Methodical and technological aspects of creation of interactive computer learning systems
NASA Astrophysics Data System (ADS)
Vishtak, N. M.; Frolov, D. A.
2017-01-01
The article presents a methodology for the development of an interactive computer training system for training power plant. The methods used in the work are a generalization of the content of scientific and methodological sources on the use of computer-based training systems in vocational education, methods of system analysis, methods of structural and object-oriented modeling of information systems. The relevance of the development of the interactive computer training systems in the preparation of the personnel in the conditions of the educational and training centers is proved. Development stages of the computer training systems are allocated, factors of efficient use of the interactive computer training system are analysed. The algorithm of work performance at each development stage of the interactive computer training system that enables one to optimize time, financial and labor expenditure on the creation of the interactive computer training system is offered.
NASA Technical Reports Server (NTRS)
Mitchell, Christine M.
1993-01-01
This chapter examines a class of human-computer interaction applications, specifically the design of human-computer interaction for the operators of complex systems. Such systems include space systems (e.g., manned systems such as the Shuttle or space station, and unmanned systems such as NASA scientific satellites), aviation systems (e.g., the flight deck of 'glass cockpit' airplanes or air traffic control) and industrial systems (e.g., power plants, telephone networks, and sophisticated, e.g., 'lights out,' manufacturing facilities). The main body of human-computer interaction (HCI) research complements but does not directly address the primary issues involved in human-computer interaction design for operators of complex systems. Interfaces to complex systems are somewhat special. The 'user' in such systems - i.e., the human operator responsible for safe and effective system operation - is highly skilled, someone who in human-machine systems engineering is sometimes characterized as 'well trained, well motivated'. The 'job' or task context is paramount and, thus, human-computer interaction is subordinate to human job interaction. The design of human interaction with complex systems, i.e., the design of human job interaction, is sometimes called cognitive engineering.
Graphics Flutter Analysis Methods, an interactive computing system at Lockheed-California Company
NASA Technical Reports Server (NTRS)
Radovcich, N. A.
1975-01-01
An interactive computer graphics system, Graphics Flutter Analysis Methods (GFAM), was developed to complement FAMAS, a matrix-oriented batch computing system, and other computer programs in performing complex numerical calculations using a fully integrated data management system. GFAM has many of the matrix operation capabilities found in FAMAS, but on a smaller scale, and is utilized when the analysis requires a high degree of interaction between the engineer and computer, and schedule constraints exclude the use of batch entry programs. Applications of GFAM to a variety of preliminary design, development design, and project modification programs suggest that interactive flutter analysis using matrix representations is a feasible and cost effective computing tool.
Computer Assistance for Writing Interactive Programs: TICS.
ERIC Educational Resources Information Center
Kaplow, Roy; And Others
1973-01-01
Investigators developed an on-line, interactive programing system--the Teacher-Interactive Computer System (TICS)--to provide assistance to those who were not programers, but nevertheless wished to write interactive instructional programs. TICS had two components: an author system and a delivery system. Underlying assumptions were that…
System and method for controlling power consumption in a computer system based on user satisfaction
Yang, Lei; Dick, Robert P; Chen, Xi; Memik, Gokhan; Dinda, Peter A; Shy, Alex; Ozisikyilmaz, Berkin; Mallik, Arindam; Choudhary, Alok
2014-04-22
Systems and methods for controlling power consumption in a computer system. For each of a plurality of interactive applications, the method changes a frequency at which a processor of the computer system runs, receives an indication of user satisfaction, determines a relationship between the changed frequency and the user satisfaction of the interactive application, and stores the determined relationship information. The determined relationship can distinguish between different users and different interactive applications. A frequency may be selected from the discrete frequencies at which the processor of the computer system runs based on the determined relationship information for a particular user and a particular interactive application running on the processor of the computer system. The processor may be adapted to run at the selected frequency.
ABSENTEE COMPUTATIONS IN A MULTIPLE-ACCESS COMPUTER SYSTEM.
require user interaction, and the user may therefore want to run these computations ’ absentee ’ (or, user not present). A mechanism is presented which...provides for the handling of absentee computations in a multiple-access computer system. The design is intended to be implementation-independent...Some novel features of the system’s design are: a user can switch computations from interactive to absentee (and vice versa), the system can
Interactive computer graphics and its role in control system design of large space structures
NASA Technical Reports Server (NTRS)
Reddy, A. S. S. R.
1985-01-01
This paper attempts to show the relevance of interactive computer graphics in the design of control systems to maintain attitude and shape of large space structures to accomplish the required mission objectives. The typical phases of control system design, starting from the physical model such as modeling the dynamics, modal analysis, and control system design methodology are reviewed and the need of the interactive computer graphics is demonstrated. Typical constituent parts of large space structures such as free-free beams and free-free plates are used to demonstrate the complexity of the control system design and the effectiveness of the interactive computer graphics.
Recent Developments in Interactive and Communicative CALL: Hypermedia and "Intelligent" Systems.
ERIC Educational Resources Information Center
Coughlin, Josette M.
Two recent developments in computer-assisted language learning (CALL), interactive video systems and "intelligent" games, are discussed. Under the first heading, systems combining the use of a computer and video disc player are described, and Compact Discs Interactive (CDI) and Digital Video Interactive (DVI) are reviewed. The…
Nehaniv, Chrystopher L; Rhodes, John; Egri-Nagy, Attila; Dini, Paolo; Morris, Eric Rothstein; Horváth, Gábor; Karimi, Fariba; Schreckling, Daniel; Schilstra, Maria J
2015-07-28
Interaction computing is inspired by the observation that cell metabolic/regulatory systems construct order dynamically, through constrained interactions between their components and based on a wide range of possible inputs and environmental conditions. The goals of this work are to (i) identify and understand mathematically the natural subsystems and hierarchical relations in natural systems enabling this and (ii) use the resulting insights to define a new model of computation based on interactions that is useful for both biology and computation. The dynamical characteristics of the cellular pathways studied in systems biology relate, mathematically, to the computational characteristics of automata derived from them, and their internal symmetry structures to computational power. Finite discrete automata models of biological systems such as the lac operon, the Krebs cycle and p53-mdm2 genetic regulation constructed from systems biology models have canonically associated algebraic structures (their transformation semigroups). These contain permutation groups (local substructures exhibiting symmetry) that correspond to 'pools of reversibility'. These natural subsystems are related to one another in a hierarchical manner by the notion of 'weak control'. We present natural subsystems arising from several biological examples and their weak control hierarchies in detail. Finite simple non-Abelian groups are found in biological examples and can be harnessed to realize finitary universal computation. This allows ensembles of cells to achieve any desired finitary computational transformation, depending on external inputs, via suitably constrained interactions. Based on this, interaction machines that grow and change their structure recursively are introduced and applied, providing a natural model of computation driven by interactions.
Learner Assessment Methods Using a Computer Based Interactive Videodisc System.
ERIC Educational Resources Information Center
Ehrlich, Lisa R.
This paper focuses on item design considerations faced by instructional designers and evaluators when using computer videodisc delivery systems as a means of assessing learner comprehension and competencies. Media characteristics of various interactive computer/videodisc training systems are briefly discussed as well as reasons for using such…
ERIC Educational Resources Information Center
Lonchamp, Jacques
2010-01-01
Computer-based interaction analysis (IA) is an automatic process that aims at understanding a computer-mediated activity. In a CSCL system, computer-based IA can provide information directly to learners for self-assessment and regulation and to tutors for coaching support. This article proposes a customizable computer-based IA approach for a…
Lin, Hsien-Cheng; Chiu, Yu-Hsien; Chen, Yenming J; Wuang, Yee-Pay; Chen, Chiu-Ping; Wang, Chih-Chung; Huang, Chien-Ling; Wu, Tang-Meng; Ho, Wen-Hsien
2017-11-01
This study developed an interactive computer game-based visual perception learning system for special education children with developmental delay. To investigate whether perceived interactivity affects continued use of the system, this study developed a theoretical model of the process in which learners decide whether to continue using an interactive computer game-based visual perception learning system. The technology acceptance model, which considers perceived ease of use, perceived usefulness, and perceived playfulness, was extended by integrating perceived interaction (i.e., learner-instructor interaction and learner-system interaction) and then analyzing the effects of these perceptions on satisfaction and continued use. Data were collected from 150 participants (rehabilitation therapists, medical paraprofessionals, and parents of children with developmental delay) recruited from a single medical center in Taiwan. Structural equation modeling and partial-least-squares techniques were used to evaluate relationships within the model. The modeling results indicated that both perceived ease of use and perceived usefulness were positively associated with both learner-instructor interaction and learner-system interaction. However, perceived playfulness only had a positive association with learner-system interaction and not with learner-instructor interaction. Moreover, satisfaction was positively affected by perceived ease of use, perceived usefulness, and perceived playfulness. Thus, satisfaction positively affects continued use of the system. The data obtained by this study can be applied by researchers, designers of computer game-based learning systems, special education workers, and medical professionals. Copyright © 2017 Elsevier B.V. All rights reserved.
Portable tongue-supported human computer interaction system design and implementation.
Quain, Rohan; Khan, Masood Mehmood
2014-01-01
Tongue supported human-computer interaction (TSHCI) systems can help critically ill patients interact with both computers and people. These systems can be particularly useful for patients suffering injuries above C7 on their spinal vertebrae. Despite recent successes in their application, several limitations restrict performance of existing TSHCI systems and discourage their use in real life situations. This paper proposes a low-cost, less-intrusive, portable and easy to use design for implementing a TSHCI system. Two applications of the proposed system are reported. Design considerations and performance of the proposed system are also presented.
NASA Technical Reports Server (NTRS)
Grantham, C.
1979-01-01
The Interactive Software Invocation (ISIS), an interactive data management system, was developed to act as a buffer between the user and host computer system. The user is provided by ISIS with a powerful system for developing software or systems in the interactive environment. The user is protected from the idiosyncracies of the host computer system by providing such a complete range of capabilities that the user should have no need for direct access to the host computer. These capabilities are divided into four areas: desk top calculator, data editor, file manager, and tool invoker.
Computer graphics application in the engineering design integration system
NASA Technical Reports Server (NTRS)
Glatt, C. R.; Abel, R. W.; Hirsch, G. N.; Alford, G. E.; Colquitt, W. N.; Stewart, W. A.
1975-01-01
The computer graphics aspect of the Engineering Design Integration (EDIN) system and its application to design problems were discussed. Three basic types of computer graphics may be used with the EDIN system for the evaluation of aerospace vehicles preliminary designs: offline graphics systems using vellum-inking or photographic processes, online graphics systems characterized by direct coupled low cost storage tube terminals with limited interactive capabilities, and a minicomputer based refresh terminal offering highly interactive capabilities. The offline line systems are characterized by high quality (resolution better than 0.254 mm) and slow turnaround (one to four days). The online systems are characterized by low cost, instant visualization of the computer results, slow line speed (300 BAUD), poor hard copy, and the early limitations on vector graphic input capabilities. The recent acquisition of the Adage 330 Graphic Display system has greatly enhanced the potential for interactive computer aided design.
Interactive systems design and synthesis of future spacecraft concepts
NASA Technical Reports Server (NTRS)
Wright, R. L.; Deryder, D. D.; Ferebee, M. J., Jr.
1984-01-01
An interactive systems design and synthesis is performed on future spacecraft concepts using the Interactive Design and Evaluation of Advanced spacecraft (IDEAS) computer-aided design and analysis system. The capabilities and advantages of the systems-oriented interactive computer-aided design and analysis system are described. The synthesis of both large antenna and space station concepts, and space station evolutionary growth is demonstrated. The IDEAS program provides the user with both an interactive graphics and an interactive computing capability which consists of over 40 multidisciplinary synthesis and analysis modules. Thus, the user can create, analyze and conduct parametric studies and modify Earth-orbiting spacecraft designs (space stations, large antennas or platforms, and technologically advanced spacecraft) at an interactive terminal with relative ease. The IDEAS approach is useful during the conceptual design phase of advanced space missions when a multiplicity of parameters and concepts must be analyzed and evaluated in a cost-effective and timely manner.
VIC: A Computer Analysis of Verbal Interaction Category Systems.
ERIC Educational Resources Information Center
Kline, John A.; And Others
VIC is a computer program for the analysis of verbal interaction category systems, especially the Flanders interaction analysis system. The observer codes verbal behavior on coding sheets for later machine scoring. A matrix is produced by the program showing the number and percentages of times that a particular cell describes classroom behavior.…
Conceptual spacecraft systems design and synthesis
NASA Technical Reports Server (NTRS)
Wright, R. L.; Deryder, D. D.; Ferebee, M. J., Jr.
1984-01-01
An interactive systems design and synthesis is performed on future spacecraft concepts using the Interactive Design and Evaluation of Advanced Systems (IDEAS) computer-aided design and analysis system. The capabilities and advantages of the systems-oriented interactive computer-aided design and analysis system are described. The synthesis of both large antenna and space station concepts, and space station evolutionary growth designs is demonstrated. The IDEAS program provides the user with both an interactive graphics and an interactive computing capability which consists of over 40 multidisciplinary synthesis and analysis modules. Thus, the user can create, analyze, and conduct parametric studies and modify earth-orbiting spacecraft designs (space stations, large antennas or platforms, and technologically advanced spacecraft) at an interactive terminal with relative ease. The IDEAS approach is useful during the conceptual design phase of advanced space missions when a multiplicity of parameters and concepts must be analyzed and evaluated in a cost-effective and timely manner.
An Interactive Software System for Computer-Assisted Testing
ERIC Educational Resources Information Center
Howze, Glenn
1978-01-01
This paper describes an interactive computer software system developed at Tuskegee Institute which is designed to allow flexibility in the development, administration, and scoring of examinations. (Author)
ERIC Educational Resources Information Center
Peng, Hsinyi; Chou, Chien; Chang, Chun-Yu
2008-01-01
Computing devices and applications are now used beyond the desktop, in diverse environments, and this trend toward ubiquitous computing is evolving. In this study, we re-visit the interactivity concept and its applications for interactive function design in a ubiquitous-learning system (ULS). Further, we compare interactivity dimensions and…
Integrated computer-aided design using minicomputers
NASA Technical Reports Server (NTRS)
Storaasli, O. O.
1980-01-01
Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM), a highly interactive software, has been implemented on minicomputers at the NASA Langley Research Center. CAD/CAM software integrates many formerly fragmented programs and procedures into one cohesive system; it also includes finite element modeling and analysis, and has been interfaced via a computer network to a relational data base management system and offline plotting devices on mainframe computers. The CAD/CAM software system requires interactive graphics terminals operating at a minimum of 4800 bits/sec transfer rate to a computer. The system is portable and introduces 'interactive graphics', which permits the creation and modification of models interactively. The CAD/CAM system has already produced designs for a large area space platform, a national transonic facility fan blade, and a laminar flow control wind tunnel model. Besides the design/drafting element analysis capability, CAD/CAM provides options to produce an automatic program tooling code to drive a numerically controlled (N/C) machine. Reductions in time for design, engineering, drawing, finite element modeling, and N/C machining will benefit productivity through reduced costs, fewer errors, and a wider range of configuration.
NASA Technical Reports Server (NTRS)
Johannes, J. D.
1974-01-01
Techniques, methods, and system requirements are reported for an onboard computerized communications system that provides on-line computing capability during manned space exploration. Communications between man and computer take place by sequential execution of each discrete step of a procedure, by interactive progression through a tree-type structure to initiate tasks or by interactive optimization of a task requiring man to furnish a set of parameters. Effective communication between astronaut and computer utilizes structured vocabulary techniques and a word recognition system.
Computer-aided design and computer science technology
NASA Technical Reports Server (NTRS)
Fulton, R. E.; Voigt, S. J.
1976-01-01
A description is presented of computer-aided design requirements and the resulting computer science advances needed to support aerospace design. The aerospace design environment is examined, taking into account problems of data handling and aspects of computer hardware and software. The interactive terminal is normally the primary interface between the computer system and the engineering designer. Attention is given to user aids, interactive design, interactive computations, the characteristics of design information, data management requirements, hardware advancements, and computer science developments.
The Promise of Interactive Video: An Affective Search.
ERIC Educational Resources Information Center
Hon, David
1983-01-01
Argues that factors that create a feeling of interactivity in the human situation--response time, spontaneity, lack of distractors--should be included as prime elements in the design of human/machine systems, e.g., computer assisted instruction and interactive video. A computer/videodisc learning system for cardio-pulmonary resuscitation and its…
Human Factors Considerations in System Design
NASA Technical Reports Server (NTRS)
Mitchell, C. M. (Editor); Vanbalen, P. M. (Editor); Moe, K. L. (Editor)
1983-01-01
Human factors considerations in systems design was examined. Human factors in automated command and control, in the efficiency of the human computer interface and system effectiveness are outlined. The following topics are discussed: human factors aspects of control room design; design of interactive systems; human computer dialogue, interaction tasks and techniques; guidelines on ergonomic aspects of control rooms and highly automated environments; system engineering for control by humans; conceptual models of information processing; information display and interaction in real time environments.
Ackermann, Hans D.; Pankratz, Leroy W.; Dansereau, Danny A.
1983-01-01
The computer programs published in Open-File Report 82-1065, A comprehensive system for interpreting seismic-refraction arrival-time data using interactive computer methods (Ackermann, Pankratz, and Dansereau, 1982), have been modified to run on a mini-computer. The new version uses approximately 1/10 of the memory of the initial version, is more efficient and gives the same results.
Human-computer interaction in multitask situations
NASA Technical Reports Server (NTRS)
Rouse, W. B.
1977-01-01
Human-computer interaction in multitask decisionmaking situations is considered, and it is proposed that humans and computers have overlapping responsibilities. Queueing theory is employed to model this dynamic approach to the allocation of responsibility between human and computer. Results of simulation experiments are used to illustrate the effects of several system variables including number of tasks, mean time between arrivals of action-evoking events, human-computer speed mismatch, probability of computer error, probability of human error, and the level of feedback between human and computer. Current experimental efforts are discussed and the practical issues involved in designing human-computer systems for multitask situations are considered.
Duan, Lili; Liu, Xiao; Zhang, John Z H
2016-05-04
Efficient and reliable calculation of protein-ligand binding free energy is a grand challenge in computational biology and is of critical importance in drug design and many other molecular recognition problems. The main challenge lies in the calculation of entropic contribution to protein-ligand binding or interaction systems. In this report, we present a new interaction entropy method which is theoretically rigorous, computationally efficient, and numerically reliable for calculating entropic contribution to free energy in protein-ligand binding and other interaction processes. Drastically different from the widely employed but extremely expensive normal mode method for calculating entropy change in protein-ligand binding, the new method calculates the entropic component (interaction entropy or -TΔS) of the binding free energy directly from molecular dynamics simulation without any extra computational cost. Extensive study of over a dozen randomly selected protein-ligand binding systems demonstrated that this interaction entropy method is both computationally efficient and numerically reliable and is vastly superior to the standard normal mode approach. This interaction entropy paradigm introduces a novel and intuitive conceptual understanding of the entropic effect in protein-ligand binding and other general interaction systems as well as a practical method for highly efficient calculation of this effect.
NASA Technical Reports Server (NTRS)
Clancey, William J.
2003-01-01
A human-centered approach to computer systems design involves reframing analysis in terms of people interacting with each other, not only human-machine interaction. The primary concern is not how people can interact with computers, but how shall we design computers to help people work together? An analysis of astronaut interactions with CapCom on Earth during one traverse of Apollo 17 shows what kind of information was conveyed and what might be automated today. A variety of agent and robotic technologies are proposed that deal with recurrent problems in communication and coordination during the analyzed traverse.
Improved Interactive Medical-Imaging System
NASA Technical Reports Server (NTRS)
Ross, Muriel D.; Twombly, Ian A.; Senger, Steven
2003-01-01
An improved computational-simulation system for interactive medical imaging has been invented. The system displays high-resolution, three-dimensional-appearing images of anatomical objects based on data acquired by such techniques as computed tomography (CT) and magnetic-resonance imaging (MRI). The system enables users to manipulate the data to obtain a variety of views for example, to display cross sections in specified planes or to rotate images about specified axes. Relative to prior such systems, this system offers enhanced capabilities for synthesizing images of surgical cuts and for collaboration by users at multiple, remote computing sites.
ERIC Educational Resources Information Center
Stevenson, Kimberly
This master's thesis describes the development of an expert system and interactive videodisc computer-based instructional job aid used for assisting in the integration of electron beam lithography devices. Comparable to all comprehensive training, expert system and job aid development require a criterion-referenced systems approach treatment to…
Zuck, T F; Cumming, P D; Wallace, E L
2001-12-01
The safety of blood for transfusion depends, in part, on the reliability of the health history given by volunteer blood donors. To improve reliability, a pilot study evaluated the use of an interactive computer-based audiovisual donor interviewing system at a typical midwestern blood center in the United States. An interactive video screening system was tested in a community donor center environment on 395 volunteer blood donors. Of the donors using the system, 277 completed surveys regarding their acceptance of and opinions about the system. The study showed that an interactive computer-based audiovisual donor screening system was an effective means of conducting the donor health history. The majority of donors found the system understandable and favored the system over a face-to-face interview. Further, most donors indicated that they would be more likely to return if they were to be screened by such a system. Interactive computer-based audiovisual blood donor screening is useful and well accepted by donors; it may prevent a majority of errors and accidents that are reportable to the FDA; and it may contribute to increased safety and availability of the blood supply.
Universal Quantum Computing with Arbitrary Continuous-Variable Encoding.
Lau, Hoi-Kwan; Plenio, Martin B
2016-09-02
Implementing a qubit quantum computer in continuous-variable systems conventionally requires the engineering of specific interactions according to the encoding basis states. In this work, we present a unified formalism to conduct universal quantum computation with a fixed set of operations but arbitrary encoding. By storing a qubit in the parity of two or four qumodes, all computing processes can be implemented by basis state preparations, continuous-variable exponential-swap operations, and swap tests. Our formalism inherits the advantages that the quantum information is decoupled from collective noise, and logical qubits with different encodings can be brought to interact without decoding. We also propose a possible implementation of the required operations by using interactions that are available in a variety of continuous-variable systems. Our work separates the "hardware" problem of engineering quantum-computing-universal interactions, from the "software" problem of designing encodings for specific purposes. The development of quantum computer architecture could hence be simplified.
Universal Quantum Computing with Arbitrary Continuous-Variable Encoding
NASA Astrophysics Data System (ADS)
Lau, Hoi-Kwan; Plenio, Martin B.
2016-09-01
Implementing a qubit quantum computer in continuous-variable systems conventionally requires the engineering of specific interactions according to the encoding basis states. In this work, we present a unified formalism to conduct universal quantum computation with a fixed set of operations but arbitrary encoding. By storing a qubit in the parity of two or four qumodes, all computing processes can be implemented by basis state preparations, continuous-variable exponential-swap operations, and swap tests. Our formalism inherits the advantages that the quantum information is decoupled from collective noise, and logical qubits with different encodings can be brought to interact without decoding. We also propose a possible implementation of the required operations by using interactions that are available in a variety of continuous-variable systems. Our work separates the "hardware" problem of engineering quantum-computing-universal interactions, from the "software" problem of designing encodings for specific purposes. The development of quantum computer architecture could hence be simplified.
Occupational stress in human computer interaction.
Smith, M J; Conway, F T; Karsh, B T
1999-04-01
There have been a variety of research approaches that have examined the stress issues related to human computer interaction including laboratory studies, cross-sectional surveys, longitudinal case studies and intervention studies. A critical review of these studies indicates that there are important physiological, biochemical, somatic and psychological indicators of stress that are related to work activities where human computer interaction occurs. Many of the stressors of human computer interaction at work are similar to those stressors that have historically been observed in other automated jobs. These include high workload, high work pressure, diminished job control, inadequate employee training to use new technology, monotonous tasks, por supervisory relations, and fear for job security. New stressors have emerged that can be tied primarily to human computer interaction. These include technology breakdowns, technology slowdowns, and electronic performance monitoring. The effects of the stress of human computer interaction in the workplace are increased physiological arousal; somatic complaints, especially of the musculoskeletal system; mood disturbances, particularly anxiety, fear and anger; and diminished quality of working life, such as reduced job satisfaction. Interventions to reduce the stress of computer technology have included improved technology implementation approaches and increased employee participation in implementation. Recommendations for ways to reduce the stress of human computer interaction at work are presented. These include proper ergonomic conditions, increased organizational support, improved job content, proper workload to decrease work pressure, and enhanced opportunities for social support. A model approach to the design of human computer interaction at work that focuses on the system "balance" is proposed.
Artwork Interactive Design System (AIDS) program description
NASA Technical Reports Server (NTRS)
Johnson, B. T.; Taylor, J. F.
1976-01-01
An artwork interactive design system is described which provides the microelectronic circuit designer/engineer a tool to perform circuit design, automatic layout modification, standard cell design, and artwork verification at a graphics computer terminal using a graphics tablet at the designer/computer interface.
Interactive computer graphics system for structural sizing and analysis of aircraft structures
NASA Technical Reports Server (NTRS)
Bendavid, D.; Pipano, A.; Raibstein, A.; Somekh, E.
1975-01-01
A computerized system for preliminary sizing and analysis of aircraft wing and fuselage structures was described. The system is based upon repeated application of analytical program modules, which are interactively interfaced and sequence-controlled during the iterative design process with the aid of design-oriented graphics software modules. The entire process is initiated and controlled via low-cost interactive graphics terminals driven by a remote computer in a time-sharing mode.
NASA Technical Reports Server (NTRS)
Coles, W. A.
1975-01-01
The CAD/CAM interactive computer graphics system was described; uses to which it has been put were shown, and current developments of the system were outlined. The system supports batch, time sharing, and fully interactive graphic processing. Engineers using the system may switch between these methods of data processing and problem solving to make the best use of the available resources. It is concluded that the introduction of on-line computing in the form of teletypes, storage tubes, and fully interactive graphics has resulted in large increases in productivity and reduced timescales in the geometric computing, numerical lofting and part programming areas, together with a greater utilization of the system in the technical departments.
Emerging Computer Media: On Image Interaction
NASA Astrophysics Data System (ADS)
Lippman, Andrew B.
1982-01-01
Emerging technologies such as inexpensive, powerful local computing, optical digital videodiscs, and the technologies of human-machine interaction are initiating a revolution in both image storage systems and image interaction systems. This paper will present a review of new approaches to computer media predicated upon three dimensional position sensing, speech recognition, and high density image storage. Examples will be shown such as the Spatial Data Management Systems wherein the free use of place results in intuitively clear retrieval systems and potentials for image association; the Movie-Map, wherein inherently static media generate dynamic views of data, and conferencing work-in-progress wherein joint processing is stressed. Application to medical imaging will be suggested, but the primary emphasis is on the general direction of imaging and reference systems. We are passing the age of simple possibility of computer graphics and image porcessing and entering the age of ready usability.
Modeling Human-Computer Decision Making with Covariance Structure Analysis.
ERIC Educational Resources Information Center
Coovert, Michael D.; And Others
Arguing that sufficient theory exists about the interplay between human information processing, computer systems, and the demands of various tasks to construct useful theories of human-computer interaction, this study presents a structural model of human-computer interaction and reports the results of various statistical analyses of this model.…
Bottoni, Paolo; Cinque, Luigi; De Marsico, Maria; Levialdi, Stefano; Panizzi, Emanuele
2006-06-01
This paper reports on the research activities performed by the Pictorial Computing Laboratory at the University of Rome, La Sapienza, during the last 5 years. Such work, essentially is based on the study of humancomputer interaction, spans from metamodels of interaction down to prototypes of interactive systems for both synchronous multimedia communication and groupwork, annotation systems for web pages, also encompassing theoretical and practical issues of visual languages and environments also including pattern recognition algorithms. Some applications are also considered like e-learning and collaborative work.
Interaction entropy for protein-protein binding
NASA Astrophysics Data System (ADS)
Sun, Zhaoxi; Yan, Yu N.; Yang, Maoyou; Zhang, John Z. H.
2017-03-01
Protein-protein interactions are at the heart of signal transduction and are central to the function of protein machine in biology. The highly specific protein-protein binding is quantitatively characterized by the binding free energy whose accurate calculation from the first principle is a grand challenge in computational biology. In this paper, we show how the interaction entropy approach, which was recently proposed for protein-ligand binding free energy calculation, can be applied to computing the entropic contribution to the protein-protein binding free energy. Explicit theoretical derivation of the interaction entropy approach for protein-protein interaction system is given in detail from the basic definition. Extensive computational studies for a dozen realistic protein-protein interaction systems are carried out using the present approach and comparisons of the results for these protein-protein systems with those from the standard normal mode method are presented. Analysis of the present method for application in protein-protein binding as well as the limitation of the method in numerical computation is discussed. Our study and analysis of the results provided useful information for extracting correct entropic contribution in protein-protein binding from molecular dynamics simulations.
Language evolution and human-computer interaction
NASA Technical Reports Server (NTRS)
Grudin, Jonathan; Norman, Donald A.
1991-01-01
Many of the issues that confront designers of interactive computer systems also appear in natural language evolution. Natural languages and human-computer interfaces share as their primary mission the support of extended 'dialogues' between responsive entities. Because in each case one participant is a human being, some of the pressures operating on natural languages, causing them to evolve in order to better support such dialogue, also operate on human-computer 'languages' or interfaces. This does not necessarily push interfaces in the direction of natural language - since one entity in this dialogue is not a human, this is not to be expected. Nonetheless, by discerning where the pressures that guide natural language evolution also appear in human-computer interaction, we can contribute to the design of computer systems and obtain a new perspective on natural languages.
ERIC Educational Resources Information Center
1983
This report describes the design, development, implementation, and evaluation of the Computer Aided Interactive Testing System (CAITS) and addresses the applicability of the system in the Naval Education and Training Command. In addition to an introduction (section one), the report contains four sections and three appendices. Section two describes…
A Complete Interactive Graphical Computer-Aided Instruction System.
ERIC Educational Resources Information Center
Abrams, Steven Selby
The use of interactive graphics in computer-aided instruction systems is discussed with emphasis placed on two requirements of such a system. The first is the need to provide the teacher with a useful tool with which to design and modify teaching sessions tailored to the individual needs and capabilities of the students. The second is the…
Visual Debugging of Object-Oriented Systems With the Unified Modeling Language
2004-03-01
to be “the systematic and imaginative use of the technology of interactive computer graphics and the disciplines of graphic design , typography ... Graphics volume 23 no 6, pp893-901, 1999. [SHN98] Shneiderman, B. Designing the User Interface. Strategies for Effective Human-Computer Interaction...System Design Objectives ................................................................................ 44 3.3 System Architecture
ERIC Educational Resources Information Center
vonFeldt, James R.
The development of a prototype system is described which merges the strengths of computer assisted instruction, data gathering, interactive learning, individualized instruction, and the motion in color, and audio features of television. Creation of the prototype system will allow testing of both TV and interactive CAI/TV strategies in auditory and…
Computer system for definition of the quantitative geometry of musculature from CT images.
Daniel, Matej; Iglic, Ales; Kralj-Iglic, Veronika; Konvicková, Svatava
2005-02-01
The computer system for quantitative determination of musculoskeletal geometry from computer tomography (CT) images has been developed. The computer system processes series of CT images to obtain three-dimensional (3D) model of bony structures where the effective muscle fibres can be interactively defined. Presented computer system has flexible modular structure and is suitable also for educational purposes.
Computer-Assisted Learning for the Hearing Impaired: An Interactive Written Language Enviroment.
ERIC Educational Resources Information Center
Ward, R. D.; Rostron, A. B.
1983-01-01
To help hearing-impaired children develop their linguistic competence, a computer system that can process sentences and give feedback about their acceptability was developed. Suggestions are made of ways to use the system as an environment for interactive written communication. (Author/CL)
NASA Astrophysics Data System (ADS)
Lin, Chern-Sheng; Chen, Chia-Tse; Shei, Hung-Jung; Lay, Yun-Long; Chiu, Chuang-Chien
2012-09-01
This study develops a body motion interactive system with computer vision technology. This application combines interactive games, art performing, and exercise training system. Multiple image processing and computer vision technologies are used in this study. The system can calculate the characteristics of an object color, and then perform color segmentation. When there is a wrong action judgment, the system will avoid the error with a weight voting mechanism, which can set the condition score and weight value for the action judgment, and choose the best action judgment from the weight voting mechanism. Finally, this study estimated the reliability of the system in order to make improvements. The results showed that, this method has good effect on accuracy and stability during operations of the human-machine interface of the sports training system.
NASA Astrophysics Data System (ADS)
Bessonov, O.; Silvestrov, P.
2017-02-01
This paper describes the general idea and the first implementation of the Interactive information and simulation system - an integrated environment that combines computational modules for modeling the aerodynamics and aerothermodynamics of re-entry space vehicles with the large collection of different information materials on this topic. The internal organization and the composition of the system are described and illustrated. Examples of the computational and information output are presented. The system has the unified implementation for Windows and Linux operation systems and can be deployed on any modern high-performance personal computer.
NASA Astrophysics Data System (ADS)
Li, Zhen; Lee, Hee Sun; Darve, Eric; Karniadakis, George Em
2017-01-01
Memory effects are often introduced during coarse-graining of a complex dynamical system. In particular, a generalized Langevin equation (GLE) for the coarse-grained (CG) system arises in the context of Mori-Zwanzig formalism. Upon a pairwise decomposition, GLE can be reformulated into its pairwise version, i.e., non-Markovian dissipative particle dynamics (DPD). GLE models the dynamics of a single coarse particle, while DPD considers the dynamics of many interacting CG particles, with both CG systems governed by non-Markovian interactions. We compare two different methods for the practical implementation of the non-Markovian interactions in GLE and DPD systems. More specifically, a direct evaluation of the non-Markovian (NM) terms is performed in LE-NM and DPD-NM models, which requires the storage of historical information that significantly increases computational complexity. Alternatively, we use a few auxiliary variables in LE-AUX and DPD-AUX models to replace the non-Markovian dynamics with a Markovian dynamics in a higher dimensional space, leading to a much reduced memory footprint and computational cost. In our numerical benchmarks, the GLE and non-Markovian DPD models are constructed from molecular dynamics (MD) simulations of star-polymer melts. Results show that a Markovian dynamics with auxiliary variables successfully generates equivalent non-Markovian dynamics consistent with the reference MD system, while maintaining a tractable computational cost. Also, transient subdiffusion of the star-polymers observed in the MD system can be reproduced by the coarse-grained models. The non-interacting particle models, LE-NM/AUX, are computationally much cheaper than the interacting particle models, DPD-NM/AUX. However, the pairwise models with momentum conservation are more appropriate for correctly reproducing the long-time hydrodynamics characterised by an algebraic decay in the velocity autocorrelation function.
Automated Content Synthesis for Interactive Remote Instruction.
ERIC Educational Resources Information Center
Maly, K.; Overstreet, C. M.; Gonzalez, A.; Denbar, M. L.; Cutaran, R.; Karunaratne, N.
This paper describes IRI (Interactive Remote Instruction), a computer-based system built at Old Dominion University (Virginia) in order to support distance education. The system is based on the concept of a virtual classroom where students at different locations have the same synchronous class experience, using networked computers to communicate…
Learning with Interactive Computer Graphics in the Undergraduate Neuroscience Classroom
ERIC Educational Resources Information Center
Pani, John R.; Chariker, Julia H.; Naaz, Farah; Mattingly, William; Roberts, Joshua; Sephton, Sandra E.
2014-01-01
Instruction of neuroanatomy depends on graphical representation and extended self-study. As a consequence, computer-based learning environments that incorporate interactive graphics should facilitate instruction in this area. The present study evaluated such a system in the undergraduate neuroscience classroom. The system used the method of…
Assessment of Spacecraft Systems Integration Using the Electric Propulsion Interactions Code (EPIC)
NASA Technical Reports Server (NTRS)
Mikellides, Ioannis G.; Kuharski, Robert A.; Mandell, Myron J.; Gardner, Barbara M.; Kauffman, William J. (Technical Monitor)
2002-01-01
SAIC is currently developing the Electric Propulsion Interactions Code 'EPIC', an interactive computer tool that allows the construction of a 3-D spacecraft model, and the assessment of interactions between its subsystems and the plume from an electric thruster. EPIC unites different computer tools to address the complexity associated with the interaction processes. This paper describes the overall architecture and capability of EPIC including the physics and algorithms that comprise its various components. Results from selected modeling efforts of different spacecraft-thruster systems are also presented.
NASA Astrophysics Data System (ADS)
Yang, Sheng-Chun; Lu, Zhong-Yuan; Qian, Hu-Jun; Wang, Yong-Lei; Han, Jie-Ping
2017-11-01
In this work, we upgraded the electrostatic interaction method of CU-ENUF (Yang, et al., 2016) which first applied CUNFFT (nonequispaced Fourier transforms based on CUDA) to the reciprocal-space electrostatic computation and made the computation of electrostatic interaction done thoroughly in GPU. The upgraded edition of CU-ENUF runs concurrently in a hybrid parallel way that enables the computation parallelizing on multiple computer nodes firstly, then further on the installed GPU in each computer. By this parallel strategy, the size of simulation system will be never restricted to the throughput of a single CPU or GPU. The most critical technical problem is how to parallelize a CUNFFT in the parallel strategy, which is conquered effectively by deep-seated research of basic principles and some algorithm skills. Furthermore, the upgraded method is capable of computing electrostatic interactions for both the atomistic molecular dynamics (MD) and the dissipative particle dynamics (DPD). Finally, the benchmarks conducted for validation and performance indicate that the upgraded method is able to not only present a good precision when setting suitable parameters, but also give an efficient way to compute electrostatic interactions for huge simulation systems. Program Files doi:http://dx.doi.org/10.17632/zncf24fhpv.1 Licensing provisions: GNU General Public License 3 (GPL) Programming language: C, C++, and CUDA C Supplementary material: The program is designed for effective electrostatic interactions of large-scale simulation systems, which runs on particular computers equipped with NVIDIA GPUs. It has been tested on (a) single computer node with Intel(R) Core(TM) i7-3770@ 3.40 GHz (CPU) and GTX 980 Ti (GPU), and (b) MPI parallel computer nodes with the same configurations. Nature of problem: For molecular dynamics simulation, the electrostatic interaction is the most time-consuming computation because of its long-range feature and slow convergence in simulation space, which approximately take up most of the total simulation time. Although the parallel method CU-ENUF (Yang et al., 2016) based on GPU has achieved a qualitative leap compared with previous methods in electrostatic interactions computation, the computation capability is limited to the throughput capacity of a single GPU for super-scale simulation system. Therefore, we should look for an effective method to handle the calculation of electrostatic interactions efficiently for a simulation system with super-scale size. Solution method: We constructed a hybrid parallel architecture, in which CPU and GPU are combined to accelerate the electrostatic computation effectively. Firstly, the simulation system is divided into many subtasks via domain-decomposition method. Then MPI (Message Passing Interface) is used to implement the CPU-parallel computation with each computer node corresponding to a particular subtask, and furthermore each subtask in one computer node will be executed in GPU in parallel efficiently. In this hybrid parallel method, the most critical technical problem is how to parallelize a CUNFFT (nonequispaced fast Fourier transform based on CUDA) in the parallel strategy, which is conquered effectively by deep-seated research of basic principles and some algorithm skills. Restrictions: The HP-ENUF is mainly oriented to super-scale system simulations, in which the performance superiority is shown adequately. However, for a small simulation system containing less than 106 particles, the mode of multiple computer nodes has no apparent efficiency advantage or even lower efficiency due to the serious network delay among computer nodes, than the mode of single computer node. References: (1) S.-C. Yang, H.-J. Qian, Z.-Y. Lu, Appl. Comput. Harmon. Anal. 2016, http://dx.doi.org/10.1016/j.acha.2016.04.009. (2) S.-C. Yang, Y.-L. Wang, G.-S. Jiao, H.-J. Qian, Z.-Y. Lu, J. Comput. Chem. 37 (2016) 378. (3) S.-C. Yang, Y.-L. Zhu, H.-J. Qian, Z.-Y. Lu, Appl. Chem. Res. Chin. Univ., 2017, http://dx.doi.org/10.1007/s40242-016-6354-5. (4) Y.-L. Zhu, H. Liu, Z.-W. Li, H.-J. Qian, G. Milano, Z.-Y. Lu, J. Comput. Chem. 34 (2013) 2197.
Distributed and collaborative synthetic environments
NASA Technical Reports Server (NTRS)
Bajaj, Chandrajit L.; Bernardini, Fausto
1995-01-01
Fast graphics workstations and increased computing power, together with improved interface technologies, have created new and diverse possibilities for developing and interacting with synthetic environments. A synthetic environment system is generally characterized by input/output devices that constitute the interface between the human senses and the synthetic environment generated by the computer; and a computation system running a real-time simulation of the environment. A basic need of a synthetic environment system is that of giving the user a plausible reproduction of the visual aspect of the objects with which he is interacting. The goal of our Shastra research project is to provide a substrate of geometric data structures and algorithms which allow the distributed construction and modification of the environment, efficient querying of objects attributes, collaborative interaction with the environment, fast computation of collision detection and visibility information for efficient dynamic simulation and real-time scene display. In particular, we address the following issues: (1) A geometric framework for modeling and visualizing synthetic environments and interacting with them. We highlight the functions required for the geometric engine of a synthetic environment system. (2) A distribution and collaboration substrate that supports construction, modification, and interaction with synthetic environments on networked desktop machines.
NASA Technical Reports Server (NTRS)
Bodley, C. S.; Devers, A. D.; Park, A. C.; Frisch, H. P.
1978-01-01
A theoretical development and associated digital computer program system for the dynamic simulation and stability analysis of passive and actively controlled spacecraft are presented. The dynamic system (spacecraft) is modeled as an assembly of rigid and/or flexible bodies not necessarily in a topological tree configuration. The computer program system is used to investigate total system dynamic characteristics, including interaction effects between rigid and/or flexible bodies, control systems, and a wide range of environmental loadings. In addition, the program system is used for designing attitude control systems and for evaluating total dynamic system performance, including time domain response and frequency domain stability analyses.
Small Interactive Image Processing System (SMIPS) users manual
NASA Technical Reports Server (NTRS)
Moik, J. G.
1973-01-01
The Small Interactive Image Processing System (SMIP) is designed to facilitate the acquisition, digital processing and recording of image data as well as pattern recognition in an interactive mode. Objectives of the system are ease of communication with the computer by personnel who are not expert programmers, fast response to requests for information on pictures, complete error recovery as well as simplification of future programming efforts for extension of the system. The SMIP system is intended for operation under OS/MVT on an IBM 360/75 or 91 computer equipped with the IBM-2250 Model 1 display unit. This terminal is used as an interface between user and main computer. It has an alphanumeric keyboard, a programmed function keyboard and a light pen which are used for specification of input to the system. Output from the system is displayed on the screen as messages and pictures.
Computer Human Interaction for Image Information Systems.
ERIC Educational Resources Information Center
Beard, David Volk
1991-01-01
Presents an approach to developing viable image computer-human interactions (CHI) involving user metaphors for comprehending image data and methods for locating, accessing, and displaying computer images. A medical-image radiology workstation application is used as an example, and feedback and evaluation methods are discussed. (41 references) (LRW)
Generic, Type-Safe and Object Oriented Computer Algebra Software
NASA Astrophysics Data System (ADS)
Kredel, Heinz; Jolly, Raphael
Advances in computer science, in particular object oriented programming, and software engineering have had little practical impact on computer algebra systems in the last 30 years. The software design of existing systems is still dominated by ad-hoc memory management, weakly typed algorithm libraries and proprietary domain specific interactive expression interpreters. We discuss a modular approach to computer algebra software: usage of state-of-the-art memory management and run-time systems (e.g. JVM) usage of strongly typed, generic, object oriented programming languages (e.g. Java) and usage of general purpose, dynamic interactive expression interpreters (e.g. Python) To illustrate the workability of this approach, we have implemented and studied computer algebra systems in Java and Scala. In this paper we report on the current state of this work by presenting new examples.
Engineering computer graphics in gas turbine engine design, analysis and manufacture
NASA Technical Reports Server (NTRS)
Lopatka, R. S.
1975-01-01
A time-sharing and computer graphics facility designed to provide effective interactive tools to a large number of engineering users with varied requirements was described. The application of computer graphics displays at several levels of hardware complexity and capability is discussed, with examples of graphics systems tracing gas turbine product development, beginning with preliminary design through manufacture. Highlights of an operating system stylized for interactive engineering graphics is described.
Interactive and Multimedia Contents Associated with a System for Computer-Aided Assessment
ERIC Educational Resources Information Center
Paiva, Rui C.; Ferreira, Milton S.; Mendes, Ana G.; Eusébio, Augusto M. J.
2015-01-01
This article presents a research study addressing the development, implementation, evaluation, and use of Interactive Modules for Online Training (MITO) of mathematics in higher education. This work was carried out in the context of the MITO project, which combined several features of the learning and management system Moodle, the computer-aided…
Computer Self-Efficacy and Factors Influencing E-Learning Effectiveness
ERIC Educational Resources Information Center
Chien, Tien-Chen
2012-01-01
Purpose: The purpose of this study is to investigate the influences of system and instructor factors on e-learning effectiveness under the interactions of computer self-efficacy. In this study, the factors of the e-learning system are functionality, interaction, and response. The factors of the e-learning instructor are attitude, technical skills,…
SIGI: A Computer-Based System of Interactive Guidance and Information.
ERIC Educational Resources Information Center
Educational Testing Service, Princeton, NJ.
This pamphlet describes SIGI, a computer-based System of Interactive Guidance and Information designed to help students in community and junior colleges make career decisions. SIGI is based on a humanistic philosophy, a theory of guidance that emphasizes individual values, a vast store of occupational data, and a strategy for processing…
Increasing the Interaction with Distant Learners on an Interactive Telecommunications System.
ERIC Educational Resources Information Center
Schlenker, Jon
1994-01-01
Suggests a variety of ways to increase interaction with distance learners on an interactive telecommunications system, based on experiences at the University of Maine at Augusta. Highlights include establishing the proper environment; telephone systems; voice mail; fax; electronic mail; computer conferencing; postal mail; printed materials; and…
Conceptualizing, Designing, and Investigating Locative Media Use in Urban Space
NASA Astrophysics Data System (ADS)
Diamantaki, Katerina; Rizopoulos, Charalampos; Charitos, Dimitris; Kaimakamis, Nikos
This chapter investigates the social implications of locative media (LM) use and attempts to outline a theoretical framework that may support the design and implementation of location-based applications. Furthermore, it stresses the significance of physical space and location awareness as important factors that influence both human-computer interaction and computer-mediated communication. The chapter documents part of the theoretical aspect of the research undertaken as part of LOcation-based Communication Urban NETwork (LOCUNET), a project that aims to investigate the way users interact with one another (human-computer-human interaction aspect) and with the location-based system itself (human-computer interaction aspect). A number of relevant theoretical approaches are discussed in an attempt to provide a holistic theoretical background for LM use. Additionally, the actual implementation of the LOCUNET system is described and some of the findings are discussed.
