Sample records for interactive design tool

  1. An Exploratory Study of Interactivity in Visualization Tools: "Flow" of Interaction

    ERIC Educational Resources Information Center

    Liang, Hai-Ning; Parsons, Paul C.; Wu, Hsien-Chi; Sedig, Kamran

    2010-01-01

    This paper deals with the design of interactivity in visualization tools. There are several factors that can be used to guide the analysis and design of the interactivity of these tools. One such factor is flow, which is concerned with the duration of interaction with visual representations of information--interaction being the actions performed…

  2. Application of Frameworks in the Analysis and (Re)design of Interactive Visual Learning Tools

    ERIC Educational Resources Information Center

    Liang, Hai-Ning; Sedig, Kamran

    2009-01-01

    Interactive visual learning tools (IVLTs) are software environments that encode and display information visually and allow learners to interact with the visual information. This article examines the application and utility of frameworks in the analysis and design of IVLTs at the micro level. Frameworks play an important role in any design. They…

  3. Students' Use of Technological Features while Solving a Mathematics Problem

    ERIC Educational Resources Information Center

    Lee, Hollylynne Stohl; Hollebrands, Karen F.

    2006-01-01

    The design of technology tools has the potential to dramatically influence how students interact with tools, and these interactions, in turn, may influence students' mathematical problem solving. To better understand these interactions, we analyzed eighth grade students' problem solving as they used a java applet designed to specifically accompany…

  4. Blended Interaction Design: A Spatial Workspace Supporting HCI and Design Practice

    NASA Astrophysics Data System (ADS)

    Geyer, Florian

    This research investigates novel methods and techniques along with tool support that result from a conceptual blend of human-computer interaction with design practice. Using blending theory with material anchors as a theoretical framework, we frame both input spaces and explore emerging structures within technical, cognitive, and social aspects. Based on our results, we will describe a framework of the emerging structures and will design and evaluate tool support within a spatial, studio-like workspace to support collaborative creativity in interaction design.

  5. The DiaCog: A Prototype Tool for Visualizing Online Dialog Games' Interactions

    ERIC Educational Resources Information Center

    Yengin, Ilker; Lazarevic, Bojan

    2014-01-01

    This paper proposes and explains the design of a prototype learning tool named the DiaCog. The DiaCog visualizes dialog interactions within an online dialog game by using dynamically created cognitive maps. As a purposefully designed tool for enhancing learning effectiveness the DiaCog might be applicable to dialogs at discussion boards within a…

  6. Control/structure interaction conceptual design tool

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.

    1990-01-01

    The JPL Control/Structure Interaction Program is developing new analytical methods for designing micro-precision spacecraft with controlled structures. One of these, the Conceptual Design Tool, will illustrate innovative new approaches to the integration of multi-disciplinary analysis and design methods. The tool will be used to demonstrate homogeneity of presentation, uniform data representation across analytical methods, and integrated systems modeling. The tool differs from current 'integrated systems' that support design teams most notably in its support for the new CSI multi-disciplinary engineer. The design tool will utilize a three dimensional solid model of the spacecraft under design as the central data organization metaphor. Various analytical methods, such as finite element structural analysis, control system analysis, and mechanical configuration layout, will store and retrieve data from a hierarchical, object oriented data structure that supports assemblies of components with associated data and algorithms. In addition to managing numerical model data, the tool will assist the designer in organizing, stating, and tracking system requirements.

  7. Beyond information access: Support for complex cognitive activities in public health informatics tools.

    PubMed

    Sedig, Kamran; Parsons, Paul; Dittmer, Mark; Ola, Oluwakemi

    2012-01-01

    Public health professionals work with a variety of information sources to carry out their everyday activities. In recent years, interactive computational tools have become deeply embedded in such activities. Unlike the early days of computational tool use, the potential of tools nowadays is not limited to simply providing access to information; rather, they can act as powerful mediators of human-information discourse, enabling rich interaction with public health information. If public health informatics tools are designed and used properly, they can facilitate, enhance, and support the performance of complex cognitive activities that are essential to public health informatics, such as problem solving, forecasting, sense-making, and planning. However, the effective design and evaluation of public health informatics tools requires an understanding of the cognitive and perceptual issues pertaining to how humans work and think with information to perform such activities. This paper draws on research that has examined some of the relevant issues, including interaction design, complex cognition, and visual representations, to offer some human-centered design and evaluation considerations for public health informatics tools.

  8. Assessing Adaptive Instructional Design Tools and Methods in ADAPT[IT].

    ERIC Educational Resources Information Center

    Eseryel, Deniz; Spector, J. Michael

    ADAPT[IT] (Advanced Design Approach for Personalized Training - Interactive Tools) is a European project within the Information Society Technologies program that is providing design methods and tools to guide a training designer according to the latest cognitive science and standardization principles. ADAPT[IT] addresses users in two significantly…

  9. Control/structure interaction design methodology

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.; Layman, William E.

    1989-01-01

    The Control Structure Interaction Program is a technology development program for spacecraft that exhibit interactions between the control system and structural dynamics. The program objectives include development and verification of new design concepts (such as active structure) and new tools (such as a combined structure and control optimization algorithm) and their verification in ground and possibly flight test. The new CSI design methodology is centered around interdisciplinary engineers using new tools that closely integrate structures and controls. Verification is an important CSI theme and analysts will be closely integrated to the CSI Test Bed laboratory. Components, concepts, tools and algorithms will be developed and tested in the lab and in future Shuttle-based flight experiments. The design methodology is summarized in block diagrams depicting the evolution of a spacecraft design and descriptions of analytical capabilities used in the process. The multiyear JPL CSI implementation plan is described along with the essentials of several new tools. A distributed network of computation servers and workstations was designed that will provide a state-of-the-art development base for the CSI technologies.

  10. Artwork Interactive Design System (AIDS) program description

    NASA Technical Reports Server (NTRS)

    Johnson, B. T.; Taylor, J. F.

    1976-01-01

    An artwork interactive design system is described which provides the microelectronic circuit designer/engineer a tool to perform circuit design, automatic layout modification, standard cell design, and artwork verification at a graphics computer terminal using a graphics tablet at the designer/computer interface.

  11. Design Interactive: A Nonlinear, Multimedia Approach to Teaching Introduction to Visual Communication and Principles of Design

    ERIC Educational Resources Information Center

    Palilonis, Jennifer; Butler, Darrell; Leidig-Farmen, Pamela

    2013-01-01

    As online teaching techniques continue to evolve, new opportunities surface for research and insight regarding best practices for the development and implementation of interactive, multimedia teaching and learning tools. These tools are particularly attractive for courses that lend themselves to a rich media approach. Such is the case for visual…

  12. CaveCAD: a tool for architectural design in immersive virtual environments

    NASA Astrophysics Data System (ADS)

    Schulze, Jürgen P.; Hughes, Cathleen E.; Zhang, Lelin; Edelstein, Eve; Macagno, Eduardo

    2014-02-01

    Existing 3D modeling tools were designed to run on desktop computers with monitor, keyboard and mouse. To make 3D modeling possible with mouse and keyboard, many 3D interactions, such as point placement or translations of geometry, had to be mapped to the 2D parameter space of the mouse, possibly supported by mouse buttons or keyboard keys. We hypothesize that had the designers of these existing systems had been able to assume immersive virtual reality systems as their target platforms, they would have been able to design 3D interactions much more intuitively. In collaboration with professional architects, we created a simple, but complete 3D modeling tool for virtual environments from the ground up and use direct 3D interaction wherever possible and adequate. In this publication, we present our approaches for interactions for typical 3D modeling functions, such as geometry creation, modification of existing geometry, and assignment of surface materials. We also discuss preliminary user experiences with this system.

  13. A Survey of Educational Games as Interaction Design Tools for Affective Learning: Thematic Analysis Taxonomy

    ERIC Educational Resources Information Center

    Yusoff, Zarwina; Kamsin, Amirrudin; Shamshirband, Shahaboddin; Chronopoulos, Anthony T.

    2018-01-01

    A Computer game is the new platform in generating learning experiences for educational purposes. There are many educational games that have been used as an interaction design tool in a learning environment to enhance students learning outcomes. However, research also claims that playing video games can have a negative impact on student behavior,…

  14. Effects of Various Sketching Tools on Visual Thinking in Idea Development

    ERIC Educational Resources Information Center

    Chu, Po Ying; Hung, Hsiu Yen; Wu, Chih Fu; Liu, Yen Te

    2017-01-01

    Due to the wide application of digital tools and the improvement in interactive technologies, design thinking might change in digital world comparing to that in traditional design process. This study aims to explore the difference of design thinking between three kinds of sketching tools, i.e. hand-sketch, tablet, and pen-input display, by means…

  15. Designing Interactive Learning Systems.

    ERIC Educational Resources Information Center

    Barker, Philip

    1990-01-01

    Describes multimedia, computer-based interactive learning systems that support various forms of individualized study. Highlights include design models; user interfaces; design guidelines; media utilization paradigms, including hypermedia and learner-controlled models; metaphors and myths; authoring tools; optical media; workstations; four case…

  16. Development of an Interactive Social Media Tool for Parents with Concerns about Vaccines

    ERIC Educational Resources Information Center

    Shoup, Jo Ann; Wagner, Nicole M.; Kraus, Courtney R.; Narwaney, Komal J.; Goddard, Kristin S.; Glanz, Jason M.

    2015-01-01

    Objective: Describe a process for designing, building, and evaluating a theory-driven social media intervention tool to help reduce parental concerns about vaccination. Method: We developed an interactive web-based tool using quantitative and qualitative methods (e.g., survey, focus groups, individual interviews, and usability testing). Results:…

  17. Using Coupled Energy, Airflow and IAQ Software (TRNSYS/CONTAM) to Evaluate Building Ventilation Strategies.

    PubMed

    Dols, W Stuart; Emmerich, Steven J; Polidoro, Brian J

    2016-03-01

    Building energy analysis tools are available in many forms that provide the ability to address a broad spectrum of energy-related issues in various combinations. Often these tools operate in isolation from one another, making it difficult to evaluate the interactions between related phenomena and interacting systems, forcing oversimplified assumptions to be made about various phenomena that could otherwise be addressed directly with another tool. One example of such interdependence is the interaction between heat transfer, inter-zone airflow and indoor contaminant transport. In order to better address these interdependencies, the National Institute of Standards and Technology (NIST) has developed an updated version of the multi-zone airflow and contaminant transport modelling tool, CONTAM, along with a set of utilities to enable coupling of the full CONTAM model with the TRNSYS simulation tool in a more seamless manner and with additional capabilities that were previously not available. This paper provides an overview of these new capabilities and applies them to simulating a medium-size office building. These simulations address the interaction between whole-building energy, airflow and contaminant transport in evaluating various ventilation strategies including natural and demand-controlled ventilation. CONTAM has been in practical use for many years allowing building designers, as well as IAQ and ventilation system analysts, to simulate the complex interactions between building physical layout and HVAC system configuration in determining building airflow and contaminant transport. It has been widely used to design and analyse smoke management systems and evaluate building performance in response to chemical, biological and radiological events. While CONTAM has been used to address design and performance of buildings implementing energy conserving ventilation systems, e.g., natural and hybrid, this new coupled simulation capability will enable users to apply the tool to couple CONTAM with existing energy analysis software to address the interaction between indoor air quality considerations and energy conservation measures in building design and analysis. This paper presents two practical case studies using the coupled modelling tool to evaluate IAQ performance of a CO 2 -based demand-controlled ventilation system under different levels of building envelope airtightness and the design and analysis of a natural ventilation system.

  18. Using Coupled Energy, Airflow and IAQ Software (TRNSYS/CONTAM) to Evaluate Building Ventilation Strategies

    PubMed Central

    Dols, W. Stuart.; Emmerich, Steven J.; Polidoro, Brian J.

    2016-01-01

    Building energy analysis tools are available in many forms that provide the ability to address a broad spectrum of energy-related issues in various combinations. Often these tools operate in isolation from one another, making it difficult to evaluate the interactions between related phenomena and interacting systems, forcing oversimplified assumptions to be made about various phenomena that could otherwise be addressed directly with another tool. One example of such interdependence is the interaction between heat transfer, inter-zone airflow and indoor contaminant transport. In order to better address these interdependencies, the National Institute of Standards and Technology (NIST) has developed an updated version of the multi-zone airflow and contaminant transport modelling tool, CONTAM, along with a set of utilities to enable coupling of the full CONTAM model with the TRNSYS simulation tool in a more seamless manner and with additional capabilities that were previously not available. This paper provides an overview of these new capabilities and applies them to simulating a medium-size office building. These simulations address the interaction between whole-building energy, airflow and contaminant transport in evaluating various ventilation strategies including natural and demand-controlled ventilation. Practical Application CONTAM has been in practical use for many years allowing building designers, as well as IAQ and ventilation system analysts, to simulate the complex interactions between building physical layout and HVAC system configuration in determining building airflow and contaminant transport. It has been widely used to design and analyse smoke management systems and evaluate building performance in response to chemical, biological and radiological events. While CONTAM has been used to address design and performance of buildings implementing energy conserving ventilation systems, e.g., natural and hybrid, this new coupled simulation capability will enable users to apply the tool to couple CONTAM with existing energy analysis software to address the interaction between indoor air quality considerations and energy conservation measures in building design and analysis. This paper presents two practical case studies using the coupled modelling tool to evaluate IAQ performance of a CO2-based demand-controlled ventilation system under different levels of building envelope airtightness and the design and analysis of a natural ventilation system. PMID:27099405

  19. Interactive Learning Modules: Enabling Near Real-Time Oceanographic Data Use In Undergraduate Education

    NASA Astrophysics Data System (ADS)

    Kilb, D. L.; Fundis, A. T.; Risien, C. M.

    2012-12-01

    The focus of the Education and Public Engagement (EPE) component of the NSF's Ocean Observatories Initiative (OOI) is to provide a new layer of cyber-interactivity for undergraduate educators to bring near real-time data from the global ocean into learning environments. To accomplish this, we are designing six online services including: 1) visualization tools, 2) a lesson builder, 3) a concept map builder, 4) educational web services (middleware), 5) collaboration tools and 6) an educational resource database. Here, we report on our Fall 2012 release that includes the first four of these services: 1) Interactive visualization tools allow users to interactively select data of interest, display the data in various views (e.g., maps, time-series and scatter plots) and obtain statistical measures such as mean, standard deviation and a regression line fit to select data. Specific visualization tools include a tool to compare different months of data, a time series explorer tool to investigate the temporal evolution of select data parameters (e.g., sea water temperature or salinity), a glider profile tool that displays ocean glider tracks and associated transects, and a data comparison tool that allows users to view the data either in scatter plot view comparing one parameter with another, or in time series view. 2) Our interactive lesson builder tool allows users to develop a library of online lesson units, which are collaboratively editable and sharable and provides starter templates designed from learning theory knowledge. 3) Our interactive concept map tool allows the user to build and use concept maps, a graphical interface to map the connection between concepts and ideas. This tool also provides semantic-based recommendations, and allows for embedding of associated resources such as movies, images and blogs. 4) Education web services (middleware) will provide an educational resource database API.

  20. Interactive Graphics Analysis for Aircraft Design

    NASA Technical Reports Server (NTRS)

    Townsend, J. C.

    1983-01-01

    Program uses higher-order far field drag minimization. Computer program WDES WDEM preliminary aerodynamic design tool for one or two interacting, subsonic lifting surfaces. Subcritical wing design code employs higher-order far-field drag minimization technique. Linearized aerodynamic theory used. Program written in FORTRAN IV.

  1. Conceptual FOM design tool

    NASA Astrophysics Data System (ADS)

    Krause, Lee S.; Burns, Carla L.

    2000-06-01

    This paper discusses the research currently in progress to develop the Conceptual Federation Object Model Design Tool. The objective of the Conceptual FOM (C-FOM) Design Tool effort is to provide domain and subject matter experts, such as scenario developers, with automated support for understanding and utilizing available HLA simulation and other simulation assets during HLA Federation development. The C-FOM Design Tool will import Simulation Object Models from HLA reuse repositories, such as the MSSR, to populate the domain space that will contain all the objects and their supported interactions. In addition, the C-FOM tool will support the conversion of non-HLA legacy models into HLA- compliant models by applying proven abstraction techniques against the legacy models. Domain experts will be able to build scenarios based on the domain objects and interactions in both a text and graphical form and export a minimal FOM. The ability for domain and subject matter experts to effectively access HLA and non-HLA assets is critical to the long-term acceptance of the HLA initiative.

  2. The Halogen Bond in the Design of Functional Supramolecular Materials: Recent Advances

    PubMed Central

    2013-01-01

    Halogen bonding is an emerging noncovalent interaction for constructing supramolecular assemblies. Though similar to the more familiar hydrogen bonding, four primary differences between these two interactions make halogen bonding a unique tool for molecular recognition and the design of functional materials. First, halogen bonds tend to be much more directional than (single) hydrogen bonds. Second, the interaction strength scales with the polarizability of the bond-donor atom, a feature that researchers can tune through single-atom mutation. In addition, halogen bonds are hydrophobic whereas hydrogen bonds are hydrophilic. Lastly, the size of the bond-donor atom (halogen) is significantly larger than hydrogen. As a result, halogen bonding provides supramolecular chemists with design tools that cannot be easily met with other types of noncovalent interactions and opens up unprecedented possibilities in the design of smart functional materials. This Account highlights the recent advances in the design of halogen-bond-based functional materials. Each of the unique features of halogen bonding, directionality, tunable interaction strength, hydrophobicity, and large donor atom size, makes a difference. Taking advantage of the hydrophobicity, researchers have designed small-size ion transporters. The large halogen atom size provided a platform for constructing all-organic light-emitting crystals that efficiently generate triplet electrons and have a high phosphorescence quantum yield. The tunable interaction strengths provide tools for understanding light-induced macroscopic motions in photoresponsive azobenzene-containing polymers, and the directionality renders halogen bonding useful in the design on functional supramolecular liquid crystals and gel-phase materials. Although halogen bond based functional materials design is still in its infancy, we foresee a bright future for this field. We expect that materials designed based on halogen bonding could lead to applications in biomimetics, optics/photonics, functional surfaces, and photoswitchable supramolecules. PMID:23805801

  3. The environment workbench: A design tool for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Jongeward, Gary A.; Kuharski, Robert A.; Rankin, Thomas V.; Wilcox, Katherine G.; Roche, James C.

    1991-01-01

    The environment workbench (EWB) is being developed for NASA by S-CUBED to provide a standard tool that can be used by the Space Station Freedom (SSF) design and user community for requirements verification. The desktop tool will predict and analyze the interactions of SSF with its natural and self-generated environments. A brief review of the EWB design and capabilities is presented. Calculations using a prototype EWB of the on-orbit floating potentials and contaminant environment of SSF are also presented. Both the positive and negative grounding configurations for the solar arrays are examined to demonstrate the capability of the EWB to provide quick estimates of environments, interactions, and system effects.

  4. Improved Design of Tunnel Supports : Volume 1 : Simplified Analysis for Ground-Structure Interaction in Tunneling

    DOT National Transportation Integrated Search

    1980-06-01

    The purpose of this report is to provide the tunneling profession with improved practical tools in the technical or design area, which provide more accurate representations of the ground-structure interaction in tunneling. The design methods range fr...

  5. Transportation Infrastructure Design and Construction \\0x16 Virtual Training Tools

    DOT National Transportation Integrated Search

    2003-09-01

    This project will develop 3D interactive computer-training environments for a major element of transportation infrastructure : hot mix asphalt paving. These tools will include elements of hot mix design (including laboratory equipment) and constructi...

  6. Data visualization, bar naked: A free tool for creating interactive graphics.

    PubMed

    Weissgerber, Tracey L; Savic, Marko; Winham, Stacey J; Stanisavljevic, Dejana; Garovic, Vesna D; Milic, Natasa M

    2017-12-15

    Although bar graphs are designed for categorical data, they are routinely used to present continuous data in studies that have small sample sizes. This presentation is problematic, as many data distributions can lead to the same bar graph, and the actual data may suggest different conclusions from the summary statistics. To address this problem, many journals have implemented new policies that require authors to show the data distribution. This paper introduces a free, web-based tool for creating an interactive alternative to the bar graph (http://statistika.mfub.bg.ac.rs/interactive-dotplot/). This tool allows authors with no programming expertise to create customized interactive graphics, including univariate scatterplots, box plots, and violin plots, for comparing values of a continuous variable across different study groups. Individual data points may be overlaid on the graphs. Additional features facilitate visualization of subgroups or clusters of non-independent data. A second tool enables authors to create interactive graphics from data obtained with repeated independent experiments (http://statistika.mfub.bg.ac.rs/interactive-repeated-experiments-dotplot/). These tools are designed to encourage exploration and critical evaluation of the data behind the summary statistics and may be valuable for promoting transparency, reproducibility, and open science in basic biomedical research. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Gradually including potential users: A tool to counter design exclusions.

    PubMed

    Zitkus, Emilene; Langdon, Patrick; Clarkson, P John

    2018-01-01

    The paper describes an iterative development process used to understand the suitability of different inclusive design evaluation tools applied into design practices. At the end of this process, a tool named Inclusive Design Advisor was developed, combining data related to design features of small appliances with ergonomic task demands, anthropometric data and exclusion data. When auditing a new design the tool examines the exclusion that each design feature can cause, followed by objective recommendations directly related to its features. Interactively, it allows designers or clients to balance design changes with the exclusion caused. It presents the type of information that enables designers and clients to discuss user needs and make more inclusive design decisions. Copyright © 2017. Published by Elsevier Ltd.

  8. Human-scale interaction for virtual model displays: a clear case for real tools

    NASA Astrophysics Data System (ADS)

    Williams, George C.; McDowall, Ian E.; Bolas, Mark T.

    1998-04-01

    We describe a hand-held user interface for interacting with virtual environments displayed on a Virtual Model Display. The tool, constructed entirely of transparent materials, is see-through. We render a graphical counterpart of the tool on the display and map it one-to-one with the real tool. This feature, combined with a capability for touch- sensitive, discrete input, results in a useful spatial input device that is visually versatile. We discuss the tool's design and interaction techniques it supports. Briefly, we look at the human factors issues and engineering challenges presented by this tool and, in general, by the class of hand-held user interfaces that are see-through.

  9. Applying Video Game Interaction Design to Business Performance, Round 2.

    ERIC Educational Resources Information Center

    Shirinian, Ara; Dickelman, Erik

    2002-01-01

    Discusses software design for enterprise systems and for video games, and describes difficulties with enterprise tools, including interface complexity, training costs, and user frustration. Examines the world of tools and games from the human perspective and suggests ways in which game design can be successfully transferred to the enterprise tool…

  10. Supporting cognition in systems biology analysis: findings on users' processes and design implications.

    PubMed

    Mirel, Barbara

    2009-02-13

    Current usability studies of bioinformatics tools suggest that tools for exploratory analysis support some tasks related to finding relationships of interest but not the deep causal insights necessary for formulating plausible and credible hypotheses. To better understand design requirements for gaining these causal insights in systems biology analyses a longitudinal field study of 15 biomedical researchers was conducted. Researchers interacted with the same protein-protein interaction tools to discover possible disease mechanisms for further experimentation. Findings reveal patterns in scientists' exploratory and explanatory analysis and reveal that tools positively supported a number of well-structured query and analysis tasks. But for several of scientists' more complex, higher order ways of knowing and reasoning the tools did not offer adequate support. Results show that for a better fit with scientists' cognition for exploratory analysis systems biology tools need to better match scientists' processes for validating, for making a transition from classification to model-based reasoning, and for engaging in causal mental modelling. As the next great frontier in bioinformatics usability, tool designs for exploratory systems biology analysis need to move beyond the successes already achieved in supporting formulaic query and analysis tasks and now reduce current mismatches with several of scientists' higher order analytical practices. The implications of results for tool designs are discussed.

  11. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    NASA Technical Reports Server (NTRS)

    Monell, Donald W.; Piland, William M.

    1999-01-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g. manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across the Agency.

  12. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    NASA Technical Reports Server (NTRS)

    Monell, Donald W.; Piland, William M.

    2000-01-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operation). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographical distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across Agency.

  13. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    NASA Astrophysics Data System (ADS)

    Monell, Donald W.; Piland, William M.

    2000-07-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often led to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across the Agency.

  14. Designing Contestability: Interaction Design, Machine Learning, and Mental Health

    PubMed Central

    Hirsch, Tad; Merced, Kritzia; Narayanan, Shrikanth; Imel, Zac E.; Atkins, David C.

    2017-01-01

    We describe the design of an automated assessment and training tool for psychotherapists to illustrate challenges with creating interactive machine learning (ML) systems, particularly in contexts where human life, livelihood, and wellbeing are at stake. We explore how existing theories of interaction design and machine learning apply to the psychotherapy context, and identify “contestability” as a new principle for designing systems that evaluate human behavior. Finally, we offer several strategies for making ML systems more accountable to human actors. PMID:28890949

  15. Design and utility of a web-based computer-assisted instructional tool for neuroanatomy self-study and review for physical and occupational therapy graduate students.

    PubMed

    Foreman, K Bo; Morton, David A; Musolino, Gina Maria; Albertine, Kurt H

    2005-07-01

    The cadaver continues to be the primary tool to teach human gross anatomy. However, cadavers are not available to students outside of the teaching laboratory. A solution is to make course content available through computer-assisted instruction (CAI). While CAI is commonly used as an ancillary teaching tool for anatomy, use of screen space, annotations that obscure the image, and restricted interactivity have limited the utility of such teaching tools. To address these limitations, we designed a Web-based CAI tool that optimizes use of screen space, uses annotations that do not decrease the clarity of the images, and incorporates interactivity across different operating systems and browsers. To assess the design and utility of our CAI tool, we conducted a prospective evaluation of 43 graduate students enrolled in neuroanatomy taught by the Divisions of Physical and Occupational Therapy at the University of Utah, College of Health. A questionnaire addressed navigation, clarity of the images, benefit of the CAI tool, and rating of the CAI tool compared to traditional learning tools. Results showed that 88% of the respondents strongly agreed that the CAI tool was easy to navigate and overall beneficial. Eighty-four percent strongly agreed that the CAI tool was educational in structure identification and had clear images. Furthermore, 95% of the respondents thought that the CAI tool was much to somewhat better than traditional learning tools. We conclude that the design of a CAI tool, with minimal limitations, provides a useful ancillary tool for human neuroanatomy instruction. Copyright 2005 Wiley-Liss, Inc.

  16. SAFAS: Unifying Form and Structure through Interactive 3D Simulation

    ERIC Educational Resources Information Center

    Polys, Nicholas F.; Bacim, Felipe; Setareh, Mehdi; Jones, Brett D.

    2015-01-01

    There has been a significant gap between the tools used for the design of a building's architectural form and those that evaluate the structural physics of that form. Seeking to bring the perspectives of visual design and structural engineering closer together, we developed and evaluated a design tool for students and practitioners to explore the…

  17. Food Web Designer: a flexible tool to visualize interaction networks.

    PubMed

    Sint, Daniela; Traugott, Michael

    Species are embedded in complex networks of ecological interactions and assessing these networks provides a powerful approach to understand what the consequences of these interactions are for ecosystem functioning and services. This is mandatory to develop and evaluate strategies for the management and control of pests. Graphical representations of networks can help recognize patterns that might be overlooked otherwise. However, there is a lack of software which allows visualizing these complex interaction networks. Food Web Designer is a stand-alone, highly flexible and user friendly software tool to quantitatively visualize trophic and other types of bipartite and tripartite interaction networks. It is offered free of charge for use on Microsoft Windows platforms. Food Web Designer is easy to use without the need to learn a specific syntax due to its graphical user interface. Up to three (trophic) levels can be connected using links cascading from or pointing towards the taxa within each level to illustrate top-down and bottom-up connections. Link width/strength and abundance of taxa can be quantified, allowing generating fully quantitative networks. Network datasets can be imported, saved for later adjustment and the interaction webs can be exported as pictures for graphical display in different file formats. We show how Food Web Designer can be used to draw predator-prey and host-parasitoid food webs, demonstrating that this software is a simple and straightforward tool to graphically display interaction networks for assessing pest control or any other type of interaction in both managed and natural ecosystems from an ecological network perspective.

  18. COINGRAD; Control Oriented Interactive Graphical Analysis and Design.

    ERIC Educational Resources Information Center

    Volz, Richard A.; And Others

    The computer is currently a vital tool in engineering analysis and design. With the introduction of moderately priced graphics terminals, it will become even more important in the future as rapid graphic interaction between the engineer and the computer becomes more feasible in computer-aided design (CAD). To provide a vehicle for introducing…

  19. A Standalone Vision Impairments Simulator for Java Swing Applications

    NASA Astrophysics Data System (ADS)

    Oikonomou, Theofanis; Votis, Konstantinos; Korn, Peter; Tzovaras, Dimitrios; Likothanasis, Spriridon

    A lot of work has been done lately in an attempt to assess accessibility. For the case of web rich-client applications several tools exist that simulate how a vision impaired or colour-blind person would perceive this content. In this work we propose a simulation tool for non-web JavaTM Swing applications. Developers and designers face a real challenge when creating software that has to cope with a lot of interaction situations, as well as specific directives for ensuring an accessible interaction. The proposed standalone tool will assist them to explore user-centered design and important accessibility issues for their JavaTM Swing implementations.

  20. Development of an interactive social media tool for parents with concerns about vaccines.

    PubMed

    Shoup, Jo Ann; Wagner, Nicole M; Kraus, Courtney R; Narwaney, Komal J; Goddard, Kristin S; Glanz, Jason M

    2015-06-01

    Describe a process for designing, building, and evaluating a theory-driven social media intervention tool to help reduce parental concerns about vaccination. We developed an interactive web-based tool using quantitative and qualitative methods (e.g., survey, focus groups, individual interviews, and usability testing). Survey results suggested that social media may represent an effective intervention tool to help parents make informed decisions about vaccination for their children. Focus groups and interviews revealed four main themes for development of the tool: Parents wanted information describing both benefits and risks of vaccination, transparency of sources of information, moderation of the tool by an expert, and ethnic and racial diversity in the visual display of people. Usability testing showed that parents were satisfied with the usability of the tool but had difficulty with performing some of the informational searches. Based on focus groups, interviews, and usability evaluations, we made additional revisions to the tool's content, design, functionality, and overall look and feel. Engaging parents at all stages of development is critical when designing a tool to address concerns about childhood vaccines. Although this can be both resource- and time-intensive, the redesigned tool is more likely to be accepted and used by parents. Next steps involve a formal evaluation through a randomized trial. © 2014 Society for Public Health Education.

  1. State College Scavenger: Evaluating the Perspectives of Mobile Computing Interactions within Community Spaces

    ERIC Educational Resources Information Center

    Hoffman, Blaine

    2013-01-01

    This work focuses on the impact of mobile computing on individuals' perspectives of places within their community. A technological intervention is designed and deployed to augment the user experience of visiting different locations around town, physically exploring them while also interacting with an online tool. The tool-supported activity serves…

  2. Perspectives on mobile robots as tools for child development and pediatric rehabilitation.

    PubMed

    Michaud, François; Salter, Tamie; Duquette, Audrey; Laplante, Jean-François

    2007-01-01

    Mobile robots (i.e., robots capable of translational movements) can be designed to become interesting tools for child development studies and pediatric rehabilitation. In this article, the authors present two of their projects that involve mobile robots interacting with children: One is a spherical robot deployed in a variety of contexts, and the other is mobile robots used as pedagogical tools for children with pervasive developmental disorders. Locomotion capability appears to be key in creating meaningful and sustained interactions with children: Intentional and purposeful motion is an implicit appealing factor in obtaining children's attention and engaging them in interaction and learning. Both of these projects started with robotic objectives but are revealed to be rich sources of interdisciplinary collaborations in the field of assistive technology. This article presents perspectives on how mobile robots can be designed to address the requirements of child-robot interactions and studies. The authors also argue that mobile robot technology can be a useful tool in rehabilitation engineering, reaching its full potential through strong collaborations between roboticists and pediatric specialists.

  3. BH-ShaDe: A Software Tool That Assists Architecture Students in the III-Structured Task of Housing Design

    ERIC Educational Resources Information Center

    Millan, Eva; Belmonte, Maria-Victoria; Ruiz-Montiel, Manuela; Gavilanes, Juan; Perez-de-la-Cruz, Jose-Luis

    2016-01-01

    In this paper, we present BH-ShaDe, a new software tool to assist architecture students learning the ill-structured domain/task of housing design. The software tool provides students with automatic or interactively generated floor plan schemas for basic houses. The students can then use the generated schemas as initial seeds to develop complete…

  4. The Value of Reliable Data: Interactive Data Tools from the National Comprehensive Center for Teacher Quality. Policy-to-Practice Brief. Number 1

    ERIC Educational Resources Information Center

    National Comprehensive Center for Teacher Quality, 2008

    2008-01-01

    The National Comprehensive Center for Teacher Quality (TQ Center) designed the Interactive Data Tools to provide users with access to state and national data that can be helpful in assessing the qualifications of teachers in the states and the extent to which a state's teacher policy climate generally supports teacher quality. The Interactive Data…

  5. Employing Cognitive Tools within Interactive Multimedia Applications.

    ERIC Educational Resources Information Center

    Hedberg, John; And Others

    This paper describes research into the use of cognitive tools in the classroom using "Exploring the Nardoo", an information landscape designed to support student investigation. Simulations and support tools which allow multimedia reporting are embedded in the package and are supported by several metacognitive tools for the writing…

  6. Design of Intelligent Robot as A Tool for Teaching Media Based on Computer Interactive Learning and Computer Assisted Learning to Improve the Skill of University Student

    NASA Astrophysics Data System (ADS)

    Zuhrie, M. S.; Basuki, I.; Asto B, I. G. P.; Anifah, L.

    2018-01-01

    The focus of the research is the teaching module which incorporates manufacturing, planning mechanical designing, controlling system through microprocessor technology and maneuverability of the robot. Computer interactive and computer-assisted learning is strategies that emphasize the use of computers and learning aids (computer assisted learning) in teaching and learning activity. This research applied the 4-D model research and development. The model is suggested by Thiagarajan, et.al (1974). 4-D Model consists of four stages: Define Stage, Design Stage, Develop Stage, and Disseminate Stage. This research was conducted by applying the research design development with an objective to produce a tool of learning in the form of intelligent robot modules and kit based on Computer Interactive Learning and Computer Assisted Learning. From the data of the Indonesia Robot Contest during the period of 2009-2015, it can be seen that the modules that have been developed confirm the fourth stage of the research methods of development; disseminate method. The modules which have been developed for students guide students to produce Intelligent Robot Tool for Teaching Based on Computer Interactive Learning and Computer Assisted Learning. Results of students’ responses also showed a positive feedback to relate to the module of robotics and computer-based interactive learning.

  7. Risk based decision tool for space exploration missions

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila; Cornford, Steve; Moran, Terrence

    2003-01-01

    This paper presents an approach and corresponding tool to assess and analyze the risks involved in a mission during the pre-phase A design process. This approach is based on creating a risk template for each subsystem expert involved in the mission design process and defining appropriate interactions between the templates.

  8. Evaluation of interactive highway safety design model crash prediction tools for two-lane rural roads on Kansas Department of Transportation projects.

    DOT National Transportation Integrated Search

    2014-01-01

    Historically, project-level decisions for the selection of highway features to promote safety were : based on either engineering judgment or adherence to accepted national guidance. These tools have allowed : highway designers to produce facilities t...

  9. Evaluation of interactive highway safety design model crash prediction tools for two-lane rural roads on Kansas Department of Transportation projects : [technical summary].

    DOT National Transportation Integrated Search

    2014-01-01

    Historically, project-level decisions for the selection of highway features to promote safety were based on either engineering judgment or adherence to accepted national guidance. These tools have allowed highway designers to produce facilities that ...

  10. An Interactive, Design and Educational Tool for Supersonic External-Compression Inlets

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1994-01-01

    A workstation-based interactive design tool called VU-INLET was developed for the inviscid flow in rectangular, supersonic, external-compression inlets. VU-INLET solves for the flow conditions from free stream, through the supersonic compression ramps, across the terminal normal shock region and the subsonic diffuser to the engine face. It calculates the shock locations, the capture streamtube, and the additive drag of the inlet. The inlet geometry can be modified using a graphical user interface and the new flow conditions recalculated interactively. Free stream conditions and engine airflow can also be interactively varied and off-design performance evaluated. Flow results from VU-INLET can be saved to a file for a permanent record, and a series of help screens make the simulator easy to learn and use. This paper will detail the underlying assumptions of the models and the numerical methods used in the simulator.

  11. Geometric modeling for computer aided design

    NASA Technical Reports Server (NTRS)

    Schwing, James L.; Olariu, Stephen

    1995-01-01

    The primary goal of this grant has been the design and implementation of software to be used in the conceptual design of aerospace vehicles particularly focused on the elements of geometric design, graphical user interfaces, and the interaction of the multitude of software typically used in this engineering environment. This has resulted in the development of several analysis packages and design studies. These include two major software systems currently used in the conceptual level design of aerospace vehicles. These tools are SMART, the Solid Modeling Aerospace Research Tool, and EASIE, the Environment for Software Integration and Execution. Additional software tools were designed and implemented to address the needs of the engineer working in the conceptual design environment. SMART provides conceptual designers with a rapid prototyping capability and several engineering analysis capabilities. In addition, SMART has a carefully engineered user interface that makes it easy to learn and use. Finally, a number of specialty characteristics have been built into SMART which allow it to be used efficiently as a front end geometry processor for other analysis packages. EASIE provides a set of interactive utilities that simplify the task of building and executing computer aided design systems consisting of diverse, stand-alone, analysis codes. Resulting in a streamlining of the exchange of data between programs reducing errors and improving the efficiency. EASIE provides both a methodology and a collection of software tools to ease the task of coordinating engineering design and analysis codes.

  12. PopED lite: An optimal design software for preclinical pharmacokinetic and pharmacodynamic studies.

    PubMed

    Aoki, Yasunori; Sundqvist, Monika; Hooker, Andrew C; Gennemark, Peter

    2016-04-01

    Optimal experimental design approaches are seldom used in preclinical drug discovery. The objective is to develop an optimal design software tool specifically designed for preclinical applications in order to increase the efficiency of drug discovery in vivo studies. Several realistic experimental design case studies were collected and many preclinical experimental teams were consulted to determine the design goal of the software tool. The tool obtains an optimized experimental design by solving a constrained optimization problem, where each experimental design is evaluated using some function of the Fisher Information Matrix. The software was implemented in C++ using the Qt framework to assure a responsive user-software interaction through a rich graphical user interface, and at the same time, achieving the desired computational speed. In addition, a discrete global optimization algorithm was developed and implemented. The software design goals were simplicity, speed and intuition. Based on these design goals, we have developed the publicly available software PopED lite (http://www.bluetree.me/PopED_lite). Optimization computation was on average, over 14 test problems, 30 times faster in PopED lite compared to an already existing optimal design software tool. PopED lite is now used in real drug discovery projects and a few of these case studies are presented in this paper. PopED lite is designed to be simple, fast and intuitive. Simple, to give many users access to basic optimal design calculations. Fast, to fit a short design-execution cycle and allow interactive experimental design (test one design, discuss proposed design, test another design, etc). Intuitive, so that the input to and output from the software tool can easily be understood by users without knowledge of the theory of optimal design. In this way, PopED lite is highly useful in practice and complements existing tools. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Applying a Participatory Design Approach to Define Objectives and Properties of a “Data Profiling” Tool for Electronic Health Data

    PubMed Central

    Estiri, Hossein; Lovins, Terri; Afzalan, Nader; Stephens, Kari A.

    2016-01-01

    We applied a participatory design approach to define the objectives, characteristics, and features of a “data profiling” tool for primary care Electronic Health Data (EHD). Through three participatory design workshops, we collected input from potential tool users who had experience working with EHD. We present 15 recommended features and characteristics for the data profiling tool. From these recommendations we derived three overarching objectives and five properties for the tool. A data profiling tool, in Biomedical Informatics, is a visual, clear, usable, interactive, and smart tool that is designed to inform clinical and biomedical researchers of data utility and let them explore the data, while conveniently orienting the users to the tool’s functionalities. We suggest that developing scalable data profiling tools will provide new capacities to disseminate knowledge about clinical data that will foster translational research and accelerate new discoveries. PMID:27570651

  14. Computational Tools and Facilities for the Next-Generation Analysis and Design Environment

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1997-01-01

    This document contains presentations from the joint UVA/NASA Workshop on Computational Tools and Facilities for the Next-Generation Analysis and Design Environment held at the Virginia Consortium of Engineering and Science Universities in Hampton, Virginia on September 17-18, 1996. The presentations focused on the computational tools and facilities for analysis and design of engineering systems, including, real-time simulations, immersive systems, collaborative engineering environment, Web-based tools and interactive media for technical training. Workshop attendees represented NASA, commercial software developers, the aerospace industry, government labs, and academia. The workshop objectives were to assess the level of maturity of a number of computational tools and facilities and their potential for application to the next-generation integrated design environment.

  15. A CAD approach to magnetic bearing design

    NASA Technical Reports Server (NTRS)

    Jeyaseelan, M.; Anand, D. K.; Kirk, J. A.

    1988-01-01

    A design methodology has been developed at the Magnetic Bearing Research Laboratory for designing magnetic bearings using a CAD approach. This is used in the algorithm of an interactive design software package. The package is a design tool developed to enable the designer to simulate the entire process of design and analysis of the system. Its capabilities include interactive input/modification of geometry, finding any possible saturation at critical sections of the system, and the design and analysis of a control system that stabilizes and maintains magnetic suspension.

  16. Sims for Science: Powerful Tools to Support Inquiry-Based Teaching

    ERIC Educational Resources Information Center

    Perkins, Katherine K.; Loeblein, Patricia J.; Dessau, Kathryn L.

    2010-01-01

    Since 2002, the PhET Interactive Simulations project at the University of Colorado has been working to provide learning tools for students and teachers. The project has developed over 85 interactive simulations--or sims--for teaching and learning science. Although these sims can be used in a variety of ways, they are specifically designed to make…

  17. Interactive tools for inpatient medication tracking: a multi-phase study with cardiothoracic surgery patients

    PubMed Central

    Woollen, Janet; Prey, Jennifer; Restaino, Susan; Bakken, Suzanne; Feiner, Steven; Sackeim, Alexander; Vawdrey, David K

    2016-01-01

    Objective Prior studies of computing applications that support patients’ medication knowledge and self-management offer valuable insights into effective application design, but do not address inpatient settings. This study is the first to explore the design and usefulness of patient-facing tools supporting inpatient medication management and tracking. Materials and Methods We designed myNYP Inpatient, a custom personal health record application, through an iterative, user-centered approach. Medication-tracking tools in myNYP Inpatient include interactive views of home and hospital medication data and features for commenting on these data. In a two-phase pilot study, patients used the tools during cardiothoracic postoperative care at Columbia University Medical Center. In Phase One, we provided 20 patients with the application for 24–48 h and conducted a closing interview after this period. In Phase Two, we conducted semi-structured interviews with 12 patients and 5 clinical pharmacists who evaluated refinements to the tools based on the feedback received during Phase One. Results Patients reported that the medication-tracking tools were useful. During Phase One, 14 of the 20 participants used the tools actively, to review medication lists and log comments and questions about their medications. Patients’ interview responses and audit logs revealed that they made frequent use of the hospital medications feature and found electronic reporting of questions and comments useful. We also uncovered important considerations for subsequent design of such tools. In Phase Two, the patients and pharmacists participating in the study confirmed the usability and usefulness of the refined tools. Conclusions Inpatient medication-tracking tools, when designed to meet patients’ needs, can play an important role in fostering patient participation in their own care and patient-provider communication during a hospital stay. PMID:26744489

  18. Geometric modeling for computer aided design

    NASA Technical Reports Server (NTRS)

    Schwing, James L.

    1992-01-01

    The goal was the design and implementation of software to be used in the conceptual design of aerospace vehicles. Several packages and design studies were completed, including two software tools currently used in the conceptual level design of aerospace vehicles. These tools are the Solid Modeling Aerospace Research Tool (SMART) and the Environment for Software Integration and Execution (EASIE). SMART provides conceptual designers with a rapid prototyping capability and additionally provides initial mass property analysis. EASIE provides a set of interactive utilities that simplify the task of building and executing computer aided design systems consisting of diverse, stand alone analysis codes that result in the streamlining of the exchange of data between programs, reducing errors and improving efficiency.

  19. Authoring Issues beyond Tools

    NASA Astrophysics Data System (ADS)

    Spierling, Ulrike; Szilas, Nicolas

    Authoring is still considered a bottleneck in successful Interactive Storytelling and Drama. The claim for intuitive authoring tools is high, especially for tools that allow storytellers and artists to define dynamic content that can be run with an AI-based story engine. We explored two concrete authoring processes in depth, using various Interactive Storytelling prototypes, and have provided feedback from the practical steps. The result is a presentation of general issues in authoring Interactive Storytelling, rather than of particular problems with a specific system that could be overcome by 'simply' designing the right interface. Priorities for future developments are also outlined.

  20. Belle2VR: A Virtual-Reality Visualization of Subatomic Particle Physics in the Belle II Experiment.

    PubMed

    Duer, Zach; Piilonen, Leo; Glasson, George

    2018-05-01

    Belle2VR is an interactive virtual-reality visualization of subatomic particle physics, designed by an interdisciplinary team as an educational tool for learning about and exploring subatomic particle collisions. This article describes the tool, discusses visualization design decisions, and outlines our process for collaborative development.

  1. Quantitative Imaging In Pathology (QUIP) | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    This site hosts web accessible applications, tools and data designed to support analysis, management, and exploration of whole slide tissue images for cancer research. The following tools are included: caMicroscope: A digital pathology data management and visualization plaform that enables interactive viewing of whole slide tissue images and segmentation results. caMicroscope can be also used independently of QUIP. FeatureExplorer: An interactive tool to allow patient-level feature exploration across multiple dimensions.

  2. Internet MEMS design tools based on component technology

    NASA Astrophysics Data System (ADS)

    Brueck, Rainer; Schumer, Christian

    1999-03-01

    The micro electromechanical systems (MEMS) industry in Europe is characterized by small and medium sized enterprises specialized on products to solve problems in specific domains like medicine, automotive sensor technology, etc. In this field of business the technology driven design approach known from micro electronics is not appropriate. Instead each design problem aims at its own, specific technology to be used for the solution. The variety of technologies at hand, like Si-surface, Si-bulk, LIGA, laser, precision engineering requires a huge set of different design tools to be available. No single SME can afford to hold licenses for all these tools. This calls for a new and flexible way of designing, implementing and distributing design software. The Internet provides a flexible manner of offering software access along with methodologies of flexible licensing e.g. on a pay-per-use basis. New communication technologies like ADSL, TV cable of satellites as carriers promise to offer a bandwidth sufficient even for interactive tools with graphical interfaces in the near future. INTERLIDO is an experimental tool suite for process specification and layout verification for lithography based MEMS technologies to be accessed via the Internet. The first version provides a Java implementation even including a graphical editor for process specification. Currently, a new version is brought into operation that is based on JavaBeans component technology. JavaBeans offers the possibility to realize independent interactive design assistants, like a design rule checking assistants, a process consistency checking assistants, a technology definition assistants, a graphical editor assistants, etc. that may reside distributed over the Internet, communicating via Internet protocols. Each potential user thus is able to configure his own dedicated version of a design tool set dedicated to the requirements of the current problem to be solved.

  3. Computer-aided system design

    NASA Technical Reports Server (NTRS)

    Walker, Carrie K.

    1991-01-01

    A technique has been developed for combining features of a systems architecture design and assessment tool and a software development tool. This technique reduces simulation development time and expands simulation detail. The Architecture Design and Assessment System (ADAS), developed at the Research Triangle Institute, is a set of computer-assisted engineering tools for the design and analysis of computer systems. The ADAS system is based on directed graph concepts and supports the synthesis and analysis of software algorithms mapped to candidate hardware implementations. Greater simulation detail is provided by the ADAS functional simulator. With the functional simulator, programs written in either Ada or C can be used to provide a detailed description of graph nodes. A Computer-Aided Software Engineering tool developed at the Charles Stark Draper Laboratory (CSDL CASE) automatically generates Ada or C code from engineering block diagram specifications designed with an interactive graphical interface. A technique to use the tools together has been developed, which further automates the design process.

  4. A Software Tool for Integrated Optical Design Analysis

    NASA Technical Reports Server (NTRS)

    Moore, Jim; Troy, Ed; DePlachett, Charles; Montgomery, Edward (Technical Monitor)

    2001-01-01

    Design of large precision optical systems requires multi-disciplinary analysis, modeling, and design. Thermal, structural and optical characteristics of the hardware must be accurately understood in order to design a system capable of accomplishing the performance requirements. The interactions between each of the disciplines become stronger as systems are designed lighter weight for space applications. This coupling dictates a concurrent engineering design approach. In the past, integrated modeling tools have been developed that attempt to integrate all of the complex analysis within the framework of a single model. This often results in modeling simplifications and it requires engineering specialist to learn new applications. The software described in this presentation addresses the concurrent engineering task using a different approach. The software tool, Integrated Optical Design Analysis (IODA), uses data fusion technology to enable a cross discipline team of engineering experts to concurrently design an optical system using their standard validated engineering design tools.

  5. A computational tool to predict the evolutionarily conserved protein-protein interaction hot-spot residues from the structure of the unbound protein.

    PubMed

    Agrawal, Neeraj J; Helk, Bernhard; Trout, Bernhardt L

    2014-01-21

    Identifying hot-spot residues - residues that are critical to protein-protein binding - can help to elucidate a protein's function and assist in designing therapeutic molecules to target those residues. We present a novel computational tool, termed spatial-interaction-map (SIM), to predict the hot-spot residues of an evolutionarily conserved protein-protein interaction from the structure of an unbound protein alone. SIM can predict the protein hot-spot residues with an accuracy of 36-57%. Thus, the SIM tool can be used to predict the yet unknown hot-spot residues for many proteins for which the structure of the protein-protein complexes are not available, thereby providing a clue to their functions and an opportunity to design therapeutic molecules to target these proteins. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. The X-windows interactive navigation data editor

    NASA Technical Reports Server (NTRS)

    Rinker, G. C.

    1992-01-01

    A new computer program called the X-Windows Interactive Data Editor (XIDE) was developed and demonstrated as a prototype application for editing radio metric data in the orbit-determination process. The program runs on a variety of workstations and employs pull-down menus and graphical displays, which allow users to easily inspect and edit radio metric data in the orbit data files received from the Deep Space Network (DSN). The XIDE program is based on the Open Software Foundation OSF/Motif Graphical User Interface (GUI) and has proven to be an efficient tool for editing radio metric data in the navigation operations environment. It was adopted by the Magellan Navigation Team as their primary data-editing tool. Because the software was designed from the beginning to be portable, the prototype was successfully moved to new workstation environments. It was also itegrated into the design of the next-generation software tool for DSN multimission navigation interactive launch support.

  7. Speech-Enabled Tools for Augmented Interaction in E-Learning Applications

    ERIC Educational Resources Information Center

    Selouani, Sid-Ahmed A.; Lê, Tang-Hô; Benahmed, Yacine; O'Shaughnessy, Douglas

    2008-01-01

    This article presents systems that use speech technology, to emulate the one-on-one interaction a student can get from a virtual instructor. A web-based learning tool, the Learn IN Context (LINC+) system, designed and used in a real mixed-mode learning context for a computer (C++ language) programming course taught at the Université de Moncton…

  8. The Use of Interactive Computer Animations Based on POE as a Presentation Tool in Primary Science Teaching

    ERIC Educational Resources Information Center

    Akpinar, Ercan

    2014-01-01

    This study investigates the effects of using interactive computer animations based on predict-observe-explain (POE) as a presentation tool on primary school students' understanding of the static electricity concepts. A quasi-experimental pre-test/post-test control group design was utilized in this study. The experiment group consisted of 30…

  9. Knowledge Interaction Design for Creative Knowledge Work

    NASA Astrophysics Data System (ADS)

    Nakakoji, Kumiyo; Yamamoto, Yasuhiro

    This paper describes our approach for the development of application systems for creative knowledge work, particularly for early stages of information design tasks. Being a cognitive tool serving as a means of externalization, an application system affects how the user is engaged in the creative process through its visual interaction design. Knowledge interaction design described in this paper is a framework where a set of application systems for different information design domains are developed based on an interaction model, which is designed for a particular model of a thinking process. We have developed two sets of application systems using the knowledge interaction design framework: one includes systems for linear information design, such as writing, movie-editing, and video-analysis; the other includes systems for network information design, such as file-system navigation and hypertext authoring. Our experience shows that the resulting systems encourage users to follow a certain cognitive path through graceful user experience.

  10. Graphical Acoustic Liner Design and Analysis Tool

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M. (Inventor); Jones, Michael G. (Inventor)

    2016-01-01

    An interactive liner design and impedance modeling tool comprises software utilized to design acoustic liners for use in constrained spaces, both regularly and irregularly shaped. A graphical user interface allows the acoustic channel geometry to be drawn in a liner volume while the surface impedance calculations are updated and displayed in real-time. A one-dimensional transmission line model may be used as the basis for the impedance calculations.

