are open questions about whether more structured, longer duration or more intensive 'games for learning' interventions might yield more substantial cognitive improvement in seniors. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Television viewing, computer game play and book reading during meals are predictors of meal skipping in a cross-sectional sample of 12-, 14- and 16-year-olds.

    PubMed

    Custers, Kathleen; Van den Bulck, Jan

    2010-04-01

    To examine whether television viewing, computer game playing or book reading during meals predicts meal skipping with the aim of watching television, playing computer games or reading books (media meal skipping). A cross-sectional study was conducted using a standardized self-administered questionnaire. Analyses were controlled for age, gender and BMI. Data were obtained from a random sample of adolescents in Flanders, Belgium. Seven hundred and ten participants aged 12, 14 and 16 years. Of the participants, 11.8 % skipped meals to watch television, 10.5 % skipped meals to play computer games and 8.2 % skipped meals to read books. Compared with those who did not use these media during meals, the risk of skipping meals in order to watch television was significantly higher for those children who watched television during meals (2.9 times higher in those who watched television during at least one meal a day). The risk of skipping meals for computer game playing was 9.5 times higher in those who played computer games weekly or more while eating, and the risk of meal skipping in order to read books was 22.9 times higher in those who read books during meals less than weekly. The more meals the respondents ate with the entire family, the less likely they were to skip meals to watch television. The use of media during meals predicts meal skipping for using that same medium. Family meals appear to be inversely related to meal skipping for television viewing.

  12. Working and Playing Together: Prediction of Preschool Social-Emotional Competence from Mother-Child Interaction.

    ERIC Educational Resources Information Center

    Denham, Susanne A.; And Others

    1991-01-01

    Examined mother-child interaction in play and teaching tasks. Mother-child interaction aggregates represented task orientation, positive emotion, and allowance of autonomy. Maternal interaction aggregates predicted teachers' ratings of children's positive social behavior, assertiveness, and sadness in the preschool setting. (BC)

  13. Current Issues in the Use of Virtual Simulations for Dismounted Soldier Training

    DTIC Science & Technology

    2006-06-01

    technology and the experience of Soldiers playing video games has tremendous appeal. Are Soldiers as familiar with these games as we assume, and how well do...IMTS evaluation described earlier reported a mean of 9.5 hours (median 6.5 hours) per week playing computer or video games . A sample of 27 Infantry...playing computer or video games . However, 7% and 22% of the Soldiers in these samples, respectively, did not play video games . Beal and Christ

  14. Measuring Asymmetric Interactions in Resting State Brain Networks*

    PubMed Central

    Joshi, Anand A.; Salloum, Ronald; Bhushan, Chitresh; Leahy, Richard M.

    2015-01-01

    Directed graph representations of brain networks are increasingly being used in brain image analysis to indicate the direction and level of influence among brain regions. Most of the existing techniques for directed graph representations are based on time series analysis and the concept of causality, and use time lag information in the brain signals. These time lag-based techniques can be inadequate for functional magnetic resonance imaging (fMRI) signal analysis due to the limited time resolution of fMRI as well as the low frequency hemodynamic response. The aim of this paper is to present a novel measure of necessity that uses asymmetry in the joint distribution of brain activations to infer the direction and level of interaction among brain regions. We present a mathematical formula for computing necessity and extend this measure to partial necessity, which can potentially distinguish between direct and indirect interactions. These measures do not depend on time lag for directed modeling of brain interactions and therefore are more suitable for fMRI signal analysis. The necessity measures were used to analyze resting state fMRI data to determine the presence of hierarchy and asymmetry of brain interactions during resting state. We performed ROI-wise analysis using the proposed necessity measures to study the default mode network. The empirical joint distribution of the fMRI signals was determined using kernel density estimation, and was used for computation of the necessity and partial necessity measures. The significance of these measures was determined using a one-sided Wilcoxon rank-sum test. Our results are consistent with the hypothesis that the posterior cingulate cortex plays a central role in the default mode network. PMID:26221690

  15. Interplay between cooperation-enhancing mechanisms in evolutionary games with tag-mediated interactions

    NASA Astrophysics Data System (ADS)

    Hadzibeganovic, Tarik; Stauffer, Dietrich; Han, Xiao-Pu

    2018-04-01

    Cooperation is fundamental for the long-term survival of biological, social, and technological networks. Previously, mechanisms for the enhancement of cooperation, such as network reciprocity, have largely been studied in isolation and with often inconclusive findings. Here, we present an evolutionary, multiagent-based, and spatially explicit computer model to specifically address the interactive interplay between such mechanisms. We systematically investigate the effects of phenotypic diversity, network structure, and rewards on cooperative behavior emerging in a population of reproducing artificial decision makers playing tag-mediated evolutionary games. Cooperative interactions are rewarded such that both the benefits of recipients and costs of donators are affected by the reward size. The reward size is determined by the number of cooperative acts occurring within a given reward time frame. Our computational experiments reveal that small reward frames promote unconditional cooperation in populations with both low and high diversity, whereas large reward frames lead to cycles of conditional and unconditional strategies at high but not at low diversity. Moreover, an interaction between rewards and spatial structure shows that relative to small reward frames, there is a strong difference between the frequency of conditional cooperators populating rewired versus non-rewired networks when the reward frame is large. Notably, in a less diverse population, the total number of defections is comparable across different network topologies, whereas in more diverse environments defections become more frequent in a regularly structured than in a rewired, small-world network of contacts. Acknowledging the importance of such interaction effects in social dilemmas will have inevitable consequences for the future design of cooperation-enhancing protocols in large-scale, distributed, and decentralized systems such as peer-to-peer networks.

  16. Synthesis, crystal structure, spectroscopic characterization, docking simulation and density functional studies of 1-(3,4-dimethoxyphenyl) -3-(4-flurophenyl)-propan-1-one

    NASA Astrophysics Data System (ADS)

    Khamees, Hussien Ahmed; Jyothi, Mahima; Khanum, Shaukath Ara; Madegowda, Mahendra

    2018-06-01

    The compound 1-(3,4-dimethoxyphenyl)-3-(4-flurophenyl)-propan-1-one (DFPO) was synthesized by Claisen-Schmidt condensation reaction and the single crystals were obtained by slow evaporation method. Three-dimensional structure was confirmed by single crystal X-ray diffraction method and exhibiting the triclinic crystal system with space group P-1. The crystal structure is stabilized by Csbnd H⋯O intermolecular and weak interactions. Computed molecular geometry has been obtained by density functional theory (DFT) and compared with experimental results. The spectra of both FT-IR in the range (4000-400 cm-1) and FT- Raman (3500-50 cm-1) of DFPO were recorded experimentally and computed by (DFT) using B3LYP/6-311G (d,p) as basis sets. Intramolecular charge transfer has been scanned using natural bond orbital (NBO) analysis and revealed the various contribution of bonding and lone pair to the stabilization of molecule. Nonlinear optical activity (NLO) of the title compound has been determined by second harmonic generation (SHG) and computed using DFT method. Hyperpolarizability, HOMO-LUMO energy gap, hardness, softness electronegativity and others Global reactivity descriptors of DFPO has been calculated and revealed complete picture of chemical reactivity of DFPO. Hirshfeld surface analyses were applied to investigate the intermolecular interactions and revealed that more than two-thirds of the inter contacts are associated with O⋯H, C⋯H and H⋯H interactions. Docking studies of DFPO showed inhibition of Vascular endothelial growth Factor human receptor (VEGFR-2) signalling pathway, which indicates DFPO as anti-angiogenesis, that play pivotal role in cancer, so we suggest it for clinical studies to evaluate its potential to treat human cancers.