Some foundational aspects of quantum computers and quantum robots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benioff, P.; Physics
1998-01-01
This paper addresses foundational issues related to quantum computing. The need for a universally valid theory such as quantum mechanics to describe to some extent its own validation is noted. This includes quantum mechanical descriptions of systems that do theoretical calculations (i.e. quantum computers) and systems that perform experiments. Quantum robots interacting with an environment are a small first step in this direction. Quantum robots are described here as mobile quantum systems with on-board quantum computers that interact with environments. Included are discussions on the carrying out of tasks and the division of tasks into computation and action phases. Specificmore » models based on quantum Turing machines are described. Differences and similarities between quantum robots plus environments and quantum computers are discussed.« less
Computer-generated forces in distributed interactive simulation
NASA Astrophysics Data System (ADS)
Petty, Mikel D.
1995-04-01
Distributed Interactive Simulation (DIS) is an architecture for building large-scale simulation models from a set of independent simulator nodes communicating via a common network protocol. DIS is most often used to create a simulated battlefield for military training. Computer Generated Forces (CGF) systems control large numbers of autonomous battlefield entities in a DIS simulation using computer equipment and software rather than humans in simulators. CGF entities serve as both enemy forces and supplemental friendly forces in a DIS exercise. Research into various aspects of CGF systems is ongoing. Several CGF systems have been implemented.
Generating finite cyclic and dihedral groups using sequential insertion systems with interactions
NASA Astrophysics Data System (ADS)
Fong, Wan Heng; Sarmin, Nor Haniza; Turaev, Sherzod; Yosman, Ahmad Firdaus
2017-04-01
The operation of insertion has been studied extensively throughout the years for its impact in many areas of theoretical computer science such as DNA computing. First introduced as a generalization of the concatenation operation, many variants of insertion have been introduced, each with their own computational properties. In this paper, we introduce a new variant that enables the generation of some special types of groups called sequential insertion systems with interactions. We show that these new systems are able to generate all finite cyclic and dihedral groups.
ERIC Educational Resources Information Center
Oren, Michael Anthony
2011-01-01
The juxtaposition of classic sociological theory and the, relatively, young discipline of human-computer interaction (HCI) serves as a powerful mechanism for both exploring the theoretical impacts of technology on human interactions as well as the application of technological systems to moderate interactions. It is the intent of this dissertation…
ERIC Educational Resources Information Center
Sayre, Scott Alan
The purpose of this study was to develop and validate a computer-based system that would allow interactive video developers to integrate and manage the design components prior to production. These components of an interactive video (IVD) program include visual information in a variety of formats, audio information, and instructional techniques,…
Computational Analysis of Ares I Roll Control System Jet Interaction Effects on Rolling Moment
NASA Technical Reports Server (NTRS)
Deere, Karen A.; Pao, S. Paul; Abdol-Hamid, Khaled S.
2011-01-01
The computational flow solver USM3D was used to investigate the jet interaction effects from the roll control system on the rolling moment of the Ares I full protuberance configuration at wind tunnel Reynolds numbers. Solutions were computed at freestream Mach numbers from M = 0.5 to M = 5 at the angle of attack 0deg, at the angle of attack 3.5deg for a roll angle of 120deg, and at the angle of attack 7deg for roll angles of 120deg and 210deg. Results indicate that the RoCS housing provided a beneficial jet interaction effect on vehicle rolling moment for M > or = 0.9. Most of the components downstream of the roll control system housing contributed to jet interaction penalties on vehicle rolling moment.
Human-Computer Interaction and Virtual Environments
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Compiler)
1995-01-01
The proceedings of the Workshop on Human-Computer Interaction and Virtual Environments are presented along with a list of attendees. The objectives of the workshop were to assess the state-of-technology and level of maturity of several areas in human-computer interaction and to provide guidelines for focused future research leading to effective use of these facilities in the design/fabrication and operation of future high-performance engineering systems.
Interactive graphical computer-aided design system
NASA Technical Reports Server (NTRS)
Edge, T. M.
1975-01-01
System is used for design, layout, and modification of large-scale-integrated (LSI) metal-oxide semiconductor (MOS) arrays. System is structured around small computer which provides real-time support for graphics storage display unit with keyboard, slave display unit, hard copy unit, and graphics tablet for designer/computer interface.
Computer-aided Instructional System for Transmission Line Simulation.
ERIC Educational Resources Information Center
Reinhard, Erwin A.; Roth, Charles H., Jr.
A computer-aided instructional system has been developed which utilizes dynamic computer-controlled graphic displays and which requires student interaction with a computer simulation in an instructional mode. A numerical scheme has been developed for digital simulation of a uniform, distortionless transmission line with resistive terminations and…
ERIC Educational Resources Information Center
Pilot, A.
TAIGA (Twente Advanced Interactive Graphic Authoring system) is a system which can be used to develop instructional software. It is written in MS-PASCAL, and runs on computers that support MS-DOS. Designed to support the production of structured software, TAIGA has a hierarchical structure of three layers, each with a specific function, and each…
Computer simulation of surface and film processes
NASA Technical Reports Server (NTRS)
Tiller, W. A.; Halicioglu, M. T.
1983-01-01
Adequate computer methods, based on interactions between discrete particles, provide information leading to an atomic level understanding of various physical processes. The success of these simulation methods, however, is related to the accuracy of the potential energy function representing the interactions among the particles. The development of a potential energy function for crystalline SiO2 forms that can be employed in lengthy computer modelling procedures was investigated. In many of the simulation methods which deal with discrete particles, semiempirical two body potentials were employed to analyze energy and structure related properties of the system. Many body interactions are required for a proper representation of the total energy for many systems. Many body interactions for simulations based on discrete particles are discussed.
Computer-Based Arithmetic Test Generation
ERIC Educational Resources Information Center
Trocchi, Robert F.
1973-01-01
The computer can be a welcome partner in the instructional process, but only if there is man-machine interaction. Man should not compromise system design because of available hardware; the computer must fit the system design for the result to represent an acceptable solution to instructional technology. The Arithmetic Test Generator system fits…
Rationale, Design and Implementation of a Computer Vision-Based Interactive E-Learning System
ERIC Educational Resources Information Center
Xu, Richard Y. D.; Jin, Jesse S.
2007-01-01
This article presents a schematic application of computer vision technologies to e-learning that is synchronous, peer-to-peer-based, and supports an instructor's interaction with non-computer teaching equipments. The article first discusses the importance of these focused e-learning areas, where the properties include accurate bidirectional…
Using the Computer to Foster Creative Interaction among Students.
ERIC Educational Resources Information Center
Dugdale, Sharon
The network characteristics of the PLATO computer-based education system permit students to communicate not only with the computer, but with each other. This capability can be exploited in educationally significant ways. In addition to the social interaction which occurs when students help each other at the terminal and when they work together at…
2014-01-01
Background Brownian dynamics (BD) simulations can be used to study very large molecular systems, such as models of the intracellular environment, using atomic-detail structures. Such simulations require strategies to contain the computational costs, especially for the computation of interaction forces and energies. A common approach is to compute interaction forces between macromolecules by precomputing their interaction potentials on three-dimensional discretized grids. For long-range interactions, such as electrostatics, grid-based methods are subject to finite size errors. We describe here the implementation of a Debye-Hückel correction to the grid-based electrostatic potential used in the SDA BD simulation software that was applied to simulate solutions of bovine serum albumin and of hen egg white lysozyme. Results We found that the inclusion of the long-range electrostatic correction increased the accuracy of both the protein-protein interaction profiles and the protein diffusion coefficients at low ionic strength. Conclusions An advantage of this method is the low additional computational cost required to treat long-range electrostatic interactions in large biomacromolecular systems. Moreover, the implementation described here for BD simulations of protein solutions can also be applied in implicit solvent molecular dynamics simulations that make use of gridded interaction potentials. PMID:25045516
MIDAS - ESO's new image processing system
NASA Astrophysics Data System (ADS)
Banse, K.; Crane, P.; Grosbol, P.; Middleburg, F.; Ounnas, C.; Ponz, D.; Waldthausen, H.
1983-03-01
The Munich Image Data Analysis System (MIDAS) is an image processing system whose heart is a pair of VAX 11/780 computers linked together via DECnet. One of these computers, VAX-A, is equipped with 3.5 Mbytes of memory, 1.2 Gbytes of disk storage, and two tape drives with 800/1600 bpi density. The other computer, VAX-B, has 4.0 Mbytes of memory, 688 Mbytes of disk storage, and one tape drive with 1600/6250 bpi density. MIDAS is a command-driven system geared toward the interactive user. The type and number of parameters in a command depends on the unique parameter invoked. MIDAS is a highly modular system that provides building blocks for the undertaking of more sophisticated applications. Presently, 175 commands are available. These include the modification of the color-lookup table interactively, to enhance various image features, and the interactive extraction of subimages.
Digitized adiabatic quantum computing with a superconducting circuit.
Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M
2016-06-09
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.
Paper simulation techniques in user requirements analysis for interactive computer systems
NASA Technical Reports Server (NTRS)
Ramsey, H. R.; Atwood, M. E.; Willoughby, J. K.
1979-01-01
This paper describes the use of a technique called 'paper simulation' in the analysis of user requirements for interactive computer systems. In a paper simulation, the user solves problems with the aid of a 'computer', as in normal man-in-the-loop simulation. In this procedure, though, the computer does not exist, but is simulated by the experimenters. This allows simulated problem solving early in the design effort, and allows the properties and degree of structure of the system and its dialogue to be varied. The technique, and a method of analyzing the results, are illustrated with examples from a recent paper simulation exercise involving a Space Shuttle flight design task
NASA Technical Reports Server (NTRS)
Schoenenberger, Mark; VanNorman, John; Rhode, Matthew; Paulson, John
2013-01-01
On August 5 , 2012, the Mars Science Laboratory (MSL) entry capsule successfully entered Mars' atmosphere and landed the Curiosity rover in Gale Crater. The capsule used a reaction control system (RCS) consisting of four pairs of hydrazine thrusters to fly a guided entry. The RCS provided bank control to fly along a flight path commanded by an onboard computer and also damped unwanted rates due to atmospheric disturbances and any dynamic instabilities of the capsule. A preliminary assessment of the MSL's flight data from entry showed that the capsule flew much as predicted. This paper will describe how the MSL aerodynamics team used engineering analyses, computational codes and wind tunnel testing in concert to develop the RCS system and certify it for flight. Over the course of MSL's development, the RCS configuration underwent a number of design iterations to accommodate mechanical constraints, aeroheating concerns and excessive aero/RCS interactions. A brief overview of the MSL RCS configuration design evolution is provided. Then, a brief description is presented of how the computational predictions of RCS jet interactions were validated. The primary work to certify that the RCS interactions were acceptable for flight was centered on validating computational predictions at hypersonic speeds. A comparison of computational fluid dynamics (CFD) predictions to wind tunnel force and moment data gathered in the NASA Langley 31-Inch Mach 10 Tunnel was the lynch pin to validating the CFD codes used to predict aero/RCS interactions. Using the CFD predictions and experimental data, an interaction model was developed for Monte Carlo analyses using 6-degree-of-freedom trajectory simulation. The interaction model used in the flight simulation is presented.
Mission-based Scenario Research: Experimental Design And Analysis
2012-01-01
neurotechnologies called Brain-Computer Interaction Technologies. 15. SUBJECT TERMS neuroimaging, EEG, task loading, neurotechnologies , ground... neurotechnologies called Brain-Computer Interaction Technologies. INTRODUCTION Imagine a system that can identify operator fatigue during a long-term...BCIT), a class of neurotechnologies , that aim to improve task performance by incorporating measures of brain activity to optimize the interactions
IFEMS, an Interactive Finite Element Modeling System Using a CAD/CAM System
NASA Technical Reports Server (NTRS)
Mckellip, S.; Schuman, T.; Lauer, S.
1980-01-01
A method of coupling a CAD/CAM system with a general purpose finite element mesh generator is described. The three computer programs which make up the interactive finite element graphics system are discussed.
Qubit-qubit interaction in quantum computers: errors and scaling laws
NASA Astrophysics Data System (ADS)
Gea-Banacloche, Julio R.
1998-07-01
This paper explores the limitations that interaction between the physical qubits making up a quantum computer may impose on the computer's performance. For computers using atoms as qubits, magnetic dipole-dipole interactions are likely to be dominant; various types of errors which they might introduce are considered here. The strength of the interaction may be reduce by increasing the distance between qubits, which in general will make the computer slower. For ion-chain based quantum computers the slowing down due to this effect is found to be generally more sever than that due to other causes. In particular, this effect alone would be enough to make these systems unacceptably slow for large-scale computation, whether they use the center of mass motion as the 'bus' or whether they do this via an optical cavity mode.
Eye Tracking Based Control System for Natural Human-Computer Interaction
Lin, Shu-Fan
2017-01-01
Eye movement can be regarded as a pivotal real-time input medium for human-computer communication, which is especially important for people with physical disability. In order to improve the reliability, mobility, and usability of eye tracking technique in user-computer dialogue, a novel eye control system with integrating both mouse and keyboard functions is proposed in this paper. The proposed system focuses on providing a simple and convenient interactive mode by only using user's eye. The usage flow of the proposed system is designed to perfectly follow human natural habits. Additionally, a magnifier module is proposed to allow the accurate operation. In the experiment, two interactive tasks with different difficulty (searching article and browsing multimedia web) were done to compare the proposed eye control tool with an existing system. The Technology Acceptance Model (TAM) measures are used to evaluate the perceived effectiveness of our system. It is demonstrated that the proposed system is very effective with regard to usability and interface design. PMID:29403528
Eye Tracking Based Control System for Natural Human-Computer Interaction.
Zhang, Xuebai; Liu, Xiaolong; Yuan, Shyan-Ming; Lin, Shu-Fan
2017-01-01
Eye movement can be regarded as a pivotal real-time input medium for human-computer communication, which is especially important for people with physical disability. In order to improve the reliability, mobility, and usability of eye tracking technique in user-computer dialogue, a novel eye control system with integrating both mouse and keyboard functions is proposed in this paper. The proposed system focuses on providing a simple and convenient interactive mode by only using user's eye. The usage flow of the proposed system is designed to perfectly follow human natural habits. Additionally, a magnifier module is proposed to allow the accurate operation. In the experiment, two interactive tasks with different difficulty (searching article and browsing multimedia web) were done to compare the proposed eye control tool with an existing system. The Technology Acceptance Model (TAM) measures are used to evaluate the perceived effectiveness of our system. It is demonstrated that the proposed system is very effective with regard to usability and interface design.
Making intelligent systems team players: Additional case studies
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Schreckenghost, Debra L.; Rhoads, Ron W.
1993-01-01
Observations from a case study of intelligent systems are reported as part of a multi-year interdisciplinary effort to provide guidance and assistance for designers of intelligent systems and their user interfaces. A series of studies were conducted to investigate issues in designing intelligent fault management systems in aerospace applications for effective human-computer interaction. The results of the initial study are documented in two NASA technical memoranda: TM 104738 Making Intelligent Systems Team Players: Case Studies and Design Issues, Volumes 1 and 2; and TM 104751, Making Intelligent Systems Team Players: Overview for Designers. The objective of this additional study was to broaden the investigation of human-computer interaction design issues beyond the focus on monitoring and fault detection in the initial study. The results of this second study are documented which is intended as a supplement to the original design guidance documents. These results should be of interest to designers of intelligent systems for use in real-time operations, and to researchers in the areas of human-computer interaction and artificial intelligence.
ERIC Educational Resources Information Center
Pruett, Sharon M.
2012-01-01
The objective of this study was to compare the relationships between the subtests of the Interactive Computer Interview System and the ETS "Praxis II" Principles of Learning and Teaching examination. In particular, this study compares scores on the ICIS instrument subtests to those gathered from the same classroom teachers on the…
ERIC Educational Resources Information Center
Gardner, Robby Christopher
2009-01-01
The primary objective of this study was to compare the individual teacher interview scores from the Interactive Computer Interview System (ICIS) with their students' responses to "The Steps to Excellence Student Questionnaire". Specifically, the study examined the correlation among the teacher interviews across four themes of the ICIS ("Knowledge…
Eye-movements and Voice as Interface Modalities to Computer Systems
NASA Astrophysics Data System (ADS)
Farid, Mohsen M.; Murtagh, Fionn D.
2003-03-01
We investigate the visual and vocal modalities of interaction with computer systems. We focus our attention on the integration of visual and vocal interface as possible replacement and/or additional modalities to enhance human-computer interaction. We present a new framework for employing eye gaze as a modality of interface. While voice commands, as means of interaction with computers, have been around for a number of years, integration of both the vocal interface and the visual interface, in terms of detecting user's eye movements through an eye-tracking device, is novel and promises to open the horizons for new applications where a hand-mouse interface provides little or no apparent support to the task to be accomplished. We present an array of applications to illustrate the new framework and eye-voice integration.
Portable computing - A fielded interactive scientific application in a small off-the-shelf package
NASA Technical Reports Server (NTRS)
Groleau, Nicolas; Hazelton, Lyman; Frainier, Rich; Compton, Michael; Colombano, Silvano; Szolovits, Peter
1993-01-01
Experience with the design and implementation of a portable computing system for STS crew-conducted science is discussed. Principal-Investigator-in-a-Box (PI) will help the SLS-2 astronauts perform vestibular (human orientation system) experiments in flight. PI is an interactive system that provides data acquisition and analysis, experiment step rescheduling, and various other forms of reasoning to astronaut users. The hardware architecture of PI consists of a computer and an analog interface box. 'Off-the-shelf' equipment is employed in the system wherever possible in an effort to use widely available tools and then to add custom functionality and application codes to them. Other projects which can help prospective teams to learn more about portable computing in space are also discussed.
Interaction entropy for protein-protein binding.
Sun, Zhaoxi; Yan, Yu N; Yang, Maoyou; Zhang, John Z H
2017-03-28
Protein-protein interactions are at the heart of signal transduction and are central to the function of protein machine in biology. The highly specific protein-protein binding is quantitatively characterized by the binding free energy whose accurate calculation from the first principle is a grand challenge in computational biology. In this paper, we show how the interactionentropy approach, which was recently proposed for protein-ligand binding free energy calculation, can be applied to computing the entropic contribution to the protein-protein binding free energy. Explicit theoretical derivation of the interactionentropy approach for protein-protein interaction system is given in detail from the basic definition. Extensive computational studies for a dozen realistic protein-protein interaction systems are carried out using the present approach and comparisons of the results for these protein-protein systems with those from the standard normal mode method are presented. Analysis of the present method for application in protein-protein binding as well as the limitation of the method in numerical computation is discussed. Our study and analysis of the results provided useful information for extracting correct entropic contribution in protein-protein binding from molecular dynamics simulations.
Use of MCIDAS as an earth science information systems tool
NASA Technical Reports Server (NTRS)
Goodman, H. Michael; Karitani, Shogo; Parker, Karen G.; Stooksbury, Laura M.; Wilson, Gregory S.
1988-01-01
The application of the man computer interactive data access system (MCIDAS) to information processing is examined. The computer systems that interface with the MCIDAS are discussed. Consideration is given to the computer networking of MCIDAS, data base archival, and the collection and distribution of real-time special sensor microwave/imager data.
On Roles of Models in Information Systems
NASA Astrophysics Data System (ADS)
Sølvberg, Arne
The increasing penetration of computers into all aspects of human activity makes it desirable that the interplay among software, data and the domains where computers are applied is made more transparent. An approach to this end is to explicitly relate the modeling concepts of the domains, e.g., natural science, technology and business, to the modeling concepts of software and data. This may make it simpler to build comprehensible integrated models of the interactions between computers and non-computers, e.g., interaction among computers, people, physical processes, biological processes, and administrative processes. This chapter contains an analysis of various facets of the modeling environment for information systems engineering. The lack of satisfactory conceptual modeling tools seems to be central to the unsatisfactory state-of-the-art in establishing information systems. The chapter contains a proposal for defining a concept of information that is relevant to information systems engineering.
Parallelized Stochastic Cutoff Method for Long-Range Interacting Systems
NASA Astrophysics Data System (ADS)
Endo, Eishin; Toga, Yuta; Sasaki, Munetaka
2015-07-01
We present a method of parallelizing the stochastic cutoff (SCO) method, which is a Monte-Carlo method for long-range interacting systems. After interactions are eliminated by the SCO method, we subdivide a lattice into noninteracting interpenetrating sublattices. This subdivision enables us to parallelize the Monte-Carlo calculation in the SCO method. Such subdivision is found by numerically solving the vertex coloring of a graph created by the SCO method. We use an algorithm proposed by Kuhn and Wattenhofer to solve the vertex coloring by parallel computation. This method was applied to a two-dimensional magnetic dipolar system on an L × L square lattice to examine its parallelization efficiency. The result showed that, in the case of L = 2304, the speed of computation increased about 102 times by parallel computation with 288 processors.
ERIC Educational Resources Information Center
Bramley, Neil R.; Lagnado, David A.; Speekenbrink, Maarten
2015-01-01
Interacting with a system is key to uncovering its causal structure. A computational framework for interventional causal learning has been developed over the last decade, but how real causal learners might achieve or approximate the computations entailed by this framework is still poorly understood. Here we describe an interactive computer task in…
Software for Collaborative Use of Large Interactive Displays
NASA Technical Reports Server (NTRS)
Trimble, Jay; Shab, Thodore; Wales, Roxana; Vera, Alonso; Tollinger, Irene; McCurdy, Michael; Lyubimov, Dmitriy
2006-01-01
The MERBoard Collaborative Workspace, which is currently being deployed to support the Mars Exploration Rover (MER) Missions, is the first instantiation of a new computing architecture designed to support collaborative and group computing using computing devices situated in NASA mission operations room. It is a software system for generation of large-screen interactive displays by multiple users
Pfeiffer, Ulrich J; Schilbach, Leonhard; Timmermans, Bert; Kuzmanovic, Bojana; Georgescu, Alexandra L; Bente, Gary; Vogeley, Kai
2014-11-01
There is ample evidence that human primates strive for social contact and experience interactions with conspecifics as intrinsically rewarding. Focusing on gaze behavior as a crucial means of human interaction, this study employed a unique combination of neuroimaging, eye-tracking, and computer-animated virtual agents to assess the neural mechanisms underlying this component of behavior. In the interaction task, participants believed that during each interaction the agent's gaze behavior could either be controlled by another participant or by a computer program. Their task was to indicate whether they experienced a given interaction as an interaction with another human participant or the computer program based on the agent's reaction. Unbeknownst to them, the agent was always controlled by a computer to enable a systematic manipulation of gaze reactions by varying the degree to which the agent engaged in joint attention. This allowed creating a tool to distinguish neural activity underlying the subjective experience of being engaged in social and non-social interaction. In contrast to previous research, this allows measuring neural activity while participants experience active engagement in real-time social interactions. Results demonstrate that gaze-based interactions with a perceived human partner are associated with activity in the ventral striatum, a core component of reward-related neurocircuitry. In contrast, interactions with a computer-driven agent activate attention networks. Comparisons of neural activity during interaction with behaviorally naïve and explicitly cooperative partners demonstrate different temporal dynamics of the reward system and indicate that the mere experience of engagement in social interaction is sufficient to recruit this system. Copyright © 2014 Elsevier Inc. All rights reserved.
An Interactive Graphics Program for Investigating Digital Signal Processing.
ERIC Educational Resources Information Center
Miller, Billy K.; And Others
1983-01-01
Describes development of an interactive computer graphics program for use in teaching digital signal processing. The program allows students to interactively configure digital systems on a monitor display and observe their system's performance by means of digital plots on the system's outputs. A sample program run is included. (JN)
Color graphics, interactive processing, and the supercomputer
NASA Technical Reports Server (NTRS)
Smith-Taylor, Rudeen
1987-01-01
The development of a common graphics environment for the NASA Langley Research Center user community and the integration of a supercomputer into this environment is examined. The initial computer hardware, the software graphics packages, and their configurations are described. The addition of improved computer graphics capability to the supercomputer, and the utilization of the graphic software and hardware are discussed. Consideration is given to the interactive processing system which supports the computer in an interactive debugging, processing, and graphics environment.
Definition Of Touch-Sensitive Zones For Graphical Displays
NASA Technical Reports Server (NTRS)
Monroe, Burt L., III; Jones, Denise R.
1988-01-01
Touch zones defined simply by touching, while editing done automatically. Development of touch-screen interactive computing system, tedious task. Interactive Editor for Definition of Touch-Sensitive Zones computer program increases efficiency of human/machine communications by enabling user to define each zone interactively, minimizing redundancy in programming and eliminating need for manual computation of boundaries of touch areas. Information produced during editing process written to data file, to which access gained when needed by application program.
Pike, William A; Riensche, Roderick M; Best, Daniel M; Roberts, Ian E; Whyatt, Marie V; Hart, Michelle L; Carr, Norman J; Thomas, James J
2012-09-18
Systems and computer-implemented processes for storage and management of information artifacts collected by information analysts using a computing device. The processes and systems can capture a sequence of interactive operation elements that are performed by the information analyst, who is collecting an information artifact from at least one of the plurality of software applications. The information artifact can then be stored together with the interactive operation elements as a snippet on a memory device, which is operably connected to the processor. The snippet comprises a view from an analysis application, data contained in the view, and the sequence of interactive operation elements stored as a provenance representation comprising operation element class, timestamp, and data object attributes for each interactive operation element in the sequence.
French Plans for Fifth Generation Computer Systems.
1984-12-07
centrally man- French industry In electronics, compu- aged project in France that covers all ters, software, and services and to make the facets of the...Centre National of Japan’s Fifth Generation Project , the de Recherche Scientifique (CNRS) Cooper- French scientific and industrial com- ative Research...systems, man-computer The National Projects interaction, novel computer structures, The French Ministry of Research and knowledge-based computer systems
Education, Information Technology and Cognitive Science.
ERIC Educational Resources Information Center
Scaife, M.
1989-01-01
Discusses information technology and its effects on developmental psychology and children's education. Topics discussed include a theory of child-computer interaction (CCI); programing; communication and computers, including electronic mail; cognitive science; artificial intelligence; modeling the user-system interaction; and the future of…
Computationally Efficient Multiconfigurational Reactive Molecular Dynamics
Yamashita, Takefumi; Peng, Yuxing; Knight, Chris; Voth, Gregory A.
2012-01-01
It is a computationally demanding task to explicitly simulate the electronic degrees of freedom in a system to observe the chemical transformations of interest, while at the same time sampling the time and length scales required to converge statistical properties and thus reduce artifacts due to initial conditions, finite-size effects, and limited sampling. One solution that significantly reduces the computational expense consists of molecular models in which effective interactions between particles govern the dynamics of the system. If the interaction potentials in these models are developed to reproduce calculated properties from electronic structure calculations and/or ab initio molecular dynamics simulations, then one can calculate accurate properties at a fraction of the computational cost. Multiconfigurational algorithms model the system as a linear combination of several chemical bonding topologies to simulate chemical reactions, also sometimes referred to as “multistate”. These algorithms typically utilize energy and force calculations already found in popular molecular dynamics software packages, thus facilitating their implementation without significant changes to the structure of the code. However, the evaluation of energies and forces for several bonding topologies per simulation step can lead to poor computational efficiency if redundancy is not efficiently removed, particularly with respect to the calculation of long-ranged Coulombic interactions. This paper presents accurate approximations (effective long-range interaction and resulting hybrid methods) and multiple-program parallelization strategies for the efficient calculation of electrostatic interactions in reactive molecular simulations. PMID:25100924
System enhancements of Mesoscale Analysis and Space Sensor (MASS) computer system
NASA Technical Reports Server (NTRS)
Hickey, J. S.; Karitani, S.
1985-01-01
The interactive information processing for the mesoscale analysis and space sensor (MASS) program is reported. The development and implementation of new spaceborne remote sensing technology to observe and measure atmospheric processes is described. The space measurements and conventional observational data are processed together to gain an improved understanding of the mesoscale structure and dynamical evolution of the atmosphere relative to cloud development and precipitation processes. A Research Computer System consisting of three primary computers was developed (HP-1000F, Perkin-Elmer 3250, and Harris/6) which provides a wide range of capabilities for processing and displaying interactively large volumes of remote sensing data. The development of a MASS data base management and analysis system on the HP-1000F computer and extending these capabilities by integration with the Perkin-Elmer and Harris/6 computers using the MSFC's Apple III microcomputer workstations is described. The objectives are: to design hardware enhancements for computer integration and to provide data conversion and transfer between machines.
Benaroia, Mark; Elinson, Roman; Zarnke, Kelly
2007-04-01
Patients can be used as a resource to enter their own pertinent medical information. This study will evaluate the feasibility of an intelligent computer medical history-taking device directed at patients in the emergency department (ED). Two of the authors (MB, RE) developed an expert system that can take patient-directed medical histories. Patients interacted with the computer in the ED waiting room while it gathered a medical history based on chief complaint (CC). A survey was completed post history. A sub-study assessed the computer's ability to take an adequate history for an index CC. We compared the computer and emergency physician histories for the presence or absence of important historical elements. Sixty-seven patients used the interactive computer system. The mean time to complete the history was 5 min and 32s +/- 1 min and 21s. The patient response rate was 97%. Over 83% felt that the computer was very easy to use and over 92% would very much use the computer again. A total of 15 patients with abdominal pain (index CC) were evaluated for the sub-study. The computer history asked 90+/-7%, and the emergency physician asked 55+/-18%, of the important historical elements. These groups were statistically different with a p-value of <0.00001. This feasibility study has shown that the computer history-taking device is well accepted by patients and that such a system can be integrated into the normal process of patient triage without delaying patient care. Such a system can serve as an initial mode for documentation and data acquisition directly from the patient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Song
CFD (Computational Fluid Dynamics) is a widely used technique in engineering design field. It uses mathematical methods to simulate and predict flow characteristics in a certain physical space. Since the numerical result of CFD computation is very hard to understand, VR (virtual reality) and data visualization techniques are introduced into CFD post-processing to improve the understandability and functionality of CFD computation. In many cases CFD datasets are very large (multi-gigabytes), and more and more interactions between user and the datasets are required. For the traditional VR application, the limitation of computing power is a major factor to prevent visualizing largemore » dataset effectively. This thesis presents a new system designing to speed up the traditional VR application by using parallel computing and distributed computing, and the idea of using hand held device to enhance the interaction between a user and VR CFD application as well. Techniques in different research areas including scientific visualization, parallel computing, distributed computing and graphical user interface designing are used in the development of the final system. As the result, the new system can flexibly be built on heterogeneous computing environment, dramatically shorten the computation time.« less
Trends in Human-Computer Interaction to Support Future Intelligence Analysis Capabilities
2011-06-01
that allows data to be moved between different computing systems and displays. Figure 4- G-Speak gesture interaction (Oblong, 2011) 5.2 Multitouch ... Multitouch refers to a touchscreen interaction technique in which multiple simultaneous touchpoints and movements can be detected and used to...much of the style of interaction (such as rotate, pinch, zoom and flick movements) found in multitouch devices but can typically recognize more than
Computer-aided design of large-scale integrated circuits - A concept
NASA Technical Reports Server (NTRS)
Schansman, T. T.
1971-01-01
Circuit design and mask development sequence are improved by using general purpose computer with interactive graphics capability establishing efficient two way communications link between design engineer and system. Interactive graphics capability places design engineer in direct control of circuit development.
Cyberpsychology: a human-interaction perspective based on cognitive modeling.
Emond, Bruno; West, Robert L
2003-10-01
This paper argues for the relevance of cognitive modeling and cognitive architectures to cyberpsychology. From a human-computer interaction point of view, cognitive modeling can have benefits both for theory and model building, and for the design and evaluation of sociotechnical systems usability. Cognitive modeling research applied to human-computer interaction has two complimentary objectives: (1) to develop theories and computational models of human interactive behavior with information and collaborative technologies, and (2) to use the computational models as building blocks for the design, implementation, and evaluation of interactive technologies. From the perspective of building theories and models, cognitive modeling offers the possibility to anchor cyberpsychology theories and models into cognitive architectures. From the perspective of the design and evaluation of socio-technical systems, cognitive models can provide the basis for simulated users, which can play an important role in usability testing. As an example of application of cognitive modeling to technology design, the paper presents a simulation of interactive behavior with five different adaptive menu algorithms: random, fixed, stacked, frequency based, and activation based. Results of the simulation indicate that fixed menu positions seem to offer the best support for classification like tasks such as filing e-mails. This research is part of the Human-Computer Interaction, and the Broadband Visual Communication research programs at the National Research Council of Canada, in collaboration with the Carleton Cognitive Modeling Lab at Carleton University.
ERIC Educational Resources Information Center
Association for Educational Data Systems, Washington, DC.
Two abstracts and seventeen articles on computer assisted instruction (CAI) presented at the 1976 Association for Educational Data Systems (AEDS) convention are included here. Four new computer programs are described: Author System for Education and Training (ASET); GNOSIS, a Swedish/English CAI package; Statistical Interactive Programming System…
Systems Concepts and Computer-Managed Instruction: An Implementation and Validation Study.
ERIC Educational Resources Information Center
Dick, Walter; Gallagher, Paul
The Florida State model of computer-managed instruction (CMI) differs from other such models in that it assumes a student will achieve his maximum performance level by interacting directly with the computer in order to evaluate his learning experience. In this system the computer plays the role of real-time diagnostician and prescriber for the…
Getting seamless care right from the beginning - integrating computers into the human interaction.
Pearce, Christopher; Kumarpeli, Pushpa; de Lusignan, Simon
2010-01-01
The digital age is coming to the health space, behind many other fields of society. In part this is because health remains heavily reliant on human interaction. The doctor-patient relationship remains a significant factor in determining patient outcomes. Whilst there are many benefits to E-Health, there are also significant risks if computers are not adequately integrated into this interaction and accurate data are consequently not available on the patient's journey through the health system. Video analysis of routine clinical consultations in Australian and UK primary care. We analyzed 308 consultations (141+167 respectively) from these systems, with an emphasis on how the consultation starts. Australian consultations have a mean duration of 12.7 mins, UK 11.8 mins. In both countries around 7% of consultations are computer initiated. Where doctors engaged with computer use the patient observed the computer screen much more and better records were produced. However, there was suboptimal engagement and poor records and no coding in around 20% of consultations. How the computer is used at the start of the consultation can set the scene for an effective interaction or reflect disengagement from technology and creation of poor records.
The Impact of Computer-Based Information Systems Upon School and School District Administration.
ERIC Educational Resources Information Center
Hansen, Thomas; And Others
1978-01-01
This study investigates the ways in which computer-based information systems interact with the strategic planning, management control, and operational control in 11 Minnesota school districts. (Author/IRT)
Multiple-User, Multitasking, Virtual-Memory Computer System
NASA Technical Reports Server (NTRS)
Generazio, Edward R.; Roth, Don J.; Stang, David B.
1993-01-01
Computer system designed and programmed to serve multiple users in research laboratory. Provides for computer control and monitoring of laboratory instruments, acquisition and anlaysis of data from those instruments, and interaction with users via remote terminals. System provides fast access to shared central processing units and associated large (from megabytes to gigabytes) memories. Underlying concept of system also applicable to monitoring and control of industrial processes.
INTERACTIONS BETWEEN ORGANIC COMPOUNDS AND CYCLODEXTRIN-CLAY SYSTEMS
Computational and experimental techniques are combined in order to better understand interactions involving organic compounds and cyclodextrin (CD)-clay systems. CD-clay systems may have great potential in the containment of organic contaminants in the environment. This study w...
ERIC Educational Resources Information Center
Salamanca, Juan
2012-01-01
With the advent of ubiquitous computing, interaction design has broadened its object of inquiry into how smart computational artifacts inconspicuously act in people's everyday lives. Although user-centered design approaches remains useful for exploring how people cope with interactive systems, they cannot explain how this new breed of…
NASA Technical Reports Server (NTRS)
Sainsbury-Carter, J. B.; Conaway, J. H.
1973-01-01
The development and implementation of a preprocessor system for the finite element analysis of helicopter fuselages is described. The system utilizes interactive graphics for the generation, display, and editing of NASTRAN data for fuselage models. It is operated from an IBM 2250 cathode ray tube (CRT) console driven by an IBM 370/145 computer. Real time interaction plus automatic data generation reduces the nominal 6 to 10 week time for manual generation and checking of data to a few days. The interactive graphics system consists of a series of satellite programs operated from a central NASTRAN Systems Monitor. Fuselage structural models including the outer shell and internal structure may be rapidly generated. All numbering systems are automatically assigned. Hard copy plots of the model labeled with GRID or elements ID's are also available. General purpose programs for displaying and editing NASTRAN data are included in the system. Utilization of the NASTRAN interactive graphics system has made possible the multiple finite element analysis of complex helicopter fuselage structures within design schedules.
Interactive Voice/Web Response System in clinical research
Ruikar, Vrishabhsagar
2016-01-01
Emerging technologies in computer and telecommunication industry has eased the access to computer through telephone. An Interactive Voice/Web Response System (IxRS) is one of the user friendly systems for end users, with complex and tailored programs at its backend. The backend programs are specially tailored for easy understanding of users. Clinical research industry has experienced revolution in methodologies of data capture with time. Different systems have evolved toward emerging modern technologies and tools in couple of decades from past, for example, Electronic Data Capture, IxRS, electronic patient reported outcomes, etc. PMID:26952178
Interactive Voice/Web Response System in clinical research.
Ruikar, Vrishabhsagar
2016-01-01
Emerging technologies in computer and telecommunication industry has eased the access to computer through telephone. An Interactive Voice/Web Response System (IxRS) is one of the user friendly systems for end users, with complex and tailored programs at its backend. The backend programs are specially tailored for easy understanding of users. Clinical research industry has experienced revolution in methodologies of data capture with time. Different systems have evolved toward emerging modern technologies and tools in couple of decades from past, for example, Electronic Data Capture, IxRS, electronic patient reported outcomes, etc.
Integrating computer programs for engineering analysis and design
NASA Technical Reports Server (NTRS)
Wilhite, A. W.; Crisp, V. K.; Johnson, S. C.
1983-01-01
The design of a third-generation system for integrating computer programs for engineering and design has been developed for the Aerospace Vehicle Interactive Design (AVID) system. This system consists of an engineering data management system, program interface software, a user interface, and a geometry system. A relational information system (ARIS) was developed specifically for the computer-aided engineering system. It is used for a repository of design data that are communicated between analysis programs, for a dictionary that describes these design data, for a directory that describes the analysis programs, and for other system functions. A method is described for interfacing independent analysis programs into a loosely-coupled design system. This method emphasizes an interactive extension of analysis techniques and manipulation of design data. Also, integrity mechanisms exist to maintain database correctness for multidisciplinary design tasks by an individual or a team of specialists. Finally, a prototype user interface program has been developed to aid in system utilization.
Drawert, Brian; Trogdon, Michael; Toor, Salman; Petzold, Linda; Hellander, Andreas
2016-01-01
Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments.
LIBRARY INFORMATION PROCESSING USING AN ON-LINE, REAL-TIME COMPUTER SYSTEM.
ERIC Educational Resources Information Center
HOLZBAUR, FREDERICK W.; FARRIS, EUGENE H.
DIRECT MAN-MACHINE COMMUNICATION IS NOW POSSIBLE THROUGH ON-LINE, REAL-TIME TYPEWRITER TERMINALS DIRECTLY CONNECTED TO COMPUTERS. THESE TERMINAL SYSTEMS PERMIT THE OPERATOR, WHETHER ORDER CLERK, CATALOGER, REFERENCE LIBRARIAN OR TYPIST, TO INTERACT WITH THE COMPUTER IN MANIPULATING DATA STORED WITHIN IT. THE IBM ADMINISTRATIVE TERMINAL SYSTEM…
Optimization of an interactive distributive computer network
NASA Technical Reports Server (NTRS)
Frederick, V.
1985-01-01
The activities under a cooperative agreement for the development of a computer network are briefly summarized. Research activities covered are: computer operating systems optimization and integration; software development and implementation of the IRIS (Infrared Imaging of Shuttle) Experiment; and software design, development, and implementation of the APS (Aerosol Particle System) Experiment.
Roles for Agent Assistants in Field Science: Understanding Personal Projects and Collaboration
NASA Technical Reports Server (NTRS)
Clancey, William J.
2003-01-01
A human-centered approach to computer systems design involves reframing analysis in terms of the people interacting with each other. The primary concern is not how people can interact with computers, but how shall we design work systems (facilities, tools, roles, and procedures) to help people pursue their personal projects, as they work independently and collaboratively? Two case studies provide empirical requirements. First, an analysis of astronaut interactions with CapCom on Earth during one traverse of Apollo 17 shows what kind of information was conveyed and what might be automated today. A variety of agent and robotic technologies are proposed that deal with recurrent problems in communication and coordination during the analyzed traverse. Second, an analysis of biologists and a geologist working at Haughton Crater in the High Canadian Arctic reveals how work interactions between people involve independent personal projects, sensitively coordinated for mutual benefit. In both cases, an agent or robotic system's role would be to assist people, rather than collaborating, because today's computer systems lack the identity and purpose that consciousness provides.
ERIC Educational Resources Information Center
Kern, Richard
1985-01-01
A computer-based interactive system for diagnosing academic and school behavior problems is described. Elements include criterion-referenced testing, an instructional management system, and a behavior evaluation tool developed by the author. (JW)
Simulation of Quantum Many-Body Dynamics for Generic Strongly-Interacting Systems
NASA Astrophysics Data System (ADS)
Meyer, Gregory; Machado, Francisco; Yao, Norman
2017-04-01
Recent experimental advances have enabled the bottom-up assembly of complex, strongly interacting quantum many-body systems from individual atoms, ions, molecules and photons. These advances open the door to studying dynamics in isolated quantum systems as well as the possibility of realizing novel out-of-equilibrium phases of matter. Numerical studies provide insight into these systems; however, computational time and memory usage limit common numerical methods such as exact diagonalization to relatively small Hilbert spaces of dimension 215 . Here we present progress toward a new software package for dynamical time evolution of large generic quantum systems on massively parallel computing architectures. By projecting large sparse Hamiltonians into a much smaller Krylov subspace, we are able to compute the evolution of strongly interacting systems with Hilbert space dimension nearing 230. We discuss and benchmark different design implementations, such as matrix-free methods and GPU based calculations, using both pre-thermal time crystals and the Sachdev-Ye-Kitaev model as examples. We also include a simple symbolic language to describe generic Hamiltonians, allowing simulation of diverse quantum systems without any modification of the underlying C and Fortran code.
Web-based interactive drone control using hand gesture
NASA Astrophysics Data System (ADS)
Zhao, Zhenfei; Luo, Hao; Song, Guang-Hua; Chen, Zhou; Lu, Zhe-Ming; Wu, Xiaofeng
2018-01-01
This paper develops a drone control prototype based on web technology with the aid of hand gesture. The uplink control command and downlink data (e.g., video) are transmitted by WiFi communication, and all the information exchange is realized on web. The control command is translated from various predetermined hand gestures. Specifically, the hardware of this friendly interactive control system is composed by a quadrotor drone, a computer vision-based hand gesture sensor, and a cost-effective computer. The software is simplified as a web-based user interface program. Aided by natural hand gestures, this system significantly reduces the complexity of traditional human-computer interaction, making remote drone operation more intuitive. Meanwhile, a web-based automatic control mode is provided in addition to the hand gesture control mode. For both operation modes, no extra application program is needed to be installed on the computer. Experimental results demonstrate the effectiveness and efficiency of the proposed system, including control accuracy, operation latency, etc. This system can be used in many applications such as controlling a drone in global positioning system denied environment or by handlers without professional drone control knowledge since it is easy to get started.
Web-based interactive drone control using hand gesture.
Zhao, Zhenfei; Luo, Hao; Song, Guang-Hua; Chen, Zhou; Lu, Zhe-Ming; Wu, Xiaofeng
2018-01-01
This paper develops a drone control prototype based on web technology with the aid of hand gesture. The uplink control command and downlink data (e.g., video) are transmitted by WiFi communication, and all the information exchange is realized on web. The control command is translated from various predetermined hand gestures. Specifically, the hardware of this friendly interactive control system is composed by a quadrotor drone, a computer vision-based hand gesture sensor, and a cost-effective computer. The software is simplified as a web-based user interface program. Aided by natural hand gestures, this system significantly reduces the complexity of traditional human-computer interaction, making remote drone operation more intuitive. Meanwhile, a web-based automatic control mode is provided in addition to the hand gesture control mode. For both operation modes, no extra application program is needed to be installed on the computer. Experimental results demonstrate the effectiveness and efficiency of the proposed system, including control accuracy, operation latency, etc. This system can be used in many applications such as controlling a drone in global positioning system denied environment or by handlers without professional drone control knowledge since it is easy to get started.
Novel systems and methods for quantum communication, quantum computation, and quantum simulation
NASA Astrophysics Data System (ADS)
Gorshkov, Alexey Vyacheslavovich
Precise control over quantum systems can enable the realization of fascinating applications such as powerful computers, secure communication devices, and simulators that can elucidate the physics of complex condensed matter systems. However, the fragility of quantum effects makes it very difficult to harness the power of quantum mechanics. In this thesis, we present novel systems and tools for gaining fundamental insights into the complex quantum world and for bringing practical applications of quantum mechanics closer to reality. We first optimize and show equivalence between a wide range of techniques for storage of photons in atomic ensembles. We describe experiments demonstrating the potential of our optimization algorithms for quantum communication and computation applications. Next, we combine the technique of photon storage with strong atom-atom interactions to propose a robust protocol for implementing the two-qubit photonic phase gate, which is an important ingredient in many quantum computation and communication tasks. In contrast to photon storage, many quantum computation and simulation applications require individual addressing of closely-spaced atoms, ions, quantum dots, or solid state defects. To meet this requirement, we propose a method for coherent optical far-field manipulation of quantum systems with a resolution that is not limited by the wavelength of radiation. While alkali atoms are currently the system of choice for photon storage and many other applications, we develop new methods for quantum information processing and quantum simulation with ultracold alkaline-earth atoms in optical lattices. We show how multiple qubits can be encoded in individual alkaline-earth atoms and harnessed for quantum computing and precision measurements applications. We also demonstrate that alkaline-earth atoms can be used to simulate highly symmetric systems exhibiting spin-orbital interactions and capable of providing valuable insights into strongly correlated physics of transition metal oxides, heavy fermion materials, and spin liquid phases. While ultracold atoms typically exhibit only short-range interactions, numerous exotic phenomena and practical applications require long-range interactions, which can be achieved with ultracold polar molecules. We demonstrate the possibility to engineer a repulsive interaction between polar molecules, which allows for the suppression of inelastic collisions, efficient evaporative cooling, and the creation of novel phases of polar molecules.