  11. Working Collectively to Design Online Teacher Education Curriculum: How Do Teacher Educators Manage to Do It?

    ERIC Educational Resources Information Center

    Milewski, Amanda; Gürsel, Umut; Herbst, Patricio

    2017-01-01

    This paper is part of a three-year inquiry that supports and investigates the work of groups of mathematics teacher educators using technological tools to design and implement multimedia practice-based teacher education curriculum materials. This paper describes the kinds of activities, interactions, and tools used by mathematics teacher educators…

  12. The Development of Interactive Video for Children's Education.

    ERIC Educational Resources Information Center

    Dockterman, Gabrielle Savage

    1991-01-01

    Development of two interactive videodisks in space science for middle-school-age children is described, and suggestions for development of affordable and successful interactive products are offered. The first interactive program is a touchscreen exhibit designed for museum use, and the second is a classroom tool for teaching a planetary sciences…

  13. Making Space for Place: Mapping Tools and Practices to Teach for Spatial Justice

    ERIC Educational Resources Information Center

    Rubel, Laurie H.; Hall-Wieckert, Maren; Lim, Vivian Y.

    2017-01-01

    This article presents a set of spatial tools for classroom learning about spatial justice. As part of a larger team, we designed a curriculum that engaged 10 learners with 3 spatial tools: (a) an oversized floor map, (b) interactive geographic information systems (GIS) maps, and (c) participatory mapping. We analyze how these tools supported…

  14. Modeling Tools for Propulsion Analysis and Computational Fluid Dynamics on the Internet

    NASA Technical Reports Server (NTRS)

    Muss, J. A.; Johnson, C. W.; Gotchy, M. B.

    2000-01-01

    The existing RocketWeb(TradeMark) Internet Analysis System (httr)://www.iohnsonrockets.com/rocketweb) provides an integrated set of advanced analysis tools that can be securely accessed over the Internet. Since these tools consist of both batch and interactive analysis codes, the system includes convenient methods for creating input files and evaluating the resulting data. The RocketWeb(TradeMark) system also contains many features that permit data sharing which, when further developed, will facilitate real-time, geographically diverse, collaborative engineering within a designated work group. Adding work group management functionality while simultaneously extending and integrating the system's set of design and analysis tools will create a system providing rigorous, controlled design development, reducing design cycle time and cost.

  15. Batch mode grid generation: An endangered species

    NASA Technical Reports Server (NTRS)

    Schuster, David M.

    1992-01-01

    Non-interactive grid generation schemes should thrive as emphasis shifts from development of numerical analysis and design methods to application of these tools to real engineering problems. A strong case is presented for the continued development and application of non-interactive geometry modeling methods. Guidelines, strategies, and techniques for developing and implementing these tools are presented using current non-interactive grid generation methods as examples. These schemes play an important role in the development of multidisciplinary analysis methods and some of these applications are also discussed.

  16. Designing Tools for Supporting User Decision-Making in e-Commerce

    NASA Astrophysics Data System (ADS)

    Sutcliffe, Alistair; Al-Qaed, Faisal

    The paper describes a set of tools designed to support a variety of user decision-making strategies. The tools are complemented by an online advisor so they can be adapted to different domains and users can be guided to adopt appropriate tools for different choices in e-commerce, e.g. purchasing high-value products, exploring product fit to users’ needs, or selecting products which satisfy requirements. The tools range from simple recommenders to decision support by interactive querying and comparison matrices. They were evaluated in a scenario-based experiment which varied the users’ task and motivation, with and without an advisor agent. The results show the tools and advisor were effective in supporting users and agreed with the predictions of ADM (adaptive decision making) theory, on which the design of the tools was based.

  17. A Multirate Control Strategy to the Slow Sensors Problem: An Interactive Simulation Tool for Controller Assisted Design

    PubMed Central

    Salt, Julián; Cuenca, Ángel; Palau, Francisco; Dormido, Sebastián

    2014-01-01

    In many control applications, the sensor technology used for the measurement of the variable to be controlled is not able to maintain a restricted sampling period. In this context, the assumption of regular and uniform sampling pattern is questionable. Moreover, if the control action updating can be faster than the output measurement frequency in order to fulfill the proposed closed loop behavior, the solution is usually a multirate controller. There are some known aspects to be careful of when a multirate system (MR) is going to be designed. The proper multiplicity between input-output sampling periods, the proper controller structure, the existence of ripples and others issues need to be considered. A useful way to save time and achieve good results is to have an assisted computer design tool. An interactive simulation tool to deal with MR seems to be the right solution. In this paper this kind of simulation application is presented. It allows an easy understanding of the performance degrading or improvement when changing the multirate sampling pattern parameters. The tool was developed using Sysquake, a Matlab-like language with fast execution and powerful graphic facilities. It can be delivered as an executable. In the paper a detailed explanation of MR treatment is also included and the design of four different MR controllers with flexible structure to be adapted to different schemes will also be presented. The Smith's predictor in these MR schemes is also explained, justified and used when time delays appear. Finally some interesting observations achieved using this interactive tool are included. PMID:24583971

  18. Virtual Steel Connection Sculpture--Student Learning Assessment

    ERIC Educational Resources Information Center

    Chou, Karen C.; Moaveni, Saeed; Drane, Denise

    2016-01-01

    A Virtual Steel Connection Sculpture was developed through a grant from the National Science Foundation. The Virtual Sculpture is an interactive tool that shows students and anyone interested in connections how steel members are connected. This tool is created to complement students' steel design courses. The features of this educational tool,…

  19. Finding collaborators: toward interactive discovery tools for research network systems.

    PubMed

    Borromeo, Charles D; Schleyer, Titus K; Becich, Michael J; Hochheiser, Harry

    2014-11-04

    Research networking systems hold great promise for helping biomedical scientists identify collaborators with the expertise needed to build interdisciplinary teams. Although efforts to date have focused primarily on collecting and aggregating information, less attention has been paid to the design of end-user tools for using these collections to identify collaborators. To be effective, collaborator search tools must provide researchers with easy access to information relevant to their collaboration needs. The aim was to study user requirements and preferences for research networking system collaborator search tools and to design and evaluate a functional prototype. Paper prototypes exploring possible interface designs were presented to 18 participants in semistructured interviews aimed at eliciting collaborator search needs. Interview data were coded and analyzed to identify recurrent themes and related software requirements. Analysis results and elements from paper prototypes were used to design a Web-based prototype using the D3 JavaScript library and VIVO data. Preliminary usability studies asked 20 participants to use the tool and to provide feedback through semistructured interviews and completion of the System Usability Scale (SUS). Initial interviews identified consensus regarding several novel requirements for collaborator search tools, including chronological display of publication and research funding information, the need for conjunctive keyword searches, and tools for tracking candidate collaborators. Participant responses were positive (SUS score: mean 76.4%, SD 13.9). Opportunities for improving the interface design were identified. Interactive, timeline-based displays that support comparison of researcher productivity in funding and publication have the potential to effectively support searching for collaborators. Further refinement and longitudinal studies may be needed to better understand the implications of collaborator search tools for researcher workflows.

  20. Finding Collaborators: Toward Interactive Discovery Tools for Research Network Systems

    PubMed Central

    Schleyer, Titus K; Becich, Michael J; Hochheiser, Harry

    2014-01-01

    Background Research networking systems hold great promise for helping biomedical scientists identify collaborators with the expertise needed to build interdisciplinary teams. Although efforts to date have focused primarily on collecting and aggregating information, less attention has been paid to the design of end-user tools for using these collections to identify collaborators. To be effective, collaborator search tools must provide researchers with easy access to information relevant to their collaboration needs. Objective The aim was to study user requirements and preferences for research networking system collaborator search tools and to design and evaluate a functional prototype. Methods Paper prototypes exploring possible interface designs were presented to 18 participants in semistructured interviews aimed at eliciting collaborator search needs. Interview data were coded and analyzed to identify recurrent themes and related software requirements. Analysis results and elements from paper prototypes were used to design a Web-based prototype using the D3 JavaScript library and VIVO data. Preliminary usability studies asked 20 participants to use the tool and to provide feedback through semistructured interviews and completion of the System Usability Scale (SUS). Results Initial interviews identified consensus regarding several novel requirements for collaborator search tools, including chronological display of publication and research funding information, the need for conjunctive keyword searches, and tools for tracking candidate collaborators. Participant responses were positive (SUS score: mean 76.4%, SD 13.9). Opportunities for improving the interface design were identified. Conclusions Interactive, timeline-based displays that support comparison of researcher productivity in funding and publication have the potential to effectively support searching for collaborators. Further refinement and longitudinal studies may be needed to better understand the implications of collaborator search tools for researcher workflows. PMID:25370463

  1. Informed public choices for low-carbon electricity portfolios using a computer decision tool.

    PubMed

    Mayer, Lauren A Fleishman; Bruine de Bruin, Wändi; Morgan, M Granger

    2014-04-01

    Reducing CO2 emissions from the electricity sector will likely require policies that encourage the widespread deployment of a diverse mix of low-carbon electricity generation technologies. Public discourse informs such policies. To make informed decisions and to productively engage in public discourse, citizens need to understand the trade-offs between electricity technologies proposed for widespread deployment. Building on previous paper-and-pencil studies, we developed a computer tool that aimed to help nonexperts make informed decisions about the challenges faced in achieving a low-carbon energy future. We report on an initial usability study of this interactive computer tool. After providing participants with comparative and balanced information about 10 electricity technologies, we asked them to design a low-carbon electricity portfolio. Participants used the interactive computer tool, which constrained portfolio designs to be realistic and yield low CO2 emissions. As they changed their portfolios, the tool updated information about projected CO2 emissions, electricity costs, and specific environmental impacts. As in the previous paper-and-pencil studies, most participants designed diverse portfolios that included energy efficiency, nuclear, coal with carbon capture and sequestration, natural gas, and wind. Our results suggest that participants understood the tool and used it consistently. The tool may be downloaded from http://cedmcenter.org/tools-for-cedm/informing-the-public-about-low-carbon-technologies/ .

  2. Designing Effective Curricula with an Interactive Collaborative Curriculum Design Tool (CCDT)

    ERIC Educational Resources Information Center

    Khadimally, Seda

    2015-01-01

    Guided by the principles of the Analysis, Design, Development, Implementation, and Evaluation (ADDIE) instructional design (ID) model, this creative instructional product presents a learning/teaching approach that is fundamentally constructivist. For the purposes of designing effective instruction in an academic preparation course, a…

  3. Controls-Structures Interaction (CSI) technology program summary. Earth orbiting platforms program area of the space platforms technology program

    NASA Technical Reports Server (NTRS)

    Newsom, Jerry R.

    1991-01-01

    Control-Structures Interaction (CSI) technology embraces the understanding of the interaction between the spacecraft structure and the control system, and the creation and validation of concepts, techniques, and tools, for enabling the interdisciplinary design of an integrated structure and control system, rather than the integration of a structural design and a control system design. The goal of this program is to develop validated CSI technology for integrated design/analysis and qualification of large flexible space systems and precision space structures. A description of the CSI technology program is presented.

  4. Model-Based Design of Air Traffic Controller-Automation Interaction

    NASA Technical Reports Server (NTRS)

    Romahn, Stephan; Callantine, Todd J.; Palmer, Everett A.; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    A model of controller and automation activities was used to design the controller-automation interactions necessary to implement a new terminal area air traffic management concept. The model was then used to design a controller interface that provides the requisite information and functionality. Using data from a preliminary study, the Crew Activity Tracking System (CATS) was used to help validate the model as a computational tool for describing controller performance.

  5. Benefits, challenges, and best practices for involving audiences in the development of interactive coastal risk communication tools: Professional communicators' experiences

    NASA Astrophysics Data System (ADS)

    Stephens, S. H.; DeLorme, D.

    2017-12-01

    To make scientific information useful and usable to audiences, communicators must understand audience needs, expectations, and future applications. This presentation synthesizes benefits, challenges, and best practices resulting from a qualitative social science interview study of nine professionals on their experiences developing interactive visualization tools for communicating about coastal environmental risks. Online interactive risk visualization tools, such as flooding maps, are used to provide scientific information about the impacts of coastal hazards. These tools have a wide range of audiences and purposes, including time-sensitive emergency communication, infrastructure and natural resource planning, and simply starting a community conversation about risks. Thus, the science, purposes, and audiences of these tools require a multifaceted communication strategy. In order to make these tools useable and accepted by their audiences, many professional development teams solicit target end-user input or incorporate formal user-centered design into the development process. This presentation will share results of seven interviews with developers of U.S. interactive coastal risk communication tools, ranging from state-level to international in scope. Specific techniques and procedures for audience input that were used in these projects will be discussed, including ad-hoc conversations with users, iterative usability testing with project stakeholder groups, and other participatory mechanisms. The presentation will then focus on benefits, challenges, and recommendations for best practice that the interviewees disclosed about including audiences in their development projects. Presentation attendees will gain an understanding of different procedures and techniques that professionals employ to involve end-users in risk tool development projects, as well as important considerations and recommendations for effectively involving audiences in science communication design.

  6. Initial development of prototype performance model for highway design

    DOT National Transportation Integrated Search

    1997-12-01

    The Federal Highway Administration (FHWA) has undertaken a multiyear project to develop the Interactive Highway Safety Design Model (IHSDM), which is a CADD-based integrated set of software tools to analyze a highway design to identify safety issues ...

  7. Examining the Characteristics of Student Postings That Are Liked and Linked in a CSCL Environment

    ERIC Educational Resources Information Center

    Makos, Alexandra; Lee, Kyungmee; Zingaro, Daniel

    2015-01-01

    This case study is the first iteration of a large-scale design-based research project to improve Pepper, an interactive discussion-based learning environment. In this phase, we designed and implemented two social features to scaffold positive learner interactivity behaviors: a "Like" button and linking tool. A mixed-methods approach was…

  8. The ZAP Project: Designing Interactive Computer Tools for Learning Psychology

    ERIC Educational Resources Information Center

    Hulshof, Casper; Eysink, Tessa; de Jong, Ton

    2006-01-01

    In the ZAP project, a set of interactive computer programs called "ZAPs" was developed. The programs were designed in such a way that first-year students experience psychological phenomena in a vivid and self-explanatory way. Students can either take the role of participant in a psychological experiment, they can experience phenomena themselves,…

  9. Evaluation of a computerized aid for creating human behavioral representations of human-computer interaction.

    PubMed

    Williams, Kent E; Voigt, Jeffrey R

    2004-01-01

    The research reported herein presents the results of an empirical evaluation that focused on the accuracy and reliability of cognitive models created using a computerized tool: the cognitive analysis tool for human-computer interaction (CAT-HCI). A sample of participants, expert in interacting with a newly developed tactical display for the U.S. Army's Bradley Fighting Vehicle, individually modeled their knowledge of 4 specific tasks employing the CAT-HCI tool. Measures of the accuracy and consistency of task models created by these task domain experts using the tool were compared with task models created by a double expert. The findings indicated a high degree of consistency and accuracy between the different "single experts" in the task domain in terms of the resultant models generated using the tool. Actual or potential applications of this research include assessing human-computer interaction complexity, determining the productivity of human-computer interfaces, and analyzing an interface design to determine whether methods can be automated.

  10. Instant Gratification: Striking a Balance Between Rich Interactive Visualization and Ease of Use for Casual Web Surfers

    NASA Astrophysics Data System (ADS)

    Russell, R. M.; Johnson, R. M.; Gardiner, E. S.; Bergman, J. J.; Genyuk, J.; Henderson, S.

    2004-12-01

    Interactive visualizations can be powerful tools for helping students, teachers, and the general public comprehend significant features in rich datasets and complex systems. Successful use of such visualizations requires viewers to have, or to acquire, adequate expertise in use of the relevant visualization tools. In many cases, the learning curve associated with competent use of such tools is too steep for casual users, such as members of the lay public browsing science outreach web sites or K-12 students and teachers trying to integrate such tools into their learning about geosciences. "Windows to the Universe" (http://www.windows.ucar.edu) is a large (roughly 6,000 web pages), well-established (first posted online in 1995), and popular (over 5 million visitor sessions and 40 million pages viewed per year) science education web site that covers a very broad range of Earth science and space science topics. The primary audience of the site consists of K-12 students and teachers and the general public. We have developed several interactive visualizations for use on the site in conjunction with text and still image reference materials. One major emphasis in the design of these interactives has been to ensure that casual users can quickly learn how to use the interactive features without becoming frustrated and departing before they were able to appreciate the visualizations displayed. We will demonstrate several of these "user-friendly" interactive visualizations and comment on the design philosophy we have employed in developing them.

  11. Use of Semantic Technology to Create Curated Data Albums

    NASA Technical Reports Server (NTRS)

    Ramachandran, Rahul; Kulkarni, Ajinkya; Li, Xiang; Sainju, Roshan; Bakare, Rohan; Basyal, Sabin

    2014-01-01

    One of the continuing challenges in any Earth science investigation is the discovery and access of useful science content from the increasingly large volumes of Earth science data and related information available online. Current Earth science data systems are designed with the assumption that researchers access data primarily by instrument or geophysical parameter. Those who know exactly the data sets they need can obtain the specific files using these systems. However, in cases where researchers are interested in studying an event of research interest, they must manually assemble a variety of relevant data sets by searching the different distributed data systems. Consequently, there is a need to design and build specialized search and discover tools in Earth science that can filter through large volumes of distributed online data and information and only aggregate the relevant resources needed to support climatology and case studies. This paper presents a specialized search and discovery tool that automatically creates curated Data Albums. The tool was designed to enable key elements of the search process such as dynamic interaction and sense-making. The tool supports dynamic interaction via different modes of interactivity and visual presentation of information. The compilation of information and data into a Data Album is analogous to a shoebox within the sense-making framework. This tool automates most of the tedious information/data gathering tasks for researchers. Data curation by the tool is achieved via an ontology-based, relevancy ranking algorithm that filters out nonrelevant information and data. The curation enables better search results as compared to the simple keyword searches provided by existing data systems in Earth science.

  12. Use of Semantic Technology to Create Curated Data Albums

    NASA Technical Reports Server (NTRS)

    Ramachandran, Rahul; Kulkarni, Ajinkya; Li, Xiang; Sainju, Roshan; Bakare, Rohan; Basyal, Sabin; Fox, Peter (Editor); Norack, Tom (Editor)

    2014-01-01

    One of the continuing challenges in any Earth science investigation is the discovery and access of useful science content from the increasingly large volumes of Earth science data and related information available online. Current Earth science data systems are designed with the assumption that researchers access data primarily by instrument or geophysical parameter. Those who know exactly the data sets they need can obtain the specific files using these systems. However, in cases where researchers are interested in studying an event of research interest, they must manually assemble a variety of relevant data sets by searching the different distributed data systems. Consequently, there is a need to design and build specialized search and discovery tools in Earth science that can filter through large volumes of distributed online data and information and only aggregate the relevant resources needed to support climatology and case studies. This paper presents a specialized search and discovery tool that automatically creates curated Data Albums. The tool was designed to enable key elements of the search process such as dynamic interaction and sense-making. The tool supports dynamic interaction via different modes of interactivity and visual presentation of information. The compilation of information and data into a Data Album is analogous to a shoebox within the sense-making framework. This tool automates most of the tedious information/data gathering tasks for researchers. Data curation by the tool is achieved via an ontology-based, relevancy ranking algorithm that filters out non-relevant information and data. The curation enables better search results as compared to the simple keyword searches provided by existing data systems in Earth science.

  13. From the Paper to the Tablet: On the Design of an AR-Based Tool for the Inspection of Pre-Fab Buildings. Preliminary Results of the SIRAE Project.

    PubMed

    Portalés, Cristina; Casas, Sergio; Gimeno, Jesús; Fernández, Marcos; Poza, Montse

    2018-04-19

    Energy-efficient Buildings (EeB) are demanded in today’s constructions, fulfilling the requirements for green cities. Pre-fab buildings, which are modularly fully-built in factories, are a good example of this. Although this kind of building is quite new, the in situ inspection is documented using traditional tools, mainly based on paper annotations. Thus, the inspection process is not taking advantage of new technologies. In this paper, we present the preliminary results of the SIRAE project that aims to provide an Augmented Reality (AR) tool that can seamlessly aid in the regular processes of pre-fab building inspections to detect and eliminate the possible existing quality and energy efficiency deviations. In this regards, we show a description of the current inspection process and how an interactive tool can be designed and adapted to it. Our first results show the design and implementation of our tool, which is highly interactive and involves AR visualizations and 3D data-gathering, allowing the inspectors to quickly manage it without altering the way the inspection process is done. First trials on a real environment show that the tool is promising for massive inspection processes.

  14. From the Paper to the Tablet: On the Design of an AR-Based Tool for the Inspection of Pre-Fab Buildings. Preliminary Results of the SIRAE Project

    PubMed Central

    Fernández, Marcos; Poza, Montse

    2018-01-01

    Energy-efficient Buildings (EeB) are demanded in today’s constructions, fulfilling the requirements for green cities. Pre-fab buildings, which are modularly fully-built in factories, are a good example of this. Although this kind of building is quite new, the in situ inspection is documented using traditional tools, mainly based on paper annotations. Thus, the inspection process is not taking advantage of new technologies. In this paper, we present the preliminary results of the SIRAE project that aims to provide an Augmented Reality (AR) tool that can seamlessly aid in the regular processes of pre-fab building inspections to detect and eliminate the possible existing quality and energy efficiency deviations. In this regards, we show a description of the current inspection process and how an interactive tool can be designed and adapted to it. Our first results show the design and implementation of our tool, which is highly interactive and involves AR visualizations and 3D data-gathering, allowing the inspectors to quickly manage it without altering the way the inspection process is done. First trials on a real environment show that the tool is promising for massive inspection processes. PMID:29671799

  15. Designer: A Knowledge-Based Graphic Design Assistant.

    ERIC Educational Resources Information Center

    Weitzman, Louis

    This report describes Designer, an interactive tool for assisting with the design of two-dimensional graphic interfaces for instructional systems. The system, which consists of a color graphics interface to a mathematical simulation, provides enhancements to the Graphics Editor component of Steamer (a computer-based training system designed to aid…

  16. Interactive tools for inpatient medication tracking: a multi-phase study with cardiothoracic surgery patients.

    PubMed

    Wilcox, Lauren; Woollen, Janet; Prey, Jennifer; Restaino, Susan; Bakken, Suzanne; Feiner, Steven; Sackeim, Alexander; Vawdrey, David K

    2016-01-01

    Prior studies of computing applications that support patients' medication knowledge and self-management offer valuable insights into effective application design, but do not address inpatient settings. This study is the first to explore the design and usefulness of patient-facing tools supporting inpatient medication management and tracking. We designed myNYP Inpatient, a custom personal health record application, through an iterative, user-centered approach. Medication-tracking tools in myNYP Inpatient include interactive views of home and hospital medication data and features for commenting on these data. In a two-phase pilot study, patients used the tools during cardiothoracic postoperative care at Columbia University Medical Center. In Phase One, we provided 20 patients with the application for 24-48 h and conducted a closing interview after this period. In Phase Two, we conducted semi-structured interviews with 12 patients and 5 clinical pharmacists who evaluated refinements to the tools based on the feedback received during Phase One. Patients reported that the medication-tracking tools were useful. During Phase One, 14 of the 20 participants used the tools actively, to review medication lists and log comments and questions about their medications. Patients' interview responses and audit logs revealed that they made frequent use of the hospital medications feature and found electronic reporting of questions and comments useful. We also uncovered important considerations for subsequent design of such tools. In Phase Two, the patients and pharmacists participating in the study confirmed the usability and usefulness of the refined tools. Inpatient medication-tracking tools, when designed to meet patients' needs, can play an important role in fostering patient participation in their own care and patient-provider communication during a hospital stay. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Integrated Tools for Future Distributed Engine Control Technologies

    NASA Technical Reports Server (NTRS)

    Culley, Dennis; Thomas, Randy; Saus, Joseph

    2013-01-01

    Turbine engines are highly complex mechanical systems that are becoming increasingly dependent on control technologies to achieve system performance and safety metrics. However, the contribution of controls to these measurable system objectives is difficult to quantify due to a lack of tools capable of informing the decision makers. This shortcoming hinders technology insertion in the engine design process. NASA Glenn Research Center is developing a Hardware-inthe- Loop (HIL) platform and analysis tool set that will serve as a focal point for new control technologies, especially those related to the hardware development and integration of distributed engine control. The HIL platform is intended to enable rapid and detailed evaluation of new engine control applications, from conceptual design through hardware development, in order to quantify their impact on engine systems. This paper discusses the complex interactions of the control system, within the context of the larger engine system, and how new control technologies are changing that paradigm. The conceptual design of the new HIL platform is then described as a primary tool to address those interactions and how it will help feed the insertion of new technologies into future engine systems.

  18. Examining the Effects of Field Dependence-Independence on Learners' Problem-Solving Performance and Interaction with a Computer Modeling Tool: Implications for the Design of Joint Cognitive Systems

    ERIC Educational Resources Information Center

    Angeli, Charoula

    2013-01-01

    An investigation was carried out to examine the effects of cognitive style on learners' performance and interaction during complex problem solving with a computer modeling tool. One hundred and nineteen undergraduates volunteered to participate in the study. Participants were first administered a test, and based on their test scores they were…

  19. EINVis: a visualization tool for analyzing and exploring genetic interactions in large-scale association studies.

    PubMed

    Wu, Yubao; Zhu, Xiaofeng; Chen, Jian; Zhang, Xiang

    2013-11-01

    Epistasis (gene-gene interaction) detection in large-scale genetic association studies has recently drawn extensive research interests as many complex traits are likely caused by the joint effect of multiple genetic factors. The large number of possible interactions poses both statistical and computational challenges. A variety of approaches have been developed to address the analytical challenges in epistatic interaction detection. These methods usually output the identified genetic interactions and store them in flat file formats. It is highly desirable to develop an effective visualization tool to further investigate the detected interactions and unravel hidden interaction patterns. We have developed EINVis, a novel visualization tool that is specifically designed to analyze and explore genetic interactions. EINVis displays interactions among genetic markers as a network. It utilizes a circular layout (specially, a tree ring view) to simultaneously visualize the hierarchical interactions between single nucleotide polymorphisms (SNPs), genes, and chromosomes, and the network structure formed by these interactions. Using EINVis, the user can distinguish marginal effects from interactions, track interactions involving more than two markers, visualize interactions at different levels, and detect proxy SNPs based on linkage disequilibrium. EINVis is an effective and user-friendly free visualization tool for analyzing and exploring genetic interactions. It is publicly available with detailed documentation and online tutorial on the web at http://filer.case.edu/yxw407/einvis/. © 2013 WILEY PERIODICALS, INC.

  20. Engineering computer graphics in gas turbine engine design, analysis and manufacture

    NASA Technical Reports Server (NTRS)

    Lopatka, R. S.

    1975-01-01

    A time-sharing and computer graphics facility designed to provide effective interactive tools to a large number of engineering users with varied requirements was described. The application of computer graphics displays at several levels of hardware complexity and capability is discussed, with examples of graphics systems tracing gas turbine product development, beginning with preliminary design through manufacture. Highlights of an operating system stylized for interactive engineering graphics is described.

  1. JPL control/structure interaction test bed real-time control computer architecture

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.

    1989-01-01

    The Control/Structure Interaction Program is a technology development program for spacecraft that exhibit interactions between the control system and structural dynamics. The program objectives include development and verification of new design concepts - such as active structure - and new tools - such as combined structure and control optimization algorithm - and their verification in ground and possibly flight test. A focus mission spacecraft was designed based upon a space interferometer and is the basis for design of the ground test article. The ground test bed objectives include verification of the spacecraft design concepts, the active structure elements and certain design tools such as the new combined structures and controls optimization tool. In anticipation of CSI technology flight experiments, the test bed control electronics must emulate the computation capacity and control architectures of space qualifiable systems as well as the command and control networks that will be used to connect investigators with the flight experiment hardware. The Test Bed facility electronics were functionally partitioned into three units: a laboratory data acquisition system for structural parameter identification and performance verification; an experiment supervisory computer to oversee the experiment, monitor the environmental parameters and perform data logging; and a multilevel real-time control computing system. The design of the Test Bed electronics is presented along with hardware and software component descriptions. The system should break new ground in experimental control electronics and is of interest to anyone working in the verification of control concepts for large structures.

  2. Design of automation tools for management of descent traffic

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; Nedell, William

    1988-01-01

    The design of an automated air traffic control system based on a hierarchy of advisory tools for controllers is described. Compatibility of the tools with the human controller, a key objective of the design, is achieved by a judicious selection of tasks to be automated and careful attention to the design of the controller system interface. The design comprises three interconnected subsystems referred to as the Traffic Management Advisor, the Descent Advisor, and the Final Approach Spacing Tool. Each of these subsystems provides a collection of tools for specific controller positions and tasks. This paper focuses primarily on the Descent Advisor which provides automation tools for managing descent traffic. The algorithms, automation modes, and graphical interfaces incorporated in the design are described. Information generated by the Descent Advisor tools is integrated into a plan view traffic display consisting of a high-resolution color monitor. Estimated arrival times of aircraft are presented graphically on a time line, which is also used interactively in combination with a mouse input device to select and schedule arrival times. Other graphical markers indicate the location of the fuel-optimum top-of-descent point and the predicted separation distances of aircraft at a designated time-control point. Computer generated advisories provide speed and descent clearances which the controller can issue to aircraft to help them arrive at the feeder gate at the scheduled times or with specified separation distances. Two types of horizontal guidance modes, selectable by the controller, provide markers for managing the horizontal flightpaths of aircraft under various conditions. The entire system consisting of descent advisor algorithm, a library of aircraft performance models, national airspace system data bases, and interactive display software has been implemented on a workstation made by Sun Microsystems, Inc. It is planned to use this configuration in operational evaluations at an en route center.

  3. Implementation of Online Peer Assessment in a Design for Learning and Portfolio (D4L+P) Program to Help Students Complete Science Projects

    ERIC Educational Resources Information Center

    Wuttisela, Karntarat; Wuttiprom, Sura; Phonchaiya, Sonthi; Saengsuwan, Sayant

    2016-01-01

    Peer assessment was one of the most effective strategies to improve students' understanding, metacognitive skills, and social interaction. An online tool, "Designing for Learning and Portfolio (D4L+P)", was developed solely to support the T5 (tasks, tools, tutorials, topicresources, and teamwork) method of teaching and learning. This…

  4. Communication Styles of Interactive Tools for Self-Improvement.

    PubMed

    Niess, Jasmin; Diefenbach, Sarah

    Interactive products for self-improvement (e.g., online trainings to reduce stress, fitness gadgets) have become increasingly popular among consumers and healthcare providers. In line with the idea of positive computing, these tools aim to support their users on their way to improved well-being and human flourishing. As an interdisciplinary domain, the design of self-improvement technologies requires psychological, technological, and design expertise. One needs to know how to support people in behavior change, and one needs to find ways to do this through technology design. However, as recent reviews show, the interlocking relationship between these disciplines is still improvable. Many existing technologies for self-improvement neglect psychological theory on behavior change, especially motivational factors are not sufficiently considered. To counteract this, we suggest a focus on the dialog and emerging communication between product and user, considering the self-improvement tool as an interactive coach and advisor. The present qualitative interview study (N = 18) explored the user experience of self-improvement technologies. A special focus was on the perceived dialog between tool and user, which we analyzed in terms of models from communication psychology. Our findings show that users are sensible to the way the product "speaks to them" and consider this as essential for their experience and successful change. Analysis revealed different communication styles of self-improvement tools (e.g., helpful-cooperative, rational-distanced, critical-aggressive), each linked to specific emotional consequences. These findings form one starting point for a more psychologically founded design of self-improvement technology. On a more general level, our approach aims to contribute to a better integration of psychological and technological knowledge, and in consequence, supporting users on their way to enhanced well-being.

  5. Query2Question: Translating Visualization Interaction into Natural Language.

    PubMed

    Nafari, Maryam; Weaver, Chris

    2015-06-01

    Richly interactive visualization tools are increasingly popular for data exploration and analysis in a wide variety of domains. Existing systems and techniques for recording provenance of interaction focus either on comprehensive automated recording of low-level interaction events or on idiosyncratic manual transcription of high-level analysis activities. In this paper, we present the architecture and translation design of a query-to-question (Q2Q) system that automatically records user interactions and presents them semantically using natural language (written English). Q2Q takes advantage of domain knowledge and uses natural language generation (NLG) techniques to translate and transcribe a progression of interactive visualization states into a visual log of styled text that complements and effectively extends the functionality of visualization tools. We present Q2Q as a means to support a cross-examination process in which questions rather than interactions are the focus of analytic reasoning and action. We describe the architecture and implementation of the Q2Q system, discuss key design factors and variations that effect question generation, and present several visualizations that incorporate Q2Q for analysis in a variety of knowledge domains.

  6. Development of an interactive GIS based work zone traffic control tool.

    DOT National Transportation Integrated Search

    2013-08-01

    The purpose of this study was to include consideration for intersections into the previously created GIS traffic control planning tool. Available data for making intersection control calculations were collected and integrated into the design of the t...

  7. Interactive Radio Counseling in Indira Gandhi National Open University: A Study.

    ERIC Educational Resources Information Center

    Chaudhary, Sohanvir S.; Bansal, Kiron

    2000-01-01

    Explains interactive radio as an effective tool for open and distance learning provided it is planned, designed, implemented, and monitored systematically. Describes the interactive radio counseling at Indira Gandhi National Open University (IGNOU) that provides support to students who study print material and may attend weekend…

  8. 'Designing Ambient Interactions - Pervasive Ergonomic Interfaces for Ageing Well' (DAI'10)

    NASA Astrophysics Data System (ADS)

    Geven, Arjan; Prost, Sebastian; Tscheligi, Manfred; Soldatos, John; Gonzalez, Mari Feli

    The workshop will focus on novel computer based interaction mechanisms and interfaces, which boost natural interactivity and obviate the need for conventional tedious interfaces. Such interfaces are increasingly used in ambient intelligence environments and related applications, including application boosting elderly cognitive support, cognitive rehabilitation and Ambient Assisted Living (AAL). The aim of the workshop is to provide insights on the technological underpinnings of such interfaces, along with tools and techniques for their design and evaluation.

  9. Identifying factors of comfort in using hand tools.

    PubMed

    Kuijt-Evers, L F M; Groenesteijn, L; de Looze, M P; Vink, P

    2004-09-01

    To design comfortable hand tools, knowledge about comfort/discomfort in using hand tools is required. We investigated which factors determine comfort/discomfort in using hand tools according to users. Therefore, descriptors of comfort/discomfort in using hand tools were collected from literature and interviews. After that, the relatedness of a selection of the descriptors to comfort in using hand tools was investigated. Six comfort factors could be distinguished (functionality, posture and muscles, irritation and pain of hand and fingers, irritation of hand surface, handle characteristics, aesthetics). These six factors can be classified into three meaningful groups: functionality, physical interaction and appearance. The main conclusions were that (1) the same descriptors were related to comfort and discomfort in using hand tools, (2) descriptors of functionality are most related to comfort in using hand tools followed by descriptors of physical interaction and (3) descriptors of appearance become secondary in comfort in using hand tools.

  10. Automated Test Case Generation for an Autopilot Requirement Prototype

    NASA Technical Reports Server (NTRS)

    Giannakopoulou, Dimitra; Rungta, Neha; Feary, Michael

    2011-01-01

    Designing safety-critical automation with robust human interaction is a difficult task that is susceptible to a number of known Human-Automation Interaction (HAI) vulnerabilities. It is therefore essential to develop automated tools that provide support both in the design and rapid evaluation of such automation. The Automation Design and Evaluation Prototyping Toolset (ADEPT) enables the rapid development of an executable specification for automation behavior and user interaction. ADEPT supports a number of analysis capabilities, thus enabling the detection of HAI vulnerabilities early in the design process, when modifications are less costly. In this paper, we advocate the introduction of a new capability to model-based prototyping tools such as ADEPT. The new capability is based on symbolic execution that allows us to automatically generate quality test suites based on the system design. Symbolic execution is used to generate both user input and test oracles user input drives the testing of the system implementation, and test oracles ensure that the system behaves as designed. We present early results in the context of a component in the Autopilot system modeled in ADEPT, and discuss the challenges of test case generation in the HAI domain.

  11. Silicon photonics cloud (SiCloud)

    NASA Astrophysics Data System (ADS)

    DeVore, Peter T. S.; Jiang, Yunshan; Lynch, Michael; Miyatake, Taira; Carmona, Christopher; Chan, Andrew C.; Muniam, Kuhan; Jalali, Bahram

    2015-02-01

    We present SiCloud (Silicon Photonics Cloud), the first free, instructional web-based research and education tool for silicon photonics. SiCloud's vision is to provide a host of instructional and research web-based tools. Such interactive learning tools enhance traditional teaching methods by extending access to a very large audience, resulting in very high impact. Interactive tools engage the brain in a way different from merely reading, and so enhance and reinforce the learning experience. Understanding silicon photonics is challenging as the topic involves a wide range of disciplines, including material science, semiconductor physics, electronics and waveguide optics. This web-based calculator is an interactive analysis tool for optical properties of silicon and related material (SiO2, Si3N4, Al2O3, etc.). It is designed to be a one stop resource for students, researchers and design engineers. The first and most basic aspect of Silicon Photonics is the Material Parameters, which provides the foundation for the Device, Sub-System and System levels. SiCloud includes the common dielectrics and semiconductors for waveguide core, cladding, and photodetection, as well as metals for electrical contacts. SiCloud is a work in progress and its capability is being expanded. SiCloud is being developed at UCLA with funding from the National Science Foundation's Center for Integrated Access Networks (CIAN) Engineering Research Center.

  12. LATUX: An Iterative Workflow for Designing, Validating, and Deploying Learning Analytics Visualizations

    ERIC Educational Resources Information Center

    Martinez-Maldonado, Roberto; Pardo, Abelardo; Mirriahi, Negin; Yacef, Kalina; Kay, Judy; Clayphan, Andrew

    2015-01-01

    Designing, validating, and deploying learning analytics tools for instructors or students is a challenge that requires techniques and methods from different disciplines, such as software engineering, human-computer interaction, computer graphics, educational design, and psychology. Whilst each has established its own design methodologies, we now…

  13. Metabolic Network Modeling for Computer-Aided Design of Microbial Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Hyun-Seob; Nelson, William C.; Lee, Joon-Yong

    Interest in applying microbial communities to biotechnology continues to increase. Successful engineering of microbial communities requires a fundamental shift in focus from enhancing metabolic capabilities in individual organisms to promoting synergistic interspecies interactions. This goal necessitates in silico tools that provide a predictive understanding of how microorganisms interact with each other and their environments. In this regard, we highlight a need for a new concept that we have termed biological computer-aided design of interactions (BioCADi). We ground this discussion within the context of metabolic network modeling.

  14. Spatial Modeling Tools for Cell Biology

    DTIC Science & Technology

    2006-10-01

    multiphysics modeling expertise. A graphical user interface (GUI) for CoBi, JCoBi, was written in Java and interactive 3D graphics. CoBi has been...tools (C++ and Java ) to simulate complex cell and organ biology problems. CoBi has been designed to interact with the other Bio-SPICE software...fall of 2002. VisIt supports C++, Python and Java interfaces. The C++ and Java interfaces make it possible to provide alternate user interfaces for

  15. Tool for Experimenting with Concepts of Mobile Robotics as Applied to Children's Education

    ERIC Educational Resources Information Center

    Jimenez Jojoa, E. M.; Bravo, E. C.; Bacca Cortes, E. B.

    2010-01-01

    This paper describes the design and implementation of a tool for experimenting with mobile robotics concepts, primarily for use by children and teenagers, or by the general public, without previous experience in robotics. This tool helps children learn about science in an approachable and interactive way, using scientific research principles in…

  16. Application of SOJA and InforMatrix in practice: interactive web and workshop tools.

    PubMed

    Brenninkmeijer, Rob; Janknegt, Robert

    2007-10-01

    System of Objectified Judgement Analysis (SOJA) and InforMatrix are decision-matrix techniques designed to support a rational selection of drugs. Both SOJA and InforMatrix can be considered as strategic tools in the practical implementation of rational pharmacotherapy. In order to apply the matrix techniques to drug selection, strategic navigation through essential information (with the aim of reaching consensus in pharmacotherapy) is required. The consensus has to be reached in an interactive, communicative, collegial manner, within a professional environment. This environment is realised in the form of interactive applications in workshops and on the internet. Such interactive applications are illustrated and discussed in this article.

  17. Rule based design of conceptual models for formative evaluation

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Chang, Kai; Hale, Joseph P.; Bester, Terri; Rix, Thomas; Wang, Yaowen

    1994-01-01

    A Human-Computer Interface (HCI) Prototyping Environment with embedded evaluation capability has been investigated. This environment will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. This environment, which allows for rapid prototyping and evaluation of graphical interfaces, includes the following four components: (1) a HCI development tool; (2) a low fidelity simulator development tool; (3) a dynamic, interactive interface between the HCI and the simulator; and (4) an embedded evaluator that evaluates the adequacy of a HCI based on a user's performance. The embedded evaluation tool collects data while the user is interacting with the system and evaluates the adequacy of an interface based on a user's performance. This paper describes the design of conceptual models for the embedded evaluation system using a rule-based approach.

  18. Rule based design of conceptual models for formative evaluation

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Chang, Kai; Hale, Joseph P.; Bester, Terri; Rix, Thomas; Wang, Yaowen

    1994-01-01

    A Human-Computer Interface (HCI) Prototyping Environment with embedded evaluation capability has been investigated. This environment will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. This environment, which allows for rapid prototyping and evaluation of graphical interfaces, includes the following four components: (1) a HCI development tool, (2) a low fidelity simulator development tool, (3) a dynamic, interactive interface between the HCI and the simulator, and (4) an embedded evaluator that evaluates the adequacy of a HCI based on a user's performance. The embedded evaluation tool collects data while the user is interacting with the system and evaluates the adequacy of an interface based on a user's performance. This paper describes the design of conceptual models for the embedded evaluation system using a rule-based approach.

  19. Building the Scientific Modeling Assistant: An interactive environment for specialized software design

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.

    1991-01-01

    The construction of scientific software models is an integral part of doing science, both within NASA and within the scientific community at large. Typically, model-building is a time-intensive and painstaking process, involving the design of very large, complex computer programs. Despite the considerable expenditure of resources involved, completed scientific models cannot easily be distributed and shared with the larger scientific community due to the low-level, idiosyncratic nature of the implemented code. To address this problem, we have initiated a research project aimed at constructing a software tool called the Scientific Modeling Assistant. This tool provides automated assistance to the scientist in developing, using, and sharing software models. We describe the Scientific Modeling Assistant, and also touch on some human-machine interaction issues relevant to building a successful tool of this type.

  20. TreeQ-VISTA: An Interactive Tree Visualization Tool withFunctional Annotation Query Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Shengyin; Anderson, Iain; Kunin, Victor

    2007-05-07

    Summary: We describe a general multiplatform exploratorytool called TreeQ-Vista, designed for presenting functional annotationsin a phylogenetic context. Traits, such as phenotypic and genomicproperties, are interactively queried from a relational database with auser-friendly interface which provides a set of tools for users with orwithout SQL knowledge. The query results are projected onto aphylogenetic tree and can be displayed in multiple color groups. A richset of browsing, grouping and query tools are provided to facilitatetrait exploration, comparison and analysis.Availability: The program,detailed tutorial and examples are available online athttp://genome-test.lbl.gov/vista/TreeQVista.

  1. E-Learning Content Design Standards Based on Interactive Digital Concepts Maps in the Light of Meaningful and Constructivist Learning Theory

    ERIC Educational Resources Information Center

    Afify, Mohammed Kamal

    2018-01-01

    The present study aims to identify standards of interactive digital concepts maps design and their measurement indicators as a tool to develop, organize and administer e-learning content in the light of Meaningful Learning Theory and Constructivist Learning Theory. To achieve the objective of the research, the author prepared a list of E-learning…

  2. The Impact of a Question-Embedded Video-Based Learning Tool on E-Learning

    ERIC Educational Resources Information Center

    Vural, Omer Faruk

    2013-01-01

    In this study, it is mainly focused on investigating the effect of question-embedded online interactive video environment on student achievement. A quasi-experimental design was development to compare the effectiveness of a question-embedded interactive video environment (QVE) and an interactive video environment without the question component…

  3. Cloud Computing Techniques for Space Mission Design

    NASA Technical Reports Server (NTRS)

    Arrieta, Juan; Senent, Juan

    2014-01-01

    The overarching objective of space mission design is to tackle complex problems producing better results, and faster. In developing the methods and tools to fulfill this objective, the user interacts with the different layers of a computing system.

  4. Freiburg RNA tools: a central online resource for RNA-focused research and teaching.

    PubMed

    Raden, Martin; Ali, Syed M; Alkhnbashi, Omer S; Busch, Anke; Costa, Fabrizio; Davis, Jason A; Eggenhofer, Florian; Gelhausen, Rick; Georg, Jens; Heyne, Steffen; Hiller, Michael; Kundu, Kousik; Kleinkauf, Robert; Lott, Steffen C; Mohamed, Mostafa M; Mattheis, Alexander; Miladi, Milad; Richter, Andreas S; Will, Sebastian; Wolff, Joachim; Wright, Patrick R; Backofen, Rolf

    2018-05-21

    The Freiburg RNA tools webserver is a well established online resource for RNA-focused research. It provides a unified user interface and comprehensive result visualization for efficient command line tools. The webserver includes RNA-RNA interaction prediction (IntaRNA, CopraRNA, metaMIR), sRNA homology search (GLASSgo), sequence-structure alignments (LocARNA, MARNA, CARNA, ExpaRNA), CRISPR repeat classification (CRISPRmap), sequence design (antaRNA, INFO-RNA, SECISDesign), structure aberration evaluation of point mutations (RaSE), and RNA/protein-family models visualization (CMV), and other methods. Open education resources offer interactive visualizations of RNA structure and RNA-RNA interaction prediction as well as basic and advanced sequence alignment algorithms. The services are freely available at http://rna.informatik.uni-freiburg.de.

  5. Supporting Scientific Analysis within Collaborative Problem Solving Environments

    NASA Technical Reports Server (NTRS)

    Watson, Velvin R.; Kwak, Dochan (Technical Monitor)

    2000-01-01

    Collaborative problem solving environments for scientists should contain the analysis tools the scientists require in addition to the remote collaboration tools used for general communication. Unfortunately, most scientific analysis tools have been designed for a "stand-alone mode" and cannot be easily modified to work well in a collaborative environment. This paper addresses the questions, "What features are desired in a scientific analysis tool contained within a collaborative environment?", "What are the tool design criteria needed to provide these features?", and "What support is required from the architecture to support these design criteria?." First, the features of scientific analysis tools that are important for effective analysis in collaborative environments are listed. Next, several design criteria for developing analysis tools that will provide these features are presented. Then requirements for the architecture to support these design criteria are listed. Sonic proposed architectures for collaborative problem solving environments are reviewed and their capabilities to support the specified design criteria are discussed. A deficiency in the most popular architecture for remote application sharing, the ITU T. 120 architecture, prevents it from supporting highly interactive, dynamic, high resolution graphics. To illustrate that the specified design criteria can provide a highly effective analysis tool within a collaborative problem solving environment, a scientific analysis tool that contains the specified design criteria has been integrated into a collaborative environment and tested for effectiveness. The tests were conducted in collaborations between remote sites in the US and between remote sites on different continents. The tests showed that the tool (a tool for the visual analysis of computer simulations of physics) was highly effective for both synchronous and asynchronous collaborative analyses. The important features provided by the tool (and made possible by the specified design criteria) are: 1. The tool provides highly interactive, dynamic, high resolution, 3D graphics. 2. All remote scientists can view the same dynamic, high resolution, 3D scenes of the analysis as the analysis is being conducted. 3. The responsiveness of the tool is nearly identical to the responsiveness of the tool in a stand-alone mode. 4. The scientists can transfer control of the analysis between themselves. 5. Any analysis session or segment of an analysis session, whether done individually or collaboratively, can be recorded and posted on the Web for other scientists or students to download and play in either a collaborative or individual mode. 6. The scientist or student who downloaded the session can, individually or collaboratively, modify or extend the session with his/her own "what if" analysis of the data and post his/her version of the analysis back onto the Web. 7. The peak network bandwidth used in the collaborative sessions is only 1K bit/second even though the scientists at all sites are viewing high resolution (1280 x 1024 pixels), dynamic, 3D scenes of the analysis. The links between the specified design criteria and these performance features are presented.

  6. STATWIZ - AN ELECTRONIC STATISTICAL TOOL (ABSTRACT)

    EPA Science Inventory

    StatWiz is a web-based, interactive, and dynamic statistical tool for researchers. It will allow researchers to input information and/or data and then receive experimental design options, or outputs from data analysis. StatWiz is envisioned as an expert system that will walk rese...

  7. An Integrated Unix-based CAD System for the Design and Testing of Custom VLSI Chips

    NASA Technical Reports Server (NTRS)

    Deutsch, L. J.

    1985-01-01

    A computer aided design (CAD) system that is being used at the Jet Propulsion Laboratory for the design of custom and semicustom very large scale integrated (VLSI) chips is described. The system consists of a Digital Equipment Corporation VAX computer with the UNIX operating system and a collection of software tools for the layout, simulation, and verification of microcircuits. Most of these tools were written by the academic community and are, therefore, available to JPL at little or no cost. Some small pieces of software have been written in-house in order to make all the tools interact with each other with a minimal amount of effort on the part of the designer.

  8. Geometric modeling for computer aided design

    NASA Technical Reports Server (NTRS)

    Schwing, James L.

    1993-01-01

    Over the past several years, it has been the primary goal of this grant to design and implement software to be used in the conceptual design of aerospace vehicles. The work carried out under this grant was performed jointly with members of the Vehicle Analysis Branch (VAB) of NASA LaRC, Computer Sciences Corp., and Vigyan Corp. This has resulted in the development of several packages and design studies. Primary among these are the interactive geometric modeling tool, the Solid Modeling Aerospace Research Tool (smart), and the integration and execution tools provided by the Environment for Application Software Integration and Execution (EASIE). In addition, it is the purpose of the personnel of this grant to provide consultation in the areas of structural design, algorithm development, and software development and implementation, particularly in the areas of computer aided design, geometric surface representation, and parallel algorithms.

  9. A Simple Tool for the Design and Analysis of Multiple-Reflector Antennas in a Multi-Disciplinary Environment

    NASA Technical Reports Server (NTRS)

    Katz, Daniel S.; Cwik, Tom; Fu, Chuigang; Imbriale, William A.; Jamnejad, Vahraz; Springer, Paul L.; Borgioli, Andrea

    2000-01-01

    The process of designing and analyzing a multiple-reflector system has traditionally been time-intensive, requiring large amounts of both computational and human time. At many frequencies, a discrete approximation of the radiation integral may be used to model the system. The code which implements this physical optics (PO) algorithm was developed at the Jet Propulsion Laboratory. It analyzes systems of antennas in pairs, and for each pair, the analysis can be computationally time-consuming. Additionally, the antennas must be described using a local coordinate system for each antenna, which makes it difficult to integrate the design into a multi-disciplinary framework in which there is traditionally one global coordinate system, even before considering deforming the antenna as prescribed by external structural and/or thermal factors. Finally, setting up the code to correctly analyze all the antenna pairs in the system can take a fair amount of time, and introduces possible human error. The use of parallel computing to reduce the computational time required for the analysis of a given pair of antennas has been previously discussed. This paper focuses on the other problems mentioned above. It will present a methodology and examples of use of an automated tool that performs the analysis of a complete multiple-reflector system in an integrated multi-disciplinary environment (including CAD modeling, and structural and thermal analysis) at the click of a button. This tool, named MOD Tool (Millimeter-wave Optics Design Tool), has been designed and implemented as a distributed tool, with a client that runs almost identically on Unix, Mac, and Windows platforms, and a server that runs primarily on a Unix workstation and can interact with parallel supercomputers with simple instruction from the user interacting with the client.

  10. The anatomy of E-Learning tools: Does software usability influence learning outcomes?

    PubMed

    Van Nuland, Sonya E; Rogers, Kem A

    2016-07-08

    Reductions in laboratory hours have increased the popularity of commercial anatomy e-learning tools. It is critical to understand how the functionality of such tools can influence the mental effort required during the learning process, also known as cognitive load. Using dual-task methodology, two anatomical e-learning tools were examined to determine the effect of their design on cognitive load during two joint learning exercises. A.D.A.M. Interactive Anatomy is a simplistic, two-dimensional tool that presents like a textbook, whereas Netter's 3D Interactive Anatomy has a more complex three-dimensional usability that allows structures to be rotated. It was hypothesized that longer reaction times on an observation task would be associated with the more complex anatomical software (Netter's 3D Interactive Anatomy), indicating a higher cognitive load imposed by the anatomy software, which would result in lower post-test scores. Undergraduate anatomy students from Western University, Canada (n = 70) were assessed using a baseline knowledge test, Stroop observation task response times (a measure of cognitive load), mental rotation test scores, and an anatomy post-test. Results showed that reaction times and post-test outcomes were similar for both tools, whereas mental rotation test scores were positively correlated with post-test values when students used Netter's 3D Interactive Anatomy (P = 0.007), but not when they used A.D.A.M. Interactive Anatomy. This suggests that a simple e-learning tool, such as A.D.A.M. Interactive Anatomy, is as effective as more complicated tools, such as Netter's 3D Interactive Anatomy, and does not academically disadvantage those with poor spatial ability. Anat Sci Educ 9: 378-390. © 2015 American Association of Anatomists. © 2015 American Association of Anatomists.

  11. Designing Asynchronous Communication Tools for Optimization of Patient-Clinician Coordination

    PubMed Central

    Eschler, Jordan; Liu, Leslie S.; Vizer, Lisa M.; McClure, Jennifer B.; Lozano, Paula; Pratt, Wanda; Ralston, James D.