  17. Learning Natural Selection in 4th Grade with Multi-Agent-Based Computational Models

    NASA Astrophysics Data System (ADS)

    Dickes, Amanda Catherine; Sengupta, Pratim

    2013-06-01

    In this paper, we investigate how elementary school students develop multi-level explanations of population dynamics in a simple predator-prey ecosystem, through scaffolded interactions with a multi-agent-based computational model (MABM). The term "agent" in an MABM indicates individual computational objects or actors (e.g., cars), and these agents obey simple rules assigned or manipulated by the user (e.g., speeding up, slowing down, etc.). It is the interactions between these agents, based on the rules assigned by the user, that give rise to emergent, aggregate-level behavior (e.g., formation and movement of the traffic jam). Natural selection is such an emergent phenomenon, which has been shown to be challenging for novices (K16 students) to understand. Whereas prior research on learning evolutionary phenomena with MABMs has typically focused on high school students and beyond, we investigate how elementary students (4th graders) develop multi-level explanations of some introductory aspects of natural selection—species differentiation and population change—through scaffolded interactions with an MABM that simulates predator-prey dynamics in a simple birds-butterflies ecosystem. We conducted a semi-clinical interview based study with ten participants, in which we focused on the following: a) identifying the nature of learners' initial interpretations of salient events or elements of the represented phenomena, b) identifying the roles these interpretations play in the development of their multi-level explanations, and c) how attending to different levels of the relevant phenomena can make explicit different mechanisms to the learners. In addition, our analysis also shows that although there were differences between high- and low-performing students (in terms of being able to explain population-level behaviors) in the pre-test, these differences disappeared in the post-test.

  18. The Relationship of Computer Games and Reported Anger in Young People

    ERIC Educational Resources Information Center

    Demirok, Mukaddes; Ozdamli, Fezile; Hursen, Cigdem; Ozcinar, Zehra; Kutguner, Muge; Uzunboylu, Huseyin

    2012-01-01

    Playing computer games is a routine activity for most young people today. The aim of this study was to examine the relationship of time spent playing computer games, the violence of the game, and self-reported anger of students in North Cyprus. Four hundred participants between the ages of 15-18 completed the State-Trait Anger and the Anger…

  19. "Games Are Made for Fun": Lessons on the Effects of Concept Maps in the Classroom Use of Computer Games

    ERIC Educational Resources Information Center

    Charsky, Dennis; Ressler, William

    2011-01-01

    Does using a computer game improve students' motivation to learn classroom material? The current study examined students' motivation to learn history concepts while playing a commercial, off-the-shelf computer game, Civilization III. The study examined the effect of using conceptual scaffolds to accompany game play. Students from three ninth-grade…

  20. A Study of the Behavior of Children in a Preschool Equipped with Computers.

    ERIC Educational Resources Information Center

    Klinzing, Dene G.

    A study was conducted: (1) to compare the popularity of computer stations with nine other activity stations; (2) to determine the differences in the type of play displayed by the children in preschool and note the type of play displayed at the computer stations versus the other activity stations; (3) to determine whether the preschool activities,…

  1. Are 50-khz calls used as play signals in the playful interactions of rats? III. The effects of devocalization on play with unfamiliar partners as juveniles and as adults.

    PubMed

    Kisko, Theresa M; Euston, David R; Pellis, Sergio M

    2015-04-01

    When playing, rats emit 50-kHz calls which may function as play signals. A previous study using devocalized rats provides support for the hypothesis that 50-kHz function to promote and maintain playful interactions (Kisko et al., 2015). However, in that study, all pairs were cage mates and familiar with each other's playful tendencies that could have attenuated the role of play signals. The present study uses unfamiliar pairs to eliminate any chance for such attenuation. Four hypotheses about how 50-kHz calls could act as play signals were tested, that (1) they maintain the playful mood of the partner, (2) they are used to locate partners, (3) they attract play partners and (4) they reduce the risk of playful encounters from escalating to serious fights. Predictions arising from the first three hypotheses, tested in juveniles, were not supported, suggesting that, for juveniles, 50-kHz calls are not facilitating playful interactions as play signals. The fourth hypothesis, however, was supported in adults, but not in juveniles, in that unfamiliar adult males were more likely to escalate playful encounters into serious fights when one partner was devocalized. These findings suggest that vocalizations at most have a minor role in juvenile play but serve a more central role in modulating adult interactions between strangers, allowing for the tactical mitigation of the risk of aggression. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. [Excessive computer usage in adolescents--results of a psychometric evaluation].

    PubMed

    Grüsser, Sabine M; Thalemann, Ralf; Albrecht, Ulrike; Thalemann, Carolin N

    2005-03-01

    Excessive computer and video game playing among children is being critically discussed from a pedagogic and public health point of view. To date, no reliable data for this phenomenon in Germany exists. In the present study, the excessive usage of computer and video games is seen as a rewarding behavior which can, due to learning mechanisms, become a prominent and inadequate strategy for children to cope with negative emotions like frustration, uneasiness and fears. In the survey, 323 children ranging in age from 11 to 14 years were asked about their video game playing behavior. Criteria for excessive computer and video game playing were developed in accordance with the criteria for dependency and pathological gambling (DSM-IV, ICD-10). Data show that 9.3% (N = 30) of the children fulfill all criteria for excessive computer and video game playing. Furthermore, these children differ from their class mates with respect to watching television, communication patterns, the ability to concentrate in school lectures and the preferred strategies coping with negative emotions. In accordance with findings in studies about substance-related addiction, data suggest that excessive computer and video game players use their excessive rewarding behavior specifically as an inadequate stress coping strategy.

  3. Computer-aided design and computer science technology

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.; Voigt, S. J.

    1976-01-01

    A description is presented of computer-aided design requirements and the resulting computer science advances needed to support aerospace design. The aerospace design environment is examined, taking into account problems of data handling and aspects of computer hardware and software. The interactive terminal is normally the primary interface between the computer system and the engineering designer. Attention is given to user aids, interactive design, interactive computations, the characteristics of design information, data management requirements, hardware advancements, and computer science developments.

  4. Computer algorithms in the search for unrelated stem cell donors.

    PubMed

    Steiner, David

    2012-01-01

    Hematopoietic stem cell transplantation (HSCT) is a medical procedure in the field of hematology and oncology, most often performed for patients with certain cancers of the blood or bone marrow. A lot of patients have no suitable HLA-matched donor within their family, so physicians must activate a "donor search process" by interacting with national and international donor registries who will search their databases for adult unrelated donors or cord blood units (CBU). Information and communication technologies play a key role in the donor search process in donor registries both nationally and internationaly. One of the major challenges for donor registry computer systems is the development of a reliable search algorithm. This work discusses the top-down design of such algorithms and current practice. Based on our experience with systems used by several stem cell donor registries, we highlight typical pitfalls in the implementation of an algorithm and underlying data structure.