An application of interactive computer graphics technology to the design of dispersal mechanisms
NASA Technical Reports Server (NTRS)
Richter, B. J.; Welch, B. H.
1977-01-01
Interactive computer graphics technology is combined with a general purpose mechanisms computer code to study the operational behavior of three guided bomb dispersal mechanism designs. These studies illustrate the use of computer graphics techniques to discover operational anomalies, to assess the effectiveness of design improvements, to reduce the time and cost of the modeling effort, and to provide the mechanism designer with a visual understanding of the physical operation of such systems.
Digital Immersive Virtual Environments and Instructional Computing
ERIC Educational Resources Information Center
Blascovich, Jim; Beall, Andrew C.
2010-01-01
This article reviews theory and research relevant to the development of digital immersive virtual environment-based instructional computing systems. The review is organized within the context of a multidimensional model of social influence and interaction within virtual environments that models the interaction of four theoretical factors: theory…
Micro computed tomography (CT) scanned anatomical gateway to insect pest bioinformatics
USDA-ARS?s Scientific Manuscript database
An international collaboration to establish an interactive Digital Video Library for a Systems Biology Approach to study the Asian citrus Psyllid and psyllid genomics/proteomics interactions is demonstrated. Advances in micro-CT, digital computed tomography (CT) scan uses X-rays to make detailed pic...
Towards Co-Engineering Communicating Autonomous Cyber-Physical Systems
NASA Technical Reports Server (NTRS)
Bujorianu, Marius C.; Bujorianu, Manuela L.
2009-01-01
In this paper, we sketch a framework for interdisciplinary modeling of space systems, by proposing a holistic view. We consider different system dimensions and their interaction. Specifically, we study the interactions between computation, physics, communication, uncertainty and autonomy. The most comprehensive computational paradigm that supports a holistic perspective on autonomous space systems is given by cyber-physical systems. For these, the state of art consists of collaborating multi-engineering efforts that prompt for an adequate formal foundation. To achieve this, we propose a leveraging of the traditional content of formal modeling by a co-engineering process.
Image-Processing Software For A Hypercube Computer
NASA Technical Reports Server (NTRS)
Lee, Meemong; Mazer, Alan S.; Groom, Steven L.; Williams, Winifred I.
1992-01-01
Concurrent Image Processing Executive (CIPE) is software system intended to develop and use image-processing application programs on concurrent computing environment. Designed to shield programmer from complexities of concurrent-system architecture, it provides interactive image-processing environment for end user. CIPE utilizes architectural characteristics of particular concurrent system to maximize efficiency while preserving architectural independence from user and programmer. CIPE runs on Mark-IIIfp 8-node hypercube computer and associated SUN-4 host computer.
DEBRIS: a computer program for analyzing channel cross sections
Patrick Deenihan; Thomas E. Lisle
1988-01-01
DEBRIS is a menu-driven, interactive computer program written in FORTRAN 77 for recording and plotting survey data and for computing hydraulic variables and depths of scour and fill. It was developed for use with the USDA Forest Service's Data General computer system, with the AOS/VS operation system. By using menus, the operator does not need to know any...
DEBRIS: A computer program for analyzing channel cross sections
Patrick Deenihan; Thomas E. Lisle
1988-01-01
DEBRIS is a menu-driven, interactive computer program written in FORTRAN 77 for recording and platting survey data and for computing hydraulic variables and depths of scour and fill. It was developed for use with the USDA Forest Service's Data General computer system, with the AOS/VS operating system. By using menus, the operator does not need to know any...
NASA Technical Reports Server (NTRS)
Stevens, N. J.
1979-01-01
Cases where the charged-particle environment acts on the spacecraft (e.g., spacecraft charging phenomena) and cases where a system on the spacecraft causes the interaction (e.g., high voltage space power systems) are considered. Both categories were studied in ground simulation facilities to understand the processes involved and to measure the pertinent parameters. Computer simulations are based on the NASA Charging Analyzer Program (NASCAP) code. Analytical models are developed in this code and verified against the experimental data. Extrapolation from the small test samples to space conditions are made with this code. Typical results from laboratory and computer simulations are presented for both types of interactions. Extrapolations from these simulations to performance in space environments are discussed.
Pilot interaction with automated airborne decision making systems
NASA Technical Reports Server (NTRS)
Rouse, W. B.; Chu, Y. Y.; Greenstein, J. S.; Walden, R. S.
1976-01-01
An investigation was made of interaction between a human pilot and automated on-board decision making systems. Research was initiated on the topic of pilot problem solving in automated and semi-automated flight management systems and attempts were made to develop a model of human decision making in a multi-task situation. A study was made of allocation of responsibility between human and computer, and discussed were various pilot performance parameters with varying degrees of automation. Optimal allocation of responsibility between human and computer was considered and some theoretical results found in the literature were presented. The pilot as a problem solver was discussed. Finally the design of displays, controls, procedures, and computer aids for problem solving tasks in automated and semi-automated systems was considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnstad, H.
The purpose of this meeting is to discuss the current and future HEP computing support and environments from the perspective of new horizons in accelerator, physics, and computing technologies. Topics of interest to the Meeting include (but are limited to): the forming of the HEPLIB world user group for High Energy Physic computing; mandate, desirables, coordination, organization, funding; user experience, international collaboration; the roles of national labs, universities, and industry; range of software, Monte Carlo, mathematics, physics, interactive analysis, text processors, editors, graphics, data base systems, code management tools; program libraries, frequency of updates, distribution; distributed and interactive computing, datamore » base systems, user interface, UNIX operating systems, networking, compilers, Xlib, X-Graphics; documentation, updates, availability, distribution; code management in large collaborations, keeping track of program versions; and quality assurance, testing, conventions, standards.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnstad, H.
The purpose of this meeting is to discuss the current and future HEP computing support and environments from the perspective of new horizons in accelerator, physics, and computing technologies. Topics of interest to the Meeting include (but are limited to): the forming of the HEPLIB world user group for High Energy Physic computing; mandate, desirables, coordination, organization, funding; user experience, international collaboration; the roles of national labs, universities, and industry; range of software, Monte Carlo, mathematics, physics, interactive analysis, text processors, editors, graphics, data base systems, code management tools; program libraries, frequency of updates, distribution; distributed and interactive computing, datamore » base systems, user interface, UNIX operating systems, networking, compilers, Xlib, X-Graphics; documentation, updates, availability, distribution; code management in large collaborations, keeping track of program versions; and quality assurance, testing, conventions, standards.« less
1981-02-01
Continue on tevetee «Id* If necemtery mid Identify br black number) Battlefield automated systems Human- computer interaction. Design criteria System...Report (this report) In-Depth Analyses of Individual Systems A. Tactical Fire Direction System (TACFIRE) (RP 81-26) B. Tactical Computer Terminal...select the design features and operating procedures of the human- computer Interface which best match the require- ments and capabilities of anticipated
Investigations in Computer-Aided Instruction and Computer-Aided Controls. Final Report.
ERIC Educational Resources Information Center
Rosenberg, R.C.; And Others
These research projects, designed to delve into certain relationships between humans and computers, are focused on computer-assisted instruction and on man-computer interaction. One study demonstrates that within the limits of formal engineering theory, a computer simulated laboratory (Dynamic Systems Laboratory) can be built in which freshmen…
ERIC Educational Resources Information Center
Pan, Wen Fu
2017-01-01
The objective of this study was to test whether the Kinect motion-sensing interactive system (KMIS) enhanced students' English vocabulary learning, while also comparing the system's effectiveness against a traditional computer-mouse interface. Both interfaces utilized an interactive game with a questioning strategy. One-hundred and twenty…
ERIC Educational Resources Information Center
Lyness, Ann L.
A computer system using interactive videodisc was developed and used by the American Heart Association to teach nursing students and others cardiopulmonary resuscitation (CPR). Two studies were made of the use of the system. Between September 1982 and April 1983, 48 participants received CPR instruction by interactive videodisc and 51 by…
The Development of Interactive Distance Learning in Taiwan: Challenges and Prospects.
ERIC Educational Resources Information Center
Chu, Clarence T.
1999-01-01
Describes three types of interactive distance-education systems under development in Taiwan: real-time multicast systems; virtual-classroom systems; and curriculum-on-demand systems. Discusses the use of telecommunications and computer technology in higher education, problems and challenges, and future prospects. (Author/LRW)
Increasing productivity of the McAuto CAD/CAE system by user-specific applications programming
NASA Technical Reports Server (NTRS)
Plotrowski, S. M.; Vu, T. H.
1985-01-01
Significant improvements in the productivity of the McAuto Computer-Aided Design/Computer-Aided Engineering (CAD/CAE) system were achieved by applications programming using the system's own Graphics Interactive Programming language (GRIP) and the interface capabilities with the main computer on which the system resides. The GRIP programs for creating springs, bar charts, finite element model representations and aiding management planning are presented as examples.
NASA Technical Reports Server (NTRS)
Schulte, Erin
2017-01-01
As augmented and virtual reality grows in popularity, and more researchers focus on its development, other fields of technology have grown in the hopes of integrating with the up-and-coming hardware currently on the market. Namely, there has been a focus on how to make an intuitive, hands-free human-computer interaction (HCI) utilizing AR and VR that allows users to control their technology with little to no physical interaction with hardware. Computer vision, which is utilized in devices such as the Microsoft Kinect, webcams and other similar hardware has shown potential in assisting with the development of a HCI system that requires next to no human interaction with computing hardware and software. Object and facial recognition are two subsets of computer vision, both of which can be applied to HCI systems in the fields of medicine, security, industrial development and other similar areas.
ICCE/ICCAI 2000 Full & Short Papers (Interactive Learning Environments).
ERIC Educational Resources Information Center
2000
This document contains the full and short papers on interactive learning environments from ICCE/ICCAI 2000 (International Conference on Computers in Education/International Conference on Computer-Assisted Instruction) covering the following topics: a CAL system for appreciation of 3D shapes by surface development; a constructivist virtual physics…
A Functional Analytic Approach to Computer-Interactive Mathematics
ERIC Educational Resources Information Center
Ninness, Chris; Rumph, Robin; McCuller, Glen; Harrison, Carol; Ford, Angela M.; Ninness, Sharon K.
2005-01-01
Following a pretest, 11 participants who were naive with regard to various algebraic and trigonometric transformations received an introductory lecture regarding the fundamentals of the rectangular coordinate system. Following the lecture, they took part in a computer-interactive matching-to-sample procedure in which they received training on…
Setting the Stage for the Interactive Classroom of the 1980s.
ERIC Educational Resources Information Center
Hiraki, Joan; Garcia, Oscar N.
1981-01-01
Under a National Science Foundation CAUSE grant, the Department of Computer Science and Engineering at the University of South Florida, Tampa, is developing an interactive microcomputer/minicomputer/video disk learning system for engineering and science students. Journal availability: Educational Computer, P.O. Box 535, Cupertino, CA 95015.…
Computer Graphics in Research: Some State -of-the-Art Systems
ERIC Educational Resources Information Center
Reddy, R.; And Others
1975-01-01
A description is given of the structure and functional characteristics of three types of interactive computer graphic systems, developed by the Department of Computer Science at Carnegie-Mellon; a high-speed programmable display capable of displaying 50,000 short vectors, flicker free; a shaded-color video display for the display of gray-scale…
Proceedings of the Fourth Annual Workshop on the Use of Digital Computers in Process Control.
ERIC Educational Resources Information Center
Smith, Cecil L., Ed.
Contents: Computer hardware testing (results of vendor-user interaction); CODIL (a new language for process control programing); the design and implementation of control systems utilizing CRT display consoles; the systems contractor - valuable professional or unnecessary middle man; power station digital computer applications; from inspiration to…
For operation of the Computer Software Management and Information Center (COSMIC)
NASA Technical Reports Server (NTRS)
Carmon, J. L.
1983-01-01
Computer programs for large systems of normal equations, an interactive digital signal process, structural analysis of cylindrical thrust chambers, swirling turbulent axisymmetric recirculating flows in practical isothermal combustor geometrics, computation of three dimensional combustor performance, a thermal radiation analysis system, transient response analysis, and a software design analysis are summarized.
Employing Textual and Facial Emotion Recognition to Design an Affective Tutoring System
ERIC Educational Resources Information Center
Lin, Hao-Chiang Koong; Wang, Cheng-Hung; Chao, Ching-Ju; Chien, Ming-Kuan
2012-01-01
Emotional expression in Artificial Intelligence has gained lots of attention in recent years, people applied its affective computing not only in enhancing and realizing the interaction between computers and human, it also makes computer more humane. In this study, emotional expressions were applied into intelligent tutoring system, where learners'…
The Bilingual Language Interaction Network for Comprehension of Speech
ERIC Educational Resources Information Center
Shook, Anthony; Marian, Viorica
2013-01-01
During speech comprehension, bilinguals co-activate both of their languages, resulting in cross-linguistic interaction at various levels of processing. This interaction has important consequences for both the structure of the language system and the mechanisms by which the system processes spoken language. Using computational modeling, we can…
Speech Perception as a Cognitive Process: The Interactive Activation Model.
ERIC Educational Resources Information Center
Elman, Jeffrey L.; McClelland, James L.
Research efforts to model speech perception in terms of a processing system in which knowledge and processing are distributed over large numbers of highly interactive--but computationally primative--elements are described in this report. After discussing the properties of speech that demand a parallel interactive processing system, the report…
MTA Computer Based Evaluation System.
ERIC Educational Resources Information Center
Brenner, Lisa P.; And Others
The MTA PLATO-based evaluation system, which has been implemented by a consortium of schools of medical technology, is designed to be general-purpose, modular, data-driven, and interactive, and to accommodate other national and local item banks. The system provides a comprehensive interactive item-banking system in conjunction with online student…
The Effectiveness of Gaze-Contingent Control in Computer Games.
Orlov, Paul A; Apraksin, Nikolay
2015-01-01
Eye-tracking technology and gaze-contingent control in human-computer interaction have become an objective reality. This article reports on a series of eye-tracking experiments, in which we concentrated on one aspect of gaze-contingent interaction: Its effectiveness compared with mouse-based control in a computer strategy game. We propose a measure for evaluating the effectiveness of interaction based on "the time of recognition" the game unit. In this article, we use this measure to compare gaze- and mouse-contingent systems, and we present the analysis of the differences as a function of the number of game units. Our results indicate that performance of gaze-contingent interaction is typically higher than mouse manipulation in a visual searching task. When tested on 60 subjects, the results showed that the effectiveness of gaze-contingent systems over 1.5 times higher. In addition, we obtained that eye behavior stays quite stabile with or without mouse interaction. © The Author(s) 2015.
40 CFR 86.010-2 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... diagnostics, means verifying that a component and/or system that receives information from a control computer... maintained. In general, limp-home operation implies that a component or system is not operating properly or... cannot be erased through human interaction with the OBD system or any onboard computer. Potential...
40 CFR 86.010-2 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... diagnostics, means verifying that a component and/or system that receives information from a control computer... maintained. In general, limp-home operation implies that a component or system is not operating properly or... cannot be erased through human interaction with the OBD system or any onboard computer. Potential...
40 CFR 86.010-2 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... diagnostics, means verifying that a component and/or system that receives information from a control computer... maintained. In general, limp-home operation implies that a component or system is not operating properly or... cannot be erased through human interaction with the OBD system or any onboard computer. Potential...
40 CFR 86.010-2 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... diagnostics, means verifying that a component and/or system that receives information from a control computer... maintained. In general, limp-home operation implies that a component or system is not operating properly or... cannot be erased through human interaction with the OBD system or any onboard computer. Potential...
40 CFR 86.010-2 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... diagnostics, means verifying that a component and/or system that receives information from a control computer... maintained. In general, limp-home operation implies that a component or system is not operating properly or... cannot be erased through human interaction with the OBD system or any onboard computer. Potential...
AOIPS data base management systems support for GARP data sets
NASA Technical Reports Server (NTRS)
Gary, J. P.
1977-01-01
A data base management system is identified, developed to provide flexible access to data sets produced by GARP during its data systems tests. The content and coverage of the data base are defined and a computer-aided, interactive information storage and retrieval system, implemented to facilitate access to user specified data subsets, is described. The computer programs developed to provide the capability were implemented on the highly interactive, minicomputer-based AOIPS and are referred to as the data retrieval system (DRS). Implemented as a user interactive but menu guided system, the DRS permits users to inventory the data tape library and create duplicate or subset data sets based on a user selected window defined by time and latitude/longitude boundaries. The DRS permits users to select, display, or produce formatted hard copy of individual data items contained within the data records.
Analyzing Robotic Kinematics Via Computed Simulations
NASA Technical Reports Server (NTRS)
Carnahan, Timothy M.
1992-01-01
Computing system assists in evaluation of kinematics of conceptual robot. Displays positions and motions of robotic manipulator within work cell. Also displays interactions between robotic manipulator and other objects. Results of simulation displayed on graphical computer workstation. System includes both off-the-shelf software originally developed for automotive industry and specially developed software. Simulation system also used to design human-equivalent hand, to model optical train in infrared system, and to develop graphical interface for teleoperator simulation system.
Image reproduction with interactive graphics
NASA Technical Reports Server (NTRS)
Buckner, J. D.; Council, H. W.; Edwards, T. R.
1974-01-01
Software application or development in optical image digital data processing requires a fast, good quality, yet inexpensive hard copy of processed images. To achieve this, a Cambo camera with an f 2.8/150-mm Xenotar lens in a Copal shutter having a Graflok back for 4 x 5 Polaroid type 57 pack-film has been interfaced to an existing Adage, AGT-30/Electro-Mechanical Research, EMR 6050 graphic computer system. Time-lapse photography in conjunction with a log to linear voltage transformation has resulted in an interactive system capable of producing a hard copy in 54 sec. The interactive aspect of the system lies in a Tektronix 4002 graphic computer terminal and its associated hard copy unit.
Numerical propulsion system simulation
NASA Technical Reports Server (NTRS)
Lytle, John K.; Remaklus, David A.; Nichols, Lester D.
1990-01-01
The cost of implementing new technology in aerospace propulsion systems is becoming prohibitively expensive. One of the major contributors to the high cost is the need to perform many large scale system tests. Extensive testing is used to capture the complex interactions among the multiple disciplines and the multiple components inherent in complex systems. The objective of the Numerical Propulsion System Simulation (NPSS) is to provide insight into these complex interactions through computational simulations. This will allow for comprehensive evaluation of new concepts early in the design phase before a commitment to hardware is made. It will also allow for rapid assessment of field-related problems, particularly in cases where operational problems were encountered during conditions that would be difficult to simulate experimentally. The tremendous progress taking place in computational engineering and the rapid increase in computing power expected through parallel processing make this concept feasible within the near future. However it is critical that the framework for such simulations be put in place now to serve as a focal point for the continued developments in computational engineering and computing hardware and software. The NPSS concept which is described will provide that framework.
Introducing Students to Computer Programming on a UNIX Time-Sharing System.
ERIC Educational Resources Information Center
Cook, Allen R.
1983-01-01
Reviews experiences in teaching computer programing to engineering freshmen at the University of Oklahoma. Focuses on the stimulating interactive environment that is possible when using the UNIX operating system to introduce students to programing. (JN)
NASA Astrophysics Data System (ADS)
Manfredi, Sabato
2016-06-01
Large-scale dynamic systems are becoming highly pervasive in their occurrence with applications ranging from system biology, environment monitoring, sensor networks, and power systems. They are characterised by high dimensionality, complexity, and uncertainty in the node dynamic/interactions that require more and more computational demanding methods for their analysis and control design, as well as the network size and node system/interaction complexity increase. Therefore, it is a challenging problem to find scalable computational method for distributed control design of large-scale networks. In this paper, we investigate the robust distributed stabilisation problem of large-scale nonlinear multi-agent systems (briefly MASs) composed of non-identical (heterogeneous) linear dynamical systems coupled by uncertain nonlinear time-varying interconnections. By employing Lyapunov stability theory and linear matrix inequality (LMI) technique, new conditions are given for the distributed control design of large-scale MASs that can be easily solved by the toolbox of MATLAB. The stabilisability of each node dynamic is a sufficient assumption to design a global stabilising distributed control. The proposed approach improves some of the existing LMI-based results on MAS by both overcoming their computational limits and extending the applicative scenario to large-scale nonlinear heterogeneous MASs. Additionally, the proposed LMI conditions are further reduced in terms of computational requirement in the case of weakly heterogeneous MASs, which is a common scenario in real application where the network nodes and links are affected by parameter uncertainties. One of the main advantages of the proposed approach is to allow to move from a centralised towards a distributed computing architecture so that the expensive computation workload spent to solve LMIs may be shared among processors located at the networked nodes, thus increasing the scalability of the approach than the network size. Finally, a numerical example shows the applicability of the proposed method and its advantage in terms of computational complexity when compared with the existing approaches.
ERIC Educational Resources Information Center
Ezen-Can, Aysu; Boyer, Kristy Elizabeth
2015-01-01
The tremendous effectiveness of intelligent tutoring systems is due in large part to their interactivity. However, when learners are free to choose the extent to which they interact with a tutoring system, not all learners do so actively. This paper examines a study with a natural language tutorial dialogue system for computer science, in which…
Designing Interactive Learning Systems.
ERIC Educational Resources Information Center
Barker, Philip
1990-01-01
Describes multimedia, computer-based interactive learning systems that support various forms of individualized study. Highlights include design models; user interfaces; design guidelines; media utilization paradigms, including hypermedia and learner-controlled models; metaphors and myths; authoring tools; optical media; workstations; four case…
ERIC Educational Resources Information Center
STONE, PHILIP J.
AUTOMATED LANGUAGE PROCESSING (CONTENT ANALYSIS) IS ENGAGED IN NEW VENTURES IN COMPUTER DIALOG AS A RESULT OF NEW TECHNIQUES IN CATEGORIZING RESPONSES. A COMPUTER "NEED-ACHIEVEMENT" SCORING SYSTEM HAS BEEN DEVELOPED. A SET OF COMPUTER PROGRAMS, LABELED "THE GENERAL INQUIRER," WILL SCORE COMPUTER INPUTS WITH RESPONSES FED FROM…
Application of interactive computer graphics in wind-tunnel dynamic model testing
NASA Technical Reports Server (NTRS)
Doggett, R. V., Jr.; Hammond, C. E.
1975-01-01
The computer-controlled data-acquisition system recently installed for use with a transonic dynamics tunnel was described. This includes a discussion of the hardware/software features of the system. A subcritical response damping technique, called the combined randomdec/moving-block method, for use in windtunnel-model flutter testing, that has been implemented on the data-acquisition system, is described in some detail. Some results using the method are presented and the importance of using interactive graphics in applying the technique in near real time during wind-tunnel test operations is discussed.
New space sensor and mesoscale data analysis
NASA Technical Reports Server (NTRS)
Hickey, John S.
1987-01-01
The developed Earth Science and Application Division (ESAD) system/software provides the research scientist with the following capabilities: an extensive data base management capibility to convert various experiment data types into a standard format; and interactive analysis and display package (AVE80); an interactive imaging/color graphics capability utilizing the Apple III and IBM PC workstations integrated into the ESAD computer system; and local and remote smart-terminal capability which provides color video, graphics, and Laserjet output. Recommendations for updating and enhancing the performance of the ESAD computer system are listed.
Relativistic Few-Body Hadronic Physics Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polyzou, Wayne
2016-06-20
The goal of this research proposal was to use ``few-body'' methods to understand the structure and reactions of systems of interacting hadrons (neutrons, protons, mesons, quarks) over a broad range of energy scales. Realistic mathematical models of few-hadron systems have the advantage that they are sufficiently simple that they can be solved with mathematically controlled errors. These systems are also simple enough that it is possible to perform complete accurate experimental measurements on these systems. Comparison between theory and experiment puts strong constraints on the structure of the models. Even though these systems are ``simple'', both the experiments and computationsmore » push the limits of technology. The important property of ``few-body'' systems is that the ``cluster property'' implies that the interactions that appear in few-body systems are identical to the interactions that appear in complicated many-body systems. Of particular interest are models that correctly describe physics at distance scales that are sensitive to the internal structure of the individual nucleons. The Heisenberg uncertainty principle implies that in order to be sensitive to physics on distance scales that are a fraction of the proton or neutron radius, a relativistic treatment of quantum mechanics is necessary. The research supported by this grant involved 30 years of effort devoted to studying all aspects of interacting two and three-body systems. Realistic interactions were used to compute bound states of two- and three-nucleon, and two- and three-quark systems. Scattering observables for these systems were computed for a broad range of energies - from zero energy scattering to few GeV scattering, where experimental evidence of sub-nucleon degrees of freedom is beginning to appear. Benchmark calculations were produced, which when compared with calculations of other groups provided an essential check on these complicated calculations. In addition to computing bound state properties and scattering cross section, we also computed electron scattering cross sections in few-nucleon and few-quark systems, which are sensitive to the electric currents in these systems. We produced the definitive review on article on relativistic quantum mechanics, which and been used by many groups. In addition we developed and tested many computational techniques are used by other groups. Many of these techniques have applications in other areas of physics. The research benefited by collaborations with physicists from many different institutions and countries. It also involved working with seventeen undergraduate and graduate students.« less
1991-07-01
authoring systems. Concurrently, great strides in computer-aided design and computer-aided maintenance have contributed to this capability. 12 Junod ...J.; William A. Nugent; and L. John Junod . Plan for the Navy/Air Force Test of the Interactive Electronic Technical Manual (IETM) at Cecil Field...AFHRL Logistics and Human Factors Division, WPAFB. Aug 1990. 12. Junod , John L. PY90 Interactive Electronic Technical Manual (IETM) Portable Delivery
GRAPE-4: A special-purpose computer for gravitational N-body problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makino, Junichiro; Taiji, Makoto; Ebisuzaki, Toshikazu
1995-12-01
We describe GRAPE-4, a special-purpose computer for gravitational N-body simulations. In gravitational N-body simulations, almost all computing time is spent for the calculation of interaction between particles. GRAPE-4 is a specialized hardware to calculate the interaction between particles. It is used with a general-purpose host computer that performs all calculations other than the force calculation. With this architecture, it is relatively easy to realize a massively parallel system. In 1991, we developed the GRAPE-3 system with the peak speed equivalent to 14.4 Gflops. It consists of 48 custom pipelined processors. In 1992 we started the development of GRAPE-4. The GRAPE-4more » system will consist of 1920 custom pipeline chips. Each chip has the speed of 600 Mflops, when operated on 30 MHz clock. A prototype system with two custom LSIs has been completed July 1994, and the full system is now under manufacturing.« less
Computer Assisted Testing at the Education Resource Center.
ERIC Educational Resources Information Center
Uffelman, Robert L.
The development of the Computer Assisted Testing (CAT) System at the University of Delaware is described. The introduction presents the background leading up to interactive terminal testing in 1973. Documentation for the system includes CAT System programs, format of questions for constructing test item pools, format for entering class lists,…
Man Machine Systems in Education.
ERIC Educational Resources Information Center
Sall, Malkit S.
This review of the research literature on the interaction between humans and computers discusses how man machine systems can be utilized effectively in the learning-teaching process, especially in secondary education. Beginning with a definition of man machine systems and comments on the poor quality of much of the computer-based learning material…
A Model for Intelligent Computer-Aided Education Systems.
ERIC Educational Resources Information Center
Du Plessis, Johan P.; And Others
1995-01-01
Proposes a model for intelligent computer-aided education systems that is based on cooperative learning, constructive problem-solving, object-oriented programming, interactive user interfaces, and expert system techniques. Future research is discussed, and a prototype for teaching mathematics to 10- to 12-year-old students is appended. (LRW)
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Schreckenghost, Debra L.; Woods, David D.; Potter, Scott S.; Johannesen, Leila; Holloway, Matthew; Forbus, Kenneth D.
1991-01-01
Initial results are reported from a multi-year, interdisciplinary effort to provide guidance and assistance for designers of intelligent systems and their user interfaces. The objective is to achieve more effective human-computer interaction (HCI) for systems with real time fault management capabilities. Intelligent fault management systems within the NASA were evaluated for insight into the design of systems with complex HCI. Preliminary results include: (1) a description of real time fault management in aerospace domains; (2) recommendations and examples for improving intelligent systems design and user interface design; (3) identification of issues requiring further research; and (4) recommendations for a development methodology integrating HCI design into intelligent system design.
Satellite freeze forecast system. System configuration definition manual
NASA Technical Reports Server (NTRS)
Martsolf, J. D. (Principal Investigator)
1983-01-01
Equipment listings, interconnection information, and a basic overview is given of the hardware interaction of the Ruskin HP-100 computer system. A block diagram is included of the SFFS system at the National Weather Service Office in Ruskin, Florida. The generation answer file used to create the RTE-IVB operating system currently resident in Ruskin HP-1000 computer system is also described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mereghetti, Paolo; Martinez, M.; Wade, Rebecca C.
Brownian dynamics (BD) simulations can be used to study very large molecular systems, such as models of the intracellular environment, using atomic-detail structures. Such simulations require strategies to contain the computational costs, especially for the computation of interaction forces and energies. A common approach is to compute interaction forces between macromolecules by precomputing their interaction potentials on three-dimensional discretized grids. For long-range interactions, such as electrostatics, grid-based methods are subject to finite size errors. We describe here the implementation of a Debye-Hückel correction to the grid-based electrostatic potential used in the SDA BD simulation software that was applied to simulatemore » solutions of bovine serum albumin and of hen egg white lysozyme.« less
A Kinect-Based Assessment System for Smart Classroom
ERIC Educational Resources Information Center
Kumara, W. G. C. W.; Wattanachote, Kanoksak; Battulga, Batbaatar; Shih, Timothy K.; Hwang, Wu-Yuin
2015-01-01
With the advancements of the human computer interaction field, nowadays it is possible for the users to use their body motions, such as swiping, pushing and moving, to interact with the content of computers or smart phones without traditional input devices like mouse and keyboard. With the introduction of gesture-based interface Kinect from…
A Framework and Implementation of User Interface and Human-Computer Interaction Instruction
ERIC Educational Resources Information Center
Peslak, Alan
2005-01-01
Researchers have suggested that up to 50 % of the effort in development of information systems is devoted to user interface development (Douglas, Tremaine, Leventhal, Wills, & Manaris, 2002; Myers & Rosson, 1992). Yet little study has been performed on the inclusion of important interface and human-computer interaction topics into a current…
Measuring excess free energies of self-assembled membrane structures.
Norizoe, Yuki; Daoulas, Kostas Ch; Müller, Marcus
2010-01-01
Using computer simulation of a solvent-free, coarse-grained model for amphiphilic membranes, we study the excess free energy of hourglass-shaped connections (i.e., stalks) between two apposed bilayer membranes. In order to calculate the free energy by simulation in the canonical ensemble, we reversibly transfer two apposed bilayers into a configuration with a stalk in three steps. First, we gradually replace the intermolecular interactions by an external, ordering field. The latter is chosen such that the structure of the non-interacting system in this field closely resembles the structure of the original, interacting system in the absence of the external field. The absence of structural changes along this path suggests that it is reversible; a fact which is confirmed by expanded-ensemble simulations. Second, the external, ordering field is changed as to transform the non-interacting system from the apposed bilayer structure to two-bilayers connected by a stalk. The final external field is chosen such that the structure of the non-interacting system resembles the structure of the stalk in the interacting system without a field. On the third branch of the transformation path, we reversibly replace the external, ordering field by non-bonded interactions. Using expanded-ensemble techniques, the free energy change along this reversible path can be obtained with an accuracy of 10(-3)k(B)T per molecule in the n VT-ensemble. Calculating the chemical potential, we obtain the free energy of a stalk in the grandcanonical ensemble, and employing semi-grandcanonical techniques, we calculate the change of the excess free energy upon altering the molecular architecture. This computational strategy can be applied to compute the free energy of self-assembled phases in lipid and copolymer systems, and the excess free energy of defects or interfaces.
Enrichment of Human-Computer Interaction in Brain-Computer Interfaces via Virtual Environments
Víctor Rodrigo, Mercado-García
2017-01-01
Tridimensional representations stimulate cognitive processes that are the core and foundation of human-computer interaction (HCI). Those cognitive processes take place while a user navigates and explores a virtual environment (VE) and are mainly related to spatial memory storage, attention, and perception. VEs have many distinctive features (e.g., involvement, immersion, and presence) that can significantly improve HCI in highly demanding and interactive systems such as brain-computer interfaces (BCI). BCI is as a nonmuscular communication channel that attempts to reestablish the interaction between an individual and his/her environment. Although BCI research started in the sixties, this technology is not efficient or reliable yet for everyone at any time. Over the past few years, researchers have argued that main BCI flaws could be associated with HCI issues. The evidence presented thus far shows that VEs can (1) set out working environmental conditions, (2) maximize the efficiency of BCI control panels, (3) implement navigation systems based not only on user intentions but also on user emotions, and (4) regulate user mental state to increase the differentiation between control and noncontrol modalities. PMID:29317861
Proposed standards for peer-reviewed publication of computer code
USDA-ARS?s Scientific Manuscript database
Computer simulation models are mathematical abstractions of physical systems. In the area of natural resources and agriculture, these physical systems encompass selected interacting processes in plants, soils, animals, or watersheds. These models are scientific products and have become important i...
Integrative models are needed to "decode the toxicological blueprint of active substances that interact with living systems" (Systems toxicology). Computational biology is uniquely positioned to capture this connectivity and help shift decision-making to mechanistic pre...
Online Operation Guidance of Computer System Used in Real-Time Distance Education Environment
ERIC Educational Resources Information Center
He, Aiguo
2011-01-01
Computer system is useful for improving real time and interactive distance education activities. Especially in the case that a large number of students participate in one distance lecture together and every student uses their own computer to share teaching materials or control discussions over the virtual classrooms. The problem is that within…
ERIC Educational Resources Information Center
Goldberg, Adele; Suppes, Patrick
An interactive computer-assisted system for teaching elementary logic is described, which was designed to handle formalizations of first-order theories suitable for presentation in a computer-assisted instruction environment. The system provides tools with which the user can develop and then study a nonlogical axiomatic theory along whatever lines…
NFDRSPC: The National Fire-Danger Rating System on a Personal Computer
Bryan G. Donaldson; James T. Paul
1990-01-01
This user's guide is an introductory manual for using the 1988 version (Burgan 1988) of the National Fire-Danger Rating System on an IBM PC or compatible computer. NFDRSPC is a window-oriented, interactive computer program that processes observed and forecast weather with fuels data to produce NFDRS indices. Other program features include user-designed display...
A conceptual network model of the air transportation system. the basic level 1 model.
DOT National Transportation Integrated Search
1971-04-01
A basic conceptual model of the entire Air Transportation System is being developed to serve as an analytical tool for studying the interactions among the system elements. The model is being designed to function in an interactive computer graphics en...
Kellogg, Glen E; Fornabaio, Micaela; Chen, Deliang L; Abraham, Donald J; Spyrakis, Francesca; Cozzini, Pietro; Mozzarelli, Andrea
2006-05-01
Computational tools utilizing a unique empirical modeling system based on the hydrophobic effect and the measurement of logP(o/w) (the partition coefficient for solvent transfer between 1-octanol and water) are described. The associated force field, Hydropathic INTeractions (HINT), contains much rich information about non-covalent interactions in the biological environment because of its basis in an experiment that measures interactions in solution. HINT is shown to be the core of an evolving virtual screening system that is capable of taking into account a number of factors often ignored such as entropy, effects of solvent molecules at the active site, and the ionization states of acidic and basic residues and ligand functional groups. The outline of a comprehensive modeling system for virtual screening that incorporates these features is described. In addition, a detailed description of the Computational Titration algorithm is provided. As an example, three complexes of dihydrofolate reductase (DHFR) are analyzed with our system and these results are compared with the experimental free energies of binding.
NASA Astrophysics Data System (ADS)
Pazzona, Federico G.; Pireddu, Giovanni; Gabrieli, Andrea; Pintus, Alberto M.; Demontis, Pierfranco
2018-05-01
We investigate the coarse-graining of host-guest systems under the perspective of the local distribution of pore occupancies, along with the physical meaning and actual computability of the coarse-interaction terms. We show that the widely accepted approach, in which the contributions to the free energy given by the molecules located in two neighboring pores are estimated through Monte Carlo simulations where the two pores are kept separated from the rest of the system, leads to inaccurate results at high sorbate densities. In the coarse-graining strategy that we propose, which is based on the Bethe-Peierls approximation, density-independent interaction terms are instead computed according to local effective potentials that take into account the correlations between the pore pair and its surroundings by means of mean-field correction terms without the need for simulating the pore pair separately. Use of the interaction parameters obtained this way allows the coarse-grained system to reproduce more closely the equilibrium properties of the original one. Results are shown for lattice-gases where the local free energy can be computed exactly and for a system of Lennard-Jones particles under the effect of a static confining field.
NASA Astrophysics Data System (ADS)
Zuhrie, M. S.; Basuki, I.; Asto B, I. G. P.; Anifah, L.
2018-01-01
The focus of the research is the teaching module which incorporates manufacturing, planning mechanical designing, controlling system through microprocessor technology and maneuverability of the robot. Computer interactive and computer-assisted learning is strategies that emphasize the use of computers and learning aids (computer assisted learning) in teaching and learning activity. This research applied the 4-D model research and development. The model is suggested by Thiagarajan, et.al (1974). 4-D Model consists of four stages: Define Stage, Design Stage, Develop Stage, and Disseminate Stage. This research was conducted by applying the research design development with an objective to produce a tool of learning in the form of intelligent robot modules and kit based on Computer Interactive Learning and Computer Assisted Learning. From the data of the Indonesia Robot Contest during the period of 2009-2015, it can be seen that the modules that have been developed confirm the fourth stage of the research methods of development; disseminate method. The modules which have been developed for students guide students to produce Intelligent Robot Tool for Teaching Based on Computer Interactive Learning and Computer Assisted Learning. Results of students’ responses also showed a positive feedback to relate to the module of robotics and computer-based interactive learning.
Drawert, Brian; Trogdon, Michael; Toor, Salman; Petzold, Linda; Hellander, Andreas
2017-01-01
Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments. PMID:28190948
ERIC Educational Resources Information Center
Barker, Philip
1986-01-01
Discussion of developments in information storage technology likely to have significant impact upon library utilization focuses on hardware (videodisc technology) and software developments (knowledge databases; computer networks; database management systems; interactive video, computer, and multimedia user interfaces). Three generic computer-based…
NASA Astrophysics Data System (ADS)
Grandi, C.; Italiano, A.; Salomoni, D.; Calabrese Melcarne, A. K.
2011-12-01
WNoDeS, an acronym for Worker Nodes on Demand Service, is software developed at CNAF-Tier1, the National Computing Centre of the Italian Institute for Nuclear Physics (INFN) located in Bologna. WNoDeS provides on demand, integrated access to both Grid and Cloud resources through virtualization technologies. Besides the traditional use of computing resources in batch mode, users need to have interactive and local access to a number of systems. WNoDeS can dynamically select these computers instantiating Virtual Machines, according to the requirements (computing, storage and network resources) of users through either the Open Cloud Computing Interface API, or through a web console. An interactive use is usually limited to activities in user space, i.e. where the machine configuration is not modified. In some other instances the activity concerns development and testing of services and thus implies the modification of the system configuration (and, therefore, root-access to the resource). The former use case is a simple extension of the WNoDeS approach, where the resource is provided in interactive mode. The latter implies saving the virtual image at the end of each user session so that it can be presented to the user at subsequent requests. This work describes how the LHC experiments at INFN-Bologna are testing and making use of these dynamically created ad-hoc machines via WNoDeS to support flexible, interactive analysis and software development at the INFN Tier-1 Computing Centre.
Managing Computer Systems Development: Understanding the Human and Technological Imperatives.
1985-06-01
for their organization’s use? How can they predict tle impact of future systems ca their management control capabilities ? Cf equal importance is the...commercial organizations discovered that there was only a limited capability of interaction between various types of computers. These organizations were...Viewed together, these three interrelated subsystems, EDP, MIS, and DSS, establish the framework of an overall systems capability known as a Computer
Interactive Cable Television. Final Report.
ERIC Educational Resources Information Center
Active Learning Systems, Inc., Minneapolis, MN.
This report describes an interactive video system developed by Active Learning Systems which utilizes a cable television (TV) network as its delivery system to transmit computer literacy lessons to high school and college students. The system consists of an IBM PC, Pioneer LDV 4000 videodisc player, and Whitney Supercircuit set up at the head end…
Computational Methods for Biomolecular Electrostatics
Dong, Feng; Olsen, Brett; Baker, Nathan A.
2008-01-01
An understanding of intermolecular interactions is essential for insight into how cells develop, operate, communicate and control their activities. Such interactions include several components: contributions from linear, angular, and torsional forces in covalent bonds, van der Waals forces, as well as electrostatics. Among the various components of molecular interactions, electrostatics are of special importance because of their long range and their influence on polar or charged molecules, including water, aqueous ions, and amino or nucleic acids, which are some of the primary components of living systems. Electrostatics, therefore, play important roles in determining the structure, motion and function of a wide range of biological molecules. This chapter presents a brief overview of electrostatic interactions in cellular systems with a particular focus on how computational tools can be used to investigate these types of interactions. PMID:17964951
Using Off-the-Shelf Gaming Controllers For Computer Control in the K-12 Classroom
NASA Astrophysics Data System (ADS)
Bourgoin, N. L.; Withee, J.; Segee, M.; Birkel, S. D.; Albee, E.; Koons, P. O.; Zhu, Y.; Segee, B.
2009-12-01
In the classroom, the interaction between students, teachers, and datasets is becoming more game like. Software such as GoogleEarth allow students to interact with data on a more personal level; allowing them the dynamically change variables, move arbitrarily, and personalize their experience with the datasets. As this becomes more immersive, traditional software control such as keyboard and mouse begin to hold the student back in terms of intuitive interfacing with the data. This is a problem that has best been tackled by modern gaming systems such as the Wii, XBox 360, and Playstation 3 Systems. By utilizing the solutions given by these gaming systems, it is possible to further a students immersion with a system. Through an NSF ITEST (Information and Technology Experiences for Students and Teachers) grant, researchers at the University of Maine have experimented with using the game controller that is used for interacting with the Nintendo Wii (often called a Wiimote) with existing geodynamic systems in an effort to eases interaction with these systems. Since these game controllers operate using Bluetooth, a common protocol in computing, Wiimotes can easily communicate with existing laptop computers that are issued to Maine students. This paper describes the technical requirements, setup, and usage of Wiimotes as an input device to complex geodynamical systems for use in the K-12 classroom.
NASA Astrophysics Data System (ADS)
Zou, Jie; Gattani, Abhishek
2005-01-01
When completely automated systems don't yield acceptable accuracy, many practical pattern recognition systems involve the human either at the beginning (pre-processing) or towards the end (handling rejects). We believe that it may be more useful to involve the human throughout the recognition process rather than just at the beginning or end. We describe a methodology of interactive visual recognition for human-centered low-throughput applications, Computer Assisted Visual InterActive Recognition (CAVIAR), and discuss the prospects of implementing CAVIAR over the Internet. The novelty of CAVIAR is image-based interaction through a domain-specific parameterized geometrical model, which reduces the semantic gap between humans and computers. The user may interact with the computer anytime that she considers its response unsatisfactory. The interaction improves the accuracy of the classification features by improving the fit of the computer-proposed model. The computer makes subsequent use of the parameters of the improved model to refine not only its own statistical model-fitting process, but also its internal classifier. The CAVIAR methodology was applied to implement a flower recognition system. The principal conclusions from the evaluation of the system include: 1) the average recognition time of the CAVIAR system is significantly shorter than that of the unaided human; 2) its accuracy is significantly higher than that of the unaided machine; 3) it can be initialized with as few as one training sample per class and still achieve high accuracy; and 4) it demonstrates a self-learning ability. We have also implemented a Mobile CAVIAR system, where a pocket PC, as a client, connects to a server through wireless communication. The motivation behind a mobile platform for CAVIAR is to apply the methodology in a human-centered pervasive environment, where the user can seamlessly interact with the system for classifying field-data. Deploying CAVIAR to a networked mobile platform poses the challenge of classifying field images and programming under constraints of display size, network bandwidth, processor speed, and memory size. Editing of the computer-proposed model is performed on the handheld while statistical model fitting and classification take place on the server. The possibility that the user can easily take several photos of the object poses an interesting information fusion problem. The advantage of the Internet is that the patterns identified by different users can be pooled together to benefit all peer users. When users identify patterns with CAVIAR in a networked setting, they also collect training samples and provide opportunities for machine learning from their intervention. CAVIAR implemented over the Internet provides a perfect test bed for, and extends, the concept of Open Mind Initiative proposed by David Stork. Our experimental evaluation focuses on human time, machine and human accuracy, and machine learning. We devoted much effort to evaluating the use of our image-based user interface and on developing principles for the evaluation of interactive pattern recognition system. The Internet architecture and Mobile CAVIAR methodology have many applications. We are exploring in the directions of teledermatology, face recognition, and education.
High-performance biocomputing for simulating the spread of contagion over large contact networks
2012-01-01
Background Many important biological problems can be modeled as contagion diffusion processes over interaction networks. This article shows how the EpiSimdemics interaction-based simulation system can be applied to the general contagion diffusion problem. Two specific problems, computational epidemiology and human immune system modeling, are given as examples. We then show how the graphics processing unit (GPU) within each compute node of a cluster can effectively be used to speed-up the execution of these types of problems. Results We show that a single GPU can accelerate the EpiSimdemics computation kernel by a factor of 6 and the entire application by a factor of 3.3, compared to the execution time on a single core. When 8 CPU cores and 2 GPU devices are utilized, the speed-up of the computational kernel increases to 9.5. When combined with effective techniques for inter-node communication, excellent scalability can be achieved without significant loss of accuracy in the results. Conclusions We show that interaction-based simulation systems can be used to model disparate and highly relevant problems in biology. We also show that offloading some of the work to GPUs in distributed interaction-based simulations can be an effective way to achieve increased intra-node efficiency. PMID:22537298
Novel 3D/VR interactive environment for MD simulations, visualization and analysis.