    2015-01-01

    Asynchronous communication outside the clinical setting has both enriched and complicated patient-clinician interactions. Many patients can now interact with a patient portal 24 hours a day, asking questions of their clinicians via secure message, checking lab results, ordering medication refills, or making appointments. However, the mode of communication (asynchronous) and the nature of the interaction (lacking tone or body language) strip valuable information from each side of patient-clinician asynchronous communication. Using interviews with 34 individuals who actively manage a chronic illness of their own, or for a child or partner, we elicited narratives about patients’ experiences and expectations for using asynchronous communication to address medical issues with their clinicians. Based on these perspectives, we present opportunities for designing asynchronous communication tools to better facilitate understanding of and coordination around care activities between patients and clinicians. PMID:26958188

  12. An Automated Approach to Instructional Design Guidance.

    ERIC Educational Resources Information Center

    Spector, J. Michael; And Others

    This paper describes the Guided Approach to Instructional Design Advising (GAIDA), an automated instructional design tool that incorporates techniques of artificial intelligence. GAIDA was developed by the U.S. Air Force Armstrong Laboratory to facilitate the planning and production of interactive courseware and computer-based training materials.…

  13. Implementing Lumberjacks and Black Swans Into Model-Based Tools to Support Human-Automation Interaction.

    PubMed

    Sebok, Angelia; Wickens, Christopher D

    2017-03-01

    The objectives were to (a) implement theoretical perspectives regarding human-automation interaction (HAI) into model-based tools to assist designers in developing systems that support effective performance and (b) conduct validations to assess the ability of the models to predict operator performance. Two key concepts in HAI, the lumberjack analogy and black swan events, have been studied extensively. The lumberjack analogy describes the effects of imperfect automation on operator performance. In routine operations, an increased degree of automation supports performance, but in failure conditions, increased automation results in more significantly impaired performance. Black swans are the rare and unexpected failures of imperfect automation. The lumberjack analogy and black swan concepts have been implemented into three model-based tools that predict operator performance in different systems. These tools include a flight management system, a remotely controlled robotic arm, and an environmental process control system. Each modeling effort included a corresponding validation. In one validation, the software tool was used to compare three flight management system designs, which were ranked in the same order as predicted by subject matter experts. The second validation compared model-predicted operator complacency with empirical performance in the same conditions. The third validation compared model-predicted and empirically determined time to detect and repair faults in four automation conditions. The three model-based tools offer useful ways to predict operator performance in complex systems. The three tools offer ways to predict the effects of different automation designs on operator performance.

  14. Optimal Living Environments for the Elderly: A Design Simulation Approach.

    ERIC Educational Resources Information Center

    Hoffman, Stephanie B.; And Others

    PLANNED AGE (Planned Alternatives for Gerontological Environments) is a consumer/advocate-oriented design simulation package that provides: (a) a medium for user-planner interaction in the design of living and service environments for the aged; (b) an educational, planning, design, and evaluation tool that can be used by the elderly, their…

  15. Intelligent control system based on ARM for lithography tool

    NASA Astrophysics Data System (ADS)

    Chen, Changlong; Tang, Xiaoping; Hu, Song; Wang, Nan

    2014-08-01

    The control system of traditional lithography tool is based on PC and MCU. The PC handles the complex algorithm, human-computer interaction, and communicates with MCU via serial port; The MCU controls motors and electromagnetic valves, etc. This mode has shortcomings like big volume, high power consumption, and wasting of PC resource. In this paper, an embedded intelligent control system of lithography tool, based on ARM, is provided. The control system used S5PV210 as processor, completing the functions of PC in traditional lithography tool, and provided a good human-computer interaction by using LCD and capacitive touch screen. Using Android4.0.3 as operating system, the equipment provided a cool and easy UI which made the control more user-friendly, and implemented remote control and debug, pushing video information of product by network programming. As a result, it's convenient for equipment vendor to provide technical support for users. Finally, compared with traditional lithography tool, this design reduced the PC part, making the hardware resources efficiently used and reducing the cost and volume. Introducing embedded OS and the concepts in "The Internet of things" into the design of lithography tool can be a development trend.

  16. Empowering Older Patients to Engage in Self Care: Designing an Interactive Robotic Device

    PubMed Central

    Tiwari, Priyadarshi; Warren, Jim; Day, Karen

    2011-01-01

    Objectives: To develop and test an interactive robot mounted computing device to support medication management as an example of a complex self-care task in older adults. Method: A Grounded Theory (GT), Participatory Design (PD) approach was used within three Action Research (AR) cycles to understand design requirements and test the design configuration addressing the unique task requirements. Results: At the end of the first cycle a conceptual framework was evolved. The second cycle informed architecture and interface design. By the end of third cycle residents successfully interacted with the dialogue system and were generally satisfied with the robot. The results informed further refinement of the prototype. Conclusion: An interactive, touch screen based, robot-mounted information tool can be developed to support healthcare needs of older people. Qualitative methods such as the hybrid GT-PD-AR approach may be particularly helpful for innovating and articulating design requirements in challenging situations. PMID:22195203

  17. Empowering older patients to engage in self care: designing an interactive robotic device.

    PubMed

    Tiwari, Priyadarshi; Warren, Jim; Day, Karen

    2011-01-01

    To develop and test an interactive robot mounted computing device to support medication management as an example of a complex self-care task in older adults. A Grounded Theory (GT), Participatory Design (PD) approach was used within three Action Research (AR) cycles to understand design requirements and test the design configuration addressing the unique task requirements. At the end of the first cycle a conceptual framework was evolved. The second cycle informed architecture and interface design. By the end of third cycle residents successfully interacted with the dialogue system and were generally satisfied with the robot. The results informed further refinement of the prototype. An interactive, touch screen based, robot-mounted information tool can be developed to support healthcare needs of older people. Qualitative methods such as the hybrid GT-PD-AR approach may be particularly helpful for innovating and articulating design requirements in challenging situations.

  18. The process of co-creating the interface for VENSTER, an interactive artwork for nursing home residents with dementia.

    PubMed

    Jamin, Gaston; Luyten, Tom; Delsing, Rob; Braun, Susy

    2017-10-17

    Interactive art installations might engage nursing home residents with dementia. The main aim of this article was to describe the challenging design process of an interactive artwork for nursing home residents, in co-creation with all stakeholders and to share the used methods and lessons learned. This process is illustrated by the design of the interface of VENSTER as a case. Nursing home residents from the psychogeriatric ward, informal caregivers, client representatives, health care professionals and members of the management team were involved in the design process, which consisted of three phases: (1) identify requirements, (2) develop a prototype and (3) conduct usability tests. Several methods were used (e.g. guided co-creation sessions, "Wizard of Oz"). Each phase generated "lessons learned", which were used as the departure point of the next phase. Participants hardly paid attention to the installation and interface. There, however, seemed to be an untapped potential for creating an immersive experience by focussing more on the content itself as an interface (e.g. creating specific scenes with cues for interaction, scenes based on existing knowledge or prior experiences). "Fifteen lessons learned" which can potentially assist the design of an interactive artwork for nursing home residents suffering from dementia were derived from the design process. This description provides tools and best practices for stakeholders to make (better) informed choices during the creation of interactive artworks. It also illustrates how co-design can make the difference between designing a pleasurable experience and a meaningful one. Implications for rehabilitation Co-design with all stakeholders can make the difference between designing a pleasurable experience and a meaningful one. There seems to be an untapped potential for creating an immersive experience by focussing more on the content itself as an interface (e.g. creating specific scenes with cues for interaction, scenes based on existing knowledge or prior experiences). Content as an interface proved to be a crucial part of the overall user experience. The case-study provides tools and best practices (15 "lessons learned") for stakeholders to make (better) informed choices during the creation of interactive artworks.

  19. BladeCAD: An Interactive Geometric Design Tool for Turbomachinery Blades

    NASA Technical Reports Server (NTRS)

    Miller, Perry L., IV; Oliver, James H.; Miller, David P.; Tweedt, Daniel L.

    1996-01-01

    A new metthodology for interactive design of turbomachinery blades is presented. Software implementation of the meth- ods provides a user interface that is intuitive to aero-designers while operating with standardized geometric forms. The primary contribution is that blade sections may be defined with respect to general surfaces of revolution which may be defined to represent the path of fluid flow through the turbomachine. The completed blade design is represented as a non-uniform rational B-spline (NURBS) surface and is written to a standard IGES file which is portable to most design, analysis, and manufacturing applications.

  20. Interactive Design and the Mythical "Intuitive User Interface."

    ERIC Educational Resources Information Center

    Bielenberg, Daniel R.

    1993-01-01

    Discusses the design of graphical user interfaces. Highlights include conceptual models, including user needs, content, and what multimedia can do; and tools for building the users' mental models, including metaphor, natural mappings, prompts, feedback, and user testing. (LRW)

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pachuilo, Andrew R; Ragan, Eric; Goodall, John R

    Visualization tools can take advantage of multiple coordinated views to support analysis of large, multidimensional data sets. Effective design of such views and layouts can be challenging, but understanding users analysis strategies can inform design improvements. We outline an approach for intelligent design configuration of visualization tools with multiple coordinated views, and we discuss a proposed software framework to support the approach. The proposed software framework could capture and learn from user interaction data to automate new compositions of views and widgets. Such a framework could reduce the time needed for meta analysis of the visualization use and lead tomore » more effective visualization design.« less

  2. Concept relationship editor: a visual interface to support the assertion of synonymy relationships between taxonomic classifications

    NASA Astrophysics Data System (ADS)

    Craig, Paul; Kennedy, Jessie

    2008-01-01

    An increasingly common approach being taken by taxonomists to define the relationships between taxa in alternative hierarchical classifications is to use a set-based notation which states relationship between two taxa from alternative classifications. Textual recording of these relationships is cumbersome and difficult for taxonomists to manage. While text based GUI tools are beginning to appear which ease the process, these have several limitations. Interactive visual tools offer greater potential to allow taxonomists to explore the taxa in these hierarchies and specify such relationships. This paper describes the Concept Relationship Editor, an interactive visualisation tool designed to support the assertion of relationships between taxonomic classifications. The tool operates using an interactive space-filling adjacency layout which allows users to expand multiple lists of taxa with common parents so they can explore and assert relationships between two classifications.

  3. Adaptable Interactive CBL Design Tools for Education.

    ERIC Educational Resources Information Center

    Chandra, Peter

    The design team approach to the development of computer based learning (CBL) courseware relies heavily on the effective communication between different members of the team, including up-to-date paperwork and documentation. This is important for the accurate and efficient overall coordination of the courseware design, and for future maintenance of…

  4. Tool-Mediated Authentic Learning in an Educational Technology Course: A Designed-Based Innovation

    ERIC Educational Resources Information Center

    Amory, Alan

    2014-01-01

    This design-based research project is concerned with the design, development and deployment of interactive technological learning environments to support contemporary education. The use of technologies in education often replicates instructivist positions and practices. However, the use of Cultural Historical Activity Theory (C), authentic…

  5. Using naturalistic driving films as a design tool for investigating driver requirements in HMI design for ADAS.

    PubMed

    Wang, Minjuan; Sun, Dong; Chen, Fang

    2012-01-01

    In recent years, there are many naturalistic driving projects have been conducted, such as the 100-Car Project (Naturalistic Driving study in United State), EuroFOT(European Large-Scale Field Operational Tests on Vehicle Systems), SeMi- FOT(Sweden Michigan Naturalistic Field Operational Test and etc. However, those valuable naturalistic driving data hasn't been applied into Human-machine Interaction (HMI) design for Advanced Driver Assistance Systems (ADAS), a good HMI design for ADAS requires a deep understanding of drive environment and the interactions between the driving car and other road users in different situations. The results demonstrated the benefits of using naturalistic driving films as a mean for enhancing focus group discussion for better understanding driver's needs and traffic environment constraints. It provided an efficient tool for designers to have inside knowledge about drive and the needs for information presentation; The recommendations for how to apply this method is discussed in the paper.

  6. Large High Resolution Displays for Co-Located Collaborative Sensemaking: Display Usage and Territoriality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradel, Lauren; Endert, Alexander; Koch, Kristen

    2013-08-01

    Large, high-resolution vertical displays carry the potential to increase the accuracy of collaborative sensemaking, given correctly designed visual analytics tools. From an exploratory user study using a fictional textual intelligence analysis task, we investigated how users interact with the display to construct spatial schemas and externalize information, as well as how they establish shared and private territories. We investigated the space management strategies of users partitioned by type of tool philosophy followed (visualization- or text-centric). We classified the types of territorial behavior exhibited in terms of how the users interacted with information on the display (integrated or independent workspaces). Next,more » we examined how territorial behavior impacted the common ground between the pairs of users. Finally, we offer design suggestions for building future co-located collaborative visual analytics tools specifically for use on large, high-resolution vertical displays.« less

  7. New Tools and Metrics for Evaluating Army Distributed Learning

    DTIC Science & Technology

    2011-01-01

    courseware. Designing DL to provide for more opportunities for interaction with instructors and peers is likely to increase student engagement in IMI...toward blended learning may achieve these goals. Student engagement may also be fostered to the extent that the course pro- vides sufficient numbers of... student engagement . • Design and implement DL in ways that provide greater opportunities to interact with instructors and peers. • Enforce policy of

  8. Visualization tool for human-machine interface designers

    NASA Astrophysics Data System (ADS)

    Prevost, Michael P.; Banda, Carolyn P.

    1991-06-01

    As modern human-machine systems continue to grow in capabilities and complexity, system operators are faced with integrating and managing increased quantities of information. Since many information components are highly related to each other, optimizing the spatial and temporal aspects of presenting information to the operator has become a formidable task for the human-machine interface (HMI) designer. The authors describe a tool in an early stage of development, the Information Source Layout Editor (ISLE). This tool is to be used for information presentation design and analysis; it uses human factors guidelines to assist the HMI designer in the spatial layout of the information required by machine operators to perform their tasks effectively. These human factors guidelines address such areas as the functional and physical relatedness of information sources. By representing these relationships with metaphors such as spring tension, attractors, and repellers, the tool can help designers visualize the complex constraint space and interacting effects of moving displays to various alternate locations. The tool contains techniques for visualizing the relative 'goodness' of a configuration, as well as mechanisms such as optimization vectors to provide guidance toward a more optimal design. Also available is a rule-based design checker to determine compliance with selected human factors guidelines.

  9. Army-NASA aircrew/aircraft integration program (A3I) software detailed design document, phase 3

    NASA Technical Reports Server (NTRS)

    Banda, Carolyn; Chiu, Alex; Helms, Gretchen; Hsieh, Tehming; Lui, Andrew; Murray, Jerry; Shankar, Renuka

    1990-01-01

    The capabilities and design approach of the MIDAS (Man-machine Integration Design and Analysis System) computer-aided engineering (CAE) workstation under development by the Army-NASA Aircrew/Aircraft Integration Program is detailed. This workstation uses graphic, symbolic, and numeric prototyping tools and human performance models as part of an integrated design/analysis environment for crewstation human engineering. Developed incrementally, the requirements and design for Phase 3 (Dec. 1987 to Jun. 1989) are described. Software tools/models developed or significantly modified during this phase included: an interactive 3-D graphic cockpit design editor; multiple-perspective graphic views to observe simulation scenarios; symbolic methods to model the mission decomposition, equipment functions, pilot tasking and loading, as well as control the simulation; a 3-D dynamic anthropometric model; an intermachine communications package; and a training assessment component. These components were successfully used during Phase 3 to demonstrate the complex interactions and human engineering findings involved with a proposed cockpit communications design change in a simulated AH-64A Apache helicopter/mission that maps to empirical data from a similar study and AH-1 Cobra flight test.

  10. Applying Pragmatics Principles for Interaction with Visual Analytics.

    PubMed

    Hoque, Enamul; Setlur, Vidya; Tory, Melanie; Dykeman, Isaac

    2018-01-01

    Interactive visual data analysis is most productive when users can focus on answering the questions they have about their data, rather than focusing on how to operate the interface to the analysis tool. One viable approach to engaging users in interactive conversations with their data is a natural language interface to visualizations. These interfaces have the potential to be both more expressive and more accessible than other interaction paradigms. We explore how principles from language pragmatics can be applied to the flow of visual analytical conversations, using natural language as an input modality. We evaluate the effectiveness of pragmatics support in our system Evizeon, and present design considerations for conversation interfaces to visual analytics tools.

  11. Cry-Bt identifier: a biological database for PCR detection of Cry genes present in transgenic plants.

    PubMed

    Singh, Vinay Kumar; Ambwani, Sonu; Marla, Soma; Kumar, Anil

    2009-10-23

    We describe the development of a user friendly tool that would assist in the retrieval of information relating to Cry genes in transgenic crops. The tool also helps in detection of transformed Cry genes from Bacillus thuringiensis present in transgenic plants by providing suitable designed primers for PCR identification of these genes. The tool designed based on relational database model enables easy retrieval of information from the database with simple user queries. The tool also enables users to access related information about Cry genes present in various databases by interacting with different sources (nucleotide sequences, protein sequence, sequence comparison tools, published literature, conserved domains, evolutionary and structural data). http://insilicogenomics.in/Cry-btIdentifier/welcome.html.

  12. Workflow Agents vs. Expert Systems: Problem Solving Methods in Work Systems Design

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Sierhuis, Maarten; Seah, Chin

    2009-01-01

    During the 1980s, a community of artificial intelligence researchers became interested in formalizing problem solving methods as part of an effort called "second generation expert systems" (2nd GES). How do the motivations and results of this research relate to building tools for the workplace today? We provide an historical review of how the theory of expertise has developed, a progress report on a tool for designing and implementing model-based automation (Brahms), and a concrete example how we apply 2nd GES concepts today in an agent-based system for space flight operations (OCAMS). Brahms incorporates an ontology for modeling work practices, what people are doing in the course of a day, characterized as "activities." OCAMS was developed using a simulation-to-implementation methodology, in which a prototype tool was embedded in a simulation of future work practices. OCAMS uses model-based methods to interactively plan its actions and keep track of the work to be done. The problem solving methods of practice are interactive, employing reasoning for and through action in the real world. Analogously, it is as if a medical expert system were charged not just with interpreting culture results, but actually interacting with a patient. Our perspective shifts from building a "problem solving" (expert) system to building an actor in the world. The reusable components in work system designs include entire "problem solvers" (e.g., a planning subsystem), interoperability frameworks, and workflow agents that use and revise models dynamically in a network of people and tools. Consequently, the research focus shifts so "problem solving methods" include ways of knowing that models do not fit the world, and ways of interacting with other agents and people to gain or verify information and (ultimately) adapt rules and procedures to resolve problematic situations.

  13. Data Analysis Tools and Methods for Improving the Interaction Design in E-Learning

    ERIC Educational Resources Information Center

    Popescu, Paul Stefan

    2015-01-01

    In this digital era, learning from data gathered from different software systems may have a great impact on the quality of the interaction experience. There are two main directions that come to enhance this emerging research domain, Intelligent Data Analysis (IDA) and Human Computer Interaction (HCI). HCI specific research methodologies can be…

  14. Patient-specific surgical planning and hemodynamic computational fluid dynamics optimization through free-form haptic anatomy editing tool (SURGEM).

    PubMed

    Pekkan, Kerem; Whited, Brian; Kanter, Kirk; Sharma, Shiva; de Zelicourt, Diane; Sundareswaran, Kartik; Frakes, David; Rossignac, Jarek; Yoganathan, Ajit P

    2008-11-01

    The first version of an anatomy editing/surgical planning tool (SURGEM) targeting anatomical complexity and patient-specific computational fluid dynamics (CFD) analysis is presented. Novel three-dimensional (3D) shape editing concepts and human-shape interaction technologies have been integrated to facilitate interactive surgical morphology alterations, grid generation and CFD analysis. In order to implement "manual hemodynamic optimization" at the surgery planning phase for patients with congenital heart defects, these tools are applied to design and evaluate possible modifications of patient-specific anatomies. In this context, anatomies involve complex geometric topologies and tortuous 3D blood flow pathways with multiple inlets and outlets. These tools make it possible to freely deform the lumen surface and to bend and position baffles through real-time, direct manipulation of the 3D models with both hands, thus eliminating the tedious and time-consuming phase of entering the desired geometry using traditional computer-aided design (CAD) systems. The 3D models of the modified anatomies are seamlessly exported and meshed for patient-specific CFD analysis. Free-formed anatomical modifications are quantified using an in-house skeletization based cross-sectional geometry analysis tool. Hemodynamic performance of the systematically modified anatomies is compared with the original anatomy using CFD. CFD results showed the relative importance of the various surgically created features such as pouch size, vena cave to pulmonary artery (PA) flare and PA stenosis. An interactive surgical-patch size estimator is also introduced. The combined design/analysis cycle time is used for comparing and optimizing surgical plans and improvements are tabulated. The reduced cost of patient-specific shape design and analysis process, made it possible to envision large clinical studies to assess the validity of predictive patient-specific CFD simulations. In this paper, model anatomical design studies are performed on a total of eight different complex patient specific anatomies. Using SURGEM, more than 30 new anatomical designs (or candidate configurations) are created, and the corresponding user times presented. CFD performances for eight of these candidate configurations are also presented.

  15. Use Contexts and Usage Patterns of Interactive Case Simulation Tools by HIV Healthcare Providers in a Statewide Online Clinical Education Program.

    PubMed

    Wang, Dongwen

    2017-01-01

    We analyzed four interactive case simulation tools (ICSTs) from a statewide online clinical education program. Results have shown that ICSTs are increasingly used by HIV healthcare providers. Smart phone has become the primary usage platform for specific ICSTs. Usage patterns depend on particular ICST modules, usage stages, and use contexts. Future design of ICSTs should consider these usage patterns for more effective dissemination of clinical evidence to healthcare providers.

  16. DOVIS 2.0: An Efficient and Easy to Use Parallel Virtual Screening Tool Based on AutoDock 4.0

    DTIC Science & Technology

    2008-09-08

    under the GNU General Public License. Background Molecular docking is a computational method that pre- dicts how a ligand interacts with a receptor...Hence, it is an important tool in studying receptor-ligand interactions and plays an essential role in drug design. Particularly, molecular docking has...libraries from OpenBabel and setup a molecular data structure as a C++ object in our program. This makes handling of molecular structures (e.g., atoms

  17. LSSGalPy: Interactive Visualization of the Large-scale Environment Around Galaxies

    NASA Astrophysics Data System (ADS)

    Argudo-Fernández, M.; Duarte Puertas, S.; Ruiz, J. E.; Sabater, J.; Verley, S.; Bergond, G.

    2017-05-01

    New tools are needed to handle the growth of data in astrophysics delivered by recent and upcoming surveys. We aim to build open-source, light, flexible, and interactive software designed to visualize extensive three-dimensional (3D) tabular data. Entirely written in the Python language, we have developed interactive tools to browse and visualize the positions of galaxies in the universe and their positions with respect to its large-scale structures (LSS). Motivated by a previous study, we created two codes using Mollweide projection and wedge diagram visualizations, where survey galaxies can be overplotted on the LSS of the universe. These are interactive representations where the visualizations can be controlled by widgets. We have released these open-source codes that have been designed to be easily re-used and customized by the scientific community to fulfill their needs. The codes are adaptable to other kinds of 3D tabular data and are robust enough to handle several millions of objects. .

  18. Software Design for Interactive Graphic Radiation Treatment Simulation Systems*

    PubMed Central

    Kalet, Ira J.; Sweeney, Christine; Jacky, Jonathan

    1990-01-01

    We examine issues in the design of interactive computer graphic simulation programs for radiation treatment planning (RTP), as well as expert system programs that automate parts of the RTP process, in light of ten years of experience at designing, building and using such programs. An experiment in object-oriented design using standard Pascal shows that while some advantage is gained from the design, it is still difficult to achieve modularity and to integrate expert system components. A new design based on the Common LISP Object System (CLOS) is described. This series of designs for RTP software shows that this application benefits in specific ways from object-oriented design methods and appropriate languages and tools.

  19. "LOVE TO HATE" pesticides: felicity or curse for the soil microbial community? An FP7 IAPP Marie Curie project aiming to establish tools for the assessment of the mechanisms controlling the interactions of pesticides with soil microorganisms.

    PubMed

    Karpouzas, D G; Tsiamis, G; Trevisan, M; Ferrari, F; Malandain, C; Sibourg, O; Martin-Laurent, F

    2016-09-01

    Pesticides end up in soil where they interact with soil microorganisms in various ways. On the Yin Side of the interaction, pesticides could exert toxicity on soil microorganisms, while on the Yang side of interaction, pesticides could be used as energy source by a fraction of the soil microbial community. The LOVE TO HATE project is an IAPP Marie Curie project which aims to study these complex interactions of pesticides with soil microorganisms and provide novel tools which will be useful both for pesticide regulatory purposes and agricultural use. On the Yin side of the interactions, a new regulatory scheme for assessing the soil microbial toxicity of pesticides will be proposed based on the use of advanced standardized tools and a well-defined experimental tiered scheme. On the Yang side of the interactions, advanced molecular tools like amplicon sequencing and functional metagenomics will be applied to define microbes that are involved in the rapid transformation of pesticides in soils and isolate novel pesticide biocatalysts. In addition, a functional microarray has been designed to estimate the biodegradation genetic potential of the microbial community of agricultural soils for a range of pesticide groups.

  20. Current Practice in Designing Training for Complex Skills: Implications for Design and Evaluation of ADAPT[IT].

    ERIC Educational Resources Information Center

    Eseryel, Deniz; Schuver-van Blanken, Marian J.; Spector, J. Michael

    ADAPT[IT] (Advanced Design Approach for Personalized Training-Interactive Tools is a European project coordinated by the Dutch National Aerospace Laboratory. The aim of ADAPT[IT] is to create and validate an effective training design methodology, based on cognitive science and leading to the integration of advanced technologies, so that the…

  1. Hierarchical Thinking: A Cognitive Tool for Guiding Coherent Decision Making in Design Problem Solving

    ERIC Educational Resources Information Center

    Haupt, Grietjie

    2018-01-01

    This paper builds on two concepts, the first of which is the extended information processing model of expert design cognition. This proposes twelve internal psychological characteristics interacting with the external world of expert designers during the early phases of the design process. Here, I explore one of the characteristics, hierarchical…

  2. Integrating reliability and maintainability into a concurrent engineering environment

    NASA Astrophysics Data System (ADS)

    Phillips, Clifton B.; Peterson, Robert R.

    1993-02-01

    This paper describes the results of a reliability and maintainability study conducted at the University of California, San Diego and supported by private industry. Private industry thought the study was important and provided the university access to innovative tools under cooperative agreement. The current capability of reliability and maintainability tools and how they fit into the design process is investigated. The evolution of design methodologies leading up to today's capability is reviewed for ways to enhance the design process while keeping cost under control. A method for measuring the consequences of reliability and maintainability policy for design configurations in an electronic environment is provided. The interaction of selected modern computer tool sets is described for reliability, maintainability, operations, and other elements of the engineering design process. These tools provide a robust system evaluation capability that brings life cycle performance improvement information to engineers and their managers before systems are deployed, and allow them to monitor and track performance while it is in operation.

  3. History-Enriched Spaces for Shared Encounters

    NASA Astrophysics Data System (ADS)

    Konomi, Shin'ichi; Sezaki, Kaoru; Kitsuregawa, Masaru

    We discuss "history-enriched spaces" that use historical data to support shared encounters. We first examine our experiences with DeaiExplorer, a social network display that uses RFID and a historical database to support social interactions at academic conferences. This leads to our discussions on three complementary approaches to addressing the issues of supporting social encounters: (1) embedding historical data in embodied interactions, (2) designing for weakly involved interactions such as social navigation, and (3) designing for privacy. Finally, we briefly describe a preliminary prototype of a proxemics-based awareness tool that considers these approaches.

  4. Changing learning with new interactive and media-rich instruction environments: virtual labs case study report.

    PubMed

    Huang, Camillan

    2003-01-01

    Technology has created a new dimension for visual teaching and learning with web-delivered interactive media. The Virtual Labs Project has embraced this technology with instructional design and evaluation methodologies behind the simPHYSIO suite of simulation-based, online interactive teaching modules in physiology for the Stanford students. In addition, simPHYSIO provides the convenience of anytime web-access and a modular structure that allows for personalization and customization of the learning material. This innovative tool provides a solid delivery and pedagogical backbone that can be applied to developing an interactive simulation-based training tool for the use and management of the Picture Archiving and Communication System (PACS) image information system. The disparity in the knowledge between health and IT professionals can be bridged by providing convenient modular teaching tools to fill the gaps in knowledge. An innovative teaching method in the whole PACS is deemed necessary for its successful implementation and operation since it has become widely distributed with many interfaces, components, and customizations. This paper will discuss the techniques for developing an interactive-based teaching tool, a case study of its implementation, and a perspective for applying this approach to an online PACS training tool. Copyright 2002 Elsevier Science Ltd.

  5. A Proposal to Develop Interactive Classification Technology

    NASA Technical Reports Server (NTRS)

    deBessonet, Cary

    1998-01-01

    Research for the first year was oriented towards: 1) the design of an interactive classification tool (ICT); and 2) the development of an appropriate theory of inference for use in ICT technology. The general objective was to develop a theory of classification that could accommodate a diverse array of objects, including events and their constituent objects. Throughout this report, the term "object" is to be interpreted in a broad sense to cover any kind of object, including living beings, non-living physical things, events, even ideas and concepts. The idea was to produce a theory that could serve as the uniting fabric of a base technology capable of being implemented in a variety of automated systems. The decision was made to employ two technologies under development by the principal investigator, namely, SMS (Symbolic Manipulation System) and SL (Symbolic Language) [see debessonet, 1991, for detailed descriptions of SMS and SL]. The plan was to enhance and modify these technologies for use in an ICT environment. As a means of giving focus and direction to the proposed research, the investigators decided to design an interactive, classificatory tool for use in building accessible knowledge bases for selected domains. Accordingly, the proposed research was divisible into tasks that included: 1) the design of technology for classifying domain objects and for building knowledge bases from the results automatically; 2) the development of a scheme of inference capable of drawing upon previously processed classificatory schemes and knowledge bases; and 3) the design of a query/ search module for accessing the knowledge bases built by the inclusive system. The interactive tool for classifying domain objects was to be designed initially for textual corpora with a view to having the technology eventually be used in robots to build sentential knowledge bases that would be supported by inference engines specially designed for the natural or man-made environments in which the robots would be called upon to operate.

  6. A conceptual network model of the air transportation system. the basic level 1 model.

    DOT National Transportation Integrated Search

    1971-04-01

    A basic conceptual model of the entire Air Transportation System is being developed to serve as an analytical tool for studying the interactions among the system elements. The model is being designed to function in an interactive computer graphics en...

  7. Proceedings - International Conference on Wheel/Rail Load and Displacement Measurement Techniques : January 19-20, 1981

    DOT National Transportation Integrated Search

    1981-09-01

    Measurement of wheel/rail characteristics generates information for improvement of design tools such as model validation, establishment of load spectra and vehicle/track system interaction. Existing and new designs are assessed from evaluation of veh...

  8. Control system design and analysis using the INteractive Controls Analysis (INCA) program

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H.; Downing, John P.

    1987-01-01

    The INteractive Controls Analysis (INCA) program was developed at the Goddard Space Flight Center to provide a user friendly efficient environment for the design and analysis of linear control systems. Since its inception, INCA has found extensive use in the design, development, and analysis of control systems for spacecraft, instruments, robotics, and pointing systems. Moreover, the results of the analytic tools imbedded in INCA have been flight proven with at least three currently orbiting spacecraft. This paper describes the INCA program and illustrates, using a flight proven example, how the package can perform complex design analyses with relative ease.

  9. Beyond Bounded Solutions

    ERIC Educational Resources Information Center

    Enzer, Selwyn

    1977-01-01

    Futures research offers new tools for forecasting and for designing alternative intervention strategies. Interactive cross-impact modeling is presented as a useful method for identifying future events. (Author/MV)

  10. The Use of Interactive Computer Animations Based on POE as a Presentation Tool in Primary Science Teaching

    NASA Astrophysics Data System (ADS)

    Akpınar, Ercan

    2014-08-01

    This study investigates the effects of using interactive computer animations based on predict-observe-explain (POE) as a presentation tool on primary school students' understanding of the static electricity concepts. A quasi-experimental pre-test/post-test control group design was utilized in this study. The experiment group consisted of 30 students, and the control group of 27 students. The control group received normal instruction in which the teacher provided instruction by means of lecture, discussion and homework. Whereas in the experiment group, dynamic and interactive animations based on POE were used as a presentation tool. Data collection tools used in the study were static electricity concept test and open-ended questions. The static electricity concept test was used as pre-test before the implementation, as post-test at the end of the implementation and as delay test approximately 6 weeks after the implementation. Open-ended questions were used at the end of the implementation and approximately 6 weeks after the implementation. Results indicated that the interactive animations used as presentation tools were more effective on the students' understanding of static electricity concepts compared to normal instruction.

  11. Traditional Culture into Interactive Arts: The Cases of Lion Dance in Temple Lecture

    NASA Astrophysics Data System (ADS)

    Lee, Wen-Hui; Chen, Chih-Tung; He, Ming-Yu; Hsu, Tao-I.

    The lion dance in Chinese culture is one of profound arts. This work aims to bridge traditional culture and modern multimedia technology and application of network cameras for the interactive tool to design a set of activities to promote the lion as the main body. There consists of the imaging systems and interactive multimedia applications.

  12. Weather Observers: A Manipulative Augmented Reality System for Weather Simulations at Home, in the Classroom, and at a Museum

    ERIC Educational Resources Information Center

    Hsiao, Hsien-Sheng; Chang, Cheng-Sian; Lin, Chien-Yu; Wang, Yau-Zng

    2016-01-01

    This study focused on how to enhance the interactivity and usefulness of augmented reality (AR) by integrating manipulative interactive tools with a real-world environment. A manipulative AR (MAR) system, which included 3D interactive models and manipulative aids, was designed and developed to teach the unit "Understanding Weather" in a…

  13. Investigating the Effects of Pin Tool Design on Friction Stir Welded Ti-6Al-4V

    NASA Technical Reports Server (NTRS)

    Rubisoff, H. A.; Querin, J. A.; Schneider, Judy A.; Magee, D.

    2009-01-01

    Friction stir welding (FSWing), a solid state joining technique, uses a non-consumable rotating pin tool to thermomechanically join materials. Heating of the weldment caused by friction and deformation is a function of the interaction between the pin tool and the work piece. Therefore, the geometry of the pin tool is in part responsible for the resulting microstructure and mechanical properties. In this study microwave sintered tungsten carbide (WC) pin tools with tapers and flats were used to FSW Ti-6Al-4V. Transverse sections of welds were mechanically tested, and the microstructure was characterized using optical microscopy (OM) and scanning election microscopy (SEM). X-ray diffraction (XRD) and electron back-scatter diffraction (EBSD) were used to characterize the texture within the welds produced from the different pin tool designs.

  14. A computer-aided approach to nonlinear control systhesis

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Anthony, Tobin

    1988-01-01

    The major objective of this project is to develop a computer-aided approach to nonlinear stability analysis and nonlinear control system design. This goal is to be obtained by refining the describing function method as a synthesis tool for nonlinear control design. The interim report outlines the approach by this study to meet these goals including an introduction to the INteractive Controls Analysis (INCA) program which was instrumental in meeting these study objectives. A single-input describing function (SIDF) design methodology was developed in this study; coupled with the software constructed in this study, the results of this project provide a comprehensive tool for design and integration of nonlinear control systems.

  15. SILVA tree viewer: interactive web browsing of the SILVA phylogenetic guide trees.

    PubMed

    Beccati, Alan; Gerken, Jan; Quast, Christian; Yilmaz, Pelin; Glöckner, Frank Oliver

    2017-09-30

    Phylogenetic trees are an important tool to study the evolutionary relationships among organisms. The huge amount of available taxa poses difficulties in their interactive visualization. This hampers the interaction with the users to provide feedback for the further improvement of the taxonomic framework. The SILVA Tree Viewer is a web application designed for visualizing large phylogenetic trees without requiring the download of any software tool or data files. The SILVA Tree Viewer is based on Web Geographic Information Systems (Web-GIS) technology with a PostgreSQL backend. It enables zoom and pan functionalities similar to Google Maps. The SILVA Tree Viewer enables access to two phylogenetic (guide) trees provided by the SILVA database: the SSU Ref NR99 inferred from high-quality, full-length small subunit sequences, clustered at 99% sequence identity and the LSU Ref inferred from high-quality, full-length large subunit sequences. The Tree Viewer provides tree navigation, search and browse tools as well as an interactive feedback system to collect any kinds of requests ranging from taxonomy to data curation and improving the tool itself.

  16. Virtual Power Electronics: Novel Software Tools for Design, Modeling and Education

    NASA Astrophysics Data System (ADS)

    Hamar, Janos; Nagy, István; Funato, Hirohito; Ogasawara, Satoshi; Dranga, Octavian; Nishida, Yasuyuki

    The current paper is dedicated to present browser-based multimedia-rich software tools and e-learning curriculum to support the design and modeling process of power electronics circuits and to explain sometimes rather sophisticated phenomena. Two projects will be discussed. The so-called Inetele project is financed by the Leonardo da Vinci program of the European Union (EU). It is a collaborative project between numerous EU universities and institutes to develop state-of-the art curriculum in Electrical Engineering. Another cooperative project with participation of Japanese, European and Australian institutes focuses especially on developing e-learning curriculum, interactive design and modeling tools, furthermore on development of a virtual laboratory. Snapshots from these two projects will be presented.

  17. Interactive Simulated Patient: Experiences with Collaborative E-Learning in Medicine

    ERIC Educational Resources Information Center

    Bergin, Rolf; Youngblood, Patricia; Ayers, Mary K.; Boberg, Jonas; Bolander, Klara; Courteille, Olivier; Dev, Parvati; Hindbeck, Hans; Edward, Leonard E., II; Stringer, Jennifer R.; Thalme, Anders; Fors, Uno G. H.

    2003-01-01

    Interactive Simulated Patient (ISP) is a computer-based simulation tool designed to provide medical students with the opportunity to practice their clinical problem solving skills. The ISP system allows students to perform most clinical decision-making procedures in a simulated environment, including history taking in natural language, many…

  18. Distributed Emotions in the Design of Learning Technologies

    ERIC Educational Resources Information Center

    Kim, Beaumie; Kim, Mi Song

    2010-01-01

    Learning is a social activity, which requires interactions with the environment, tools, people, and also ourselves (e.g., our previous experiences). Each interaction provides different meanings to learners, and the associated emotion affects their learning and performance. With the premise that emotion and cognition are distributed, the authors…

  19. Social Media Tools for Teaching and Learning

    ERIC Educational Resources Information Center

    Wagner, Ronald

    2011-01-01

    According to Wikipedia, "social media is the media designed to be disseminated through social interaction, created using highly accessible scalable techniques. Social media is the use of web-based and mobile technologies to turn communication into interactive dialogue." Social networks, such as Facebook and Twitter, contain millions of members who…

  20. imDEV: a graphical user interface to R multivariate analysis tools in Microsoft Excel

    USDA-ARS?s Scientific Manuscript database

    Interactive modules for data exploration and visualization (imDEV) is a Microsoft Excel spreadsheet embedded application providing an integrated environment for the analysis of omics data sets with a user-friendly interface. Individual modules were designed to provide toolsets to enable interactive ...

  1. Classroom Innovation: Engaging Students in Interactive Multimedia Learning

    ERIC Educational Resources Information Center

    Neo, Tse-Kian; Neo, Mai

    2004-01-01

    With the infusion of the multimedia technology into the education arena, traditional educational materials can be translated into interactive electronic form through the use of multimedia authoring tools. This has allowed teachers to design and incorporate multimedia elements into the content to convey the message in a multi-sensory learning…

  2. Task and Tool Interface Design for L2 Speaking Interaction Online

    ERIC Educational Resources Information Center

    Appel, Christine; Robbins, Jackie; Moré, Joaquim; Mullen, Tony

    2012-01-01

    Learners and teachers of a foreign language in online and blended learning environments are being offered more opportunities for speaking practice from technological developments. However, in order to maximise these learning opportunities, appropriate task-based materials are required which promote and direct student to student interaction in…

  3. Learning of embodied interaction dynamics with recurrent neural networks: some exploratory experiments.

    PubMed

    Oubbati, Mohamed; Kord, Bahram; Koprinkova-Hristova, Petia; Palm, Günther

    2014-04-01

    The new tendency of artificial intelligence suggests that intelligence must be seen as a result of the interaction between brains, bodies and environments. This view implies that designing sophisticated behaviour requires a primary focus on how agents are functionally coupled to their environments. Under this perspective, we present early results with the application of reservoir computing as an efficient tool to understand how behaviour emerges from interaction. Specifically, we present reservoir computing models, that are inspired by imitation learning designs, to extract the essential components of behaviour that results from agent-environment interaction dynamics. Experimental results using a mobile robot are reported to validate the learning architectures.

  4. Learning of embodied interaction dynamics with recurrent neural networks: some exploratory experiments

    NASA Astrophysics Data System (ADS)

    Oubbati, Mohamed; Kord, Bahram; Koprinkova-Hristova, Petia; Palm, Günther

    2014-04-01

    The new tendency of artificial intelligence suggests that intelligence must be seen as a result of the interaction between brains, bodies and environments. This view implies that designing sophisticated behaviour requires a primary focus on how agents are functionally coupled to their environments. Under this perspective, we present early results with the application of reservoir computing as an efficient tool to understand how behaviour emerges from interaction. Specifically, we present reservoir computing models, that are inspired by imitation learning designs, to extract the essential components of behaviour that results from agent-environment interaction dynamics. Experimental results using a mobile robot are reported to validate the learning architectures.

  5. GLobal Integrated Design Environment (GLIDE): A Concurrent Engineering Application

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Kunkel, Matthew R.; Smith, David A.

    2010-01-01

    The GLobal Integrated Design Environment (GLIDE) is a client-server software application purpose-built to mitigate issues associated with real time data sharing in concurrent engineering environments and to facilitate discipline-to-discipline interaction between multiple engineers and researchers. GLIDE is implemented in multiple programming languages utilizing standardized web protocols to enable secure parameter data sharing between engineers and researchers across the Internet in closed and/or widely distributed working environments. A well defined, HyperText Transfer Protocol (HTTP) based Application Programming Interface (API) to the GLIDE client/server environment enables users to interact with GLIDE, and each other, within common and familiar tools. One such common tool, Microsoft Excel (Microsoft Corporation), paired with its add-in API for GLIDE, is discussed in this paper. The top-level examples given demonstrate how this interface improves the efficiency of the design process of a concurrent engineering study while reducing potential errors associated with manually sharing information between study participants.

  6. STRUTEX: A prototype knowledge-based system for initially configuring a structure to support point loads in two dimensions

    NASA Technical Reports Server (NTRS)

    Robers, James L.; Sobieszczanski-Sobieski, Jaroslaw

    1989-01-01

    Only recently have engineers begun making use of Artificial Intelligence (AI) tools in the area of conceptual design. To continue filling this void in the design process, a prototype knowledge-based system, called STRUTEX has been developed to initially configure a structure to support point loads in two dimensions. This prototype was developed for testing the application of AI tools to conceptual design as opposed to being a testbed for new methods for improving structural analysis and optimization. This system combines numerical and symbolic processing by the computer with interactive problem solving aided by the vision of the user. How the system is constructed to interact with the user is described. Of special interest is the information flow between the knowledge base and the data base under control of the algorithmic main program. Examples of computed and refined structures are presented during the explanation of the system.

  7. Freeform object design and simultaneous manufacturing

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Zhang, Weihan; Lin, Heng; Leu, Ming C.

    2003-04-01

    Today's product design, especially the consuming product design, focuses more and more on individuation, originality, and the time to market. One way to meet these challenges is using the interactive and creationary product design methods and rapid prototyping/rapid tooling. This paper presents a novel Freeform Object Design and Simultaneous Manufacturing (FODSM) method that combines the natural interaction feature in the design phase and simultaneous manufacturing feature in the prototyping phase. The natural interactive three-dimensional design environment is achieved by adopting virtual reality technology. The geometry of the designed object is defined through the process of "virtual sculpting" during which the designer can touch and visualize the designed object and can hear the virtual manufacturing environment noise. During the designing process, the computer records the sculpting trajectories and automatically translates them into NC codes so as to simultaneously machine the designed part. The paper introduced the principle, implementation process, and key techniques of the new method, and compared it with other popular rapid prototyping methods.

  8. ULg Spectra: An Interactive Software Tool to Improve Undergraduate Students' Structural Analysis Skills

    ERIC Educational Resources Information Center

    Agnello, Armelinda; Carre, Cyril; Billen, Roland; Leyh, Bernard; De Pauw, Edwin; Damblon, Christian

    2018-01-01

    The analysis of spectroscopic data to solve chemical structures requires practical skills and drills. In this context, we have developed ULg Spectra, a computer-based tool designed to improve the ability of learners to perform complex reasoning. The identification of organic chemical compounds involves gathering and interpreting complementary…

  9. VideoANT: Extending Online Video Annotation beyond Content Delivery

    ERIC Educational Resources Information Center

    Hosack, Bradford

    2010-01-01

    This paper expands the boundaries of video annotation in education by outlining the need for extended interaction in online video use, identifying the challenges faced by existing video annotation tools, and introducing Video-ANT, a tool designed to create text-based annotations integrated within the time line of a video hosted online. Several…

  10. Community-based participatory research and user-centered design in a diabetes medication information and decision tool.

    PubMed

    Henderson, Vida A; Barr, Kathryn L; An, Lawrence C; Guajardo, Claudia; Newhouse, William; Mase, Rebecca; Heisler, Michele

    2013-01-01

    Together, community-based participatory research (CBPR), user-centered design (UCD), and health information technology (HIT) offer promising approaches to improve health disparities in low-resource settings. This article describes the application of CBPR and UCD principles to the development of iDecide/Decido, an interactive, tailored, web-based diabetes medication education and decision support tool delivered by community health workers (CHWs) to African American and Latino participants with diabetes in Southwest and Eastside Detroit. The decision aid is offered in English or Spanish and is delivered on an iPad in participants' homes. The overlapping principles of CBPR and UCD used to develop iDecide/Decido include a user-focused or community approach, equitable academic and community partnership in all study phases, an iterative development process that relies on input from all stakeholders, and a program experience that is specified, adapted, and implemented with the target community. Collaboration between community members, researchers, and developers is especially evident in the program's design concept, animations, pictographs, issue cards, goal setting, tailoring, and additional CHW tools. The principles of CBPR and UCD can be successfully applied in developing health information tools that are easy to use and understand, interactive, and target health disparities.

  11. Mechanistic Indicators of Childhood Asthma (MICA): piloting an integrative design for evaluating environmental health

    EPA Science Inventory

    Background: Modem methods in molecular biology and advanced computational tools show promise in elucidating complex interactions that occur between genes and environmental factors in diseases such as asthma; however appropriately designed studies are critical for these methods to...

  12. Theory and simulation of DNA-coated colloids: a guide for rational design.

    PubMed

    Angioletti-Uberti, Stefano; Mognetti, Bortolo M; Frenkel, Daan

    2016-03-07

    By exploiting the exquisite selectivity of DNA hybridization, DNA-coated colloids (DNACCs) can be made to self-assemble in a wide variety of structures. The beauty of this system stems largely from its exceptional versatility and from the fact that a proper choice of the grafted DNA sequences yields fine control over the colloidal interactions. Theory and simulations have an important role to play in the optimal design of self assembling DNACCs. At present, the powerful model-based design tools are not widely used, because the theoretical literature is fragmented and the connection between different theories is often not evident. In this Perspective, we aim to discuss the similarities and differences between the different models that have been described in the literature, their underlying assumptions, their strengths and their weaknesses. Using the tools described in the present Review, it should be possible to move towards a more rational design of novel self-assembling structures of DNACCs and, more generally, of systems where ligand-receptor are used to control interactions.

  13. The effect of introducing computers into an introductory physics problem-solving laboratory

    NASA Astrophysics Data System (ADS)

    McCullough, Laura Ellen

    2000-10-01

    Computers are appearing in every type of classroom across the country. Yet they often appear without benefit of studying their effects. The research that is available on computer use in classrooms has found mixed results, and often ignores the theoretical and instructional contexts of the computer in the classroom. The University of Minnesota's physics department employs a cooperative-group problem solving pedagogy, based on a cognitive apprenticeship instructional model, in its calculus-based introductory physics course. This study was designed to determine possible negative effects of introducing a computerized data-acquisition and analysis tool into this pedagogy as a problem-solving tool for students to use in laboratory. To determine the effects of the computer tool, two quasi-experimental treatment groups were selected. The computer-tool group (N = 170) used a tool, designed for this study (VideoTool), to collect and analyze motion data in the laboratory. The control group (N = 170) used traditional non-computer equipment (spark tapes and Polaroid(TM) film). The curriculum was kept as similar as possible for the two groups. During the ten week academic quarter, groups were examined for effects on performance on conceptual tests and grades, attitudes towards the laboratory and the laboratory tools, and behaviors within cooperative groups. Possible interactions with gender were also examined. Few differences were found between the control and computer-tool groups. The control group received slightly higher scores on one conceptual test, but this difference was not educationally significant. The computer-tool group had slightly more positive attitudes towards using the computer tool than their counterparts had towards the traditional tools. The computer-tool group also perceived that they spoke more frequently about physics misunderstandings, while the control group felt that they discussed equipment difficulties more often. This perceptual difference interacted with gender, with the men in the control group more likely to discuss equipment difficulties than any other group. Overall, the differences between the control and quasi-experimental groups were minimal. It was concluded that carefully replacing traditional data collection and analysis tools with a computer tool had no negative effects on achievement, attitude, group behavior, and did not interact with gender.

  14. Overview of the interactive task in BioCreative V

    PubMed Central

    Wang, Qinghua; S. Abdul, Shabbir; Almeida, Lara; Ananiadou, Sophia; Balderas-Martínez, Yalbi I.; Batista-Navarro, Riza; Campos, David; Chilton, Lucy; Chou, Hui-Jou; Contreras, Gabriela; Cooper, Laurel; Dai, Hong-Jie; Ferrell, Barbra; Fluck, Juliane; Gama-Castro, Socorro; George, Nancy; Gkoutos, Georgios; Irin, Afroza K.; Jensen, Lars J.; Jimenez, Silvia; Jue, Toni R.; Keseler, Ingrid; Madan, Sumit; Matos, Sérgio; McQuilton, Peter; Milacic, Marija; Mort, Matthew; Natarajan, Jeyakumar; Pafilis, Evangelos; Pereira, Emiliano; Rao, Shruti; Rinaldi, Fabio; Rothfels, Karen; Salgado, David; Silva, Raquel M.; Singh, Onkar; Stefancsik, Raymund; Su, Chu-Hsien; Subramani, Suresh; Tadepally, Hamsa D.; Tsaprouni, Loukia; Vasilevsky, Nicole; Wang, Xiaodong; Chatr-Aryamontri, Andrew; Laulederkind, Stanley J. F.; Matis-Mitchell, Sherri; McEntyre, Johanna; Orchard, Sandra; Pundir, Sangya; Rodriguez-Esteban, Raul; Van Auken, Kimberly; Lu, Zhiyong; Schaeffer, Mary; Wu, Cathy H.; Hirschman, Lynette; Arighi, Cecilia N.

    2016-01-01

    Fully automated text mining (TM) systems promote efficient literature searching, retrieval, and review but are not sufficient to produce ready-to-consume curated documents. These systems are not meant to replace biocurators, but instead to assist them in one or more literature curation steps. To do so, the user interface is an important aspect that needs to be considered for tool adoption. The BioCreative Interactive task (IAT) is a track designed for exploring user-system interactions, promoting development of useful TM tools, and providing a communication channel between the biocuration and the TM communities. In BioCreative V, the IAT track followed a format similar to previous interactive tracks, where the utility and usability of TM tools, as well as the generation of use cases, have been the focal points. The proposed curation tasks are user-centric and formally evaluated by biocurators. In BioCreative V IAT, seven TM systems and 43 biocurators participated. Two levels of user participation were offered to broaden curator involvement and obtain more feedback on usability aspects. The full level participation involved training on the system, curation of a set of documents with and without TM assistance, tracking of time-on-task, and completion of a user survey. The partial level participation was designed to focus on usability aspects of the interface and not the performance per se. In this case, biocurators navigated the system by performing pre-designed tasks and then were asked whether they were able to achieve the task and the level of difficulty in completing the task. In this manuscript, we describe the development of the interactive task, from planning to execution and discuss major findings for the systems tested. Database URL: http://www.biocreative.org PMID:27589961

  15. Overview of the interactive task in BioCreative V

    DOE PAGES

    Wang, Qinghua; Abdul, Shabbir S.; Almeida, Lara; ...