  5. Experimental realization of narrowband four-photon Greenberger-Horne-Zeilinger state in a single cold atomic ensemble.

    PubMed

    Dong, Ming-Xin; Zhang, Wei; Hou, Zhi-Bo; Yu, Yi-Chen; Shi, Shuai; Ding, Dong-Sheng; Shi, Bao-Sen

    2017-11-15

    Multi-photon entangled states not only play a crucial role in research on quantum physics but also have many applications in quantum information fields such as quantum computation, quantum communication, and quantum metrology. To fully exploit the multi-photon entangled states, it is important to establish the interaction between entangled photons and matter, which requires that photons have narrow bandwidth. Here, we report on the experimental generation of a narrowband four-photon Greenberger-Horne-Zeilinger state with a fidelity of 64.9% through multiplexing two spontaneous four-wave mixings in a cold Rb85 atomic ensemble. The full bandwidth of the generated GHZ state is about 19.5 MHz. Thus, the generated photons can effectively match the atoms, which are very suitable for building a quantum computation and quantum communication network based on atomic ensembles.

  6. Meso-scale framework for modeling granular material using computed tomography

    DOE PAGES

    Turner, Anne K.; Kim, Felix H.; Penumadu, Dayakar; ...

    2016-03-17

    Numerical modeling of unconsolidated granular materials is comprised of multiple nonlinear phenomena. Accurately capturing these phenomena, including grain deformation and intergranular forces depends on resolving contact regions several orders of magnitude smaller than the grain size. Here, we investigate a method for capturing the morphology of the individual particles using computed X-ray and neutron tomography, which allows for accurate characterization of the interaction between grains. The ability of these numerical approaches to determine stress concentrations at grain contacts is important in order to capture catastrophic splitting of individual grains, which has been shown to play a key role in themore » plastic behavior of the granular material on the continuum level. Discretization approaches, including mesh refinement and finite element type selection are presented to capture high stress concentrations at contact points between grains. The effect of a grain’s coordination number on the stress concentrations is also investigated.« less

  7. Learning to Pronounce First Words in Three Languages: An Investigation of Caregiver and Infant Behavior Using a Computational Model of an Infant

    PubMed Central

    Howard, Ian S.; Messum, Piers

    2014-01-01

    Words are made up of speech sounds. Almost all accounts of child speech development assume that children learn the pronunciation of first language (L1) speech sounds by imitation, most claiming that the child performs some kind of auditory matching to the elements of ambient speech. However, there is evidence to support an alternative account and we investigate the non-imitative child behavior and well-attested caregiver behavior that this account posits using Elija, a computational model of an infant. Through unsupervised active learning, Elija began by discovering motor patterns, which produced sounds. In separate interaction experiments, native speakers of English, French and German then played the role of his caregiver. In their first interactions with Elija, they were allowed to respond to his sounds if they felt this was natural. We analyzed the interactions through phonemic transcriptions of the caregivers' utterances and found that they interpreted his output within the framework of their native languages. Their form of response was almost always a reformulation of Elija's utterance into well-formed sounds of L1. Elija retained those motor patterns to which a caregiver responded and formed associations between his motor pattern and the response it provoked. Thus in a second phase of interaction, he was able to parse input utterances in terms of the caregiver responses he had heard previously, and respond using his associated motor patterns. This capacity enabled the caregivers to teach Elija to pronounce some simple words in their native languages, by his serial imitation of the words' component speech sounds. Overall, our results demonstrate that the natural responses and behaviors of human subjects to infant-like vocalizations can take a computational model from a biologically plausible initial state through to word pronunciation. This provides support for an alternative to current auditory matching hypotheses for how children learn to pronounce. PMID:25333740

  8. Interpreting Parent-Infant Interactions: Cross-Cultural Lessons.

    ERIC Educational Resources Information Center

    McCollum, Jeanette A.; Ree, Yon; Chen, Yu-Jun

    2000-01-01

    Drawing on interviews with six American and Korean mothers, this article explores the range and coalescence of ideas that mothers from different cultures have about interactions with their 12-month-old babies in social interactive play and joint play with objects. Differences and similarities about the mothers' ideas about interaction are…

  9. Preadolescent Girls' and Boys' Virtual MUD Play

    ERIC Educational Resources Information Center

    Calvert, Sandra L.; Strouse, Gabrielle A.; Strong, Bonnie L.; Huffaker, David A.; Lai, Sean

    2009-01-01

    Same and opposite-sex pairs of preadolescents interacted twice in a MUD, a virtual domain where they created characters known as avatars and socially interacted with one another. Boys interacted primarily through rapid scene shifts and playful exchanges; girls interacted with one another through written dialogue. Opposite-sex pairs lagged behind…

  10. Segmentation of cortical bone using fast level sets

    NASA Astrophysics Data System (ADS)

    Chowdhury, Manish; Jörgens, Daniel; Wang, Chunliang; Smedby, Årjan; Moreno, Rodrigo

    2017-02-01

    Cortical bone plays a big role in the mechanical competence of bone. The analysis of cortical bone requires accurate segmentation methods. Level set methods are usually in the state-of-the-art for segmenting medical images. However, traditional implementations of this method are computationally expensive. This drawback was recently tackled through the so-called coherent propagation extension of the classical algorithm which has decreased computation times dramatically. In this study, we assess the potential of this technique for segmenting cortical bone in interactive time in 3D images acquired through High Resolution peripheral Quantitative Computed Tomography (HR-pQCT). The obtained segmentations are used to estimate cortical thickness and cortical porosity of the investigated images. Cortical thickness and Cortical porosity is computed using sphere fitting and mathematical morphological operations respectively. Qualitative comparison between the segmentations of our proposed algorithm and a previously published approach on six images volumes reveals superior smoothness properties of the level set approach. While the proposed method yields similar results to previous approaches in regions where the boundary between trabecular and cortical bone is well defined, it yields more stable segmentations in challenging regions. This results in more stable estimation of parameters of cortical bone. The proposed technique takes few seconds to compute, which makes it suitable for clinical settings.

  11. An Examination of the Contributions of Interactive Peer Play to Salient Classroom Competencies for Urban Head Start Children

    ERIC Educational Resources Information Center

    Fantuzzo, John; Sekino, Yumiko; Cohen, Heather L.

    2004-01-01

    Relations between children's peer play competence and other relevant competencies were investigated using two samples of urban Head Start children. Dimensions of peer play were examined concurrently with emotion regulation, autonomy, and language. Children exhibiting high levels of peer play interaction were found to demonstrate more competent…

  12. Improving the accuracy of Møller-Plesset perturbation theory with neural networks

    NASA Astrophysics Data System (ADS)

    McGibbon, Robert T.; Taube, Andrew G.; Donchev, Alexander G.; Siva, Karthik; Hernández, Felipe; Hargus, Cory; Law, Ka-Hei; Klepeis, John L.; Shaw, David E.