Doblack, Benjamin N; Allis, Tim; Dávila, Lilian P
2014-12-18
The increasing development of computing (hardware and software) in the last decades has impacted scientific research in many fields including materials science, biology, chemistry and physics among many others. A new computational system for the accurate and fast simulation and 3D/VR visualization of nanostructures is presented here, using the open-source molecular dynamics (MD) computer program LAMMPS. This alternative computational method uses modern graphics processors, NVIDIA CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model materials, this enhancement allows the addition of accelerated MD simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal is to investigate the structure and properties of inorganic nanostructures (e.g., silica glass nanosprings) under different conditions using this innovative computational system. The work presented outlines a description of the 3D/VR Visualization System and basic components, an overview of important considerations such as the physical environment, details on the setup and use of the novel system, a general procedure for the accelerated MD enhancement, technical information, and relevant remarks. The impact of this work is the creation of a unique computational system combining nanoscale materials simulation, visualization and interactivity in a virtual environment, which is both a research and teaching instrument at UC Merced.
Novel 3D/VR Interactive Environment for MD Simulations, Visualization and Analysis
Doblack, Benjamin N.; Allis, Tim; Dávila, Lilian P.
2014-01-01
The increasing development of computing (hardware and software) in the last decades has impacted scientific research in many fields including materials science, biology, chemistry and physics among many others. A new computational system for the accurate and fast simulation and 3D/VR visualization of nanostructures is presented here, using the open-source molecular dynamics (MD) computer program LAMMPS. This alternative computational method uses modern graphics processors, NVIDIA CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model materials, this enhancement allows the addition of accelerated MD simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal is to investigate the structure and properties of inorganic nanostructures (e.g., silica glass nanosprings) under different conditions using this innovative computational system. The work presented outlines a description of the 3D/VR Visualization System and basic components, an overview of important considerations such as the physical environment, details on the setup and use of the novel system, a general procedure for the accelerated MD enhancement, technical information, and relevant remarks. The impact of this work is the creation of a unique computational system combining nanoscale materials simulation, visualization and interactivity in a virtual environment, which is both a research and teaching instrument at UC Merced. PMID:25549300
A System for Generating Instructional Computer Graphics.
ERIC Educational Resources Information Center
Nygard, Kendall E.; Ranganathan, Babusankar
1983-01-01
Description of the Tektronix-Based Interactive Graphics System for Instruction (TIGSI), which was developed for generating graphics displays in computer-assisted instruction materials, discusses several applications (e.g., reinforcing learning of concepts, principles, rules, and problem-solving techniques) and presents advantages of the TIGSI…
CHARGE Image Generator: Theory of Operation and Author Language Support. Technical Report 75-3.
ERIC Educational Resources Information Center
Gunwaldsen, Roger L.
The image generator function and author language software support for the CHARGE (Color Halftone Area Graphics Environment) Interactive Graphics System are described. Designed initially for use in computer-assisted instruction (CAI) systems, the CHARGE Interactive Graphics System can provide graphic displays for various applications including…
Automated Tutoring in Interactive Environments: A Task-Centered Approach.
ERIC Educational Resources Information Center
Wolz, Ursula; And Others
1989-01-01
Discusses tutoring and consulting functions in interactive computer environments. Tutoring strategies are considered, the expert model and the user model are described, and GENIE (Generated Informative Explanations)--an answer generating system for the Berkeley Unix Mail system--is explained as an example of an automated consulting system. (33…
A Computer Model of the Cardiovascular System for Effective Learning.
ERIC Educational Resources Information Center
Rothe, Carl F.
1980-01-01
Presents a model of the cardiovascular system which solves a set of interacting, possibly nonlinear, differential equations. Figures present a schematic diagram of the model and printouts that simulate normal conditions, exercise, hemorrhage, reduced contractility. The nine interacting equations used to describe the system are described in the…
Has computational creativity successfully made it "Beyond the Fence" in musical theatre?
NASA Astrophysics Data System (ADS)
Jordanous, Anna
2017-10-01
A significant test for software is to task it with replicating human performance, as done recently with creative software and the commercial project Beyond the Fence (undertaken for a television documentary Computer Says Show). The remit of this project was to use computer software as much as possible to produce "the world's first computer-generated musical". Several creative systems were used to generate this musical, which was performed in London's West End in 2016. This paper considers the challenge of evaluating this project. Current computational creativity evaluation methods are ill-suited to evaluating projects that involve creative input from multiple systems and people. Following recent inspiration within computational creativity research from interaction design, here the DECIDE evaluation framework is applied to evaluate the Beyond the Fence project. Evaluation finds that the project was reasonably successful at achieving the task of using computational generation to produce a credible musical. Lessons have been learned for future computational creativity projects though, particularly for affording creative software more agency and enabling software to interact with other creative partners. Upon reflection, the DECIDE framework emerges as a useful evaluation "checklist" (if not a tangible operational methodology) for evaluating multiple creative systems participating in a creative task.
Computer modeling and simulation of human movement. Applications in sport and rehabilitation.
Neptune, R R
2000-05-01
Computer modeling and simulation of human movement plays an increasingly important role in sport and rehabilitation, with applications ranging from sport equipment design to understanding pathologic gait. The complex dynamic interactions within the musculoskeletal and neuromuscular systems make analyzing human movement with existing experimental techniques difficult but computer modeling and simulation allows for the identification of these complex interactions and causal relationships between input and output variables. This article provides an overview of computer modeling and simulation and presents an example application in the field of rehabilitation.
Real Time Eye Tracking and Hand Tracking Using Regular Video Cameras for Human Computer Interaction
2011-01-01
Paperwork Reduction Project (0704-0188) Washington, DC 20503. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) January...understand us. More specifically, the computer should be able to infer what we wish to see, do , and interact with through our movements, gestures, and...in depth freedom. Our system differs from the majority of other systems in that we do not use infrared, stereo-cameras, specially-constructed
NASA Technical Reports Server (NTRS)
Jones, R. L.
1984-01-01
An interactive digital computer program for modal analysis and gain estimation for eigensystem synthesis was written. Both mathematical and operation considerations are described; however, the mathematical presentation is limited to those concepts essential to the operational capability of the program. The program is capable of both modal and spectral synthesis of multi-input control systems. It is user friendly, has scratchpad capability and dynamic memory, and can be used to design either state or output feedback systems.
NASA Technical Reports Server (NTRS)
Huang, K.-N.
1977-01-01
A computational procedure for calculating correlated wave functions is proposed for three-particle systems interacting through Coulomb forces. Calculations are carried out for the muonic helium atom. Variational wave functions which explicitly contain interparticle coordinates are presented for the ground and excited states. General Hylleraas-type trial functions are used as the basis for the correlated wave functions. Excited-state energies of the muonic helium atom computed from 1- and 35-term wave functions are listed for four states.
MRIVIEW: An interactive computational tool for investigation of brain structure and function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranken, D.; George, J.
MRIVIEW is a software system which uses image processing and visualization to provide neuroscience researchers with an integrated environment for combining functional and anatomical information. Key features of the software include semi-automated segmentation of volumetric head data and an interactive coordinate reconciliation method which utilizes surface visualization. The current system is a precursor to a computational brain atlas. We describe features this atlas will incorporate, including methods under development for visualizing brain functional data obtained from several different research modalities.
2014-07-08
internction ( BCI ) system allows h uman subjects to communicate with or control an extemal device with their brain signals [1], or to use those brain...signals to interact with computers, environments, or even other humans [2]. One application of BCI is to use brnin signals to distinguish target...images within a large collection of non-target images [2]. Such BCI -based systems can drastically increase the speed of target identification in
NASA Astrophysics Data System (ADS)
Moores, Brad A.; Sletten, Lucas R.; Viennot, Jeremie; Lehnert, K. W.
Man-made systems of interacting qubits are a promising and powerful way of exploring many-body spin physics beyond classical computation. Although transmon qubits are perhaps the most advanced quantum computing technology, building a system of such qubits designed to emulate a system of many interacting spins is hindered by the mismatch of scales between the transmons and the electromagnetic modes that couple them. We propose a strategy to overcome this mismatch by using surface acoustic waves, which couple to qubits piezoelectrically and have micron wavelengths at GHz frequencies. In this talk, we will present characterizations of transmon qubits fabricated on a piezoelectric material, and show that their coherence properties are sufficient to explore acoustically mediated qubit interactions.
NASA's Information Power Grid: Large Scale Distributed Computing and Data Management
NASA Technical Reports Server (NTRS)
Johnston, William E.; Vaziri, Arsi; Hinke, Tom; Tanner, Leigh Ann; Feiereisen, William J.; Thigpen, William; Tang, Harry (Technical Monitor)
2001-01-01
Large-scale science and engineering are done through the interaction of people, heterogeneous computing resources, information systems, and instruments, all of which are geographically and organizationally dispersed. The overall motivation for Grids is to facilitate the routine interactions of these resources in order to support large-scale science and engineering. Multi-disciplinary simulations provide a good example of a class of applications that are very likely to require aggregation of widely distributed computing, data, and intellectual resources. Such simulations - e.g. whole system aircraft simulation and whole system living cell simulation - require integrating applications and data that are developed by different teams of researchers frequently in different locations. The research team's are the only ones that have the expertise to maintain and improve the simulation code and/or the body of experimental data that drives the simulations. This results in an inherently distributed computing and data management environment.
Graphics processing units in bioinformatics, computational biology and systems biology.
Nobile, Marco S; Cazzaniga, Paolo; Tangherloni, Andrea; Besozzi, Daniela
2017-09-01
Several studies in Bioinformatics, Computational Biology and Systems Biology rely on the definition of physico-chemical or mathematical models of biological systems at different scales and levels of complexity, ranging from the interaction of atoms in single molecules up to genome-wide interaction networks. Traditional computational methods and software tools developed in these research fields share a common trait: they can be computationally demanding on Central Processing Units (CPUs), therefore limiting their applicability in many circumstances. To overcome this issue, general-purpose Graphics Processing Units (GPUs) are gaining an increasing attention by the scientific community, as they can considerably reduce the running time required by standard CPU-based software, and allow more intensive investigations of biological systems. In this review, we present a collection of GPU tools recently developed to perform computational analyses in life science disciplines, emphasizing the advantages and the drawbacks in the use of these parallel architectures. The complete list of GPU-powered tools here reviewed is available at http://bit.ly/gputools. © The Author 2016. Published by Oxford University Press.
An Interactive Computer-Based Conferencing System to Accommodate Students' Learning Process.
ERIC Educational Resources Information Center
Saiedian, Hossein
1993-01-01
Describes an integrated computer-based conferencing and mail system called ICMS (Integrated Conferencing and Mail System) that was developed to encourage students to participate in class discussions more actively. The menu-driven user interface is explained, and ICMS's role in promoting self-assessment and critical thinking is discussed. (eight…
ERIC Educational Resources Information Center
VanLehn, Kurt
2011-01-01
This article is a review of experiments comparing the effectiveness of human tutoring, computer tutoring, and no tutoring. "No tutoring" refers to instruction that teaches the same content without tutoring. The computer tutoring systems were divided by their granularity of the user interface interaction into answer-based, step-based, and…
Design and Development of a Web-Based Interactive Software Tool for Teaching Operating Systems
ERIC Educational Resources Information Center
Garmpis, Aristogiannis
2011-01-01
Operating Systems (OS) is an important and mandatory discipline in many Computer Science, Information Systems and Computer Engineering curricula. Some of its topics require a careful and detailed explanation from the instructor as they often involve theoretical concepts and somewhat complex mechanisms, demanding a certain degree of abstraction…
NASA Technical Reports Server (NTRS)
Fegley, K. A.; Hayden, J. H.; Rehmann, D. W.
1974-01-01
The feasibility of formulating a methodology for the modeling and analysis of aerospace electrical power processing systems is investigated. It is shown that a digital computer may be used in an interactive mode for the design, modeling, analysis, and comparison of power processing systems.
Interactive graphics system for IBM 1800 computer
NASA Technical Reports Server (NTRS)
Carleton, T. P.; Howell, D. R.; Mish, W. H.
1972-01-01
A FORTRAN compatible software system that has been developed to provide an interactive graphics capability for the IBM 1800 computer is described. The interactive graphics hardware consists of a Hewlett-Packard 1300A cathode ray tube, Sanders photopen, digital to analog converters, pulse counter, and necessary interface. The hardware is available from IBM as several related RPQ's. The software developed permits the application programmer to use IBM 1800 FORTRAN to develop a display on the cathode ray tube which consists of one or more independent units called pictures. The software permits a great deal of flexibility in the manipulation of these pictures and allows the programmer to use the photopen to interact with the displayed data and make decisions based on information returned by the photopen.
ERIC Educational Resources Information Center
Von Der Linn, Robert Christopher
A needs assessment of the Grumman E-Beam Systems Group identified the requirement for additional skill mastery for the engineers who assemble, integrate, and maintain devices used to manufacture integrated circuits. Further analysis of the tasks involved led to the decision to develop interactive videodisc, computer-based job aids to enable…
RADIK: An Interactive Graphics and Text Editor.
RADIK is an interactive graphics and text editing system designed for use with an ADAGE AGT/10 graphics computer, either in a stand-alone mode, or in...designing RADIK . A brief summary of results and applications is presented and implementation of RADIK is proposed. Assembly language computer programs developed during the work are appended for reference. (Author)
NASA Technical Reports Server (NTRS)
Stahara, S. S.
1984-01-01
The investigations undertaken in this report relate to studies of various solar wind interaction phenomena with Venus, Earth, Mars, Jupiter and Saturn. A computational model is developed for the determination of the detailed plasma and magnetic field properties associated with various planetary obstacles throughout the solar system.
NASA Technical Reports Server (NTRS)
Paul, C. K.; Landini, A. J.; Diegert, C.
1975-01-01
The Santa Monica mountains of Los Angeles consist primarily of complexly folded sedimentary marine strata with igneous and metamorphic rocks at the eastern end of the mountains. With the increased development of the Santa Monicas, a study was conducted to determine the critical land use data items in the mountains. Two information systems developed in parallel are described. One capitalizes on the City's present computer line printer system, and the second utilizes map overlay techniques on an interactive computer terminal. Results concerning population, housing, and land improvement illustrate the successful linking of ordinal and nominal data files in the interactive system.-
An Integrated Crustal Dynamics Simulator
NASA Astrophysics Data System (ADS)
Xing, H. L.; Mora, P.
2007-12-01
Numerical modelling offers an outstanding opportunity to gain an understanding of the crustal dynamics and complex crustal system behaviour. This presentation provides our long-term and ongoing effort on finite element based computational model and software development to simulate the interacting fault system for earthquake forecasting. A R-minimum strategy based finite-element computational model and software tool, PANDAS, for modelling 3-dimensional nonlinear frictional contact behaviour between multiple deformable bodies with the arbitrarily-shaped contact element strategy has been developed by the authors, which builds up a virtual laboratory to simulate interacting fault systems including crustal boundary conditions and various nonlinearities (e.g. from frictional contact, materials, geometry and thermal coupling). It has been successfully applied to large scale computing of the complex nonlinear phenomena in the non-continuum media involving the nonlinear frictional instability, multiple material properties and complex geometries on supercomputers, such as the South Australia (SA) interacting fault system, South California fault model and Sumatra subduction model. It has been also extended and to simulate the hot fractured rock (HFR) geothermal reservoir system in collaboration of Geodynamics Ltd which is constructing the first geothermal reservoir system in Australia and to model the tsunami generation induced by earthquakes. Both are supported by Australian Research Council.
When does a physical system compute?
Horsman, Clare; Stepney, Susan; Wagner, Rob C; Kendon, Viv
2014-09-08
Computing is a high-level process of a physical system. Recent interest in non-standard computing systems, including quantum and biological computers, has brought this physical basis of computing to the forefront. There has been, however, no consensus on how to tell if a given physical system is acting as a computer or not; leading to confusion over novel computational devices, and even claims that every physical event is a computation. In this paper, we introduce a formal framework that can be used to determine whether a physical system is performing a computation. We demonstrate how the abstract computational level interacts with the physical device level, in comparison with the use of mathematical models in experimental science. This powerful formulation allows a precise description of experiments, technology, computation and simulation, giving our central conclusion: physical computing is the use of a physical system to predict the outcome of an abstract evolution . We give conditions for computing, illustrated using a range of non-standard computing scenarios. The framework also covers broader computing contexts, where there is no obvious human computer user. We introduce the notion of a 'computational entity', and its critical role in defining when computing is taking place in physical systems.
When does a physical system compute?
Horsman, Clare; Stepney, Susan; Wagner, Rob C.; Kendon, Viv
2014-01-01
Computing is a high-level process of a physical system. Recent interest in non-standard computing systems, including quantum and biological computers, has brought this physical basis of computing to the forefront. There has been, however, no consensus on how to tell if a given physical system is acting as a computer or not; leading to confusion over novel computational devices, and even claims that every physical event is a computation. In this paper, we introduce a formal framework that can be used to determine whether a physical system is performing a computation. We demonstrate how the abstract computational level interacts with the physical device level, in comparison with the use of mathematical models in experimental science. This powerful formulation allows a precise description of experiments, technology, computation and simulation, giving our central conclusion: physical computing is the use of a physical system to predict the outcome of an abstract evolution. We give conditions for computing, illustrated using a range of non-standard computing scenarios. The framework also covers broader computing contexts, where there is no obvious human computer user. We introduce the notion of a ‘computational entity’, and its critical role in defining when computing is taking place in physical systems. PMID:25197245
Numerical propulsion system simulation: An interdisciplinary approach
NASA Technical Reports Server (NTRS)
Nichols, Lester D.; Chamis, Christos C.
1991-01-01
The tremendous progress being made in computational engineering and the rapid growth in computing power that is resulting from parallel processing now make it feasible to consider the use of computer simulations to gain insights into the complex interactions in aerospace propulsion systems and to evaluate new concepts early in the design process before a commitment to hardware is made. Described here is a NASA initiative to develop a Numerical Propulsion System Simulation (NPSS) capability.
Numerical propulsion system simulation - An interdisciplinary approach
NASA Technical Reports Server (NTRS)
Nichols, Lester D.; Chamis, Christos C.
1991-01-01
The tremendous progress being made in computational engineering and the rapid growth in computing power that is resulting from parallel processing now make it feasible to consider the use of computer simulations to gain insights into the complex interactions in aerospace propulsion systems and to evaluate new concepts early in the design process before a commitment to hardware is made. Described here is a NASA initiative to develop a Numerical Propulsion System Simulation (NPSS) capability.
AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide
2015-11-19
Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database in which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. This database will facilitate the analysis of protein-DNA interactions and the development of programmatic computational methods that capitalize on integration of structural and biochemical datasets. The database can be accessed at http://ProteinDNA.hms.harvard.edu.
CAGI: Computer Aided Grid Interface. A work in progress
NASA Technical Reports Server (NTRS)
Soni, Bharat K.; Yu, Tzu-Yi; Vaughn, David
1992-01-01
Progress realized in the development of a Computer Aided Grid Interface (CAGI) software system in integrating CAD/CAM geometric system output and/or Interactive Graphics Exchange Standard (IGES) files, geometry manipulations associated with grid generation, and robust grid generation methodologies is presented. CAGI is being developed in a modular fashion and will offer fast, efficient and economical response to geometry/grid preparation, allowing the ability to upgrade basic geometry in a step-by-step fashion interactively and under permanent visual control along with minimizing the differences between the actual hardware surface descriptions and corresponding numerical analog. The computer code GENIE is used as a basis. The Non-Uniform Rational B-Splines (NURBS) representation of sculptured surfaces is utilized for surface grid redistribution. The computer aided analysis system, PATRAN, is adapted as a CAD/CAM system. The progress realized in NURBS surface grid generation, the development of IGES transformer, and geometry adaption using PATRAN will be presented along with their applicability to grid generation associated with rocket propulsion applications.
Parallel Rendering of Large Time-Varying Volume Data
NASA Technical Reports Server (NTRS)
Garbutt, Alexander E.
2005-01-01
Interactive visualization of large time-varying 3D volume datasets has been and still is a great challenge to the modem computational world. It stretches the limits of the memory capacity, the disk space, the network bandwidth and the CPU speed of a conventional computer. In this SURF project, we propose to develop a parallel volume rendering program on SGI's Prism, a cluster computer equipped with state-of-the-art graphic hardware. The proposed program combines both parallel computing and hardware rendering in order to achieve an interactive rendering rate. We use 3D texture mapping and a hardware shader to implement 3D volume rendering on each workstation. We use SGI's VisServer to enable remote rendering using Prism's graphic hardware. And last, we will integrate this new program with ParVox, a parallel distributed visualization system developed at JPL. At the end of the project, we Will demonstrate remote interactive visualization using this new hardware volume renderer on JPL's Prism System using a time-varying dataset from selected JPL applications.
Computer Instructional Aids for Undergraduate Control Education.
ERIC Educational Resources Information Center
Volz, Richard A.; And Others
Engineering is coming to rely more and more heavily upon the computer for computations, analyses, and graphic displays which aid the design process. A general purpose simulation system, the Time-shared Automatic Control Laboratory (TACL), and a set of computer-aided design programs, Control Oriented Interactive Graphic Analysis and Design…
NASA Technical Reports Server (NTRS)
Dominick, Wayne D.; Roquemore, Leroy
1984-01-01
Pursuant to the specifications of a research contract entered into in December, 1983 with NASA, the Computer Science Departments of the University of Southwestern Louisiana and Southern University will be working jointly to address a variety of research and educational issues relating to the use, by non-computer professionals, of some of the largest and most sophiticated interactive information storage and retrieval systems available. Over the projected 6 to 8 year life of the project, in addition to NASA/RECON, the following systems will be examined: Lockheed DIALOG, DOE/RECON, DOD/DTIC, EPA/CSIN, and LLNL/TIS.
Hu, Jian; Xu, Xiang-yang; Song, En-min; Tan, Hong-bao; Wang, Yi-ning
2009-09-01
To establish a new visual educational system of virtual reality for clinical dentistry based on world wide web (WWW) webpage in order to provide more three-dimensional multimedia resources to dental students and an online three-dimensional consulting system for patients. Based on computer graphics and three-dimensional webpage technologies, the software of 3Dsmax and Webmax were adopted in the system development. In the Windows environment, the architecture of whole system was established step by step, including three-dimensional model construction, three-dimensional scene setup, transplanting three-dimensional scene into webpage, reediting the virtual scene, realization of interactions within the webpage, initial test, and necessary adjustment. Five cases of three-dimensional interactive webpage for clinical dentistry were completed. The three-dimensional interactive webpage could be accessible through web browser on personal computer, and users could interact with the webpage through rotating, panning and zooming the virtual scene. It is technically feasible to implement the visual educational system of virtual reality for clinical dentistry based on WWW webpage. Information related to clinical dentistry can be transmitted properly, visually and interactively through three-dimensional webpage.
Digital processing of mesoscale analysis and space sensor data
NASA Technical Reports Server (NTRS)
Hickey, J. S.; Karitani, S.
1985-01-01
The mesoscale analysis and space sensor (MASS) data management and analysis system on the research computer system is presented. The MASS data base management and analysis system was implemented on the research computer system which provides a wide range of capabilities for processing and displaying large volumes of conventional and satellite derived meteorological data. The research computer system consists of three primary computers (HP-1000F, Harris/6, and Perkin-Elmer 3250), each of which performs a specific function according to its unique capabilities. The overall tasks performed concerning the software, data base management and display capabilities of the research computer system in terms of providing a very effective interactive research tool for the digital processing of mesoscale analysis and space sensor data is described.
DBSecSys: a database of Burkholderia mallei secretion systems.
Memišević, Vesna; Kumar, Kamal; Cheng, Li; Zavaljevski, Nela; DeShazer, David; Wallqvist, Anders; Reifman, Jaques
2014-07-16
Bacterial pathogenicity represents a major public health concern worldwide. Secretion systems are a key component of bacterial pathogenicity, as they provide the means for bacterial proteins to penetrate host-cell membranes and insert themselves directly into the host cells' cytosol. Burkholderia mallei is a Gram-negative bacterium that uses multiple secretion systems during its host infection life cycle. To date, the identities of secretion system proteins for B. mallei are not well known, and their pathogenic mechanisms of action and host factors are largely uncharacterized. We present the Database of Burkholderia malleiSecretion Systems (DBSecSys), a compilation of manually curated and computationally predicted bacterial secretion system proteins and their host factors. Currently, DBSecSys contains comprehensive experimentally and computationally derived information about B. mallei strain ATCC 23344. The database includes 143 B. mallei proteins associated with five secretion systems, their 1,635 human and murine interacting targets, and the corresponding 2,400 host-B. mallei interactions. The database also includes information about 10 pathogenic mechanisms of action for B. mallei secretion system proteins inferred from the available literature. Additionally, DBSecSys provides details about 42 virulence attenuation experiments for 27 B. mallei secretion system proteins. Users interact with DBSecSys through a Web interface that allows for data browsing, querying, visualizing, and downloading. DBSecSys provides a comprehensive, systematically organized resource of experimental and computational data associated with B. mallei secretion systems. It provides the unique ability to study secretion systems not only through characterization of their corresponding pathogen proteins, but also through characterization of their host-interacting partners.The database is available at https://applications.bhsai.org/dbsecsys.
Varela, Gervasio; Paz-Lopez, Alejandro; Becerra, Jose A; Duro, Richard
2016-07-07
This paper addresses the problem of developing user interfaces for Ubiquitous Computing (UC) and Ambient Intelligence (AmI) systems. These kind of systems are expected to provide a natural user experience, considering interaction modalities adapted to the user abilities and preferences and using whatever interaction devices are present in the environment. These interaction devices are not necessarily known at design time. The task is quite complicated due to the variety of devices and technologies, and the diversity of scenarios, and it usually burdens the developer with the need to create many different UIs in order to consider the foreseeable user-environment combinations. Here, we propose an UI abstraction framework for UC and AmI systems that effectively improves the portability of those systems between different environments and for different users. It allows developers to design and implement a single UI capable of being deployed with different devices and modalities regardless the physical location.
Interactive display/graphics systems for remote sensor data analysis.
NASA Technical Reports Server (NTRS)
Eppler, W. G.; Loe, D. L.; Wilson, E. L.; Whitley, S. L.; Sachen, R. J.
1971-01-01
Using a color-television display system and interactive graphics equipment on-line to an IBM 360/44 computer, investigators at the Manned Spacecraft Center have developed a variety of interactive displays which aid in analyzing remote sensor data. This paper describes how such interactive displays are used to: (1) analyze data from a multispectral scanner, (2) develop automatic pattern recognition systems based on multispectral scanner measurements, and (3) analyze data from nonimaging sensors such as the infrared radiometer and microwave scatterometer.
NASA Astrophysics Data System (ADS)
Obermayer, Richard W.; Nugent, William A.
2000-11-01
The SPAWAR Systems Center San Diego is currently developing an advanced Multi-Modal Watchstation (MMWS); design concepts and software from this effort are intended for transition to future United States Navy surface combatants. The MMWS features multiple flat panel displays and several modes of user interaction, including voice input and output, natural language recognition, 3D audio, stylus and gestural inputs. In 1999, an extensive literature review was conducted on basic and applied research concerned with alerting and warning systems. After summarizing that literature, a human computer interaction (HCI) designer's guide was prepared to support the design of an attention allocation subsystem (AAS) for the MMWS. The resultant HCI guidelines are being applied in the design of a fully interactive AAS prototype. An overview of key findings from the literature review, a proposed design methodology with illustrative examples, and an assessment of progress made in implementing the HCI designers guide are presented.
1982-10-01
spent in preparing this document. 00. EXECUTIVE SUMMARY The O’Hare Runway Configuration Management System (CMS) is an interactive multi-user computer ...MITRE Washington’s Computer Center. Currently, CMS is housed in an IBM 4341 computer with VM/SP operating system. CMS employs the IBM’s Display...iV 0O, o 0 .r4L /~ wA 0U 00 00 0 w vi O’Hare, it will operate on a dedicated mini- computer which permits multi-tasking (that is, multiple users
IPython: components for interactive and parallel computing across disciplines. (Invited)
NASA Astrophysics Data System (ADS)
Perez, F.; Bussonnier, M.; Frederic, J. D.; Froehle, B. M.; Granger, B. E.; Ivanov, P.; Kluyver, T.; Patterson, E.; Ragan-Kelley, B.; Sailer, Z.
2013-12-01
Scientific computing is an inherently exploratory activity that requires constantly cycling between code, data and results, each time adjusting the computations as new insights and questions arise. To support such a workflow, good interactive environments are critical. The IPython project (http://ipython.org) provides a rich architecture for interactive computing with: 1. Terminal-based and graphical interactive consoles. 2. A web-based Notebook system with support for code, text, mathematical expressions, inline plots and other rich media. 3. Easy to use, high performance tools for parallel computing. Despite its roots in Python, the IPython architecture is designed in a language-agnostic way to facilitate interactive computing in any language. This allows users to mix Python with Julia, R, Octave, Ruby, Perl, Bash and more, as well as to develop native clients in other languages that reuse the IPython clients. In this talk, I will show how IPython supports all stages in the lifecycle of a scientific idea: 1. Individual exploration. 2. Collaborative development. 3. Production runs with parallel resources. 4. Publication. 5. Education. In particular, the IPython Notebook provides an environment for "literate computing" with a tight integration of narrative and computation (including parallel computing). These Notebooks are stored in a JSON-based document format that provides an "executable paper": notebooks can be version controlled, exported to HTML or PDF for publication, and used for teaching.
Orbiter subsystem hardware/software interaction analysis. Volume 8: Forward reaction control system
NASA Technical Reports Server (NTRS)
Becker, D. D.
1980-01-01
The results of the orbiter hardware/software interaction analysis for the AFT reaction control system are presented. The interaction between hardware failure modes and software are examined in order to identify associated issues and risks. All orbiter subsystems and interfacing program elements which interact with the orbiter computer flight software are analyzed. The failure modes identified in the subsystem/element failure mode and effects analysis are discussed.
NASA/DOD Control/Structures Interaction Technology, 1986
NASA Technical Reports Server (NTRS)
Wright, Robert L. (Compiler)
1986-01-01
Control/structures interactions, deployment dynamics and system performance of large flexible spacecraft are discussed. Spacecraft active controls, deployable truss structures, deployable antennas, solar power systems for space stations, pointing control systems for space station gimballed payloads, computer-aided design for large space structures, and passive damping for flexible structures are among the topics covered.
Hohenstein, Edward G; Parrish, Robert M; Sherrill, C David; Turney, Justin M; Schaefer, Henry F
2011-11-07
Symmetry-adapted perturbation theory (SAPT) provides a means of probing the fundamental nature of intermolecular interactions. Low-orders of SAPT (here, SAPT0) are especially attractive since they provide qualitative (sometimes quantitative) results while remaining tractable for large systems. The application of density fitting and Laplace transformation techniques to SAPT0 can significantly reduce the expense associated with these computations and make even larger systems accessible. We present new factorizations of the SAPT0 equations with density-fitted two-electron integrals and the first application of Laplace transformations of energy denominators to SAPT. The improved scalability of the DF-SAPT0 implementation allows it to be applied to systems with more than 200 atoms and 2800 basis functions. The Laplace-transformed energy denominators are compared to analogous partial Cholesky decompositions of the energy denominator tensor. Application of our new DF-SAPT0 program to the intercalation of DNA by proflavine has allowed us to determine the nature of the proflavine-DNA interaction. Overall, the proflavine-DNA interaction contains important contributions from both electrostatics and dispersion. The energetics of the intercalator interaction are are dominated by the stacking interactions (two-thirds of the total), but contain important contributions from the intercalator-backbone interactions. It is hypothesized that the geometry of the complex will be determined by the interactions of the intercalator with the backbone, because by shifting toward one side of the backbone, the intercalator can form two long hydrogen-bonding type interactions. The long-range interactions between the intercalator and the next-nearest base pairs appear to be negligible, justifying the use of truncated DNA models in computational studies of intercalation interaction energies.
NASA Astrophysics Data System (ADS)
Hohenstein, Edward G.; Parrish, Robert M.; Sherrill, C. David; Turney, Justin M.; Schaefer, Henry F.
2011-11-01
Symmetry-adapted perturbation theory (SAPT) provides a means of probing the fundamental nature of intermolecular interactions. Low-orders of SAPT (here, SAPT0) are especially attractive since they provide qualitative (sometimes quantitative) results while remaining tractable for large systems. The application of density fitting and Laplace transformation techniques to SAPT0 can significantly reduce the expense associated with these computations and make even larger systems accessible. We present new factorizations of the SAPT0 equations with density-fitted two-electron integrals and the first application of Laplace transformations of energy denominators to SAPT. The improved scalability of the DF-SAPT0 implementation allows it to be applied to systems with more than 200 atoms and 2800 basis functions. The Laplace-transformed energy denominators are compared to analogous partial Cholesky decompositions of the energy denominator tensor. Application of our new DF-SAPT0 program to the intercalation of DNA by proflavine has allowed us to determine the nature of the proflavine-DNA interaction. Overall, the proflavine-DNA interaction contains important contributions from both electrostatics and dispersion. The energetics of the intercalator interaction are are dominated by the stacking interactions (two-thirds of the total), but contain important contributions from the intercalator-backbone interactions. It is hypothesized that the geometry of the complex will be determined by the interactions of the intercalator with the backbone, because by shifting toward one side of the backbone, the intercalator can form two long hydrogen-bonding type interactions. The long-range interactions between the intercalator and the next-nearest base pairs appear to be negligible, justifying the use of truncated DNA models in computational studies of intercalation interaction energies.
The computer-communication link for the innovative use of Space Station
NASA Technical Reports Server (NTRS)
Carroll, C. C.
1984-01-01
The potential capability of the computer-communications system link of space station is related to innovative utilization for industrial applications. Conceptual computer network architectures are presented and their respective accommodation of innovative industrial projects are discussed. To achieve maximum system availability for industrialization is a possible design goal, which would place the industrial community in an interactive mode with facilities in space. A worthy design goal would be to minimize the computer-communication management function and thereby optimize the system availability for industrial users. Quasi-autonomous modes and subnetworks are key design issues, since they would be the system elements directly effecting the system performance for industrial use.
Why Adolescents Use a Computer-Based Health Information System.
ERIC Educational Resources Information Center
Hawkins, Robert P.; And Others
The Body Awareness Resource Network (BARN) is a system of interactive computer programs designed to provide adolescents with confidential, nonjudgmental health information, behavior change strategies, and sources of referral. These programs cover five adolescent health areas: alcohol and other drugs, human sexuality, smoking prevention and…
A Computer Model of the Cardiovascular System for Effective Learning.
ERIC Educational Resources Information Center
Rothe, Carl F.
1979-01-01
Described is a physiological model which solves a set of interacting, possibly nonlinear, differential equations through numerical integration on a digital computer. Sample printouts are supplied and explained for effects on the components of a cardiovascular system when exercise, hemorrhage, and cardiac failure occur. (CS)
New Integrated Video and Graphics Technology: Digital Video Interactive.
ERIC Educational Resources Information Center
Optical Information Systems, 1987
1987-01-01
Describes digital video interactive (DVI), a new technology which combines the interactivity of the graphics capabilities in personal computers with the realism of high-quality motion video and multitrack audio in an all-digital integrated system. (MES)
Finding Waldo: Learning about Users from their Interactions.
Brown, Eli T; Ottley, Alvitta; Zhao, Helen; Quan Lin; Souvenir, Richard; Endert, Alex; Chang, Remco
2014-12-01
Visual analytics is inherently a collaboration between human and computer. However, in current visual analytics systems, the computer has limited means of knowing about its users and their analysis processes. While existing research has shown that a user's interactions with a system reflect a large amount of the user's reasoning process, there has been limited advancement in developing automated, real-time techniques that mine interactions to learn about the user. In this paper, we demonstrate that we can accurately predict a user's task performance and infer some user personality traits by using machine learning techniques to analyze interaction data. Specifically, we conduct an experiment in which participants perform a visual search task, and apply well-known machine learning algorithms to three encodings of the users' interaction data. We achieve, depending on algorithm and encoding, between 62% and 83% accuracy at predicting whether each user will be fast or slow at completing the task. Beyond predicting performance, we demonstrate that using the same techniques, we can infer aspects of the user's personality factors, including locus of control, extraversion, and neuroticism. Further analyses show that strong results can be attained with limited observation time: in one case 95% of the final accuracy is gained after a quarter of the average task completion time. Overall, our findings show that interactions can provide information to the computer about its human collaborator, and establish a foundation for realizing mixed-initiative visual analytics systems.
NASA Technical Reports Server (NTRS)
Kennedy, J. R.; Fitzpatrick, W. S.
1971-01-01
The computer executive functional system design concepts derived from study of the Space Station/Base are presented. Information Management System hardware configuration as directly influencing the executive design is reviewed. The hardware configuration and generic executive design requirements are considered in detail in a previous report (System Configuration and Executive Requirements Specifications for Reusable Shuttle and Space Station/Base, 9/25/70). This report defines basic system primitives and delineates processes and process control. Supervisor states are considered for describing basic multiprogramming and multiprocessing systems. A high-level computer executive including control of scheduling, allocation of resources, system interactions, and real-time supervisory functions is defined. The description is oriented to provide a baseline for a functional simulation of the computer executive system.
A Chinese Interactive Feedback System for a Virtual Campus
ERIC Educational Resources Information Center
Chen, Jui-Fa; Lin, Wei-Chuan; Jian, Chih-Yu; Hung, Ching-Chung
2008-01-01
Considering the popularity of the Internet, an automatic interactive feedback system for Elearning websites is becoming increasingly desirable. However, computers still have problems understanding natural languages, especially the Chinese language, firstly because the Chinese language has no space to segment lexical entries (its segmentation…
Computer Augmented Video Education.
ERIC Educational Resources Information Center
Sousa, M. B.
1979-01-01
Describes project CAVE (Computer Augmented Video Education), an ongoing effort at the U.S. Naval Academy to present lecture material on videocassette tape, reinforced by drill and practice through an interactive computer system supported by a 12 channel closed circuit television distribution and production facility. (RAO)
Interactive computer-assisted instruction in acid-base physiology for mobile computer platforms.
Longmuir, Kenneth J
2014-03-01
In this project, the traditional lecture hall presentation of acid-base physiology in the first-year medical school curriculum was replaced by interactive, computer-assisted instruction designed primarily for the iPad and other mobile computer platforms. Three learning modules were developed, each with ∼20 screens of information, on the subjects of the CO2-bicarbonate buffer system, other body buffer systems, and acid-base disorders. Five clinical case modules were also developed. For the learning modules, the interactive, active learning activities were primarily step-by-step learner control of explanations of complex physiological concepts, usually presented graphically. For the clinical cases, the active learning activities were primarily question-and-answer exercises that related clinical findings to the relevant basic science concepts. The student response was remarkably positive, with the interactive, active learning aspect of the instruction cited as the most important feature. Also, students cited the self-paced instruction, extensive use of interactive graphics, and side-by-side presentation of text and graphics as positive features. Most students reported that it took less time to study the subject matter with this online instruction compared with subject matter presented in the lecture hall. However, the approach to learning was highly examination driven, with most students delaying the study of the subject matter until a few days before the scheduled examination. Wider implementation of active learning computer-assisted instruction will require that instructors present subject matter interactively, that students fully embrace the responsibilities of independent learning, and that institutional administrations measure instructional effort by criteria other than scheduled hours of instruction.
NASA Astrophysics Data System (ADS)
Gama Goicochea, A.; Balderas Altamirano, M. A.; Lopez-Esparza, R.; Waldo-Mendoza, Miguel A.; Perez, E.
2015-09-01
The connection between fundamental interactions acting in molecules in a fluid and macroscopically measured properties, such as the viscosity between colloidal particles coated with polymers, is studied here. The role that hydrodynamic and Brownian forces play in colloidal dispersions is also discussed. It is argued that many-body systems in which all these interactions take place can be accurately solved using computational simulation tools. One of those modern tools is the technique known as dissipative particle dynamics, which incorporates Brownian and hydrodynamic forces, as well as basic conservative interactions. A case study is reported, as an example of the applications of this technique, which consists of the prediction of the viscosity and friction between two opposing parallel surfaces covered with polymer chains, under the influence of a steady flow. This work is intended to serve as an introduction to the subject of colloidal dispersions and computer simulations, for final-year undergraduate students and beginning graduate students who are interested in beginning research in soft matter systems. To that end, a computational code is included that students can use right away to study complex fluids in equilibrium.
NASA Astrophysics Data System (ADS)
Pierce, S. A.
2017-12-01
Decision making for groundwater systems is becoming increasingly important, as shifting water demands increasingly impact aquifers. As buffer systems, aquifers provide room for resilient responses and augment the actual timeframe for hydrological response. Yet the pace impacts, climate shifts, and degradation of water resources is accelerating. To meet these new drivers, groundwater science is transitioning toward the emerging field of Integrated Water Resources Management, or IWRM. IWRM incorporates a broad array of dimensions, methods, and tools to address problems that tend to be complex. Computational tools and accessible cyberinfrastructure (CI) are needed to cross the chasm between science and society. Fortunately cloud computing environments, such as the new Jetstream system, are evolving rapidly. While still targeting scientific user groups systems such as, Jetstream, offer configurable cyberinfrastructure to enable interactive computing and data analysis resources on demand. The web-based interfaces allow researchers to rapidly customize virtual machines, modify computing architecture and increase the usability and access for broader audiences to advanced compute environments. The result enables dexterous configurations and opening up opportunities for IWRM modelers to expand the reach of analyses, number of case studies, and quality of engagement with stakeholders and decision makers. The acute need to identify improved IWRM solutions paired with advanced computational resources refocuses the attention of IWRM researchers on applications, workflows, and intelligent systems that are capable of accelerating progress. IWRM must address key drivers of community concern, implement transdisciplinary methodologies, adapt and apply decision support tools in order to effectively support decisions about groundwater resource management. This presentation will provide an overview of advanced computing services in the cloud using integrated groundwater management case studies to highlight how Cloud CI streamlines the process for setting up an interactive decision support system. Moreover, advances in artificial intelligence offer new techniques for old problems from integrating data to adaptive sensing or from interactive dashboards to optimizing multi-attribute problems. The combination of scientific expertise, flexible cloud computing solutions, and intelligent systems opens new research horizons.
The experience of agency in human-computer interactions: a review
Limerick, Hannah; Coyle, David; Moore, James W.
2014-01-01
The sense of agency is the experience of controlling both one’s body and the external environment. Although the sense of agency has been studied extensively, there is a paucity of studies in applied “real-life” situations. One applied domain that seems highly relevant is human-computer-interaction (HCI), as an increasing number of our everyday agentive interactions involve technology. Indeed, HCI has long recognized the feeling of control as a key factor in how people experience interactions with technology. The aim of this review is to summarize and examine the possible links between sense of agency and understanding control in HCI. We explore the overlap between HCI and sense of agency for computer input modalities and system feedback, computer assistance, and joint actions between humans and computers. An overarching consideration is how agency research can inform HCI and vice versa. Finally, we discuss the potential ethical implications of personal responsibility in an ever-increasing society of technology users and intelligent machine interfaces. PMID:25191256
A framework for analyzing the cognitive complexity of computer-assisted clinical ordering.
Horsky, Jan; Kaufman, David R; Oppenheim, Michael I; Patel, Vimla L
2003-01-01
Computer-assisted provider order entry is a technology that is designed to expedite medical ordering and to reduce the frequency of preventable errors. This paper presents a multifaceted cognitive methodology for the characterization of cognitive demands of a medical information system. Our investigation was informed by the distributed resources (DR) model, a novel approach designed to describe the dimensions of user interfaces that introduce unnecessary cognitive complexity. This method evaluates the relative distribution of external (system) and internal (user) representations embodied in system interaction. We conducted an expert walkthrough evaluation of a commercial order entry system, followed by a simulated clinical ordering task performed by seven clinicians. The DR model was employed to explain variation in user performance and to characterize the relationship of resource distribution and ordering errors. The analysis revealed that the configuration of resources in this ordering application placed unnecessarily heavy cognitive demands on the user, especially on those who lacked a robust conceptual model of the system. The resources model also provided some insight into clinicians' interactive strategies and patterns of associated errors. Implications for user training and interface design based on the principles of human-computer interaction in the medical domain are discussed.
What Machines Need to Learn to Support Human Problem-Solving
NASA Technical Reports Server (NTRS)
Vera, Alonso
2017-01-01
In the development of intelligent systems that interact with humans, there is often confusion between how the system functions with respect to the humans it interacts with and how it interfaces with those humans. The former is a much deeper challenge than the latter it requires a system-level understanding of evolving human roles as well as an understanding of what humans need to know (and when) in order to perform their tasks. This talk will focus on some of the challenges in getting this right as well as on the type of research and development that results in successful human-autonomy teaming. Brief Bio: Dr. Alonso Vera is Chief of the Human Systems Integration Division at NASA Ames Research Center. His expertise is in human-computer interaction, information systems, artificial intelligence, and computational human performance modeling. He has led the design, development and deployment of mission software systems across NASA robotic and human space flight missions, including Mars Exploration Rovers, Phoenix Mars Lander, ISS, Constellation, and Exploration Systems. Dr. Vera received a Bachelor of Science with First Class Honors from McGill University in 1985 and a Ph.D. from Cornell University in 1991. He went on to a Post-Doctoral Fellowship in the School of Computer Science at Carnegie Mellon University from 1990-93.
Real-time 3D human capture system for mixed-reality art and entertainment.
Nguyen, Ta Huynh Duy; Qui, Tran Cong Thien; Xu, Ke; Cheok, Adrian David; Teo, Sze Lee; Zhou, ZhiYing; Mallawaarachchi, Asitha; Lee, Shang Ping; Liu, Wei; Teo, Hui Siang; Thang, Le Nam; Li, Yu; Kato, Hirokazu
2005-01-01
A real-time system for capturing humans in 3D and placing them into a mixed reality environment is presented in this paper. The subject is captured by nine cameras surrounding her. Looking through a head-mounted-display with a camera in front pointing at a marker, the user can see the 3D image of this subject overlaid onto a mixed reality scene. The 3D images of the subject viewed from this viewpoint are constructed using a robust and fast shape-from-silhouette algorithm. The paper also presents several techniques to produce good quality and speed up the whole system. The frame rate of our system is around 25 fps using only standard Intel processor-based personal computers. Besides a remote live 3D conferencing and collaborating system, we also describe an application of the system in art and entertainment, named Magic Land, which is a mixed reality environment where captured avatars of human and 3D computer generated virtual animations can form an interactive story and play with each other. This system demonstrates many technologies in human computer interaction: mixed reality, tangible interaction, and 3D communication. The result of the user study not only emphasizes the benefits, but also addresses some issues of these technologies.
Computer Exercises in Systems and Fields Experiments
ERIC Educational Resources Information Center
Bacon, C. M.; McDougal, J. R.
1971-01-01
Laboratory activities give students an opportunity to interact with computers in modes ranging from remote terminal use in laboratory experimentation to the direct hands-on use of a small digital computer with disk memory and on-line plotter, and finally to the use of a large computer under closed-shop operation. (Author/TS)
The Voice as Computer Interface: A Look at Tomorrow's Technologies.