    2016-09-01

    Fully automated text mining (TM) systems promote efficient literature searching, retrieval, and review but are not sufficient to produce ready-to-consume curated documents. These systems are not meant to replace biocurators, but instead to assist them in one or more literature curation steps. To do so, the user interface is an important aspect that needs to be considered for tool adoption. The BioCreative Interactive task (IAT) is a track designed for exploring user-system interactions, promoting development of useful TM tools, and providing a communication channel between the biocuration and the TM communities. In BioCreative V, the IAT track followed a formatmore » similar to previous interactive tracks, where the utility and usability of TM tools, as well as the generation of use cases, have been the focal points. The proposed curation tasks are user-centric and formally evaluated by biocurators. In BioCreative V IAT, seven TM systems and 43 biocurators participated. Two levels of user participation were offered to broaden curator involvement and obtain more feedback on usability aspects. The full level participation involved training on the system, curation of a set of documents with and without TM assistance, tracking of time-on-task, and completion of a user survey. Here, the partial level participation was designed to focus on usability aspects of the interface and not the performance per se. In this case, biocurators navigated the system by performing pre-designed tasks and then were asked whether they were able to achieve the task and the level of difficulty in completing the task. In this manuscript, we describe the development of the interactive task, from planning to execution and discuss major findings for the systems tested.« less

  16. EPSAT - A workbench for designing high-power systems for the space environment

    NASA Technical Reports Server (NTRS)

    Kuharski, R. A.; Jongeward, G. A.; Wilcox, K. G.; Kennedy, E. M.; Stevens, N. J.; Putnam, R. M.; Roche, J. C.

    1990-01-01

    The Environment Power System Analysis Tool (EPSAT) is being developed to provide space power system design engineers with an analysis tool for determining the performance of power systems in both naturally occurring and self-induced environments. This paper presents the results of the project after two years of a three-year development program. The relevance of the project result for SDI are pointed out, and models of the interaction of the environment and power systems are discussed.

  17. Morphogenic designer--an efficient tool to digitally design tooth forms.

    PubMed

    Hajtó, J; Marinescu, C; Silva, N R F A

    2014-01-01

    Different digital software tools are available today for the purpose of designing anatomically correct anterior and posterior restorations. The current concepts present weaknesses, which can be potentially addressed by more advanced modeling tools, such as the ones already available in professional CAD (Computer Aided Design) graphical software. This study describes the morphogenic designer (MGD) as an efficient and easy method for digitally designing tooth forms for the anterior and posterior dentition. Anterior and posterior tooth forms were selected from a collection of digitalized natural teeth and subjectively assessed as "average". The models in the form of STL files were filtered, cleaned, idealized, and re-meshed to match the specifications of the software used. The shapes were then imported as wavefront ".obj" model into Modo 701, software built for modeling, texturing, visualization, and animation. In order to create a parametric design system, intentional interactive deformations were performed on the average tooth shapes and then further defined as morph targets. By combining various such parameters, several tooth shapes were formed virtually and their images presented. MGD proved to be a versatile and powerful tool for the purpose of esthetic and functional digital crown designs.

  18. Living Liquid: Design and Evaluation of an Exploratory Visualization Tool for Museum Visitors.

    PubMed

    Ma, J; Liao, I; Ma, Kwan-Liu; Frazier, J

    2012-12-01

    Interactive visualizations can allow science museum visitors to explore new worlds by seeing and interacting with scientific data. However, designing interactive visualizations for informal learning environments, such as museums, presents several challenges. First, visualizations must engage visitors on a personal level. Second, visitors often lack the background to interpret visualizations of scientific data. Third, visitors have very limited time at individual exhibits in museums. This paper examines these design considerations through the iterative development and evaluation of an interactive exhibit as a visualization tool that gives museumgoers access to scientific data generated and used by researchers. The exhibit prototype, Living Liquid, encourages visitors to ask and answer their own questions while exploring the time-varying global distribution of simulated marine microbes using a touchscreen interface. Iterative development proceeded through three rounds of formative evaluations using think-aloud protocols and interviews, each round informing a key visualization design decision: (1) what to visualize to initiate inquiry, (2) how to link data at the microscopic scale to global patterns, and (3) how to include additional data that allows visitors to pursue their own questions. Data from visitor evaluations suggests that, when designing visualizations for public audiences, one should (1) avoid distracting visitors from data that they should explore, (2) incorporate background information into the visualization, (3) favor understandability over scientific accuracy, and (4) layer data accessibility to structure inquiry. Lessons learned from this case study add to our growing understanding of how to use visualizations to actively engage learners with scientific data.

  19. RealSurf - A Tool for the Interactive Visualization of Mathematical Models

    NASA Astrophysics Data System (ADS)

    Stussak, Christian; Schenzel, Peter

    For applications in fine art, architecture and engineering it is often important to visualize and to explore complex mathematical models. In former times there were static models of them collected in museums respectively in mathematical institutes. In order to check their properties for esthetical reasons it could be helpful to explore them interactively in 3D in real time. For the class of implicitly given algebraic surfaces we developed the tool RealSurf. Here we give an introduction to the program and some hints for the design of interesting surfaces.

  20. Design and development of an interactive medical teleconsultation system over the World Wide Web.

    PubMed

    Bai, J; Zhang, Y; Dai, B

    1998-06-01

    The objective of the medical teleconsultation system presented in this paper is to demonstrate the use of the World Wide Web (WWW) for telemedicine and interactive medical information exchange. The system, which is developed based on Java, could provide several basic Java tools to fulfill the requirements of medical applications, including a file manager, data tool, bulletin board, and digital audio tool. The digital audio tool uses point-to-point structure to enable two physicians to communicate directly through voice. The others use multipoint structure. The file manager manages the medical images stored in the WWW information server, which come from a hospital database. The data tool supports cooperative operations on the medical data between the participating physicians. The bulletin board enables the users to discuss special cases by writing text on the board, send their personal or group diagnostic reports on the cases, and reorganize the reports and store them in its report file for later use. The system provides a hardware-independent platform for physicians to interact with one another as well as to access medical information over the WWW.

  1. Transforming Interaction and Social Presence through Course Design: Authentic Implementation of Threaded Discussion Tools

    ERIC Educational Resources Information Center

    Pierce, Richard

    2013-01-01

    This study investigated course design factors influencing social presence and the development of ICT self-efficacy. Instructional design factors that promoted authentic uses of threaded discussions as a vehicle to establish social presence, self-directed learning and cooperative learning resulted in 900 posts in a semester, when no posts were…

  2. Children with Autism Spectrum Disorders Make a Fruit Salad with Probo, the Social Robot: An Interaction Study

    ERIC Educational Resources Information Center

    Simut, Ramona E.; Vanderfaeillie, Johan; Peca, Andreea; Van de Perre, Greet; Vanderborght, Bram

    2016-01-01

    Social robots are thought to be motivating tools in play tasks with children with autism spectrum disorders. Thirty children with autism were included using a repeated measurements design. It was investigated if the children's interaction with a human differed from the interaction with a social robot during a play task. Also, it was examined if…

  3. Design and Control of Compliant Tensegrity Robots Through Simulation and Hardware Validation

    NASA Technical Reports Server (NTRS)

    Caluwaerts, Ken; Despraz, Jeremie; Iscen, Atil; Sabelhaus, Andrew P.; Bruce, Jonathan; Schrauwen, Benjamin; Sunspiral, Vytas

    2014-01-01

    To better understand the role of tensegrity structures in biological systems and their application to robotics, the Dynamic Tensegrity Robotics Lab at NASA Ames Research Center has developed and validated two different software environments for the analysis, simulation, and design of tensegrity robots. These tools, along with new control methodologies and the modular hardware components developed to validate them, are presented as a system for the design of actuated tensegrity structures. As evidenced from their appearance in many biological systems, tensegrity ("tensile-integrity") structures have unique physical properties which make them ideal for interaction with uncertain environments. Yet these characteristics, such as variable structural compliance, and global multi-path load distribution through the tension network, make design and control of bio-inspired tensegrity robots extremely challenging. This work presents the progress in using these two tools in tackling the design and control challenges. The results of this analysis includes multiple novel control approaches for mobility and terrain interaction of spherical tensegrity structures. The current hardware prototype of a six-bar tensegrity, code-named ReCTeR, is presented in the context of this validation.

  4. Virtual Teams and Human Work Interaction Design - Learning to Work in and Designing for Virtual Teams

    NASA Astrophysics Data System (ADS)

    Orngreen, Rikke; Clemmensen, Torkil; Pejtersen, Annelise Mark

    The boundaries and work processes for how virtual teams interact are undergoing changes, from a tool and stand-alone application orientation, to the use of multiple generic platforms chosen and redesigned to the specific context. These are often at the same time designed both by professional software developers and the individual members of the virtual teams, rather than determined on a single organizational level. There may be no impact of the technology per se on individuals, groups or organizations, as the technology for virtual teams rather enhance situation ambiguity and disrupt existing task-artifact cycles. This ambiguous situation calls for new methods for empirical work analysis and interaction design that can help us understand how organizations, teams and individuals learn to organize, design and work in virtual teams in various networked contexts.

  5. Grass Roots Design for the Ocean Science of Tomorrow

    NASA Astrophysics Data System (ADS)

    Jul, S.; Peach, C. L.; Kilb, D. L.; Schofield, O.; Fisher, C.; Quintana, C.; Keen, C. S.

    2010-12-01

    Current technologies offer the opportunity for ocean science to expand its traditional expeditionary base by embracing e-science methods of continuous interactive real-time research. The Ocean Observatories Initiative Cyberinfrastructure (OOI CI) is an NSF-funded effort to develop a national cyberinfrastructure that will allow researchers, educators and others to share in this new type of oceanography. The OOI is an environmental observatory spanning coastal waters to the deep ocean, enabled by the CI to offer scientists continuous interactive access to instruments in the ocean, and allow them to search, subscribe to and access real-time or archival data streams. It will also supply interactive analysis and visualization tools, and a virtual social environment for discovering and realizing collaborative opportunities. Most importantly, it provides an extensible open-access cyberinfrastructure that supports integration of new technologies and observatories, and which will allow adoption of its tools elsewhere, such as by the Integrated Ocean Observing System (IOOS). The eventual success of such a large and flexible system requires the input of a large number of people, and user-centered design has been a driving philosophy of the OOI CI from its beginning. Support for users’ real needs cannot be designed as an add-on or casual afterthought, but must be deeply embedded in all aspects of a project, from inception through architecture, implementation, and deployment. The OOI CI strategy is to employ the skills and knowledge of a small number of user experience professionals to channel and guide a very large collective effort to deliver tools, interfaces and interactions that are intellectually stimulating, scientifically productive, and conducive to innovation. Participation from all parts of the user community early in the design process is vital to meeting these goals. The OOI user experience team will be on hand to meet members of the Earth and ocean sciences community, and invites them to become partners in the design of the Ocean Observatory by offering their thoughts, ideas and observations.

  6. Designing interaction, voice, and inclusion in AAC research.

    PubMed

    Pullin, Graham; Treviranus, Jutta; Patel, Rupal; Higginbotham, Jeff

    2017-09-01

    The ISAAC 2016 Research Symposium included a Design Stream that examined timely issues across augmentative and alternative communication (AAC), framed in terms of designing interaction, designing voice, and designing inclusion. Each is a complex term with multiple meanings; together they represent challenging yet important frontiers of AAC research. The Design Stream was conceived by the four authors, researchers who have been exploring AAC and disability-related design throughout their careers, brought together by a shared conviction that designing for communication implies more than ensuring access to words and utterances. Each of these presenters came to AAC from a different background: interaction design, inclusive design, speech science, and social science. The resulting discussion among 24 symposium participants included controversies about the role of technology, tensions about independence and interdependence, and a provocation about taste. The paper concludes by proposing new directions for AAC research: (a) new interdisciplinary research could combine scientific and design research methods, as distant yet complementary as microanalysis and interaction design, (b) new research tools could seed accessible and engaging contextual research into voice within a social model of disability, and (c) new open research networks could support inclusive, international and interdisciplinary research.

  7. Safety Analysis of FMS/CTAS Interactions During Aircraft Arrivals

    NASA Technical Reports Server (NTRS)

    Leveson, Nancy G.

    1998-01-01

    This grant funded research on human-computer interaction design and analysis techniques, using future ATC environments as a testbed. The basic approach was to model the nominal behavior of both the automated and human procedures and then to apply safety analysis techniques to these models. Our previous modeling language, RSML, had been used to specify the system requirements for TCAS II for the FAA. Using the lessons learned from this experience, we designed a new modeling language that (among other things) incorporates features to assist in designing less error-prone human-computer interactions and interfaces and in detecting potential HCI problems, such as mode confusion. The new language, SpecTRM-RL, uses "intent" abstractions, based on Rasmussen's abstraction hierarchy, and includes both informal (English and graphical) specifications and formal, executable models for specifying various aspects of the system. One of the goals for our language was to highlight the system modes and mode changes to assist in identifying the potential for mode confusion. Three published papers resulted from this research. The first builds on the work of Degani on mode confusion to identify aspects of the system design that could lead to potential hazards. We defined and modeled modes differently than Degani and also defined design criteria for SpecTRM-RL models. Our design criteria include the Degani criteria but extend them to include more potential problems. In a second paper, Leveson and Palmer showed how the criteria for indirect mode transitions could be applied to a mode confusion problem found in several ASRS reports for the MD-88. In addition, we defined a visual task modeling language that can be used by system designers to model human-computer interaction. The visual models can be translated into SpecTRM-RL models, and then the SpecTRM-RL suite of analysis tools can be used to perform formal and informal safety analyses on the task model in isolation or integrated with the rest of the modeled system. We had hoped to be able to apply these modeling languages and analysis tools to a TAP air/ground trajectory negotiation scenario, but the development of the tools took more time than we anticipated.

  8. Human experience and product usability: principles to assist the design of user-product interactions.

    PubMed

    Chamorro-Koc, Marianella; Popovic, Vesna; Emmison, Michael

    2009-07-01

    This paper introduces research that investigates how human experience influences people's understandings of product usability. It describes an experiment that employs visual representation of concepts to elicit participants' ideas of a product's use. Results from the experiment lead to the identification of relationships between human experience, knowledge, and context-of-use--relationships that influence designers' and users' concepts of product usability. These relationships are translated into design principles that inform the design activity with respect to the aspects of experience that trigger people's understanding of a product's use. A design tool (ECEDT) is devised to aid designers in the application of these principles. This tool is then trialled in the context of a design task in order to verify applicability of the findings.

  9. iDrug: a web-accessible and interactive drug discovery and design platform

    PubMed Central

    2014-01-01

    Background The progress in computer-aided drug design (CADD) approaches over the past decades accelerated the early-stage pharmaceutical research. Many powerful standalone tools for CADD have been developed in academia. As programs are developed by various research groups, a consistent user-friendly online graphical working environment, combining computational techniques such as pharmacophore mapping, similarity calculation, scoring, and target identification is needed. Results We presented a versatile, user-friendly, and efficient online tool for computer-aided drug design based on pharmacophore and 3D molecular similarity searching. The web interface enables binding sites detection, virtual screening hits identification, and drug targets prediction in an interactive manner through a seamless interface to all adapted packages (e.g., Cavity, PocketV.2, PharmMapper, SHAFTS). Several commercially available compound databases for hit identification and a well-annotated pharmacophore database for drug targets prediction were integrated in iDrug as well. The web interface provides tools for real-time molecular building/editing, converting, displaying, and analyzing. All the customized configurations of the functional modules can be accessed through featured session files provided, which can be saved to the local disk and uploaded to resume or update the history work. Conclusions iDrug is easy to use, and provides a novel, fast and reliable tool for conducting drug design experiments. By using iDrug, various molecular design processing tasks can be submitted and visualized simply in one browser without installing locally any standalone modeling softwares. iDrug is accessible free of charge at http://lilab.ecust.edu.cn/idrug. PMID:24955134

  10. How New Caledonian crows solve novel foraging problems and what it means for cumulative culture.

    PubMed

    Logan, Corina J; Breen, Alexis J; Taylor, Alex H; Gray, Russell D; Hoppitt, William J E

    2016-03-01

    New Caledonian crows make and use tools, and tool types vary over geographic landscapes. Social learning may explain the variation in tool design, but it is unknown to what degree social learning accounts for the maintenance of these designs. Indeed, little is known about the mechanisms these crows use to obtain information from others, despite the question's importance in understanding whether tool behavior is transmitted via social, genetic, or environmental means. For social transmission to account for tool-type variation, copying must utilize a mechanism that is action specific (e.g., pushing left vs. right) as well as context specific (e.g., pushing a particular object vs. any object). To determine whether crows can copy a demonstrator's actions as well as the contexts in which they occur, we conducted a diffusion experiment using a novel foraging task. We used a nontool task to eliminate any confounds introduced by individual differences in their prior tool experience. Two groups had demonstrators (trained in isolation on different options of a four-option task, including a two-action option) and one group did not. We found that crows socially learn about context: After observers see a demonstrator interact with the task, they are more likely to interact with the same parts of the task. In contrast, observers did not copy the demonstrator's specific actions. Our results suggest it is unlikely that observing tool-making behavior transmits tool types. We suggest it is possible that tool types are transmitted when crows copy the physical form of the tools they encounter.

  11. OOMMPPAA: A Tool To Aid Directed Synthesis by the Combined Analysis of Activity and Structural Data

    PubMed Central

    2014-01-01

    There is an ever increasing resource in terms of both structural information and activity data for many protein targets. In this paper we describe OOMMPPAA, a novel computational tool designed to inform compound design by combining such data. OOMMPPAA uses 3D matched molecular pairs to generate 3D ligand conformations. It then identifies pharmacophoric transformations between pairs of compounds and associates them with their relevant activity changes. OOMMPPAA presents this data in an interactive application providing the user with a visual summary of important interaction regions in the context of the binding site. We present validation of the tool using openly available data for CDK2 and a GlaxoSmithKline data set for a SAM-dependent methyl-transferase. We demonstrate OOMMPPAA’s application in optimizing both potency and cell permeability and use OOMMPPAA to highlight nuanced and cross-series SAR. OOMMPPAA is freely available to download at http://oommppaa.sgc.ox.ac.uk/OOMMPPAA/. PMID:25244105

  12. Building Social-Aware Software Applications for the Interactive Learning Age

    ERIC Educational Resources Information Center

    Capuruco, Renato A. C.; Capretz, Luiz F.

    2009-01-01

    There have been a number of frameworks and models developed to support different aspects of interactive learning. Some were developed to deal with course design through the application of authoring tools, whereas others such as conversational, advisory, and ontology-based systems were used in virtual classrooms to improve and support collaborative…

  13. Integrating Multimedia into the Malaysian Classroom: Engaging Students in Interactive Learning

    ERIC Educational Resources Information Center

    Neo, Tse-Kian; Neo, Mai

    2004-01-01

    In recent years, with the infusion of the multimedia technology into the education arena, traditional educational materials can be translated into interactive electronic form through the use of multimedia authoring tools. This has allowed teachers to design and incorporate multimedia elements and choreograph them in an orderly sequence to convey…

  14. The Design and Development of a Collaborative mLearning Prototype for Malaysian Secondary School Science

    ERIC Educational Resources Information Center

    DeWitt, Dorothy; Alias, Norlidah; Siraj, Saedah

    2014-01-01

    Collaborative problem-solving in science instruction allows learners to build their knowledge and understanding through interaction, using the language of science. Computer-mediated communication (CMC) tools facilitate collaboration and may provide the opportunity for interaction when using the language of science in learning. There seems to be…

  15. Peruvian Food Chain Jenga: Learning Ecosystems with an Interactive Model

    ERIC Educational Resources Information Center

    Hartweg, Beau; Biffi, Daniella; de la Fuente, Yohanis; Malkoc, Ummuhan; Patterson, Melissa E.; Pearce, Erin; Stewart, Morgan A.; Weinburgh, Molly

    2017-01-01

    A pilot study was conducted on a multimodal educational tool, Peruvian Food Chain Jenga (PFCJ), with 5th-grade students (N = 54) at a public charter school. The goal was to compare the effectiveness of the multimodal tool to a more traditional presentation of the same materials (food chain) using an experimental/control design. Data collection…

  16. Continuous Symmetry and Chemistry Teachers: Learning Advanced Chemistry Content through Novel Visualization Tools

    ERIC Educational Resources Information Center

    Tuvi-Arad, Inbal; Blonder, Ron

    2010-01-01

    In this paper we describe the learning process of a group of experienced chemistry teachers in a specially designed workshop on molecular symmetry and continuous symmetry. The workshop was based on interactive visualization tools that allow molecules and their symmetry elements to be rotated in three dimensions. The topic of continuous symmetry is…

  17. Application and Adaptation of an Institutional Learning Framework

    ERIC Educational Resources Information Center

    Foutz, Susan; Emmons, Claire Thoma

    2017-01-01

    The Children's Museum of Indianapolis has used a mission-aligned learning framework for more than a decade. Designed to foster and support adult-child interaction in exhibitions and programs, the central tool of the family learning framework is the Assessment of Learning Families in Exhibits (ALFIE) Inventory. ALFIE is used as a tool to plan for…

  18. Pete's Tool: Identity and Sex-Play in the Design and Technology Classroom.

    ERIC Educational Resources Information Center

    Dixon, Carolyn

    1997-01-01

    Explores the "interactional work" of one boy in a technology lesson as he elaborates, through "play" with workshop tools, a sexual fantasy of masturbation and penetration. This action is contextualized by his relations with others and by the dominance of a prevailing myth of male sexuality in his construction of a masculine…

  19. QND – DESIGNING A PARTICIPATORY SCENARIO MODELING TOOL TO INTEGRATE TECHNOLOGY, ECOLOGY, AND SOCIOLOGY IN GUATEMALA’S MAYA BIOSPHERE RESERVE AND BEYOND

    EPA Science Inventory

    Participatory scenario modeling – an interactive method for visualizing the future – is one of the most promising tools for achieving sustainable land use agreements amongst diverse stakeholder groups. The method has the potential to bridge the gap between the high...

  20. An Ambient Awareness Tool for Supporting Supervised Collaborative Problem Solving

    ERIC Educational Resources Information Center

    Alavi, H. S.; Dillenbourg, P.

    2012-01-01

    We describe an ambient awareness tool, named "Lantern", designed for supporting the learning process in recitation sections, (i.e., when students work in small teams on the exercise sets with the help of tutors). Each team is provided with an interactive lamp that displays their work status: the exercise they are working on, if they have…

  1. Research flight software engineering and MUST, an integrated system of support tools

    NASA Technical Reports Server (NTRS)

    Straeter, T. A.; Foudriat, E. C.; Will, R. W.

    1977-01-01

    Consideration is given to software development to support NASA flight research. The Multipurpose User-Oriented Software Technology (MUST) program, designed to integrate digital systems into flight research, is discussed. Particular attention is given to the program's special interactive user interface, subroutine library, assemblers, compiler, automatic documentation tools, and test and simulation subsystems.

  2. A Model-Driven Visualization Tool for Use with Model-Based Systems Engineering Projects

    NASA Technical Reports Server (NTRS)

    Trase, Kathryn; Fink, Eric

    2014-01-01

    Model-Based Systems Engineering (MBSE) promotes increased consistency between a system's design and its design documentation through the use of an object-oriented system model. The creation of this system model facilitates data presentation by providing a mechanism from which information can be extracted by automated manipulation of model content. Existing MBSE tools enable model creation, but are often too complex for the unfamiliar model viewer to easily use. These tools do not yet provide many opportunities for easing into the development and use of a system model when system design documentation already exists. This study creates a Systems Modeling Language (SysML) Document Traceability Framework (SDTF) for integrating design documentation with a system model, and develops an Interactive Visualization Engine for SysML Tools (InVEST), that exports consistent, clear, and concise views of SysML model data. These exported views are each meaningful to a variety of project stakeholders with differing subjects of concern and depth of technical involvement. InVEST allows a model user to generate multiple views and reports from a MBSE model, including wiki pages and interactive visualizations of data. System data can also be filtered to present only the information relevant to the particular stakeholder, resulting in a view that is both consistent with the larger system model and other model views. Viewing the relationships between system artifacts and documentation, and filtering through data to see specialized views improves the value of the system as a whole, as data becomes information

  3. Portfolio: a prototype workstation for development and evaluation of tools for analysis and management of digital portal images.

    PubMed

    Boxwala, A A; Chaney, E L; Fritsch, D S; Friedman, C P; Rosenman, J G

    1998-09-01

    The purpose of this investigation was to design and implement a prototype physician workstation, called PortFolio, as a platform for developing and evaluating, by means of controlled observer studies, user interfaces and interactive tools for analyzing and managing digital portal images. The first observer study was designed to measure physician acceptance of workstation technology, as an alternative to a view box, for inspection and analysis of portal images for detection of treatment setup errors. The observer study was conducted in a controlled experimental setting to evaluate physician acceptance of the prototype workstation technology exemplified by PortFolio. PortFolio incorporates a windows user interface, a compact kit of carefully selected image analysis tools, and an object-oriented data base infrastructure. The kit evaluated in the observer study included tools for contrast enhancement, registration, and multimodal image visualization. Acceptance was measured in the context of performing portal image analysis in a structured protocol designed to simulate clinical practice. The acceptability and usage patterns were measured from semistructured questionnaires and logs of user interactions. Radiation oncologists, the subjects for this study, perceived the tools in PortFolio to be acceptable clinical aids. Concerns were expressed regarding user efficiency, particularly with respect to the image registration tools. The results of our observer study indicate that workstation technology is acceptable to radiation oncologists as an alternative to a view box for clinical detection of setup errors from digital portal images. Improvements in implementation, including more tools and a greater degree of automation in the image analysis tasks, are needed to make PortFolio more clinically practical.

  4. Pre-evaluation and interactive editing of B-spline and GERBS curves and surfaces

    NASA Astrophysics Data System (ADS)

    Laksâ, Arne

    2017-12-01

    Interactive computer based geometry editing is very useful for designers and artists. Our goal has been to develop useful tools for geometry editing in a way that increases the ability for creative design. When we interactively editing geometry, we want to see the change happening gradually and smoothly on the screen. Pre-evaluation is a tool for increasing the speed of the graphics when doing interactive affine operation on control points and control surfaces. It is then possible to add details on surfaces, and change shape in a smooth and continuous way. We use pre-evaluation on basis functions, on blending functions and on local surfaces. Pre-evaluation can be made hierarchi-cally and is thus useful for local refinements. Sampling and plotting of curves, surfaces and volumes can today be handled by the GPU and it is therefore important to have a structured organization and updating system to be able to make interactive editing as smooth and user friendly as possible. In the following, we will show a structure for pre-evaluation and an optimal organisation of the computation and we will show the effect of implementing both of these techniques.

  5. USER MANUAL FOR THE EPA THIRD-GENERATION AIR QUALITY MODELING SYSTEM (MODELS-3 VERSION 3.0)

    EPA Science Inventory

    Models-3 is a flexible software system designed to simplify the development and use of environmental assessment and other decision support tools. It is designed for applications ranging from regulatory and policy analysis to understanding the complex interactions of atmospheri...

  6. SYSTEM INSTALLATION AND OPERATION MANUAL FOR THE EPA THIRD-GENERATION AIR QUALITY MODELING SYSTEM (MODELS-3) VERSION 3.0

    EPA Science Inventory

    Models-3 is a flexible software system designed to simplify the development and use of environmental assessment and other decision support tools. It is designed for applications ranging from regulatory and policy analysis to understanding the complex interactions of atmospheri...

  7. Developing Visualization Support System for Teaching/Learning Database Normalization

    ERIC Educational Resources Information Center

    Folorunso, Olusegun; Akinwale, AdioTaofeek

    2010-01-01

    Purpose: In tertiary institution, some students find it hard to learn database design theory, in particular, database normalization. The purpose of this paper is to develop a visualization tool to give students an interactive hands-on experience in database normalization process. Design/methodology/approach: The model-view-controller architecture…

  8. MODELS-3 INSTALLATION PROCEDURES FOR A PC WITH AN NT OPERATING SYSTEM (MODELS-3 VERSION 4.0)

    EPA Science Inventory

    Models-3 is a flexible software system designed to simplify the development and use of air quality models and other environmental decision support tools. It is designed for applications ranging from regulatory and policy analysis to understanding the complex interactions of at...

  9. MODELS-3 INSTALLATION PROCEDURES FOR A PERSONAL COMPUTER WITH A NT OPERATING SYSTEM (MODELS-3 VERSION 4.1)

    EPA Science Inventory

    Models-3 is a flexible system designed to simplify the development and use of air quality models and other environmental decision support tools. It is designed for applications ranging from regulatory and policy analysis to understanding the complex interactions of atmospheric...

  10. An Interactive, Integrated, Instructional Pathway to the LEAD Science Gateway

    NASA Astrophysics Data System (ADS)

    Yalda, S.; Clark, R.; Davis, L.; Wiziecki, E. N.

    2008-12-01

    Linked Environments for Atmospheric Discovery (LEAD) is a bold and revolutionary paradigm that through a Web-based Service Oriented Architecture (SOA) exposes the user to a rich environment of data, models, data mining and visualization and analysis tools, enabling the user to ask science questions of applications while the complexity of the software and middleware managing these applications is hidden from the user. From its inception in 2003, LEAD has championed goals that have context for the future of weather and related research and education. LEAD espouses to lowering the barrier for using complex end-to-end weather technologies by a) democratizing the availability of advanced weather technologies, b) empowering the user of these technologies to tackle a variety of problems, and c) facilitating learning and understanding. LEAD, as it exists today, is poised to enable a diverse community of scientists, educators, students, and operational practitioners. The project has been informed by atmospheric and computer scientists, educators, and educational consultants who, in search of new knowledge, understanding, ideas, and learning methodologies, seek easy access to new capabilities that allow for user-directed and interactive query and acquisition, simulation, assimilation, data mining, computational modeling, and visualization. As one component of the total LEAD effort, the LEAD education team has designed interactive, integrated, instructional pathways within a set of learning modules (LEAD-to-Learn) to facilitate, enhance, and enable the use of the LEAD gateway in the classroom. The LEAD education initiative focuses on the means to integrate data, tools, and services used by researchers into undergraduate meteorology education in order to provide an authentic and contextualized environment for teaching and learning. Educators, educational specialists, and students from meteorology and computer science backgrounds have collaborated on the design and development of learning materials, as well as new tools and features, to enhance the appearance and use of the LEAD portal gateway and its underlying cyberinfrastructure in an educational setting. The development of educational materials has centered on promoting the accessibility and use of meteorological data and analysis tools through the LEAD portal by providing instructional materials, additional custom designed tools that build off of Unidata's Integrated Data Viewer (IDV) (e.g. IDV Basic and NCDestroyer), and an interactive component that takes the user through specific tasks utilizing multiple tools. In fact, select improvements to parameter lists and domain subsetting have inspired IDV developers to incorporate changes in IDV revisions that are now available to the entire community. This collection of materials, demonstrations, interactive guides, student exercises, and customized tools, which are now available to the educator and student through the LEAD portal gateway, can serve as an instructional pathway for a set of guided, phenomenon-based exercises (e.g. fronts, lake-effect snows, etc.). This paper will provide an overview of the LEAD education and outreach efforts with a focus on the design of Web-based educational materials and instructional approaches for user interaction with the LEAD portal gateway and the underlying cyberinfrastructure, and will encourage educators, especially those involved in undergraduate meteorology education, to begin incorporating these capabilities into their course materials.

  11. ISPAN (Interactive Stiffened Panel Analysis): A tool for quick concept evaluation and design trade studies

    NASA Technical Reports Server (NTRS)

    Hairr, John W.; Dorris, William J.; Ingram, J. Edward; Shah, Bharat M.

    1993-01-01

    Interactive Stiffened Panel Analysis (ISPAN) modules, written in FORTRAN, were developed to provide an easy to use tool for creating finite element models of composite material stiffened panels. The modules allow the user to interactively construct, solve and post-process finite element models of four general types of structural panel configurations using only the panel dimensions and properties as input data. Linear, buckling and post-buckling solution capability is provided. This interactive input allows rapid model generation and solution by non finite element users. The results of a parametric study of a blade stiffened panel are presented to demonstrate the usefulness of the ISPAN modules. Also, a non-linear analysis of a test panel was conducted and the results compared to measured data and previous correlation analysis.

  12. GREAT: a web portal for Genome Regulatory Architecture Tools

    PubMed Central

    Bouyioukos, Costas; Bucchini, François; Elati, Mohamed; Képès, François

    2016-01-01

    GREAT (Genome REgulatory Architecture Tools) is a novel web portal for tools designed to generate user-friendly and biologically useful analysis of genome architecture and regulation. The online tools of GREAT are freely accessible and compatible with essentially any operating system which runs a modern browser. GREAT is based on the analysis of genome layout -defined as the respective positioning of co-functional genes- and its relation with chromosome architecture and gene expression. GREAT tools allow users to systematically detect regular patterns along co-functional genomic features in an automatic way consisting of three individual steps and respective interactive visualizations. In addition to the complete analysis of regularities, GREAT tools enable the use of periodicity and position information for improving the prediction of transcription factor binding sites using a multi-view machine learning approach. The outcome of this integrative approach features a multivariate analysis of the interplay between the location of a gene and its regulatory sequence. GREAT results are plotted in web interactive graphs and are available for download either as individual plots, self-contained interactive pages or as machine readable tables for downstream analysis. The GREAT portal can be reached at the following URL https://absynth.issb.genopole.fr/GREAT and each individual GREAT tool is available for downloading. PMID:27151196

  13. Graphics Flutter Analysis Methods, an interactive computing system at Lockheed-California Company

    NASA Technical Reports Server (NTRS)

    Radovcich, N. A.

    1975-01-01

    An interactive computer graphics system, Graphics Flutter Analysis Methods (GFAM), was developed to complement FAMAS, a matrix-oriented batch computing system, and other computer programs in performing complex numerical calculations using a fully integrated data management system. GFAM has many of the matrix operation capabilities found in FAMAS, but on a smaller scale, and is utilized when the analysis requires a high degree of interaction between the engineer and computer, and schedule constraints exclude the use of batch entry programs. Applications of GFAM to a variety of preliminary design, development design, and project modification programs suggest that interactive flutter analysis using matrix representations is a feasible and cost effective computing tool.

  14. PyramidalExplorer: A New Interactive Tool to Explore Morpho-Functional Relations of Human Pyramidal Neurons.

    PubMed

    Toharia, Pablo; Robles, Oscar D; Fernaud-Espinosa, Isabel; Makarova, Julia; Galindo, Sergio E; Rodriguez, Angel; Pastor, Luis; Herreras, Oscar; DeFelipe, Javier; Benavides-Piccione, Ruth

    2015-01-01

    This work presents PyramidalExplorer, a new tool to interactively explore and reveal the detailed organization of the microanatomy of pyramidal neurons with functionally related models. It consists of a set of functionalities that allow possible regional differences in the pyramidal cell architecture to be interactively discovered by combining quantitative morphological information about the structure of the cell with implemented functional models. The key contribution of this tool is the morpho-functional oriented design that allows the user to navigate within the 3D dataset, filter and perform Content-Based Retrieval operations. As a case study, we present a human pyramidal neuron with over 9000 dendritic spines in its apical and basal dendritic trees. Using PyramidalExplorer, we were able to find unexpected differential morphological attributes of dendritic spines in particular compartments of the neuron, revealing new aspects of the morpho-functional organization of the pyramidal neuron.

  15. PyramidalExplorer: A New Interactive Tool to Explore Morpho-Functional Relations of Human Pyramidal Neurons

    PubMed Central

    Toharia, Pablo; Robles, Oscar D.; Fernaud-Espinosa, Isabel; Makarova, Julia; Galindo, Sergio E.; Rodriguez, Angel; Pastor, Luis; Herreras, Oscar; DeFelipe, Javier; Benavides-Piccione, Ruth

    2016-01-01

    This work presents PyramidalExplorer, a new tool to interactively explore and reveal the detailed organization of the microanatomy of pyramidal neurons with functionally related models. It consists of a set of functionalities that allow possible regional differences in the pyramidal cell architecture to be interactively discovered by combining quantitative morphological information about the structure of the cell with implemented functional models. The key contribution of this tool is the morpho-functional oriented design that allows the user to navigate within the 3D dataset, filter and perform Content-Based Retrieval operations. As a case study, we present a human pyramidal neuron with over 9000 dendritic spines in its apical and basal dendritic trees. Using PyramidalExplorer, we were able to find unexpected differential morphological attributes of dendritic spines in particular compartments of the neuron, revealing new aspects of the morpho-functional organization of the pyramidal neuron. PMID:26778972

  16. Playbook Data Analysis Tool: Collecting Interaction Data from Extremely Remote Users

    NASA Technical Reports Server (NTRS)

    Kanefsky, Bob; Zheng, Jimin; Deliz, Ivonne; Marquez, Jessica J.; Hillenius, Steven

    2017-01-01

    Typically, user tests for software tools are conducted in person. At NASA, the users may be located at the bottom of the ocean in a pressurized habitat, above the atmosphere in the International Space Station, or in an isolated capsule on a simulated asteroid mission. The Playbook Data Analysis Tool (P-DAT) is a human-computer interaction (HCI) evaluation tool that the NASA Ames HCI Group has developed to record user interactions with Playbook, the group's existing planning-and-execution software application. Once the remotely collected user interaction data makes its way back to Earth, researchers can use P-DAT for in-depth analysis. Since a critical component of the Playbook project is to understand how to develop more intuitive software tools for astronauts to plan in space, P-DAT helps guide us in the development of additional easy-to-use features for Playbook, informing the design of future crew autonomy tools.P-DAT has demonstrated the capability of discreetly capturing usability data in amanner that is transparent to Playbook’s end-users. In our experience, P-DAT data hasalready shown its utility, revealing potential usability patterns, helping diagnose softwarebugs, and identifying metrics and events that are pertinent to Playbook usage aswell as spaceflight operations. As we continue to develop this analysis tool, P-DATmay yet provide a method for long-duration, unobtrusive human performance collectionand evaluation for mission controllers back on Earth and researchers investigatingthe effects and mitigations related to future human spaceflight performance.

  17. SOCRAT Platform Design: A Web Architecture for Interactive Visual Analytics Applications

    PubMed Central

    Kalinin, Alexandr A.; Palanimalai, Selvam; Dinov, Ivo D.

    2018-01-01

    The modern web is a successful platform for large scale interactive web applications, including visualizations. However, there are no established design principles for building complex visual analytics (VA) web applications that could efficiently integrate visualizations with data management, computational transformation, hypothesis testing, and knowledge discovery. This imposes a time-consuming design and development process on many researchers and developers. To address these challenges, we consider the design requirements for the development of a module-based VA system architecture, adopting existing practices of large scale web application development. We present the preliminary design and implementation of an open-source platform for Statistics Online Computational Resource Analytical Toolbox (SOCRAT). This platform defines: (1) a specification for an architecture for building VA applications with multi-level modularity, and (2) methods for optimizing module interaction, re-usage, and extension. To demonstrate how this platform can be used to integrate a number of data management, interactive visualization, and analysis tools, we implement an example application for simple VA tasks including raw data input and representation, interactive visualization and analysis. PMID:29630069

  18. SOCRAT Platform Design: A Web Architecture for Interactive Visual Analytics Applications.

    PubMed

    Kalinin, Alexandr A; Palanimalai, Selvam; Dinov, Ivo D

    2017-04-01

    The modern web is a successful platform for large scale interactive web applications, including visualizations. However, there are no established design principles for building complex visual analytics (VA) web applications that could efficiently integrate visualizations with data management, computational transformation, hypothesis testing, and knowledge discovery. This imposes a time-consuming design and development process on many researchers and developers. To address these challenges, we consider the design requirements for the development of a module-based VA system architecture, adopting existing practices of large scale web application development. We present the preliminary design and implementation of an open-source platform for Statistics Online Computational Resource Analytical Toolbox (SOCRAT). This platform defines: (1) a specification for an architecture for building VA applications with multi-level modularity, and (2) methods for optimizing module interaction, re-usage, and extension. To demonstrate how this platform can be used to integrate a number of data management, interactive visualization, and analysis tools, we implement an example application for simple VA tasks including raw data input and representation, interactive visualization and analysis.

  19. FireProt: web server for automated design of thermostable proteins

    PubMed Central

    Musil, Milos; Stourac, Jan; Brezovsky, Jan; Prokop, Zbynek; Zendulka, Jaroslav; Martinek, Tomas

    2017-01-01

    Abstract There is a continuous interest in increasing proteins stability to enhance their usability in numerous biomedical and biotechnological applications. A number of in silico tools for the prediction of the effect of mutations on protein stability have been developed recently. However, only single-point mutations with a small effect on protein stability are typically predicted with the existing tools and have to be followed by laborious protein expression, purification, and characterization. Here, we present FireProt, a web server for the automated design of multiple-point thermostable mutant proteins that combines structural and evolutionary information in its calculation core. FireProt utilizes sixteen tools and three protein engineering strategies for making reliable protein designs. The server is complemented with interactive, easy-to-use interface that allows users to directly analyze and optionally modify designed thermostable mutants. FireProt is freely available at http://loschmidt.chemi.muni.cz/fireprot. PMID:28449074

  20. The use of affective interaction design in car user interfaces.

    PubMed

    Gkouskos, Dimitrios; Chen, Fang

    2012-01-01

    Recent developments in the car industry have put Human Machine Interfaces under the spotlight. Developing gratifying human-car interactions has become one of the more prominent areas that car manufacturers want to invest in. However, concepts like emotional design remain foreign to the industry. In this study 12 experts on the field of automobile HMI design were interviewed in order to investigate their needs and opinions of emotional design. Results show that emotional design has yet to be introduced for this context of use. Designers need a tool customized for the intricacies of the car HMI field that can provide them with support and guidance so that they can create emotionally attractive experiences for drivers and passengers alike.

  1. An interactive multi-block grid generation system

    NASA Technical Reports Server (NTRS)

    Kao, T. J.; Su, T. Y.; Appleby, Ruth

    1992-01-01

    A grid generation procedure combining interactive and batch grid generation programs was put together to generate multi-block grids for complex aircraft configurations. The interactive section provides the tools for 3D geometry manipulation, surface grid extraction, boundary domain construction for 3D volume grid generation, and block-block relationships and boundary conditions for flow solvers. The procedure improves the flexibility and quality of grid generation to meet the design/analysis requirements.

  2. Manipulator interactive design with interconnected flexible elements

    NASA Technical Reports Server (NTRS)

    Singh, R. P.; Likins, P. W.

    1983-01-01

    This paper describes the development of an analysis tool for the interactive design of control systems for manipulators and similar electro-mechanical systems amenable to representation as structures in a topological chain. The chain consists of a series of elastic bodies subject to small deformations and arbitrary displacements. The bodies are connected by hinges which permit kinematic constraints, control, or relative motion with six degrees of freedom. The equations of motion for the chain configuration are derived via Kane's method, extended for application to interconnected flexible bodies with time-varying boundary conditions. A corresponding set of modal coordinates has been selected. The motion equations are imbedded within a simulation that transforms the vector-dyadic equations into scalar form for numerical integration. The simulation also includes a linear, time-invariant controler specified in transfer function format and a set of sensors and actuators that interface between the structure and controller. The simulation is driven by an interactive set-up program resulting in an easy-to-use analysis tool.

  3. Color postprocessing for 3-dimensional finite element mesh quality evaluation and evolving graphical workstation

    NASA Technical Reports Server (NTRS)

    Panthaki, Malcolm J.

    1987-01-01

    Three general tasks on general-purpose, interactive color graphics postprocessing for three-dimensional computational mechanics were accomplished. First, the existing program (POSTPRO3D) is ported to a high-resolution device. In the course of this transfer, numerous enhancements are implemented in the program. The performance of the hardware was evaluated from the point of view of engineering postprocessing, and the characteristics of future hardware were discussed. Second, interactive graphical tools implemented to facilitate qualitative mesh evaluation from a single analysis. The literature was surveyed and a bibliography compiled. Qualitative mesh sensors were examined, and the use of two-dimensional plots of unaveraged responses on the surface of three-dimensional continua was emphasized in an interactive color raster graphics environment. Finally, a postprocessing environment was designed for state-of-the-art workstation technology. Modularity, personalization of the environment, integration of the engineering design processes, and the development and use of high-level graphics tools are some of the features of the intended environment.

  4. Concept of Operations Visualization in Support of Ares I Production

    NASA Technical Reports Server (NTRS)

    Chilton, James H.; Smith, Daid Alan

    2008-01-01

    Boeing was selected in 2007 to manufacture Ares I Upper Stage and Instrument Unit according to NASA's design which would require the use of the latest manufacturing and integration processes to meet NASA budget and schedule targets. Past production experience has established that the majority of the life cycle cost is established during the initial design process. Concept of Operations (CONOPs) visualizations/simulations help to reduce life cycle cost during the early design stage. Production and operation visualizations can reduce tooling, factory capacity, safety, and build process risks while spreading program support across government, academic, media and public constituencies. The NASA/Boeing production visualization (DELMIA; Digital Enterprise Lean Manufacturing Interactive Application) promotes timely, concurrent and collaborative producibility analysis (Boeing)while supporting Upper Stage Design Cycles (NASA). The DELMIA CONOPs visualization reduced overall Upper Stage production flow time at the manufacturing facility by over 100 man-days to 312.5 man-days and helped to identify technical access issues. The NASA/Boeing Interactive Concept of Operations (ICON) provides interactive access to Ares using real mission parameters, allows users to configure the mission which encourages ownership and identifies areas for improvement, allows mission operations or spacecraft detail to be added as needed, and provides an effective, low coast advocacy, outreach and education tool.

  5. An interactive tool for outdoor computer controlled cultivation of microalgae in a tubular photobioreactor system.

    PubMed

    Dormido, Raquel; Sánchez, José; Duro, Natividad; Dormido-Canto, Sebastián; Guinaldo, María; Dormido, Sebastián

    2014-03-06

    This paper describes an interactive virtual laboratory for experimenting with an outdoor tubular photobioreactor (henceforth PBR for short). This virtual laboratory it makes possible to: (a) accurately reproduce the structure of a real plant (the PBR designed and built by the Department of Chemical Engineering of the University of Almería, Spain); (b) simulate a generic tubular PBR by changing the PBR geometry; (c) simulate the effects of changing different operating parameters such as the conditions of the culture (pH, biomass concentration, dissolved O2, inyected CO2, etc.); (d) simulate the PBR in its environmental context; it is possible to change the geographic location of the system or the solar irradiation profile; (e) apply different control strategies to adjust different variables such as the CO2 injection, culture circulation rate or culture temperature in order to maximize the biomass production; (f) simulate the harvesting. In this way, users can learn in an intuitive way how productivity is affected by any change in the design. It facilitates the learning of how to manipulate essential variables for microalgae growth to design an optimal PBR. The simulator has been developed with Easy Java Simulations, a freeware open-source tool developed in Java, specifically designed for the creation of interactive dynamic simulations.

  6. An Interactive Tool for Outdoor Computer Controlled Cultivation of Microalgae in a Tubular Photobioreactor System

    PubMed Central

    Dormido, Raquel; Sánchez, José; Duro, Natividad; Dormido-Canto, Sebastián; Guinaldo, María; Dormido, Sebastián

    2014-01-01

    This paper describes an interactive virtual laboratory for experimenting with an outdoor tubular photobioreactor (henceforth PBR for short). This virtual laboratory it makes possible to: (a) accurately reproduce the structure of a real plant (the PBR designed and built by the Department of Chemical Engineering of the University of Almería, Spain); (b) simulate a generic tubular PBR by changing the PBR geometry; (c) simulate the effects of changing different operating parameters such as the conditions of the culture (pH, biomass concentration, dissolved O2, inyected CO2, etc.); (d) simulate the PBR in its environmental context; it is possible to change the geographic location of the system or the solar irradiation profile; (e) apply different control strategies to adjust different variables such as the CO2 injection, culture circulation rate or culture temperature in order to maximize the biomass production; (f) simulate the harvesting. In this way, users can learn in an intuitive way how productivity is affected by any change in the design. It facilitates the learning of how to manipulate essential variables for microalgae growth to design an optimal PBR. The simulator has been developed with Easy Java Simulations, a freeware open-source tool developed in Java, specifically designed for the creation of interactive dynamic simulations. PMID:24662450

  7. Design Requirements for Communication-Intensive Interactive Applications

    NASA Astrophysics Data System (ADS)

    Bolchini, Davide; Garzotto, Franca; Paolini, Paolo

    Online interactive applications call for new requirements paradigms to capture the growing complexity of computer-mediated communication. Crafting successful interactive applications (such as websites and multimedia) involves modeling the requirements for the user experience, including those leading to content design, usable information architecture and interaction, in profound coordination with the communication goals of all stakeholders involved, ranging from persuasion to social engagement, to call for action. To face this grand challenge, we propose a methodology for modeling communication requirements and provide a set of operational conceptual tools to be used in complex projects with multiple stakeholders. Through examples from real-life projects and lessons-learned from direct experience, we draw on the concepts of brand, value, communication goals, information and persuasion requirements to systematically guide analysts to master the multifaceted connections of these elements as drivers to inform successful communication designs.

  8. Verifying and Validating Proposed Models for FSW Process Optimization

    NASA Technical Reports Server (NTRS)

    Schneider, Judith

    2008-01-01

    This slide presentation reviews Friction Stir Welding (FSW) and the attempts to model the process in order to optimize and improve the process. The studies are ongoing to validate and refine the model of metal flow in the FSW process. There are slides showing the conventional FSW process, a couple of weld tool designs and how the design interacts with the metal flow path. The two basic components of the weld tool are shown, along with geometries of the shoulder design. Modeling of the FSW process is reviewed. Other topics include (1) Microstructure features, (2) Flow Streamlines, (3) Steady-state Nature, and (4) Grain Refinement Mechanisms

  9. Investigation of the effects of process and geometrical parameters on formability in tube hydroforming using a modular hydroforming tool

    NASA Astrophysics Data System (ADS)

    Joghan, Hamed Dardaei; Staupendahl, Daniel; Hassan, Hamad ul; Henke, Andreas; Keesser, Thorsten; Legat, Francois; Tekkaya, A. Erman

    2018-05-01

    Tube hydroforming is one of the most important manufacturing processes for the production of exhaust systems. Tube hydroforming allows generating parts with highly complex geometries with the forming accuracies needed in the automotive sector. This is possible due to the form-closed nature of the production process. One of the main cost drivers is tool manufacturing, which is expensive and time consuming, especially when forming large parts. To cope with the design trend of individuality, which is gaining more and more importance and leads to a high number of product variants, a new flexible tool design was developed. The designed tool offers a high flexibility in manufacturing different shapes and geometries of tubes with just local alterations and relocation of tool segments. The tolerancing problems that segmented tools from the state of the art have are overcome by an innovative and flexible die holder design. The break-even point of this initially more expensive tool design is already overcome when forming more than 4 different tube shapes. Together with an additionally designed rotary hydraulic tube feeding system, a highly adaptable forming setup is generated. To investigate the performance of the developed tool setup, a study on geometrical and process parameters during forming of a spherical dome was done. Austenitic stainless steel (grade 1.4301) tube with a diameter of 40 mm and a thickness of 1.5 mm was used for the investigations. The experimental analyses were supported by finite element simulations and statistical analyses. The results show that the flexible tool setup can efficiently be used to analyze the interaction of the inner pressure, friction, and the location of the spherical dome and demonstrate the high influence of the feeding rate on the formed part.

  10. A numerical tool for reproducing driver behaviour: experiments and predictive simulations.

    PubMed

    Casucci, M; Marchitto, M; Cacciabue, P C

    2010-03-01

    This paper presents the simulation tool called SDDRIVE (Simple Simulation of Driver performance), which is the numerical computerised implementation of the theoretical architecture describing Driver-Vehicle-Environment (DVE) interactions, contained in Cacciabue and Carsten [Cacciabue, P.C., Carsten, O. A simple model of driver behaviour to sustain design and safety assessment of automated systems in automotive environments, 2010]. Following a brief description of the basic algorithms that simulate the performance of drivers, the paper presents and discusses a set of experiments carried out in a Virtual Reality full scale simulator for validating the simulation. Then the predictive potentiality of the tool is shown by discussing two case studies of DVE interactions, performed in the presence of different driver attitudes in similar traffic conditions.

  11. David Goldwasser | NREL

    Science.gov Websites

    . Prior to joining NREL, David worked in architectural design, 3D modeling, and interactive media. He consulted for Google on 3D modeling tools and worked in Colorado on sustainable architecture projects

  12. Object-oriented design of medical imaging software.

    PubMed

    Ligier, Y; Ratib, O; Logean, M; Girard, C; Perrier, R; Scherrer, J R

    1994-01-01

    A special software package for interactive display and manipulation of medical images was developed at the University Hospital of Geneva, as part of a hospital wide Picture Archiving and Communication System (PACS). This software package, called Osiris, was especially designed to be easily usable and adaptable to the needs of noncomputer-oriented physicians. The Osiris software has been developed to allow the visualization of medical images obtained from any imaging modality. It provides generic manipulation tools, processing tools, and analysis tools more specific to clinical applications. This software, based on an object-oriented paradigm, is portable and extensible. Osiris is available on two different operating systems: the Unix X-11/OSF-Motif based workstations, and the Macintosh family.

  13. Application of an Online Interactive Simulation Tool to Teach Engineering Concepts Using 3D Spatial Structures

    ERIC Educational Resources Information Center

    Jones, Brett D.; Setareh, Mehdi; Polys, Nicholas F.; Bacim, Felipe

    2014-01-01

    Simulations can be powerful learning tools that allow students to explore and understand concepts in ways that are not possible in typical classroom settings. However, research is lacking as to how to use simulations most effectively in different types of learning environments. To address this need, we designed a study to examine the impact of…

  14. Success Is an Open Book: Online Diagnostic Tools and Learning Outcomes in Introduction to American Government Courses

    ERIC Educational Resources Information Center

    Reed, Ryan; Smith, Daniel E.