    2017-10-01

    Noncovalent interactions are of fundamental importance across the disciplines of chemistry, materials science, and biology. Quantum chemical calculations on noncovalently bound complexes, which allow for the quantification of properties such as binding energies and geometries, play an essential role in advancing our understanding of, and building models for, a vast array of complex processes involving molecular association or self-assembly. Because of its relatively modest computational cost, second-order Møller-Plesset perturbation (MP2) theory is one of the most widely used methods in quantum chemistry for studying noncovalent interactions. MP2 is, however, plagued by serious errors due to its incomplete treatment of electron correlation, especially when modeling van der Waals interactions and π-stacked complexes. Here we present spin-network-scaled MP2 (SNS-MP2), a new semi-empirical MP2-based method for dimer interaction-energy calculations. To correct for errors in MP2, SNS-MP2 uses quantum chemical features of the complex under study in conjunction with a neural network to reweight terms appearing in the total MP2 interaction energy. The method has been trained on a new data set consisting of over 200 000 complete basis set (CBS)-extrapolated coupled-cluster interaction energies, which are considered the gold standard for chemical accuracy. SNS-MP2 predicts gold-standard binding energies of unseen test compounds with a mean absolute error of 0.04 kcal mol-1 (root-mean-square error 0.09 kcal mol-1), a 6- to 7-fold improvement over MP2. To the best of our knowledge, its accuracy exceeds that of all extant density functional theory- and wavefunction-based methods of similar computational cost, and is very close to the intrinsic accuracy of our benchmark coupled-cluster methodology itself. Furthermore, SNS-MP2 provides reliable per-conformation confidence intervals on the predicted interaction energies, a feature not available from any alternative method.

  13. Improving the accuracy of Møller-Plesset perturbation theory with neural networks.

    PubMed

    McGibbon, Robert T; Taube, Andrew G; Donchev, Alexander G; Siva, Karthik; Hernández, Felipe; Hargus, Cory; Law, Ka-Hei; Klepeis, John L; Shaw, David E

    2017-10-28

    Noncovalent interactions are of fundamental importance across the disciplines of chemistry, materials science, and biology. Quantum chemical calculations on noncovalently bound complexes, which allow for the quantification of properties such as binding energies and geometries, play an essential role in advancing our understanding of, and building models for, a vast array of complex processes involving molecular association or self-assembly. Because of its relatively modest computational cost, second-order Møller-Plesset perturbation (MP2) theory is one of the most widely used methods in quantum chemistry for studying noncovalent interactions. MP2 is, however, plagued by serious errors due to its incomplete treatment of electron correlation, especially when modeling van der Waals interactions and π-stacked complexes. Here we present spin-network-scaled MP2 (SNS-MP2), a new semi-empirical MP2-based method for dimer interaction-energy calculations. To correct for errors in MP2, SNS-MP2 uses quantum chemical features of the complex under study in conjunction with a neural network to reweight terms appearing in the total MP2 interaction energy. The method has been trained on a new data set consisting of over 200 000 complete basis set (CBS)-extrapolated coupled-cluster interaction energies, which are considered the gold standard for chemical accuracy. SNS-MP2 predicts gold-standard binding energies of unseen test compounds with a mean absolute error of 0.04 kcal mol -1 (root-mean-square error 0.09 kcal mol -1 ), a 6- to 7-fold improvement over MP2. To the best of our knowledge, its accuracy exceeds that of all extant density functional theory- and wavefunction-based methods of similar computational cost, and is very close to the intrinsic accuracy of our benchmark coupled-cluster methodology itself. Furthermore, SNS-MP2 provides reliable per-conformation confidence intervals on the predicted interaction energies, a feature not available from any alternative method.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yitan; Xu, Yanxun; Helseth, Donald L.

    Background: Genetic interactions play a critical role in cancer development. Existing knowledge about cancer genetic interactions is incomplete, especially lacking evidences derived from large-scale cancer genomics data. The Cancer Genome Atlas (TCGA) produces multimodal measurements across genomics and features of thousands of tumors, which provide an unprecedented opportunity to investigate the interplays of genes in cancer. Methods: We introduce Zodiac, a computational tool and resource to integrate existing knowledge about cancer genetic interactions with new information contained in TCGA data. It is an evolution of existing knowledge by treating it as a prior graph, integrating it with a likelihood modelmore » derived by Bayesian graphical model based on TCGA data, and producing a posterior graph as updated and data-enhanced knowledge. In short, Zodiac realizes “Prior interaction map + TCGA data → Posterior interaction map.” Results: Zodiac provides molecular interactions for about 200 million pairs of genes. All the results are generated from a big-data analysis and organized into a comprehensive database allowing customized search. In addition, Zodiac provides data processing and analysis tools that allow users to customize the prior networks and update the genetic pathways of their interest. Zodiac is publicly available at www.compgenome.org/ZODIAC. Conclusions: Zodiac recapitulates and extends existing knowledge of molecular interactions in cancer. It can be used to explore novel gene-gene interactions, transcriptional regulation, and other types of molecular interplays in cancer.« less

  15. Metaphors for the Nature of Human-Computer Interaction in an Empowering Environment: Interaction Style Influences the Manner of Human Accomplishment.

    ERIC Educational Resources Information Center

    Weller, Herman G.; Hartson, H. Rex

    1992-01-01

    Describes human-computer interface needs for empowering environments in computer usage in which the machine handles the routine mechanics of problem solving while the user concentrates on its higher order meanings. A closed-loop model of interaction is described, interface as illusion is discussed, and metaphors for human-computer interaction are…

  16. Effects of oxytocin and vasopressin on the neural response to unreciprocated cooperation within brain regions involved in stress and anxiety in men and women.

    PubMed

    Chen, Xu; Hackett, Patrick D; DeMarco, Ashley C; Feng, Chunliang; Stair, Sabrina; Haroon, Ebrahim; Ditzen, Beate; Pagnoni, Giuseppe; Rilling, James K

    2016-06-01

    Anxiety disorders are characterized by hyperactivity in both the amygdala and the anterior insula. Interventions that normalize activity in these areas may therefore be effective in treating anxiety disorders. Recently, there has been significant interest in the potential use of oxytocin (OT), as well as vasopressin (AVP) antagonists, as treatments for anxiety disorders. In this double-blind, placebo-controlled, pharmaco- fMRI study, 153 men and 151 women were randomized to treatment with either 24 IU intranasal OT, 20 IU intranasal AVP, or placebo and imaged with fMRI as they played the iterated Prisoner's Dilemma game with same-sex human and computer partners. In men, OT attenuated the fMRI response to unreciprocated cooperation (CD), a negative social interaction, within the amygdala and anterior insula. This effect was specific to interactions with human partners. In contrast, among women, OT unexpectedly attenuated the amygdala and anterior insula response to unreciprocated cooperation from computer but not human partners. Among women, AVP did not significantly modulate the response to unreciprocated cooperation in either the amygdala or the anterior insula. However, among men, AVP attenuated the BOLD response to CD outcomes with human partners across a relatively large cluster including the amygdala and the anterior insula, which was contrary to expectations. Our results suggest that OT may decrease the stress of negative social interactions among men, whereas these effects were not found in women interacting with human partners. These findings support continued investigation into the possible efficacy of OT as a treatment for anxiety disorders.