ERIC Educational Resources Information Center
Lange, Holley R.
1991-01-01
Discussion of voice as the communications device for computer-human interaction focuses on voice recognition systems for use within a library environment. Voice technologies are described, including voice response and voice recognition; examples of voice systems in use in libraries are examined; and further possibilities, including use with…
Repetitive Domain-Referenced Testing Using Computers: the TITA System.
ERIC Educational Resources Information Center
Olympia, P. L., Jr.
The TITA (Totally Interactive Testing and Analysis) System algorithm for the repetitive construction of domain-referenced tests utilizes a compact data bank, is highly portable, is useful in any discipline, requires modest computer hardware, and does not present a security problem. Clusters of related keyphrases, statement phrases, and distractors…
Computer-Based Imaginary Sciences and Research on Concept Acquisition.
ERIC Educational Resources Information Center
Allen, Brockenbrough S.
To control for interactions in learning research due to subjects' prior knowledge of the instructional material presented, an imaginary curriculum was presented with a computer assisted technique based on Carl Berieter's imaginary science of Xenograde systems. The curriculum consisted of a classification system for ten conceptual classes of…
Rethinking Visual Analytics for Streaming Data Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crouser, R. Jordan; Franklin, Lyndsey; Cook, Kris
In the age of data science, the use of interactive information visualization techniques has become increasingly ubiquitous. From online scientific journals to the New York Times graphics desk, the utility of interactive visualization for both storytelling and analysis has become ever more apparent. As these techniques have become more readily accessible, the appeal of combining interactive visualization with computational analysis continues to grow. Arising out of a need for scalable, human-driven analysis, primary objective of visual analytics systems is to capitalize on the complementary strengths of human and machine analysis, using interactive visualization as a medium for communication between themore » two. These systems leverage developments from the fields of information visualization, computer graphics, machine learning, and human-computer interaction to support insight generation in areas where purely computational analyses fall short. Over the past decade, visual analytics systems have generated remarkable advances in many historically challenging analytical contexts. These include areas such as modeling political systems [Crouser et al. 2012], detecting financial fraud [Chang et al. 2008], and cybersecurity [Harrison et al. 2012]. In each of these contexts, domain expertise and human intuition is a necessary component of the analysis. This intuition is essential to building trust in the analytical products, as well as supporting the translation of evidence into actionable insight. In addition, each of these examples also highlights the need for scalable analysis. In each case, it is infeasible for a human analyst to manually assess the raw information unaided, and the communication overhead to divide the task between a large number of analysts makes simple parallelism intractable. Regardless of the domain, visual analytics tools strive to optimize the allocation of human analytical resources, and to streamline the sensemaking process on data that is massive, complex, incomplete, and uncertain in scenarios requiring human judgment.« less
Dynamic Interaction of Long Suspension Bridges with Running Trains
NASA Astrophysics Data System (ADS)
XIA, H.; XU, Y. L.; CHAN, T. H. T.
2000-10-01
This paper presents an investigation of dynamic interaction of long suspension bridges with running trains. A three-dimensional finite element model is used to represent a long suspension bridge. Each 4-axle vehicle in a train is modelled by a 27-degrees-of-freedom dynamic system. The dynamic interaction between the bridge and train is realized through the contact forces between the wheels and track. By applying a mode superposition technique to the bridge only and taking the measured track irregularities as known quantities, the number of degrees of freedom (d.o.f.) the bridge-train system is significantly reduced and the coupled equations of motion are efficiently solved. The proposed formulation and the associated computer program are then applied to a real long suspension bridge carrying a railway within the bridge deck. The dynamic response of the bridge-train system and the derail and offload factors related to the running safety of the train are computed. The results show that the formulation presented in this paper can well predict dynamic behaviors of both bridge and train with reasonable computation efforts. Dynamic interaction between the long suspension bridge and train is not significant.
The role of voice input for human-machine communication.
Cohen, P R; Oviatt, S L
1995-01-01
Optimism is growing that the near future will witness rapid growth in human-computer interaction using voice. System prototypes have recently been built that demonstrate speaker-independent real-time speech recognition, and understanding of naturally spoken utterances with vocabularies of 1000 to 2000 words, and larger. Already, computer manufacturers are building speech recognition subsystems into their new product lines. However, before this technology can be broadly useful, a substantial knowledge base is needed about human spoken language and performance during computer-based spoken interaction. This paper reviews application areas in which spoken interaction can play a significant role, assesses potential benefits of spoken interaction with machines, and compares voice with other modalities of human-computer interaction. It also discusses information that will be needed to build a firm empirical foundation for the design of future spoken and multimodal interfaces. Finally, it argues for a more systematic and scientific approach to investigating spoken input and performance with future language technology. PMID:7479803
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nascimento, Daniel R.; DePrince, A. Eugene, E-mail: deprince@chem.fsu.edu
2015-12-07
We present a combined cavity quantum electrodynamics/ab initio electronic structure approach for simulating plasmon-molecule interactions in the time domain. The simple Jaynes-Cummings-type model Hamiltonian typically utilized in such simulations is replaced with one in which the molecular component of the coupled system is treated in a fully ab initio way, resulting in a computationally efficient description of general plasmon-molecule interactions. Mutual polarization effects are easily incorporated within a standard ground-state Hartree-Fock computation, and time-dependent simulations carry the same formal computational scaling as real-time time-dependent Hartree-Fock theory. As a proof of principle, we apply this generalized method to the emergence ofmore » a Fano-like resonance in coupled molecule-plasmon systems; this feature is quite sensitive to the nanoparticle-molecule separation and the orientation of the molecule relative to the polarization of the external electric field.« less
Wheeler, Steven E.; Houk, K. N.
2009-01-01
The prevailing views of substituent effects in the sandwich configuration of the benzene dimer are flawed. For example, in the polar/π model of Cozzi and co-workers (J. Am. Chem. Soc. 1992, 114, 5729), electron-withdrawing substituents enhance binding in the benzene dimer by withdrawing electron density from the π-cloud of the substituted ring, reducing the repulsive electrostatic interaction with the non-substituted benzene. Conversely, electron-donating substituents donate excess electrons into the π-system and diminish the π-stacking interaction. We present computed interaction energies for the sandwich configuration of the benzene dimer and 24 substituted dimers, as well as sandwich complexes of substituted benzenes with perfluorobenzene. While the computed interaction energies correlate well with σm values for the substituents, interaction energies for related model systems demonstrate that this trend is independent of the substituted ring. Instead, the observed trends are consistent with direct electrostatic and dispersive interactions of the substituents with the unsubstituted ring. PMID:18652453
Vidossich, Pietro; Lledós, Agustí; Ujaque, Gregori
2016-06-21
Computational chemistry is a valuable aid to complement experimental studies of organometallic systems and their reactivity. It allows probing mechanistic hypotheses and investigating molecular structures, shedding light on the behavior and properties of molecular assemblies at the atomic scale. When approaching a chemical problem, the computational chemist has to decide on the theoretical approach needed to describe electron/nuclear interactions and the composition of the model used to approximate the actual system. Both factors determine the reliability of the modeling study. The community dedicated much effort to developing and improving the performance and accuracy of theoretical approaches for electronic structure calculations, on which the description of (inter)atomic interactions rely. Here, the importance of the model system used in computational studies is highlighted through examples from our recent research focused on organometallic systems and homogeneous catalytic processes. We show how the inclusion of explicit solvent allows the characterization of molecular events that would otherwise not be accessible in reduced model systems (clusters). These include the stabilization of nascent charged fragments via microscopic solvation (notably, hydrogen bonding), transfer of charge (protons) between distant fragments mediated by solvent molecules, and solvent coordination to unsaturated metal centers. Furthermore, when weak interactions are involved, we show how conformational and solvation properties of organometallic complexes are also affected by the explicit inclusion of solvent molecules. Such extended model systems may be treated under periodic boundary conditions, thus removing the cluster/continuum (or vacuum) boundary, and require a statistical mechanics simulation technique to sample the accessible configurational space. First-principles molecular dynamics, in which atomic forces are computed from electronic structure calculations (namely, density functional theory), is certainly the technique of choice to investigate chemical events in solution. This methodology is well established and thanks to advances in both algorithms and computational resources simulation times required for the modeling of chemical events are nowadays accessible, though the computational requirements use to be high. Specific applications reviewed here include mechanistic studies of the Shilov and Wacker processes, speciation in Pd chemistry, hydrogen bonding to metal centers, and the dynamics of agostic interactions.
Computational Methods to Predict Protein Interaction Partners
NASA Astrophysics Data System (ADS)
Valencia, Alfonso; Pazos, Florencio
In the new paradigm for studying biological phenomena represented by Systems Biology, cellular components are not considered in isolation but as forming complex networks of relationships. Protein interaction networks are among the first objects studied from this new point of view. Deciphering the interactome (the whole network of interactions for a given proteome) has been shown to be a very complex task. Computational techniques for detecting protein interactions have become standard tools for dealing with this problem, helping and complementing their experimental counterparts. Most of these techniques use genomic or sequence features intuitively related with protein interactions and are based on "first principles" in the sense that they do not involve training with examples. There are also other computational techniques that use other sources of information (i.e. structural information or even experimental data) or are based on training with examples.
The Man computer Interactive Data Access System: 25 Years of Interactive Processing.
NASA Astrophysics Data System (ADS)
Lazzara, Matthew A.; Benson, John M.; Fox, Robert J.; Laitsch, Denise J.; Rueden, Joseph P.; Santek, David A.; Wade, Delores M.; Whittaker, Thomas M.; Young, J. T.
1999-02-01
On 12 October 1998, it was the 25th anniversary of the Man computer Interactive Data Access System (McIDAS). On that date in 1973, McIDAS was first used operationally by scientists as a tool for data analysis. Over the last 25 years, McIDAS has undergone numerous architectural changes in an effort to keep pace with changing technology. In its early years, significant technological breakthroughs were required to achieve the functionality needed by atmospheric scientists. Today McIDAS is challenged by new Internet-based approaches to data access and data display. The history and impact of McIDAS, along with some of the lessons learned, are presented here
NASA Technical Reports Server (NTRS)
Buckner, J. D.; Council, H. W.; Edwards, T. R.
1974-01-01
Description of the hardware and software implementing the system of time-lapse reproduction of images through interactive graphics (TRIIG). The system produces a quality hard copy of processed images in a fast and inexpensive manner. This capability allows for optimal development of processing software through the rapid viewing of many image frames in an interactive mode. Three critical optical devices are used to reproduce an image: an Optronics photo reader/writer, the Adage Graphics Terminal, and Polaroid Type 57 high speed film. Typical sources of digitized images are observation satellites, such as ERTS or Mariner, computer coupled electron microscopes for high-magnification studies, or computer coupled X-ray devices for medical research.
Visual control of prey-capture flight in dragonflies.
Olberg, Robert M
2012-04-01
Interacting with a moving object poses a computational problem for an animal's nervous system. This problem has been elegantly solved by the dragonfly, a formidable visual predator on flying insects. The dragonfly computes an interception flight trajectory and steers to maintain it during its prey-pursuit flight. This review summarizes current knowledge about pursuit behavior and neurons thought to control interception in the dragonfly. When understood, this system has the potential for explaining how a small group of neurons can control complex interactions with moving objects. Copyright © 2011 Elsevier Ltd. All rights reserved.
Microprocessors: Laboratory Simulation of Industrial Control Applications.
ERIC Educational Resources Information Center
Gedeon, David V.
1981-01-01
Describes a course to make technical managers more aware of computer technology and how data loggers, programmable controllers, and larger computer systems interact in a hierarchical configuration of manufacturing process control. (SK)
Interaction with Machine Improvisation
NASA Astrophysics Data System (ADS)
Assayag, Gerard; Bloch, George; Cont, Arshia; Dubnov, Shlomo
We describe two multi-agent architectures for an improvisation oriented musician-machine interaction systems that learn in real time from human performers. The improvisation kernel is based on sequence modeling and statistical learning. We present two frameworks of interaction with this kernel. In the first, the stylistic interaction is guided by a human operator in front of an interactive computer environment. In the second framework, the stylistic interaction is delegated to machine intelligence and therefore, knowledge propagation and decision are taken care of by the computer alone. The first framework involves a hybrid architecture using two popular composition/performance environments, Max and OpenMusic, that are put to work and communicate together, each one handling the process at a different time/memory scale. The second framework shares the same representational schemes with the first but uses an Active Learning architecture based on collaborative, competitive and memory-based learning to handle stylistic interactions. Both systems are capable of processing real-time audio/video as well as MIDI. After discussing the general cognitive background of improvisation practices, the statistical modelling tools and the concurrent agent architecture are presented. Then, an Active Learning scheme is described and considered in terms of using different improvisation regimes for improvisation planning. Finally, we provide more details about the different system implementations and describe several performances with the system.
NASA Astrophysics Data System (ADS)
Patriarca, M.; Kuronen, A.; Robles, M.; Kaski, K.
2007-01-01
The study of crystal defects and the complex processes underlying their formation and time evolution has motivated the development of the program ALINE for interactive molecular dynamics experiments. This program couples a molecular dynamics code to a Graphical User Interface and runs on a UNIX-X11 Window System platform with the MOTIF library, which is contained in many standard Linux releases. ALINE is written in C, thus giving the user the possibility to modify the source code, and, at the same time, provides an effective and user-friendly framework for numerical experiments, in which the main parameters can be interactively varied and the system visualized in various ways. We illustrate the main features of the program through some examples of detection and dynamical tracking of point-defects, linear defects, and planar defects, such as stacking faults in lattice-mismatched heterostructures. Program summaryTitle of program:ALINE Catalogue identifier:ADYJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYJ_v1_0 Program obtainable from: CPC Program Library, Queen University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: Computers:DEC ALPHA 300, Intel i386 compatible computers, G4 Apple Computers Installations:Laboratory of Computational Engineering, Helsinki University of Technology, Helsinki, Finland Operating systems under which the program has been tested:True64 UNIX, Linux-i386, Mac OS X 10.3 and 10.4 Programming language used:Standard C and MOTIF libraries Memory required to execute with typical data:6 Mbytes but may be larger depending on the system size No. of lines in distributed program, including test data, etc.:16 901 No. of bytes in distributed program, including test data, etc.:449 559 Distribution format:tar.gz Nature of physical problem:Some phenomena involving defects take place inside three-dimensional crystals at times which can be hardly predicted. For this reason they are difficult to detect and track even within numerical experiments, especially when one is interested in studying their dynamical properties and time evolution. Furthermore, traditional simulation methods require the storage of a huge amount of data which in turn may imply a long work for their analysis. Method of solution:Simplifications of the simulation work described above strongly depend also on the computer performance. It has now become possible to realize some of such simplifications thanks to the real possibility of using interactive programs. The solution proposed here is based on the development of an interactive graphical simulation program both for avoiding large storage of data and the subsequent elaboration and analysis as well as for visualizing and tracking many phenomena inside three-dimensional samples. However, the full computational power of traditional simulation programs may not be available in general in programs with graphical user interfaces, due to their interactive nature. Nevertheless interactive programs can still be very useful for detecting processes difficult to visualize, restricting the range or making a fine tuning of the parameters, and tailoring the faster programs toward precise targets. Restrictions on the complexity of the problem:The restrictions on the applicability of the program are related to the computer resources available. The graphical interface and interactivity demand computational resources that depend on the particular numerical simulation to be performed. To preserve a balance between speed and resources, the choice of the number of atoms to be simulated is critical. With an average current computer, simulations of systems with more than 10 5 atoms may not be easily feasible on an interactive scheme. Another restriction is related to the fact that the program was originally designed to simulate systems in the solid phase, so that problems in the simulation may occur if some particular physical quantities are computed beyond the melting point. Typical running time:It depends on the machine architecture, system size, and user needs. Unusual features of the program:In the program, besides the window in which the system is represented in real space, an additional graphical window presenting the real time distribution histogram for different physical variables (such as kinetic or potential energy) is included. Such tool is very interesting for making demonstrative numerical experiments for teaching purposes as well as for research, e.g., for detecting and tracking crystal defects. The program includes: an initial condition builder, an interactive display of the simulation, a set of tools which allow the user to filter through different physical quantities the information—either displayed in real time or printed in the output files—and to perform an efficient search of the interesting regions of parameter space.
1982-03-01
otherwise, and changes in parameters). The TIS, insofar as it has subgoals to reach, instructions ot, how to try or what to do if it is impeded...10 and 9 without affect- ing the computer (i.e. change the location, forces, labels or other properties of the display or manual control devices...sys- mode of inter • -ing with the system tem sensors, actuators and sensors, actu.-.ors and computers is computers is fixed flexible j 4. often
Nearly Interactive Parabolized Navier-Stokes Solver for High Speed Forebody and Inlet Flows
NASA Technical Reports Server (NTRS)
Benson, Thomas J.; Liou, May-Fun; Jones, William H.; Trefny, Charles J.
2009-01-01
A system of computer programs is being developed for the preliminary design of high speed inlets and forebodies. The system comprises four functions: geometry definition, flow grid generation, flow solver, and graphics post-processor. The system runs on a dedicated personal computer using the Windows operating system and is controlled by graphical user interfaces written in MATLAB (The Mathworks, Inc.). The flow solver uses the Parabolized Navier-Stokes equations to compute millions of mesh points in several minutes. Sample two-dimensional and three-dimensional calculations are demonstrated in the paper.
CSI computer system/remote interface unit acceptance test results
NASA Technical Reports Server (NTRS)
Sparks, Dean W., Jr.
1992-01-01
The validation tests conducted on the Control/Structures Interaction (CSI) Computer System (CCS)/Remote Interface Unit (RIU) is discussed. The CCS/RIU consists of a commercially available, Langley Research Center (LaRC) programmed, space flight qualified computer and a flight data acquisition and filtering computer, developed at LaRC. The tests were performed in the Space Structures Research Laboratory (SSRL) and included open loop excitation, closed loop control, safing, RIU digital filtering, and RIU stand alone testing with the CSI Evolutionary Model (CEM) Phase-0 testbed. The test results indicated that the CCS/RIU system is comparable to ground based systems in performing real-time control-structure experiments.
A Programming Language Environment for the Unassisted Learner.
ERIC Educational Resources Information Center
Thomas, P. G.; Ince, D. C.
1982-01-01
Describes the computing environment and command language for a new programing language called OUSBASIC which is designed to enable naive users to interact usefully, with little assistance, with a computer system. (Author/CHC)
Drill user's manual. [drilling machine automation
NASA Technical Reports Server (NTRS)
Pitts, E. A.
1976-01-01
Instructions are given for using the DRILL computer program which converts data contained in an Interactive Computer Graphics System (IGDS) design file to production of a paper tape for driving a numerically controlled drilling machine.
NASA Technical Reports Server (NTRS)
Bever, G. A.
1981-01-01
The flight test data requirements at the NASA Dryden Flight Research Center increased in complexity, and more advanced instrumentation became necessary to accomplish mission goals. This paper describes the way in which an airborne computer was used to perform real-time calculations on critical flight test parameters during a flight test on a winglet-equipped KC-135A aircraft. With the computer, an airborne flight test engineer can select any sensor for airborne display in several formats, including engineering units. The computer is able to not only calculate values derived from the sensor outputs but also to interact with the data acquisition system. It can change the data cycle format and data rate, and even insert the derived values into the pulse code modulation (PCM) bit stream for recording.
Long-range interactions and parallel scalability in molecular simulations
NASA Astrophysics Data System (ADS)
Patra, Michael; Hyvönen, Marja T.; Falck, Emma; Sabouri-Ghomi, Mohsen; Vattulainen, Ilpo; Karttunen, Mikko
2007-01-01
Typical biomolecular systems such as cellular membranes, DNA, and protein complexes are highly charged. Thus, efficient and accurate treatment of electrostatic interactions is of great importance in computational modeling of such systems. We have employed the GROMACS simulation package to perform extensive benchmarking of different commonly used electrostatic schemes on a range of computer architectures (Pentium-4, IBM Power 4, and Apple/IBM G5) for single processor and parallel performance up to 8 nodes—we have also tested the scalability on four different networks, namely Infiniband, GigaBit Ethernet, Fast Ethernet, and nearly uniform memory architecture, i.e. communication between CPUs is possible by directly reading from or writing to other CPUs' local memory. It turns out that the particle-mesh Ewald method (PME) performs surprisingly well and offers competitive performance unless parallel runs on PC hardware with older network infrastructure are needed. Lipid bilayers of sizes 128, 512 and 2048 lipid molecules were used as the test systems representing typical cases encountered in biomolecular simulations. Our results enable an accurate prediction of computational speed on most current computing systems, both for serial and parallel runs. These results should be helpful in, for example, choosing the most suitable configuration for a small departmental computer cluster.
STEREOMATRIX 3-D display system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiteside, Stephen Earl
1973-08-01
STEREOMATRIX is a large-screen interactive 3-D laser display system which presents computer-generated wire figures stereoscopically. The presented image can be rotated, translated, and scaled by the system user and the perspective of the image is changed according to the position of the user. A cursor may be positioned in three dimensions to identify points and allows communication with the computer.
A Macintosh based data system for array spectrometers (Poster)
NASA Astrophysics Data System (ADS)
Bregman, J.; Moss, N.
An interactive data aquisition and reduction system has been assembled by combining a Macintosh computer with an instrument controller (an Apple II computer) via an RS-232 interface. The data system provides flexibility for operating different linear array spectrometers. The standard Macintosh interface is used to provide ease of operation and to allow transferring the reduced data to commercial graphics software.
de Carvalho, Sarah Negreiros; Costa, Thiago Bulhões da Silva; Attux, Romis; Hornung, Heiko Horst; Arantes, Dalton Soares
2018-01-01
This paper presents a systematic analysis of a game controlled by a Brain-Computer Interface (BCI) based on Steady-State Visually Evoked Potentials (SSVEP). The objective is to understand BCI systems from the Human-Computer Interface (HCI) point of view, by observing how the users interact with the game and evaluating how the interface elements influence the system performance. The interactions of 30 volunteers with our computer game, named “Get Coins,” through a BCI based on SSVEP, have generated a database of brain signals and the corresponding responses to a questionnaire about various perceptual parameters, such as visual stimulation, acoustic feedback, background music, visual contrast, and visual fatigue. Each one of the volunteers played one match using the keyboard and four matches using the BCI, for comparison. In all matches using the BCI, the volunteers achieved the goals of the game. Eight of them achieved a perfect score in at least one of the four matches, showing the feasibility of the direct communication between the brain and the computer. Despite this successful experiment, adaptations and improvements should be implemented to make this innovative technology accessible to the end user. PMID:29849549
Leite, Harlei Miguel de Arruda; de Carvalho, Sarah Negreiros; Costa, Thiago Bulhões da Silva; Attux, Romis; Hornung, Heiko Horst; Arantes, Dalton Soares
2018-01-01
This paper presents a systematic analysis of a game controlled by a Brain-Computer Interface (BCI) based on Steady-State Visually Evoked Potentials (SSVEP). The objective is to understand BCI systems from the Human-Computer Interface (HCI) point of view, by observing how the users interact with the game and evaluating how the interface elements influence the system performance. The interactions of 30 volunteers with our computer game, named "Get Coins," through a BCI based on SSVEP, have generated a database of brain signals and the corresponding responses to a questionnaire about various perceptual parameters, such as visual stimulation, acoustic feedback, background music, visual contrast, and visual fatigue. Each one of the volunteers played one match using the keyboard and four matches using the BCI, for comparison. In all matches using the BCI, the volunteers achieved the goals of the game. Eight of them achieved a perfect score in at least one of the four matches, showing the feasibility of the direct communication between the brain and the computer. Despite this successful experiment, adaptations and improvements should be implemented to make this innovative technology accessible to the end user.
Tîrnăucă, Cristina; Duque, Rafael; Montaña, José L.
2017-01-01
A relevant goal in human–computer interaction is to produce applications that are easy to use and well-adjusted to their users’ needs. To address this problem it is important to know how users interact with the system. This work constitutes a methodological contribution capable of identifying the context of use in which users perform interactions with a groupware application (synchronous or asynchronous) and provides, using machine learning techniques, generative models of how users behave. Additionally, these models are transformed into a text that describes in natural language the main characteristics of the interaction of the users with the system. PMID:28726762
Experiment and simulation for CSI: What are the missing links?
NASA Technical Reports Server (NTRS)
Belvin, W. Keith; Park, K. C.
1989-01-01
Viewgraphs on experiment and simulation for control structure interaction (CSI) are presented. Topics covered include: control structure interaction; typical control/structure interaction system; CSI problem classification; actuator/sensor models; modeling uncertainty; noise models; real-time computations; and discrete versus continuous.
Interactive signal analysis and ultrasonic data collection system user's manual
NASA Technical Reports Server (NTRS)
Smith, G. R.
1978-01-01
The interactive signal analysis and ultrasonic data collection system (ECHO1) is a real time data acquisition and display system. ECHO1 executed on a PDP-11/45 computer under the RT11 real time operating system. Extensive operator interaction provided the requisite parameters to the data collection, calculation, and data modules. Data were acquired in real time from a pulse echo ultrasonic system using a Biomation Model 8100 transient recorder. The data consisted of 2084 intensity values representing the amplitude of pulses transmitted and received by the ultrasonic unit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busbey, A.B.
Seismic Processing Workshop, a program by Parallel Geosciences of Austin, TX, is discussed in this column. The program is a high-speed, interactive seismic processing and computer analysis system for the Apple Macintosh II family of computers. Also reviewed in this column are three products from Wilkerson Associates of Champaign, IL. SubSide is an interactive program for basin subsidence analysis; MacFault and MacThrustRamp are programs for modeling faults.
NASA Technical Reports Server (NTRS)
Hesser, R. J.; Gershman, R.
1975-01-01
A valve opening-response problem encountered during development of a control valve for the Skylab thruster attitude control system (TACS) is described. The problem involved effects of dynamic interaction among valves in the quad-redundant valve package. Also described is a detailed computer simulation of the quad-valve package which was helpful in resolving the problem.
WebTOP: A 3D Interactive System for Teaching and Learning Optics
ERIC Educational Resources Information Center
Mzoughi, Taha; Herring, S. Davis; Foley, John T.; Morris, Matthew J.; Gilbert, Peter J.
2007-01-01
WebTOP is a three-dimensional, Web-based, interactive computer graphics system that helps instructors teach and students learn about waves and optics. Current subject areas include waves, geometrical optics, reflection and refraction, polarization, interference, diffraction, lasers, and scattering. Some of the topics covered are suited for…
Aesthetics, Usefulness and Performance in User--Search-Engine Interaction
ERIC Educational Resources Information Center
Katz, Adi
2010-01-01
Issues of visual appeal have become an integral part of designing interactive systems. Interface aesthetics may form users' attitudes towards computer applications and information technology. Aesthetics can affect user satisfaction, and influence their willingness to buy or adopt a system. This study follows previous studies that found that users…
Ready Set. . .Authoring Systems to Get You Started on Interactive Video Design.
ERIC Educational Resources Information Center
Rhodes, Dent M.; Azbell, Janet White
1986-01-01
Evaluates four authoring systems used to develop computer aided interactive video: The Instructor, InfoWriter, IDeAS, and ProCAL2. The information provided includes hardware requirements, compatibility with videotape and/or videodisc, instructional options available, user data-management capabilities, procedures for logging tapes, and access for…
The Construction of Knowledge through Social Interaction via Computer-Mediated Communication
ERIC Educational Resources Information Center
Saritas, Tuncay
2008-01-01
With the advance in information and communication technologies, computer-mediated communication--more specifically computer conferencing systems (CCS)--has captured the interest of educators as an ideal tool to create a learning environment featuring active, participative, and reflective learning. Educators are increasingly adapting the features…
Object-oriented Tools for Distributed Computing
NASA Technical Reports Server (NTRS)
Adler, Richard M.
1993-01-01
Distributed computing systems are proliferating, owing to the availability of powerful, affordable microcomputers and inexpensive communication networks. A critical problem in developing such systems is getting application programs to interact with one another across a computer network. Remote interprogram connectivity is particularly challenging across heterogeneous environments, where applications run on different kinds of computers and operating systems. NetWorks! (trademark) is an innovative software product that provides an object-oriented messaging solution to these problems. This paper describes the design and functionality of NetWorks! and illustrates how it is being used to build complex distributed applications for NASA and in the commercial sector.
Interactive design and analysis of future large spacecraft concepts
NASA Technical Reports Server (NTRS)
Garrett, L. B.
1981-01-01
An interactive computer aided design program used to perform systems level design and analysis of large spacecraft concepts is presented. Emphasis is on rapid design, analysis of integrated spacecraft, and automatic spacecraft modeling for lattice structures. Capabilities and performance of multidiscipline applications modules, the executive and data management software, and graphics display features are reviewed. A single user at an interactive terminal create, design, analyze, and conduct parametric studies of Earth orbiting spacecraft with relative ease. Data generated in the design, analysis, and performance evaluation of an Earth-orbiting large diameter antenna satellite are used to illustrate current capabilities. Computer run time statistics for the individual modules quantify the speed at which modeling, analysis, and design evaluation of integrated spacecraft concepts is accomplished in a user interactive computing environment.
ERIC Educational Resources Information Center
Ginsberg, Ralph B.
Most of the now commonplace computer-assisted instruction (CAI) uses computers to increase the capacity to perform logical, numerical, and symbolic computations. However, computers are an interactive and potentially intelligent medium. The implications of artificial intelligence (AI) for learning are more radical than those for traditional CAI. AI…
Two-way cable television project
NASA Astrophysics Data System (ADS)
Wilkens, H.; Guenther, P.; Kiel, F.; Kraus, F.; Mahnkopf, P.; Schnee, R.
1982-02-01
The market demand for a multiuser computer system with interactive services was studied. Mean system work load at peak use hours was estimated and the complexity of dialog with a central computer was determined. Man machine communication by broadband cable television transmission, using digital techniques, was assumed. The end to end system is described. It is user friendly, able to handle 10,000 subscribers, and provides color television display. The central computer system architecture with remote audiovisual terminals is depicted and software is explained. Signal transmission requirements are dealt with. International availability of the test system, including sample programs, is indicated.
Use of computer programs STLK1 and STWT1 for analysis of stream-aquifer hydraulic interaction
Desimone, Leslie A.; Barlow, Paul M.
1999-01-01
Quantifying the hydraulic interaction of aquifers and streams is important in the analysis of stream base fow, flood-wave effects, and contaminant transport between surface- and ground-water systems. This report describes the use of two computer programs, STLK1 and STWT1, to analyze the hydraulic interaction of streams with confined, leaky, and water-table aquifers during periods of stream-stage fuctuations and uniform, areal recharge. The computer programs are based on analytical solutions to the ground-water-flow equation in stream-aquifer settings and calculate ground-water levels, seepage rates across the stream-aquifer boundary, and bank storage that result from arbitrarily varying stream stage or recharge. Analysis of idealized, hypothetical stream-aquifer systems is used to show how aquifer type, aquifer boundaries, and aquifer and streambank hydraulic properties affect aquifer response to stresses. Published data from alluvial and stratifed-drift aquifers in Kentucky, Massachusetts, and Iowa are used to demonstrate application of the programs to field settings. Analytical models of these three stream-aquifer systems are developed on the basis of available hydrogeologic information. Stream-stage fluctuations and recharge are applied to the systems as hydraulic stresses. The models are calibrated by matching ground-water levels calculated with computer program STLK1 or STWT1 to measured ground-water levels. The analytical models are used to estimate hydraulic properties of the aquifer, aquitard, and streambank; to evaluate hydrologic conditions in the aquifer; and to estimate seepage rates and bank-storage volumes resulting from flood waves and recharge. Analysis of field examples demonstrates the accuracy and limitations of the analytical solutions and programs when applied to actual ground-water systems and the potential uses of the analytical methods as alternatives to numerical modeling for quantifying stream-aquifer interactions.
Improvements to information management systems simulator
NASA Technical Reports Server (NTRS)
Bilek, R. W.
1972-01-01
The performance of personnel in the augmentation and improvement of the interactive IMSIM information management simulation model is summarized. With this augmented model, NASA now has even greater capabilities for the simulation of computer system configurations, data processing loads imposed on these configurations, and executive software to control system operations. Through these simulations, NASA has an extremely cost effective capability for the design and analysis of computer-based data management systems.
Utilization of KSC Present Broadband Communications Data System for Digital Video Services
NASA Technical Reports Server (NTRS)
Andrawis, Alfred S.
2002-01-01
This report covers a visibility study of utilizing present KSC broadband communications data system (BCDS) for digital video services. Digital video services include compressed digital TV delivery and video-on-demand. Furthermore, the study examines the possibility of providing interactive video on demand to desktop personal computers via KSC computer network.
ERIC Educational Resources Information Center
Kumaran, Dharshan; McClelland, James L.
2012-01-01
In this article, we present a perspective on the role of the hippocampal system in generalization, instantiated in a computational model called REMERGE (recurrency and episodic memory results in generalization). We expose a fundamental, but neglected, tension between prevailing computational theories that emphasize the function of the hippocampus…
YASS: A System Simulator for Operating System and Computer Architecture Teaching and Learning
ERIC Educational Resources Information Center
Mustafa, Besim
2013-01-01
A highly interactive, integrated and multi-level simulator has been developed specifically to support both the teachers and the learners of modern computer technologies at undergraduate level. The simulator provides a highly visual and user configurable environment with many pedagogical features aimed at facilitating deep understanding of concepts…
Technological Change in Assessing Economics: A Cautionary Welcome
ERIC Educational Resources Information Center
Kennelly, Brendan; Considine, John; Flannery, Darragh
2009-01-01
The use of computer-based automated assignment systems in economics has expanded significantly in recent years. The most widely used system is Aplia which was developed by Paul Romer in 2000. Aplia is a computer application designed to replace traditional paper-based assignments in economics. The main features of Aplia are: (1) interactive content…
Utilization of KSC Present Broadband Communications Data System For Digital Video Services
NASA Technical Reports Server (NTRS)
Andrawis, Alfred S.
2001-01-01
This report covers a visibility study of utilizing present KSC broadband communications data system (BCDS) for digital video services. Digital video services include compressed digital TV delivery and video-on-demand. Furthermore, the study examines the possibility of providing interactive video on demand to desktop personal computers via KSC computer network.
Computational Model of Population Dynamics Based on the Cell Cycle and Local Interactions
NASA Astrophysics Data System (ADS)
Oprisan, Sorinel Adrian; Oprisan, Ana
2005-03-01
Our study bridges cellular (mesoscopic) level interactions and global population (macroscopic) dynamics of carcinoma. The morphological differences and transitions between well and smooth defined benign tumors and tentacular malignat tumors suggest a theoretical analysis of tumor invasion based on the development of mathematical models exhibiting bifurcations of spatial patterns in the density of tumor cells. Our computational model views the most representative and clinically relevant features of oncogenesis as a fight between two distinct sub-systems: the immune system of the host and the neoplastic system. We implemented the neoplastic sub-system using a three-stage cell cycle: active, dormant, and necrosis. The second considered sub-system consists of cytotoxic active (effector) cells — EC, with a very broad phenotype ranging from NK cells to CTL cells, macrophages, etc. Based on extensive numerical simulations, we correlated the fractal dimensions for carcinoma, which could be obtained from tumor imaging, with the malignat stage. Our computational model was able to also simulate the effects of surgical, chemotherapeutical, and radiotherapeutical treatments.
Multipole Algorithms for Molecular Dynamics Simulation on High Performance Computers.
NASA Astrophysics Data System (ADS)
Elliott, William Dewey
1995-01-01
A fundamental problem in modeling large molecular systems with molecular dynamics (MD) simulations is the underlying N-body problem of computing the interactions between all pairs of N atoms. The simplest algorithm to compute pair-wise atomic interactions scales in runtime {cal O}(N^2), making it impractical for interesting biomolecular systems, which can contain millions of atoms. Recently, several algorithms have become available that solve the N-body problem by computing the effects of all pair-wise interactions while scaling in runtime less than {cal O}(N^2). One algorithm, which scales {cal O}(N) for a uniform distribution of particles, is called the Greengard-Rokhlin Fast Multipole Algorithm (FMA). This work describes an FMA-like algorithm called the Molecular Dynamics Multipole Algorithm (MDMA). The algorithm contains several features that are new to N-body algorithms. MDMA uses new, efficient series expansion equations to compute general 1/r^{n } potentials to arbitrary accuracy. In particular, the 1/r Coulomb potential and the 1/r^6 portion of the Lennard-Jones potential are implemented. The new equations are based on multivariate Taylor series expansions. In addition, MDMA uses a cell-to-cell interaction region of cells that is closely tied to worst case error bounds. The worst case error bounds for MDMA are derived in this work also. These bounds apply to other multipole algorithms as well. Several implementation enhancements are described which apply to MDMA as well as other N-body algorithms such as FMA and tree codes. The mathematics of the cell -to-cell interactions are converted to the Fourier domain for reduced operation count and faster computation. A relative indexing scheme was devised to locate cells in the interaction region which allows efficient pre-computation of redundant information and prestorage of much of the cell-to-cell interaction. Also, MDMA was integrated into the MD program SIgMA to demonstrate the performance of the program over several simulation timesteps. One MD application described here highlights the utility of including long range contributions to Lennard-Jones potential in constant pressure simulations. Another application shows the time dependence of long range forces in a multiple time step MD simulation.
Program For Generating Interactive Displays
NASA Technical Reports Server (NTRS)
Costenbader, Jay; Moleski, Walt; Szczur, Martha; Howell, David; Engelberg, Norm; Li, Tin P.; Misra, Dharitri; Miller, Philip; Neve, Leif; Wolf, Karl;
1991-01-01
Sun/Unix version of Transportable Applications Environment Plus (TAE+) computer program provides integrated, portable software environment for developing and running interactive window, text, and graphical-object-based application software systems. Enables programmer or nonprogrammer to construct easily custom software interface between user and application program and to move resulting interface program and its application program to different computers. Plus viewed as productivity tool for application developers and application end users, who benefit from resultant consistent and well-designed user interface sheltering them from intricacies of computer. Available in form suitable for following six different groups of computers: DEC VAX station and other VMS VAX computers, Macintosh II computers running AUX, Apollo Domain Series 3000, DEC VAX and reduced-instruction-set-computer workstations running Ultrix, Sun 3- and 4-series workstations running Sun OS and IBM RT/PC and PS/2 compute
Another Program For Generating Interactive Graphics
NASA Technical Reports Server (NTRS)
Costenbader, Jay; Moleski, Walt; Szczur, Martha; Howell, David; Engelberg, Norm; Li, Tin P.; Misra, Dharitri; Miller, Philip; Neve, Leif; Wolf, Karl;
1991-01-01
VAX/Ultrix version of Transportable Applications Environment Plus (TAE+) computer program provides integrated, portable software environment for developing and running interactive window, text, and graphical-object-based application software systems. Enables programmer or nonprogrammer to construct easily custom software interface between user and application program and to move resulting interface program and its application program to different computers. When used throughout company for wide range of applications, makes both application program and computer seem transparent, with noticeable improvements in learning curve. Available in form suitable for following six different groups of computers: DEC VAX station and other VMS VAX computers, Macintosh II computers running AUX, Apollo Domain Series 3000, DEC VAX and reduced-instruction-set-computer workstations running Ultrix, Sun 3- and 4-series workstations running Sun OS and IBM RT/PC's and PS/2 computers running AIX, and HP 9000 S
Integrating Grid Services into the Cray XT4 Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
NERSC; Cholia, Shreyas; Lin, Hwa-Chun Wendy
2009-05-01
The 38640 core Cray XT4"Franklin" system at the National Energy Research Scientific Computing Center (NERSC) is a massively parallel resource available to Department of Energy researchers that also provides on-demand grid computing to the Open Science Grid. The integration of grid services on Franklin presented various challenges, including fundamental differences between the interactive and compute nodes, a stripped down compute-node operating system without dynamic library support, a shared-root environment and idiosyncratic application launching. Inour work, we describe how we resolved these challenges on a running, general-purpose production system to provide on-demand compute, storage, accounting and monitoring services through generic gridmore » interfaces that mask the underlying system-specific details for the end user.« less
Kaltdorf, Martin; Dandekar, Thomas; Naseem, Muhammad
2017-01-01
In order to increase our understanding of biological dependencies in plant immune signaling pathways, the known interactions involved in plant immune networks are modeled. This allows computational analysis to predict the functions of growth related hormones in plant-pathogen interaction. The SQUAD (Standardized Qualitative Dynamical Systems) algorithm first determines stable system states in the network and then use them to compute continuous dynamical system states. Our reconstructed Boolean model encompassing hormone immune networks of Arabidopsis thaliana (Arabidopsis) and pathogenicity factors injected by model pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) can be exploited to determine the impact of growth hormones in plant immunity. We describe a detailed working protocol how to use the modified SQUAD-package by exemplifying the contrasting effects of auxin and cytokinins in shaping plant-pathogen interaction.
Computer display and manipulation of biological molecules
NASA Technical Reports Server (NTRS)
Coeckelenbergh, Y.; Macelroy, R. D.; Hart, J.; Rein, R.
1978-01-01
This paper describes a computer model that was designed to investigate the conformation of molecules, macromolecules and subsequent complexes. Utilizing an advanced 3-D dynamic computer display system, the model is sufficiently versatile to accommodate a large variety of molecular input and to generate data for multiple purposes such as visual representation of conformational changes, and calculation of conformation and interaction energy. Molecules can be built on the basis of several levels of information. These include the specification of atomic coordinates and connectivities and the grouping of building blocks and duplicated substructures using symmetry rules found in crystals and polymers such as proteins and nucleic acids. Called AIMS (Ames Interactive Molecular modeling System), the model is now being used to study pre-biotic molecular evolution toward life.
NASA Astrophysics Data System (ADS)
Christensen, C.; Summa, B.; Scorzelli, G.; Lee, J. W.; Venkat, A.; Bremer, P. T.; Pascucci, V.
2017-12-01
Massive datasets are becoming more common due to increasingly detailed simulations and higher resolution acquisition devices. Yet accessing and processing these huge data collections for scientific analysis is still a significant challenge. Solutions that rely on extensive data transfers are increasingly untenable and often impossible due to lack of sufficient storage at the client side as well as insufficient bandwidth to conduct such large transfers, that in some cases could entail petabytes of data. Large-scale remote computing resources can be useful, but utilizing such systems typically entails some form of offline batch processing with long delays, data replications, and substantial cost for any mistakes. Both types of workflows can severely limit the flexible exploration and rapid evaluation of new hypotheses that are crucial to the scientific process and thereby impede scientific discovery. In order to facilitate interactivity in both analysis and visualization of these massive data ensembles, we introduce a dynamic runtime system suitable for progressive computation and interactive visualization of arbitrarily large, disparately located spatiotemporal datasets. Our system includes an embedded domain-specific language (EDSL) that allows users to express a wide range of data analysis operations in a simple and abstract manner. The underlying runtime system transparently resolves issues such as remote data access and resampling while at the same time maintaining interactivity through progressive and interruptible processing. Computations involving large amounts of data can be performed remotely in an incremental fashion that dramatically reduces data movement, while the client receives updates progressively thereby remaining robust to fluctuating network latency or limited bandwidth. This system facilitates interactive, incremental analysis and visualization of massive remote datasets up to petabytes in size. Our system is now available for general use in the community through both docker and anaconda.
Graphical User Interface Programming in Introductory Computer Science.
ERIC Educational Resources Information Center
Skolnick, Michael M.; Spooner, David L.
Modern computing systems exploit graphical user interfaces for interaction with users; as a result, introductory computer science courses must begin to teach the principles underlying such interfaces. This paper presents an approach to graphical user interface (GUI) implementation that is simple enough for beginning students to understand, yet…
Computer Games: Increase Learning in an Interactive Multidisciplinary Environment.
ERIC Educational Resources Information Center
Betz, Joseph A.
1996-01-01
Discusses the educational uses of computer games and simulations and describes a study conducted at the State University of New York College at Farmingdale that used the computer game "Sim City 2000." Highlights include whole systems learning, problem solving, student performance, nonparametric statistics, and treatment of experimental…
On-Line Computer Testing: Implementation and Endorsement.
ERIC Educational Resources Information Center
Gwinn, John F.; Beal, Loretta F.
1988-01-01
Describes an interactive computer-testing and record-keeping system that was implemented for a self-paced anatomy and physiology course. Results of exploratory research are reported that focus on student preference for online testing, test anxiety, attitude, and achievement; and suggestions are given for integrating a computer-testing program into…
Computer-Assisted Instruction: One Aid for Teachers of Reading.
ERIC Educational Resources Information Center
Rauch, Margaret; Samojeden, Elizabeth
Computer assisted instruction (CAI), an instructional system with direct interaction between the student and the computer, can be a valuable aid for presenting new concepts, for reinforcing of selective skills, and for individualizing instruction. The advantages CAI provides include self-paced learning, more efficient allocation of classroom time,…
Large Advanced Space Systems (LASS) computer-aided design program additions
NASA Technical Reports Server (NTRS)
Farrell, C. E.
1982-01-01
The LSS preliminary and conceptual design requires extensive iteractive analysis because of the effects of structural, thermal, and control intercoupling. A computer aided design program that will permit integrating and interfacing of required large space system (LSS) analyses is discussed. The primary objective of this program is the implementation of modeling techniques and analysis algorithms that permit interactive design and tradeoff studies of LSS concepts. Eight software modules were added to the program. The existing rigid body controls module was modified to include solar pressure effects. The new model generator modules and appendage synthesizer module are integrated (interfaced) to permit interactive definition and generation of LSS concepts. The mass properties module permits interactive specification of discrete masses and their locations. The other modules permit interactive analysis of orbital transfer requirements, antenna primary beam n, and attitude control requirements.
Finding Waldo: Learning about Users from their Interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Eli T.; Ottley, Alvitta; Zhao, Helen
Visual analytics is inherently a collaboration between human and computer. However, in current visual analytics systems, the computer has limited means of knowing about its users and their analysis processes. While existing research has shown that a user’s interactions with a system reflect a large amount of the user’s reasoning process, there has been limited advancement in developing automated, real-time techniques that mine interactions to learn about the user. In this paper, we demonstrate that we can accurately predict a user’s task performance and infer some user personality traits by using machine learning techniques to analyze interaction data. Specifically, wemore » conduct an experiment in which participants perform a visual search task and we apply well-known machine learning algorithms to three encodings of the users interaction data. We achieve, depending on algorithm and encoding, between 62% and 96% accuracy at predicting whether each user will be fast or slow at completing the task. Beyond predicting performance, we demonstrate that using the same techniques, we can infer aspects of the user’s personality factors, including locus of control, extraversion, and neuroticism. Further analyses show that strong results can be attained with limited observation time, in some cases, 82% of the final accuracy is gained after a quarter of the average task completion time. Overall, our findings show that interactions can provide information to the computer about its human collaborator, and establish a foundation for realizing mixed- initiative visual analytics systems.« less
NASA Technical Reports Server (NTRS)
Lehtinen, B.; Geyser, L. C.