    2016-01-01

    This project examines the utility of a particular course enhancement, Cengage's Aplia, and more generally interactive tools designed to facilitate reading in the introductory American government course. Using two control and two treatment sections of the course (one section each for two instructors) during the Fall 2013 term, we measured student…

  15. Implementing multiresolution models and families of models: from entity-level simulation to desktop stochastic models and "repro" models

    NASA Astrophysics Data System (ADS)

    McEver, Jimmie; Davis, Paul K.; Bigelow, James H.

    2000-06-01

    We have developed and used families of multiresolution and multiple-perspective models (MRM and MRMPM), both in our substantive analytic work for the Department of Defense and to learn more about how such models can be designed and implemented. This paper is a brief case history of our experience with a particular family of models addressing the use of precision fires in interdicting and halting an invading army. Our models were implemented as closed-form analytic solutions, in spreadsheets, and in the more sophisticated AnalyticaTM environment. We also drew on an entity-level simulation for data. The paper reviews the importance of certain key attributes of development environments (visual modeling, interactive languages, friendly use of array mathematics, facilities for experimental design and configuration control, statistical analysis tools, graphical visualization tools, interactive post-processing, and relational database tools). These can go a long way towards facilitating MRMPM work, but many of these attributes are not yet widely available (or available at all) in commercial model-development tools--especially for use with personal computers. We conclude with some lessons learned from our experience.

  16. Proposing an Evaluation Framework for Interventions: Focusing on Students' Behaviours in Interactive Science Exhibitions

    ERIC Educational Resources Information Center

    Hauan, Nils Petter; DeWitt, Jennifer; Kolstø, Stein Dankert

    2017-01-01

    Materials designed for self-guided experiences such as worksheets and digital applications are widely used as tools to enable interactive science exhibitions to support students' progress towards conceptual understanding. However, there is a need to find expedient ways to evaluate the quality of educational experiences resulting from the use of…

  17. A Complete Interactive Graphical Computer-Aided Instruction System.

    ERIC Educational Resources Information Center

    Abrams, Steven Selby

    The use of interactive graphics in computer-aided instruction systems is discussed with emphasis placed on two requirements of such a system. The first is the need to provide the teacher with a useful tool with which to design and modify teaching sessions tailored to the individual needs and capabilities of the students. The second is the…

  18. Innovative Interactive Lecture Demonstrations Using Wireless Force Sensors and Accelerometers for Introductory Physics Courses

    ERIC Educational Resources Information Center

    Yoder, G.; Cook, J.

    2010-01-01

    Interactive lecture demonstrations (ILDs) are a powerful tool designed to help instructors bring state-of-the-art teaching pedagogies into the college-level introductory physics classroom. ILDs have been shown to improve students' conceptual understanding, and many examples have been created and published by Sokoloff and Thornton. We have used the…

  19. Using computer-aided drug design and medicinal chemistry strategies in the fight against diabetes.

    PubMed

    Semighini, Evandro P; Resende, Jonathan A; de Andrade, Peterson; Morais, Pedro A B; Carvalho, Ivone; Taft, Carlton A; Silva, Carlos H T P

    2011-04-01

    The aim of this work is to present a simple, practical and efficient protocol for drug design, in particular Diabetes, which includes selection of the illness, good choice of a target as well as a bioactive ligand and then usage of various computer aided drug design and medicinal chemistry tools to design novel potential drug candidates in different diseases. We have selected the validated target dipeptidyl peptidase IV (DPP-IV), whose inhibition contributes to reduce glucose levels in type 2 diabetes patients. The most active inhibitor with complex X-ray structure reported was initially extracted from the BindingDB database. By using molecular modification strategies widely used in medicinal chemistry, besides current state-of-the-art tools in drug design (including flexible docking, virtual screening, molecular interaction fields, molecular dynamics, ADME and toxicity predictions), we have proposed 4 novel potential DPP-IV inhibitors with drug properties for Diabetes control, which have been supported and validated by all the computational tools used herewith.

  20. SketchBio: a scientist's 3D interface for molecular modeling and animation.

    PubMed

    Waldon, Shawn M; Thompson, Peter M; Hahn, Patrick J; Taylor, Russell M

    2014-10-30

    Because of the difficulties involved in learning and using 3D modeling and rendering software, many scientists hire programmers or animators to create models and animations. This both slows the discovery process and provides opportunities for miscommunication. Working with multiple collaborators, a tool was developed (based on a set of design goals) to enable them to directly construct models and animations. SketchBio is presented, a tool that incorporates state-of-the-art bimanual interaction and drop shadows to enable rapid construction of molecular structures and animations. It includes three novel features: crystal-by-example, pose-mode physics, and spring-based layout that accelerate operations common in the formation of molecular models. Design decisions and their consequences are presented, including cases where iterative design was required to produce effective approaches. The design decisions, novel features, and inclusion of state-of-the-art techniques enabled SketchBio to meet all of its design goals. These features and decisions can be incorporated into existing and new tools to improve their effectiveness.

  1. Technology and nursing education: an online toolkit for educators.

    PubMed

    Hart, Carolyn

    2012-09-01

    New tools that are free are available via the Internet and can successfully be used to create interactive and engaging courses designed to reach today's technologically savvy learners. Copyright 2012, SLACK Incorporated.

  2. Combining Interaction and Context Design to Support Collaborative Argumentation Using a Tool for Synchronous CMC

    ERIC Educational Resources Information Center

    Mcalister, Simon; Ravenscroft, Andrew; Scanlon, Eileen

    2004-01-01

    Empirical studies and theory suggest that educational dialogue can be used to support learners in the development of reasoning, critical thinking and argumentation. This paper presents an educational design for synchronous online peer discussion that guides student dialogue in ways that lead to improved argumentation and collaborative knowledge…

  3. Information Architecture for the Web: The IA Matrix Approach to Designing Children's Portals.

    ERIC Educational Resources Information Center

    Large, Andrew; Beheshti, Jamshid; Cole, Charles

    2002-01-01

    Presents a matrix that can serve as a tool for designing the information architecture of a Web portal in a logical and systematic manner. Highlights include interfaces; metaphors; navigation; interaction; information retrieval; and an example of a children's Web portal to provide access to museum information. (Author/LRW)

  4. Multimedia in Higher Education: A Practical Guide to New Tools for Interactive Teaching and Learning.

    ERIC Educational Resources Information Center

    Falk, Dennis R.; Carlson, Helen L.

    This book is designed to offer an overall paradigm for designing instruction related to multimedia. Each chapter explores the paradigm through literature reviews, lists of pertinent questions, case studies, guidelines, and resource suggestions. The first two parts discuss defining an instructional problem and generating solutions via multimedia…

  5. A Dynamic Social Feedback System to Support Learning and Social Interaction in Higher Education

    ERIC Educational Resources Information Center

    Thoms, Brian

    2011-01-01

    In this research, we examine the design, construction, and implementation of a dynamic, easy to use, feedback mechanism for social software. The tool was integrated into an existing university's online learning community (OLC). In line with constructivist learning models and practical information systems (IS) design, the feedback system provides…

  6. High Wired: On the Design, Use and Theory of Educational MOOs.

    ERIC Educational Resources Information Center

    Haynes, Cynthia, Ed.; Holmevik, Jan Rune, Ed.

    MOOs (Multi-User, Object-Oriented Environments), which were designed originally as spaces for online social interaction, are increasingly recognized today for their value as educational tools. This book brings together a diverse group of experts whose contributions help answer questions and dispel myths surrounding MOOs and their use in education.…

  7. Common Molecules: Bringing Research and Teaching Together through an Online Collection.

    ERIC Educational Resources Information Center

    Sandvoss, Leah M.; Harwood, William S.; Korkmaz, Ali; Bollinger, John C.; Huffman, John C.; Huffman, John N.

    2003-01-01

    Describes the design of a Common Molecules collection that provides interactive tools for 3-D visualization of molecules. The organizational design provides not only structural information, but also historical and/or key information on the properties of the molecules in the collection. Describes student use of the collection and the role of…

  8. MODELS-3 INSTALLATION PROCEDURES FOR A SUN WORKSTATION WITH A UNIX-BASED OPERATING SYSTEM (MODELS-3 VERSION 4.1)

    EPA Science Inventory

    Models-3 is a flexible system designed to simplify the development and use of air quality models and other environmental decision support tools. It is designed for applications ranging from regulatory and policy analysis to understanding the complex interactions of atmospheric...

  9. CFD Validation with Experiment and Verification with Physics of a Propellant Damping Device

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; Peugeot, John

    2011-01-01

    This paper will document our effort in validating a coupled fluid-structure interaction CFD tool in predicting a damping device performance in the laboratory condition. Consistently good comparisons of "blind" CFD predictions against experimental data under various operation conditions, design parameters, and cryogenic environment will be presented. The power of the coupled CFD-structures interaction code in explaining some unexpected phenomena of the device observed during the technology development will be illustrated. The evolution of the damper device design inside the LOX tank will be used to demonstrate the contribution of the tool in understanding, optimization and implementation of LOX damper in Ares I vehicle. It is due to the present validation effort, the LOX damper technology has matured to TRL 5. The present effort has also contributed to the transition of the technology from an early conceptual observation to the baseline design of thrust oscillation mitigation for the Ares I within a 10 month period.

  10. Social Media Visual Analytics for Events

    NASA Astrophysics Data System (ADS)

    Diakopoulos, Nicholas; Naaman, Mor; Yazdani, Tayebeh; Kivran-Swaine, Funda

    For large-scale multimedia events such as televised debates and speeches, the amount of content on social media channels such as Facebook or Twitter can easily become overwhelming, yet still contain information that may aid and augment understanding of the multimedia content via individual social media items, or aggregate information from the crowd's response. In this work we discuss this opportunity in the context of a social media visual analytic tool, Vox Civitas, designed to help journalists, media professionals, or other researchers make sense of large-scale aggregations of social media content around multimedia broadcast events. We discuss the design of the tool, present and evaluate the text analysis techniques used to enable the presentation, and detail the visual and interaction design. We provide an exploratory evaluation based on a user study in which journalists interacted with the system to analyze and report on a dataset of over one 100 000 Twitter messages collected during the broadcast of the U.S. State of the Union presidential address in 2010.

  11. ISS Mini AERCam Radio Frequency (RF) Coverage Analysis Using iCAT Development Tool

    NASA Technical Reports Server (NTRS)

    Bolen, Steve; Vazquez, Luis; Sham, Catherine; Fredrickson, Steven; Fink, Patrick; Cox, Jan; Phan, Chau; Panneton, Robert

    2003-01-01

    The long-term goals of the National Aeronautics and Space Administration's (NASA's) Human Exploration and Development of Space (HEDS) enterprise may require the development of autonomous free-flier (FF) robotic devices to operate within the vicinity of low-Earth orbiting spacecraft to supplement human extravehicular activities (EVAs) in space. Future missions could require external visual inspection of the spacecraft that would be difficult, or dangerous, for humans to perform. Under some circumstance, it may be necessary to employ an un-tethered communications link between the FF and the users. The interactive coverage analysis tool (ICAT) is a software tool that has been developed to perform critical analysis of the communications link performance for a FF operating in the vicinity of the International Space Station (ISS) external environment. The tool allows users to interactively change multiple parameters of the communications link parameters to efficiently perform systems engineering trades on network performance. These trades can be directly translated into design and requirements specifications. This tool significantly reduces the development time in determining a communications network topology by allowing multiple parameters to be changed, and the results of link coverage to be statistically characterized and plotted interactively.

  12. Culture, Interface Design, and Design Methods for Mobile Devices

    NASA Astrophysics Data System (ADS)

    Lee, Kun-Pyo

    Aesthetic differences and similarities among cultures are obviously one of the very important issues in cultural design. However, ever since products became knowledge-supporting tools, the visible elements of products have become more universal so that the invisible parts of products such as interface and interaction are getting more important. Therefore, the cultural design should be extended to the invisible elements of culture like people's conceptual models beyond material and phenomenal culture. This chapter aims to explain how we address the invisible cultural elements in interface design and design methods by exploring the users' cognitive styles and communication patterns in different cultures. Regarding cultural interface design, we examined users' conceptual models while interacting with mobile phone and website interfaces, and observed cultural difference in performing tasks and viewing patterns, which appeared to agree with cultural cognitive styles known as Holistic thoughts vs. Analytic thoughts. Regarding design methods for culture, we explored how to localize design methods such as focus group interview and generative session for specific cultural groups, and the results of comparative experiments revealed cultural difference on participants' behaviors and performance in each design method and led us to suggest how to conduct them in East Asian culture. Mobile Observation Analyzer and Wi-Pro, user research tools we invented to capture user behaviors and needs especially in their mobile context, were also introduced.

  13. Graphical Requirements for Force Level Planning. Volume 2

    DTIC Science & Technology

    1991-09-01

    technology review includes graphics algorithms, computer hardware, computer software, and design methodologies. The technology can either exist today or...level graphics language. 7.4 User Interface Design Tools As user interfaces have become more sophisticated, they have become harder to develop. Xl...Setphen M. Pizer, editors. Proceedings 1986 Workshop on Interactive 31) Graphics , October 1986. 18 J. S. Dumas. Designing User Interface Software. Prentice

  14. Design of a cooperative problem-solving system for en-route flight planning: An empirical evaluation

    NASA Technical Reports Server (NTRS)

    Layton, Charles; Smith, Philip J.; Mc Coy, C. Elaine

    1994-01-01

    Both optimization techniques and expert systems technologies are popular approaches for developing tools to assist in complex problem-solving tasks. Because of the underlying complexity of many such tasks, however, the models of the world implicitly or explicitly embedded in such tools are often incomplete and the problem-solving methods fallible. The result can be 'brittleness' in situations that were not anticipated by the system designers. To deal with this weakness, it has been suggested that 'cooperative' rather than 'automated' problem-solving systems be designed. Such cooperative systems are proposed to explicitly enhance the collaboration of the person (or a group of people) and the computer system. This study evaluates the impact of alternative design concepts on the performance of 30 airline pilots interacting with such a cooperative system designed to support en-route flight planning. The results clearly demonstrate that different system design concepts can strongly influence the cognitive processes and resultant performances of users. Based on think-aloud protocols, cognitive models are proposed to account for how features of the computer system interacted with specific types of scenarios to influence exploration and decision making by the pilots. The results are then used to develop recommendations for guiding the design of cooperative systems.

  15. Design of a cooperative problem-solving system for en-route flight planning: An empirical evaluation

    NASA Technical Reports Server (NTRS)

    Layton, Charles; Smith, Philip J.; McCoy, C. Elaine

    1994-01-01

    Both optimization techniques and expert systems technologies are popular approaches for developing tools to assist in complex problem-solving tasks. Because of the underlying complexity of many such tasks, however, the models of the world implicitly or explicitly embedded in such tools are often incomplete and the problem-solving methods fallible. The result can be 'brittleness' in situations that were not anticipated by the system designers. To deal with this weakness, it has been suggested that 'cooperative' rather than 'automated' problem-solving systems be designed. Such cooperative systems are proposed to explicitly enhance the collaboration of the person (or a group of people) and the computer system. This study evaluates the impact of alternative design concepts on the performance of 30 airline pilots interacting with such a cooperative system designed to support enroute flight planning. The results clearly demonstrate that different system design concepts can strongly influence the cognitive processes and resultant performances of users. Based on think-aloud protocols, cognitive models are proposed to account for how features of the computer system interacted with specific types of scenarios to influence exploration and decision making by the pilots. The results are then used to develop recommendations for guiding the design of cooperative systems.

  16. Finite-element analysis of NiTi wire deflection during orthodontic levelling treatment

    NASA Astrophysics Data System (ADS)

    Razali, M. F.; Mahmud, A. S.; Mokhtar, N.; Abdullah, J.

    2016-02-01

    Finite-element analysis is an important product development tool in medical devices industry for design and failure analysis of devices. This tool helps device designers to quickly explore various design options, optimizing specific designs and providing a deeper insight how a device is actually performing. In this study, three-dimensional finite-element models of superelastic nickel-titanium arch wire engaged in a three brackets system were developed. The aim was to measure the effect of binding friction developed on wire-bracket interaction towards the remaining recovery force available for tooth movement. Uniaxial and three brackets bending test were modelled and validated against experimental works. The prediction made by the three brackets bending models shows good agreement with the experimental results.

  17. Design and control of compliant tensegrity robots through simulation and hardware validation

    PubMed Central

    Caluwaerts, Ken; Despraz, Jérémie; Işçen, Atıl; Sabelhaus, Andrew P.; Bruce, Jonathan; Schrauwen, Benjamin; SunSpiral, Vytas

    2014-01-01

    To better understand the role of tensegrity structures in biological systems and their application to robotics, the Dynamic Tensegrity Robotics Lab at NASA Ames Research Center, Moffett Field, CA, USA, has developed and validated two software environments for the analysis, simulation and design of tensegrity robots. These tools, along with new control methodologies and the modular hardware components developed to validate them, are presented as a system for the design of actuated tensegrity structures. As evidenced from their appearance in many biological systems, tensegrity (‘tensile–integrity’) structures have unique physical properties that make them ideal for interaction with uncertain environments. Yet, these characteristics make design and control of bioinspired tensegrity robots extremely challenging. This work presents the progress our tools have made in tackling the design and control challenges of spherical tensegrity structures. We focus on this shape since it lends itself to rolling locomotion. The results of our analyses include multiple novel control approaches for mobility and terrain interaction of spherical tensegrity structures that have been tested in simulation. A hardware prototype of a spherical six-bar tensegrity, the Reservoir Compliant Tensegrity Robot, is used to empirically validate the accuracy of simulation. PMID:24990292

  18. A drill-soil system modelization for future Mars exploration

    NASA Astrophysics Data System (ADS)

    Finzi, A. E.; Lavagna, M.; Rocchitelli, G.

    2004-01-01

    This paper presents a first approach to the problem of modeling a drilling process to be carried on in the space environment by a dedicated payload. Systems devoted to work in space present very strict requirements in many different fields such as thermal response, electric power demand, reliability and so on. Thus, models devoted to the operational behaviour simulation represent a fundamental help in the design phase and give a great improvement in the final product quality. As the required power is the crucial constraint within drilling devices, the tool-soil interaction modelization and simulation are finalized to the computation of the power demand as a function of both the drill and the soil parameters. An accurate study of the tool and the soil separately has been firstly carried on and, secondly their interaction has been analyzed. The Dee-Dri system, designed by Tecnospazio and to be part of the lander components in the NASA's Mars Sample Return Mission, has been taken as the tool reference. The Deep-Drill system is a complex rotary tool devoted to the soil perforation and sample collection; it has to operate in a Martian zone made of rocks similar to the terrestrial basalt, then the modelization is restricted to the interaction analysis between the tool and materials belonging to the rock set. The tool geometric modelization has been faced by a finite element approach with a Langrangian formulation: for the static analysis a refined model is assumed considering both the actual geometry of the head and the rod screws; a simplified model has been used to deal with the dynamic analysis. The soil representation is based on the Mohr-Coulomb crack criterion and an Eulerian approach has been selected to model it. However, software limitations in dealing with the tool-soil interface definition required assuming a Langrangian formulation for the soil too. The interaction between the soil and the tool has been modeled by extending the two-dimensional Nishimatsu's theory for rock cutting for rotating perforation tools. A fine analysis on f.e.m. element choice for each part of the tool is presented together with static analysis results. The dynamic analysis results are limited to the first impact phenomenon between the rock and the tool head. The validity of both the theoretical and numerical models is confirmed by the good agreement between simulation results and data coming from the experiments done within the Tecnospazio facilities.

  19. Optical Design of Telescopes and other Reflective Systems using SLIDERS

    NASA Technical Reports Server (NTRS)

    Howard, Joseph M.

    2007-01-01

    Optical design tools are presented to provide automatic generation of reflective optical systems for design studies and educational use. The tools are graphical in nature and use an interactive slider interface with freely available optical design software, OSLO EDU. Operation of the sliders provides input to adjust first-order and other system parameters (e.g. focal length), while appropriate system construction parameters are automatically updated to correct aberrations. Graphical output is also presented in real-time (e.g. a lens drawing) to provide the opportunity for a truly visual approach to optical design. Available systems include two- three- and four-mirror telescopes, relays, and afocal systems, either rotationally symmetric or having just a plane of symmetry. Demonstrations are presented, including a brief discussion of interfacing optical design software to MATLAB, and general research opportunities at NASA.

  20. Involving people with dementia in developing an interactive web tool for shared decision-making: experiences with a participatory design approach.

    PubMed

    Span, Marijke; Hettinga, Marike; Groen-van de Ven, Leontine; Jukema, Jan; Janssen, Ruud; Vernooij-Dassen, Myrra; Eefsting, Jan; Smits, Carolien

    2018-06-01

    The aim of this study was at gaining insight into the participatory design approach of involving people with dementia in the development of the DecideGuide, an interactive web tool facilitating shared decision-making in their care networks. An explanatory case study design was used when developing the DecideGuide. A secondary analysis focused on the data gathered from the participating people with dementia during the development stages: semi-structured interviews (n = 23), four focus group interviews (n = 18), usability tests (n = 3), and a field study (n = 4). Content analysis was applied to the data. Four themes showed to be important regarding the participation experiences of involving people with dementia in research: valuable feedback on content and design of the DecideGuide, motivation to participate, perspectives of people with dementia and others about distress related to involvement, and time investment. People with dementia can give essential feedback and, therefore, their contribution is useful and valuable. Meaningful participation of people with dementia takes time that should be taken into account. It is important for people with dementia to be able to reciprocate the efforts others make and to feel of significance to others. Implications for Rehabilitation People with dementia can contribute meaningfully to the content and design and their perspective is essential for developing useful and user-friendly tools. Participating in research activities may contribute to social inclusion, empowerment, and quality of life of people with dementia.

  1. IT-CARES: an interactive tool for case-crossover analyses of electronic medical records for patient safety.

    PubMed

    Caron, Alexandre; Chazard, Emmanuel; Muller, Joris; Perichon, Renaud; Ferret, Laurie; Koutkias, Vassilis; Beuscart, Régis; Beuscart, Jean-Baptiste; Ficheur, Grégoire

    2017-03-01

    The significant risk of adverse events following medical procedures supports a clinical epidemiological approach based on the analyses of collections of electronic medical records. Data analytical tools might help clinical epidemiologists develop more appropriate case-crossover designs for monitoring patient safety. To develop and assess the methodological quality of an interactive tool for use by clinical epidemiologists to systematically design case-crossover analyses of large electronic medical records databases. We developed IT-CARES, an analytical tool implementing case-crossover design, to explore the association between exposures and outcomes. The exposures and outcomes are defined by clinical epidemiologists via lists of codes entered via a user interface screen. We tested IT-CARES on data from the French national inpatient stay database, which documents diagnoses and medical procedures for 170 million inpatient stays between 2007 and 2013. We compared the results of our analysis with reference data from the literature on thromboembolic risk after delivery and bleeding risk after total hip replacement. IT-CARES provides a user interface with 3 columns: (i) the outcome criteria in the left-hand column, (ii) the exposure criteria in the right-hand column, and (iii) the estimated risk (odds ratios, presented in both graphical and tabular formats) in the middle column. The estimated odds ratios were consistent with the reference literature data. IT-CARES may enhance patient safety by facilitating clinical epidemiological studies of adverse events following medical procedures. The tool's usability must be evaluated and improved in further research. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  2. Integration of tools for the Design and Assessment of High-Performance, Highly Reliable Computing Systems (DAHPHRS), phase 1

    NASA Technical Reports Server (NTRS)

    Scheper, C.; Baker, R.; Frank, G.; Yalamanchili, S.; Gray, G.

    1992-01-01

    Systems for Space Defense Initiative (SDI) space applications typically require both high performance and very high reliability. These requirements present the systems engineer evaluating such systems with the extremely difficult problem of conducting performance and reliability trade-offs over large design spaces. A controlled development process supported by appropriate automated tools must be used to assure that the system will meet design objectives. This report describes an investigation of methods, tools, and techniques necessary to support performance and reliability modeling for SDI systems development. Models of the JPL Hypercubes, the Encore Multimax, and the C.S. Draper Lab Fault-Tolerant Parallel Processor (FTPP) parallel-computing architectures using candidate SDI weapons-to-target assignment algorithms as workloads were built and analyzed as a means of identifying the necessary system models, how the models interact, and what experiments and analyses should be performed. As a result of this effort, weaknesses in the existing methods and tools were revealed and capabilities that will be required for both individual tools and an integrated toolset were identified.

  3. DataRocket: Interactive Visualisation of Data Structures

    NASA Astrophysics Data System (ADS)

    Parkes, Steve; Ramsay, Craig

    2010-08-01

    CodeRocket is a software engineering tool that provides cognitive support to the software engineer for reasoning about a method or procedure and for documenting the resulting code [1]. DataRocket is a software engineering tool designed to support visualisation and reasoning about program data structures. DataRocket is part of the CodeRocket family of software tools developed by Rapid Quality Systems [2] a spin-out company from the Space Technology Centre at the University of Dundee. CodeRocket and DataRocket integrate seamlessly with existing architectural design and coding tools and provide extensive documentation with little or no effort on behalf of the software engineer. Comprehensive, abstract, detailed design documentation is available early on in a project so that it can be used for design reviews with project managers and non expert stakeholders. Code and documentation remain fully synchronised even when changes are implemented in the code without reference to the existing documentation. At the end of a project the press of a button suffices to produce the detailed design document. Existing legacy code can be easily imported into CodeRocket and DataRocket to reverse engineer detailed design documentation making legacy code more manageable and adding substantially to its value. This paper introduces CodeRocket. It then explains the rationale for DataRocket and describes the key features of this new tool. Finally the major benefits of DataRocket for different stakeholders are considered.

  4. Designing learning environments to teach interactive Quantum Physics

    NASA Astrophysics Data System (ADS)

    Gómez Puente, Sonia M.; Swagten, Henk J. M.

    2012-10-01

    This study aims at describing and analysing systematically an interactive learning environment designed to teach Quantum Physics, a second-year physics course. The instructional design of Quantum Physics is a combination of interactive lectures (using audience response systems), tutorials and self-study in unit blocks, carried out with small groups. Individual formative feedback was introduced as a rapid assessment tool to provide an overview on progress and identify gaps by means of questioning students at three levels: conceptual; prior knowledge; homework exercises. The setup of Quantum Physics has been developed as a result of several loops of adjustments and improvements from a traditional-like type of teaching to an interactive classroom. Results of this particular instructional arrangement indicate significant gains in students' achievements in comparison with the traditional structure of this course, after recent optimisation steps such as the implementation of an individual feedback system.

  5. CONSOLE: A CAD tandem for optimization-based design interacting with user-supplied simulators

    NASA Technical Reports Server (NTRS)

    Fan, Michael K. H.; Wang, Li-Sheng; Koninckx, Jan; Tits, Andre L.

    1989-01-01

    CONSOLE employs a recently developed design methodology (International Journal of Control 43:1693-1721) which provides the designer with a congenial environment to express his problem as a multiple ojective constrained optimization problem and allows him to refine his characterization of optimality when a suboptimal design is approached. To this end, in CONSOLE, the designed formulates the design problem using a high-level language and performs design task and explores tradeoff through a few short and clearly defined commands. The range of problems that can be solved efficiently using a CAD tools depends very much on the ability of this tool to be interfaced with user-supplied simulators. For instance, when designing a control system one makes use of the characteristics of the plant, and therefore, a model of the plant under study has to be made available to the CAD tool. CONSOLE allows for an easy interfacing of almost any simulator the user has available. To date CONSOLE has already been used successfully in many applications, including the design of controllers for a flexible arm and for a robotic manipulator and the solution of a parameter selection problem for a neural network.

  6. GREAT: a web portal for Genome Regulatory Architecture Tools.

    PubMed

    Bouyioukos, Costas; Bucchini, François; Elati, Mohamed; Képès, François

    2016-07-08

    GREAT (Genome REgulatory Architecture Tools) is a novel web portal for tools designed to generate user-friendly and biologically useful analysis of genome architecture and regulation. The online tools of GREAT are freely accessible and compatible with essentially any operating system which runs a modern browser. GREAT is based on the analysis of genome layout -defined as the respective positioning of co-functional genes- and its relation with chromosome architecture and gene expression. GREAT tools allow users to systematically detect regular patterns along co-functional genomic features in an automatic way consisting of three individual steps and respective interactive visualizations. In addition to the complete analysis of regularities, GREAT tools enable the use of periodicity and position information for improving the prediction of transcription factor binding sites using a multi-view machine learning approach. The outcome of this integrative approach features a multivariate analysis of the interplay between the location of a gene and its regulatory sequence. GREAT results are plotted in web interactive graphs and are available for download either as individual plots, self-contained interactive pages or as machine readable tables for downstream analysis. The GREAT portal can be reached at the following URL https://absynth.issb.genopole.fr/GREAT and each individual GREAT tool is available for downloading. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Interactive simulations as teaching tools for engineering mechanics courses

    NASA Astrophysics Data System (ADS)

    Carbonell, Victoria; Romero, Carlos; Martínez, Elvira; Flórez, Mercedes

    2013-07-01

    This study aimed to gauge the effect of interactive simulations in class as an active teaching strategy for a mechanics course. Engineering analysis and design often use the properties of planar sections in calculations. In the stress analysis of a beam under bending and torsional loads, cross-sectional properties are used to determine stress and displacement distributions in the beam cross section. The centroid, moments and products of inertia of an area made up of several common shapes (rectangles usually) may thus be obtained by adding the moments of inertia of the component areas (U-shape, L-shape, C-shape, etc). This procedure is used to calculate the second moments of structural shapes in engineering practice because the determination of their moments of inertia is necessary for the design of structural components. This paper presents examples of interactive simulations developed for teaching the ‘Mechanics and mechanisms’ course at the Universidad Politecnica de Madrid, Spain. The simulations focus on fundamental topics such as centroids, the properties of the moment of inertia, second moments of inertia with respect to two axes, principal moments of inertia and Mohr's Circle for plane stress, and were composed using Geogebra software. These learning tools feature animations, graphics and interactivity and were designed to encourage student participation and engagement in active learning activities, to effectively explain and illustrate course topics, and to build student problem-solving skills.

  8. Designing effective human-automation-plant interfaces: a control-theoretic perspective.

    PubMed

    Jamieson, Greg A; Vicente, Kim J

    2005-01-01

    In this article, we propose the application of a control-theoretic framework to human-automation interaction. The framework consists of a set of conceptual distinctions that should be respected in automation research and design. We demonstrate how existing automation interface designs in some nuclear plants fail to recognize these distinctions. We further show the value of the approach by applying it to modes of automation. The design guidelines that have been proposed in the automation literature are evaluated from the perspective of the framework. This comparison shows that the framework reveals insights that are frequently overlooked in this literature. A new set of design guidelines is introduced that builds upon the contributions of previous research and draws complementary insights from the control-theoretic framework. The result is a coherent and systematic approach to the design of human-automation-plant interfaces that will yield more concrete design criteria and a broader set of design tools. Applications of this research include improving the effectiveness of human-automation interaction design and the relevance of human-automation interaction research.

  9. [Infobarris: an interactive tool to monitor and disseminate information on health and its determinants in the neighbourhoods of Barcelona (Spain)].

    PubMed

    Llimona, Pere; Pérez, Glòria; Rodríguez-Sanz, Maica; Novoa, Ana M; Espelt, Albert; García de Olalla, Patricia; Borrell, Carme

    In order to know about the health of the population, it is necessary to perform a systematic and continuous analysis of their health status and social and economic health determinants. The objective of this paper is to describe the development and implementation of the Infobarris tool, which allows to visualize a wide battery of indicators and social determinants of health by neighbourhoods in the city of Barcelona (Spain). For the development of the Infobarris tool, we used an agile methodology that allows the development of a project in iterative and incremental stages, which are the following: selection of indicators, design of the prototype, development of the tool, data loading, and tool review and improvements. Infobarris displays 64 indicators of health and its determinants through graphics, maps and tables, in a friendly, interactive and attractive way, which facilitates health surveillance in the neighbourhoods of Barcelona. Copyright © 2017 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Student Engagement in Pharmacology Courses Using Online Learning Tools

    PubMed Central

    Karaksha, Abdullah; Grant, Gary; Anoopkumar-Dukie, Shailendra; Nirthanan, S. Niru

    2013-01-01

    Objective. To assess factors influencing student engagement with e-tools used as a learning supplement to the standard curriculum in pharmacology courses. Design. A suite of 148 e-tools (interactive online teaching materials encompassing the basic mechanisms of action for different drug classes) were designed and implemented across 2 semesters for third-year pharmacy students. Assessment. Student engagement and use of this new teaching strategy were assessed using a survey instrument and usage statistics for the material. Use of e-tools during semester 1 was low, a finding attributable to a majority (75%) of students either being unaware of or forgetting about the embedded e-tools and a few (20%) lacking interest in accessing additional learning materials. In contrast to semester 1, e-tool use significantly increased in semester 2 with the use of frequent reminders and announcements (p<0.001). Conclusion. The provision of online teaching and learning resources were only effective in increasing student engagement after the implementation of a “marketing strategy” that included e-mail reminders and motivation. PMID:23966728

  11. Building Empathy through Identification and Expression of Emotions: A Review of Interactive Tools for Children with Social Deficits

    ERIC Educational Resources Information Center

    Maynard, Angelina S.; Monk, Jessica D.; Booker, Kimberly Wilson

    2011-01-01

    This article is a review of available interactive aids designed to enhance the identification and expression of feelings in children. These skills are part of the overall development of empathy. The development of empathy, in turn, is crucial for social competence, social relatedness, and prosocial behavior. Improving these skills is likely to…

  12. MIMO: an efficient tool for molecular interaction maps overlap

    PubMed Central

    2013-01-01

    Background Molecular pathways represent an ensemble of interactions occurring among molecules within the cell and between cells. The identification of similarities between molecular pathways across organisms and functions has a critical role in understanding complex biological processes. For the inference of such novel information, the comparison of molecular pathways requires to account for imperfect matches (flexibility) and to efficiently handle complex network topologies. To date, these characteristics are only partially available in tools designed to compare molecular interaction maps. Results Our approach MIMO (Molecular Interaction Maps Overlap) addresses the first problem by allowing the introduction of gaps and mismatches between query and template pathways and permits -when necessary- supervised queries incorporating a priori biological information. It then addresses the second issue by relying directly on the rich graph topology described in the Systems Biology Markup Language (SBML) standard, and uses multidigraphs to efficiently handle multiple queries on biological graph databases. The algorithm has been here successfully used to highlight the contact point between various human pathways in the Reactome database. Conclusions MIMO offers a flexible and efficient graph-matching tool for comparing complex biological pathways. PMID:23672344

  13. Overview of the interactive task in BioCreative V.

    PubMed

    Wang, Qinghua; S Abdul, Shabbir; Almeida, Lara; Ananiadou, Sophia; Balderas-Martínez, Yalbi I; Batista-Navarro, Riza; Campos, David; Chilton, Lucy; Chou, Hui-Jou; Contreras, Gabriela; Cooper, Laurel; Dai, Hong-Jie; Ferrell, Barbra; Fluck, Juliane; Gama-Castro, Socorro; George, Nancy; Gkoutos, Georgios; Irin, Afroza K; Jensen, Lars J; Jimenez, Silvia; Jue, Toni R; Keseler, Ingrid; Madan, Sumit; Matos, Sérgio; McQuilton, Peter; Milacic, Marija; Mort, Matthew; Natarajan, Jeyakumar; Pafilis, Evangelos; Pereira, Emiliano; Rao, Shruti; Rinaldi, Fabio; Rothfels, Karen; Salgado, David; Silva, Raquel M; Singh, Onkar; Stefancsik, Raymund; Su, Chu-Hsien; Subramani, Suresh; Tadepally, Hamsa D; Tsaprouni, Loukia; Vasilevsky, Nicole; Wang, Xiaodong; Chatr-Aryamontri, Andrew; Laulederkind, Stanley J F; Matis-Mitchell, Sherri; McEntyre, Johanna; Orchard, Sandra; Pundir, Sangya; Rodriguez-Esteban, Raul; Van Auken, Kimberly; Lu, Zhiyong; Schaeffer, Mary; Wu, Cathy H; Hirschman, Lynette; Arighi, Cecilia N

    2016-01-01

    Fully automated text mining (TM) systems promote efficient literature searching, retrieval, and review but are not sufficient to produce ready-to-consume curated documents. These systems are not meant to replace biocurators, but instead to assist them in one or more literature curation steps. To do so, the user interface is an important aspect that needs to be considered for tool adoption. The BioCreative Interactive task (IAT) is a track designed for exploring user-system interactions, promoting development of useful TM tools, and providing a communication channel between the biocuration and the TM communities. In BioCreative V, the IAT track followed a format similar to previous interactive tracks, where the utility and usability of TM tools, as well as the generation of use cases, have been the focal points. The proposed curation tasks are user-centric and formally evaluated by biocurators. In BioCreative V IAT, seven TM systems and 43 biocurators participated. Two levels of user participation were offered to broaden curator involvement and obtain more feedback on usability aspects. The full level participation involved training on the system, curation of a set of documents with and without TM assistance, tracking of time-on-task, and completion of a user survey. The partial level participation was designed to focus on usability aspects of the interface and not the performance per se In this case, biocurators navigated the system by performing pre-designed tasks and then were asked whether they were able to achieve the task and the level of difficulty in completing the task. In this manuscript, we describe the development of the interactive task, from planning to execution and discuss major findings for the systems tested.Database URL: http://www.biocreative.org. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the US.

  14. Beyond simple charts: Design of visualizations for big health data

    PubMed Central

    Ola, Oluwakemi; Sedig, Kamran

    2016-01-01

    Health data is often big data due to its high volume, low veracity, great variety, and high velocity. Big health data has the potential to improve productivity, eliminate waste, and support a broad range of tasks related to disease surveillance, patient care, research, and population health management. Interactive visualizations have the potential to amplify big data’s utilization. Visualizations can be used to support a variety of tasks, such as tracking the geographic distribution of diseases, analyzing the prevalence of disease, triaging medical records, predicting outbreaks, and discovering at-risk populations. Currently, many health visualization tools use simple charts, such as bar charts and scatter plots, that only represent few facets of data. These tools, while beneficial for simple perceptual and cognitive tasks, are ineffective when dealing with more complex sensemaking tasks that involve exploration of various facets and elements of big data simultaneously. There is need for sophisticated and elaborate visualizations that encode many facets of data and support human-data interaction with big data and more complex tasks. When not approached systematically, design of such visualizations is labor-intensive, and the resulting designs may not facilitate big-data-driven tasks. Conceptual frameworks that guide the design of visualizations for big data can make the design process more manageable and result in more effective visualizations. In this paper, we demonstrate how a framework-based approach can help designers create novel, elaborate, non-trivial visualizations for big health data. We present four visualizations that are components of a larger tool for making sense of large-scale public health data. PMID:28210416

  15. Beyond simple charts: Design of visualizations for big health data.

    PubMed

    Ola, Oluwakemi; Sedig, Kamran

    2016-01-01

    Health data is often big data due to its high volume, low veracity, great variety, and high velocity. Big health data has the potential to improve productivity, eliminate waste, and support a broad range of tasks related to disease surveillance, patient care, research, and population health management. Interactive visualizations have the potential to amplify big data's utilization. Visualizations can be used to support a variety of tasks, such as tracking the geographic distribution of diseases, analyzing the prevalence of disease, triaging medical records, predicting outbreaks, and discovering at-risk populations. Currently, many health visualization tools use simple charts, such as bar charts and scatter plots, that only represent few facets of data. These tools, while beneficial for simple perceptual and cognitive tasks, are ineffective when dealing with more complex sensemaking tasks that involve exploration of various facets and elements of big data simultaneously. There is need for sophisticated and elaborate visualizations that encode many facets of data and support human-data interaction with big data and more complex tasks. When not approached systematically, design of such visualizations is labor-intensive, and the resulting designs may not facilitate big-data-driven tasks. Conceptual frameworks that guide the design of visualizations for big data can make the design process more manageable and result in more effective visualizations. In this paper, we demonstrate how a framework-based approach can help designers create novel, elaborate, non-trivial visualizations for big health data. We present four visualizations that are components of a larger tool for making sense of large-scale public health data.

  16. Linguistic Validation of an Interactive Communication Tool to Help French-Speaking Children Express Their Cancer Symptoms.

    PubMed

    Tsimicalis, Argerie; Le May, Sylvie; Stinson, Jennifer; Rennick, Janet; Vachon, Marie-France; Louli, Julie; Bérubé, Sarah; Treherne, Stephanie; Yoon, Sunmoo; Nordby Bøe, Trude; Ruland, Cornelia

    Sisom is an interactive tool designed to help children communicate their cancer symptoms. Important design issues relevant to other cancer populations remain unexplored. This single-site, descriptive, qualitative study was conducted to linguistically validate Sisom with a group of French-speaking children with cancer, their parents, and health care professionals. The linguistic validation process included 6 steps: (1) forward translation, (2) backward translation, (3) patient testing, (4) production of a Sisom French version, (5) patient testing this version, and (6) production of the final Sisom French prototype. Five health care professionals and 10 children and their parents participated in the study. Health care professionals oversaw the translation process providing clinically meaningful suggestions. Two rounds of patient testing, which included parental participation, resulted in the following themes: (1) comprehension, (2) suggestions for improving the translations, (3) usability, (4) parental engagement, and (5) overall impression. Overall, Sisom was well received by participants who were forthcoming with input and suggestions for improving the French translations. Our proposed methodology may be replicated for the linguistic validation of other e-health tools.

  17. The role of the optimization process in illumination design

    NASA Astrophysics Data System (ADS)

    Gauvin, Michael A.; Jacobsen, David; Byrne, David J.

    2015-07-01

    This paper examines the role of the optimization process in illumination design. We will discuss why the starting point of the optimization process is crucial to a better design and why it is also important that the user understands the basic design problem and implements the correct merit function. Both a brute force method and the Downhill Simplex method will be used to demonstrate optimization methods with focus on using interactive design tools to create better starting points to streamline the optimization process.

  18. Haptic Technologies for MEMS Design

    NASA Astrophysics Data System (ADS)

    Calis, Mustafa; Desmulliez, Marc P. Y.

    2006-04-01

    This paper presents for the first time a design methodology for MEMS/NEMS based on haptic sensing technologies. The software tool created as a result of this methodology will enable designers to model and interact in real time with their virtual prototype. One of the main advantages of haptic sensing is the ability to bring unusual microscopic forces back to the designer's world. Other significant benefits for developing such a methodology include gain productivity and the capability to include manufacturing costs within the design cycle.

  19. A Perspective on Computational Human Performance Models as Design Tools

    NASA Technical Reports Server (NTRS)

    Jones, Patricia M.

    2010-01-01

    The design of interactive systems, including levels of automation, displays, and controls, is usually based on design guidelines and iterative empirical prototyping. A complementary approach is to use computational human performance models to evaluate designs. An integrated strategy of model-based and empirical test and evaluation activities is particularly attractive as a methodology for verification and validation of human-rated systems for commercial space. This talk will review several computational human performance modeling approaches and their applicability to design of display and control requirements.

  20. Modal control theory and application to aircraft lateral handling qualities design

    NASA Technical Reports Server (NTRS)

    Srinathkumar, S.

    1978-01-01

    A multivariable synthesis procedure based on eigenvalue/eigenvector assignment is reviewed and is employed to develop a systematic design procedure to meet the lateral handling qualities design objectives of a fighter aircraft over a wide range of flight conditions. The closed loop modal characterization developed provides significant insight into the design process and plays a pivotal role in the synthesis of robust feedback systems. The simplicity of the synthesis algorithm yields an efficient computer aided interactive design tool for flight control system synthesis.

  1. Designing Interactive and Collaborative Learning Tasks in a 3-D Virtual Environment

    ERIC Educational Resources Information Center

    Berns, Anke; Palomo-Duarte, Manuel; Fernández, David Camacho

    2012-01-01

    The aim of our study is to explore several possibilities to use virtual worlds (VWs) and game-applications with learners of the A1 level (CEFR) of German as a foreign language. Our interest focuses especially on designing those learning tools which increase firstly, learner motivation towards online-learning and secondly, enhance autonomous…

  2. The Foundations of a Theory-Aware Authoring Tool for CSCL Design

    ERIC Educational Resources Information Center

    Isotani, Seiji; Mizoguchi, Riichiro; Inaba, Akiko; Ikeda, Mitsuru

    2010-01-01

    One of the most useful ways to enhance collaboration is to create scenarios where learners are able to interact more effectively. Nevertheless, the design of pedagogically sound and well-thought-out collaborative learning scenarios is a complex issue. This is due to the context of group learning where the synergy among learners' interactions…

  3. From Reload to ReCourse: Learning from IMS Learning Design Implementations

    ERIC Educational Resources Information Center

    Griffiths, David; Beauvoir, Phillip; Liber, Oleg; Barrett-Baxendale, Mark

    2009-01-01

    The use of the Web to deliver open, distance, and flexible learning has opened up the potential for social interaction and adaptive learning, but the usability, expressivity, and interoperability of the available tools leave much to be desired. This article explores these issues as they relate to teachers and learning designers through the case of…

  4. Towards a Pedagogical Model for Science Education: Bridging Educational Contexts through a Blended Learning Approach

    ERIC Educational Resources Information Center

    Bidarra, José; Rusman, Ellen

    2017-01-01

    This paper proposes a design framework to support science education through blended learning, based on a participatory and interactive approach supported by ICT-based tools, called "Science Learning Activities Model" (SLAM). The development of this design framework started as a response to complex changes in society and education (e.g.…

  5. A real-time all-atom structural search engine for proteins.

    PubMed

    Gonzalez, Gabriel; Hannigan, Brett; DeGrado, William F

    2014-07-01

    Protein designers use a wide variety of software tools for de novo design, yet their repertoire still lacks a fast and interactive all-atom search engine. To solve this, we have built the Suns program: a real-time, atomic search engine integrated into the PyMOL molecular visualization system. Users build atomic-level structural search queries within PyMOL and receive a stream of search results aligned to their query within a few seconds. This instant feedback cycle enables a new "designability"-inspired approach to protein design where the designer searches for and interactively incorporates native-like fragments from proven protein structures. We demonstrate the use of Suns to interactively build protein motifs, tertiary interactions, and to identify scaffolds compatible with hot-spot residues. The official web site and installer are located at http://www.degradolab.org/suns/ and the source code is hosted at https://github.com/godotgildor/Suns (PyMOL plugin, BSD license), https://github.com/Gabriel439/suns-cmd (command line client, BSD license), and https://github.com/Gabriel439/suns-search (search engine server, GPLv2 license).

  6. Integrated computer-aided design using minicomputers

    NASA Technical Reports Server (NTRS)

    Storaasli, O. O.

    1980-01-01

    Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM), a highly interactive software, has been implemented on minicomputers at the NASA Langley Research Center. CAD/CAM software integrates many formerly fragmented programs and procedures into one cohesive system; it also includes finite element modeling and analysis, and has been interfaced via a computer network to a relational data base management system and offline plotting devices on mainframe computers. The CAD/CAM software system requires interactive graphics terminals operating at a minimum of 4800 bits/sec transfer rate to a computer. The system is portable and introduces 'interactive graphics', which permits the creation and modification of models interactively. The CAD/CAM system has already produced designs for a large area space platform, a national transonic facility fan blade, and a laminar flow control wind tunnel model. Besides the design/drafting element analysis capability, CAD/CAM provides options to produce an automatic program tooling code to drive a numerically controlled (N/C) machine. Reductions in time for design, engineering, drawing, finite element modeling, and N/C machining will benefit productivity through reduced costs, fewer errors, and a wider range of configuration.

  7. Map Learning with a 3D Printed Interactive Small-Scale Model: Improvement of Space and Text Memorization in Visually Impaired Students.

    PubMed

    Giraud, Stéphanie; Brock, Anke M; Macé, Marc J-M; Jouffrais, Christophe

    2017-01-01

    Special education teachers for visually impaired students rely on tools such as raised-line maps (RLMs) to teach spatial knowledge. These tools do not fully and adequately meet the needs of the teachers because they are long to produce, expensive, and not versatile enough to provide rapid updating of the content. For instance, the same RLM can barely be used during different lessons. In addition, those maps do not provide any interactivity, which reduces students' autonomy. With the emergence of 3D printing and low-cost microcontrollers, it is now easy to design affordable interactive small-scale models (SSMs) which are adapted to the needs of special education teachers. However, no study has previously been conducted to evaluate non-visual learning using interactive SSMs. In collaboration with a specialized teacher, we designed a SSM and a RLM representing the evolution of the geography and history of a fictitious kingdom. The two conditions were compared in a study with 24 visually impaired students regarding the memorization of the spatial layout and historical contents. The study showed that the interactive SSM improved both space and text memorization as compared to the RLM with braille legend. In conclusion, we argue that affordable home-made interactive small scale models can improve learning for visually impaired students. Interestingly, they are adaptable to any teaching situation including students with specific needs.

  8. MOEMS Modeling Using the Geometrical Matrix Toolbox

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2005-01-01

    New technologies such as MicroOptoElectro-Mechanical Systems (MOEMS) require new modeling tools. These tools must simultaneously model the optical, electrical, and mechanical domains and the interactions between these domains. To facilitate rapid prototyping of these new technologies an optical toolbox has been developed for modeling MOEMS devices. The toolbox models are constructed using MATLAB's dynamical simulator, Simulink. Modeling toolboxes will allow users to focus their efforts on system design and analysis as opposed to developing component models. This toolbox was developed to facilitate rapid modeling and design of a MOEMS based laser ultrasonic receiver system.

  9. Multi Modal Anticipation in Fuzzy Space

    NASA Astrophysics Data System (ADS)

    Asproth, Viveca; Holmberg, Stig C.; Hâkansson, Anita

    2006-06-01

    We are all stakeholders in the geographical space, which makes up our common living and activity space. This means that a careful, creative, and anticipatory planning, design, and management of that space will be of paramount importance for our sustained life on earth. Here it is shown that the quality of such planning could be significantly increased with help of a computer based modelling and simulation tool. Further, the design and implementation of such a tool ought to be guided by the conceptual integration of some core concepts like anticipation and retardation, multi modal system modelling, fuzzy space modelling, and multi actor interaction.

  10. Design strategies and functionality of the Visual Interface for Virtual Interaction Development (VIVID) tool

    NASA Technical Reports Server (NTRS)

    Nguyen, Lac; Kenney, Patrick J.

    1993-01-01

    Development of interactive virtual environments (VE) has typically consisted of three primary activities: model (object) development, model relationship tree development, and environment behavior definition and coding. The model and relationship tree development activities are accomplished with a variety of well-established graphic library (GL) based programs - most utilizing graphical user interfaces (GUI) with point-and-click interactions. Because of this GUI format, little programming expertise on the part of the developer is necessary to create the 3D graphical models or to establish interrelationships between the models. However, the third VE development activity, environment behavior definition and coding, has generally required the greatest amount of time and programmer expertise. Behaviors, characteristics, and interactions between objects and the user within a VE must be defined via command line C coding prior to rendering the environment scenes. In an effort to simplify this environment behavior definition phase for non-programmers, and to provide easy access to model and tree tools, a graphical interface and development tool has been created. The principal thrust of this research is to effect rapid development and prototyping of virtual environments. This presentation will discuss the 'Visual Interface for Virtual Interaction Development' (VIVID) tool; an X-Windows based system employing drop-down menus for user selection of program access, models, and trees, behavior editing, and code generation. Examples of these selection will be highlighted in this presentation, as will the currently available program interfaces. The functionality of this tool allows non-programming users access to all facets of VE development while providing experienced programmers with a collection of pre-coded behaviors. In conjunction with its existing, interfaces and predefined suite of behaviors, future development plans for VIVID will be described. These include incorporation of dual user virtual environment enhancements, tool expansion, and additional behaviors.

  11. Electronic Books.

    ERIC Educational Resources Information Center

    Barker, Philip; Giller, Susan

    1992-01-01

    Classifies types of electronic books: archival, informational, instructional, and interrogational; evaluates five commercially, available examples and two in-house examples; and describes software tools for creating and delivering electronic books. Identifies crucial design considerations: interactive end-user interfaces; use of hypermedia;…

  12. ArrayNinja: An Open Source Platform for Unified Planning and Analysis of Microarray Experiments.

    PubMed

    Dickson, B M; Cornett, E M; Ramjan, Z; Rothbart, S B

    2016-01-01

    Microarray-based proteomic platforms have emerged as valuable tools for studying various aspects of protein function, particularly in the field of chromatin biochemistry. Microarray technology itself is largely unrestricted in regard to printable material and platform design, and efficient multidimensional optimization of assay parameters requires fluidity in the design and analysis of custom print layouts. This motivates the need for streamlined software infrastructure that facilitates the combined planning and analysis of custom microarray experiments. To this end, we have developed ArrayNinja as a portable, open source, and interactive application that unifies the planning and visualization of microarray experiments and provides maximum flexibility to end users. Array experiments can be planned, stored to a private database, and merged with the imaged results for a level of data interaction and centralization that is not currently attainable with available microarray informatics tools. © 2016 Elsevier Inc. All rights reserved.

  13. Three-Dimensional Online Visualization and Engagement Tools for the Geosciences

    NASA Astrophysics Data System (ADS)

    Cockett, R.; Moran, T.; Pidlisecky, A.