  17. Development of tight-binding based GW algorithm and its computational implementation for graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majidi, Muhammad Aziz; NUSNNI-NanoCore, Department of Physics, National University of Singapore; Singapore Synchrotron Light Source

    Graphene has been a hot subject of research in the last decade as it holds a promise for various applications. One interesting issue is whether or not graphene should be classified into a strongly or weakly correlated system, as the optical properties may change upon several factors, such as the substrate, voltage bias, adatoms, etc. As the Coulomb repulsive interactions among electrons can generate the correlation effects that may modify the single-particle spectra (density of states) and the two-particle spectra (optical conductivity) of graphene, we aim to explore such interactions in this study. The understanding of such correlation effects ismore » important because eventually they play an important role in inducing the effective attractive interactions between electrons and holes that bind them into excitons. We do this study theoretically by developing a GW method implemented on the basis of the tight-binding (TB) model Hamiltonian. Unlike the well-known GW method developed within density functional theory (DFT) framework, our TB-based GW implementation may serve as an alternative technique suitable for systems which Hamiltonian is to be constructed through a tight-binding based or similar models. This study includes theoretical formulation of the Green’s function G, the renormalized interaction function W from random phase approximation (RPA), and the corresponding self energy derived from Feynman diagrams, as well as the development of the algorithm to compute those quantities. As an evaluation of the method, we perform calculations of the density of states and the optical conductivity of graphene, and analyze the results.« less

  18. sc-PDB-Frag: a database of protein-ligand interaction patterns for Bioisosteric replacements.

    PubMed

    Desaphy, Jérémy; Rognan, Didier

    2014-07-28

    Bioisosteric replacement plays an important role in medicinal chemistry by keeping the biological activity of a molecule while changing either its core scaffold or substituents, thereby facilitating lead optimization and patenting. Bioisosteres are classically chosen in order to keep the main pharmacophoric moieties of the substructure to replace. However, notably when changing a scaffold, no attention is usually paid as whether all atoms of the reference scaffold are equally important for binding to the desired target. We herewith propose a novel database for bioisosteric replacement (scPDBFrag), capitalizing on our recently published structure-based approach to scaffold hopping, focusing on interaction pattern graphs. Protein-bound ligands are first fragmented and the interaction of the corresponding fragments with their protein environment computed-on-the-fly. Using an in-house developed graph alignment tool, interaction patterns graphs can be compared, aligned, and sorted by decreasing similarity to any reference. In the herein presented sc-PDB-Frag database ( http://bioinfo-pharma.u-strasbg.fr/scPDBFrag ), fragments, interaction patterns, alignments, and pairwise similarity scores have been extracted from the sc-PDB database of 8077 druggable protein-ligand complexes and further stored in a relational database. We herewith present the database, its Web implementation, and procedures for identifying true bioisosteric replacements based on conserved interaction patterns.

  19. Linked-cluster formulation of electron-hole interaction kernel in real-space representation without using unoccupied states.

    PubMed

    Bayne, Michael G; Scher, Jeremy A; Ellis, Benjamin H; Chakraborty, Arindam

    2018-05-21

    Electron-hole or quasiparticle representation plays a central role in describing electronic excitations in many-electron systems. For charge-neutral excitation, the electron-hole interaction kernel is the quantity of interest for calculating important excitation properties such as optical gap, optical spectra, electron-hole recombination and electron-hole binding energies. The electron-hole interaction kernel can be formally derived from the density-density correlation function using both Green's function and TDDFT formalism. The accurate determination of the electron-hole interaction kernel remains a significant challenge for precise calculations of optical properties in the GW+BSE formalism. From the TDDFT perspective, the electron-hole interaction kernel has been viewed as a path to systematic development of frequency-dependent exchange-correlation functionals. Traditional approaches, such as MBPT formalism, use unoccupied states (which are defined with respect to Fermi vacuum) to construct the electron-hole interaction kernel. However, the inclusion of unoccupied states has long been recognized as the leading computational bottleneck that limits the application of this approach for larger finite systems. In this work, an alternative derivation that avoids using unoccupied states to construct the electron-hole interaction kernel is presented. The central idea of this approach is to use explicitly correlated geminal functions for treating electron-electron correlation for both ground and excited state wave functions. Using this ansatz, it is derived using both diagrammatic and algebraic techniques that the electron-hole interaction kernel can be expressed only in terms of linked closed-loop diagrams. It is proved that the cancellation of unlinked diagrams is a consequence of linked-cluster theorem in real-space representation. The electron-hole interaction kernel derived in this work was used to calculate excitation energies in many-electron systems and results were found to be in good agreement with the EOM-CCSD and GW+BSE methods. The numerical results highlight the effectiveness of the developed method for overcoming the computational barrier of accurately determining the electron-hole interaction kernel to applications of large finite systems such as quantum dots and nanorods.

  20. Computational prediction of protein interactions related to the invasion of erythrocytes by malarial parasites.

    PubMed

    Liu, Xuewu; Huang, Yuxiao; Liang, Jiao; Zhang, Shuai; Li, Yinghui; Wang, Jun; Shen, Yan; Xu, Zhikai; Zhao, Ya

    2014-11-30

    The invasion of red blood cells (RBCs) by malarial parasites is an essential step in the life cycle of Plasmodium falciparum. Human-parasite surface protein interactions play a critical role in this process. Although several interactions between human and parasite proteins have been discovered, the mechanism related to invasion remains poorly understood because numerous human-parasite protein interactions have not yet been identified. High-throughput screening experiments are not feasible for malarial parasites due to difficulty in expressing the parasite proteins. Here, we performed computational prediction of the PPIs involved in malaria parasite invasion to elucidate the mechanism by which invasion occurs. In this study, an expectation maximization algorithm was used to estimate the probabilities of domain-domain interactions (DDIs). Estimates of DDI probabilities were then used to infer PPI probabilities. We found that our prediction performance was better than that based on the information of D. melanogaster alone when information related to the six species was used. Prediction performance was assessed using protein interaction data from S. cerevisiae, indicating that the predicted results were reliable. We then used the estimates of DDI probabilities to infer interactions between 490 parasite and 3,787 human membrane proteins. A small-scale dataset was used to illustrate the usability of our method in predicting interactions between human and parasite proteins. The positive predictive value (PPV) was lower than that observed in S. cerevisiae. We integrated gene expression data to improve prediction accuracy and to reduce false positives. We identified 80 membrane proteins highly expressed in the schizont stage by fast Fourier transform method. Approximately 221 erythrocyte membrane proteins were identified using published mass spectral datasets. A network consisting of 205 interactions was predicted. Results of network analysis suggest that SNARE proteins of parasites and APP of humans may function in the invasion of RBCs by parasites. We predicted a small-scale PPI network that may be involved in parasite invasion of RBCs by integrating DDI information and expression profiles. Experimental studies should be conducted to validate the predicted interactions. The predicted PPIs help elucidate the mechanism of parasite invasion and provide directions for future experimental investigations.

  1. Computer vision in cell biology.

    PubMed

    Danuser, Gaudenz

    2011-11-23

    Computer vision refers to the theory and implementation of artificial systems that extract information from images to understand their content. Although computers are widely used by cell biologists for visualization and measurement, interpretation of image content, i.e., the selection of events worth observing and the definition of what they mean in terms of cellular mechanisms, is mostly left to human intuition. This Essay attempts to outline roles computer vision may play and should play in image-based studies of cellular life. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Why people continue to play online games: in search of critical design factors to increase customer loyalty to online contents.