1984-01-01
AESOP is a computer program for use in designing feedback controls and state estimators for linear multivariable systems. AESOP is meant to be used in an interactive manner. Each design task that the program performs is assigned a "function" number. The user accesses these functions either (1) by inputting a list of desired function numbers or (2) by inputting a single function number. In the latter case the choice of the function will in general depend on the results obtained by the previously executed function. The most important of the AESOP functions are those that design,linear quadratic regulators and Kalman filters. The user interacts with the program when using these design functions by inputting design weighting parameters and by viewing graphic displays of designed system responses. Supporting functions are provided that obtain system transient and frequency responses, transfer functions, and covariance matrices. The program can also compute open-loop system information such as stability (eigenvalues), eigenvectors, controllability, and observability. The program is written in ANSI-66 FORTRAN for use on an IBM 3033 using TSS 370. Descriptions of all subroutines and results of two test cases are included in the appendixes.
Interactive access to forest inventory data for the South Central United States
William H. McWilliams
1990-01-01
On-line access to USDA, Forest Service successive forest inventory data for the South Central United States is provided by two computer systems. The Easy Access to Forest Inventory and Analysis Tables program (EZTAB) produces a set of tables for specific geographic areas. The Interactive Graphics and Retrieval System (INGRES) is a database management system that...
Low-Dimensional Models for Physiological Systems: Nonlinear Coupling of Gas and Liquid Flows
NASA Astrophysics Data System (ADS)
Staples, A. E.; Oran, E. S.; Boris, J. P.; Kailasanath, K.
2006-11-01
Current computational models of biological organisms focus on the details of a specific component of the organism. For example, very detailed models of the human heart, an aorta, a vein, or part of the respiratory or digestive system, are considered either independently from the rest of the body, or as interacting simply with other systems and components in the body. In actual biological organisms, these components and systems are strongly coupled and interact in complex, nonlinear ways leading to complicated global behavior. Here we describe a low-order computational model of two physiological systems, based loosely on a circulatory and respiratory system. Each system is represented as a one-dimensional fluid system with an interconnected series of mass sources, pumps, valves, and other network components, as appropriate, representing different physical organs and system components. Preliminary results from a first version of this model system are presented.
NASA Astrophysics Data System (ADS)
Clarke, L.
2017-12-01
Integrated assessment (IA) modeling and research has a long history, spanning over 30 years since its inception and addressing a wide range of contemporary issues along the way. Over the last decade, IA modeling and research has emerged as one of the primary analytical methods for understanding the complex interactions between human and natural systems, from the interactions between energy, water, and land/food systems to the interplay between health, climate, and air pollution. IA modeling and research is particularly well-suited for the analysis of these interactions because it is a discipline that strives to integrate representations of multiple systems into consistent computational platforms or frameworks. In doing so, it explicitly confronts the many tradeoffs that are frequently necessary to manage complexity and computational cost while still representing the most important interactions and overall, coupled system behavior. This talk explores the history of IA modeling and research as a means to better understand its role in the assessment of contemporary issues at the confluence of human and natural systems. It traces the evolution of IA modeling and research from initial exploration of long-term emissions pathways, to the role of technology in the global evolution of the energy system, to the key linkages between land and energy systems and, more recently, the linkages with water, air pollution, and other key systems and issues. It discusses the advances in modeling that have emerged over this evolution and the biggest challenges that still present themselves as we strive to better understand the most important interactions between human and natural systems and the implications of these interactions for human welfare and decision making.
NASA Technical Reports Server (NTRS)
Reed, John A.; Afjeh, Abdollah A.
1995-01-01
A major difficulty in designing aeropropulsion systems is that of identifying and understanding the interactions between the separate engine components and disciplines (e.g., fluid mechanics, structural mechanics, heat transfer, material properties, etc.). The traditional analysis approach is to decompose the system into separate components with the interaction between components being evaluated by the application of each of the single disciplines in a sequential manner. Here, one discipline uses information from the calculation of another discipline to determine the effects of component coupling. This approach, however, may not properly identify the consequences of these effects during the design phase, leaving the interactions to be discovered and evaluated during engine testing. This contributes to the time and cost of developing new propulsion systems as, typically, several design-build-test cycles are needed to fully identify multidisciplinary effects and reach the desired system performance. The alternative to sequential isolated component analysis is to use multidisciplinary coupling at a more fundamental level. This approach has been made more plausible due to recent advancements in computation simulation along with application of concurrent engineering concepts. Computer simulation systems designed to provide an environment which is capable of integrating the various disciplines into a single simulation system have been proposed and are currently being developed. One such system is being developed by the Numerical Propulsion System Simulation (NPSS) project. The NPSS project, being developed at the Interdisciplinary Technology Office at the NASA Lewis Research Center is a 'numerical test cell' designed to provide for comprehensive computational design and analysis of aerospace propulsion systems. It will provide multi-disciplinary analyses on a variety of computational platforms, and a user-interface consisting of expert systems, data base management and visualization tools, to allow the designer to investigate the complex interactions inherent in these systems. An interactive programming software system, known as the Application Visualization System (AVS), was utilized for the development of the propulsion system simulation. The modularity of this system provides the ability to couple propulsion system components, as well as disciplines, and provides for the ability to integrate existing, well established analysis codes into the overall system simulation. This feature allows the user to customize the simulation model by inserting desired analysis codes. The prototypical simulation environment for multidisciplinary analysis, called Turbofan Engine System Simulation (TESS), which incorporates many of the characteristics of the simulation environment proposed herein, is detailed.
JPL control/structure interaction test bed real-time control computer architecture
NASA Technical Reports Server (NTRS)
Briggs, Hugh C.
1989-01-01
The Control/Structure Interaction Program is a technology development program for spacecraft that exhibit interactions between the control system and structural dynamics. The program objectives include development and verification of new design concepts - such as active structure - and new tools - such as combined structure and control optimization algorithm - and their verification in ground and possibly flight test. A focus mission spacecraft was designed based upon a space interferometer and is the basis for design of the ground test article. The ground test bed objectives include verification of the spacecraft design concepts, the active structure elements and certain design tools such as the new combined structures and controls optimization tool. In anticipation of CSI technology flight experiments, the test bed control electronics must emulate the computation capacity and control architectures of space qualifiable systems as well as the command and control networks that will be used to connect investigators with the flight experiment hardware. The Test Bed facility electronics were functionally partitioned into three units: a laboratory data acquisition system for structural parameter identification and performance verification; an experiment supervisory computer to oversee the experiment, monitor the environmental parameters and perform data logging; and a multilevel real-time control computing system. The design of the Test Bed electronics is presented along with hardware and software component descriptions. The system should break new ground in experimental control electronics and is of interest to anyone working in the verification of control concepts for large structures.
Tools and Techniques for Measuring and Improving Grid Performance
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Frumkin, M.; Smith, W.; VanderWijngaart, R.; Wong, P.; Biegel, Bryan (Technical Monitor)
2001-01-01
This viewgraph presentation provides information on NASA's geographically dispersed computing resources, and the various methods by which the disparate technologies are integrated within a nationwide computational grid. Many large-scale science and engineering projects are accomplished through the interaction of people, heterogeneous computing resources, information systems and instruments at different locations. The overall goal is to facilitate the routine interactions of these resources to reduce the time spent in design cycles, particularly for NASA's mission critical projects. The IPG (Information Power Grid) seeks to implement NASA's diverse computing resources in a fashion similar to the way in which electric power is made available.
NASA Technical Reports Server (NTRS)
Ahmadian, M.; Inman, D. J.
1982-01-01
Systems described by the matrix differental equation are considered. An interactive design routine is presented for positive definite mass, damping, and stiffness matrices. Designing is accomplished by adjusting the mass, damping, and stiffness matrices to obtain a desired oscillation behavior. The algorithm also features interactively modifying the physical structure of the system, obtaining the matrix structure and a number of other system properties. In case of a general system, where the M, C, and K matrices lack any special properties, a routine for the eigenproblem solution of the system is developed. The latent roots are obtained by computing the characteristic polynomial of the system and solving for its roots. The above routines are prepared in FORTRAN IV and prove to be usable for the machines with low core memory.
Varela, Gervasio; Paz-Lopez, Alejandro; Becerra, Jose A.; Duro, Richard
2016-01-01
This paper addresses the problem of developing user interfaces for Ubiquitous Computing (UC) and Ambient Intelligence (AmI) systems. These kind of systems are expected to provide a natural user experience, considering interaction modalities adapted to the user abilities and preferences and using whatever interaction devices are present in the environment. These interaction devices are not necessarily known at design time. The task is quite complicated due to the variety of devices and technologies, and the diversity of scenarios, and it usually burdens the developer with the need to create many different UIs in order to consider the foreseeable user-environment combinations. Here, we propose an UI abstraction framework for UC and AmI systems that effectively improves the portability of those systems between different environments and for different users. It allows developers to design and implement a single UI capable of being deployed with different devices and modalities regardless the physical location. PMID:27399711
Kohrs, Christin; Hrabal, David; Angenstein, Nicole; Brechmann, André
2014-11-01
System response time research is an important issue in human-computer interactions. Experience with technical devices and general rules of human-human interactions determine the user's expectation, and any delay in system response time may lead to immediate physiological, emotional, and behavioral consequences. We investigated such effects on a trial-by-trial basis during a human-computer interaction by measuring changes in skin conductance (SC), heart rate (HR), and the dynamics of button press responses. We found an increase in SC and a deceleration of HR for all three delayed system response times (0.5, 1, 2 s). Moreover, the data on button press dynamics was highly informative since subjects repeated a button press with more force in response to delayed system response times. Furthermore, the button press dynamics could distinguish between correct and incorrect decisions and may thus even be used to infer the uncertainty of a user's decision. Copyright © 2014 Society for Psychophysiological Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-05-01
The Interactive Computer-Enhanced Remote Viewing System (ICERVS) is a software tool for complex three-dimensional (3-D) visualization and modeling. Its primary purpose is to facilitate the use of robotic and telerobotic systems in remote and/or hazardous environments, where spatial information is provided by 3-D mapping sensors. ICERVS provides a robust, interactive system for viewing sensor data in 3-D and combines this with interactive geometric modeling capabilities that allow an operator to construct CAD models to match the remote environment. Part I of this report traces the development of ICERVS through three evolutionary phases: (1) development of first-generation software to render orthogonalmore » view displays and wireframe models; (2) expansion of this software to include interactive viewpoint control, surface-shaded graphics, material (scalar and nonscalar) property data, cut/slice planes, color and visibility mapping, and generalized object models; (3) demonstration of ICERVS as a tool for the remediation of underground storage tanks (USTs) and the dismantlement of contaminated processing facilities. Part II of this report details the software design of ICERVS, with particular emphasis on its object-oriented architecture and user interface.« less
Beyond the benzene dimer: an investigation of the additivity of pi-pi interactions.
Tauer, Tony P; Sherrill, C David
2005-11-24
The benzene dimer is the simplest prototype of pi-pi interactions and has been used to understand the fundamental physics of these interactions as they are observed in more complex systems. In biological systems, however, aromatic rings are rarely found in isolated pairs; thus, it is important to understand whether aromatic pairs remain a good model of pi-pi interactions in clusters. In this study, ab initio methods are used to compute the binding energies of several benzene trimers and tetramers, most of them in 1D stacked configurations. The two-body terms change only slightly relative to the dimer, and except for the cyclic trimer, the three- and four-body terms are negligible. This indicates that aromatic clusters do not feature any large nonadditive effects in their binding energies, and polarization effects in benzene clusters do not greatly change the binding that would be anticipated from unperturbed benzene-benzene interactions, at least for the 1D stacked systems considered. Three-body effects are larger for the cyclic trimer, but for all systems considered, the computed binding energies are within 10% of what would be estimated from benzene dimer energies at the same geometries.
ERIC Educational Resources Information Center
Matsumoto, Paul S.
2014-01-01
The article describes the use of Mathematica, a computer algebra system (CAS), in a high school chemistry course. Mathematica was used to generate a graph, where a slider controls the value of parameter(s) in the equation; thus, students can visualize the effect of the parameter(s) on the behavior of the system. Also, Mathematica can show the…
NASA Astrophysics Data System (ADS)
Gintautas, Vadas; Hubler, Alfred
2006-03-01
As worldwide computer resources increase in power and decrease in cost, real-time simulations of physical systems are becoming increasingly prevalent, from laboratory models to stock market projections and entire ``virtual worlds'' in computer games. Often, these systems are meticulously designed to match real-world systems as closely as possible. We study the limiting behavior of a virtual horizontally driven pendulum coupled to its real-world counterpart, where the interaction occurs on a time scale that is much shorter than the time scale of the dynamical system. We find that if the physical parameters of the virtual system match those of the real system within a certain tolerance, there is a qualitative change in the behavior of the two-pendulum system as the strength of the coupling is increased. Applications include a new method to measure the physical parameters of a real system and the use of resonance spectroscopy to refine a computer model. As virtual systems better approximate real ones, even very weak interactions may produce unexpected and dramatic behavior. The research is supported by the National Science Foundation Grant No. NSF PHY 01-40179, NSF DMS 03-25939 ITR, and NSF DGE 03-38215.
ERIC Educational Resources Information Center
Angeli, Charoula
2013-01-01
An investigation was carried out to examine the effects of cognitive style on learners' performance and interaction during complex problem solving with a computer modeling tool. One hundred and nineteen undergraduates volunteered to participate in the study. Participants were first administered a test, and based on their test scores they were…
ERIC Educational Resources Information Center
Branzburg, Jeffrey
2007-01-01
Interactive whiteboards have made quite a splash in classrooms in recent years. When a computer image is projected on the whiteboard using an LCD projector, users can directly control the computer from the whiteboard. In some systems such as Smart and Mimio, the finger is used in place of a mouse to open and run programs or move windows around. In…
Chao, Edmund Y S; Armiger, Robert S; Yoshida, Hiroaki; Lim, Jonathan; Haraguchi, Naoki
2007-03-08
The ability to combine physiology and engineering analyses with computer sciences has opened the door to the possibility of creating the "Virtual Human" reality. This paper presents a broad foundation for a full-featured biomechanical simulator for the human musculoskeletal system physiology. This simulation technology unites the expertise in biomechanical analysis and graphic modeling to investigate joint and connective tissue mechanics at the structural level and to visualize the results in both static and animated forms together with the model. Adaptable anatomical models including prosthetic implants and fracture fixation devices and a robust computational infrastructure for static, kinematic, kinetic, and stress analyses under varying boundary and loading conditions are incorporated on a common platform, the VIMS (Virtual Interactive Musculoskeletal System). Within this software system, a manageable database containing long bone dimensions, connective tissue material properties and a library of skeletal joint system functional activities and loading conditions are also available and they can easily be modified, updated and expanded. Application software is also available to allow end-users to perform biomechanical analyses interactively. Examples using these models and the computational algorithms in a virtual laboratory environment are used to demonstrate the utility of these unique database and simulation technology. This integrated system, model library and database will impact on orthopaedic education, basic research, device development and application, and clinical patient care related to musculoskeletal joint system reconstruction, trauma management, and rehabilitation.
Chao, Edmund YS; Armiger, Robert S; Yoshida, Hiroaki; Lim, Jonathan; Haraguchi, Naoki
2007-01-01
The ability to combine physiology and engineering analyses with computer sciences has opened the door to the possibility of creating the "Virtual Human" reality. This paper presents a broad foundation for a full-featured biomechanical simulator for the human musculoskeletal system physiology. This simulation technology unites the expertise in biomechanical analysis and graphic modeling to investigate joint and connective tissue mechanics at the structural level and to visualize the results in both static and animated forms together with the model. Adaptable anatomical models including prosthetic implants and fracture fixation devices and a robust computational infrastructure for static, kinematic, kinetic, and stress analyses under varying boundary and loading conditions are incorporated on a common platform, the VIMS (Virtual Interactive Musculoskeletal System). Within this software system, a manageable database containing long bone dimensions, connective tissue material properties and a library of skeletal joint system functional activities and loading conditions are also available and they can easily be modified, updated and expanded. Application software is also available to allow end-users to perform biomechanical analyses interactively. Examples using these models and the computational algorithms in a virtual laboratory environment are used to demonstrate the utility of these unique database and simulation technology. This integrated system, model library and database will impact on orthopaedic education, basic research, device development and application, and clinical patient care related to musculoskeletal joint system reconstruction, trauma management, and rehabilitation. PMID:17343764
Multipurpose Interactive NASA Information Systems (MINIS)
NASA Technical Reports Server (NTRS)
1977-01-01
The Multipurpose Interactive NASA Information System was developed to provide remote, interactive information retrieval capability for various types of data bases to be processed on different types of small and medium size computers. Use of the system for three different data bases is decribed: (1) LANDSAT photo look-up, (2) land use, and (3) census/socioeconomic. Each of the data base elements is shown together with other detailed information that a user would require to contact the system remotely, to transmit inquiries on commands, and to receive the results of the queries or commands.
Interpersonal Biocybernetics: Connecting Through Social Psychophysiology
NASA Technical Reports Server (NTRS)
Pope, Alan T.; Stephens, Chad L.
2012-01-01
One embodiment of biocybernetic adaptation is a human-computer interaction system designed such that physiological signals modulate the effect that control of a task by other means, usually manual control, has on performance of the task. Such a modulation system enables a variety of human-human interactions based upon physiological self-regulation performance. These interpersonal interactions may be mixes of competition and cooperation for simulation training and/or videogame entertainment
A computer-based training system combining virtual reality and multimedia
NASA Technical Reports Server (NTRS)
Stansfield, Sharon A.
1993-01-01
Training new users of complex machines is often an expensive and time-consuming process. This is particularly true for special purpose systems, such as those frequently encountered in DOE applications. This paper presents a computer-based training system intended as a partial solution to this problem. The system extends the basic virtual reality (VR) training paradigm by adding a multimedia component which may be accessed during interaction with the virtual environment. The 3D model used to create the virtual reality is also used as the primary navigation tool through the associated multimedia. This method exploits the natural mapping between a virtual world and the real world that it represents to provide a more intuitive way for the student to interact with all forms of information about the system.
An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system
DOE Office of Scientific and Technical Information (OSTI.GOV)
AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide
Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database inmore » which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. Lastly, this database will facilitate the analysis of protein-DNA interactions and the development of programmatic computational methods that capitalize on integration of structural and biochemical datasets. The database can be accessed at http://ProteinDNA.hms.harvard.edu.« less
An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system
AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide
2015-11-19
Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database inmore » which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. Lastly, this database will facilitate the analysis of protein-DNA interactions and the development of programmatic computational methods that capitalize on integration of structural and biochemical datasets. The database can be accessed at http://ProteinDNA.hms.harvard.edu.« less
SIGI: An Interactive Aid to Career Decision Making.
ERIC Educational Resources Information Center
Katz, Martin R.
1980-01-01
The System of Interactive Guidance and Information (SIGI) helps students make informed and rational career decisions. Interacting with a computer, students examine values, identify and explore options, gain and interpret relevant information, master strategies for decision making, and formulate plans of action. Extensively field-tested, SIGI has…
Information Interaction: Providing a Framework for Information Architecture.
ERIC Educational Resources Information Center
Toms, Elaine G.
2002-01-01
Discussion of information architecture focuses on a model of information interaction that bridges the gap between human and computer and between information behavior and information retrieval. Illustrates how the process of information interaction is affected by the user, the system, and the content. (Contains 93 references.) (LRW)
Physician/Computer Interaction
Dlugacz, Yosef D.; Siegel, Carole; Fischer, Susan
1981-01-01
Despite the fact that the physician's involvement with computer operations has dramatically increased with automation in the health care industry, few studies have focused on the physician's experiences with and reactions to computers. This paper reports on these dimensions for physicians and their medical supervisors who have begun to use a computerized drug review system. Their attitudes and opinions are assessed towards this system and more generally towards the use of computers in medicine. Clinicians' attitudes towards computers are related to their clinical role and feelings about the working milieu. This report presents preliminary data of the study in terms of the frequency distribution of responses.
Art History Interactive Videodisc Project at the University of Iowa.
ERIC Educational Resources Information Center
Sustik, Joan M.
A project which developed a retrieval system to evaluate the advantages and disadvantages of an interactive computer and video display system over traditional methods for using a slide library is described in this publication. The art school slide library of the University of Iowa stores transparencies which are arranged alphabetically within…
Project ITCH: Interactive Digital Simulation in Electrical Engineering Education.
ERIC Educational Resources Information Center
Bailey, F. N.; Kain, R. Y.
A two-stage project is investigating the educational potential of a low-cost time-sharing system used as a simulation tool in Electrical Engineering (EE) education. Phase I involves a pilot study and Phase II a full integration. The system employs interactive computer simulation to teach engineering concepts which are not well handled by…
An Object-Oriented Graphical User Interface for a Reusable Rocket Engine Intelligent Control System
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Musgrave, Jeffrey L.; Guo, Ten-Huei; Paxson, Daniel E.; Wong, Edmond; Saus, Joseph R.; Merrill, Walter C.
1994-01-01
An intelligent control system for reusable rocket engines under development at NASA Lewis Research Center requires a graphical user interface to allow observation of the closed-loop system in operation. The simulation testbed consists of a real-time engine simulation computer, a controls computer, and several auxiliary computers for diagnostics and coordination. The system is set up so that the simulation computer could be replaced by the real engine and the change would be transparent to the control system. Because of the hard real-time requirement of the control computer, putting a graphical user interface on it was not an option. Thus, a separate computer used strictly for the graphical user interface was warranted. An object-oriented LISP-based graphical user interface has been developed on a Texas Instruments Explorer 2+ to indicate the condition of the engine to the observer through plots, animation, interactive graphics, and text.
A Computer Simulation of the Trophic Dynamics of an Aquatic System.
ERIC Educational Resources Information Center
Bowker, D. W.; Randerson, P. F.
1989-01-01
Described is a computer program, AQUASIM, which simulates interaction between environmental factors, phytoplankton, zooplankton, and fish in an aquatic ecosystem. The conceptual flow, equations, variables, rate processes, and parameter manipulations are discussed. (CW)
Cloud Computing Techniques for Space Mission Design
NASA Technical Reports Server (NTRS)
Arrieta, Juan; Senent, Juan
2014-01-01
The overarching objective of space mission design is to tackle complex problems producing better results, and faster. In developing the methods and tools to fulfill this objective, the user interacts with the different layers of a computing system.
A Scalable, Collaborative, Interactive Light-field Display System
2014-06-01
displays, 3D display, holographic video, integral photography, plenoptic , computed photography 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...light-field, holographic displays, 3D display, holographic video, integral photography, plenoptic , computed photography 1 Distribution A: Approved
On Emulation of Flueric Devices in Excitable Chemical Medium
Adamatzky, Andrew
2016-01-01
Flueric devices are fluidic devices without moving parts. Fluidic devices use fluid as a medium for information transfer and computation. A Belousov-Zhabotinsky (BZ) medium is a thin-layer spatially extended excitable chemical medium which exhibits travelling excitation wave-fronts. The excitation wave-fronts transfer information. Flueric devices compute via jets interaction. BZ devices compute via excitation wave-fronts interaction. In numerical model of BZ medium we show that functions of key flueric devices are implemented in the excitable chemical system: signal generator, and, xor, not and nor Boolean gates, delay elements, diodes and sensors. Flueric devices have been widely used in industry since late 1960s and are still employed in automotive and aircraft technologies. Implementation of analog of the flueric devices in the excitable chemical systems opens doors to further applications of excitation wave-based unconventional computing in soft robotics, embedded organic electronics and living technologies. PMID:27997561
On Emulation of Flueric Devices in Excitable Chemical Medium.
Adamatzky, Andrew
2016-01-01
Flueric devices are fluidic devices without moving parts. Fluidic devices use fluid as a medium for information transfer and computation. A Belousov-Zhabotinsky (BZ) medium is a thin-layer spatially extended excitable chemical medium which exhibits travelling excitation wave-fronts. The excitation wave-fronts transfer information. Flueric devices compute via jets interaction. BZ devices compute via excitation wave-fronts interaction. In numerical model of BZ medium we show that functions of key flueric devices are implemented in the excitable chemical system: signal generator, and, xor, not and nor Boolean gates, delay elements, diodes and sensors. Flueric devices have been widely used in industry since late 1960s and are still employed in automotive and aircraft technologies. Implementation of analog of the flueric devices in the excitable chemical systems opens doors to further applications of excitation wave-based unconventional computing in soft robotics, embedded organic electronics and living technologies.
Users matter : multi-agent systems model of high performance computing cluster users.
DOE Office of Scientific and Technical Information (OSTI.GOV)
North, M. J.; Hood, C. S.; Decision and Information Sciences
2005-01-01
High performance computing clusters have been a critical resource for computational science for over a decade and have more recently become integral to large-scale industrial analysis. Despite their well-specified components, the aggregate behavior of clusters is poorly understood. The difficulties arise from complicated interactions between cluster components during operation. These interactions have been studied by many researchers, some of whom have identified the need for holistic multi-scale modeling that simultaneously includes network level, operating system level, process level, and user level behaviors. Each of these levels presents its own modeling challenges, but the user level is the most complex duemore » to the adaptability of human beings. In this vein, there are several major user modeling goals, namely descriptive modeling, predictive modeling and automated weakness discovery. This study shows how multi-agent techniques were used to simulate a large-scale computing cluster at each of these levels.« less
Gas-liquid coexistence in a system of dipolar soft spheres.
Jia, Ran; Braun, Heiko; Hentschke, Reinhard
2010-12-01
The existence of gas-liquid coexistence in dipolar fluids with no other contribution to attractive interaction than dipole-dipole interaction is a basic and open question in the theory of fluids. Here we compute the gas-liquid critical point in a system of dipolar soft spheres subject to an external electric field using molecular dynamics computer simulation. Tracking the critical point as the field strength is approaching zero we find the following limiting values: T(c)=0.063 and ρ(c)=0.0033 (dipole moment μ=1). These values are confirmed by independent simulation at zero field strength.
Multimedia courseware in an open-systems environment: a DoD strategy
NASA Astrophysics Data System (ADS)
Welsch, Lawrence A.
1991-03-01
The federal government is about to invest billions of dollars to develop multimedia training materials for delivery on computer-based interactive training systems. Acquisition of a variety of computers and peripheral devices hosting various operating systems and suites of authoring system software will be necessary to facilitate the development of this courseware. There is no single source that will satisfy all needs. Although high-performance, low-cost interactive training hardware is available, the products have proprietary software interfaces. Because the interfaces are proprietary, expensive reprogramming is usually required to adapt such software products to other platforms. This costly reprogramming could be eliminated by adopting standard software interfaces. DoD's Portable Courseware Project (PORTCO) is typical of projects worldwide that require standard software interfaces. This paper articulates the strategy whereby PORTCO leverages the open systems movement and the new realities of information technology. These realities encompass changes in the pace at which new technology becomes available, changes in organizational goals and philosophy, new roles of vendors and users, changes in the procurement process, and acceleration toward open system environments. The PORTCO strategy is applicable to all projects and systems that require open systems to achieve mission objectives. The federal goal is to facilitate the creation of an environment in which high quality portable courseware is available as commercial off-the-shelf products and is competitively supplied by a variety of vendors. In order to achieve this goal a system architecture incorporating standards to meet the users' needs must be established. The Request for Architecture (RFA) developed cooperatively by DoD and the National Institute of Standards and Technology (NIST) will generate the PORTCO systems architecture. This architecture must freely integrate the courseware and authoring software from the lower levels of machine architecture and systems service implementation. In addition, the systems architecture will establish how the application-specific technologies relate to other technologies. Further, a computer-based interactive training applications profile must be developed. This profile, along with the systems architecture derived as a result of the RFA, provides the basis for identifying the needed standards. NIST will then accelerate the development of these standards using, but not restricted to, existing standards activities within established standards forums. The federal multimedia courseware effort has adopted the Interactive Multimedia Association (INA) Recommended Practices for Interactive Video Portability as the baseline for the migration of computer-based interactive training systems to an open systems environment based upon international standards. The PORTCO strategy includes an evolutionary migration to a standards-based, Open System Environments (OSE). An important aspect of this migration strategy is to move to open systems via stepwise evolution rather than via quantum leaps. Another area of concern is that of infrastructure issues, such as maintaining and supporting the technologies required for computer-based interactive training. The federal multimedia initiative will use the RFA-based architecture to differentiate between those technologies that can be maintained and supported by existing infrastructure mechanisms and those that require new mechanisms. Existing infrastructure mechanisms will be used and where infrastructure mechanisms do not exist, the approach will be to place high priority on establishing the appropriate mechanisms. Establishing an infrastructure mechanism is a nontrivial task requiring sustained investment of resources.
Ramírez De La Pinta, Javier; Maestre Torreblanca, José María; Jurado, Isabel; Reyes De Cozar, Sergio
2017-03-06
In this paper, we explore the possibilities offered by the integration of home automation systems and service robots. In particular, we examine how advanced computationally expensive services can be provided by using a cloud computing approach to overcome the limitations of the hardware available at the user's home. To this end, we integrate two wireless low-cost, off-the-shelf systems in this work, namely, the service robot Rovio and the home automation system Z-wave. Cloud computing is used to enhance the capabilities of these systems so that advanced sensing and interaction services based on image processing and voice recognition can be offered.
Off the Shelf Cloud Robotics for the Smart Home: Empowering a Wireless Robot through Cloud Computing
Ramírez De La Pinta, Javier; Maestre Torreblanca, José María; Jurado, Isabel; Reyes De Cozar, Sergio
2017-01-01
In this paper, we explore the possibilities offered by the integration of home automation systems and service robots. In particular, we examine how advanced computationally expensive services can be provided by using a cloud computing approach to overcome the limitations of the hardware available at the user’s home. To this end, we integrate two wireless low-cost, off-the-shelf systems in this work, namely, the service robot Rovio and the home automation system Z-wave. Cloud computing is used to enhance the capabilities of these systems so that advanced sensing and interaction services based on image processing and voice recognition can be offered. PMID:28272305
NASA Technical Reports Server (NTRS)
Becker, D. D.
1980-01-01
The orbiter subsystems and interfacing program elements which interact with the orbiter computer flight software are analyzed. The failure modes identified in the subsystem/element failure mode and effects analysis are examined. Potential interaction with the software is examined through an evaluation of the software requirements. The analysis is restricted to flight software requirements and excludes utility/checkout software. The results of the hardware/software interaction analysis for the forward reaction control system are presented.
Fourth Annual Workshop on Space Operations Applications and Research (SOAR 90)
NASA Technical Reports Server (NTRS)
Savely, Robert T. (Editor)
1991-01-01
The papers from the symposium are presented. Emphasis is placed on human factors engineering and space environment interactions. The technical areas covered in the human factors section include: satellite monitoring and control, man-computer interfaces, expert systems, AI/robotics interfaces, crew system dynamics, and display devices. The space environment interactions section presents the following topics: space plasma interaction, spacecraft contamination, space debris, and atomic oxygen interaction with materials. Some of the above topics are discussed in relation to the space station and space shuttle.
Interactive information processing for NASA's mesoscale analysis and space sensor program
NASA Technical Reports Server (NTRS)
Parker, K. G.; Maclean, L.; Reavis, N.; Wilson, G.; Hickey, J. S.; Dickerson, M.; Karitani, S.; Keller, D.
1985-01-01
The Atmospheric Sciences Division (ASD) of the Systems Dynamics Laboratory at NASA's Marshall Space Flight Center (MSFC) is currently involved in interactive information processing for the Mesoscale Analysis and Space Sensor (MASS) program. Specifically, the ASD is engaged in the development and implementation of new space-borne remote sensing technology to observe and measure mesoscale atmospheric processes. These space measurements and conventional observational data are being processed together to gain an improved understanding of the mesoscale structure and the dynamical evolution of the atmosphere relative to cloud development and precipitation processes. To satisfy its vast data processing requirements, the ASD has developed a Researcher Computer System consiting of three primary computer systems which provides over 20 scientists with a wide range of capabilities for processing and displaying a large volumes of remote sensing data. Each of the computers performs a specific function according to its unique capabilities.
An Interactive, Web-based High Performance Modeling Environment for Computational Epidemiology.
Deodhar, Suruchi; Bisset, Keith R; Chen, Jiangzhuo; Ma, Yifei; Marathe, Madhav V
2014-07-01
We present an integrated interactive modeling environment to support public health epidemiology. The environment combines a high resolution individual-based model with a user-friendly web-based interface that allows analysts to access the models and the analytics back-end remotely from a desktop or a mobile device. The environment is based on a loosely-coupled service-oriented-architecture that allows analysts to explore various counter factual scenarios. As the modeling tools for public health epidemiology are getting more sophisticated, it is becoming increasingly hard for non-computational scientists to effectively use the systems that incorporate such models. Thus an important design consideration for an integrated modeling environment is to improve ease of use such that experimental simulations can be driven by the users. This is achieved by designing intuitive and user-friendly interfaces that allow users to design and analyze a computational experiment and steer the experiment based on the state of the system. A key feature of a system that supports this design goal is the ability to start, stop, pause and roll-back the disease propagation and intervention application process interactively. An analyst can access the state of the system at any point in time and formulate dynamic interventions based on additional information obtained through state assessment. In addition, the environment provides automated services for experiment set-up and management, thus reducing the overall time for conducting end-to-end experimental studies. We illustrate the applicability of the system by describing computational experiments based on realistic pandemic planning scenarios. The experiments are designed to demonstrate the system's capability and enhanced user productivity.
An Interactive, Web-based High Performance Modeling Environment for Computational Epidemiology
Deodhar, Suruchi; Bisset, Keith R.; Chen, Jiangzhuo; Ma, Yifei; Marathe, Madhav V.
2014-01-01
We present an integrated interactive modeling environment to support public health epidemiology. The environment combines a high resolution individual-based model with a user-friendly web-based interface that allows analysts to access the models and the analytics back-end remotely from a desktop or a mobile device. The environment is based on a loosely-coupled service-oriented-architecture that allows analysts to explore various counter factual scenarios. As the modeling tools for public health epidemiology are getting more sophisticated, it is becoming increasingly hard for non-computational scientists to effectively use the systems that incorporate such models. Thus an important design consideration for an integrated modeling environment is to improve ease of use such that experimental simulations can be driven by the users. This is achieved by designing intuitive and user-friendly interfaces that allow users to design and analyze a computational experiment and steer the experiment based on the state of the system. A key feature of a system that supports this design goal is the ability to start, stop, pause and roll-back the disease propagation and intervention application process interactively. An analyst can access the state of the system at any point in time and formulate dynamic interventions based on additional information obtained through state assessment. In addition, the environment provides automated services for experiment set-up and management, thus reducing the overall time for conducting end-to-end experimental studies. We illustrate the applicability of the system by describing computational experiments based on realistic pandemic planning scenarios. The experiments are designed to demonstrate the system's capability and enhanced user productivity. PMID:25530914
NASA Technical Reports Server (NTRS)
Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator)
1975-01-01
The author has identified the following significant results. It was found that the high speed man machine interaction capability is a distinct advantage of the image 100; however, the small size of the digital computer in the system is a definite limitation. The system can be highly useful in an analysis mode in which it complements a large general purpose computer. The image 100 was found to be extremely valuable in the analysis of aircraft MSS data where the spatial resolution begins to approach photographic quality and the analyst can exercise interpretation judgements and readily interact with the machine.
Analysis and testing of numerical formulas for the initial value problem
NASA Technical Reports Server (NTRS)
Brown, R. L.; Kovach, K. R.; Popyack, J. L.
1980-01-01
Three computer programs for evaluating and testing numerical integration formulas used with fixed stepsize programs to solve initial value systems of ordinary differential equations are described. A program written in PASCAL SERIES, takes as input the differential equations and produces a FORTRAN subroutine for the derivatives of the system and for computing the actual solution through recursive power series techniques. Both of these are used by STAN, a FORTRAN program that interactively displays a discrete analog of the Liapunov stability region of any two dimensional subspace of the system. The derivatives may be used by CLMP, a FORTRAN program, to test the fixed stepsize formula against a good numerical result and interactively display the solutions.
Pun, Thierry; Alecu, Teodor Iulian; Chanel, Guillaume; Kronegg, Julien; Voloshynovskiy, Sviatoslav
2006-06-01
This paper describes the work being conducted in the domain of brain-computer interaction (BCI) at the Multimodal Interaction Group, Computer Vision and Multimedia Laboratory, University of Geneva, Geneva, Switzerland. The application focus of this work is on multimodal interaction rather than on rehabilitation, that is how to augment classical interaction by means of physiological measurements. Three main research topics are addressed. The first one concerns the more general problem of brain source activity recognition from EEGs. In contrast with classical deterministic approaches, we studied iterative robust stochastic based reconstruction procedures modeling source and noise statistics, to overcome known limitations of current techniques. We also developed procedures for optimal electroencephalogram (EEG) sensor system design in terms of placement and number of electrodes. The second topic is the study of BCI protocols and performance from an information-theoretic point of view. Various information rate measurements have been compared for assessing BCI abilities. The third research topic concerns the use of EEG and other physiological signals for assessing a user's emotional status.
ERIC Educational Resources Information Center
Wiggins, Joseph B.; Grafsgaard, Joseph F.; Boyer, Kristy Elizabeth; Wiebe, Eric N.; Lester, James C.
2017-01-01
In recent years, significant advances have been made in intelligent tutoring systems, and these advances hold great promise for adaptively supporting computer science (CS) learning. In particular, tutorial dialogue systems that engage students in natural language dialogue can create rich, adaptive interactions. A promising approach to increasing…
ERIC Educational Resources Information Center
Klein, David C.
2014-01-01
As advancements in automation continue to alter the systemic behavior of computer systems in a wide variety of industrial applications, human-machine interactions are increasingly becoming supervisory in nature, with less hands-on human involvement. This maturing of the human role within the human-computer relationship is relegating operations…
Parametric instabilities of rotor-support systems with application to industrial ventilators
NASA Technical Reports Server (NTRS)
Parszewski, Z.; Krodkiemski, T.; Marynowski, K.
1980-01-01
Rotor support systems interaction with parametric excitation is considered for both unequal principal shaft stiffness (generators) and offset disc rotors (ventilators). Instability regions and types of instability are computed in the first case, and parametric resonances in the second case. Computed and experimental results are compared for laboratory machine models. A field case study of parametric vibrations in industrial ventilators is reported. Computed parametric resonances are confirmed in field measurements, and some industrial failures are explained. Also the dynamic influence and gyroscopic effect of supporting structures are shown and computed.
Scalable hybrid computation with spikes.
Sarpeshkar, Rahul; O'Halloran, Micah
2002-09-01
We outline a hybrid analog-digital scheme for computing with three important features that enable it to scale to systems of large complexity: First, like digital computation, which uses several one-bit precise logical units to collectively compute a precise answer to a computation, the hybrid scheme uses several moderate-precision analog units to collectively compute a precise answer to a computation. Second, frequent discrete signal restoration of the analog information prevents analog noise and offset from degrading the computation. And, third, a state machine enables complex computations to be created using a sequence of elementary computations. A natural choice for implementing this hybrid scheme is one based on spikes because spike-count codes are digital, while spike-time codes are analog. We illustrate how spikes afford easy ways to implement all three components of scalable hybrid computation. First, as an important example of distributed analog computation, we show how spikes can create a distributed modular representation of an analog number by implementing digital carry interactions between spiking analog neurons. Second, we show how signal restoration may be performed by recursive spike-count quantization of spike-time codes. And, third, we use spikes from an analog dynamical system to trigger state transitions in a digital dynamical system, which reconfigures the analog dynamical system using a binary control vector; such feedback interactions between analog and digital dynamical systems create a hybrid state machine (HSM). The HSM extends and expands the concept of a digital finite-state-machine to the hybrid domain. We present experimental data from a two-neuron HSM on a chip that implements error-correcting analog-to-digital conversion with the concurrent use of spike-time and spike-count codes. We also present experimental data from silicon circuits that implement HSM-based pattern recognition using spike-time synchrony. We outline how HSMs may be used to perform learning, vector quantization, spike pattern recognition and generation, and how they may be reconfigured.
Farahani, Navid; Liu, Zheng; Jutt, Dylan; Fine, Jeffrey L
2017-10-01
- Pathologists' computer-assisted diagnosis (pCAD) is a proposed framework for alleviating challenges through the automation of their routine sign-out work. Currently, hypothetical pCAD is based on a triad of advanced image analysis, deep integration with heterogeneous information systems, and a concrete understanding of traditional pathology workflow. Prototyping is an established method for designing complex new computer systems such as pCAD. - To describe, in detail, a prototype of pCAD for the sign-out of a breast cancer specimen. - Deidentified glass slides and data from breast cancer specimens were used. Slides were digitized into whole-slide images with an Aperio ScanScope XT, and screen captures were created by using vendor-provided software. The advanced workflow prototype was constructed by using PowerPoint software. - We modeled an interactive, computer-assisted workflow: pCAD previews whole-slide images in the context of integrated, disparate data and predefined diagnostic tasks and subtasks. Relevant regions of interest (ROIs) would be automatically identified and triaged by the computer. A pathologist's sign-out work would consist of an interactive review of important ROIs, driven by required diagnostic tasks. The interactive session would generate a pathology report automatically. - Using animations and real ROIs, the pCAD prototype demonstrates the hypothetical sign-out in a stepwise fashion, illustrating various interactions and explaining how steps can be automated. The file is publicly available and should be widely compatible. This mock-up is intended to spur discussion and to help usher in the next era of digitization for pathologists by providing desperately needed and long-awaited automation.
People and computers--some recent highlights.
Shackel, B
2000-12-01
This paper aims to review selectively a fair proportion of the literature on human-computer interaction (HCI) over the three years since Shackel (J. Am. Soc. Inform. Sci. 48 (11) (1997) 970-986). After a brief note of history I discuss traditional input, output and workplace aspects, the web and 'E-topics', web-related aspects, virtual reality, safety-critical systems, and the need to move from HCI to human-system integration (HSI). Finally I suggest, and consider briefly, some future possibilities and issues including web consequences, embedded ubiquitous computing, and 'back to systems ergonomics?'.
NASA Technical Reports Server (NTRS)
Afjeh, Abdollah A.; Reed, John A.
2003-01-01
The following reports are presented on this project:A first year progress report on: Development of a Dynamically Configurable,Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; A second year progress report on: Development of a Dynamically Configurable, Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; An Extensible, Interchangeable and Sharable Database Model for Improving Multidisciplinary Aircraft Design; Interactive, Secure Web-enabled Aircraft Engine Simulation Using XML Databinding Integration; and Improving the Aircraft Design Process Using Web-based Modeling and Simulation.
Spin and orbital exchange interactions from Dynamical Mean Field Theory
NASA Astrophysics Data System (ADS)
Secchi, A.; Lichtenstein, A. I.; Katsnelson, M. I.
2016-02-01
We derive a set of equations expressing the parameters of the magnetic interactions characterizing a strongly correlated electronic system in terms of single-electron Green's functions and self-energies. This allows to establish a mapping between the initial electronic system and a spin model including up to quadratic interactions between the effective spins, with a general interaction (exchange) tensor that accounts for anisotropic exchange, Dzyaloshinskii-Moriya interaction and other symmetric terms such as dipole-dipole interaction. We present the formulas in a format that can be used for computations via Dynamical Mean Field Theory algorithms.
Enhancement/upgrade of Engine Structures Technology Best Estimator (EST/BEST) Software System
NASA Technical Reports Server (NTRS)
Shah, Ashwin
2003-01-01
This report describes the work performed during the contract period and the capabilities included in the EST/BEST software system. The developed EST/BEST software system includes the integrated NESSUS, IPACS, COBSTRAN, and ALCCA computer codes required to perform the engine cycle mission and component structural analysis. Also, the interactive input generator for NESSUS, IPACS, and COBSTRAN computer codes have been developed and integrated with the EST/BEST software system. The input generator allows the user to create input from scratch as well as edit existing input files interactively. Since it has been integrated with the EST/BEST software system, it enables the user to modify EST/BEST generated files and perform the analysis to evaluate the benefits. Appendix A gives details of how to use the newly added features in the EST/BEST software system.
Sig2BioPAX: Java tool for converting flat files to BioPAX Level 3 format.
Webb, Ryan L; Ma'ayan, Avi
2011-03-21
The World Wide Web plays a critical role in enabling molecular, cell, systems and computational biologists to exchange, search, visualize, integrate, and analyze experimental data. Such efforts can be further enhanced through the development of semantic web concepts. The semantic web idea is to enable machines to understand data through the development of protocol free data exchange formats such as Resource Description Framework (RDF) and the Web Ontology Language (OWL). These standards provide formal descriptors of objects, object properties and their relationships within a specific knowledge domain. However, the overhead of converting datasets typically stored in data tables such as Excel, text or PDF into RDF or OWL formats is not trivial for non-specialists and as such produces a barrier to seamless data exchange between researchers, databases and analysis tools. This problem is particularly of importance in the field of network systems biology where biochemical interactions between genes and their protein products are abstracted to networks. For the purpose of converting biochemical interactions into the BioPAX format, which is the leading standard developed by the computational systems biology community, we developed an open-source command line tool that takes as input tabular data describing different types of molecular biochemical interactions. The tool converts such interactions into the BioPAX level 3 OWL format. We used the tool to convert several existing and new mammalian networks of protein interactions, signalling pathways, and transcriptional regulatory networks into BioPAX. Some of these networks were deposited into PathwayCommons, a repository for consolidating and organizing biochemical networks. The software tool Sig2BioPAX is a resource that enables experimental and computational systems biologists to contribute their identified networks and pathways of molecular interactions for integration and reuse with the rest of the research community.
Mereghetti, Paolo; Wade, Rebecca C
2012-07-26
High macromolecular concentrations are a distinguishing feature of living organisms. Understanding how the high concentration of solutes affects the dynamic properties of biological macromolecules is fundamental for the comprehension of biological processes in living systems. In this paper, we describe the implementation of mean field models of translational and rotational hydrodynamic interactions into an atomically detailed many-protein brownian dynamics simulation method. Concentrated solutions (30-40% volume fraction) of myoglobin, hemoglobin A, and sickle cell hemoglobin S were simulated, and static structure factors, oligomer formation, and translational and rotational self-diffusion coefficients were computed. Good agreement of computed properties with available experimental data was obtained. The results show the importance of both solvent mediated interactions and weak protein-protein interactions for accurately describing the dynamics and the association properties of concentrated protein solutions. Specifically, they show a qualitative difference in the translational and rotational dynamics of the systems studied. Although the translational diffusion coefficient is controlled by macromolecular shape and hydrodynamic interactions, the rotational diffusion coefficient is affected by macromolecular shape, direct intermolecular interactions, and both translational and rotational hydrodynamic interactions.