    2013-12-01

    Educational tools often sacrifice interactivity in favour of scalability so they can reach more users. This compromise leads to tools that may be viewed as second tier when compared to more engaging activities performed in a laboratory; however, the resources required to deliver laboratory exercises that are scalable is often impractical. Geoscience education is well situated to benefit from interactive online learning tools that allow users to work in a 3D environment. Visible Geology (http://3ptscience.com/visiblegeology) is an innovative web-based application designed to enable visualization of geologic structures and processes through the use of interactive 3D models. The platform allows users to conceptualize difficult, yet important geologic principles in a scientifically accurate manner by developing unique geologic models. The environment allows students to interactively practice their visualization and interpretation skills by creating and interacting with their own models and terrains. Visible Geology has been designed from a user centric perspective resulting in a simple and intuitive interface. The platform directs students to build there own geologic models by adding beds and creating geologic events such as tilting, folding, or faulting. The level of ownership and interactivity encourages engagement, leading learners to discover geologic relationships on their own, in the context of guided assignments. In January 2013, an interactive geologic history assignment was developed for a 700-student introductory geology class at The University of British Columbia. The assignment required students to distinguish the relative age of geologic events to construct a geologic history. Traditionally this type of exercise has been taught through the use of simple geologic cross-sections showing crosscutting relationships; from these cross-sections students infer the relative age of geologic events. In contrast, the Visible Geology assignment offers students a unique experience where they first create their own geologic events allowing them to directly see how the timing of a geologic event manifests in the model and resulting cross-sections. By creating each geologic event in the model themselves, the students gain a deeper understanding of the processes and relative order of events. The resulting models can be shared amongst students, and provide instructors with a basis for guiding inquiry to address misconceptions. The ease of use of the assignment, including automatic assessment, made this tool practical for deployment in this 700 person class. The outcome of this type of large scale deployment is that students, who would normally not experience a lab exercise, gain exposure to interactive 3D thinking. Engaging tools and software that puts the user in control of their learning experiences is critical for moving to scalable, yet engaging, online learning environments.

  14. Mars Trek: An Interactive Web Portal for Current and Future Missions to Mars

    NASA Technical Reports Server (NTRS)

    Law, E.; Day, B.

    2017-01-01

    NASA's Mars Trek (https://marstrek.jpl.nasa.gov) provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped data products from past and current missions to Mars. During the past year, the capabilities and data served by Mars Trek have been significantly expanded beyond its original design as a public outreach tool. At the request of NASA's Science Mission Directorate and Human Exploration Operations Mission Directorate, Mars Trek's technology and capabilities are now being extended to support site selection and analysis activities for the first human missions to Mars.

  15. Mars Trek: An Interactive Web Portal for Current and Future Missions to Mars

    NASA Astrophysics Data System (ADS)

    Law, E.; Day, B.

    2017-09-01

    NASA's Mars Trek (https://marstrek.jpl.nasa.gov) provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped data products from past and current missions to Mars. During the past year, the capabilities and data served by Mars Trek have been significantly expanded beyond its original design as a public outreach tool. At the request of NASA's Science Mission Directorate and Human Exploration Operations Mission Directorate, Mars Trek's technology and capabilities are now being extended to support site selection and analysis activities for the first human missions to Mars.

  16. The Design of Modular Web-Based Collaboration

    NASA Astrophysics Data System (ADS)

    Intapong, Ploypailin; Settapat, Sittapong; Kaewkamnerdpong, Boonserm; Achalakul, Tiranee

    Online collaborative systems are popular communication channels as the systems allow people from various disciplines to interact and collaborate with ease. The systems provide communication tools and services that can be integrated on the web; consequently, the systems are more convenient to use and easier to install. Nevertheless, most of the currently available systems are designed according to some specific requirements and cannot be straightforwardly integrated into various applications. This paper provides the design of a new collaborative platform, which is component-based and re-configurable. The platform is called the Modular Web-based Collaboration (MWC). MWC shares the same concept as computer supported collaborative work (CSCW) and computer-supported collaborative learning (CSCL), but it provides configurable tools for online collaboration. Each tool module can be integrated into users' web applications freely and easily. This makes collaborative system flexible, adaptable and suitable for online collaboration.

  17. Synthetic Biology: Tools to Design, Build, and Optimize Cellular Processes

    PubMed Central

    Young, Eric; Alper, Hal

    2010-01-01

    The general central dogma frames the emergent properties of life, which make biology both necessary and difficult to engineer. In a process engineering paradigm, each biological process stream and process unit is heavily influenced by regulatory interactions and interactions with the surrounding environment. Synthetic biology is developing the tools and methods that will increase control over these interactions, eventually resulting in an integrative synthetic biology that will allow ground-up cellular optimization. In this review, we attempt to contextualize the areas of synthetic biology into three tiers: (1) the process units and associated streams of the central dogma, (2) the intrinsic regulatory mechanisms, and (3) the extrinsic physical and chemical environment. Efforts at each of these three tiers attempt to control cellular systems and take advantage of emerging tools and approaches. Ultimately, it will be possible to integrate these approaches and realize the vision of integrative synthetic biology when cells are completely rewired for biotechnological goals. This review will highlight progress towards this goal as well as areas requiring further research. PMID:20150964

  18. An Assessment of IMPAC - Integrated Methodology for Propulsion and Airframe Controls

    NASA Technical Reports Server (NTRS)

    Walker, G. P.; Wagner, E. A.; Bodden, D. S.

    1996-01-01

    This report documents the work done under a NASA sponsored contract to transition to industry technologies developed under the NASA Lewis Research Center IMPAC (Integrated Methodology for Propulsion and Airframe Control) program. The critical steps in IMPAC are exercised on an example integrated flight/propulsion control design for linear airframe/engine models of a conceptual STOVL (Short Take-Off and Vertical Landing) aircraft, and MATRIXX (TM) executive files to implement each step are developed. The results from the example study are analyzed and lessons learned are listed along with recommendations that will improve the application of each design step. The end product of this research is a set of software requirements for developing a user-friendly control design tool which will automate the steps in the IMPAC methodology. Prototypes for a graphical user interface (GUI) are sketched to specify how the tool will interact with the user, and it is recommended to build the tool around existing computer aided control design software packages.

  19. Stereoscopic applications for design visualization

    NASA Astrophysics Data System (ADS)

    Gilson, Kevin J.

    2007-02-01

    Advances in display technology and 3D design visualization applications have made real-time stereoscopic visualization of architectural and engineering projects a reality. Parsons Brinkerhoff (PB) is a transportation consulting firm that has used digital visualization tools from their inception and has helped pioneer the application of those tools to large scale infrastructure projects. PB is one of the first Architecture/Engineering/Construction (AEC) firms to implement a CAVE- an immersive presentation environment that includes stereoscopic rear-projection capability. The firm also employs a portable stereoscopic front-projection system, and shutter-glass systems for smaller groups. PB is using commercial real-time 3D applications in combination with traditional 3D modeling programs to visualize and present large AEC projects to planners, clients and decision makers in stereo. These presentations create more immersive and spatially realistic presentations of the proposed designs. This paper will present the basic display tools and applications, and the 3D modeling techniques PB is using to produce interactive stereoscopic content. The paper will discuss several architectural and engineering design visualizations we have produced.

  20. SLIDE - a web-based tool for interactive visualization of large-scale -omics data.

    PubMed

    Ghosh, Soumita; Datta, Abhik; Tan, Kaisen; Choi, Hyungwon

    2018-06-28

    Data visualization is often regarded as a post hoc step for verifying statistically significant results in the analysis of high-throughput data sets. This common practice leaves a large amount of raw data behind, from which more information can be extracted. However, existing solutions do not provide capabilities to explore large-scale raw datasets using biologically sensible queries, nor do they allow user interaction based real-time customization of graphics. To address these drawbacks, we have designed an open-source, web-based tool called Systems-Level Interactive Data Exploration, or SLIDE to visualize large-scale -omics data interactively. SLIDE's interface makes it easier for scientists to explore quantitative expression data in multiple resolutions in a single screen. SLIDE is publicly available under BSD license both as an online version as well as a stand-alone version at https://github.com/soumitag/SLIDE. Supplementary Information are available at Bioinformatics online.

  1. Running SINDA '85/FLUINT interactive on the VAX

    NASA Technical Reports Server (NTRS)

    Simmonds, Boris

    1992-01-01

    Computer software as engineering tools are typically run in three modes: Batch, Demand, and Interactive. The first two are the most popular in the SINDA world. The third one is not so popular, due probably to the users inaccessibility to the command procedure files for running SINDA '85, or lack of familiarity with the SINDA '85 execution processes (pre-processor, processor, compilation, linking, execution and all of the file assignment, creation, deletions and de-assignments). Interactive is the mode that makes thermal analysis with SINDA '85 a real-time design tool. This paper explains a command procedure sufficient (the minimum modifications required in an existing demand command procedure) to run SINDA '85 on the VAX in an interactive mode. To exercise the procedure a sample problem is presented exemplifying the mode, plus additional programming capabilities available in SINDA '85. Following the same guidelines the process can be extended to other SINDA '85 residence computer platforms.

  2. DNA-binding specificity prediction with FoldX.

    PubMed

    Nadra, Alejandro D; Serrano, Luis; Alibés, Andreu

    2011-01-01

    With the advent of Synthetic Biology, a field between basic science and applied engineering, new computational tools are needed to help scientists reach their goal, their design, optimizing resources. In this chapter, we present a simple and powerful method to either know the DNA specificity of a wild-type protein or design new specificities by using the protein design algorithm FoldX. The only basic requirement is having a good resolution structure of the complex. Protein-DNA interaction design may aid the development of new parts designed to be orthogonal, decoupled, and precise in its target. Further, it could help to fine-tune the systems in terms of specificity, discrimination, and binding constants. In the age of newly developed devices and invented systems, computer-aided engineering promises to be an invaluable tool. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Designing and evaluating a STEM teacher learning opportunity in the research university.

    PubMed

    Hardré, Patricia L; Ling, Chen; Shehab, Randa L; Herron, Jason; Nanny, Mark A; Nollert, Matthias U; Refai, Hazem; Ramseyer, Christopher; Wollega, Ebisa D

    2014-04-01

    This study examines the design and evaluation strategies for a year-long teacher learning and development experience, including their effectiveness, efficiency and recommendations for strategic redesign. Design characteristics include programmatic features and outcomes: cognitive, affective and motivational processes; interpersonal and social development; and performance activities. Program participants were secondary math and science teachers, partnered with engineering faculty mentors, in a research university-based education and support program. Data from multiple sources demonstrated strengths and weaknesses in design of the program's learning environment, including: face-to-face and via digital tools; on-site and distance community interactions; and strategic evaluation tools and systems. Implications are considered for the strategic design and evaluation of similar grant-funded research experiences intended to support teacher learning, development and transfer. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Rational, computer-enabled peptide drug design: principles, methods, applications and future directions.

    PubMed

    Diller, David J; Swanson, Jon; Bayden, Alexander S; Jarosinski, Mark; Audie, Joseph

    2015-01-01

    Peptides provide promising templates for developing drugs to occupy a middle space between small molecules and antibodies and for targeting 'undruggable' intracellular protein-protein interactions. Importantly, rational or in cerebro design, especially when coupled with validated in silico tools, can be used to efficiently explore chemical space and identify islands of 'drug-like' peptides to satisfy diverse drug discovery program objectives. Here, we consider the underlying principles of and recent advances in rational, computer-enabled peptide drug design. In particular, we consider the impact of basic physicochemical properties, potency and ADME/Tox opportunities and challenges, and recently developed computational tools for enabling rational peptide drug design. Key principles and practices are spotlighted by recent case studies. We close with a hypothetical future case study.

  5. Human-Centered Design of Human-Computer-Human Dialogs in Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1998-01-01

    A series of ongoing research programs at Georgia Tech established a need for a simulation support tool for aircraft computer-based aids. This led to the design and development of the Georgia Tech Electronic Flight Instrument Research Tool (GT-EFIRT). GT-EFIRT is a part-task flight simulator specifically designed to study aircraft display design and single pilot interaction. ne simulator, using commercially available graphics and Unix workstations, replicates to a high level of fidelity the Electronic Flight Instrument Systems (EFIS), Flight Management Computer (FMC) and Auto Flight Director System (AFDS) of the Boeing 757/767 aircraft. The simulator can be configured to present information using conventional looking B757n67 displays or next generation Primary Flight Displays (PFD) such as found on the Beech Starship and MD-11.

  6. The Effect of Using Learning Strategy Mastery in the Collection of the Ninth-Grade Students in the Study of Islamic Education in Ma'an

    ERIC Educational Resources Information Center

    AlKhateeb, Omar; Abu-shreah, Mohammad; Al-khattab, Ahmed

    2015-01-01

    The educational curriculum considered as one of the main education tools in achieving its objectives, it's a tool for interaction between the teacher and the learner; therefore the civilized nations takes great importance to the design process on a sound basis, and to oversee their implementation in adequacy and effectiveness, and evaluation and…

  7. iMindMap as an Innovative Tool in Teaching and Learning Accounting: An Exploratory Study

    ERIC Educational Resources Information Center

    Wan Jusoh, Wan Noor Hazlina; Ahmad, Suraya

    2016-01-01

    Purpose: The purpose of this study is to explore the use of iMindMap software as an interactive tool in the teaching and learning method and also to be able to consider iMindMap as an alternative instrument in achieving the ultimate learning outcome. Design/Methodology/Approach: Out of 268 students of the management accounting at the University of…

  8. Droplet-turbulence interactions in subcritical and supercritical evaporating sprays

    NASA Technical Reports Server (NTRS)

    Santavicca, Domenic A.; Coy, Edward; Greenfield, Stuart; Song, Young-Hoon

    1991-01-01

    The objective of this research is to obtain an improved understanding of droplet turbulence interactions in vaporizing liquid sprays under conditions typical of those encountered in liquid fueled rocket engines. The interaction between liquid droplets and the surrounding turbulent gas flow affects droplet dispersion, droplet collisions, droplet vaporization and gas-phase, fuel-oxidant mixing, and therefore has a significant effect on the engine's combustion characteristics. An example of this is the role which droplet-turbulence interactions are believed to play in combustion instabilities. Despite their importance, droplet-turbulence interactions and their effect on liquid fueled rocket engine performance are not well understood. This is particularly true under supercritical conditions, where many conventional concepts, such as surface tension, no longer apply. Our limited understanding of droplet-turbulence interactions, under both subcritical conditions, represents a major limitation in our ability to design improved liquid previously unavailable information and valuable new insights which will directly impact the design of future liquid fueled rocket engines, as well as, allow for the development of significantly improved spray combustion models, making such models useful design tools.

  9. Patterns of Interaction and Mathematical Thinking of High School Students in Classroom Environments That Include Use of Java-Based, Curriculum-Embedded Software

    ERIC Educational Resources Information Center

    Fonkert, Karen L.

    2012-01-01

    This study analyzes the nature of student interaction and discourse in an environment that includes the use of Java-based, curriculum-embedded mathematical software. The software "CPMP-Tools" was designed as part of the development of the second edition of the "Core-Plus Mathematics" curriculum. The use of the software on…

  10. MAUD: An Interactive Computer Program for the Structuring, Decomposition, and Recomposition of Preferences between Multiattributed Alternatives. Final Report. Technical Report 543.

    ERIC Educational Resources Information Center

    Humphreys, Patrick; Wisudha, Ayleen

    As a demonstration of the application of heuristic devices to decision-theoretical techniques, an interactive computer program known as MAUD (Multiattribute Utility Decomposition) has been designed to support decision or choice problems that can be decomposed into component factors, or to act as a tool for investigating the microstructure of a…

  11. From 'automation' to 'autonomy': the importance of trust repair in human-machine interaction.

    PubMed

    de Visser, Ewart J; Pak, Richard; Shaw, Tyler H

    2018-04-09

    Modern interactions with technology are increasingly moving away from simple human use of computers as tools to the establishment of human relationships with autonomous entities that carry out actions on our behalf. In a recent commentary, Peter Hancock issued a stark warning to the field of human factors that attention must be focused on the appropriate design of a new class of technology: highly autonomous systems. In this article, we heed the warning and propose a human-centred approach directly aimed at ensuring that future human-autonomy interactions remain focused on the user's needs and preferences. By adapting literature from industrial psychology, we propose a framework to infuse a unique human-like ability, building and actively repairing trust, into autonomous systems. We conclude by proposing a model to guide the design of future autonomy and a research agenda to explore current challenges in repairing trust between humans and autonomous systems. Practitioner Summary: This paper is a call to practitioners to re-cast our connection to technology as akin to a relationship between two humans rather than between a human and their tools. To that end, designing autonomy with trust repair abilities will ensure future technology maintains and repairs relationships with their human partners.

  12. The effect of ergonomic laparoscopic tool handle design on performance and efficiency.

    PubMed

    Tung, Kryztopher D; Shorti, Rami M; Downey, Earl C; Bloswick, Donald S; Merryweather, Andrew S

    2015-09-01

    Many factors can affect a surgeon's performance in the operating room; these may include surgeon comfort, ergonomics of tool handle design, and fatigue. A laparoscopic tool handle designed with ergonomic considerations (pistol grip) was tested against a current market tool with a traditional pinch grip handle. The goal of this study is to quantify the impact ergonomic design considerations which have on surgeon performance. We hypothesized that there will be measurable differences between the efficiency while performing FLS surgical trainer tasks when using both tool handle designs in three categories: time to completion, technical skill, and subjective user ratings. The pistol grip incorporates an ergonomic interface intended to reduce contact stress points on the hand and fingers, promote a more neutral operating wrist posture, and reduce hand tremor and fatigue. The traditional pinch grip is a laparoscopic tool developed by Stryker Inc. widely used during minimal invasive surgery. Twenty-three (13 M, 10 F) participants with no existing upper extremity musculoskeletal disorders or experience performing laparoscopic procedures were selected to perform in this study. During a training session prior to testing, participants performed practice trials in a SAGES FLS trainer with both tools. During data collection, participants performed three evaluation tasks using both handle designs (order was randomized, and each trial completed three times). The tasks consisted of FLS peg transfer, cutting, and suturing tasks. Feedback from test participants indicated that they significantly preferred the ergonomic pistol grip in every category (p < 0.05); most notably, participants experienced greater degrees of discomfort in their hands after using the pinch grip tool. Furthermore, participants completed cutting and peg transfer tasks in a shorter time duration (p < 0.05) with the pistol grip than with the pinch grip design; there was no significant difference between completion times for the suturing task. Finally, there was no significant interaction between tool type and errors made during trials. There was a significant preference for as well as lower pain experienced during use of the pistol grip tool as seen from the survey feedback. Both evaluation tasks (cutting and peg transfer) were also completed significantly faster with the pistol grip tool. Finally, due to the high degree of variability in the error data, it was not possible to draw any meaningful conclusions about the effect of tool design on the number or degree of errors made.

  13. Online course delivery modes and design methods in the radiologic sciences.

    PubMed

    Kowalczyk, Nina; Copley, Stacey

    2013-01-01

    To determine the current status of online education in the radiologic sciences and to explore learning management systems, course design methods, and online educational tools used in the radiologic sciences. A random sample of 373 educators from Joint Review Committee-accredited radiography, radiation therapy, and nuclear medicine technology educational programs was invited to participate in this study with an online survey. The majority of the programs responding to the survey do not offer online core courses. However, the institutions that do provide online core radiologic courses reported limited use of online tools for course delivery. BlackBoard was reported as the most commonly used learning management system. No significant relationships were identified in reference to self-reported instructor information technology self-efficacy and the instructors' age, years of teaching in higher education, years of teaching online, or use of asynchronous and synchronous technologies. Survey results did demonstrate a significant relationship between the type of institution and the use of synchronous technologies, suggesting that university-based programs were more likely to use this technology. Although the results suggest that online distance education is still not prevalent in radiologic science education, the past 3 years have seen a substantial increase in online course activity. This increase emphasizes the importance of adequate educator instruction and continuing education in the use of interactive technologies for online content delivery. Most educators report receiving 1 to 4 hours of training prior to online course implementation, but additional postimplementation training is necessary to improve the success of online delivery and further integrate interactive learning activities into an online format. The traditional classroom setting is still the primary course offering for radiologic science programs. PowerPoint remains the primary content delivery tool, suggesting a need for educators to incorporate tools that promote student interactions and interactive learning. Although the results did not reveal a significant relationship between assessed factors, the small correlations identified suggest that the younger instructors have a higher information technology self-efficacy. In addition, survey results suggest that instructors responding to this survey received limited training in reference to online course methods and design both before and after implementing an online course. Although educators may not have a choice regarding the system adopted by their university or college, they should seek additional training regarding the best tools available for online course delivery methods.

  14. Educational Videogames: Concept, Design And Evaluation

    NASA Astrophysics Data System (ADS)

    Rohrlick, D.; Yang, A.; Kilb, D. L.; Ma, L.; Ruzic, R.; Peach, C. L.; Layman, C. C.

    2013-12-01

    Videogames have historically gained popularity thanks to their entertainment rather than their educational value. This may be due, in part, to the fact that many educational videogames present academic concepts in dry, quiz-like ways, without the visual experiences, interactivity, and excitement of non-educational games. The increasing availability of tools that allow designers to easily create rich experiences for players now makes it simpler than ever for educational game designers to generate the visual experiences, interactivity, and excitement that gamers have grown to expect. Based on data from our work, when designed effectively, educational games can engage players, teach concepts, and tear down the stereotype of the stuffy, boring educational game. Our team has been experimenting with different ways to present scientific and mathematical concepts to middle and high school students through engaging, interactive games. When designing a gameplay concept, we focus on what we want the player to learn and experience as well as how to maintain a learning environment that is fun and engaging. Techniques that we have found successful include the use of a series of fast-paced 'minigames,' and the use of a 'simulator' learning method that allows a player to learn by completing objectives similar to those completed by today's scientists. Formative evaluations of our games over the past year have revealed both design strengths and weaknesses. Based on findings from a systematic evaluation of game play with diverse groups, with data collected through in-person observations of game play, knowledge assessments, focus groups, interviews with players, and computer tracking of students' game play behavior, we have found that players are uniformly enthusiastic about the educational tools. At the same time, we find there is more work to be done to make our tools fully intuitive, and to effectively present complex mathematical and scientific concepts to learners from a wide range of backgrounds. Overall we find that designing educational games is a constant balancing act to ensure the player is engaged and has fun while at the same time learning important concepts.

  15. Development of living cell force sensors for the interrogation of cell surface interactions

    NASA Astrophysics Data System (ADS)

    Brown, Scott Chang

    The measurement of cell surface interactions, or cell interaction forces, are critical for the early diagnosis and prevention of disease, the design of targeted drug and gene delivery vehicles, the development of next-generation implant materials, and much more. However, the technologies and devices that are currently available are highly limited with respect to the dynamic force range over which they can measure cell-cell or cell-substratum interactions, and with their ability to adequately mimic biologically relevant systems. Consequently, research efforts that involve cell surface interactions have been limited. In this dissertation, existing tools for research at the nanoscale (i.e., atomic force microscopy microcantilevers) are modified to develop living cell force sensors that allow for the highly sensitive measurement of cell-mediated interactions over the entire range of forces expected in biotechnology (and nano-biotechnology) research (from a single to millions of receptor-ligand bonds). Several force sensor motifs have been developed that can be used to measure interactions using single adherent cells, single suspension culture cell, and cell monolayers (tissues) over a wide range of interaction conditions (e.g., approach velocity, shear rate, contact time) using a conventional atomic force microscope. This new tool has been applied to study the pathogenesis of spontaneous pneumothorax and the interaction of cells with 14 man-made interfaces. Consequently, a new hypothesis of the interactions that manifest spontaneous pneumothorax has been developed. Additionally, these findings have the potential to lead to the development of tools for data mining materials and surfaces for unique cell interactions that could have an immense societal impact.

  16. Modeling Electrostatic Fields Generated by Internal Charging of Materials in Space Radiation Environments

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.

    2011-01-01

    Internal charging is a risk to spacecraft in energetic electron environments. DICTAT, NU MIT computational codes are the most widely used engineering tools for evaluating internal charging of insulator materials exposed to these environments. Engineering tools are designed for rapid evaluation of ESD threats, but there is a need for more physics based models for investigating the science of materials interactions with energetic electron environments. Current tools are limited by the physics included in the models and ease of user implementation .... additional development work is needed to improve models.

  17. Engagement and Empowerment Through Self-Service.

    PubMed

    Endriss, Jason

    2016-01-01

    Self-service tools represent the next frontier for leave and disability. This article discusses several critical com- ponents of a successful leave and disability self-service tool. If given the proper investment and thoughtfully designed, self-service tools have the potential to augment an organization's existing interaction channels, im- proving the employee experience while delivering efficiencies for an administrative model. In an operating en- vironment in which cost savings sometimes are at the expense of employee experience, such a win-win solution should not be taken lightly and, more importantly, should not be missed.

  18. Using Empirical Data to Clarify the Meaning of Various Prescriptions for Designing a Web-Based Course

    ERIC Educational Resources Information Center

    Boulet, Marie-Michele

    2004-01-01

    Design prescriptions to create web-based courses and sites that are dynamic, easy-to-use, interactive and data-driven, emerge from a "how to do it" approach. Unfortunately, the theory behind these methods, prescriptions, procedures or tools, is rarely provided and the important terms, such as "easy-to-use", to which these…

  19. Teaching Knowledge Management by Combining Wikis and Screen Capture Videos

    ERIC Educational Resources Information Center

    Makkonen, Pekka; Siakas, Kerstin; Vaidya, Shakespeare

    2011-01-01

    Purpose: This paper aims to report on the design and creation of a knowledge management course aimed at facilitating student creation and use of social interactive learning tools for enhanced learning. Design/methodology/approach: The era of social media and web 2.0 has enabled a bottom-up collaborative approach and new ways to publish work on the…

  20. Development and Validation of an Interactive Liner Design and Impedance Modeling Tool

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M.; Jones, Michael G.; Buckley, James L.

    2012-01-01

    The Interactive Liner Impedance Analysis and Design (ILIAD) tool is a LabVIEW-based software package used to design the composite surface impedance of a series of small-diameter quarter-wavelength resonators incorporating variable depth and sharp bends. Such structures are useful for packaging broadband acoustic liners into constrained spaces for turbofan engine noise control applications. ILIAD s graphical user interface allows the acoustic channel geometry to be drawn in the liner volume while the surface impedance and absorption coefficient calculations are updated in real-time. A one-dimensional transmission line model serves as the basis for the impedance calculation and can be applied to many liner configurations. Experimentally, tonal and broadband acoustic data were acquired in the NASA Langley Normal Incidence Tube over the frequency range of 500 to 3000 Hz at 120 and 140 dB SPL. Normalized impedance spectra were measured using the Two-Microphone Method for the various combinations of channel configurations. Comparisons between the computed and measured impedances show excellent agreement for broadband liners comprised of multiple, variable-depth channels. The software can be used to design arrays of resonators that can be packaged into complex geometries heretofore unsuitable for effective acoustic treatment.

  1. Human-computer interaction in distributed supervisory control tasks

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1989-01-01

    An overview of activities concerned with the development and applications of the Operator Function Model (OFM) is presented. The OFM is a mathematical tool to represent operator interaction with predominantly automated space ground control systems. The design and assessment of an intelligent operator aid (OFMspert and Ally) is particularly discussed. The application of OFM to represent the task knowledge in the design of intelligent tutoring systems, designated OFMTutor and ITSSO (Intelligent Tutoring System for Satellite Operators), is also described. Viewgraphs from symposia presentations are compiled along with papers addressing the intent inferencing capabilities of OFMspert, the OFMTutor system, and an overview of intelligent tutoring systems and the implications for complex dynamic systems.

  2. Rational design of class I MHC ligands

    NASA Astrophysics Data System (ADS)

    Rognan, D.; Scapozza, L.; Folkers, G.; Daser, Angelika

    1995-04-01

    From the knowledge of the three-dimensional structure of a class I MHC protein, several non natural peptides were designed in order to either optimize the interactions of one secondary anchor amino acid with its HLA binding pocket or to substitute the non interacting part with spacer residues. All peptides were synthesized and tested for binding to the class I MHC protein in an in vitro reconstitution assay. As predicted, the non natural peptides present an enhanced binding to the HLA-B27 molecule with respect to their natural parent peptides. This study constitutes the first step towards the rational design of non peptidic MHC ligands that should be very promising tools for the selective immunotherapy of autoimmune diseases.

  3. Program Aids Design Of Fluid-Circulating Systems

    NASA Technical Reports Server (NTRS)

    Bacskay, Allen; Dalee, Robert

    1992-01-01

    Computer Aided Systems Engineering and Analysis (CASE/A) program is interactive software tool for trade study and analysis, designed to increase productivity during all phases of systems engineering. Graphics-based command-driven software package provides user-friendly computing environment in which engineer analyzes performance and interface characteristics of ECLS/ATC system. Useful during all phases of spacecraft-design program, from initial conceptual design trade studies to actual flight, including pre-flight prediction and in-flight analysis of anomalies. Written in FORTRAN 77.

  4. EEGLAB, SIFT, NFT, BCILAB, and ERICA: new tools for advanced EEG processing.

    PubMed

    Delorme, Arnaud; Mullen, Tim; Kothe, Christian; Akalin Acar, Zeynep; Bigdely-Shamlo, Nima; Vankov, Andrey; Makeig, Scott

    2011-01-01

    We describe a set of complementary EEG data collection and processing tools recently developed at the Swartz Center for Computational Neuroscience (SCCN) that connect to and extend the EEGLAB software environment, a freely available and readily extensible processing environment running under Matlab. The new tools include (1) a new and flexible EEGLAB STUDY design facility for framing and performing statistical analyses on data from multiple subjects; (2) a neuroelectromagnetic forward head modeling toolbox (NFT) for building realistic electrical head models from available data; (3) a source information flow toolbox (SIFT) for modeling ongoing or event-related effective connectivity between cortical areas; (4) a BCILAB toolbox for building online brain-computer interface (BCI) models from available data, and (5) an experimental real-time interactive control and analysis (ERICA) environment for real-time production and coordination of interactive, multimodal experiments.

  5. Self-assembly kinetics of microscale components: A parametric evaluation

    NASA Astrophysics Data System (ADS)

    Carballo, Jose M.

    The goal of the present work is to develop, and evaluate a parametric model of a basic microscale Self-Assembly (SA) interaction that provides scaling predictions of process rates as a function of key process variables. At the microscale, assembly by "grasp and release" is generally challenging. Recent research efforts have proposed adapting nanoscale self-assembly (SA) processes to the microscale. SA offers the potential for reduced equipment cost and increased throughput by harnessing attractive forces (most commonly, capillary) to spontaneously assemble components. However, there are challenges for implementing microscale SA as a commercial process. The existing lack of design tools prevents simple process optimization. Previous efforts have characterized a specific aspect of the SA process. However, the existing microscale SA models do not characterize the inter-component interactions. All existing models have simplified the outcome of SA interactions as an experimentally-derived value specific to a particular configuration, instead of evaluating it outcome as a function of component level parameters (such as speed, geometry, bonding energy and direction). The present study parameterizes the outcome of interactions, and evaluates the effect of key parameters. The present work closes the gap between existing microscale SA models to add a key piece towards a complete design tool for general microscale SA process modeling. First, this work proposes a simple model for defining the probability of assembly of basic SA interactions. A basic SA interaction is defined as the event where a single part arrives on an assembly site. The model describes the probability of assembly as a function of kinetic energy, binding energy, orientation and incidence angle for the component and the assembly site. Secondly, an experimental SA system was designed, and implemented to create individual SA interactions while controlling process parameters independently. SA experiments measured the outcome of SA interactions, while studying the independent effects of each parameter. As a first step towards a complete scaling model, experiments were performed to evaluate the effects of part geometry and part travel direction under low kinetic energy conditions. Experimental results show minimal dependence of assembly yield on the incidence angle of the parts, and significant effects induced by changes in part geometry. The results from this work indicate that SA could be modeled as an energy-based process due to the small path dependence effects. Assembly probability is linearly related to the orientation probability. The proportionality constant is based on the area fraction of the sites with an amplification factor. This amplification factor accounts for the ability of capillary forces to align parts with only very small areas of contact when they have a low kinetic energy. Results provide unprecedented insight about SA interactions. The present study is a key step towards completing a basic model of a general SA process. Moreover, the outcome from this work can complement existing SA process models, in order to create a complete design tool for microscale SA systems. In addition to SA experiments, Monte Carlo simulations of experimental part-site interactions were conducted. This study confirmed that a major contributor to experimental variation is the stochastic nature of experimental SA interactions and the limited sample size of the experiments. Furthermore, the simulations serve as a tool for defining an optimum sampling strategy to minimize the uncertainty in future SA experiments.

  6. Hybrid texture generator

    NASA Astrophysics Data System (ADS)

    Miyata, Kazunori; Nakajima, Masayuki

    1995-04-01

    A method is given for synthesizing a texture by using the interface of a conventional drawing tool. The majority of conventional texture generation methods are based on the procedural approach, and can generate a variety of textures that are adequate for generating a realistic image. But it is hard for a user to imagine what kind of texture will be generated simply by looking at its parameters. Furthermore, it is difficult to design a new texture freely without a knowledge of all the procedures for texture generation. Our method offers a solution to these problems, and has the following four merits: First, a variety of textures can be obtained by combining a set of feature lines and attribute functions. Second, data definitions are flexible. Third, the user can preview a texture together with its feature lines. Fourth, people can design their own textures interactively and freely by using the interface of a conventional drawing tool. For users who want to build this texture generation method into their own programs, we also give the language specifications for generating a texture. This method can interactively provide a variety of textures, and can also be used for typographic design.

  7. Assessing ergonomic risks of software: Development of the SEAT.

    PubMed

    Peres, S Camille; Mehta, Ranjana K; Ritchey, Paul

    2017-03-01

    Software utilizing interaction designs that require extensive dragging or clicking of icons may increase users' risks for upper extremity cumulative trauma disorders. The purpose of this research is to develop a Self-report Ergonomic Assessment Tool (SEAT) for assessing the risks of software interaction designs and facilitate mitigation of those risks. A 28-item self-report measure was developed by combining and modifying items from existing industrial ergonomic tools. Data were collected from 166 participants after they completed four different tasks that varied by method of input (touch or keyboard and mouse) and type of task (selecting or typing). Principal component analysis found distinct factors associated with stress (i.e., demands) and strain (i.e., response). Repeated measures analyses of variance showed that participants could discriminate the different strain induced by the input methods and tasks. However, participants' ability to discriminate between the stressors associated with that strain was mixed. Further validation of the SEAT is necessary but these results indicate that the SEAT may be a viable method of assessing ergonomics risks presented by software design. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Open Technology Approaches to Geospatial Interface Design

    NASA Astrophysics Data System (ADS)

    Crevensten, B.; Simmons, D.; Alaska Satellite Facility

    2011-12-01

    What problems do you not want your software developers to be solving? Choosing open technologies across the entire stack of software development-from low-level shared libraries to high-level user interaction implementations-is a way to help ensure that customized software yields innovative and valuable tools for Earth Scientists. This demonstration will review developments in web application technologies and the recurring patterns of interaction design regarding exploration and discovery of geospatial data through the Vertex: ASF's Dataportal interface, a project utilizing current open web application standards and technologies including HTML5, jQueryUI, Backbone.js and the Jasmine unit testing framework.

  9. HyperCard to SPSS: improving data integrity.

    PubMed

    Gostel, R

    1993-01-01

    This article describes a database design that captures responses in a HyperCard stack and moves the data to SPSS for the Macintosh without the need to rekey data. Pregnant women used an interactive computer application with a touch screen to answer questions and receive educational information about fetal alcohol syndrome. A database design was created to capture survey responses through interaction with a computer by a sample of prenatal women during formative evaluation trials. The author does not compare this method of data collection to other methods. This article simply describes the method of data collection as a useful research tool.

  10. Techniques for designing rotorcraft control systems

    NASA Technical Reports Server (NTRS)

    Levine, William S.; Barlow, Jewel

    1993-01-01

    This report summarizes the work that was done on the project from 1 Apr. 1992 to 31 Mar. 1993. The main goal of this research is to develop a practical tool for rotorcraft control system design based on interactive optimization tools (CONSOL-OPTCAD) and classical rotorcraft design considerations (ADOCS). This approach enables the designer to combine engineering intuition and experience with parametric optimization. The combination should make it possible to produce a better design faster than would be possible using either pure optimization or pure intuition and experience. We emphasize that the goal of this project is not to develop an algorithm. It is to develop a tool. We want to keep the human designer in the design process to take advantage of his or her experience and creativity. The role of the computer is to perform the calculation necessary to improve and to display the performance of the nominal design. Briefly, during the first year we have connected CONSOL-OPTCAD, an existing software package for optimizing parameters with respect to multiple performance criteria, to a simplified nonlinear simulation of the UH-60 rotorcraft. We have also created mathematical approximations to the Mil-specs for rotorcraft handling qualities and input them into CONSOL-OPTCAD. Finally, we have developed the additional software necessary to use CONSOL-OPTCAD for the design of rotorcraft controllers.

  11. Robotic Seals as Therapeutic Tools in an Aged Care Facility: A Qualitative Study

    PubMed Central

    Bodak, Marie; Barlas, Joanna; Harwood, June; Pether, Mary

    2016-01-01

    Robots, including robotic seals, have been used as an alternative to therapies such as animal assisted therapy in the promotion of health and social wellbeing of older people in aged care facilities. There is limited research available that evaluates the effectiveness of robot therapies in these settings. The aim of this study was to identify, explore, and describe the impact of the use of Paro robotic seals in an aged care facility in a regional Australian city. A qualitative, descriptive, exploratory design was employed. Data were gathered through interviews with the three recreational therapists employed at the facility who were also asked to maintain logs of their interactions with the Paro and residents. Data were transcribed and thematically analysed. Three major themes were identified from the analyses of these data: “a therapeutic tool that's not for everybody,” “every interaction is powerful,” and “keeping the momentum.” Findings support the use of Paro as a therapeutic tool, revealing improvement in emotional state, reduction of challenging behaviours, and improvement in social interactions of residents. The potential benefits justify the investment in Paro, with clear evidence that these tools can have a positive impact that warrants further exploration. PMID:27990301

  12. Design and control of compliant tensegrity robots through simulation and hardware validation.

    PubMed

    Caluwaerts, Ken; Despraz, Jérémie; Işçen, Atıl; Sabelhaus, Andrew P; Bruce, Jonathan; Schrauwen, Benjamin; SunSpiral, Vytas

    2014-09-06

    To better understand the role of tensegrity structures in biological systems and their application to robotics, the Dynamic Tensegrity Robotics Lab at NASA Ames Research Center, Moffett Field, CA, USA, has developed and validated two software environments for the analysis, simulation and design of tensegrity robots. These tools, along with new control methodologies and the modular hardware components developed to validate them, are presented as a system for the design of actuated tensegrity structures. As evidenced from their appearance in many biological systems, tensegrity ('tensile-integrity') structures have unique physical properties that make them ideal for interaction with uncertain environments. Yet, these characteristics make design and control of bioinspired tensegrity robots extremely challenging. This work presents the progress our tools have made in tackling the design and control challenges of spherical tensegrity structures. We focus on this shape since it lends itself to rolling locomotion. The results of our analyses include multiple novel control approaches for mobility and terrain interaction of spherical tensegrity structures that have been tested in simulation. A hardware prototype of a spherical six-bar tensegrity, the Reservoir Compliant Tensegrity Robot, is used to empirically validate the accuracy of simulation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  13. AIRNOISE: A Tool for Preliminary Noise-Abatement Terminal Approach Route Design

    NASA Technical Reports Server (NTRS)

    Li, Jinhua; Sridhar, Banavar; Xue, Min; Ng, Hok

    2016-01-01

    Noise from aircraft in the airport vicinity is one of the leading aviation-induced environmental issues. The FAA developed the Integrated Noise Model (INM) and its replacement Aviation Environmental Design Tool (AEDT) software to assess noise impact resulting from all aviation activities. However, a software tool is needed that is simple to use for terminal route modification, quick and reasonably accurate for preliminary noise impact evaluation and flexible to be used for iterative design of optimal noise-abatement terminal routes. In this paper, we extend our previous work on developing a noise-abatement terminal approach route design tool, named AIRNOISE, to satisfy this criterion. First, software efficiency has been significantly increased by over tenfold using the C programming language instead of MATLAB. Moreover, a state-of-the-art high performance GPU-accelerated computing module is implemented that was tested to be hundreds time faster than the C implementation. Secondly, a Graphical User Interface (GUI) was developed allowing users to import current terminal approach routes and modify the routes interactively to design new terminal approach routes. The corresponding noise impacts are then calculated and displayed in the GUI in seconds. Finally, AIRNOISE was applied to Baltimore-Washington International Airport terminal approach route to demonstrate its usage.

  14. Education modules using EnviroAtlas (#2)

    EPA Science Inventory

    Session Title #1: Exploration and Discovery through Maps: Teaching Science with Technology. Online maps have the power to spark student interest and bring students closer to their local natural environments. EnviroAtlas is an interactive, web-based tool that was designed by the...

  15. Education modules using EnviroAtlas

    EPA Science Inventory

    Proposal #1: Exploration and Discovery through Maps: Teaching Science with Technology (Elementary)Online maps have the power to bring students closer to their local natural environments. EnviroAtlas is an interactive, web-based tool that was designed by the EPA and its partners ...

  16. Application of the fragment molecular orbital method analysis to fragment-based drug discovery of BET (bromodomain and extra-terminal proteins) inhibitors.

    PubMed

    Ozawa, Motoyasu; Ozawa, Tomonaga; Ueda, Kazuyoshi

    2017-06-01

    The molecular interactions of inhibitors of bromodomains (BRDs) were investigated. BRDs are protein interaction modules that recognizing ε-N-acetyl-lysine (εAc-Lys) motifs found in histone tails and are promising protein-protein interaction (PPI) targets. First, we analyzed a peptide ligand containing εAc-Lys to evaluate native PPIs. We then analyzed tetrahydroquinazoline-6-yl-benzensulfonamide derivatives found by fragment-based drug design (FBDD) and examined their interactions with the protein compared with the peptide ligand in terms of the inter-fragment interaction energy. In addition, we analyzed benzodiazepine derivatives that are high-affinity ligands for BRDs and examined differences in the CH/π interactions of the amino acid residues. We further surveyed changes in the charges of the amino acid residues among individual ligands, performed pair interaction energy decomposition analysis and estimated the water profile within the ligand binding site. Thus, useful insights for drug design were provided. Through these analyses and considerations, we show that the FMO method is a useful drug design tool to evaluate the process of FBDD and to explore PPI inhibitors. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. A Real-Time All-Atom Structural Search Engine for Proteins

    PubMed Central

    Gonzalez, Gabriel; Hannigan, Brett; DeGrado, William F.

    2014-01-01

    Protein designers use a wide variety of software tools for de novo design, yet their repertoire still lacks a fast and interactive all-atom search engine. To solve this, we have built the Suns program: a real-time, atomic search engine integrated into the PyMOL molecular visualization system. Users build atomic-level structural search queries within PyMOL and receive a stream of search results aligned to their query within a few seconds. This instant feedback cycle enables a new “designability”-inspired approach to protein design where the designer searches for and interactively incorporates native-like fragments from proven protein structures. We demonstrate the use of Suns to interactively build protein motifs, tertiary interactions, and to identify scaffolds compatible with hot-spot residues. The official web site and installer are located at http://www.degradolab.org/suns/ and the source code is hosted at https://github.com/godotgildor/Suns (PyMOL plugin, BSD license), https://github.com/Gabriel439/suns-cmd (command line client, BSD license), and https://github.com/Gabriel439/suns-search (search engine server, GPLv2 license). PMID:25079944

  18. DNAproDB: an interactive tool for structural analysis of DNA–protein complexes

    PubMed Central

    Sagendorf, Jared M.

    2017-01-01

    Abstract Many biological processes are mediated by complex interactions between DNA and proteins. Transcription factors, various polymerases, nucleases and histones recognize and bind DNA with different levels of binding specificity. To understand the physical mechanisms that allow proteins to recognize DNA and achieve their biological functions, it is important to analyze structures of DNA–protein complexes in detail. DNAproDB is a web-based interactive tool designed to help researchers study these complexes. DNAproDB provides an automated structure-processing pipeline that extracts structural features from DNA–protein complexes. The extracted features are organized in structured data files, which are easily parsed with any programming language or viewed in a browser. We processed a large number of DNA–protein complexes retrieved from the Protein Data Bank and created the DNAproDB database to store this data. Users can search the database by combining features of the DNA, protein or DNA–protein interactions at the interface. Additionally, users can upload their own structures for processing privately and securely. DNAproDB provides several interactive and customizable tools for creating visualizations of the DNA–protein interface at different levels of abstraction that can be exported as high quality figures. All functionality is documented and freely accessible at http://dnaprodb.usc.edu. PMID:28431131

  19. The Methodology of Interactive Parametric Modelling of Construction Site Facilities in BIM Environment

    NASA Astrophysics Data System (ADS)

    Kozlovská, Mária; Čabala, Jozef; Struková, Zuzana

    2014-11-01

    Information technology is becoming a strong tool in different industries, including construction. The recent trend of buildings designing is leading up to creation of the most comprehensive virtual building model (Building Information Model) in order to solve all the problems relating to the project as early as in the designing phase. Building information modelling is a new way of approaching to the design of building projects documentation. Currently, the building site layout as a part of the building design documents has a very little support in the BIM environment. Recently, the research of designing the construction process conditions has centred on improvement of general practice in planning and on new approaches to construction site layout planning. The state of art in field of designing the construction process conditions indicated an unexplored problem related to connection of knowledge system with construction site facilities (CSF) layout through interactive modelling. The goal of the paper is to present the methodology for execution of 3D construction site facility allocation model (3D CSF-IAM), based on principles of parametric and interactive modelling.

  20. Learning Happens: 30 Video Vignettes of Babies and Toddlers Learning School Readiness Skills through Everyday Interactions. [DVD and Guide

    ERIC Educational Resources Information Center

    Lerner, Claire; Parlakian, Rebecca

    2007-01-01

    This DVD (duration: 1 hour 53 seconds) features 30 video vignettes that show parents and children--aged birth to 3 years--interacting during everyday play and routines. These vignettes, some in English and some in Spanish, are designed to be tools for professionals to use both in direct work with families and for training other early child…

  1. Data-Driven Modeling and Rendering of Force Responses from Elastic Tool Deformation

    PubMed Central

    Rakhmatov, Ruslan; Ogay, Tatyana; Jeon, Seokhee

    2018-01-01

    This article presents a new data-driven model design for rendering force responses from elastic tool deformation. The new design incorporates a six-dimensional input describing the initial position of the contact, as well as the state of the tool deformation. The input-output relationship of the model was represented by a radial basis functions network, which was optimized based on training data collected from real tool-surface contact. Since the input space of the model is represented in the local coordinate system of a tool, the model is independent of recording and rendering devices and can be easily deployed to an existing simulator. The model also supports complex interactions, such as self and multi-contact collisions. In order to assess the proposed data-driven model, we built a custom data acquisition setup and developed a proof-of-concept rendering simulator. The simulator was evaluated through numerical and psychophysical experiments with four different real tools. The numerical evaluation demonstrated the perceptual soundness of the proposed model, meanwhile the user study revealed the force feedback of the proposed simulator to be realistic. PMID:29342964

  2. Efficient simulation of press hardening process through integrated structural and CFD analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palaniswamy, Hariharasudhan; Mondalek, Pamela; Wronski, Maciek

    Press hardened steel parts are being increasingly used in automotive structures for their higher strength to meet safety standards while reducing vehicle weight to improve fuel consumption. However, manufacturing of sheet metal parts by press hardening process to achieve desired properties is extremely challenging as it involves complex interaction of plastic deformation, metallurgical change, thermal distribution, and fluid flow. Numerical simulation is critical for successful design of the process and to understand the interaction among the numerous process parameters to control the press hardening process in order to consistently achieve desired part properties. Until now there has been no integratedmore » commercial software solution that can efficiently model the complete process from forming of the blank, heat transfer between the blank and tool, microstructure evolution in the blank, heat loss from tool to the fluid that flows through water channels in the tools. In this study, a numerical solution based on Altair HyperWorks® product suite involving RADIOSS®, a non-linear finite element based structural analysis solver and AcuSolve®, an incompressible fluid flow solver based on Galerkin Least Square Finite Element Method have been utilized to develop an efficient solution for complete press hardening process design and analysis. RADIOSS is used to handle the plastic deformation, heat transfer between the blank and tool, and microstructure evolution in the blank during cooling. While AcuSolve is used to efficiently model heat loss from tool to the fluid that flows through water channels in the tools. The approach is demonstrated through some case studies.« less

  3. High-Fidelity Multidisciplinary Design Optimization of Aircraft Configurations

    NASA Technical Reports Server (NTRS)

    Martins, Joaquim R. R. A.; Kenway, Gaetan K. W.; Burdette, David; Jonsson, Eirikur; Kennedy, Graeme J.

    2017-01-01

    To evaluate new airframe technologies we need design tools based on high-fidelity models that consider multidisciplinary interactions early in the design process. The overarching goal of this NRA is to develop tools that enable high-fidelity multidisciplinary design optimization of aircraft configurations, and to apply these tools to the design of high aspect ratio flexible wings. We develop a geometry engine that is capable of quickly generating conventional and unconventional aircraft configurations including the internal structure. This geometry engine features adjoint derivative computation for efficient gradient-based optimization. We also added overset capability to a computational fluid dynamics solver, complete with an adjoint implementation and semiautomatic mesh generation. We also developed an approach to constraining buffet and started the development of an approach for constraining utter. On the applications side, we developed a new common high-fidelity model for aeroelastic studies of high aspect ratio wings. We performed optimal design trade-o s between fuel burn and aircraft weight for metal, conventional composite, and carbon nanotube composite wings. We also assessed a continuous morphing trailing edge technology applied to high aspect ratio wings. This research resulted in the publication of 26 manuscripts so far, and the developed methodologies were used in two other NRAs. 1

  4. Using machine learning tools to model complex toxic interactions with limited sampling regimes.

    PubMed

    Bertin, Matthew J; Moeller, Peter; Guillette, Louis J; Chapman, Robert W

    2013-03-19

    A major impediment to understanding the impact of environmental stress, including toxins and other pollutants, on organisms, is that organisms are rarely challenged by one or a few stressors in natural systems. Thus, linking laboratory experiments that are limited by practical considerations to a few stressors and a few levels of these stressors to real world conditions is constrained. In addition, while the existence of complex interactions among stressors can be identified by current statistical methods, these methods do not provide a means to construct mathematical models of these interactions. In this paper, we offer a two-step process by which complex interactions of stressors on biological systems can be modeled in an experimental design that is within the limits of practicality. We begin with the notion that environment conditions circumscribe an n-dimensional hyperspace within which biological processes or end points are embedded. We then randomly sample this hyperspace to establish experimental conditions that span the range of the relevant parameters and conduct the experiment(s) based upon these selected conditions. Models of the complex interactions of the parameters are then extracted using machine learning tools, specifically artificial neural networks. This approach can rapidly generate highly accurate models of biological responses to complex interactions among environmentally relevant toxins, identify critical subspaces where nonlinear responses exist, and provide an expedient means of designing traditional experiments to test the impact of complex mixtures on biological responses. Further, this can be accomplished with an astonishingly small sample size.

  5. Map Learning with a 3D Printed Interactive Small-Scale Model: Improvement of Space and Text Memorization in Visually Impaired Students

    PubMed Central

    Giraud, Stéphanie; Brock, Anke M.; Macé, Marc J.-M.; Jouffrais, Christophe

    2017-01-01

    Special education teachers for visually impaired students rely on tools such as raised-line maps (RLMs) to teach spatial knowledge. These tools do not fully and adequately meet the needs of the teachers because they are long to produce, expensive, and not versatile enough to provide rapid updating of the content. For instance, the same RLM can barely be used during different lessons. In addition, those maps do not provide any interactivity, which reduces students’ autonomy. With the emergence of 3D printing and low-cost microcontrollers, it is now easy to design affordable interactive small-scale models (SSMs) which are adapted to the needs of special education teachers. However, no study has previously been conducted to evaluate non-visual learning using interactive SSMs. In collaboration with a specialized teacher, we designed a SSM and a RLM representing the evolution of the geography and history of a fictitious kingdom. The two conditions were compared in a study with 24 visually impaired students regarding the memorization of the spatial layout and historical contents. The study showed that the interactive SSM improved both space and text memorization as compared to the RLM with braille legend. In conclusion, we argue that affordable home-made interactive small scale models can improve learning for visually impaired students. Interestingly, they are adaptable to any teaching situation including students with specific needs. PMID:28649209

  6. Smagglce: Surface Modeling and Grid Generation for Iced Airfoils: Phase 1 Results

    NASA Technical Reports Server (NTRS)

    Vickerman, Mary B.; Choo, Yung K.; Braun, Donald C.; Baez, Marivell; Gnepp, Steven

    1999-01-01

    SmaggIce (Surface Modeling and Grid Generation for Iced Airfoils) is a software toolkit used in the process of aerodynamic performance prediction of iced airfoils with grid-based Computational Fluid Dynamics (CFD). It includes tools for data probing, boundary smoothing, domain decomposition, and structured grid generation and refinement. SmaggIce provides the underlying computations to perform these functions, a GUI (Graphical User Interface) to control and interact with those functions, and graphical displays of results, it is being developed at NASA Glenn Research Center. This paper discusses the overall design of SmaggIce as well as what has been implemented in Phase 1. Phase 1 results provide two types of software tools: interactive ice shape probing and interactive ice shape control. The ice shape probing tools will provide aircraft icing engineers and scientists with an interactive means to measure the physical characteristics of ice shapes. On the other hand, the ice shape control features of SmaggIce will allow engineers to examine input geometry data, correct or modify any deficiencies in the geometry, and perform controlled systematic smoothing to a level that will make the CFD process manageable.