    PubMed

    Choi, Dongseong; Kim, Jinwoo

    2004-02-01

    As people increasingly play online games, numerous new features have been proposed to increase players' log-on time at online gaming sites. However, few studies have investigated why people continue to play certain online games or which design features are most closely related to the amount of time spent by players at particular online gaming sites. This study proposes a theoretical model using the concepts of customer loyalty, flow, personal interaction, and social interaction to explain why people continue to play online network games. The study then conducts a large-scale survey to validate the model. Finally, it analyzes current online games to identify design features that are closely related to the theoretical concepts. The results indicate that people continue to play online games if they have optimal experiences while playing the games. This optimal experience can be attained if the player has effective personal interaction with the system or pleasant social interactions with other people connected to the Internet. Personal interaction can be facilitated by providing appropriate goals, operators and feedback; social interaction can be facilitated through appropriate communication places and tools. This paper ends with the implications of applying the study results to other domains such as e-commerce and cyber communities.

  3. Identification of effector-like proteins in Trichoderma spp. and role of a hydrophobin in the plant-fungus interaction and mycoparasitism.

    PubMed

    Guzmán-Guzmán, Paulina; Alemán-Duarte, Mario Iván; Delaye, Luis; Herrera-Estrella, Alfredo; Olmedo-Monfil, Vianey

    2017-02-15

    Trichoderma spp. can establish beneficial interactions with plants by promoting plant growth and defense systems, as well as, antagonizing fungal phytopathogens in mycoparasitic interactions. Such interactions depend on signal exchange between both participants and can be mediated by effector proteins that alter the host cell structure and function, allowing the establishment of the relationship. The main purpose of this work was to identify, using computational methods, candidates of effector proteins from T. virens, T. atroviride and T. reesei, validate the expression of some of the genes during a beneficial interaction and mycoparasitism and to define the biological function for one of them. We defined a catalogue of putative effector proteins from T. virens, T. atroviride and T. reesei. We further validated the expression of 16 genes encoding putative effector proteins from T. virens and T. atroviride during the interaction with the plant Arabidopsis thaliana, and with two anastomosis groups of the phytopathogenic fungus Rhizoctonia solani. We found genes which transcript levels are modified in response to the presence of both plant fungi, as well as genes that respond only to either a plant or a fungal host. Further, we show that overexpression of the gene tvhydii1, a Class II hydrophobin family member, enhances the antagonistic activity of T. virens against R. solani AG2. Further, deletion of tvhydii1 results in reduced colonization of plant roots, while its overexpression increases it. Our results show that Trichoderma is able to respond in different ways to the presence of a plant or a fungal host, and it can even distinguish between different strains of fungi of a given species. The putative effector proteins identified here may play roles in preventing perception of the fungus by its hosts, favoring host colonization or protecting it from the host's defense response. Finally, the novel effector protein TVHYDII1 plays a role in plant root colonization by T, virens, and participates in its antagonistic activity against R. solani.

  4. The autophagy interaction network of the aging model Podospora anserina.

    PubMed

    Philipp, Oliver; Hamann, Andrea; Osiewacz, Heinz D; Koch, Ina

    2017-03-27

    Autophagy is a conserved molecular pathway involved in the degradation and recycling of cellular components. It is active either as response to starvation or molecular damage. Evidence is emerging that autophagy plays a key role in the degradation of damaged cellular components and thereby affects aging and lifespan control. In earlier studies, it was found that autophagy in the aging model Podospora anserina acts as a longevity assurance mechanism. However, only little is known about the individual components controlling autophagy in this aging model. Here, we report a biochemical and bioinformatics study to detect the protein-protein interaction (PPI) network of P. anserina combining experimental and theoretical methods. We constructed the PPI network of autophagy in P. anserina based on the corresponding networks of yeast and human. We integrated PaATG8 interaction partners identified in an own yeast two-hybrid analysis using ATG8 of P. anserina as bait. Additionally, we included age-dependent transcriptome data. The resulting network consists of 89 proteins involved in 186 interactions. We applied bioinformatics approaches to analyze the network topology and to prove that the network is not random, but exhibits biologically meaningful properties. We identified hub proteins which play an essential role in the network as well as seven putative sub-pathways, and interactions which are likely to be evolutionary conserved amongst species. We confirmed that autophagy-associated genes are significantly often up-regulated and co-expressed during aging of P. anserina. With the present study, we provide a comprehensive biological network of the autophagy pathway in P. anserina comprising PPI and gene expression data. It is based on computational prediction as well as experimental data. We identified sub-pathways, important hub proteins, and evolutionary conserved interactions. The network clearly illustrates the relation of autophagy to aging processes and enables further specific studies to understand autophagy and aging in P. anserina as well as in other systems.

  5. Membrane proteins structures: A review on computational modeling tools.

    PubMed

    Almeida, Jose G; Preto, Antonio J; Koukos, Panagiotis I; Bonvin, Alexandre M J J; Moreira, Irina S

    2017-10-01

    Membrane proteins (MPs) play diverse and important functions in living organisms. They constitute 20% to 30% of the known bacterial, archaean and eukaryotic organisms' genomes. In humans, their importance is emphasized as they represent 50% of all known drug targets. Nevertheless, experimental determination of their three-dimensional (3D) structure has proven to be both time consuming and rather expensive, which has led to the development of computational algorithms to complement the available experimental methods and provide valuable insights. This review highlights the importance of membrane proteins and how computational methods are capable of overcoming challenges associated with their experimental characterization. It covers various MP structural aspects, such as lipid interactions, allostery, and structure prediction, based on methods such as Molecular Dynamics (MD) and Machine-Learning (ML). Recent developments in algorithms, tools and hybrid approaches, together with the increase in both computational resources and the amount of available data have resulted in increasingly powerful and trustworthy approaches to model MPs. Even though MPs are elementary and important in nature, the determination of their 3D structure has proven to be a challenging endeavor. Computational methods provide a reliable alternative to experimental methods. In this review, we focus on computational techniques to determine the 3D structure of MP and characterize their binding interfaces. We also summarize the most relevant databases and software programs available for the study of MPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. How is visual salience computed in the brain? Insights from behaviour, neurobiology and modelling

    PubMed Central

    Veale, Richard; Hafed, Ziad M.

    2017-01-01

    Inherent in visual scene analysis is a bottleneck associated with the need to sequentially sample locations with foveating eye movements. The concept of a ‘saliency map’ topographically encoding stimulus conspicuity over the visual scene has proven to be an efficient predictor of eye movements. Our work reviews insights into the neurobiological implementation of visual salience computation. We start by summarizing the role that different visual brain areas play in salience computation, whether at the level of feature analysis for bottom-up salience or at the level of goal-directed priority maps for output behaviour. We then delve into how a subcortical structure, the superior colliculus (SC), participates in salience computation. The SC represents a visual saliency map via a centre-surround inhibition mechanism in the superficial layers, which feeds into priority selection mechanisms in the deeper layers, thereby affecting saccadic and microsaccadic eye movements. Lateral interactions in the local SC circuit are particularly important for controlling active populations of neurons. This, in turn, might help explain long-range effects, such as those of peripheral cues on tiny microsaccades. Finally, we show how a combination of in vitro neurophysiology and large-scale computational modelling is able to clarify how salience computation is implemented in the local circuit of the SC. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044023

  7. A Comparison of Playfulness of Young Children with and without Autism Spectrum Disorder in Interactions with Their Mothers and Teachers

    ERIC Educational Resources Information Center

    Pinchover, Shulamit; Shulman, Cory; Bundy, Anita

    2016-01-01

    Children with autism spectrum disorder (ASD) tend to be less playful than their typically developing (TD) peers. Although playfulness is considered a personality characteristic, little is known about the stability of this trait in interactions with different caregivers. This study compared the playfulness of children with and without ASD in play…

  8. Play-solicitation gestures in chimpanzees in the wild: flexible adjustment to social circumstances and individual matrices.