IMAGES: An interactive image processing system
NASA Technical Reports Server (NTRS)
Jensen, J. R.
1981-01-01
The IMAGES interactive image processing system was created specifically for undergraduate remote sensing education in geography. The system is interactive, relatively inexpensive to operate, almost hardware independent, and responsive to numerous users at one time in a time-sharing mode. Most important, it provides a medium whereby theoretical remote sensing principles discussed in lecture may be reinforced in laboratory as students perform computer-assisted image processing. In addition to its use in academic and short course environments, the system has also been used extensively to conduct basic image processing research. The flow of information through the system is discussed including an overview of the programs.
NASA Astrophysics Data System (ADS)
Berland, Matthew W.
As scientists use the tools of computational and complex systems theory to broaden science perspectives (e.g., Bar-Yam, 1997; Holland, 1995; Wolfram, 2002), so can middle-school students broaden their perspectives using appropriate tools. The goals of this dissertation project are to build, study, evaluate, and compare activities designed to foster both computational and complex systems fluencies through collaborative constructionist virtual and physical robotics. In these activities, each student builds an agent (e.g., a robot-bird) that must interact with fellow students' agents to generate a complex aggregate (e.g., a flock of robot-birds) in a participatory simulation environment (Wilensky & Stroup, 1999a). In a participatory simulation, students collaborate by acting in a common space, teaching each other, and discussing content with one another. As a result, the students improve both their computational fluency and their complex systems fluency, where fluency is defined as the ability to both consume and produce relevant content (DiSessa, 2000). To date, several systems have been designed to foster computational and complex systems fluencies through computer programming and collaborative play (e.g., Hancock, 2003; Wilensky & Stroup, 1999b); this study suggests that, by supporting the relevant fluencies through collaborative play, they become mutually reinforcing. In this work, I will present both the design of the VBOT virtual/physical constructionist robotics learning environment and a comparative study of student interaction with the virtual and physical environments across four middle-school classrooms, focusing on the contrast in systems perspectives differently afforded by the two environments. In particular, I found that while performance gains were similar overall, the physical environment supported agent perspectives on aggregate behavior, and the virtual environment supported aggregate perspectives on agent behavior. The primary research questions are: (1) What are the relative affordances of virtual and physical constructionist robotics systems towards computational and complex systems fluencies? (2) What can middle school students learn using computational/complex systems learning environments in a collaborative setting? (3) In what ways are these environments and activities effective in teaching students computational and complex systems fluencies?
Virtual performer: single camera 3D measuring system for interaction in virtual space
NASA Astrophysics Data System (ADS)
Sakamoto, Kunio; Taneji, Shoto
2006-10-01
The authors developed interaction media systems in the 3D virtual space. In these systems, the musician virtually plays an instrument like the theremin in the virtual space or the performer plays a show using the virtual character such as a puppet. This interactive virtual media system consists of the image capture, measuring performer's position, detecting and recognizing motions and synthesizing video image using the personal computer. In this paper, we propose some applications of interaction media systems; a virtual musical instrument and superimposing CG character. Moreover, this paper describes the measuring method of the positions of the performer, his/her head and both eyes using a single camera.
Human-computer interaction: psychological aspects of the human use of computing.
Olson, Gary M; Olson, Judith S
2003-01-01
Human-computer interaction (HCI) is a multidisciplinary field in which psychology and other social sciences unite with computer science and related technical fields with the goal of making computing systems that are both useful and usable. It is a blend of applied and basic research, both drawing from psychological research and contributing new ideas to it. New technologies continuously challenge HCI researchers with new options, as do the demands of new audiences and uses. A variety of usability methods have been developed that draw upon psychological principles. HCI research has expanded beyond its roots in the cognitive processes of individual users to include social and organizational processes involved in computer usage in real environments as well as the use of computers in collaboration. HCI researchers need to be mindful of the longer-term changes brought about by the use of computing in a variety of venues.
Interactive lung segmentation in abnormal human and animal chest CT scans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kockelkorn, Thessa T. J. P., E-mail: thessa@isi.uu.nl; Viergever, Max A.; Schaefer-Prokop, Cornelia M.
2014-08-15
Purpose: Many medical image analysis systems require segmentation of the structures of interest as a first step. For scans with gross pathology, automatic segmentation methods may fail. The authors’ aim is to develop a versatile, fast, and reliable interactive system to segment anatomical structures. In this study, this system was used for segmenting lungs in challenging thoracic computed tomography (CT) scans. Methods: In volumetric thoracic CT scans, the chest is segmented and divided into 3D volumes of interest (VOIs), containing voxels with similar densities. These VOIs are automatically labeled as either lung tissue or nonlung tissue. The automatic labeling resultsmore » can be corrected using an interactive or a supervised interactive approach. When using the supervised interactive system, the user is shown the classification results per slice, whereupon he/she can adjust incorrect labels. The system is retrained continuously, taking the corrections and approvals of the user into account. In this way, the system learns to make a better distinction between lung tissue and nonlung tissue. When using the interactive framework without supervised learning, the user corrects all incorrectly labeled VOIs manually. Both interactive segmentation tools were tested on 32 volumetric CT scans of pigs, mice and humans, containing pulmonary abnormalities. Results: On average, supervised interactive lung segmentation took under 9 min of user interaction. Algorithm computing time was 2 min on average, but can easily be reduced. On average, 2.0% of all VOIs in a scan had to be relabeled. Lung segmentation using the interactive segmentation method took on average 13 min and involved relabeling 3.0% of all VOIs on average. The resulting segmentations correspond well to manual delineations of eight axial slices per scan, with an average Dice similarity coefficient of 0.933. Conclusions: The authors have developed two fast and reliable methods for interactive lung segmentation in challenging chest CT images. Both systems do not require prior knowledge of the scans under consideration and work on a variety of scans.« less
Interaction Network Estimation: Predicting Problem-Solving Diversity in Interactive Environments
ERIC Educational Resources Information Center
Eagle, Michael; Hicks, Drew; Barnes, Tiffany
2015-01-01
Intelligent tutoring systems and computer aided learning environments aimed at developing problem solving produce large amounts of transactional data which make it a challenge for both researchers and educators to understand how students work within the environment. Researchers have modeled student-tutor interactions using complex networks in…
ACSYNT - A standards-based system for parametric, computer aided conceptual design of aircraft
NASA Technical Reports Server (NTRS)
Jayaram, S.; Myklebust, A.; Gelhausen, P.
1992-01-01
A group of eight US aerospace companies together with several NASA and NAVY centers, led by NASA Ames Systems Analysis Branch, and Virginia Tech's CAD Laboratory agreed, through the assistance of Americal Technology Initiative, in 1990 to form the ACSYNT (Aircraft Synthesis) Institute. The Institute is supported by a Joint Sponsored Research Agreement to continue the research and development in computer aided conceptual design of aircraft initiated by NASA Ames Research Center and Virginia Tech's CAD Laboratory. The result of this collaboration, a feature-based, parametric computer aided aircraft conceptual design code called ACSYNT, is described. The code is based on analysis routines begun at NASA Ames in the early 1970's. ACSYNT's CAD system is based entirely on the ISO standard Programmer's Hierarchical Interactive Graphics System and is graphics-device independent. The code includes a highly interactive graphical user interface, automatically generated Hermite and B-Spline surface models, and shaded image displays. Numerous features to enhance aircraft conceptual design are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwasa, Takeshi, E-mail: tiwasa@mail.sci.hokudai.ac.jp; Takenaka, Masato; Taketsugu, Tetsuya
A theoretical method to compute infrared absorption spectra when a molecule is interacting with an arbitrary nonuniform electric field such as near-fields is developed and numerically applied to simple model systems. The method is based on the multipolar Hamiltonian where the light-matter interaction is described by a spatial integral of the inner product of the molecular polarization and applied electric field. The computation scheme is developed under the harmonic approximation for the molecular vibrations and the framework of modern electronic structure calculations such as the density functional theory. Infrared reflection absorption and near-field infrared absorption are considered as model systems.more » The obtained IR spectra successfully reflect the spatial structure of the applied electric field and corresponding vibrational modes, demonstrating applicability of the present method to analyze modern nanovibrational spectroscopy using near-fields. The present method can use arbitral electric fields and thus can integrate two fields such as computational chemistry and electromagnetics.« less
Iwasa, Takeshi; Takenaka, Masato; Taketsugu, Tetsuya
2016-03-28
A theoretical method to compute infrared absorption spectra when a molecule is interacting with an arbitrary nonuniform electric field such as near-fields is developed and numerically applied to simple model systems. The method is based on the multipolar Hamiltonian where the light-matter interaction is described by a spatial integral of the inner product of the molecular polarization and applied electric field. The computation scheme is developed under the harmonic approximation for the molecular vibrations and the framework of modern electronic structure calculations such as the density functional theory. Infrared reflection absorption and near-field infrared absorption are considered as model systems. The obtained IR spectra successfully reflect the spatial structure of the applied electric field and corresponding vibrational modes, demonstrating applicability of the present method to analyze modern nanovibrational spectroscopy using near-fields. The present method can use arbitral electric fields and thus can integrate two fields such as computational chemistry and electromagnetics.
Learning gestures for customizable human-computer interaction in the operating room.
Schwarz, Loren Arthur; Bigdelou, Ali; Navab, Nassir
2011-01-01
Interaction with computer-based medical devices in the operating room is often challenging for surgeons due to sterility requirements and the complexity of interventional procedures. Typical solutions, such as delegating the interaction task to an assistant, can be inefficient. We propose a method for gesture-based interaction in the operating room that surgeons can customize to personal requirements and interventional workflow. Given training examples for each desired gesture, our system learns low-dimensional manifold models that enable recognizing gestures and tracking particular poses for fine-grained control. By capturing the surgeon's movements with a few wireless body-worn inertial sensors, we avoid issues of camera-based systems, such as sensitivity to illumination and occlusions. Using a component-based framework implementation, our method can easily be connected to different medical devices. Our experiments show that the approach is able to robustly recognize learned gestures and to distinguish these from other movements.
NASA Astrophysics Data System (ADS)
McCune, Matthew; Shafiee, Ashkan; Forgacs, Gabor; Kosztin, Ioan
2014-03-01
Cellular Particle Dynamics (CPD) is an effective computational method for describing and predicting the time evolution of biomechanical relaxation processes of multicellular systems. A typical example is the fusion of spheroidal bioink particles during post bioprinting structure formation. In CPD cells are modeled as an ensemble of cellular particles (CPs) that interact via short-range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through integration of their equations of motion. CPD was successfully applied to describe and predict the fusion of 3D tissue construct involving identical spherical aggregates. Here, we demonstrate that CPD can also predict tissue formation involving uneven spherical aggregates whose volumes decrease during the fusion process. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.
Applications of airborne ultrasound in human-computer interaction.
Dahl, Tobias; Ealo, Joao L; Bang, Hans J; Holm, Sverre; Khuri-Yakub, Pierre
2014-09-01
Airborne ultrasound is a rapidly developing subfield within human-computer interaction (HCI). Touchless ultrasonic interfaces and pen tracking systems are part of recent trends in HCI and are gaining industry momentum. This paper aims to provide the background and overview necessary to understand the capabilities of ultrasound and its potential future in human-computer interaction. The latest developments on the ultrasound transducer side are presented, focusing on capacitive micro-machined ultrasonic transducers, or CMUTs. Their introduction is an important step toward providing real, low-cost multi-sensor array and beam-forming options. We also provide a unified mathematical framework for understanding and analyzing algorithms used for ultrasound detection and tracking for some of the most relevant applications. Copyright © 2014. Published by Elsevier B.V.
Biocellion: accelerating computer simulation of multicellular biological system models
Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya
2014-01-01
Motivation: Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. Results: We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Availability and implementation: Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. Contact: seunghwa.kang@pnnl.gov PMID:25064572
Training Software in Artificial-Intelligence Computing Techniques
NASA Technical Reports Server (NTRS)
Howard, Ayanna; Rogstad, Eric; Chalfant, Eugene
2005-01-01
The Artificial Intelligence (AI) Toolkit is a computer program for training scientists, engineers, and university students in three soft-computing techniques (fuzzy logic, neural networks, and genetic algorithms) used in artificial-intelligence applications. The program promotes an easily understandable tutorial interface, including an interactive graphical component through which the user can gain hands-on experience in soft-computing techniques applied to realistic example problems. The tutorial provides step-by-step instructions on the workings of soft-computing technology, whereas the hands-on examples allow interaction and reinforcement of the techniques explained throughout the tutorial. In the fuzzy-logic example, a user can interact with a robot and an obstacle course to verify how fuzzy logic is used to command a rover traverse from an arbitrary start to the goal location. For the genetic algorithm example, the problem is to determine the minimum-length path for visiting a user-chosen set of planets in the solar system. For the neural-network example, the problem is to decide, on the basis of input data on physical characteristics, whether a person is a man, woman, or child. The AI Toolkit is compatible with the Windows 95,98, ME, NT 4.0, 2000, and XP operating systems. A computer having a processor speed of at least 300 MHz, and random-access memory of at least 56MB is recommended for optimal performance. The program can be run on a slower computer having less memory, but some functions may not be executed properly.
Navier-Stokes simulation of plume/Vertical Launching System interaction flowfields
NASA Astrophysics Data System (ADS)
York, B. J.; Sinha, N.; Dash, S. M.; Anderson, L.; Gominho, L.
1992-01-01
The application of Navier-Stokes methodology to the analysis of Vertical Launching System/missile exhaust plume interactions is discussed. The complex 3D flowfields related to the Vertical Launching System are computed utilizing the PARCH/RNP Navier-Stokes code. PARCH/RNP solves the fully-coupled system of fluid, two-equation turbulence (k-epsilon) and chemical species equations via the implicit, approximately factored, Beam-Warming algorithm utilizing a block-tridiagonal inversion procedure.
Core commands across airway facilities systems.
DOT National Transportation Integrated Search
2003-05-01
This study takes a high-level approach to evaluate computer systems without regard to the specific method of : interaction. This document analyzes the commands that Airway Facilities (AF) use across different systems and : the meanings attributed to ...
NASA Technical Reports Server (NTRS)
Middleton, W. D.; Lundry, J. L.; Coleman, R. G.
1976-01-01
An integrated system of computer programs was developed for the design and analysis of supersonic configurations. The system uses linearized theory methods for the calculation of surface pressures and supersonic area rule concepts in combination with linearized theory for calculation of aerodynamic force coefficients. Interactive graphics are optional at the user's request. This user's manual contains a description of the system, an explanation of its usage, the input definition, and example output.
ERIC Educational Resources Information Center
Association for the Development of Computer-based Instructional Systems.
These proceedings present 74 selected abstracts and 47 selected formal papers under 14 special interest group headings. Topics addressed by the papers include constructing multimedia; interactive video; computers in secondary school mathematics; access in computer-based instruction; implementing computer-based technology; advisor development;…
ERIC Educational Resources Information Center
Landa-Jiménez, M. A.; González-Gaspar, P.; Pérez-Estudillo, C.; López-Meraz, M. L.; Morgado-Valle, C.; Beltran-Parrazal, L.
2016-01-01
A Muscle-Computer Interface (muCI) is a human-machine system that uses electromyographic (EMG) signals to communicate with a computer. Surface EMG (sEMG) signals are currently used to command robotic devices, such as robotic arms and hands, and mobile robots, such as wheelchairs. These signals reflect the motor intention of a user before the…
ERIC Educational Resources Information Center
Özbek, Necdet Sinan; Eker, Ilyas
2015-01-01
This study describes a set of real-time interactive experiments that address system identification and model reference adaptive control (MRAC) techniques. In constructing laboratory experiments that contribute to efficient teaching, experimental design and instructional strategy are crucial, but a process for doing this has yet to be defined. This…
The Interactivity Effect in Multimedia Learning
ERIC Educational Resources Information Center
Evans, Chris; Gibbons, Nicola J.
2007-01-01
The aim of this study was to determine whether the addition of interactivity to a computer-based learning package enhances the learning process. A sample of 33 (22 male and 11 female) undergraduates on a Business and Management degree used a multimedia system to learn about the operation of a bicycle pump. The system consisted of a labelled…
A Multimedia, Augmented Reality Interactive System for the Application of a Guided School Tour
NASA Astrophysics Data System (ADS)
Lin, Ko-Chun; Huang, Sheng-Wen; Chu, Sheng-Kai; Su, Ming-Wei; Chen, Chia-Yen; Chen, Chi-Fa
The paper describes an implementation of a multimedia, augmented reality system used for a guided school tour. The aim of this work is to improve the level of interactions between a viewer and the system by means of augmented reality. In the implemented system, hand motions are captured via computer vision based approaches and analyzed to extract representative actions which are used to interact with the system. In this manner, tactile peripheral hardware such as keyboard and mouse can be eliminated. In addition, the proposed system also aims to reduce hardware related costs and avoid health risks associated with contaminations by contact in public areas.
An interactive data management and analysis system for clinical investigators.
Groner, G F; Hopwood, M D; Palley, N A; Sibley, W L; Baker, W R; Christopher, T G; Thompson, H K
1978-09-01
An interactive minicomputer-based system has been developed that enables the clinical research investigator to personally explore and analyze his research data and, as a consequence of these explorations, to acquire more information. This system, which does not require extensive training or computer programming, enables the investigator to describe his data interactively in his own terms, enter data values while having them checked for validity, store time-oriented patient data in a carefully controlled on-line data base, retrieve data by patient, variable, and time, create subsets of patients with common characteristics, perform statistical analyses, and produce tables and graphs. It also permits data to be transferred to and from other computers. The system is well accepted and is being used by a variety of medical specialists at the three clinical research centers where it is operational. Reported benefits include less elapsed and nonproductive time, more thorough analysis of more data, greater and earlier insight into the meaning of research data, and increased publishable results.
Microgravity computing codes. User's guide
NASA Astrophysics Data System (ADS)
1982-01-01
Codes used in microgravity experiments to compute fluid parameters and to obtain data graphically are introduced. The computer programs are stored on two diskettes, compatible with the floppy disk drives of the Apple 2. Two versions of both disks are available (DOS-2 and DOS-3). The codes are written in BASIC and are structured as interactive programs. Interaction takes place through the keyboard of any Apple 2-48K standard system with single floppy disk drive. The programs are protected against wrong commands given by the operator. The programs are described step by step in the same order as the instructions displayed on the monitor. Most of these instructions are shown, with samples of computation and of graphics.
A computer system for processing data from routine pulmonary function tests.
Pack, A I; McCusker, R; Moran, F
1977-01-01
In larger pulmonary function laboratories there is a need for computerised techniques of data processing. A flexible computer system, which is used routinely, is described. The system processes data from a relatively large range of tests. Two types of output are produced--one for laboratory purposes, and one for return to the referring physician. The system adds an automatic interpretative report for each set of results. In developing the interpretative system it has been necessary to utilise a number of arbitrary definitions. The present terminology for reporting pulmonary function tests has limitations. The computer interpretation system affords the opportunity to take account of known interaction between measurements of function and different pathological states. Images PMID:329462
Human computer interface guide, revision A
NASA Technical Reports Server (NTRS)
1993-01-01
The Human Computer Interface Guide, SSP 30540, is a reference document for the information systems within the Space Station Freedom Program (SSFP). The Human Computer Interface Guide (HCIG) provides guidelines for the design of computer software that affects human performance, specifically, the human-computer interface. This document contains an introduction and subparagraphs on SSFP computer systems, users, and tasks; guidelines for interactions between users and the SSFP computer systems; human factors evaluation and testing of the user interface system; and example specifications. The contents of this document are intended to be consistent with the tasks and products to be prepared by NASA Work Package Centers and SSFP participants as defined in SSP 30000, Space Station Program Definition and Requirements Document. The Human Computer Interface Guide shall be implemented on all new SSFP contractual and internal activities and shall be included in any existing contracts through contract changes. This document is under the control of the Space Station Control Board, and any changes or revisions will be approved by the deputy director.
Spacecraft Orbit Design and Analysis (SODA), version 1.0 user's guide
NASA Technical Reports Server (NTRS)
Stallcup, Scott S.; Davis, John S.
1989-01-01
The Spacecraft Orbit Design and Analysis (SODA) computer program, Version 1.0 is described. SODA is a spaceflight mission planning system which consists of five program modules integrated around a common database and user interface. SODA runs on a VAX/VMS computer with an EVANS & SUTHERLAND PS300 graphics workstation. BOEING RIM-Version 7 relational database management system performs transparent database services. In the current version three program modules produce an interactive three dimensional (3D) animation of one or more satellites in planetary orbit. Satellite visibility and sensor coverage capabilities are also provided. One module produces an interactive 3D animation of the solar system. Another module calculates cumulative satellite sensor coverage and revisit time for one or more satellites. Currently Earth, Moon, and Mars systems are supported for all modules except the solar system module.
Mesoscale and severe storms (Mass) data management and analysis system
NASA Technical Reports Server (NTRS)
Hickey, J. S.; Karitani, S.; Dickerson, M.
1984-01-01
Progress on the Mesoscale and Severe Storms (MASS) data management and analysis system is described. An interactive atmospheric data base management software package to convert four types of data (Sounding, Single Level, Grid, Image) into standard random access formats is implemented and integrated with the MASS AVE80 Series general purpose plotting and graphics display data analysis software package. An interactive analysis and display graphics software package (AVE80) to analyze large volumes of conventional and satellite derived meteorological data is enhanced to provide imaging/color graphics display utilizing color video hardware integrated into the MASS computer system. Local and remote smart-terminal capability is provided by installing APPLE III computer systems within individual scientist offices and integrated with the MASS system, thus providing color video display, graphics, and characters display of the four data types.
NASA Astrophysics Data System (ADS)
Lahti, Paul M.; Motyka, Eric J.; Lancashire, Robert J.
2000-05-01
A straightforward procedure is described to combine computation of molecular vibrational modes using commonly available molecular modeling programs with visualization of the modes using advanced features of the MDL Information Systems Inc. Chime World Wide Web browser plug-in. Minor editing of experimental spectra that are stored in the JCAMP-DX format allows linkage of IR spectral frequency ranges to Chime molecular display windows. The spectra and animation files can be combined by Hypertext Markup Language programming to allow interactive linkage between experimental spectra and computationally generated vibrational displays. Both the spectra and the molecular displays can be interactively manipulated to allow the user maximum control of the objects being viewed. This procedure should be very valuable not only for aiding students through visual linkage of spectra and various vibrational animations, but also by assisting them in learning the advantages and limitations of computational chemistry by comparison to experiment.
Physics Computing '92: Proceedings of the 4th International Conference
NASA Astrophysics Data System (ADS)
de Groot, Robert A.; Nadrchal, Jaroslav
1993-04-01
The Table of Contents for the book is as follows: * Preface * INVITED PAPERS * Ab Initio Theoretical Approaches to the Structural, Electronic and Vibrational Properties of Small Clusters and Fullerenes: The State of the Art * Neural Multigrid Methods for Gauge Theories and Other Disordered Systems * Multicanonical Monte Carlo Simulations * On the Use of the Symbolic Language Maple in Physics and Chemistry: Several Examples * Nonequilibrium Phase Transitions in Catalysis and Population Models * Computer Algebra, Symmetry Analysis and Integrability of Nonlinear Evolution Equations * The Path-Integral Quantum Simulation of Hydrogen in Metals * Digital Optical Computing: A New Approach of Systolic Arrays Based on Coherence Modulation of Light and Integrated Optics Technology * Molecular Dynamics Simulations of Granular Materials * Numerical Implementation of a K.A.M. Algorithm * Quasi-Monte Carlo, Quasi-Random Numbers and Quasi-Error Estimates * What Can We Learn from QMC Simulations * Physics of Fluctuating Membranes * Plato, Apollonius, and Klein: Playing with Spheres * Steady States in Nonequilibrium Lattice Systems * CONVODE: A REDUCE Package for Differential Equations * Chaos in Coupled Rotators * Symplectic Numerical Methods for Hamiltonian Problems * Computer Simulations of Surfactant Self Assembly * High-dimensional and Very Large Cellular Automata for Immunological Shape Space * A Review of the Lattice Boltzmann Method * Electronic Structure of Solids in the Self-interaction Corrected Local-spin-density Approximation * Dedicated Computers for Lattice Gauge Theory Simulations * Physics Education: A Survey of Problems and Possible Solutions * Parallel Computing and Electronic-Structure Theory * High Precision Simulation Techniques for Lattice Field Theory * CONTRIBUTED PAPERS * Case Study of Microscale Hydrodynamics Using Molecular Dynamics and Lattice Gas Methods * Computer Modelling of the Structural and Electronic Properties of the Supported Metal Catalysis * Ordered Particle Simulations for Serial and MIMD Parallel Computers * "NOLP" -- Program Package for Laser Plasma Nonlinear Optics * Algorithms to Solve Nonlinear Least Square Problems * Distribution of Hydrogen Atoms in Pd-H Computed by Molecular Dynamics * A Ray Tracing of Optical System for Protein Crystallography Beamline at Storage Ring-SIBERIA-2 * Vibrational Properties of a Pseudobinary Linear Chain with Correlated Substitutional Disorder * Application of the Software Package Mathematica in Generalized Master Equation Method * Linelist: An Interactive Program for Analysing Beam-foil Spectra * GROMACS: A Parallel Computer for Molecular Dynamics Simulations * GROMACS Method of Virial Calculation Using a Single Sum * The Interactive Program for the Solution of the Laplace Equation with the Elimination of Singularities for Boundary Functions * Random-Number Generators: Testing Procedures and Comparison of RNG Algorithms * Micro-TOPIC: A Tokamak Plasma Impurities Code * Rotational Molecular Scattering Calculations * Orthonormal Polynomial Method for Calibrating of Cryogenic Temperature Sensors * Frame-based System Representing Basis of Physics * The Role of Massively Data-parallel Computers in Large Scale Molecular Dynamics Simulations * Short-range Molecular Dynamics on a Network of Processors and Workstations * An Algorithm for Higher-order Perturbation Theory in Radiative Transfer Computations * Hydrostochastics: The Master Equation Formulation of Fluid Dynamics * HPP Lattice Gas on Transputers and Networked Workstations * Study on the Hysteresis Cycle Simulation Using Modeling with Different Functions on Intervals * Refined Pruning Techniques for Feed-forward Neural Networks * Random Walk Simulation of the Motion of Transient Charges in Photoconductors * The Optical Hysteresis in Hydrogenated Amorphous Silicon * Diffusion Monte Carlo Analysis of Modern Interatomic Potentials for He * A Parallel Strategy for Molecular Dynamics Simulations of Polar Liquids on Transputer Arrays * Distribution of Ions Reflected on Rough Surfaces * The Study of Step Density Distribution During Molecular Beam Epitaxy Growth: Monte Carlo Computer Simulation * Towards a Formal Approach to the Construction of Large-scale Scientific Applications Software * Correlated Random Walk and Discrete Modelling of Propagation through Inhomogeneous Media * Teaching Plasma Physics Simulation * A Theoretical Determination of the Au-Ni Phase Diagram * Boson and Fermion Kinetics in One-dimensional Lattices * Computational Physics Course on the Technical University * Symbolic Computations in Simulation Code Development and Femtosecond-pulse Laser-plasma Interaction Studies * Computer Algebra and Integrated Computing Systems in Education of Physical Sciences * Coordinated System of Programs for Undergraduate Physics Instruction * Program Package MIRIAM and Atomic Physics of Extreme Systems * High Energy Physics Simulation on the T_Node * The Chapman-Kolmogorov Equation as Representation of Huygens' Principle and the Monolithic Self-consistent Numerical Modelling of Lasers * Authoring System for Simulation Developments * Molecular Dynamics Study of Ion Charge Effects in the Structure of Ionic Crystals * A Computational Physics Introductory Course * Computer Calculation of Substrate Temperature Field in MBE System * Multimagnetical Simulation of the Ising Model in Two and Three Dimensions * Failure of the CTRW Treatment of the Quasicoherent Excitation Transfer * Implementation of a Parallel Conjugate Gradient Method for Simulation of Elastic Light Scattering * Algorithms for Study of Thin Film Growth * Algorithms and Programs for Physics Teaching in Romanian Technical Universities * Multicanonical Simulation of 1st order Transitions: Interface Tension of the 2D 7-State Potts Model * Two Numerical Methods for the Calculation of Periodic Orbits in Hamiltonian Systems * Chaotic Behavior in a Probabilistic Cellular Automata? * Wave Optics Computing by a Networked-based Vector Wave Automaton * Tensor Manipulation Package in REDUCE * Propagation of Electromagnetic Pulses in Stratified Media * The Simple Molecular Dynamics Model for the Study of Thermalization of the Hot Nucleon Gas * Electron Spin Polarization in PdCo Alloys Calculated by KKR-CPA-LSD Method * Simulation Studies of Microscopic Droplet Spreading * A Vectorizable Algorithm for the Multicolor Successive Overrelaxation Method * Tetragonality of the CuAu I Lattice and Its Relation to Electronic Specific Heat and Spin Susceptibility * Computer Simulation of the Formation of Metallic Aggregates Produced by Chemical Reactions in Aqueous Solution * Scaling in Growth Models with Diffusion: A Monte Carlo Study * The Nucleus as the Mesoscopic System * Neural Network Computation as Dynamic System Simulation * First-principles Theory of Surface Segregation in Binary Alloys * Data Smooth Approximation Algorithm for Estimating the Temperature Dependence of the Ice Nucleation Rate * Genetic Algorithms in Optical Design * Application of 2D-FFT in the Study of Molecular Exchange Processes by NMR * Advanced Mobility Model for Electron Transport in P-Si Inversion Layers * Computer Simulation for Film Surfaces and its Fractal Dimension * Parallel Computation Techniques and the Structure of Catalyst Surfaces * Educational SW to Teach Digital Electronics and the Corresponding Text Book * Primitive Trinomials (Mod 2) Whose Degree is a Mersenne Exponent * Stochastic Modelisation and Parallel Computing * Remarks on the Hybrid Monte Carlo Algorithm for the ∫4 Model * An Experimental Computer Assisted Workbench for Physics Teaching * A Fully Implicit Code to Model Tokamak Plasma Edge Transport * EXPFIT: An Interactive Program for Automatic Beam-foil Decay Curve Analysis * Mapping Technique for Solving General, 1-D Hamiltonian Systems * Freeway Traffic, Cellular Automata, and Some (Self-Organizing) Criticality * Photonuclear Yield Analysis by Dynamic Programming * Incremental Representation of the Simply Connected Planar Curves * Self-convergence in Monte Carlo Methods * Adaptive Mesh Technique for Shock Wave Propagation * Simulation of Supersonic Coronal Streams and Their Interaction with the Solar Wind * The Nature of Chaos in Two Systems of Ordinary Nonlinear Differential Equations * Considerations of a Window-shopper * Interpretation of Data Obtained by RTP 4-Channel Pulsed Radar Reflectometer Using a Multi Layer Perceptron * Statistics of Lattice Bosons for Finite Systems * Fractal Based Image Compression with Affine Transformations * Algorithmic Studies on Simulation Codes for Heavy-ion Reactions * An Energy-Wise Computer Simulation of DNA-Ion-Water Interactions Explains the Abnormal Structure of Poly[d(A)]:Poly[d(T)] * Computer Simulation Study of Kosterlitz-Thouless-Like Transitions * Problem-oriented Software Package GUN-EBT for Computer Simulation of Beam Formation and Transport in Technological Electron-Optical Systems * Parallelization of a Boundary Value Solver and its Application in Nonlinear Dynamics * The Symbolic Classification of Real Four-dimensional Lie Algebras * Short, Singular Pulses Generation by a Dye Laser at Two Wavelengths Simultaneously * Quantum Monte Carlo Simulations of the Apex-Oxygen-Model * Approximation Procedures for the Axial Symmetric Static Einstein-Maxwell-Higgs Theory * Crystallization on a Sphere: Parallel Simulation on a Transputer Network * FAMULUS: A Software Product (also) for Physics Education * MathCAD vs. FAMULUS -- A Brief Comparison * First-principles Dynamics Used to Study Dissociative Chemisorption * A Computer Controlled System for Crystal Growth from Melt * A Time Resolved Spectroscopic Method for Short Pulsed Particle Emission * Green's Function Computation in Radiative Transfer Theory * Random Search Optimization Technique for One-criteria and Multi-criteria Problems * Hartley Transform Applications to Thermal Drift Elimination in Scanning Tunneling Microscopy * Algorithms of Measuring, Processing and Interpretation of Experimental Data Obtained with Scanning Tunneling Microscope * Time-dependent Atom-surface Interactions * Local and Global Minima on Molecular Potential Energy Surfaces: An Example of N3 Radical * Computation of Bifurcation Surfaces * Symbolic Computations in Quantum Mechanics: Energies in Next-to-solvable Systems * A Tool for RTP Reactor and Lamp Field Design * Modelling of Particle Spectra for the Analysis of Solid State Surface * List of Participants
ERIC Educational Resources Information Center
Dewhurst, D. G.; Williams, A. D.
1998-01-01
Presents the results of a comparative study to evaluate the effectiveness of two interactive computer-based learning (CBL) programs, covering the cardiovascular system, as an alternative to lectures for first year undergraduate students at a United Kingdom University. Discusses results in relation to the design of evaluative studies and the future…
Video-Based Eye Tracking to Detect the Attention Shift: A Computer Classroom Context-Aware System
ERIC Educational Resources Information Center
Kuo, Yung-Lung; Lee, Jiann-Shu; Hsieh, Min-Chai
2014-01-01
Eye and head movements evoked in response to obvious visual attention shifts. However, there has been little progress on the causes of absent-mindedness so far. The paper proposes an attention awareness system that captures the conditions regarding the interaction of eye gaze and head pose under various attentional switching in computer classroom.…
Simulation System for Training in Laparoscopic Surgery
NASA Technical Reports Server (NTRS)
Basdogan, Cagatay; Ho, Chih-Hao
2003-01-01
A computer-based simulation system creates a visual and haptic virtual environment for training a medical practitioner in laparoscopic surgery. Heretofore, it has been common practice to perform training in partial laparoscopic surgical procedures by use of a laparoscopic training box that encloses a pair of laparoscopic tools, objects to be manipulated by the tools, and an endoscopic video camera. However, the surgical procedures simulated by use of a training box are usually poor imitations of the actual ones. The present computer-based system improves training by presenting a more realistic simulated environment to the trainee. The system includes a computer monitor that displays a real-time image of the affected interior region of the patient, showing laparoscopic instruments interacting with organs and tissues, as would be viewed by use of an endoscopic video camera and displayed to a surgeon during a laparoscopic operation. The system also includes laparoscopic tools that the trainee manipulates while observing the image on the computer monitor (see figure). The instrumentation on the tools consists of (1) position and orientation sensors that provide input data for the simulation and (2) actuators that provide force feedback to simulate the contact forces between the tools and tissues. The simulation software includes components that model the geometries of surgical tools, components that model the geometries and physical behaviors of soft tissues, and components that detect collisions between them. Using the measured positions and orientations of the tools, the software detects whether they are in contact with tissues. In the event of contact, the deformations of the tissues and contact forces are computed by use of the geometric and physical models. The image on the computer screen shows tissues deformed accordingly, while the actuators apply the corresponding forces to the distal ends of the tools. For the purpose of demonstration, the system has been set up to simulate the insertion of a flexible catheter in a bile duct. [As thus configured, the system can also be used to simulate other endoscopic procedures (e.g., bronchoscopy and colonoscopy) that include the insertion of flexible tubes into flexible ducts.] A hybrid approach has been followed in developing the software for real-time simulation of the visual and haptic interactions (1) between forceps and the catheter, (2) between the forceps and the duct, and (3) between the catheter and the duct. The deformations of the duct are simulated by finite-element and modalanalysis procedures, using only the most significant vibration modes of the duct for computing deformations and interaction forces. The catheter is modeled as a set of virtual particles uniformly distributed along the center line of the catheter and connected to each other via linear and torsional springs and damping elements. The interactions between the forceps and the duct as well as the catheter are simulated by use of a ray-based haptic-interaction- simulating technique in which the forceps are modeled as connected line segments.
Temme, K; Osborne, T J; Vollbrecht, K G; Poulin, D; Verstraete, F
2011-03-03
The original motivation to build a quantum computer came from Feynman, who imagined a machine capable of simulating generic quantum mechanical systems--a task that is believed to be intractable for classical computers. Such a machine could have far-reaching applications in the simulation of many-body quantum physics in condensed-matter, chemical and high-energy systems. Part of Feynman's challenge was met by Lloyd, who showed how to approximately decompose the time evolution operator of interacting quantum particles into a short sequence of elementary gates, suitable for operation on a quantum computer. However, this left open the problem of how to simulate the equilibrium and static properties of quantum systems. This requires the preparation of ground and Gibbs states on a quantum computer. For classical systems, this problem is solved by the ubiquitous Metropolis algorithm, a method that has basically acquired a monopoly on the simulation of interacting particles. Here we demonstrate how to implement a quantum version of the Metropolis algorithm. This algorithm permits sampling directly from the eigenstates of the Hamiltonian, and thus evades the sign problem present in classical simulations. A small-scale implementation of this algorithm should be achievable with today's technology.
Quantum robots plus environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benioff, P.
1998-07-23
A quantum robot is a mobile quantum system, including an on board quantum computer and needed ancillary systems, that interacts with an environment of quantum systems. Quantum robots carry out tasks whose goals include making specified changes in the state of the environment or carrying out measurements on the environment. The environments considered so far, oracles, data bases, and quantum registers, are seen to be special cases of environments considered here. It is also seen that a quantum robot should include a quantum computer and cannot be simply a multistate head. A model of quantum robots and their interactions ismore » discussed in which each task, as a sequence of alternating computation and action phases,is described by a unitary single time step operator T {approx} T{sub a} + T{sub c} (discrete space and time are assumed). The overall system dynamics is described as a sum over paths of completed computation (T{sub c}) and action (T{sub a}) phases. A simple example of a task, measuring the distance between the quantum robot and a particle on a 1D lattice with quantum phase path dispersion present, is analyzed. A decision diagram for the task is presented and analyzed.« less
Hands in space: gesture interaction with augmented-reality interfaces.
Billinghurst, Mark; Piumsomboon, Tham; Huidong Bai
2014-01-01
Researchers at the Human Interface Technology Laboratory New Zealand (HIT Lab NZ) are investigating free-hand gestures for natural interaction with augmented-reality interfaces. They've applied the results to systems for desktop computers and mobile devices.
LUMIS Interactive graphics operating instructions and system specifications
NASA Technical Reports Server (NTRS)
Bryant, N. A.; Yu, T. C.; Landini, A. J.
1976-01-01
The LUMIS program has designed an integrated geographic information system to assist program managers and planning groups in metropolitan regions. Described is the system designed to interactively interrogate a data base, display graphically a portion of the region enclosed in the data base, and perform cross tabulations of variables within each city block, block group, or census tract. The system is designed to interface with U. S. Census DIME file technology, but can accept alternative districting conventions. The system is described on three levels: (1) introduction to the systems's concept and potential applications; (2) the method of operating the system on an interactive terminal; and (3) a detailed system specification for computer facility personnel.
Multi-step EMG Classification Algorithm for Human-Computer Interaction
NASA Astrophysics Data System (ADS)
Ren, Peng; Barreto, Armando; Adjouadi, Malek
A three-electrode human-computer interaction system, based on digital processing of the Electromyogram (EMG) signal, is presented. This system can effectively help disabled individuals paralyzed from the neck down to interact with computers or communicate with people through computers using point-and-click graphic interfaces. The three electrodes are placed on the right frontalis, the left temporalis and the right temporalis muscles in the head, respectively. The signal processing algorithm used translates the EMG signals during five kinds of facial movements (left jaw clenching, right jaw clenching, eyebrows up, eyebrows down, simultaneous left & right jaw clenching) into five corresponding types of cursor movements (left, right, up, down and left-click), to provide basic mouse control. The classification strategy is based on three principles: the EMG energy of one channel is typically larger than the others during one specific muscle contraction; the spectral characteristics of the EMG signals produced by the frontalis and temporalis muscles during different movements are different; the EMG signals from adjacent channels typically have correlated energy profiles. The algorithm is evaluated on 20 pre-recorded EMG signal sets, using Matlab simulations. The results show that this method provides improvements and is more robust than other previous approaches.
A heterogeneous system based on GPU and multi-core CPU for real-time fluid and rigid body simulation
NASA Astrophysics Data System (ADS)
da Silva Junior, José Ricardo; Gonzalez Clua, Esteban W.; Montenegro, Anselmo; Lage, Marcos; Dreux, Marcelo de Andrade; Joselli, Mark; Pagliosa, Paulo A.; Kuryla, Christine Lucille
2012-03-01
Computational fluid dynamics in simulation has become an important field not only for physics and engineering areas but also for simulation, computer graphics, virtual reality and even video game development. Many efficient models have been developed over the years, but when many contact interactions must be processed, most models present difficulties or cannot achieve real-time results when executed. The advent of parallel computing has enabled the development of many strategies for accelerating the simulations. Our work proposes a new system which uses some successful algorithms already proposed, as well as a data structure organisation based on a heterogeneous architecture using CPUs and GPUs, in order to process the simulation of the interaction of fluids and rigid bodies. This successfully results in a two-way interaction between them and their surrounding objects. As far as we know, this is the first work that presents a computational collaborative environment which makes use of two different paradigms of hardware architecture for this specific kind of problem. Since our method achieves real-time results, it is suitable for virtual reality, simulation and video game fluid simulation problems.
Molecular dynamics simulations and applications in computational toxicology and nanotoxicology.
Selvaraj, Chandrabose; Sakkiah, Sugunadevi; Tong, Weida; Hong, Huixiao
2018-02-01
Nanotoxicology studies toxicity of nanomaterials and has been widely applied in biomedical researches to explore toxicity of various biological systems. Investigating biological systems through in vivo and in vitro methods is expensive and time taking. Therefore, computational toxicology, a multi-discipline field that utilizes computational power and algorithms to examine toxicology of biological systems, has gained attractions to scientists. Molecular dynamics (MD) simulations of biomolecules such as proteins and DNA are popular for understanding of interactions between biological systems and chemicals in computational toxicology. In this paper, we review MD simulation methods, protocol for running MD simulations and their applications in studies of toxicity and nanotechnology. We also briefly summarize some popular software tools for execution of MD simulations. Published by Elsevier Ltd.
Computer control of a microgravity mammalian cell bioreactor
NASA Technical Reports Server (NTRS)
Hall, William A.
1987-01-01
The initial steps taken in developing a completely menu driven and totally automated computer control system for a bioreactor are discussed. This bioreactor is an electro-mechanical cell growth system cell requiring vigorous control of slowly changing parameters, many of which are so dynamically interactive that computer control is a necessity. The process computer will have two main functions. First, it will provide continuous environmental control utilizing low signal level transducers as inputs and high powered control devices such as solenoids and motors as outputs. Secondly, it will provide continuous environmental monitoring, including mass data storage and periodic data dumps to a supervisory computer.
Simulating complex intracellular processes using object-oriented computational modelling.
Johnson, Colin G; Goldman, Jacki P; Gullick, William J
2004-11-01
The aim of this paper is to give an overview of computer modelling and simulation in cellular biology, in particular as applied to complex biochemical processes within the cell. This is illustrated by the use of the techniques of object-oriented modelling, where the computer is used to construct abstractions of objects in the domain being modelled, and these objects then interact within the computer to simulate the system and allow emergent properties to be observed. The paper also discusses the role of computer simulation in understanding complexity in biological systems, and the kinds of information which can be obtained about biology via simulation.
Real-time interactive 3D computer stereography for recreational applications
NASA Astrophysics Data System (ADS)
Miyazawa, Atsushi; Ishii, Motonaga; Okuzawa, Kazunori; Sakamoto, Ryuuichi
2008-02-01
With the increasing calculation costs of 3D computer stereography, low-cost, high-speed implementation of the latter requires effective distribution of computing resources. In this paper, we attempt to re-classify 3D display technologies on the basis of humans' 3D perception, in order to determine what level of presence or reality is required in recreational video game systems. We then discuss the design and implementation of stereography systems in two categories of the new classification.
A Perspective on Computational Human Performance Models as Design Tools
NASA Technical Reports Server (NTRS)
Jones, Patricia M.
2010-01-01
The design of interactive systems, including levels of automation, displays, and controls, is usually based on design guidelines and iterative empirical prototyping. A complementary approach is to use computational human performance models to evaluate designs. An integrated strategy of model-based and empirical test and evaluation activities is particularly attractive as a methodology for verification and validation of human-rated systems for commercial space. This talk will review several computational human performance modeling approaches and their applicability to design of display and control requirements.
A critical analysis of computational protein design with sparse residue interaction graphs
Georgiev, Ivelin S.
2017-01-01
Protein design algorithms enumerate a combinatorial number of candidate structures to compute the Global Minimum Energy Conformation (GMEC). To efficiently find the GMEC, protein design algorithms must methodically reduce the conformational search space. By applying distance and energy cutoffs, the protein system to be designed can thus be represented using a sparse residue interaction graph, where the number of interacting residue pairs is less than all pairs of mutable residues, and the corresponding GMEC is called the sparse GMEC. However, ignoring some pairwise residue interactions can lead to a change in the energy, conformation, or sequence of the sparse GMEC vs. the original or the full GMEC. Despite the widespread use of sparse residue interaction graphs in protein design, the above mentioned effects of their use have not been previously analyzed. To analyze the costs and benefits of designing with sparse residue interaction graphs, we computed the GMECs for 136 different protein design problems both with and without distance and energy cutoffs, and compared their energies, conformations, and sequences. Our analysis shows that the differences between the GMECs depend critically on whether or not the design includes core, boundary, or surface residues. Moreover, neglecting long-range interactions can alter local interactions and introduce large sequence differences, both of which can result in significant structural and functional changes. Designs on proteins with experimentally measured thermostability show it is beneficial to compute both the full and the sparse GMEC accurately and efficiently. To this end, we show that a provable, ensemble-based algorithm can efficiently compute both GMECs by enumerating a small number of conformations, usually fewer than 1000. This provides a novel way to combine sparse residue interaction graphs with provable, ensemble-based algorithms to reap the benefits of sparse residue interaction graphs while avoiding their potential inaccuracies. PMID:28358804
NASA Astrophysics Data System (ADS)
Srivastava, D. P.; Sahni, V.; Satsangi, P. S.