  7. The Eugenides Foundation Interactive Exhibition of Science and Technology

    NASA Astrophysics Data System (ADS)

    Kontogiannis, Ioannis

    2010-01-01

    The Interactive Exhibition of Science and Technology is installed in an area of 1200 m2 at the Eugenides Foundation. 65 interactive exhibits, designed by the "Cites des Science et de l' Industrie" are organised in themes, stimulate the visitors' mind and provoke scientific thinking. Parallel activities take place inside the exhibition, such as live science demonstrations, performed by young scientists. Extra material such as news bulletins (short news, science comics and portraits), educational paths and treasure-hunting based games, all available online as well, are prepared on a monthly basis and provided along with the visit to the exhibition. Through these exhibits and activities, scientific facts are made simple and easy to comprehend using modern presentation tools. We present details on how this exhibition acts complementary to the science education provided by schools, making it a highly sophisticated educational tool.

  8. Tools for controlling protein interactions with light

    PubMed Central

    Tucker, Chandra L.; Vrana, Justin D.; Kennedy, Matthew J.

    2014-01-01

    Genetically-encoded actuators that allow control of protein-protein interactions with light, termed ‘optical dimerizers’, are emerging as new tools for experimental biology. In recent years, numerous new and versatile dimerizer systems have been developed. Here we discuss the design of optical dimerizer experiments, including choice of a dimerizer system, photoexcitation sources, and coordinate use of imaging reporters. We provide detailed protocols for experiments using two dimerization systems we previously developed, CRY2/CIB and UVR8/UVR8, for use controlling transcription, protein localization, and protein secretion with light. Additionally, we provide instructions and software for constructing a pulse-controlled LED light device for use in experiments requiring extended light treatments. PMID:25181301

  9. Booster Interface Loads

    NASA Technical Reports Server (NTRS)

    Gentz, Steve; Wood, Bill; Nettles, Mindy

    2015-01-01

    The interaction between shock waves and the wake shed from the forward booster/core attach hardware results in unsteady pressure fluctuations, which can lead to large buffeting loads on the vehicle. This task investigates whether computational tools can adequately predict these flows, and whether alternative booster nose shapes can reduce these loads. Results from wind tunnel tests will be used to validate the computations and provide design information for future Space Launch System (SLS) configurations. The current work combines numerical simulations with wind tunnel testing to predict buffeting loads caused by the boosters. Variations in nosecone shape, similar to the Ariane 5 design (fig. 1), are being evaluated with regard to lowering the buffet loads. The task will provide design information for the mitigation of buffet loads for SLS, along with validated simulation tools to be used to assess future SLS designs.

  10. Evaluating the utility of two gestural discomfort evaluation methods

    PubMed Central

    Son, Minseok; Jung, Jaemoon; Park, Woojin

    2017-01-01

    Evaluating physical discomfort of designed gestures is important for creating safe and usable gesture-based interaction systems; yet, gestural discomfort evaluation has not been extensively studied in HCI, and few evaluation methods seem currently available whose utility has been experimentally confirmed. To address this, this study empirically demonstrated the utility of the subjective rating method after a small number of gesture repetitions (a maximum of four repetitions) in evaluating designed gestures in terms of physical discomfort resulting from prolonged, repetitive gesture use. The subjective rating method has been widely used in previous gesture studies but without empirical evidence on its utility. This study also proposed a gesture discomfort evaluation method based on an existing ergonomics posture evaluation tool (Rapid Upper Limb Assessment) and demonstrated its utility in evaluating designed gestures in terms of physical discomfort resulting from prolonged, repetitive gesture use. Rapid Upper Limb Assessment is an ergonomics postural analysis tool that quantifies the work-related musculoskeletal disorders risks for manual tasks, and has been hypothesized to be capable of correctly determining discomfort resulting from prolonged, repetitive gesture use. The two methods were evaluated through comparisons against a baseline method involving discomfort rating after actual prolonged, repetitive gesture use. Correlation analyses indicated that both methods were in good agreement with the baseline. The methods proposed in this study seem useful for predicting discomfort resulting from prolonged, repetitive gesture use, and are expected to help interaction designers create safe and usable gesture-based interaction systems. PMID:28423016

  11. Modeling Interactions Between Flexible Flapping Wing Spars, Mechanisms, and Drive Motors

    DTIC Science & Technology

    2011-09-01

    of dynamical equations is presented that allow micro air vehicle (MAV) or- nithopter designers to match drive motors to loads produced by flexible...aeroelastic systems is presented. One potential use for such a model is to serve as the basis for a vehicle design tool that matches drive motors to loads...friction. ∗Senior Aerospace Engineer, Control Design and Analysis Branch, 2210 Eighth Street, Ste. 21, Air Force Research Labora- tory, WPAFB, OH 45433

  12. Optimizing laser beam profiles using micro-lens arrays for efficient material processing: applications to solar cells

    NASA Astrophysics Data System (ADS)

    Hauschild, Dirk; Homburg, Oliver; Mitra, Thomas; Ivanenko, Mikhail; Jarczynski, Manfred; Meinschien, Jens; Bayer, Andreas; Lissotschenko, Vitalij

    2009-02-01

    High power laser sources are used in various production tools for microelectronic products and solar cells, including the applications annealing, lithography, edge isolation as well as dicing and patterning. Besides the right choice of the laser source suitable high performance optics for generating the appropriate beam profile and intensity distribution are of high importance for the right processing speed, quality and yield. For industrial applications equally important is an adequate understanding of the physics of the light-matter interaction behind the process. In advance simulations of the tool performance can minimize technical and financial risk as well as lead times for prototyping and introduction into series production. LIMO has developed its own software founded on the Maxwell equations taking into account all important physical aspects of the laser based process: the light source, the beam shaping optical system and the light-matter interaction. Based on this knowledge together with a unique free-form micro-lens array production technology and patented micro-optics beam shaping designs a number of novel solar cell production tool sub-systems have been built. The basic functionalities, design principles and performance results are presented with a special emphasis on resilience, cost reduction and process reliability.

  13. Evaluating interactive computer-based scenarios designed for learning medical technology.

    PubMed

    Persson, Johanna; Dalholm, Elisabeth Hornyánszky; Wallergård, Mattias; Johansson, Gerd

    2014-11-01

    The use of medical equipment is growing in healthcare, resulting in an increased need for resources to educate users in how to manage the various devices. Learning the practical operation of a device is one thing, but learning how to work with the device in the actual clinical context is more challenging. This paper presents a computer-based simulation prototype for learning medical technology in the context of critical care. Properties from simulation and computer games have been adopted to create a visualization-based, interactive and contextually bound tool for learning. A participatory design process, including three researchers and three practitioners from a clinic for infectious diseases, was adopted to adjust the form and content of the prototype to the needs of the clinical practice and to create a situated learning experience. An evaluation with 18 practitioners showed that practitioners were positive to this type of tool for learning and that it served as a good platform for eliciting and sharing knowledge. Our conclusion is that this type of tools can be a complement to traditional learning resources to situate the learning in a context without requiring advanced technology or being resource-demanding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Design and evaluation of a software prototype for participatory planning of environmental adaptations.

    PubMed

    Eriksson, J; Ek, A; Johansson, G

    2000-03-01

    A software prototype to support the planning process for adapting home and work environments for people with physical disabilities was designed and later evaluated. The prototype exploits low-cost three-dimensional (3-D) graphics products in the home computer market. The essential features of the prototype are: interactive rendering with optional hardware acceleration, interactive walk-throughs, direct manipulation tools for moving objects and measuring distances, and import of 3-D-objects from a library. A usability study was conducted, consisting of two test sessions (three weeks apart) and a final interview. The prototype was then tested and evaluated by representatives of future users: five occupational therapist students, and four persons with physical disability, with no previous experience of the prototype. Emphasis in the usability study was placed on the prototype's efficiency and learnability. We found that it is possible to realise a planning tool for environmental adaptations, both regarding usability and technical efficiency. The usability evaluation confirms our findings from previous case studies, regarding the relevance and positive attitude towards this kind of planning tool. Although the prototype was found to be satisfactorily efficient for the basic tasks, the paper presents several suggestions for improvement of future prototype versions.

  15. FluoRender: joint freehand segmentation and visualization for many-channel fluorescence data analysis.

    PubMed

    Wan, Yong; Otsuna, Hideo; Holman, Holly A; Bagley, Brig; Ito, Masayoshi; Lewis, A Kelsey; Colasanto, Mary; Kardon, Gabrielle; Ito, Kei; Hansen, Charles

    2017-05-26

    Image segmentation and registration techniques have enabled biologists to place large amounts of volume data from fluorescence microscopy, morphed three-dimensionally, onto a common spatial frame. Existing tools built on volume visualization pipelines for single channel or red-green-blue (RGB) channels have become inadequate for the new challenges of fluorescence microscopy. For a three-dimensional atlas of the insect nervous system, hundreds of volume channels are rendered simultaneously, whereas fluorescence intensity values from each channel need to be preserved for versatile adjustment and analysis. Although several existing tools have incorporated support of multichannel data using various strategies, the lack of a flexible design has made true many-channel visualization and analysis unavailable. The most common practice for many-channel volume data presentation is still converting and rendering pseudosurfaces, which are inaccurate for both qualitative and quantitative evaluations. Here, we present an alternative design strategy that accommodates the visualization and analysis of about 100 volume channels, each of which can be interactively adjusted, selected, and segmented using freehand tools. Our multichannel visualization includes a multilevel streaming pipeline plus a triple-buffer compositing technique. Our method also preserves original fluorescence intensity values on graphics hardware, a crucial feature that allows graphics-processing-unit (GPU)-based processing for interactive data analysis, such as freehand segmentation. We have implemented the design strategies as a thorough restructuring of our original tool, FluoRender. The redesign of FluoRender not only maintains the existing multichannel capabilities for a greatly extended number of volume channels, but also enables new analysis functions for many-channel data from emerging biomedical-imaging techniques.

  16. [Designing a tool to describe drug interactions and adverse events for learning and clinical routine].

    PubMed

    Auzéric, M; Bellemère, J; Conort, O; Roubille, R; Allenet, B; Bedouch, P; Rose, F-X; Juste, M; Charpiat, B

    2009-11-01

    Pharmacists play an important role in prescription analysis. They are involved in therapeutic drug monitoring, particularly for drugs with a narrow therapeutic index, prevention and management of drug interactions, and may be called in to identify side effects and adverse events related to drug therapy. For the polymedicated patient, the medical file, the list of prescribed drugs and the history of their administration may be insufficient to adequately assign the responsibility of a given adverse effect to one or more drugs. Graphical representations can sometimes be useful to describe and clarify a sequence of events. In addition, as part of their academic course, students have many occasions to hear about "side effects" and "drug interactions". However, in the academic setting, there are few opportunities to observe the evolution and the consequences of these events. In the course of their hospital training, these students are required to perform patient follow-up for pharmacotherapeutic or educational purposes and to comment case reports to physicians. The aim of this paper is to present a tool facilitating the graphic display of drug interaction consequences and side effects. This tool can be a useful aid for causality assessment. It structures the students' training course and helps them better understand the commentaries pharmacists provide for physicians. Further development of this tool should contribute to the prevention of adverse drug events.

  17. eLearning and eMaking: 3D Printing Blurring the Digital and the Physical

    ERIC Educational Resources Information Center

    Loy, Jennifer

    2014-01-01

    This article considers the potential of 3D printing as an eLearning tool for design education and the role of eMaking in bringing together the virtual and the physical in the design studio. eLearning has matured from the basics of lecture capture into sophisticated, interactive learning activities for students. At the same time, laptops and…

  18. Computerized Biomechanical Man-Model

    DTIC Science & Technology

    1976-07-01

    Force Systems Command Wright-Patterson AFB, Ohio ABSTRACT The COMputerized BIomechanical MAN-Model (called COMBIMAN) is a computer interactive graphics...concept was to build a mock- The use of mock-ups for biomechanical evalua- up which permitted the designer to visualize the tion has long been a tool...of the can become an obstacle to design change. Aerospace Medical Research Laboratory, we are developing a computerized biomechanical man-model

  19. PyHLA: tests for the association between HLA alleles and diseases.

    PubMed

    Fan, Yanhui; Song, You-Qiang

    2017-02-06

    Recently, several tools have been designed for human leukocyte antigen (HLA) typing using single nucleotide polymorphism (SNP) array and next-generation sequencing (NGS) data. These tools provide high-throughput and cost-effective approaches for identifying HLA types. Therefore, tools for downstream association analysis are highly desirable. Although several tools have been designed for multi-allelic marker association analysis, they were designed only for microsatellite markers and do not scale well with increasing data volumes, or they were designed for large-scale data but provided a limited number of tests. We have developed a Python package called PyHLA, which implements several methods for HLA association analysis, to fill the gap. PyHLA is a tailor-made, easy to use, and flexible tool designed specifically for the association analysis of the HLA types imputed from genome-wide genotyping and NGS data. PyHLA provides functions for association analysis, zygosity tests, and interaction tests between HLA alleles and diseases. Monte Carlo permutation and several methods for multiple testing corrections have also been implemented. PyHLA provides a convenient and powerful tool for HLA analysis. Existing methods have been integrated and desired methods have been added in PyHLA. Furthermore, PyHLA is applicable to small and large sample sizes and can finish the analysis in a timely manner on a personal computer with different platforms. PyHLA is implemented in Python. PyHLA is a free, open source software distributed under the GPLv2 license. The source code, tutorial, and examples are available at https://github.com/felixfan/PyHLA.

  20. The Sorghum Headworm Calculator: A speedy tool for headworm management

    USDA-ARS?s Scientific Manuscript database

    The Sorghum Headworm Calculator is an interactive decision support system for sorghum headworm management. It was designed to be easily accessible and usable. It provides users with organized information on identification, sampling, and management using images, descriptions and research-based mana...

  1. Using Prototyping and Simulation as Decision Tools in a Purchased-Software Implementation.

    ERIC Educational Resources Information Center

    Haugen, Elliott J.; Nedwek, Brian P.

    1988-01-01

    The use of prototyping and simulation at St. Louis University to evaluate the implementation decisions and design of a student information system are described with regard to their impact on, and interaction with, institutional policies and procedures. (Author/MLW)

  2. Design knowledge capture for a corporate memory facility

    NASA Technical Reports Server (NTRS)

    Boose, John H.; Shema, David B.; Bradshaw, Jeffrey M.

    1990-01-01

    Currently, much of the information regarding decision alternatives and trade-offs made in the course of a major program development effort is not represented or retained in a way that permits computer-based reasoning over the life cycle of the program. The loss of this information results in problems in tracing design alternatives to requirements, in assessing the impact of change in requirements, and in configuration management. To address these problems, the problem was studied of building an intelligent, active corporate memory facility which would provide for the capture of the requirements and standards of a program, analyze the design alternatives and trade-offs made over the program's lifetime, and examine relationships between requirements and design trade-offs. Early phases of the work have concentrated on design knowledge capture for the Space Station Freedom. Tools are demonstrated and extended which helps automate and document engineering trade studies, and another tool is being developed to help designers interactively explore design alternatives and constraints.

  3. Current And Future Directions Of Lens Design Software

    NASA Astrophysics Data System (ADS)

    Gustafson, Darryl E.

    1983-10-01

    The most effective environment for doing lens design continues to evolve as new computer hardware and software tools become available. Important recent hardware developments include: Low-cost but powerful interactive multi-user 32 bit computers with virtual memory that are totally software-compatible with prior larger and more expensive members of the family. A rapidly growing variety of graphics devices for both hard-copy and screen graphics, including many with color capability. In addition, with optical design software readily accessible in many forms, optical design has become a part-time activity for a large number of engineers instead of being restricted to a small number of full-time specialists. A designer interface that is friendly for the part-time user while remaining efficient for the full-time designer is thus becoming more important as well as more practical. Along with these developments, software tools in other scientific and engineering disciplines are proliferating. Thus, the optical designer is less and less unique in his use of computer-aided techniques and faces the challenge and opportunity of efficiently communicating his designs to other computer-aided-design (CAD), computer-aided-manufacturing (CAM), structural, thermal, and mechanical software tools. This paper will address the impact of these developments on the current and future directions of the CODE VTM optical design software package, its implementation, and the resulting lens design environment.

  4. System Level Uncertainty Assessment for Collaborative RLV Design

    NASA Technical Reports Server (NTRS)

    Charania, A. C.; Bradford, John E.; Olds, John R.; Graham, Matthew

    2002-01-01

    A collaborative design process utilizing Probabilistic Data Assessment (PDA) is showcased. Given the limitation of financial resources by both the government and industry, strategic decision makers need more than just traditional point designs, they need to be aware of the likelihood of these future designs to meet their objectives. This uncertainty, an ever-present character in the design process, can be embraced through a probabilistic design environment. A conceptual design process is presented that encapsulates the major engineering disciplines for a Third Generation Reusable Launch Vehicle (RLV). Toolsets consist of aerospace industry standard tools in disciplines such as trajectory, propulsion, mass properties, cost, operations, safety, and economics. Variations of the design process are presented that use different fidelities of tools. The disciplinary engineering models are used in a collaborative engineering framework utilizing Phoenix Integration's ModelCenter and AnalysisServer environment. These tools allow the designer to join disparate models and simulations together in a unified environment wherein each discipline can interact with any other discipline. The design process also uses probabilistic methods to generate the system level output metrics of interest for a RLV conceptual design. The specific system being examined is the Advanced Concept Rocket Engine 92 (ACRE-92) RLV. Previous experience and knowledge (in terms of input uncertainty distributions from experts and modeling and simulation codes) can be coupled with Monte Carlo processes to best predict the chances of program success.

  5. MO-E-18C-04: Advanced Computer Simulation and Visualization Tools for Enhanced Understanding of Core Medical Physics Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naqvi, S

    2014-06-15

    Purpose: Most medical physics programs emphasize proficiency in routine clinical calculations and QA. The formulaic aspect of these calculations and prescriptive nature of measurement protocols obviate the need to frequently apply basic physical principles, which, therefore, gradually decay away from memory. E.g. few students appreciate the role of electron transport in photon dose, making it difficult to understand key concepts such as dose buildup, electronic disequilibrium effects and Bragg-Gray theory. These conceptual deficiencies manifest when the physicist encounters a new system, requiring knowledge beyond routine activities. Methods: Two interactive computer simulation tools are developed to facilitate deeper learning of physicalmore » principles. One is a Monte Carlo code written with a strong educational aspect. The code can “label” regions and interactions to highlight specific aspects of the physics, e.g., certain regions can be designated as “starters” or “crossers,” and any interaction type can be turned on and off. Full 3D tracks with specific portions highlighted further enhance the visualization of radiation transport problems. The second code calculates and displays trajectories of a collection electrons under arbitrary space/time dependent Lorentz force using relativistic kinematics. Results: Using the Monte Carlo code, the student can interactively study photon and electron transport through visualization of dose components, particle tracks, and interaction types. The code can, for instance, be used to study kerma-dose relationship, explore electronic disequilibrium near interfaces, or visualize kernels by using interaction forcing. The electromagnetic simulator enables the student to explore accelerating mechanisms and particle optics in devices such as cyclotrons and linacs. Conclusion: The proposed tools are designed to enhance understanding of abstract concepts by highlighting various aspects of the physics. The simulations serve as virtual experiments that give deeper and long lasting understanding of core principles. The student can then make sound judgements in novel situations encountered beyond routine clinical activities.« less

  6. Theoretical model to investigate the alkyl chain and anion dependent interactions of gemini surfactant with bovine serum albumin.

    PubMed

    Vishvakarma, Vijay K; Kumari, Kamlesh; Patel, Rajan; Dixit, V S; Singh, Prashant; Mehrotra, Gopal K; Chandra, Ramesh; Chakrawarty, Anand Kumar

    2015-05-15

    Surfactants are used to prevent the irreversible aggregation of partially refolded proteins and they also assist in protein refolding. We have reported the design and screening of gemini surfactant to stabilize bovine serum albumin (BSA) with the help of computational tool (iGEMDOCK). A series of gemini surfactant has been designed based on bis-N-alkyl nicotinate dianion via varying the alkyl group and anion. On changing the alkyl group and anion of the surfactant, the value of Log P changes means polarity of surfactant can be tuned. Further, the virtual screening of the gemini surfactant has been carried out based on generic evolutionary method. Herein, thermodynamic data was studied to determine the potential of gemini surfactant as BSA stabilizer. Computational tools help to find out the efficient gemini surfactant to stabilize the BSA rather than to use the surfactant randomly and directionless for the stabilization. It can be confirmed through the experimental techniques. Previously, researcher synthesized one of the designed and used gemini surfactant to stabilize the BSA and their interactions were confirmed through various techniques and computational docking. But herein, the authors find the most competent gemini surfactant to stabilize BSA using computational tools on the basis of energy score. Different from the single chain surfactant, the gemini surfactants exhibit much stronger electrostatic and hydrophobic interactions with the protein and are thus effective at much lower concentrations. Based on the present study, it is expected that gemini surfactants may prove useful in the protein stabilization operations and may thus be effectively employed to circumvent the problem of misfolding and aggregation. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Theoretical model to investigate the alkyl chain and anion dependent interactions of gemini surfactant with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Vishvakarma, Vijay K.; Kumari, Kamlesh; Patel, Rajan; Dixit, V. S.; Singh, Prashant; Mehrotra, Gopal K.; Chandra, Ramesh; Chakrawarty, Anand Kumar

    2015-05-01

    Surfactants are used to prevent the irreversible aggregation of partially refolded proteins and they also assist in protein refolding. We have reported the design and screening of gemini surfactant to stabilize bovine serum albumin (BSA) with the help of computational tool (iGEMDOCK). A series of gemini surfactant has been designed based on bis-N-alkyl nicotinate dianion via varying the alkyl group and anion. On changing the alkyl group and anion of the surfactant, the value of Log P changes means polarity of surfactant can be tuned. Further, the virtual screening of the gemini surfactant has been carried out based on generic evolutionary method. Herein, thermodynamic data was studied to determine the potential of gemini surfactant as BSA stabilizer. Computational tools help to find out the efficient gemini surfactant to stabilize the BSA rather than to use the surfactant randomly and directionless for the stabilization. It can be confirmed through the experimental techniques. Previously, researcher synthesized one of the designed and used gemini surfactant to stabilize the BSA and their interactions were confirmed through various techniques and computational docking. But herein, the authors find the most competent gemini surfactant to stabilize BSA using computational tools on the basis of energy score. Different from the single chain surfactant, the gemini surfactants exhibit much stronger electrostatic and hydrophobic interactions with the protein and are thus effective at much lower concentrations. Based on the present study, it is expected that gemini surfactants may prove useful in the protein stabilization operations and may thus be effectively employed to circumvent the problem of misfolding and aggregation.

  8. The Visual Geophysical Exploration Environment: A Multi-dimensional Scientific Visualization

    NASA Astrophysics Data System (ADS)

    Pandya, R. E.; Domenico, B.; Murray, D.; Marlino, M. R.

    2003-12-01

    The Visual Geophysical Exploration Environment (VGEE) is an online learning environment designed to help undergraduate students understand fundamental Earth system science concepts. The guiding principle of the VGEE is the importance of hands-on interaction with scientific visualization and data. The VGEE consists of four elements: 1) an online, inquiry-based curriculum for guiding student exploration; 2) a suite of El Nino-related data sets adapted for student use; 3) a learner-centered interface to a scientific visualization tool; and 4) a set of concept models (interactive tools that help students understand fundamental scientific concepts). There are two key innovations featured in this interactive poster session. One is the integration of concept models and the visualization tool. Concept models are simple, interactive, Java-based illustrations of fundamental physical principles. We developed eight concept models and integrated them into the visualization tool to enable students to probe data. The ability to probe data using a concept model addresses the common problem of transfer: the difficulty students have in applying theoretical knowledge to everyday phenomenon. The other innovation is a visualization environment and data that are discoverable in digital libraries, and installed, configured, and used for investigations over the web. By collaborating with the Integrated Data Viewer developers, we were able to embed a web-launchable visualization tool and access to distributed data sets into the online curricula. The Thematic Real-time Environmental Data Distributed Services (THREDDS) project is working to provide catalogs of datasets that can be used in new VGEE curricula under development. By cataloging this curricula in the Digital Library for Earth System Education (DLESE), learners and educators can discover the data and visualization tool within a framework that guides their use.

  9. PENTrack - a versatile Monte Carlo tool for ultracold neutron sources and experiments

    NASA Astrophysics Data System (ADS)

    Picker, Ruediger; Chahal, Sanmeet; Christopher, Nicolas; Losekamm, Martin; Marcellin, James; Paul, Stephan; Schreyer, Wolfgang; Yapa, Pramodh

    2016-09-01

    Ultracold neutrons have energies in the hundred nano eV region. They can be stored in traps for hundreds of seconds. This makes them the ideal tool to study the neutron itself. Measurements of neutron decay correlations, lifetime or electric dipole moment are ideally suited for ultracold neutrons, as well as experiments probing the neutron's gravitational levels in the earth's field. We have developed a Monte Carlo simulation tool that can serve to design and optimize these experiments, and possibly correct results: PENTrack is a C++ based simulation code that tracks neutrons, protons and electrons or atoms, as well as their spins, in gravitational and electromagnetic fields. In addition wall interactions of neutrons due to strong interaction are modeled with a Fermi-potential formalism and take surface roughness into account. The presentation will introduce the physics behind the simulation and provide examples of its application.

  10. EEGLAB, SIFT, NFT, BCILAB, and ERICA: New Tools for Advanced EEG Processing

    PubMed Central

    Delorme, Arnaud; Mullen, Tim; Kothe, Christian; Akalin Acar, Zeynep; Bigdely-Shamlo, Nima; Vankov, Andrey; Makeig, Scott

    2011-01-01

    We describe a set of complementary EEG data collection and processing tools recently developed at the Swartz Center for Computational Neuroscience (SCCN) that connect to and extend the EEGLAB software environment, a freely available and readily extensible processing environment running under Matlab. The new tools include (1) a new and flexible EEGLAB STUDY design facility for framing and performing statistical analyses on data from multiple subjects; (2) a neuroelectromagnetic forward head modeling toolbox (NFT) for building realistic electrical head models from available data; (3) a source information flow toolbox (SIFT) for modeling ongoing or event-related effective connectivity between cortical areas; (4) a BCILAB toolbox for building online brain-computer interface (BCI) models from available data, and (5) an experimental real-time interactive control and analysis (ERICA) environment for real-time production and coordination of interactive, multimodal experiments. PMID:21687590

  11. Stereoscopic display of 3D models for design visualization

    NASA Astrophysics Data System (ADS)

    Gilson, Kevin J.

    2006-02-01

    Advances in display technology and 3D design visualization applications have made real-time stereoscopic visualization of architectural and engineering projects a reality. Parsons Brinkerhoff (PB) is a transportation consulting firm that has used digital visualization tools from their inception and has helped pioneer the application of those tools to large scale infrastructure projects. PB is one of the first Architecture/Engineering/Construction (AEC) firms to implement a CAVE- an immersive presentation environment that includes stereoscopic rear-projection capability. The firm also employs a portable stereoscopic front-projection system, and shutter-glass systems for smaller groups. PB is using commercial real-time 3D applications in combination with traditional 3D modeling programs to visualize and present large AEC projects to planners, clients and decision makers in stereo. These presentations create more immersive and spatially realistic presentations of the proposed designs. This paper will present the basic display tools and applications, and the 3D modeling techniques PB is using to produce interactive stereoscopic content. The paper will discuss several architectural and engineering design visualizations we have produced.

  12. High-resolution computational algorithms for simulating offshore wind turbines and farms: Model development and validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calderer, Antoni; Yang, Xiaolei; Angelidis, Dionysios

    2015-10-30

    The present project involves the development of modeling and analysis design tools for assessing offshore wind turbine technologies. The computational tools developed herein are able to resolve the effects of the coupled interaction of atmospheric turbulence and ocean waves on aerodynamic performance and structural stability and reliability of offshore wind turbines and farms. Laboratory scale experiments have been carried out to derive data sets for validating the computational models.

  13. Manananggal - a novel viewer for alternative splicing events.

    PubMed

    Barann, Matthias; Zimmer, Ralf; Birzele, Fabian

    2017-02-21

    Alternative splicing is an important cellular mechanism that can be analyzed by RNA sequencing. However, identification of splicing events in an automated fashion is error-prone. Thus, further validation is required to select reliable instances of alternative splicing events (ASEs). There are only few tools specifically designed for interactive inspection of ASEs and available visualization approaches can be significantly improved. Here, we present Manananggal, an application specifically designed for the identification of splicing events in next generation sequencing data. Manananggal includes a web application for visual inspection and a command line tool that allows for ASE detection. We compare the sashimi plots available in the IGV Viewer, the DEXSeq splicing plots and SpliceSeq to the Manananggal interface and discuss the advantages and drawbacks of these tools. We show that sashimi plots (such as those used by the IGV Viewer and SpliceSeq) offer a practical solution for simple ASEs, but also indicate short-comings for highly complex genes. Manananggal is an interactive web application that offers functions specifically tailored to the identification of alternative splicing events that other tools are lacking. The ability to select a subset of isoforms allows an easier interpretation of complex alternative splicing events. In contrast to SpliceSeq and the DEXSeq splicing plot, Manananggal does not obscure the gene structure by showing full transcript models that makes it easier to determine which isoforms are expressed and which are not.

  14. Analysis of hand contact areas and interaction capabilities during manipulation and exploration.

    PubMed

    Gonzalez, Franck; Gosselin, Florian; Bachta, Wael

    2014-01-01

    Manual human-computer interfaces for virtual reality are designed to allow an operator interacting with a computer simulation as naturally as possible. Dexterous haptic interfaces are the best suited for this goal. They give intuitive and efficient control on the environment with haptic and tactile feedback. This paper is aimed at helping in the choice of the interaction areas to be taken into account in the design of such interfaces. The literature dealing with hand interactions is first reviewed in order to point out the contact areas involved in exploration and manipulation tasks. Their frequencies of use are then extracted from existing recordings. The results are gathered in an original graphical interaction map allowing for a simple visualization of the way the hand is used, and compared with a map of mechanoreceptors densities. Then an interaction tree, mapping the relative amount of actions made available through the use of a given contact area, is built and correlated with the losses of hand function induced by amputations. A rating of some existing haptic interfaces and guidelines for their design are finally achieved to illustrate a possible use of the developed graphical tools.

  15. Efficient utilization of graphics technology for space animation

    NASA Technical Reports Server (NTRS)

    Panos, Gregory Peter

    1989-01-01

    Efficient utilization of computer graphics technology has become a major investment in the work of aerospace engineers and mission designers. These new tools are having a significant impact in the development and analysis of complex tasks and procedures which must be prepared prior to actual space flight. Design and implementation of useful methods in applying these tools has evolved into a complex interaction of hardware, software, network, video and various user interfaces. Because few people can understand every aspect of this broad mix of technology, many specialists are required to build, train, maintain and adapt these tools to changing user needs. Researchers have set out to create systems where an engineering designer can easily work to achieve goals with a minimum of technological distraction. This was accomplished with high-performance flight simulation visual systems and supercomputer computational horsepower. Control throughout the creative process is judiciously applied while maintaining generality and ease of use to accommodate a wide variety of engineering needs.

  16. A Re-Engineered Software Interface and Workflow for the Open-Source SimVascular Cardiovascular Modeling Package.

    PubMed

    Lan, Hongzhi; Updegrove, Adam; Wilson, Nathan M; Maher, Gabriel D; Shadden, Shawn C; Marsden, Alison L

    2018-02-01

    Patient-specific simulation plays an important role in cardiovascular disease research, diagnosis, surgical planning and medical device design, as well as education in cardiovascular biomechanics. simvascular is an open-source software package encompassing an entire cardiovascular modeling and simulation pipeline from image segmentation, three-dimensional (3D) solid modeling, and mesh generation, to patient-specific simulation and analysis. SimVascular is widely used for cardiovascular basic science and clinical research as well as education, following increased adoption by users and development of a GATEWAY web portal to facilitate educational access. Initial efforts of the project focused on replacing commercial packages with open-source alternatives and adding increased functionality for multiscale modeling, fluid-structure interaction (FSI), and solid modeling operations. In this paper, we introduce a major SimVascular (SV) release that includes a new graphical user interface (GUI) designed to improve user experience. Additional improvements include enhanced data/project management, interactive tools to facilitate user interaction, new boundary condition (BC) functionality, plug-in mechanism to increase modularity, a new 3D segmentation tool, and new computer-aided design (CAD)-based solid modeling capabilities. Here, we focus on major changes to the software platform and outline features added in this new release. We also briefly describe our recent experiences using SimVascular in the classroom for bioengineering education.

  17. FQC Dashboard: integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Joseph; Pirrung, Meg; McCue, Lee Ann

    FQC is software that facilitates quality control of FASTQ files by carrying out a QC protocol using FastQC, parsing results, and aggregating quality metrics into an interactive dashboard designed to richly summarize individual sequencing runs. The dashboard groups samples in dropdowns for navigation among the data sets, utilizes human-readable configuration files to manipulate the pages and tabs, and is extensible with CSV data.

  18. FQC Dashboard: integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool

    DOE PAGES

    Brown, Joseph; Pirrung, Meg; McCue, Lee Ann

    2017-06-09

    FQC is software that facilitates quality control of FASTQ files by carrying out a QC protocol using FastQC, parsing results, and aggregating quality metrics into an interactive dashboard designed to richly summarize individual sequencing runs. The dashboard groups samples in dropdowns for navigation among the data sets, utilizes human-readable configuration files to manipulate the pages and tabs, and is extensible with CSV data.

  19. Carrageenan activates monocytes via type-specific binding with interleukin-8: an implication for design of immuno-active biomaterials.

    PubMed

    Chan, Weng-I; Zhang, Guangpan; Li, Xin; Leung, Chung-Hang; Ma, Dik-Lung; Dong, Lei; Wang, Chunming

    2017-02-28

    Polymers that can activate the immune system may become useful biomaterials tools, given that the mechanisms underlying their actions are well understood. Herein, we report a novel type of interaction between polymers and immune cells - in studying the influence of the three major types of carrageenan (CGN) polysaccharides on monocyte behaviour in vitro, we found only the λ-type induced monocyte adhesion and this action requires the presence of an adequate amount of serum. Further analyses indicated λ-CGN bound interleukin-8 (IL-8) in the serum and activated the cultured monocytes through an IL-8-dependent pathway. This is the first demonstration that a polymer, with a renowned immunostimulatory effect, activates the immune system via binding and harnessing the function of a specific cytokine in the microenvironment. This is a new mechanism underlying polymer-immunity interactions that may shed light on future design and application of biomaterials tools targeting the immune system for a wide variety of therapeutic applications.

  20. Multi-media authoring - Instruction and training of air traffic controllers based on ASRS incident reports

    NASA Technical Reports Server (NTRS)

    Armstrong, Herbert B.; Roske-Hofstrand, Renate J.

    1989-01-01

    This paper discusses the use of computer-assisted instructions and flight simulations to enhance procedural and perceptual motor task training. Attention is called to the fact that incorporating the accident and incident data contained in reports filed with the Aviation Safety Reporting System (ASRS) would be a valuable training tool which the learner could apply for other situations. The need to segment the events is emphasized; this would make it possible to modify events in order to suit the needs of the training environment. Methods were developed for designing meaningful scenario development on runway incursions on the basis of analysis of ASRS reports. It is noted that, while the development of interactive training tools using the ASRS and other data bases holds much promise, the design and production of interactive video programs and laser disks are very expensive. It is suggested that this problem may be overcome by sharing the costs of production to develop a library of materials available to a broad range of users.

  1. Host-Brucella interactions and the Brucella genome as tools for subunit antigen discovery and immunization against brucellosis

    PubMed Central

    Gomez, Gabriel; Adams, Leslie G.; Rice-Ficht, Allison; Ficht, Thomas A.

    2013-01-01

    Vaccination is the most important approach to counteract infectious diseases. Thus, the development of new and improved vaccines for existing, emerging, and re-emerging diseases is an area of great interest to the scientific community and general public. Traditional approaches to subunit antigen discovery and vaccine development lack consideration for the critical aspects of public safety and activation of relevant protective host immunity. The availability of genomic sequences for pathogenic Brucella spp. and their hosts have led to development of systems-wide analytical tools that have provided a better understanding of host and pathogen physiology while also beginning to unravel the intricacies at the host-pathogen interface. Advances in pathogen biology, host immunology, and host-agent interactions have the potential to serve as a platform for the design and implementation of better-targeted antigen discovery approaches. With emphasis on Brucella spp., we probe the biological aspects of host and pathogen that merit consideration in the targeted design of subunit antigen discovery and vaccine development. PMID:23720712

  2. Design Environment for Multifidelity and Multidisciplinary Components

    NASA Technical Reports Server (NTRS)

    Platt, Michael

    2014-01-01

    One of the greatest challenges when developing propulsion systems is predicting the interacting effects between the fluid loads, thermal loads, and structural deflection. The interactions between technical disciplines often are not fully analyzed, and the analysis in one discipline often uses a simplified representation of other disciplines as an input or boundary condition. For example, the fluid forces in an engine generate static and dynamic rotor deflection, but the forces themselves are dependent on the rotor position and its orbit. It is important to consider the interaction between the physical phenomena where the outcome of each analysis is heavily dependent on the inputs (e.g., changes in flow due to deflection, changes in deflection due to fluid forces). A rigid design process also lacks the flexibility to employ multiple levels of fidelity in the analysis of each of the components. This project developed and validated an innovative design environment that has the flexibility to simultaneously analyze multiple disciplines and multiple components with multiple levels of model fidelity. Using NASA's open-source multidisciplinary design analysis and optimization (OpenMDAO) framework, this multifaceted system will provide substantially superior capabilities to current design tools.

  3. Adsorptive detoxification of fermentation inhibitors in acid pretreated liquor using functionalized polymer designed by molecular simulation.

    PubMed

    Devendra, Leena P; Pandey, Ashok

    2017-11-01

    Acid pretreatment is the most common method employed in the lignocellulosic biorefinery leading to the separation of pentose and hexose sugar. The liquor obtained after pretreatment (acid pretreatment liquor or APL) needs to be detoxified prior to fermentation. The aim of this study was to design functional groups on a polymer matrix which are selective in their interaction to inhibitors with little or no specificity to sugars. Molecular modeling was used as a tool to design a suitable adsorbent for selective adsorption of inhibitors from a complex mixture of APL. Phenyl glycine-p-sulfonic acid loaded on chloromethylated polystyrene polymer was designed as an adsorbent for selective interaction with inhibitors. Experimental verification of the selectivity was successfully achieved. The current study provides insights on the adsorptive separation processes at the molecular level by design of specific adsorbent which can be tailor made for the better selectivity of the desired component.

  4. Cognitive ergonomics of operational tools

    NASA Astrophysics Data System (ADS)

    Lüdeke, A.

    2012-10-01

    Control systems have become increasingly more powerful over the past decades. The availability of high data throughput and sophisticated graphical interactions has opened a variety of new possibilities. But has this helped to provide intuitive, easy to use applications to simplify the operation of modern large scale accelerator facilities? We will discuss what makes an application useful to operation and what is necessary to make a tool easy to use. We will show that even the implementation of a small number of simple application design rules can help to create ergonomic operational tools. The author is convinced that such tools do indeed help to achieve higher beam availability and better beam performance at accelerator facilities.

  5. Interactive Visual Analysis within Dynamic Ocean Models

    NASA Astrophysics Data System (ADS)

    Butkiewicz, T.

    2012-12-01

    The many observation and simulation based ocean models available today can provide crucial insights for all fields of marine research and can serve as valuable references when planning data collection missions. However, the increasing size and complexity of these models makes leveraging their contents difficult for end users. Through a combination of data visualization techniques, interactive analysis tools, and new hardware technologies, the data within these models can be made more accessible to domain scientists. We present an interactive system that supports exploratory visual analysis within large-scale ocean flow models. The currents and eddies within the models are illustrated using effective, particle-based flow visualization techniques. Stereoscopic displays and rendering methods are employed to ensure that the user can correctly perceive the complex 3D structures of depth-dependent flow patterns. Interactive analysis tools are provided which allow the user to experiment through the introduction of their customizable virtual dye particles into the models to explore regions of interest. A multi-touch interface provides natural, efficient interaction, with custom multi-touch gestures simplifying the otherwise challenging tasks of navigating and positioning tools within a 3D environment. We demonstrate the potential applications of our visual analysis environment with two examples of real-world significance: Firstly, an example of using customized particles with physics-based behaviors to simulate pollutant release scenarios, including predicting the oil plume path for the 2010 Deepwater Horizon oil spill disaster. Secondly, an interactive tool for plotting and revising proposed autonomous underwater vehicle mission pathlines with respect to the surrounding flow patterns predicted by the model; as these survey vessels have extremely limited energy budgets, designing more efficient paths allows for greater survey areas.

  6. Investigating the Impact of Using a CAD Simulation Tool on Students' Learning of Design Thinking

    NASA Astrophysics Data System (ADS)

    Taleyarkhan, Manaz; Dasgupta, Chandan; Garcia, John Mendoza; Magana, Alejandra J.

    2018-02-01

    Engineering design thinking is hard to teach and still harder to learn by novices primarily due to the undetermined nature of engineering problems that often results in multiple solutions. In this paper, we investigate the effect of teaching engineering design thinking to freshmen students by using a computer-aided Design (CAD) simulation software. We present a framework for characterizing different levels of engineering design thinking displayed by students who interacted with the CAD simulation software in the context of a collaborative assignment. This framework describes the presence of four levels of engineering design thinking—beginning designer, adept beginning designer, informed designer, adept informed designer. We present the characteristics associated with each of these four levels as they pertain to four engineering design strategies that students pursued in this study—understanding the design challenge, building knowledge, weighing options and making tradeoffs, and reflecting on the process. Students demonstrated significant improvements in two strategies—understanding the design challenge and building knowledge. We discuss the affordances of the CAD simulation tool along with the learning environment that potentially helped students move towards Adept informed designers while pursuing these design strategies.

  7. Digitizing for Computer-Aided Finite Element Model Generation.

    DTIC Science & Technology

    1979-10-10

    this approach is a collection of programs developed over the last eight years at the University of Arizona, and called the GIFTS system. This paper...briefly describes the latest version of the system, GIFTS -5, and demonstrates its suitability in a design environment by simple examples. The programs...constituting the GIFTS system were used as a tool for research in many areas, including mesh generation, finite element data base design, interactive

  8. Integrated Airframe Design Technology (Les Technologies pour la Conception Integree des Cellules)

    DTIC Science & Technology

    1993-12-01

    encourageant ainsi une plus forte interaction entre les organisations, ce qui laisse prevoir une ing~nierie commune concurrente pour Ia conception des...cellules. La co-localisation de personnels de diff~rentes disciplines sera n~cessaire. mais ceci pourrait se faire sous Ia forme d’une "co...integrated analysis tool Their presentation highlighted the development (e.g., ELFINI) for managing aeroelasticity, of an Aeroelastic Design

  9. Interactive Web Graphs with Fewer Restrictions

    NASA Technical Reports Server (NTRS)

    Fiedler, James

    2012-01-01

    There is growing popularity for interactive, statistical web graphs and programs to generate them. However, it seems that these programs tend to be somewhat restricted in which web browsers and statistical software are supported. For example, the software might use SVG (e.g., Protovis, gridSVG) or HTML canvas, both of which exclude most versions of Internet Explorer, or the software might be made specifically for R (gridSVG, CRanvas), thus excluding users of other stats software. There are more general tools (d3, Rapha lJS) which are compatible with most browsers, but using one of these to make statistical graphs requires more coding than is probably desired, and requires learning a new tool. This talk will present a method for making interactive web graphs, which, by design, attempts to support as many browsers and as many statistical programs as possible, while also aiming to be relatively easy to use and relatively easy to extend.

  10. PLI: a web-based tool for the comparison of protein-ligand interactions observed on PDB structures.

    PubMed

    Gallina, Anna Maria; Bisignano, Paola; Bergamino, Maurizio; Bordo, Domenico

    2013-02-01

    A large fraction of the entries contained in the Protein Data Bank describe proteins in complex with low molecular weight molecules such as physiological compounds or synthetic drugs. In many cases, the same molecule is found in distinct protein-ligand complexes. There is an increasing interest in Medicinal Chemistry in comparing protein binding sites to get insight on interactions that modulate the binding specificity, as this structural information can be correlated with other experimental data of biochemical or physiological nature and may help in rational drug design. The web service protein-ligand interaction presented here provides a tool to analyse and compare the binding pockets of homologous proteins in complex with a selected ligand. The information is deduced from protein-ligand complexes present in the Protein Data Bank and stored in the underlying database. Freely accessible at http://bioinformatics.istge.it/pli/.

  11. IDEAS: A multidisciplinary computer-aided conceptual design system for spacecraft

    NASA Technical Reports Server (NTRS)

    Ferebee, M. J., Jr.

    1984-01-01

    During the conceptual development of advanced aerospace vehicles, many compromises must be considered to balance economy and performance of the total system. Subsystem tradeoffs may need to be made in order to satisfy system-sensitive attributes. Due to the increasingly complex nature of aerospace systems, these trade studies have become more difficult and time-consuming to complete and involve interactions of ever-larger numbers of subsystems, components, and performance parameters. The current advances of computer-aided synthesis, modeling and analysis techniques have greatly helped in the evaluation of competing design concepts. Langley Research Center's Space Systems Division is currently engaged in trade studies for a variety of systems which include advanced ground-launched space transportation systems, space-based orbital transfer vehicles, large space antenna concepts and space stations. The need for engineering analysis tools to aid in the rapid synthesis and evaluation of spacecraft has led to the development of the Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) computer-aided design system. The ADEAS system has been used to perform trade studies of competing technologies and requirements in order to pinpoint possible beneficial areas for research and development. IDEAS is presented as a multidisciplinary tool for the analysis of advanced space systems. Capabilities range from model generation and structural and thermal analysis to subsystem synthesis and performance analysis.

  12. Verification of the FtCayuga fault-tolerant microprocessor system. Volume 1: A case study in theorem prover-based verification

    NASA Technical Reports Server (NTRS)

    Srivas, Mandayam; Bickford, Mark

    1991-01-01

    The design and formal verification of a hardware system for a task that is an important component of a fault tolerant computer architecture for flight control systems is presented. The hardware system implements an algorithm for obtaining interactive consistancy (byzantine agreement) among four microprocessors as a special instruction on the processors. The property verified insures that an execution of the special instruction by the processors correctly accomplishes interactive consistency, provided certain preconditions hold. An assumption is made that the processors execute synchronously. For verification, the authors used a computer aided design hardware design verification tool, Spectool, and the theorem prover, Clio. A major contribution of the work is the demonstration of a significant fault tolerant hardware design that is mechanically verified by a theorem prover.

  13. Verification of the FtCayuga fault-tolerant microprocessor system. Volume 2: Formal specification and correctness theorems

    NASA Technical Reports Server (NTRS)

    Bickford, Mark; Srivas, Mandayam

    1991-01-01

    Presented here is a formal specification and verification of a property of a quadruplicately redundant fault tolerant microprocessor system design. A complete listing of the formal specification of the system and the correctness theorems that are proved are given. The system performs the task of obtaining interactive consistency among the processors using a special instruction on the processors. The design is based on an algorithm proposed by Pease, Shostak, and Lamport. The property verified insures that an execution of the special instruction by the processors correctly accomplishes interactive consistency, providing certain preconditions hold, using a computer aided design verification tool, Spectool, and the theorem prover, Clio. A major contribution of the work is the demonstration of a significant fault tolerant hardware design that is mechanically verified by a theorem prover.

  14. Functional-to-form mapping for assembly design automation

    NASA Astrophysics Data System (ADS)

    Xu, Z. G.; Liu, W. M.; Shen, W. D.; Yang, D. Y.; Liu, T. T.

    2017-11-01

    Assembly-level function-to-form mapping is the most effective procedure towards design automation. The research work mainly includes: the assembly-level function definitions, product network model and the two-step mapping mechanisms. The function-to-form mapping is divided into two steps, i.e. mapping of function-to-behavior, called the first-step mapping, and the second-step mapping, i.e. mapping of behavior-to-structure. After the first step mapping, the three dimensional transmission chain (or 3D sketch) is studied, and the feasible design computing tools are developed. The mapping procedure is relatively easy to be implemented interactively, but, it is quite difficult to finish it automatically. So manual, semi-automatic, automatic and interactive modification of the mapping model are studied. A mechanical hand F-F mapping process is illustrated to verify the design methodologies.

  15. 3D Displays And User Interface Design For A Radiation Therapy Treatment Planning CAD Tool

    NASA Astrophysics Data System (ADS)

    Mosher, Charles E.; Sherouse, George W.; Chaney, Edward L.; Rosenman, Julian G.

    1988-06-01

    The long term goal of the project described in this paper is to improve local tumor control through the use of computer-aided treatment design methods that can result in selection of better treatment plans compared with conventional planning methods. To this end, a CAD tool for the design of radiation treatment beams is described. Crucial to the effectiveness of this tool are high quality 3D display techniques. We have found that 2D and 3D display methods dramatically improve the comprehension of the complex spatial relationships between patient anatomy, radiation beams, and dose distributions. In order to take full advantage of these displays, an intuitive and highly interactive user interface was created. If the system is to be used by physicians unfamiliar with computer systems, it is essential that a user interface is incorporated that allows the user to navigate through each step of the design process in a manner similar to what they are used to. Compared with conventional systems, we believe our display and CAD tools will allow the radiotherapist to achieve more accurate beam targetting leading to a better radiation dose configuration to the tumor volume. This would result in a reduction of the dose to normal tissue.

  16. A unified approach to computer analysis and modeling of spacecraft environmental interactions

    NASA Technical Reports Server (NTRS)

    Katz, I.; Mandell, M. J.; Cassidy, J. J.

    1986-01-01

    A new, coordinated, unified approach to the development of spacecraft plasma interaction models is proposed. The objective is to eliminate the unnecessary duplicative work in order to allow researchers to concentrate on the scientific aspects. By streamlining the developmental process, the interchange between theories and experimentalists is enhanced, and the transfer of technology to the spacecraft engineering community is faster. This approach is called the UNIfied Spacecraft Interaction Model (UNISIM). UNISIM is a coordinated system of software, hardware, and specifications. It is a tool for modeling and analyzing spacecraft interactions. It will be used to design experiments, to interpret results of experiments, and to aid in future spacecraft design. It breaks a Spacecraft Ineraction analysis into several modules. Each module will perform an analysis for some physical process, using phenomenology and algorithms which are well documented and have been subject to review. This system and its characteristics are discussed.

  17. Greased Lightning (GL-10) Performance Flight Research: Flight Data Report

    NASA Technical Reports Server (NTRS)

    McSwain, Robert G.; Glaab, Louis J.; Theodore, Colin R.; Rhew, Ray D. (Editor); North, David D. (Editor)

    2017-01-01

    Modern aircraft design methods have produced acceptable designs for large conventional aircraft performance. With revolutionary electronic propulsion technologies fueled by the growth in the small UAS (Unmanned Aerial Systems) industry, these same prediction models are being applied to new smaller, and experimental design concepts requiring a VTOL (Vertical Take Off and Landing) capability for ODM (On Demand Mobility). A 50% sub-scale GL-10 flight model was built and tested to demonstrate the transition from hover to forward flight utilizing DEP (Distributed Electric Propulsion)[1][2]. In 2016 plans were put in place to conduct performance flight testing on the 50% sub-scale GL-10 flight model to support a NASA project called DELIVER (Design Environment for Novel Vertical Lift Vehicles). DELIVER was investigating the feasibility of including smaller and more experimental aircraft configurations into a NASA design tool called NDARC (NASA Design and Analysis of Rotorcraft)[3]. This report covers the performance flight data collected during flight testing of the GL-10 50% sub-scale flight model conducted at Beaver Dam Airpark, VA. Overall the flight test data provides great insight into how well our existing conceptual design tools predict the performance of small scale experimental DEP concepts. Low fidelity conceptual design tools estimated the (L/D)( sub max)of the GL-10 50% sub-scale flight model to be 16. Experimentally measured (L/D)( sub max) for the GL-10 50% scale flight model was 7.2. The aerodynamic performance predicted versus measured highlights the complexity of wing and nacelle interactions which is not currently accounted for in existing low fidelity tools.

  18. ASTEC: Controls analysis for personal computers

    NASA Technical Reports Server (NTRS)

    Downing, John P.; Bauer, Frank H.; Thorpe, Christopher J.

    1989-01-01

    The ASTEC (Analysis and Simulation Tools for Engineering Controls) software is under development at Goddard Space Flight Center (GSFC). The design goal is to provide a wide selection of controls analysis tools at the personal computer level, as well as the capability to upload compute-intensive jobs to a mainframe or supercomputer. The project is a follow-on to the INCA (INteractive Controls Analysis) program that has been developed at GSFC over the past five years. While ASTEC makes use of the algorithms and expertise developed for the INCA program, the user interface was redesigned to take advantage of the capabilities of the personal computer. The design philosophy and the current capabilities of the ASTEC software are described.

  19. Software Development Technologies for Reactive, Real-Time, and Hybrid Systems

    NASA Technical Reports Server (NTRS)

    Manna, Zohar

    1996-01-01

    The research is directed towards the design and implementation of a comprehensive deductive environment for the development of high-assurance systems, especially reactive (concurrent, real-time, and hybrid) systems. Reactive systems maintain an ongoing interaction with their environment, and are among the most difficult to design and verify. The project aims to provide engineers with a wide variety of tools within a single, general, formal framework in which the tools will be most effective. The entire development process is considered, including the construction, transformation, validation, verification, debugging, and maintenance of computer systems. The goal is to automate the process as much as possible and reduce the errors that pervade hardware and software development.