    PubMed

    Fröhlich, Marlen; Wittig, Roman M; Pika, Simone

    2016-08-01

    Social play is a frequent behaviour in great apes and involves sophisticated forms of communicative exchange. While it is well established that great apes test and practise the majority of their gestural signals during play interactions, the influence of demographic factors and kin relationships between the interactants on the form and variability of gestures are relatively little understood. We thus carried out the first systematic study on the exchange of play-soliciting gestures in two chimpanzee ( Pan troglodytes ) communities of different subspecies. We examined the influence of age, sex and kin relationships of the play partners on gestural play solicitations, including object-associated and self-handicapping gestures. Our results demonstrated that the usage of (i) audible and visual gestures increased significantly with infant age, (ii) tactile gestures differed between the sexes, and (iii) audible and visual gestures were higher in interactions with conspecifics than with mothers. Object-associated and self-handicapping gestures were frequently used to initiate play with same-aged and younger play partners, respectively. Our study thus strengthens the view that gestures are mutually constructed communicative means, which are flexibly adjusted to social circumstances and individual matrices of interactants.

  9. Play-solicitation gestures in chimpanzees in the wild: flexible adjustment to social circumstances and individual matrices

    PubMed Central

    Wittig, Roman M.; Pika, Simone

    2016-01-01

    Social play is a frequent behaviour in great apes and involves sophisticated forms of communicative exchange. While it is well established that great apes test and practise the majority of their gestural signals during play interactions, the influence of demographic factors and kin relationships between the interactants on the form and variability of gestures are relatively little understood. We thus carried out the first systematic study on the exchange of play-soliciting gestures in two chimpanzee (Pan troglodytes) communities of different subspecies. We examined the influence of age, sex and kin relationships of the play partners on gestural play solicitations, including object-associated and self-handicapping gestures. Our results demonstrated that the usage of (i) audible and visual gestures increased significantly with infant age, (ii) tactile gestures differed between the sexes, and (iii) audible and visual gestures were higher in interactions with conspecifics than with mothers. Object-associated and self-handicapping gestures were frequently used to initiate play with same-aged and younger play partners, respectively. Our study thus strengthens the view that gestures are mutually constructed communicative means, which are flexibly adjusted to social circumstances and individual matrices of interactants. PMID:27853603

  10. A new strategic neurosurgical planning tool for brainstem cavernous malformations using interactive computer graphics with multimodal fusion images.

    PubMed

    Kin, Taichi; Nakatomi, Hirofumi; Shojima, Masaaki; Tanaka, Minoru; Ino, Kenji; Mori, Harushi; Kunimatsu, Akira; Oyama, Hiroshi; Saito, Nobuhito

    2012-07-01

    In this study, the authors used preoperative simulation employing 3D computer graphics (interactive computer graphics) to fuse all imaging data for brainstem cavernous malformations. The authors evaluated whether interactive computer graphics or 2D imaging correlated better with the actual operative field, particularly in identifying a developmental venous anomaly (DVA). The study population consisted of 10 patients scheduled for surgical treatment of brainstem cavernous malformations. Data from preoperative imaging (MRI, CT, and 3D rotational angiography) were automatically fused using a normalized mutual information method, and then reconstructed by a hybrid method combining surface rendering and volume rendering methods. With surface rendering, multimodality and multithreshold techniques for 1 tissue were applied. The completed interactive computer graphics were used for simulation of surgical approaches and assumed surgical fields. Preoperative diagnostic rates for a DVA associated with brainstem cavernous malformation were compared between conventional 2D imaging and interactive computer graphics employing receiver operating characteristic (ROC) analysis. The time required for reconstruction of 3D images was 3-6 hours for interactive computer graphics. Observation in interactive mode required approximately 15 minutes. Detailed anatomical information for operative procedures, from the craniotomy to microsurgical operations, could be visualized and simulated three-dimensionally as 1 computer graphic using interactive computer graphics. Virtual surgical views were consistent with actual operative views. This technique was very useful for examining various surgical approaches. Mean (±SEM) area under the ROC curve for rate of DVA diagnosis was significantly better for interactive computer graphics (1.000±0.000) than for 2D imaging (0.766±0.091; p<0.001, Mann-Whitney U-test). The authors report a new method for automatic registration of preoperative imaging data from CT, MRI, and 3D rotational angiography for reconstruction into 1 computer graphic. The diagnostic rate of DVA associated with brainstem cavernous malformation was significantly better using interactive computer graphics than with 2D images. Interactive computer graphics was also useful in helping to plan the surgical access corridor.

  11. Relaxed open mouth as a playful signal in wild ring-tailed lemurs.

    PubMed

    Palagi, Elisabetta; Norscia, Ivan; Spada, Giulia

    2014-11-01

    Play signals are commonly used by animals to communicate their playful motivation and to limit the risk that rough acts are misunderstood by playmates. The relaxed open mouth is the most common facial expression performed during play in many mammals and represents the ritualized version of the movement anticipating a play bite. The signaling nature of this expression has been proven in many haplorrhine species but never demonstrated in strepsirrhines. Our purpose was assessing whether, also in strepsirrhines, the relaxed open mouth has an actual communicative function. We studied wild ring-tailed lemurs (Lemur catta), characterized by highly social habits including intense playful interactions. They largely use playful signals, mostly performed with the black and white tail. The signaling function of the tail (tail play) has been widely demonstrated. We analyzed both tail play and the relaxed open mouth to verify how their distribution is affected by different play variables (e.g., play session symmetry, number of play mates, previous use of the same pattern). Indeed, ring-tailed lemurs use the relaxed open mouth as a communicative signal during play. Relaxed open mouth was more frequent during unbalanced interactions showing the highest asymmetry in the patterns performed by the two players (offensive/neutral). Compared to tail play, relaxed open mouth was more frequent during dyadic than polyadic interactions and, as a highly directional signal, it was more frequently replicated by the play mate. Therefore, the relaxed open mouth needs to be performed face-to-face so that signal detection can be optimized. Similar to previous findings in monkeys and apes, the relaxed open mouth in lemurs seems to be a ritualized signal used to engage and, perhaps, sustain playful interaction. © 2014 Wiley Periodicals, Inc.

  12. The Interactive Play and a Persuasive God: A Psychoanalytic Approach to Re-envisioning Pastoral Care and Counseling.

    PubMed

    Jang, Jung Eun

    2016-06-01

    The purpose of this article is to present a sketch of a new image of pastoral care and counseling, which reflects the psychoanalytic understanding of the interacting transference and countertransference matrix, along with a process view of God in a mutually influencing relationship with creatures. A more effective approach in pastoral care and counseling can be conceptualized as the interactive play in which pastoral caregivers and receivers co-create a therapeutic relationship with their own past experiences and their creative capabilities. The interactive play is a concept of describing the mutually influencing relationship in the transference and countertransference interchange. The article introduces the concept of a persuasive God as a new image of pastoral care and counseling which includes aspects of the mutually interacting process in play. © The Author(s) 2016.