2014-08-01
Graph-theoretic quantum system modelling (GTQSM) is facilitated by considering the fundamental unit of quantum computation and information, viz. a quantum bit or qubit as a basic building block. Unit directional vectors "ket 0" and "ket 1" constitute two distinct fundamental quantum across variable orthonormal basis vectors, for the Hilbert space, specifying the direction of propagation of information, or computation data, while complementary fundamental quantum through, or flow rate, variables specify probability parameters, or amplitudes, as surrogates for scalar quantum information measure (von Neumann entropy). This paper applies GTQSM in continuum of protein heterodimer tubulin molecules of self-assembling polymers, viz. microtubules in the brain as a holistic system of interacting components representing hierarchical clustered quantum Hopfield network, hQHN, of networks. The quantum input/output ports of the constituent elemental interaction components, or processes, of tunnelling interactions and Coulombic bidirectional interactions are in cascade and parallel interconnections with each other, while the classical output ports of all elemental components are interconnected in parallel to accumulate micro-energy functions generated in the system as Hamiltonian, or Lyapunov, energy function. The paper presents an insight, otherwise difficult to gain, for the complex system of systems represented by clustered quantum Hopfield network, hQHN, through the application of GTQSM construct.
ERIC Educational Resources Information Center
Wilkinson-Riddle, G. J.; Patel, Ashok
1998-01-01
Discusses courseware development, including intelligent tutoring systems, under the Teaching and Learning Technology Programme and the Byzantium project that was designed to define computer-aided learning performance standards suitable for numerate business subjects; examine reasons to use computer-aided learning; and improve access to educational…
Numerical Optimization Using Desktop Computers
1980-09-11
concentrating compound parabolic trough solar collector . Thermophysical, geophysical, optical and economic analyses were used to compute a life-cycle...third computer program, NISCO, was developed to model a nonimaging concentrating compound parabolic trough solar collector using thermophysical...concentrating compound parabolic trough Solar Collector . C. OBJECTIVE The objective of this thesis was to develop a system of interactive programs for the Hewlett
ERIC Educational Resources Information Center
Feldmann, Richard J.; And Others
1972-01-01
Computer graphics provides a valuable tool for the representation and a better understanding of structures, both small and large. Accurate and rapid construction, manipulation, and plotting of structures, such as macromolecules as complex as hemoglobin, are performed by a collection of computer programs and a time-sharing computer. (21 references)…
Applied Graph-Mining Algorithms to Study Biomolecular Interaction Networks
2014-01-01
Protein-protein interaction (PPI) networks carry vital information on the organization of molecular interactions in cellular systems. The identification of functionally relevant modules in PPI networks is one of the most important applications of biological network analysis. Computational analysis is becoming an indispensable tool to understand large-scale biomolecular interaction networks. Several types of computational methods have been developed and employed for the analysis of PPI networks. Of these computational methods, graph comparison and module detection are the two most commonly used strategies. This review summarizes current literature on graph kernel and graph alignment methods for graph comparison strategies, as well as module detection approaches including seed-and-extend, hierarchical clustering, optimization-based, probabilistic, and frequent subgraph methods. Herein, we provide a comprehensive review of the major algorithms employed under each theme, including our recently published frequent subgraph method, for detecting functional modules commonly shared across multiple cancer PPI networks. PMID:24800226
Interactive Videodisc as a Component in a Multi-Method Approach to Anatomy and Physiology.
ERIC Educational Resources Information Center
Wheeler, Donald A.; Wheeler, Mary Jane
At Cuyahoga Community College (Ohio), computer-controlled interactive videodisc technology is being used as one of several instructional methods to teach anatomy and physiology. The system has the following features: audio-visual instruction, interaction with immediate feedback, self-pacing, fill-in-the-blank quizzes for testing total recall,…
A DGS Gesture Dictionary for Modelling on Mobile Devices
ERIC Educational Resources Information Center
Isotani, Seiji; Reis, Helena M.; Alvares, Danilo; Brandão, Anarosa A. F.; Brandão, Leônidas O.
2018-01-01
Interactive or Dynamic Geometry System (DGS) is a tool that help to teach and learn geometry using a computer-based interactive environment. Traditionally, the interaction with DGS is based on keyboard and mouse events where the functionalities are accessed using a menu of icons. Nevertheless, recent findings suggest that such a traditional model…
Affective Behavior and Nonverbal Interaction in Collaborative Virtual Environments
ERIC Educational Resources Information Center
Peña, Adriana; Rangel, Nora; Muñoz, Mirna; Mejia, Jezreel; Lara, Graciela
2016-01-01
While a person's internal state might not be easily inferred through an automatic computer system, within a group, people express themselves through their interaction with others. The group members' interaction can be then helpful to understand, to certain extent, its members' affective behavior in any case toward the task at hand. In this…
Long-ranged contributions to solvation free energies from theory and short-ranged models
Remsing, Richard C.; Liu, Shule; Weeks, John D.
2016-01-01
Long-standing problems associated with long-ranged electrostatic interactions have plagued theory and simulation alike. Traditional lattice sum (Ewald-like) treatments of Coulomb interactions add significant overhead to computer simulations and can produce artifacts from spurious interactions between simulation cell images. These subtle issues become particularly apparent when estimating thermodynamic quantities, such as free energies of solvation in charged and polar systems, to which long-ranged Coulomb interactions typically make a large contribution. In this paper, we develop a framework for determining very accurate solvation free energies of systems with long-ranged interactions from models that interact with purely short-ranged potentials. Our approach is generally applicable and can be combined with existing computational and theoretical techniques for estimating solvation thermodynamics. We demonstrate the utility of our approach by examining the hydration thermodynamics of hydrophobic and ionic solutes and the solvation of a large, highly charged colloid that exhibits overcharging, a complex nonlinear electrostatic phenomenon whereby counterions from the solvent effectively overscreen and locally invert the integrated charge of the solvated object. PMID:26929375
Experimental comparison of two quantum computing architectures.
Linke, Norbert M; Maslov, Dmitri; Roetteler, Martin; Debnath, Shantanu; Figgatt, Caroline; Landsman, Kevin A; Wright, Kenneth; Monroe, Christopher
2017-03-28
We run a selection of algorithms on two state-of-the-art 5-qubit quantum computers that are based on different technology platforms. One is a publicly accessible superconducting transmon device (www. ibm.com/ibm-q) with limited connectivity, and the other is a fully connected trapped-ion system. Even though the two systems have different native quantum interactions, both can be programed in a way that is blind to the underlying hardware, thus allowing a comparison of identical quantum algorithms between different physical systems. We show that quantum algorithms and circuits that use more connectivity clearly benefit from a better-connected system of qubits. Although the quantum systems here are not yet large enough to eclipse classical computers, this experiment exposes critical factors of scaling quantum computers, such as qubit connectivity and gate expressivity. In addition, the results suggest that codesigning particular quantum applications with the hardware itself will be paramount in successfully using quantum computers in the future.
Interactive computation of coverage regions for indoor wireless communication
NASA Astrophysics Data System (ADS)
Abbott, A. Lynn; Bhat, Nitin; Rappaport, Theodore S.
1995-12-01
This paper describes a system which assists in the strategic placement of rf base stations within buildings. Known as the site modeling tool (SMT), this system allows the user to display graphical floor plans and to select base station transceiver parameters, including location and orientation, interactively. The system then computes and highlights estimated coverage regions for each transceiver, enabling the user to assess the total coverage within the building. For single-floor operation, the user can choose between distance-dependent and partition- dependent path-loss models. Similar path-loss models are also available for the case of multiple floors. This paper describes the method used by the system to estimate coverage for both directional and omnidirectional antennas. The site modeling tool is intended to be simple to use by individuals who are not experts at wireless communication system design, and is expected to be very useful in the specification of indoor wireless systems.
Converting laserdisc video to digital video: a demonstration project using brain animations.
Jao, C S; Hier, D B; Brint, S U
1995-01-01
Interactive laserdiscs are of limited value in large group learning situations due to the expense of establishing multiple workstations. The authors implemented an alternative to laserdisc video by using indexed digital video combined with an expert system. High-quality video was captured from a laserdisc player and combined with waveform audio into an audio-video-interleave (AVI) file format in the Microsoft Video-for-Windows environment (Microsoft Corp., Seattle, WA). With the use of an expert system, a knowledge-based computer program provided random access to these indexed AVI files. The program can be played on any multimedia computer without the need for laserdiscs. This system offers a high level of interactive video without the overhead and cost of a laserdisc player.
Payload crew training scheduler (PACTS) user's manual
NASA Technical Reports Server (NTRS)
Shipman, D. L.
1980-01-01
The operation of the payload specialist training scheduler (PACTS) is discussed in this user's manual which is used to schedule payload specialists for mission training on the Spacelab experiments. The PACTS program is a fully automated interactive, computerized scheduling program equipped with tutorial displays. The tutorial displays are sufficiently detailed for use by a program analyst having no computer experience. The PACTS program is designed to operate on the UNIVAC 1108 computer system, and has the capability to load output into a PDP 11/45 Interactive Graphics Display System for printing schedules. The program has the capacity to handle up to three overlapping Spacelab missions.
A rule based computer aided design system
NASA Technical Reports Server (NTRS)
Premack, T.
1986-01-01
A Computer Aided Design (CAD) system is presented which supports the iterative process of design, the dimensional continuity between mating parts, and the hierarchical structure of the parts in their assembled configuration. Prolog, an interactive logic programming language, is used to represent and interpret the data base. The solid geometry representing the parts is defined in parameterized form using the swept volume method. The system is demonstrated with a design of a spring piston.
PCACE-Personal-Computer-Aided Cabling Engineering
NASA Technical Reports Server (NTRS)
Billitti, Joseph W.
1987-01-01
PCACE computer program developed to provide inexpensive, interactive system for learning and using engineering approach to interconnection systems. Basically database system that stores information as files of individual connectors and handles wiring information in circuit groups stored as records. Directly emulates typical manual engineering methods of handling data, thus making interface between user and program very natural. Apple version written in P-Code Pascal and IBM PC version of PCACE written in TURBO Pascal 3.0
NASA Technical Reports Server (NTRS)
Middleton, W. D.; Lundry, J. L.
1976-01-01
An integrated system of computer programs was developed for the design and analysis of supersonic configurations. The system uses linearized theory methods for the calculation of surface pressures and supersonic area rule concepts in combination with linearized theory for calculation of aerodynamic force coefficients. Interactive graphics are optional at the user's request. Schematics of the program structure and the individual overlays and subroutines are described.
ERIC Educational Resources Information Center
Matsuda, Hiroshi; Shindo, Yoshiaki
2006-01-01
The 3D computer graphics (3D-CG) animation using a virtual actor's speaking is very effective as an educational medium. But it takes a long time to produce a 3D-CG animation. To reduce the cost of producing 3D-CG educational contents and improve the capability of the education system, we have developed a new education system using Virtual Actor.…
Gray, A J; Beecher, D E; Olson, M V
1984-01-01
A stand-alone, interactive computer system has been developed that automates the analysis of ethidium bromide-stained agarose and acrylamide gels on which DNA restriction fragments have been separated by size. High-resolution digital images of the gels are obtained using a camera that contains a one-dimensional, 2048-pixel photodiode array that is mechanically translated through 2048 discrete steps in a direction perpendicular to the gel lanes. An automatic band-detection algorithm is used to establish the positions of the gel bands. A color-video graphics system, on which both the gel image and a variety of operator-controlled overlays are displayed, allows the operator to visualize and interact with critical stages of the analysis. The principal interactive steps involve defining the regions of the image that are to be analyzed and editing the results of the band-detection process. The system produces a machine-readable output file that contains the positions, intensities, and descriptive classifications of all the bands, as well as documentary information about the experiment. This file is normally further processed on a larger computer to obtain fragment-size assignments. Images PMID:6320097
Assess program: Interactive data management systems for airborne research
NASA Technical Reports Server (NTRS)
Munoz, R. M.; Reller, J. O., Jr.
1974-01-01
Two data systems were developed for use in airborne research. Both have distributed intelligence and are programmed for interactive support among computers and with human operators. The C-141 system (ADAMS) performs flight planning and telescope control functions in addition to its primary role of data acquisition; the CV-990 system (ADDAS) performs data management functions in support of many research experiments operating concurrently. Each system is arranged for maximum reliability in the first priority function, precision data acquisition.
Image selection system. [computerized data storage and retrieval system
NASA Technical Reports Server (NTRS)
Knutson, M. A.; Hurd, D.; Hubble, L.; Kroeck, R. M.
1974-01-01
An image selection (ISS) was developed for the NASA-Ames Research Center Earth Resources Aircraft Project. The ISS is an interactive, graphics oriented, computer retrieval system for aerial imagery. An analysis of user coverage requests and retrieval strategies is presented, followed by a complete system description. Data base structure, retrieval processors, command language, interactive display options, file structures, and the system's capability to manage sets of selected imagery are described. A detailed example of an area coverage request is graphically presented.
Computer systems for annotation of single molecule fragments
Schwartz, David Charles; Severin, Jessica
2016-07-19
There are provided computer systems for visualizing and annotating single molecule images. Annotation systems in accordance with this disclosure allow a user to mark and annotate single molecules of interest and their restriction enzyme cut sites thereby determining the restriction fragments of single nucleic acid molecules. The markings and annotations may be automatically generated by the system in certain embodiments and they may be overlaid translucently onto the single molecule images. An image caching system may be implemented in the computer annotation systems to reduce image processing time. The annotation systems include one or more connectors connecting to one or more databases capable of storing single molecule data as well as other biomedical data. Such diverse array of data can be retrieved and used to validate the markings and annotations. The annotation systems may be implemented and deployed over a computer network. They may be ergonomically optimized to facilitate user interactions.
An introduction to real-time graphical techniques for analyzing multivariate data
NASA Astrophysics Data System (ADS)
Friedman, Jerome H.; McDonald, John Alan; Stuetzle, Werner
1987-08-01
Orion I is a graphics system used to study applications of computer graphics - especially interactive motion graphics - in statistics. Orion I is the newest of a family of "Prim" systems, whose most striking common feature is the use of real-time motion graphics to display three dimensional scatterplots. Orion I differs from earlier Prim systems through the use of modern and relatively inexpensive raster graphics and microprocessor technology. It also delivers more computing power to its user; Orion I can perform more sophisticated real-time computations than were possible on previous such systems. We demonstrate some of Orion I's capabilities in our film: "Exploring data with Orion I".
Implementing the UCSD PASCAL system on the MODCOMP computer. [deep space network
NASA Technical Reports Server (NTRS)
Wolfe, T.
1980-01-01
The implementation of an interactive software development system (UCSD PASCAL) on the MODCOMP computer is discussed. The development of an interpreter for the MODCOMP II and the MODCOMP IV computers, written in MODCOMP II assembly language, is described. The complete Pascal programming system was run successfully on a MODCOMP II and MODCOMP IV under both the MAX II/III and MAX IV operating systems. The source code for an 8080 microcomputer version of the interpreter was used as the design for the MODCOMP interpreter. A mapping of the functions within the 8080 interpreter into MODCOMP II assembly language was the method used to code the interpreter.
Multimodal and ubiquitous computing systems: supporting independent-living older users.
Perry, Mark; Dowdall, Alan; Lines, Lorna; Hone, Kate
2004-09-01
We document the rationale and design of a multimodal interface to a pervasive/ubiquitous computing system that supports independent living by older people in their own homes. The Millennium Home system involves fitting a resident's home with sensors--these sensors can be used to trigger sequences of interaction with the resident to warn them about dangerous events, or to check if they need external help. We draw lessons from the design process and conclude the paper with implications for the design of multimodal interfaces to ubiquitous systems developed for the elderly and in healthcare, as well as for more general ubiquitous computing applications.
A study of interactive control scheduling and economic assessment for robotic systems
NASA Technical Reports Server (NTRS)
1982-01-01
A class of interactive control systems is derived by generalizing interactive manipulator control systems. Tasks of interactive control systems can be represented as a network of a finite set of actions which have specific operational characteristics and specific resource requirements, and which are of limited duration. This has enabled the decomposition of the overall control algorithm simultaneously and asynchronously. The performance benefits of sensor referenced and computer-aided control of manipulators in a complex environment is evaluated. The first phase of the CURV arm control system software development and the basic features of the control algorithms and their software implementation are presented. An optimal solution for a production scheduling problem that will be easy to implement in practical situations is investigated.
Lee, J D; Caven, B; Haake, S; Brown, T L
2001-01-01
As computer applications for cars emerge, a speech-based interface offers an appealing alternative to the visually demanding direct manipulation interface. However, speech-based systems may pose cognitive demands that could undermine driving safety. This study used a car-following task to evaluate how a speech-based e-mail system affects drivers' response to the periodic braking of a lead vehicle. The study included 24 drivers between the ages of 18 and 24 years. A baseline condition with no e-mail system was compared with a simple and a complex e-mail system in both simple and complex driving environments. The results show a 30% (310 ms) increase in reaction time when the speech-based system is used. Subjective workload ratings and probe questions also indicate that speech-based interaction introduces a significant cognitive load, which was highest for the complex e-mail system. These data show that a speech-based interface is not a panacea that eliminates the potential distraction of in-vehicle computers. Actual or potential applications of this research include design of in-vehicle information systems and evaluation of their contributions to driver distraction.
Computer-assisted surgical planning and automation of laser delivery systems
NASA Astrophysics Data System (ADS)
Zamorano, Lucia J.; Dujovny, Manuel; Dong, Ada; Kadi, A. Majeed
1991-05-01
This paper describes a 'real time' surgical treatment planning interactive workstation, utilizing multimodality imaging (computer tomography, magnetic resonance imaging, digital angiography) that has been developed to provide the neurosurgeon with two-dimensional multiplanar and three-dimensional 'display' of a patient's lesion.
Hurka, Florian; Wenger, Thomas; Heininger, Sebastian; Lueth, Tim C
2011-01-01
This article describes a new interaction device for surgical navigation systems--the so-called navigation mouse system. The idea is to use a tracked instrument of a surgical navigation system like a pointer to control the software. The new interaction system extends existing navigation systems with a microcontroller-unit. The microcontroller-unit uses the existing communication line to extract the needed 3D-information of an instrument to calculate positions analogous to the PC mouse cursor and click events. These positions and events are used to manipulate the navigation system. In an experimental setup the reachable accuracy with the new mouse system is shown.
Scientific Discovery through Advanced Computing (SciDAC-3) Partnership Project Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Forest M.; Bochev, Pavel B.; Cameron-Smith, Philip J..
The Applying Computationally Efficient Schemes for BioGeochemical Cycles ACES4BGC Project is advancing the predictive capabilities of Earth System Models (ESMs) by reducing two of the largest sources of uncertainty, aerosols and biospheric feedbacks, with a highly efficient computational approach. In particular, this project is implementing and optimizing new computationally efficient tracer advection algorithms for large numbers of tracer species; adding important biogeochemical interactions between the atmosphere, land, and ocean models; and applying uncertainty quanti cation (UQ) techniques to constrain process parameters and evaluate uncertainties in feedbacks between biogeochemical cycles and the climate system.
Program Aids Design Of Fluid-Circulating Systems
NASA Technical Reports Server (NTRS)
Bacskay, Allen; Dalee, Robert
1992-01-01
Computer Aided Systems Engineering and Analysis (CASE/A) program is interactive software tool for trade study and analysis, designed to increase productivity during all phases of systems engineering. Graphics-based command-driven software package provides user-friendly computing environment in which engineer analyzes performance and interface characteristics of ECLS/ATC system. Useful during all phases of spacecraft-design program, from initial conceptual design trade studies to actual flight, including pre-flight prediction and in-flight analysis of anomalies. Written in FORTRAN 77.
High-Level Data-Abstraction System
NASA Technical Reports Server (NTRS)
Fishwick, P. A.
1986-01-01
Communication with data-base processor flexible and efficient. High Level Data Abstraction (HILDA) system is three-layer system supporting data-abstraction features of Intel data-base processor (DBP). Purpose of HILDA establishment of flexible method of efficiently communicating with DBP. Power of HILDA lies in its extensibility with regard to syntax and semantic changes. HILDA's high-level query language readily modified. Offers powerful potential to computer sites where DBP attached to DEC VAX-series computer. HILDA system written in Pascal and FORTRAN 77 for interactive execution.
A System for Modelling Cell–Cell Interactions during Plant Morphogenesis
Dupuy, Lionel; Mackenzie, Jonathan; Rudge, Tim; Haseloff, Jim
2008-01-01
Background and aims During the development of multicellular organisms, cells are capable of interacting with each other through a range of biological and physical mechanisms. A description of these networks of cell–cell interactions is essential for an understanding of how cellular activity is co-ordinated in regionalized functional entities such as tissues or organs. The difficulty of experimenting on living tissues has been a major limitation to describing such systems, and computer modelling appears particularly helpful to characterize the behaviour of multicellular systems. The experimental difficulties inherent to the multitude of parallel interactions that underlie cellular morphogenesis have led to the need for computer models. Methods A new generic model of plant cellular morphogenesis is described that expresses interactions amongst cellular entities explicitly: the plant is described as a multi-scale structure, and interactions between distinct entities is established through a topological neighbourhood. Tissues are represented as 2D biphasic systems where the cell wall responds to turgor pressure through a viscous yielding of the cell wall. Key Results This principle was used in the development of the CellModeller software, a generic tool dedicated to the analysis and modelling of plant morphogenesis. The system was applied to three contrasting study cases illustrating genetic, hormonal and mechanical factors involved in plant morphogenesis. Conclusions Plant morphogenesis is fundamentally a cellular process and the CellModeller software, through its underlying generic model, provides an advanced research tool to analyse coupled physical and biological morphogenetic mechanisms. PMID:17921524
Interactive Forecasting with the National Weather Service River Forecast System
NASA Technical Reports Server (NTRS)
Smith, George F.; Page, Donna
1993-01-01
The National Weather Service River Forecast System (NWSRFS) consists of several major hydrometeorologic subcomponents to model the physics of the flow of water through the hydrologic cycle. The entire NWSRFS currently runs in both mainframe and minicomputer environments, using command oriented text input to control the system computations. As computationally powerful and graphically sophisticated scientific workstations became available, the National Weather Service (NWS) recognized that a graphically based, interactive environment would enhance the accuracy and timeliness of NWS river and flood forecasts. Consequently, the operational forecasting portion of the NWSRFS has been ported to run under a UNIX operating system, with X windows as the display environment on a system of networked scientific workstations. In addition, the NWSRFS Interactive Forecast Program was developed to provide a graphical user interface to allow the forecaster to control NWSRFS program flow and to make adjustments to forecasts as necessary. The potential market for water resources forecasting is immense and largely untapped. Any private company able to market the river forecasting technologies currently developed by the NWS Office of Hydrology could provide benefits to many information users and profit from providing these services.
Bounds on the power of proofs and advice in general physical theories.
Lee, Ciarán M; Hoban, Matty J
2016-06-01
Quantum theory presents us with the tools for computational and communication advantages over classical theory. One approach to uncovering the source of these advantages is to determine how computation and communication power vary as quantum theory is replaced by other operationally defined theories from a broad framework of such theories. Such investigations may reveal some of the key physical features required for powerful computation and communication. In this paper, we investigate how simple physical principles bound the power of two different computational paradigms which combine computation and communication in a non-trivial fashion: computation with advice and interactive proof systems. We show that the existence of non-trivial dynamics in a theory implies a bound on the power of computation with advice. Moreover, we provide an explicit example of a theory with no non-trivial dynamics in which the power of computation with advice is unbounded. Finally, we show that the power of simple interactive proof systems in theories where local measurements suffice for tomography is non-trivially bounded. This result provides a proof that [Formula: see text] is contained in [Formula: see text], which does not make use of any uniquely quantum structure-such as the fact that observables correspond to self-adjoint operators-and thus may be of independent interest.
NASA Technical Reports Server (NTRS)
1990-01-01
While a new technology called 'virtual reality' is still at the 'ground floor' level, one of its basic components, 3D computer graphics is already in wide commercial use and expanding. Other components that permit a human operator to 'virtually' explore an artificial environment and to interact with it are being demonstrated routinely at Ames and elsewhere. Virtual reality might be defined as an environment capable of being virtually entered - telepresence, it is called - or interacted with by a human. The Virtual Interface Environment Workstation (VIEW) is a head-mounted stereoscopic display system in which the display may be an artificial computer-generated environment or a real environment relayed from remote video cameras. Operator can 'step into' this environment and interact with it. The DataGlove has a series of fiber optic cables and sensors that detect any movement of the wearer's fingers and transmit the information to a host computer; a computer generated image of the hand will move exactly as the operator is moving his gloved hand. With appropriate software, the operator can use the glove to interact with the computer scene by grasping an object. The DataSuit is a sensor equipped full body garment that greatly increases the sphere of performance for virtual reality simulations.
A high-speed drug interaction search system for ease of use in the clinical environment.
Takada, Masahiro; Inada, Hiroshi; Nakazawa, Kazuo; Tani, Shoko; Iwata, Michiaki; Sugimoto, Yoshihisa; Nagata, Satoru
2012-12-01
With the advancement of pharmaceutical development, drug interactions have become increasingly complex. As a result, a computer-based drug interaction search system is required to organize the whole of drug interaction data. To overcome problems faced with the existing systems, we developed a drug interaction search system using a hash table, which offers higher processing speeds and easier maintenance operations compared with relational databases (RDB). In order to compare the performance of our system and MySQL RDB in terms of search speed, drug interaction searches were repeated for all 45 possible combinations of two out of a group of 10 drugs for two cases: 5,604 and 56,040 drug interaction data. As the principal result, our system was able to process the search approximately 19 times faster than the system using the MySQL RDB. Our system also has several other merits such as that drug interaction data can be created in comma-separated value (CSV) format, thereby facilitating data maintenance. Although our system uses the well-known method of a hash table, it is expected to resolve problems common to existing systems and to be an effective system that enables the safe management of drugs.
Evolving technologies for Space Station Freedom computer-based workstations
NASA Technical Reports Server (NTRS)
Jensen, Dean G.; Rudisill, Marianne
1990-01-01
Viewgraphs on evolving technologies for Space Station Freedom computer-based workstations are presented. The human-computer computer software environment modules are described. The following topics are addressed: command and control workstation concept; cupola workstation concept; Japanese experiment module RMS workstation concept; remote devices controlled from workstations; orbital maneuvering vehicle free flyer; remote manipulator system; Japanese experiment module exposed facility; Japanese experiment module small fine arm; flight telerobotic servicer; human-computer interaction; and workstation/robotics related activities.
ERIC Educational Resources Information Center
Mumba, Frackson; Zhu, Mengxia
2013-01-01
This paper presents a Simulation-based interactive Virtual ClassRoom web system (SVCR: www.vclasie.com) powered by the state-of-the-art cloud computing technology from Google SVCR integrates popular free open-source math, science and engineering simulations and provides functions such as secure user access control and management of courses,…
Speech-Enabled Tools for Augmented Interaction in E-Learning Applications
ERIC Educational Resources Information Center
Selouani, Sid-Ahmed A.; Lê, Tang-Hô; Benahmed, Yacine; O'Shaughnessy, Douglas
2008-01-01
This article presents systems that use speech technology, to emulate the one-on-one interaction a student can get from a virtual instructor. A web-based learning tool, the Learn IN Context (LINC+) system, designed and used in a real mixed-mode learning context for a computer (C++ language) programming course taught at the Université de Moncton…
ERIC Educational Resources Information Center
Yilmaz, Ramazan; Karaoglan Yilmaz, Fatma Gizem; Kilic Cakmak, Ebru
2017-01-01
The purpose of this study is to examine the impacts of transactive memory system (TMS) and interaction platforms in computer-supported collaborative learning (CSCL) on social presence perceptions and self-regulation skills of learners. Within the scope of the study, social presence perceptions and self-regulation skills of students in…
Designing the user interface: strategies for effective human-computer interaction
NASA Astrophysics Data System (ADS)
Shneiderman, B.
1998-03-01
In revising this popular book, Ben Shneiderman again provides a complete, current and authoritative introduction to user-interface design. The user interface is the part of every computer system that determines how people control and operate that system. When the interface is well designed, it is comprehensible, predictable, and controllable; users feel competent, satisfied, and responsible for their actions. Shneiderman discusses the principles and practices needed to design such effective interaction. Based on 20 years experience, Shneiderman offers readers practical techniques and guidelines for interface design. He also takes great care to discuss underlying issues and to support conclusions with empirical results. Interface designers, software engineers, and product managers will all find this book an invaluable resource for creating systems that facilitate rapid learning and performance, yield low error rates, and generate high user satisfaction. Coverage includes the human factors of interactive software (with a new discussion of diverse user communities), tested methods to develop and assess interfaces, interaction styles such as direct manipulation for graphical user interfaces, and design considerations such as effective messages, consistent screen design, and appropriate color.
Real-time spectral analysis of HRV signals: an interactive and user-friendly PC system.
Basano, L; Canepa, F; Ottonello, P
1998-01-01
We present a real-time system, built around a PC and a low-cost data acquisition board, for the spectral analysis of the heart rate variability signal. The Windows-like operating environment on which it is based makes the computer program very user-friendly even for non-specialized personnel. The Power Spectral Density is computed through the use of a hybrid method, in which a classical FFT analysis follows an autoregressive finite-extension of data; the stationarity of the sequence is continuously checked. The use of this algorithm gives a high degree of robustness of the spectral estimation. Moreover, always in real time, the FFT of every data block is computed and displayed in order to corroborate the results as well as to allow the user to interactively choose a proper AR model order.
Understanding Emergency Care Delivery Through Computer Simulation Modeling.
Laker, Lauren F; Torabi, Elham; France, Daniel J; Froehle, Craig M; Goldlust, Eric J; Hoot, Nathan R; Kasaie, Parastu; Lyons, Michael S; Barg-Walkow, Laura H; Ward, Michael J; Wears, Robert L
2018-02-01
In 2017, Academic Emergency Medicine convened a consensus conference entitled, "Catalyzing System Change through Health Care Simulation: Systems, Competency, and Outcomes." This article, a product of the breakout session on "understanding complex interactions through systems modeling," explores the role that computer simulation modeling can and should play in research and development of emergency care delivery systems. This article discusses areas central to the use of computer simulation modeling in emergency care research. The four central approaches to computer simulation modeling are described (Monte Carlo simulation, system dynamics modeling, discrete-event simulation, and agent-based simulation), along with problems amenable to their use and relevant examples to emergency care. Also discussed is an introduction to available software modeling platforms and how to explore their use for research, along with a research agenda for computer simulation modeling. Through this article, our goal is to enhance adoption of computer simulation, a set of methods that hold great promise in addressing emergency care organization and design challenges. © 2017 by the Society for Academic Emergency Medicine.
Biocellion: accelerating computer simulation of multicellular biological system models.
Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya
2014-11-01
Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
IDEAS: A multidisciplinary computer-aided conceptual design system for spacecraft
NASA Technical Reports Server (NTRS)
Ferebee, M. J., Jr.
1984-01-01
During the conceptual development of advanced aerospace vehicles, many compromises must be considered to balance economy and performance of the total system. Subsystem tradeoffs may need to be made in order to satisfy system-sensitive attributes. Due to the increasingly complex nature of aerospace systems, these trade studies have become more difficult and time-consuming to complete and involve interactions of ever-larger numbers of subsystems, components, and performance parameters. The current advances of computer-aided synthesis, modeling and analysis techniques have greatly helped in the evaluation of competing design concepts. Langley Research Center's Space Systems Division is currently engaged in trade studies for a variety of systems which include advanced ground-launched space transportation systems, space-based orbital transfer vehicles, large space antenna concepts and space stations. The need for engineering analysis tools to aid in the rapid synthesis and evaluation of spacecraft has led to the development of the Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) computer-aided design system. The ADEAS system has been used to perform trade studies of competing technologies and requirements in order to pinpoint possible beneficial areas for research and development. IDEAS is presented as a multidisciplinary tool for the analysis of advanced space systems. Capabilities range from model generation and structural and thermal analysis to subsystem synthesis and performance analysis.
An approach to the origin of self-replicating system. I - Intermolecular interactions
NASA Technical Reports Server (NTRS)
Macelroy, R. D.; Coeckelenbergh, Y.; Rein, R.
1978-01-01
The present paper deals with the characteristics and potentialities of a recently developed computer-based molecular modeling system. Some characteristics of current coding systems are examined and are extrapolated to the apparent requirements of primitive prebiological coding systems.
Accounting for User Diversity in Configuring Online Systems.
ERIC Educational Resources Information Center
Woolliams, Peter; Gee, David
1992-01-01
Discusses cultural diversity in human-computer interactions and in the design of online systems. Topics addressed include cognitive psychology; North American and European ethnocentricity; online systems and their organizational setting; models for organization culture; corporate culture; international systems and country-specific cultures; and…
Closed-loop bird-computer interactions: a new method to study the role of bird calls.
Lerch, Alexandre; Roy, Pierre; Pachet, François; Nagle, Laurent
2011-03-01
In the field of songbird research, many studies have shown the role of male songs in territorial defense and courtship. Calling, another important acoustic communication signal, has received much less attention, however, because calls are assumed to contain less information about the emitter than songs do. Birdcall repertoire is diverse, and the role of calls has been found to be significant in the area of social interaction, for example, in pair, family, and group cohesion. However, standard methods for studying calls do not allow precise and systematic study of their role in communication. We propose herein a new method to study bird vocal interaction. A closed-loop computer system interacts with canaries, Serinus canaria, by (1) automatically classifying two basic types of canary vocalization, single versus repeated calls, as they are produced by the subject, and (2) responding with a preprogrammed call type recorded from another bird. This computerized animal-machine interaction requires no human interference. We show first that the birds do engage in sustained interactions with the system, by studying the rate of single and repeated calls for various programmed protocols. We then show that female canaries differentially use single and repeated calls. First, they produce significantly more single than repeated calls, and second, the rate of single calls is associated with the context in which they interact, whereas repeated calls are context independent. This experiment is the first illustration of how closed-loop bird-computer interaction can be used productively to study social relationships. © Springer-Verlag 2010
EXPOSURE ANALYSIS MODELING SYSTEM (EXAMS): USER MANUAL AND SYSTEM DOCUMENTATION
The Exposure Analysis Modeling System, first published in 1982 (EPA-600/3-82-023), provides interactive computer software for formulating aquatic ecosystem models and rapidly evaluating the fate, transport, and exposure concentrations of synthetic organic chemicals - pesticides, ...
Lehrer, Nicole; Duff, Margaret; Venkataraman, Vinay; Turaga, Pavan; Ingalls, Todd; Rymer, W. Zev; Wolf, Steven L.; Rikakis, Thanassis
2015-01-01
Interactive neurorehabilitation (INR) systems provide therapy that can evaluate and deliver feedback on a patient's movement computationally. There are currently many approaches to INR design and implementation, without a clear indication of which methods to utilize best. This article presents key interactive computing, motor learning, and media arts concepts utilized by an interdisciplinary group to develop adaptive, mixed reality INR systems for upper extremity therapy of patients with stroke. Two INR systems are used as examples to show how the concepts can be applied within: (1) a small-scale INR clinical study that achieved integrated improvement of movement quality and functionality through continuously supervised therapy and (2) a pilot study that achieved improvement of clinical scores with minimal supervision. The notion is proposed that some of the successful approaches developed and tested within these systems can form the basis of a scalable design methodology for other INR systems. A coherent approach to INR design is needed to facilitate the use of the systems by physical therapists, increase the number of successful INR studies, and generate rich clinical data that can inform the development of best practices for use of INR in physical therapy. PMID:25425694
Baran, Michael; Lehrer, Nicole; Duff, Margaret; Venkataraman, Vinay; Turaga, Pavan; Ingalls, Todd; Rymer, W Zev; Wolf, Steven L; Rikakis, Thanassis
2015-03-01
Interactive neurorehabilitation (INR) systems provide therapy that can evaluate and deliver feedback on a patient's movement computationally. There are currently many approaches to INR design and implementation, without a clear indication of which methods to utilize best. This article presents key interactive computing, motor learning, and media arts concepts utilized by an interdisciplinary group to develop adaptive, mixed reality INR systems for upper extremity therapy of patients with stroke. Two INR systems are used as examples to show how the concepts can be applied within: (1) a small-scale INR clinical study that achieved integrated improvement of movement quality and functionality through continuously supervised therapy and (2) a pilot study that achieved improvement of clinical scores with minimal supervision. The notion is proposed that some of the successful approaches developed and tested within these systems can form the basis of a scalable design methodology for other INR systems. A coherent approach to INR design is needed to facilitate the use of the systems by physical therapists, increase the number of successful INR studies, and generate rich clinical data that can inform the development of best practices for use of INR in physical therapy. © 2015 American Physical Therapy Association.
The computational challenges of Earth-system science.
O'Neill, Alan; Steenman-Clark, Lois
2002-06-15
The Earth system--comprising atmosphere, ocean, land, cryosphere and biosphere--is an immensely complex system, involving processes and interactions on a wide range of space- and time-scales. To understand and predict the evolution of the Earth system is one of the greatest challenges of modern science, with success likely to bring enormous societal benefits. High-performance computing, along with the wealth of new observational data, is revolutionizing our ability to simulate the Earth system with computer models that link the different components of the system together. There are, however, considerable scientific and technical challenges to be overcome. This paper will consider four of them: complexity, spatial resolution, inherent uncertainty and time-scales. Meeting these challenges requires a significant increase in the power of high-performance computers. The benefits of being able to make reliable predictions about the evolution of the Earth system should, on their own, amply repay this investment.
Supporting medical communication for older patients with a shared touch-screen computer.
Piper, Anne Marie; Hollan, James D
2013-11-01
Increasingly health care facilities are adopting electronic medical record systems and installing computer workstations in patient exam rooms. The introduction of computer workstations into the medical interview process makes it important to consider the impact of such technology on older patients as well as new types of interfaces that may better suit the needs of older adults. While many older adults are comfortable with a traditional computer workstation with a keyboard and mouse, this article explores how a large horizontal touch-screen (i.e., a surface computer) may suit the needs of older patients and facilitates the doctor-patient interview process. Twenty older adults (age 60 to 88) used a prototype multiuser, multitouch system in our research laboratory to examine seven health care scenarios. Behavioral observations as well as results from questionnaires and a structured interview were analyzed. The older adults quickly adapted to the prototype system and reported that it was easy to use. Participants also suggested that having a shared view of one's medical records, especially charts and images, would enhance communication with their doctor and aid understanding. While this study is exploratory and some areas of interaction with a surface computer need to be refined, the technology is promising for sharing electronic patient information during medical interviews involving older adults. Future work must examine doctors' and nurses' interaction with the technology as well as logistical issues of installing such a system in a real world medical setting. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Lehrer, Nicole; Chen, Yinpeng; Duff, Margaret; L Wolf, Steven; Rikakis, Thanassis
2011-09-08
Few existing interactive rehabilitation systems can effectively communicate multiple aspects of movement performance simultaneously, in a manner that appropriately adapts across various training scenarios. In order to address the need for such systems within stroke rehabilitation training, a unified approach for designing interactive systems for upper limb rehabilitation of stroke survivors has been developed and applied for the implementation of an Adaptive Mixed Reality Rehabilitation (AMRR) System. The AMRR system provides computational evaluation and multimedia feedback for the upper limb rehabilitation of stroke survivors. A participant's movements are tracked by motion capture technology and evaluated by computational means. The resulting data are used to generate interactive media-based feedback that communicates to the participant detailed, intuitive evaluations of his performance. This article describes how the AMRR system's interactive feedback is designed to address specific movement challenges faced by stroke survivors. Multimedia examples are provided to illustrate each feedback component. Supportive data are provided for three participants of varying impairment levels to demonstrate the system's ability to train both targeted and integrated aspects of movement. The AMRR system supports training of multiple movement aspects together or in isolation, within adaptable sequences, through cohesive feedback that is based on formalized compositional design principles. From preliminary analysis of the data, we infer that the system's ability to train multiple foci together or in isolation in adaptable sequences, utilizing appropriately designed feedback, can lead to functional improvement. The evaluation and feedback frameworks established within the AMRR system will be applied to the development of a novel home-based system to provide an engaging yet low-cost extension of training for longer periods of time.
2011-01-01
Background Few existing interactive rehabilitation systems can effectively communicate multiple aspects of movement performance simultaneously, in a manner that appropriately adapts across various training scenarios. In order to address the need for such systems within stroke rehabilitation training, a unified approach for designing interactive systems for upper limb rehabilitation of stroke survivors has been developed and applied for the implementation of an Adaptive Mixed Reality Rehabilitation (AMRR) System. Results The AMRR system provides computational evaluation and multimedia feedback for the upper limb rehabilitation of stroke survivors. A participant's movements are tracked by motion capture technology and evaluated by computational means. The resulting data are used to generate interactive media-based feedback that communicates to the participant detailed, intuitive evaluations of his performance. This article describes how the AMRR system's interactive feedback is designed to address specific movement challenges faced by stroke survivors. Multimedia examples are provided to illustrate each feedback component. Supportive data are provided for three participants of varying impairment levels to demonstrate the system's ability to train both targeted and integrated aspects of movement. Conclusions The AMRR system supports training of multiple movement aspects together or in isolation, within adaptable sequences, through cohesive feedback that is based on formalized compositional design principles. From preliminary analysis of the data, we infer that the system's ability to train multiple foci together or in isolation in adaptable sequences, utilizing appropriately designed feedback, can lead to functional improvement. The evaluation and feedback frameworks established within the AMRR system will be applied to the development of a novel home-based system to provide an engaging yet low-cost extension of training for longer periods of time. PMID:21899779
ERIC Educational Resources Information Center
Akhtar, S.; Warburton, S.; Xu, W.
2017-01-01
In this paper we report on the use of a purpose built Computer Support Collaborative learning environment designed to support lab-based CAD teaching through the monitoring of student participation and identified predictors of success. This was carried out by analysing data from the interactive learning system and correlating student behaviour with…
NASA Technical Reports Server (NTRS)
Yakimovsky, Y.
1974-01-01
An approach to simultaneous interpretation of objects in complex structures so as to maximize a combined utility function is presented. Results of the application of a computer software system to assign meaning to regions in a segmented image based on the principles described in this paper and on a special interactive sequential classification learning system, which is referenced, are demonstrated.
ERIC Educational Resources Information Center
Lynch, William W.
Prompting of reading errors is a common pattern of teaching behavior occurring in reading groups. Teachers' tactics in responding to pupil errors during oral reading in public school classrooms were analyzed with the assistance of the technology of the Computer Assisted Teacher Training System (CATTS) to formulate hypotheses about teacher decision…
Network Penetration Testing and Research
NASA Technical Reports Server (NTRS)
Murphy, Brandon F.
2013-01-01
This paper will focus the on research and testing done on penetrating a network for security purposes. This research will provide the IT security office new methods of attacks across and against a company's network as well as introduce them to new platforms and software that can be used to better assist with protecting against such attacks. Throughout this paper testing and research has been done on two different Linux based operating systems, for attacking and compromising a Windows based host computer. Backtrack 5 and BlackBuntu (Linux based penetration testing operating systems) are two different "attacker'' computers that will attempt to plant viruses and or NASA USRP - Internship Final Report exploits on a host Windows 7 operating system, as well as try to retrieve information from the host. On each Linux OS (Backtrack 5 and BlackBuntu) there is penetration testing software which provides the necessary tools to create exploits that can compromise a windows system as well as other operating systems. This paper will focus on two main methods of deploying exploits 1 onto a host computer in order to retrieve information from a compromised system. One method of deployment for an exploit that was tested is known as a "social engineering" exploit. This type of method requires interaction from unsuspecting user. With this user interaction, a deployed exploit may allow a malicious user to gain access to the unsuspecting user's computer as well as the network that such computer is connected to. Due to more advance security setting and antivirus protection and detection, this method is easily identified and defended against. The second method of exploit deployment is the method mainly focused upon within this paper. This method required extensive research on the best way to compromise a security enabled protected network. Once a network has been compromised, then any and all devices connected to such network has the potential to be compromised as well. With a compromised network, computers and devices can be penetrated through deployed exploits. This paper will illustrate the research done to test ability to penetrate a network without user interaction, in order to retrieve personal information from a targeted host.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toma, Milan; Jensen, Morten Ø.; Einstein, Daniel R.
2015-07-17
Numerical models of native heart valves are being used to study valve biomechanics to aid design and development of repair procedures and replacement devices. These models have evolved from simple two-dimensional approximations to complex three-dimensional, fully coupled fluid-structure interaction (FSI) systems. Such simulations are useful for predicting the mechanical and hemodynamic loading on implanted valve devices. A current challenge for improving the accuracy of these predictions is choosing and implementing modeling boundary conditions. In order to address this challenge, we are utilizing an advanced in-vitro system to validate FSI conditions for the mitral valve system. Explanted ovine mitral valves weremore » mounted in an in vitro setup, and structural data for the mitral valve was acquired with *CT. Experimental data from the in-vitro ovine mitral valve system were used to validate the computational model. As the valve closes, the hemodynamic data, high speed lea et dynamics, and force vectors from the in-vitro system were compared to the results of the FSI simulation computational model. The total force of 2.6 N per papillary muscle is matched by the computational model. In vitro and in vivo force measurements are important in validating and adjusting material parameters in computational models. The simulations can then be used to answer questions that are otherwise not possible to investigate experimentally. This work is important to maximize the validity of computational models of not just the mitral valve, but any biomechanical aspect using computational simulation in designing medical devices.« less
Toma, Milan; Jensen, Morten Ø; Einstein, Daniel R; Yoganathan, Ajit P; Cochran, Richard P; Kunzelman, Karyn S
2016-04-01
Numerical models of native heart valves are being used to study valve biomechanics to aid design and development of repair procedures and replacement devices. These models have evolved from simple two-dimensional approximations to complex three-dimensional, fully coupled fluid-structure interaction (FSI) systems. Such simulations are useful for predicting the mechanical and hemodynamic loading on implanted valve devices. A current challenge for improving the accuracy of these predictions is choosing and implementing modeling boundary conditions. In order to address this challenge, we are utilizing an advanced in vitro system to validate FSI conditions for the mitral valve system. Explanted ovine mitral valves were mounted in an in vitro setup, and structural data for the mitral valve was acquired with [Formula: see text]CT. Experimental data from the in vitro ovine mitral valve system were used to validate the computational model. As the valve closes, the hemodynamic data, high speed leaflet dynamics, and force vectors from the in vitro system were compared to the results of the FSI simulation computational model. The total force of 2.6 N per papillary muscle is matched by the computational model. In vitro and in vivo force measurements enable validating and adjusting material parameters to improve the accuracy of computational models. The simulations can then be used to answer questions that are otherwise not possible to investigate experimentally. This work is important to maximize the validity of computational models of not just the mitral valve, but any biomechanical aspect using computational simulation in designing medical devices.