  13. Computational fluid dynamics in a marine environment

    NASA Technical Reports Server (NTRS)

    Carlson, Arthur D.

    1987-01-01

    The introduction of the supercomputer and recent advances in both Reynolds averaged, and large eddy simulation fluid flow approximation techniques to the Navier-Stokes equations, have created a robust environment for the exploration of problems of interest to the Navy in general, and the Naval Underwater Systems Center in particular. The nature of problems that are of interest, and the type of resources needed for their solution are addressed. The goal is to achieve a good engineering solution to the fluid-structure interaction problem. It is appropriate to indicate that a paper by D. Champman played a major role in developing the interest in the approach discussed.

  14. Identity-Based Verifiably Encrypted Signatures without Random Oracles

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wu, Qianhong; Qin, Bo

    Fair exchange protocol plays an important role in electronic commerce in the case of exchanging digital contracts. Verifiably encrypted signatures provide an optimistic solution to these scenarios with an off-line trusted third party. In this paper, we propose an identity-based verifiably encrypted signature scheme. The scheme is non-interactive to generate verifiably encrypted signatures and the resulting encrypted signature consists of only four group elements. Based on the computational Diffie-Hellman assumption, our scheme is proven secure without using random oracles. To the best of our knowledge, this is the first identity-based verifiably encrypted signature scheme provably secure in the standard model.

  15. Materials science. Modeling strain hardening the hard way.

    PubMed

    Gumbsch, Peter

    2003-09-26

    The plastic deformation of metals results in strain hardening, that is, an increase in the stress with increasing strain. Materials engineers can provide a simple approximate description of such deformation and hardening behavior. In his perspective, Gumbsch discusses work by Madec et al. who have undertaken the formidable task of computing the physical basis for the development of strain hardening by individually following the fate of all the dislocations involved. Their simulations show that the collinear dislocation interaction makes a substantial contribution to strain hardening. It is likely that such simulations will play an important role in guiding the development of future engineering descriptions of deformation and hardening.

  16. The thiocyanate anion is a primary driver of carbon dioxide capture by ionic liquids

    NASA Astrophysics Data System (ADS)

    Chaban, Vitaly

    2015-01-01

    Carbon dioxide, CO2, capture by room-temperature ionic liquids (RTILs) is a vivid research area featuring both accomplishments and frustrations. This work employs the PM7-MD method to simulate adsorption of CO2 by 1,3-dimethylimidazolium thiocyanate at 300 K. The obtained result evidences that the thiocyanate anion plays a key role in gas capture, whereas the impact of the 1,3-dimethylimidazolium cation is mediocre. Decomposition of the computed wave function on the individual molecular orbitals confirms that CO2-SCN binding extends beyond just expected electrostatic interactions in the ion-molecular system and involves partial sharing of valence orbitals.

  17. MPFit: Computational Tool for Predicting Moonlighting Proteins.

    PubMed

    Khan, Ishita; McGraw, Joshua; Kihara, Daisuke

    2017-01-01

    An increasing number of proteins have been found which are capable of performing two or more distinct functions. These proteins, known as moonlighting proteins, have drawn much attention recently as they may play critical roles in disease pathways and development. However, because moonlighting proteins are often found serendipitously, our understanding of moonlighting proteins is still quite limited. In order to lay the foundation for systematic moonlighting proteins studies, we developed MPFit, a software package for predicting moonlighting proteins from their omics features including protein-protein and gene interaction networks. Here, we describe and demonstrate the algorithm of MPFit, the idea behind it, and provide instruction for using the software.

  18. Dehydration-induced amorphous phases of calcium carbonate.

    PubMed

    Saharay, Moumita; Yazaydin, A Ozgur; Kirkpatrick, R James

    2013-03-28

    Amorphous calcium carbonate (ACC) is a critical transient phase in the inorganic precipitation of CaCO3 and in biomineralization. The calcium carbonate crystallization pathway is thought to involve dehydration of more hydrated ACC to less hydrated ACC followed by the formation of anhydrous ACC. We present here computational studies of the transition of a hydrated ACC with a H2O/CaCO3 ratio of 1.0 to anhydrous ACC. During dehydration, ACC undergoes reorganization to a more ordered structure with a significant increase in density. The computed density of anhydrous ACC is similar to that of calcite, the stable crystalline phase. Compared to the crystalline CaCO3 phases, calcite, vaterite, and aragonite, the computed local structure of anhydrous ACC is most-similar to those of calcite and vaterite, but the overall structure is not well described by either. The strong hydrogen bond interaction between the carbonate ions and water molecules plays a crucial role in stabilizing the less hydrated ACC compositions compared to the more hydrated ones, leading to a progressively increasing hydration energy with decreasing water content.

  19. Computational Modeling and Simulations of Bioparticle Internalization Through Clathrin-mediated Endocytosis

    NASA Astrophysics Data System (ADS)

    Deng, Hua; Dutta, Prashanta; Liu, Jin

    2016-11-01

    Clathrin-mediated endocytosis (CME) is one of the most important endocytic pathways for the internalization of bioparticles at lipid membrane of cells, which plays crucial roles in fundamental understanding of viral infections and interacellular/transcelluar targeted drug delivery. During CME, highly dynamic clathrin-coated pit (CCP), formed by the growth of ordered clathrin lattices, is the key scaffolding component that drives the deformation of plasma membrane. Experimental studies have shown that CCP alone can provide sufficient membrane curvature for facilitating membrane invagination. However, currently there is no computational model that could couple cargo receptor binding with membrane invagination process, nor simulations of the dynamic growing process of CCP. We develop a stochastic computational model for the clathrin-mediated endocytosis based on Metropolis Monte Carlo simulations. In our model, the energetic costs of bending membrane and CCP are linked with antigen-antibody interactions. The assembly of clathrin lattices is a dynamic process that correlates with antigen-antibody bond formation. This model helps study the membrane deformation and the effects of CCP during functionalized bioparticles internalization through CME. This work is supported by NSF Grants: CBET-1250107 and CBET-1604211.

  20. Proactive authenticated notifications for health practitioners: two way human computer interaction through phone.

    PubMed

    Majeed, Raphael W; Stöhr, Mark R; Röhrig, Rainer

    2012-01-01

    Notifications and alerts play an important role in clinical daily routine. Rising prevalence of clinical decision support systems and electronic health records also result in increasing demands on notification systems. Failure adequately to communicate a critical value is a potential cause of adverse events. Critical laboratory values and changing vital data depend on timely notifications of medical staff. Vital monitors and medical devices rely on acoustic signals for alerting which are prone to "alert fatigue" and require medical staff to be present within audible range. Personal computers are unsuitable to display time critical notification messages, since the targeted medical staff are not always operating or watching the computer. On the other hand, mobile phones and smart devices enjoy increasing popularity. Previous notification systems sending text messages to mobile phones depend on asynchronous confirmations. By utilizing an automated telephony server, we provide a method to deliver notifications quickly and independently of the recipients' whereabouts while allowing immediate feedback and confirmations. Evaluation results suggest the feasibility of the proposed notification system for real-time notifications.

Top