  20. Visuospatial Cognition in Electronic Learning

    ERIC Educational Resources Information Center

    Shah, Priti; Freedman, Eric G.

    2003-01-01

    Static, animated, and interactive visualizations are frequently used in electronic learning environments. In this article, we provide a brief review of research on visuospatial cognition relevant to designing e-learning tools that use these displays. In the first section, we discuss the possible cognitive benefits of visualizations consider used…

  1. Is Free Recall Active: The Testing Effect through the ICAP Lens

    ERIC Educational Resources Information Center

    Bruchok, Christiana; Mar, Christopher; Craig, Scotty D.

    2017-01-01

    Amidst evidence in favor of "active learning," online instruction widely implements passive design and tests learners' retrieval performance as opposed to learners' understanding. Literature reporting the testing effect promotes recall as a learning tool. The Interactive>Constructive>Active>Passive taxonomy would place quizzing…

  2. Penguin Promises: Encouraging Aquarium Visitors to Take Conservation Action

    ERIC Educational Resources Information Center

    Mann, Judy Brenda; Ballantyne, Roy; Packer, Jan

    2018-01-01

    This study investigates the impact of an innovative conservation action campaign called "Penguin Promises" implemented at uShaka Sea World in Durban, South Africa. Communication tools included interpretive signage, exhibits with and without animals, presentations, and personal interactions, along with a specially designed postcard, on…

  3. A Turing Machine Simulator.

    ERIC Educational Resources Information Center

    Navarro, Aaron B.

    1981-01-01

    Presents a program in Level II BASIC for a TRS-80 computer that simulates a Turing machine and discusses the nature of the device. The program is run interactively and is designed to be used as an educational tool by computer science or mathematics students studying computational or automata theory. (MP)

  4. Making Accounting Tutorials Enjoyable

    ERIC Educational Resources Information Center

    Bargate, Karen

    2018-01-01

    This paper emanates from a case study which focussed on 15 Managerial Accounting and Financial Management (MAFM) students' "enjoyment" of learning MAFM in an 18-week Writing Intensive Tutorial (WIT) programme. Interactive Qualitative Analysis (IQA) was used for the research design and as a data analysis tool. Following IQA protocols…

  5. Quantum mechanics implementation in drug-design workflows: does it really help?

    PubMed

    Arodola, Olayide A; Soliman, Mahmoud Es

    2017-01-01

    The pharmaceutical industry is progressively operating in an era where development costs are constantly under pressure, higher percentages of drugs are demanded, and the drug-discovery process is a trial-and-error run. The profit that flows in with the discovery of new drugs has always been the motivation for the industry to keep up the pace and keep abreast with the endless demand for medicines. The process of finding a molecule that binds to the target protein using in silico tools has made computational chemistry a valuable tool in drug discovery in both academic research and pharmaceutical industry. However, the complexity of many protein-ligand interactions challenges the accuracy and efficiency of the commonly used empirical methods. The usefulness of quantum mechanics (QM) in drug-protein interaction cannot be overemphasized; however, this approach has little significance in some empirical methods. In this review, we discuss recent developments in, and application of, QM to medically relevant biomolecules. We critically discuss the different types of QM-based methods and their proposed application to incorporating them into drug-design and -discovery workflows while trying to answer a critical question: are QM-based methods of real help in drug-design and -discovery research and industry?

  6. Tools for the Conceptual Design and Engineering Analysis of Micro Air Vehicles

    DTIC Science & Technology

    2009-03-01

    problem with two DC motors with propellers, mounted on each wing tip and oriented such that the thrust vectors had an angular separation of 180...ElectriCalc or MotoCalc Database • Script Program (MC) In determination of the components to be integrated into MC, the R/C world was explored since the tools...Excel, ProE, QuickWrap and Script . Importing outside applications can be achieved by direct interaction with MC or through analysis server connections [11

  7. Solid Modeling Aerospace Research Tool (SMART) user's guide, version 2.0

    NASA Technical Reports Server (NTRS)

    Mcmillin, Mark L.; Spangler, Jan L.; Dahmen, Stephen M.; Rehder, John J.

    1993-01-01

    The Solid Modeling Aerospace Research Tool (SMART) software package is used in the conceptual design of aerospace vehicles. It provides a highly interactive and dynamic capability for generating geometries with Bezier cubic patches. Features include automatic generation of commonly used aerospace constructs (e.g., wings and multilobed tanks); cross-section skinning; wireframe and shaded presentation; area, volume, inertia, and center-of-gravity calculations; and interfaces to various aerodynamic and structural analysis programs. A comprehensive description of SMART and how to use it is provided.

  8. Infusion of a Gaming Paradigm into Computer-Aided Engineering Design Tools

    DTIC Science & Technology

    2012-05-03

    Virtual Test Bed (VTB), and the gaming tool, Unity3D . This hybrid gaming environment coupled a three-dimensional (3D) multibody vehicle system model...from Google Earth to the 3D visual front-end fabricated around Unity3D . The hybrid environment was sufficiently developed to support analyses of the...ndFr Cti3r4 G’OjrdFr ctior-2 The VTB simulation of the vehicle dynamics ran concurrently with and interacted with the gaming engine, Unity3D which

  9. Discovering Tradeoffs, Vulnerabilities, and Dependencies within Water Resources Systems

    NASA Astrophysics Data System (ADS)

    Reed, P. M.

    2015-12-01

    There is a growing recognition and interest in using emerging computational tools for discovering the tradeoffs that emerge across complex combinations infrastructure options, adaptive operations, and sign posts. As a field concerned with "deep uncertainties", it is logically consistent to include a more direct acknowledgement that our choices for dealing with computationally demanding simulations, advanced search algorithms, and sensitivity analysis tools are themselves subject to failures that could adversely bias our understanding of how systems' vulnerabilities change with proposed actions. Balancing simplicity versus complexity in our computational frameworks is nontrivial given that we are often exploring high impact irreversible decisions. It is not always clear that accepted models even encompass important failure modes. Moreover as they become more complex and computationally demanding the benefits and consequences of simplifications are often untested. This presentation discusses our efforts to address these challenges through our "many-objective robust decision making" (MORDM) framework for the design and management water resources systems. The MORDM framework has four core components: (1) elicited problem conception and formulation, (2) parallel many-objective search, (3) interactive visual analytics, and (4) negotiated selection of robust alternatives. Problem conception and formulation is the process of abstracting a practical design problem into a mathematical representation. We build on the emerging work in visual analytics to exploit interactive visualization of both the design space and the objective space in multiple heterogeneous linked views that permit exploration and discovery. Many-objective search produces tradeoff solutions from potentially competing problem formulations that can each consider up to ten conflicting objectives based on current computational search capabilities. Negotiated design selection uses interactive visualization, reformulation, and optimization to discover desirable designs for implementation. Multi-city urban water supply portfolio planning will be used to illustrate the MORDM framework.

  10. Multidisciplinary model-based-engineering for laser weapon systems: recent progress

    NASA Astrophysics Data System (ADS)

    Coy, Steve; Panthaki, Malcolm

    2013-09-01

    We are working to develop a comprehensive, integrated software framework and toolset to support model-based engineering (MBE) of laser weapons systems. MBE has been identified by the Office of the Director, Defense Science and Engineering as one of four potentially "game-changing" technologies that could bring about revolutionary advances across the entire DoD research and development and procurement cycle. To be effective, however, MBE requires robust underlying modeling and simulation technologies capable of modeling all the pertinent systems, subsystems, components, effects, and interactions at any level of fidelity that may be required in order to support crucial design decisions at any point in the system development lifecycle. Very often the greatest technical challenges are posed by systems involving interactions that cut across two or more distinct scientific or engineering domains; even in cases where there are excellent tools available for modeling each individual domain, generally none of these domain-specific tools can be used to model the cross-domain interactions. In the case of laser weapons systems R&D these tools need to be able to support modeling of systems involving combined interactions among structures, thermal, and optical effects, including both ray optics and wave optics, controls, atmospheric effects, target interaction, computational fluid dynamics, and spatiotemporal interactions between lasing light and the laser gain medium. To address this problem we are working to extend Comet™, to add the addition modeling and simulation capabilities required for this particular application area. In this paper we will describe our progress to date.

  11. Identifying interactions between chemical entities in biomedical text.

    PubMed

    Lamurias, Andre; Ferreira, João D; Couto, Francisco M

    2014-10-23

    Interactions between chemical compounds described in biomedical text can be of great importance to drug discovery and design, as well as pharmacovigilance. We developed a novel system, \\"Identifying Interactions between Chemical Entities\\" (IICE), to identify chemical interactions described in text. Kernel-based Support Vector Machines first identify the interactions and then an ensemble classifier validates and classifies the type of each interaction. This relation extraction module was evaluated with the corpus released for the DDI Extraction task of SemEval 2013, obtaining results comparable to state-of-the-art methods for this type of task. We integrated this module with our chemical named entity recognition module and made the whole system available as a web tool at www.lasige.di.fc.ul.pt/webtools/iice.

  12. Identifying interactions between chemical entities in biomedical text.

    PubMed

    Lamurias, Andre; Ferreira, João D; Couto, Francisco M

    2014-12-01

    Interactions between chemical compounds described in biomedical text can be of great importance to drug discovery and design, as well as pharmacovigilance. We developed a novel system, "Identifying Interactions between Chemical Entities" (IICE), to identify chemical interactions described in text. Kernel-based Support Vector Machines first identify the interactions and then an ensemble classifier validates and classifies the type of each interaction. This relation extraction module was evaluated with the corpus released for the DDI Extraction task of SemEval 2013, obtaining results comparable to stateof- the-art methods for this type of task. We integrated this module with our chemical named entity recognition module and made the whole system available as a web tool at www.lasige.di.fc.ul.pt/webtools/iice.

  13. New trends in radiology workstation design

    NASA Astrophysics Data System (ADS)

    Moise, Adrian; Atkins, M. Stella

    2002-05-01

    In the radiology workstation design, the race for adding more features is now morphing into an iterative user centric design with the focus on ergonomics and usability. The extent of the list of features for the radiology workstation used to be one of the most significant factors for a Picture Archiving and Communication System (PACS) vendor's ability to sell the radiology workstation. Not anymore is now very much the same between the major players in the PACS market. How these features work together distinguishes different radiology workstations. Integration (with the PACS/Radiology Information System (RIS) systems, with the 3D tool, Reporting Tool etc.), usability (user specific preferences, advanced display protocols, smart activation of tools etc.) and efficiency (what is the output a radiologist can generate with the workstation) are now core factors for selecting a workstation. This paper discusses these new trends in radiology workstation design. We demonstrate the importance of the interaction between the PACS vendor (software engineers) and the customer (radiologists) during the radiology workstation design. We focus on iterative aspects of the workstation development, such as the presentation of early prototypes to as many representative users as possible during the software development cycle and present the results of a survey of 8 radiologists on designing a radiology workstation.

  14. Multi-Agent Modeling and Simulation Approach for Design and Analysis of MER Mission Operations

    NASA Technical Reports Server (NTRS)

    Seah, Chin; Sierhuis, Maarten; Clancey, William J.

    2005-01-01

    A space mission operations system is a complex network of human organizations, information and deep-space network systems and spacecraft hardware. As in other organizations, one of the problems in mission operations is managing the relationship of the mission information systems related to how people actually work (practices). Brahms, a multi-agent modeling and simulation tool, was used to model and simulate NASA's Mars Exploration Rover (MER) mission work practice. The objective was to investigate the value of work practice modeling for mission operations design. From spring 2002 until winter 2003, a Brahms modeler participated in mission systems design sessions and operations testing for the MER mission held at Jet Propulsion Laboratory (JPL). He observed how designers interacted with the Brahms tool. This paper discussed mission system designers' reactions to the simulation output during model validation and the presentation of generated work procedures. This project spurred JPL's interest in the Brahms model, but it was never included as part of the formal mission design process. We discuss why this occurred. Subsequently, we used the MER model to develop a future mission operations concept. Team members were reluctant to use the MER model, even though it appeared to be highly relevant to their effort. We describe some of the tool issues we encountered.

  15. Segmentation and learning in the quantitative analysis of microscopy images

    NASA Astrophysics Data System (ADS)

    Ruggiero, Christy; Ross, Amy; Porter, Reid

    2015-02-01

    In material science and bio-medical domains the quantity and quality of microscopy images is rapidly increasing and there is a great need to automatically detect, delineate and quantify particles, grains, cells, neurons and other functional "objects" within these images. These are challenging problems for image processing because of the variability in object appearance that inevitably arises in real world image acquisition and analysis. One of the most promising (and practical) ways to address these challenges is interactive image segmentation. These algorithms are designed to incorporate input from a human operator to tailor the segmentation method to the image at hand. Interactive image segmentation is now a key tool in a wide range of applications in microscopy and elsewhere. Historically, interactive image segmentation algorithms have tailored segmentation on an image-by-image basis, and information derived from operator input is not transferred between images. But recently there has been increasing interest to use machine learning in segmentation to provide interactive tools that accumulate and learn from the operator input over longer periods of time. These new learning algorithms reduce the need for operator input over time, and can potentially provide a more dynamic balance between customization and automation for different applications. This paper reviews the state of the art in this area, provides a unified view of these algorithms, and compares the segmentation performance of various design choices.

  16. A critical assessment of topologically associating domain prediction tools

    PubMed Central

    Dali, Rola

    2017-01-01

    Abstract Topologically associating domains (TADs) have been proposed to be the basic unit of chromosome folding and have been shown to play key roles in genome organization and gene regulation. Several different tools are available for TAD prediction, but their properties have never been thoroughly assessed. In this manuscript, we compare the output of seven different TAD prediction tools on two published Hi-C data sets. TAD predictions varied greatly between tools in number, size distribution and other biological properties. Assessed against a manual annotation of TADs, individual TAD boundary predictions were found to be quite reliable, but their assembly into complete TAD structures was much less so. In addition, many tools were sensitive to sequencing depth and resolution of the interaction frequency matrix. This manuscript provides users and designers of TAD prediction tools with information that will help guide the choice of tools and the interpretation of their predictions. PMID:28334773

  17. Designing a flashcard with knowledge pills for learning to solve chemistry exercises

    NASA Astrophysics Data System (ADS)

    Cancela, Angeles; Sanchez, Angel; Maceiras, Rocio

    2012-08-01

    Nowadays, universities tend to promote more learner-centred learning, creating a more interactive and motivational environment for students and teachers. This paper describes an expanded framework to help chemical educators to construct a quiz for solution of chemical exercises in their courses. The novelty of this contribution is that the proposed tool combines a flashcards-based method with knowledge pills. The framework has three levels: definition of problem for a teacher; the quiz; use of the quiz for the student. The tool could provide predefined or automatically generated exercises of chemicals. Students could practise where and whenever they like via the Internet. Theirs answers would be registered automatically by the tool and if the students have doubts about any of the questions, they can see a knowledge pill with a teacher explanation about the solution of the exercise. Moreover, they would be able to check their scores from the tests. Once the flashcards were designed and produced, the opinions of other lecturers and students about them were considered. Both groups considered that the tool could be useful to improve the students' learning process. For future work, this design will be used with the students and its effectiveness will be analysed.

  18. Mapping healthcare systems: a policy relevant analytic tool

    PubMed Central

    Sekhri Feachem, Neelam; Afshar, Ariana; Pruett, Cristina; Avanceña, Anton L.V.

    2017-01-01

    Abstract Background In the past decade, an international consensus on the value of well-functioning systems has driven considerable health systems research. This research falls into two broad categories. The first provides conceptual frameworks that take complex healthcare systems and create simplified constructs of interactions and functions. The second focuses on granular inputs and outputs. This paper presents a novel translational mapping tool – the University of California, San Francisco mapping tool (the Tool) - which bridges the gap between these two areas of research, creating a platform for multi-country comparative analysis. Methods Using the Murray-Frenk framework, we create a macro-level representation of a country's structure, focusing on how it finances and delivers healthcare. The map visually depicts the fundamental policy questions in healthcare system design: funding sources and amount spent through each source, purchasers, populations covered, provider categories; and the relationship between these entities. Results We use the Tool to provide a macro-level comparative analysis of the structure of India's and Thailand's healthcare systems. Conclusions As part of the systems strengthening arsenal, the Tool can stimulate debate about the merits and consequences of different healthcare systems structural designs, using a common framework that fosters multi-country comparative analyses. PMID:28541518

  19. PeptideNavigator: An interactive tool for exploring large and complex data sets generated during peptide-based drug design projects.

    PubMed

    Diller, Kyle I; Bayden, Alexander S; Audie, Joseph; Diller, David J

    2018-01-01

    There is growing interest in peptide-based drug design and discovery. Due to their relatively large size, polymeric nature, and chemical complexity, the design of peptide-based drugs presents an interesting "big data" challenge. Here, we describe an interactive computational environment, PeptideNavigator, for naturally exploring the tremendous amount of information generated during a peptide drug design project. The purpose of PeptideNavigator is the presentation of large and complex experimental and computational data sets, particularly 3D data, so as to enable multidisciplinary scientists to make optimal decisions during a peptide drug discovery project. PeptideNavigator provides users with numerous viewing options, such as scatter plots, sequence views, and sequence frequency diagrams. These views allow for the collective visualization and exploration of many peptides and their properties, ultimately enabling the user to focus on a small number of peptides of interest. To drill down into the details of individual peptides, PeptideNavigator provides users with a Ramachandran plot viewer and a fully featured 3D visualization tool. Each view is linked, allowing the user to seamlessly navigate from collective views of large peptide data sets to the details of individual peptides with promising property profiles. Two case studies, based on MHC-1A activating peptides and MDM2 scaffold design, are presented to demonstrate the utility of PeptideNavigator in the context of disparate peptide-design projects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Interactive, open source, travel time scenario modelling: tools to facilitate participation in health service access analysis.

    PubMed

    Fisher, Rohan; Lassa, Jonatan

    2017-04-18

    Modelling travel time to services has become a common public health tool for planning service provision but the usefulness of these analyses is constrained by the availability of accurate input data and limitations inherent in the assumptions and parameterisation. This is particularly an issue in the developing world where access to basic data is limited and travel is often complex and multi-modal. Improving the accuracy and relevance in this context requires greater accessibility to, and flexibility in, travel time modelling tools to facilitate the incorporation of local knowledge and the rapid exploration of multiple travel scenarios. The aim of this work was to develop simple open source, adaptable, interactive travel time modelling tools to allow greater access to and participation in service access analysis. Described are three interconnected applications designed to reduce some of the barriers to the more wide-spread use of GIS analysis of service access and allow for complex spatial and temporal variations in service availability. These applications are an open source GIS tool-kit and two geo-simulation models. The development of these tools was guided by health service issues from a developing world context but they present a general approach to enabling greater access to and flexibility in health access modelling. The tools demonstrate a method that substantially simplifies the process for conducting travel time assessments and demonstrate a dynamic, interactive approach in an open source GIS format. In addition this paper provides examples from empirical experience where these tools have informed better policy and planning. Travel and health service access is complex and cannot be reduced to a few static modeled outputs. The approaches described in this paper use a unique set of tools to explore this complexity, promote discussion and build understanding with the goal of producing better planning outcomes. The accessible, flexible, interactive and responsive nature of the applications described has the potential to allow complex environmental social and political considerations to be incorporated and visualised. Through supporting evidence-based planning the innovative modelling practices described have the potential to help local health and emergency response planning in the developing world.

  1. A multilevel control system for the large space telescope. [numerical analysis/optimal control

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.; Sundareshan, S. K.; Vukcevic, M. B.

    1975-01-01

    A multilevel scheme was proposed for control of Large Space Telescope (LST) modeled by a three-axis-six-order nonlinear equation. Local controllers were used on the subsystem level to stabilize motions corresponding to the three axes. Global controllers were applied to reduce (and sometimes nullify) the interactions among the subsystems. A multilevel optimization method was developed whereby local quadratic optimizations were performed on the subsystem level, and global control was again used to reduce (nullify) the effect of interactions. The multilevel stabilization and optimization methods are presented as general tools for design and then used in the design of the LST Control System. The methods are entirely computerized, so that they can accommodate higher order LST models with both conceptual and numerical advantages over standard straightforward design techniques.

  2. The Tactile Ethics of Soft Robotics: Designing Wisely for Human-Robot Interaction.

    PubMed

    Arnold, Thomas; Scheutz, Matthias

    2017-06-01

    Soft robots promise an exciting design trajectory in the field of robotics and human-robot interaction (HRI), promising more adaptive, resilient movement within environments as well as a safer, more sensitive interface for the objects or agents the robot encounters. In particular, tactile HRI is a critical dimension for designers to consider, especially given the onrush of assistive and companion robots into our society. In this article, we propose to surface an important set of ethical challenges for the field of soft robotics to meet. Tactile HRI strongly suggests that soft-bodied robots balance tactile engagement against emotional manipulation, model intimacy on the bonding with a tool not with a person, and deflect users from personally and socially destructive behavior the soft bodies and surfaces could normally entice.

  3. Embodying Computational Thinking: Initial Design of an Emerging Technological Learning Tool

    ERIC Educational Resources Information Center

    Daily, Shaundra B.; Leonard, Alison E.; Jörg, Sophie; Babu, Sabarish; Gundersen, Kara; Parmar, Dhaval

    2015-01-01

    This emerging technology report describes virtual environment interactions an approach for blending movement and computer programming as an embodied way to support girls in building computational thinking skills. The authors seek to understand how body syntonicity might enable young learners to bootstrap their intuitive knowledge in order to…

  4. MECHANISTIC INDICATORS OF CHILDHOOD ASTHMA (MICA): A SYSTEMS BIOLOGY APPROACH FOR THE INTEGRATION OF MULTIFACTORIAL EXPOSURE AND ENVIRONMENTAL HEALTH DATA

    EPA Science Inventory

    Modem methods in molecular biology and advanced computational tools show promise in elucidating complex interactions that occur between genes and environmental factors in diseases such as asthma. However, appropriately designed studies are critical for these methods to reach the...

  5. Verbal and Nonverbal Classroom Communication: The Development of an Observational Instrument.

    ERIC Educational Resources Information Center

    Heger, Herbert K.

    This paper reports the development of a classroom observation instrument designed to broaden and extend the power of existing tools to provide a balanced, reciprocal perspective of both verbal and nonverbal communication. An introductory section discusses developments in communication analysis. The Miniaturized Total Interaction Analysis System…

  6. Intelligent Adaptive Interface: A Design Tool for Enhancing Human-Machine System Performances

    DTIC Science & Technology

    2009-10-01

    and customizable. Thus, an intelligent interface should tailor its parameters to certain prescribed specifications or convert itself and adjust to...Computer Interaction 3(2): 87-122. [51] Schereiber, G., Akkermans, H., Anjewierden, A., de Hoog , R., Shadbolt, N., Van de Velde, W., & Wielinga, W

  7. Conserving Earth's Biodiversity. [CD-ROM and] Instructor's Manual.

    ERIC Educational Resources Information Center

    2000

    This CD-ROM is designed as an interactive learning tool to support teaching in highly interdisciplinary fields such as conservation of biodiversity. Topics introduced in the software include the impact of humans on natural landscapes, threats to biodiversity, methods and theories of conservation biology, environmental laws, and relevant economic…

  8. 75 FR 25927 - Vehicle/Track Interaction Safety Standards; High-Speed and High Cant Deficiency Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    ... qualification process as an important tool for the assessment of vehicle performance. These simulations are... qualification process, simulations would be conducted using both a measured track geometry segment... on the results of simulation studies designed to identify track geometry irregularities associated...

  9. Exploration and Discovery through Maps: Teaching Science with Technology

    EPA Science Inventory

    Online maps have the power to bring students closer to their local natural environments. EnviroAtlas is an interactive, web-based tool that was designed by the EPA and its partners to provide access to maps that show the status of the local environment and social elements of an ...

  10. Advancements in Curricular Design: Web-Assisted Courseware Applications in Mass Communication.

    ERIC Educational Resources Information Center

    Reppert, James E.

    Interactive courseware applications are becoming more prevalent as instructional tools in the communication classroom. Prometheus, developed by George Washington University, allows instructors to post syllabi, course outlines, lecture notes, and tests online, in addition to giving students access to discussions and chat sessions. Other popular…

  11. COLLAGE: A Collaborative Learning Design Editor Based on Patterns

    ERIC Educational Resources Information Center

    Hernandez-Leo, Davinia; Villasclaras-Fernandez, Eloy D.; Asensio-Perez, Juan I.; Dimitriadis, Yannis; Jorrin-Abellan, Ivan M.; Ruiz-Requies, Ines; Rubia-Avi, Bartolome

    2006-01-01

    This paper introduces "Collage", a high-level IMS-LD compliant authoring tool that is specialized for CSCL (Computer-Supported Collaborative Learning). Nowadays CSCL is a key trend in e-learning since it highlights the importance of social interactions as an essential element of learning. CSCL is an interdisciplinary domain, which…

  12. An Advanced Professional Pharmacy Experience in a Community Setting Using an Experiential Manual

    PubMed Central

    Lee, Karen W.; Machado, Matthew R.; Wenzel, Marie M.; Gagnon, James M.; Calomo, Joseph M.

    2006-01-01

    Objectives To determine the usefulness of a teaching and learning tool used to create structure for advanced pharmacy practice experiences (APPEs) in community pharmacy settings, and to identify differences between respondents' perspectives on the relevance and practicality of implementing specific community pharmacy-related topics during the experience. Design Community practice faculty members designed a manual that outlined a week-by-week schedule of student activities, consistent with the Center for the Advancement of Pharmaceutical Education (CAPE) outcome-based goals, and included associated teaching, documentation, and assessment tools. The manual was distributed to site preceptors and students. Assessment Eighty-six PharmD students responded to a questionnaire upon completion of their community APPE. Student feedback concerning the impact of the manual relative to interactions with site preceptors and their overall learning experience was relatively positive. Conclusion The manual was an effective teaching and learning tool for students completing a community APPE. PMID:17149421

  13. Development of Support Service for Prevention and Recovery from Dementia and Science of Lethe

    NASA Astrophysics Data System (ADS)

    Otake, Mihoko

    Purpose of this study is to explore service design method through the development of support service for prevention and recovery from dementia towards science of lethe. We designed and implemented conversation support service via coimagination method based on multiscale service design method, both were proposed by the author. Multiscale service model consists of tool, event, human, network, style and rule. Service elements at different scales are developed according to the model. Interactive conversation supported by coimagination method activates cognitive functions so as to prevent progress of dementia. This paper proposes theoretical bases for science of lethe. Firstly, relationship among coimagination method and three cognitive functions including division of attention, planning, episodic memory which decline at mild cognitive imparement. Secondly, thought state transition model during conversation which describes cognitive enhancement via interactive communication. Thirdly, Set Theoretical Measure of Interaction is proposed for evaluating effectiveness of conversation to cognitive enhancement. Simulation result suggests that the ideas which cannot be explored by each speaker are explored during interactive conversation. Finally, coimagination method compared with reminiscence therapy and its possibility for collaboration is discussed.

  14. Practice Evaluation Strategies Among Social Workers: Why an Evidence-Informed Dual-Process Theory Still Matters.

    PubMed

    Davis, Thomas D

    2017-01-01

    Practice evaluation strategies range in style from the formal-analytic tools of single-subject designs, rapid assessment instruments, algorithmic steps in evidence-informed practice, and computer software applications, to the informal-interactive tools of clinical supervision, consultation with colleagues, use of client feedback, and clinical experience. The purpose of this article is to provide practice researchers in social work with an evidence-informed theory that is capable of explaining both how and why social workers use practice evaluation strategies to self-monitor the effectiveness of their interventions in terms of client change. The author delineates the theoretical contours and consequences of what is called dual-process theory. Drawing on evidence-informed advances in the cognitive and social neurosciences, the author identifies among everyday social workers a theoretically stable, informal-interactive tool preference that is a cognitively necessary, sufficient, and stand-alone preference that requires neither the supplementation nor balance of formal-analytic tools. The author's delineation of dual-process theory represents a theoretical contribution in the century-old attempt to understand how and why social workers evaluate their practice the way they do.

  15. Touchfree medical interfaces.

    PubMed

    Rossol, Nathaniel; Cheng, Irene; Rui Shen; Basu, Anup

    2014-01-01

    Real-time control of visual display systems via mid-air hand gestures offers many advantages over traditional interaction modalities. In medicine, for example, it allows a practitioner to adjust display values, e.g. contrast or zoom, on a medical visualization interface without the need to re-sterilize the interface. However, when users are holding a small tool (such as a pen, surgical needle, or computer stylus) the need to constantly put the tool down in order to make hand gesture interactions is not ideal. This work presents a novel interface that automatically adjusts for gesturing with hands and hand-held tools to precisely control medical displays. The novelty of our interface is that it uses a single set of gestures designed to be equally effective for fingers and hand-held tools without using markers. This type of interface was previously not feasible with low-resolution depth sensors such as Kinect, but is now achieved by using the recently released Leap Motion controller. Our interface is validated through a user study on a group of people given the task of adjusting parameters on a medical image.

  16. Designing the molecular future.

    PubMed

    Schneider, Gisbert

    2012-01-01

    Approximately 25 years ago the first computer applications were conceived for the purpose of automated 'de novo' drug design, prominent pioneering tools being ALADDIN, CAVEAT, GENOA, and DYLOMMS. Many of these early concepts were enabled by innovative techniques for ligand-receptor interaction modeling like GRID, MCSS, DOCK, and CoMFA, which still provide the theoretical framework for several more recently developed molecular design algorithms. After a first wave of software tools and groundbreaking applications in the 1990s--expressly GROW, GrowMol, LEGEND, and LUDI representing some of the key players--we are currently witnessing a renewed strong interest in this field. Innovative ideas for both receptor and ligand-based drug design have recently been published. We here provide a personal perspective on the evolution of de novo design, highlighting some of the historic achievements as well as possible future developments of this exciting field of research, which combines multiple scientific disciplines and is, like few other areas in chemistry, subject to continuous enthusiastic discussion and compassionate dispute.

  17. Designing the molecular future

    NASA Astrophysics Data System (ADS)

    Schneider, Gisbert

    2012-01-01

    Approximately 25 years ago the first computer applications were conceived for the purpose of automated `de novo' drug design, prominent pioneering tools being ALADDIN, CAVEAT, GENOA, and DYLOMMS. Many of these early concepts were enabled by innovative techniques for ligand-receptor interaction modeling like GRID, MCSS, DOCK, and CoMFA, which still provide the theoretical framework for several more recently developed molecular design algorithms. After a first wave of software tools and groundbreaking applications in the 1990s—expressly GROW, GrowMol, LEGEND, and LUDI representing some of the key players—we are currently witnessing a renewed strong interest in this field. Innovative ideas for both receptor and ligand-based drug design have recently been published. We here provide a personal perspective on the evolution of de novo design, highlighting some of the historic achievements as well as possible future developments of this exciting field of research, which combines multiple scientific disciplines and is, like few other areas in chemistry, subject to continuous enthusiastic discussion and compassionate dispute.

  18. HiRel - Reliability/availability integrated workstation tool

    NASA Technical Reports Server (NTRS)

    Bavuso, Salvatore J.; Dugan, Joanne B.

    1992-01-01

    The HiRel software tool is described and demonstrated by application to the mission avionics subsystem of the Advanced System Integration Demonstrations (ASID) system that utilizes the PAVE PILLAR approach. HiRel marks another accomplishment toward the goal of producing a totally integrated computer-aided design (CAD) workstation design capability. Since a reliability engineer generally represents a reliability model graphically before it can be solved, the use of a graphical input description language increases productivity and decreases the incidence of error. The graphical postprocessor module HARPO makes it possible for reliability engineers to quickly analyze huge amounts of reliability/availability data to observe trends due to exploratory design changes. The addition of several powerful HARP modeling engines provides the user with a reliability/availability modeling capability for a wide range of system applications all integrated under a common interactive graphical input-output capability.

  19. You talkin' to me? Interactive playback is a powerful yet underused tool in animal communication research.

    PubMed

    King, Stephanie L

    2015-07-01

    Over the years, playback experiments have helped further our understanding of the wonderful world of animal communication. They have provided fundamental insights into animal behaviour and the function of communicative signals in numerous taxa. As important as these experiments are, however, there is strong evidence to suggest that the information conveyed in a signal may only have value when presented interactively. By their very nature, signalling exchanges are interactive and therefore, an interactive playback design is a powerful tool for examining the function of such exchanges. While researchers working on frog and songbird vocal interactions have long championed interactive playback, it remains surprisingly underused across other taxa. The interactive playback approach is not limited to studies of acoustic signalling, but can be applied to other sensory modalities, including visual, chemical and electrical communication. Here, I discuss interactive playback as a potent yet underused technique in the field of animal behaviour. I present a concise review of studies that have used interactive playback thus far, describe how it can be applied, and discuss its limitations and challenges. My hope is that this review will result in more scientists applying this innovative technique to their own study subjects, as a means of furthering our understanding of the function of signalling interactions in animal communication systems. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  20. An Overview of Starfish: A Table-Centric Tool for Interactive Synthesis

    NASA Technical Reports Server (NTRS)

    Tsow, Alex

    2008-01-01

    Engineering is an interactive process that requires intelligent interaction at many levels. My thesis [1] advances an engineering discipline for high-level synthesis and architectural decomposition that integrates perspicuous representation, designer interaction, and mathematical rigor. Starfish, the software prototype for the design method, implements a table-centric transformation system for reorganizing control-dominated system expressions into high-level architectures. Based on the digital design derivation (DDD) system a designer-guided synthesis technique that applies correctness preserving transformations to synchronous data flow specifications expressed as co- recursive stream equations Starfish enhances user interaction and extends the reachable design space by incorporating four innovations: behavior tables, serialization tables, data refinement, and operator retiming. Behavior tables express systems of co-recursive stream equations as a table of guarded signal updates. Developers and users of the DDD system used manually constructed behavior tables to help them decide which transformations to apply and how to specify them. These design exercises produced several formally constructed hardware implementations: the FM9001 microprocessor, an SECD machine for evaluating LISP, and the SchemEngine, garbage collected machine for interpreting a byte-code representation of compiled Scheme programs. Bose and Tuna, two of DDD s developers, have subsequently commercialized the design derivation methodology at Derivation Systems, Inc. (DSI). DSI has formally derived and validated PCI bus interfaces and a Java byte-code processor; they further executed a contract to prototype SPIDER-NASA's ultra-reliable communications bus. To date, most derivations from DDD and DRS have targeted hardware due to its synchronous design paradigm. However, Starfish expressions are independent of the synchronization mechanism; there is no commitment to hardware or globally broadcast clocks. Though software back-ends for design derivation are limited to the DDD stream-interpreter, targeting synchronous or real-time software is not substantively different from targeting hardware.

  1. Overview of computational control research at UT Austin

    NASA Technical Reports Server (NTRS)

    Bong, Wie

    1989-01-01

    An overview of current research activities at UT Austin is presented to discuss certain technical issues in the following areas: (1) Computer-Aided Nonlinear Control Design: In this project, the describing function method is employed for the nonlinear control analysis and design of a flexible spacecraft equipped with pulse modulated reaction jets. INCA program has been enhanced to allow the numerical calculation of describing functions as well as the nonlinear limit cycle analysis capability in the frequency domain; (2) Robust Linear Quadratic Gaussian (LQG) Compensator Synthesis: Robust control design techniques and software tools are developed for flexible space structures with parameter uncertainty. In particular, an interactive, robust multivariable control design capability is being developed for INCA program; and (3) LQR-Based Autonomous Control System for the Space Station: In this project, real time implementation of LQR-based autonomous control system is investigated for the space station with time-varying inertias and with significant multibody dynamic interactions.

  2. Declarative language design for interactive visualization.

    PubMed

    Heer, Jeffrey; Bostock, Michael

    2010-01-01

    We investigate the design of declarative, domain-specific languages for constructing interactive visualizations. By separating specification from execution, declarative languages can simplify development, enable unobtrusive optimization, and support retargeting across platforms. We describe the design of the Protovis specification language and its implementation within an object-oriented, statically-typed programming language (Java). We demonstrate how to support rich visualizations without requiring a toolkit-specific data model and extend Protovis to enable declarative specification of animated transitions. To support cross-platform deployment, we introduce rendering and event-handling infrastructures decoupled from the runtime platform, letting designers retarget visualization specifications (e.g., from desktop to mobile phone) with reduced effort. We also explore optimizations such as runtime compilation of visualization specifications, parallelized execution, and hardware-accelerated rendering. We present benchmark studies measuring the performance gains provided by these optimizations and compare performance to existing Java-based visualization tools, demonstrating scalability improvements exceeding an order of magnitude.

  3. Small Talk: Children's Everyday `Molecule' Ideas

    NASA Astrophysics Data System (ADS)

    Jakab, Cheryl

    2013-08-01

    This paper reports on 6-11-year-old children's `sayings and doings' (Harré 2002) as they explore molecule artefacts in dialectical-interactive teaching interviews (Fleer, Cultural Studies of Science Education 3:781-786, 2008; Hedegaard et al. 2008). This sociocultural study was designed to explore children's everyday awareness of and meaning-making with cultural molecular artefacts. Our everyday world is populated with an ever increasing range of molecular or nanoworld words, symbols, images, and games. What do children today say about these artefacts that are used to represent molecular world entities? What are the material and social resources that can influence a child's everyday and developing scientific ideas about `molecules'? How do children interact with these cognitive tools when given expert assistance? What meaning-making is afforded when children are socially and materially assisted in using molecular tools in early chemical and nanoworld thinking? Tool-dependent discursive studies show that provision of cultural artefacts can assist and direct developmental thinking across many domains of science (Schoultz et al., Human Development 44:103-118, 2001; Siegal 2008). Young children's use of molecular artefacts as cognitive tools has not received much attention to date (Jakab 2009a, b). This study shows 6-11-year-old children expressing everyday ideas of molecular artefacts and raising their own questions about the artefacts. They are seen beginning to domesticate (Erneling 2010) the words, symbols, and images to their own purposes when given the opportunity to interact with such artefacts in supported activity. Discursive analysis supports the notion that using `molecules' as cultural tools can help young children to begin `putting on molecular spectacles' (Kind 2004). Playing with an interactive game (ICT) is shown to be particularly helpful in assisting children's early meaning-making with representations of molecules, atoms, and their chemical symbols.

  4. Data Independent Acquisition analysis in ProHits 4.0.

    PubMed

    Liu, Guomin; Knight, James D R; Zhang, Jian Ping; Tsou, Chih-Chiang; Wang, Jian; Lambert, Jean-Philippe; Larsen, Brett; Tyers, Mike; Raught, Brian; Bandeira, Nuno; Nesvizhskii, Alexey I; Choi, Hyungwon; Gingras, Anne-Claude

    2016-10-21

    Affinity purification coupled with mass spectrometry (AP-MS) is a powerful technique for the identification and quantification of physical interactions. AP-MS requires careful experimental design, appropriate control selection and quantitative workflows to successfully identify bona fide interactors amongst a large background of contaminants. We previously introduced ProHits, a Laboratory Information Management System for interaction proteomics, which tracks all samples in a mass spectrometry facility, initiates database searches and provides visualization tools for spectral counting-based AP-MS approaches. More recently, we implemented Significance Analysis of INTeractome (SAINT) within ProHits to provide scoring of interactions based on spectral counts. Here, we provide an update to ProHits to support Data Independent Acquisition (DIA) with identification software (DIA-Umpire and MSPLIT-DIA), quantification tools (through DIA-Umpire, or externally via targeted extraction), and assessment of quantitative enrichment (through mapDIA) and scoring of interactions (through SAINT-intensity). With additional improvements, notably support of the iProphet pipeline, facilitated deposition into ProteomeXchange repositories and enhanced export and viewing functions, ProHits 4.0 offers a comprehensive suite of tools to facilitate affinity proteomics studies. It remains challenging to score, annotate and analyze proteomics data in a transparent manner. ProHits was previously introduced as a LIMS to enable storing, tracking and analysis of standard AP-MS data. In this revised version, we expand ProHits to include integration with a number of identification and quantification tools based on Data-Independent Acquisition (DIA). ProHits 4.0 also facilitates data deposition into public repositories, and the transfer of data to new visualization tools. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. CellNetVis: a web tool for visualization of biological networks using force-directed layout constrained by cellular components.

    PubMed

    Heberle, Henry; Carazzolle, Marcelo Falsarella; Telles, Guilherme P; Meirelles, Gabriela Vaz; Minghim, Rosane

    2017-09-13

    The advent of "omics" science has brought new perspectives in contemporary biology through the high-throughput analyses of molecular interactions, providing new clues in protein/gene function and in the organization of biological pathways. Biomolecular interaction networks, or graphs, are simple abstract representations where the components of a cell (e.g. proteins, metabolites etc.) are represented by nodes and their interactions are represented by edges. An appropriate visualization of data is crucial for understanding such networks, since pathways are related to functions that occur in specific regions of the cell. The force-directed layout is an important and widely used technique to draw networks according to their topologies. Placing the networks into cellular compartments helps to quickly identify where network elements are located and, more specifically, concentrated. Currently, only a few tools provide the capability of visually organizing networks by cellular compartments. Most of them cannot handle large and dense networks. Even for small networks with hundreds of nodes the available tools are not able to reposition the network while the user is interacting, limiting the visual exploration capability. Here we propose CellNetVis, a web tool to easily display biological networks in a cell diagram employing a constrained force-directed layout algorithm. The tool is freely available and open-source. It was originally designed for networks generated by the Integrated Interactome System and can be used with networks from others databases, like InnateDB. CellNetVis has demonstrated to be applicable for dynamic investigation of complex networks over a consistent representation of a cell on the Web, with capabilities not matched elsewhere.

  6. Reproducible research in palaeomagnetism

    NASA Astrophysics Data System (ADS)

    Lurcock, Pontus; Florindo, Fabio

    2015-04-01

    The reproducibility of research findings is attracting increasing attention across all scientific disciplines. In palaeomagnetism as elsewhere, computer-based analysis techniques are becoming more commonplace, complex, and diverse. Analyses can often be difficult to reproduce from scratch, both for the original researchers and for others seeking to build on the work. We present a palaeomagnetic plotting and analysis program designed to make reproducibility easier. Part of the problem is the divide between interactive and scripted (batch) analysis programs. An interactive desktop program with a graphical interface is a powerful tool for exploring data and iteratively refining analyses, but usually cannot operate without human interaction. This makes it impossible to re-run an analysis automatically, or to integrate it into a larger automated scientific workflow - for example, a script to generate figures and tables for a paper. In some cases the parameters of the analysis process itself are not saved explicitly, making it hard to repeat or improve the analysis even with human interaction. Conversely, non-interactive batch tools can be controlled by pre-written scripts and configuration files, allowing an analysis to be 'replayed' automatically from the raw data. However, this advantage comes at the expense of exploratory capability: iteratively improving an analysis entails a time-consuming cycle of editing scripts, running them, and viewing the output. Batch tools also tend to require more computer expertise from their users. PuffinPlot is a palaeomagnetic plotting and analysis program which aims to bridge this gap. First released in 2012, it offers both an interactive, user-friendly desktop interface and a batch scripting interface, both making use of the same core library of palaeomagnetic functions. We present new improvements to the program that help to integrate the interactive and batch approaches, allowing an analysis to be interactively explored and refined, then saved as a self-contained configuration which can be re-run without human interaction. PuffinPlot can thus be used as a component of a larger scientific workflow, integrated with workflow management tools such as Kepler, without compromising its capabilities as an exploratory tool. Since both PuffinPlot and the platform it runs on (Java) are Free/Open Source software, even the most fundamental components of an analysis can be verified and reproduced.

  7. Survey of Consumer Informatics for Palliation and Hospice Care

    PubMed Central

    Corn, Milton; Gustafson, David H.; Harris, Linda M.; Kutner, Jean S.; McFarren, Ann E.; Shad, Aziza T.

    2012-01-01

    Context Palliation in patient care is under-utilized in part because many patients have insufficient knowledge about this management option. Information technology can improve awareness by providing access to numerous sources of trustworthy information. Evidence Acquisition To estimate what a patient interested in palliation might find online, online resources were searched in July 2010, using terms relevant to palliation. PubMed was searched for publications relevant to discussed topics. Evidence Synthesis Search engines returned vast numbers of hits, and identifying trustworthy sites was difficult. Products judged as trustworthy were classified as information, decision tool, or extended interaction tool. Sites with useful educational material were relatively plentiful; decision guides and interactive tools were much rarer. Available consumer informatics did not address well some terminal illnesses, and some subpopulations such as children, nor was there sufficient attention to literacy levels or principles of instructional design. Online or published information about usage numbers, effectiveness, and cost/benefit considerations was scant. Many sectors, including commercial, government, healthcare, research, and wellness/advocacy groups, have created consumer informatics for palliation. Conclusions Online information about palliation is available, although identifying trustworthy sources can be problematic. General information sites are relatively plentiful, but more tools for decision making, and interaction would increase value of web resources. More attention to literacy levels, instructional principles, and needs of special populations would improve products. Research to measure usage of such tools, ability to influence behavior, and cost/benefit issues is needed. PMID:21521592

  8. Why people continue to play online games: in search of critical design factors to increase customer loyalty to online contents.

    PubMed

    Choi, Dongseong; Kim, Jinwoo

    2004-02-01

    As people increasingly play online games, numerous new features have been proposed to increase players' log-on time at online gaming sites. However, few studies have investigated why people continue to play certain online games or which design features are most closely related to the amount of time spent by players at particular online gaming sites. This study proposes a theoretical model using the concepts of customer loyalty, flow, personal interaction, and social interaction to explain why people continue to play online network games. The study then conducts a large-scale survey to validate the model. Finally, it analyzes current online games to identify design features that are closely related to the theoretical concepts. The results indicate that people continue to play online games if they have optimal experiences while playing the games. This optimal experience can be attained if the player has effective personal interaction with the system or pleasant social interactions with other people connected to the Internet. Personal interaction can be facilitated by providing appropriate goals, operators and feedback; social interaction can be facilitated through appropriate communication places and tools. This paper ends with the implications of applying the study results to other domains such as e-commerce and cyber communities.

  9. Machine detector interface studies: Layout and synchrotron radiation estimate in the future circular collider interaction region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boscolo, Manuela; Burkhardt, Helmut; Sullivan, Michael

    The interaction region layout for the e +e – future circular collider FCC-ee is presented together with a preliminary estimate of synchrotron radiation that affects this region. We describe in this paper the main guidelines of this design and the estimate of synchrotron radiation coming from the last bending magnets and from the final focus quadrupoles, with the software tools developed for this purpose. Here, the design follows the asymmetric optics layout as far as incoming bend radiation is concerned with the maximum foreseen beam energy of 175 GeV and we present a feasible initial layout with an indication ofmore » tolerable synchrotron radiation.« less

  10. Machine detector interface studies: Layout and synchrotron radiation estimate in the future circular collider interaction region

    DOE PAGES

    Boscolo, Manuela; Burkhardt, Helmut; Sullivan, Michael

    2017-01-27

    The interaction region layout for the e +e – future circular collider FCC-ee is presented together with a preliminary estimate of synchrotron radiation that affects this region. We describe in this paper the main guidelines of this design and the estimate of synchrotron radiation coming from the last bending magnets and from the final focus quadrupoles, with the software tools developed for this purpose. Here, the design follows the asymmetric optics layout as far as incoming bend radiation is concerned with the maximum foreseen beam energy of 175 GeV and we present a feasible initial layout with an indication ofmore » tolerable synchrotron radiation.« less

  11. New multivariable capabilities of the INCA program

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H.; Downing, John P.; Thorpe, Christopher J.

    1989-01-01

    The INteractive Controls Analysis (INCA) program was developed at NASA's Goddard Space Flight Center to provide a user friendly, efficient environment for the design and analysis of control systems, specifically spacecraft control systems. Since its inception, INCA has found extensive use in the design, development, and analysis of control systems for spacecraft, instruments, robotics, and pointing systems. The (INCA) program was initially developed as a comprehensive classical design analysis tool for small and large order control systems. The latest version of INCA, expected to be released in February of 1990, was expanded to include the capability to perform multivariable controls analysis and design.

  12. Rigorous ILT optimization for advanced patterning and design-process co-optimization

    NASA Astrophysics Data System (ADS)

    Selinidis, Kosta; Kuechler, Bernd; Cai, Howard; Braam, Kyle; Hoppe, Wolfgang; Domnenko, Vitaly; Poonawala, Amyn; Xiao, Guangming

    2018-03-01

    Despite the large difficulties involved in extending 193i multiple patterning and the slow ramp of EUV lithography to full manufacturing readiness, the pace of development for new technology node variations has been accelerating. Multiple new variations of new and existing technology nodes have been introduced for a range of device applications; each variation with at least a few new process integration methods, layout constructs and/or design rules. This had led to a strong increase in the demand for predictive technology tools which can be used to quickly guide important patterning and design co-optimization decisions. In this paper, we introduce a novel hybrid predictive patterning method combining two patterning technologies which have each individually been widely used for process tuning, mask correction and process-design cooptimization. These technologies are rigorous lithography simulation and inverse lithography technology (ILT). Rigorous lithography simulation has been extensively used for process development/tuning, lithography tool user setup, photoresist hot-spot detection, photoresist-etch interaction analysis, lithography-TCAD interactions/sensitivities, source optimization and basic lithography design rule exploration. ILT has been extensively used in a range of lithographic areas including logic hot-spot fixing, memory layout correction, dense memory cell optimization, assist feature (AF) optimization, source optimization, complex patterning design rules and design-technology co-optimization (DTCO). The combined optimization capability of these two technologies will therefore have a wide range of useful applications. We investigate the benefits of the new functionality for a few of these advanced applications including correction for photoresist top loss and resist scumming hotspots.

  13. A web-based online collaboration platform for formulating engineering design projects

    NASA Astrophysics Data System (ADS)

    Varikuti, Sainath

    Effective communication and collaboration among students, faculty and industrial sponsors play a vital role while formulating and solving engineering design projects. With the advent in the web technology, online platforms and systems have been proposed to facilitate interactions and collaboration among different stakeholders in the context of senior design projects. However, there are noticeable gaps in the literature with respect to understanding the effects of online collaboration platforms for formulating engineering design projects. Most of the existing literature is focused on exploring the utility of online platforms on activities after the problem is defined and teams are formed. Also, there is a lack of mechanisms and tools to guide the project formation phase in senior design projects, which makes it challenging for students and faculty to collaboratively develop and refine project ideas and to establish appropriate teams. In this thesis a web-based online collaboration platform is designed and implemented to share, discuss and obtain feedback on project ideas and to facilitate collaboration among students and faculty prior to the start of the semester. The goal of this thesis is to understand the impact of an online collaboration platform for formulating engineering design projects, and how a web-based online collaboration platform affects the amount of interactions among stakeholders during the early phases of design process. A survey measuring the amount of interactions among students and faculty is administered. Initial findings show a marked improvement in the students' ability to share project ideas and form teams with other students and faculty. Students found the online platform simple to use. The suggestions for improving the tool generally included features that were not necessarily design specific, indicating that the underlying concept of this collaborative platform provides a strong basis and can be extended for future online platforms. Although the platform was designed to promote collaboration, adoption of the collaborative platform by students and faculty has been slow. While the platform appears to be very useful for collaboration, more time is required for it to be widely used by all the stakeholders and to fully convert from email communication to the use of the online collaboration platform.

  14. Simulated Rotor Wake Interactions Resulting from Civil Tiltrotor Aircraft Operations Near Vertiport Terminals

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Rajagopalan, Ganesh

    2013-01-01

    A mid-fidelity computational fluid dynamics tool called RotCFD - specifically developed to aid in rotorcraft conceptual design efforts - has been applied to the study of rotor wake interactions of civil tiltrotor aircraft in the immediate vicinity of vertiport/airport ground infrastructure. This issue has grown in importance as previous NASA studies have suggested that civil tiltrotor aircraft can potentially have a significant impact on commercial transport aviation. Current NASA reference designs for such civil tiltrotor aircraft are focused on a size category of 90-120 passengers. Notional concepts of operations include simultaneous non-interfering flight into and out of congested airports having vertiports, that is, prepared VTOL takeoff and landing zones, or underutilized short runways for STOL operation. Such large gross-weight vehicles will be generating very high induced velocities. Inevitably, the interaction of the rotor wake with ground infrastructure such as terminals/jetways must be considered both from an operational as well as design perspective.

  15. An interactive wire-wrap board layout program

    NASA Technical Reports Server (NTRS)

    Schlutsmeyer, A.

    1987-01-01

    An interactive computer-graphics-based tool for specifying the placement of electronic parts on a wire-wrap circuit board is presented. Input is a data file (currently produced by a commercial logic design system) which describes the parts used and their interconnections. Output includes printed reports describing the parts and wire paths, parts counts, placement lists, board drawing, and a tape to send to the wire-wrap vendor. The program should reduce the engineer's layout time by a factor of 3 to 5 as compared to manual methods.

  16. An Interactive Program for the Calculation and Analysis of the Parameter Sensitivities in a Linear, Time-Invariant System.

    DTIC Science & Technology

    1981-03-01

    tifiability is imposed; and the system designer now has a tool to evaluate how well the model describes the system . The algorithm is verified by checking its...xi I. Introduction In analyzing a system , the design engineer uses a mathematical model. The model, by its very definition, represents the system . It...number of G (See Eq (23).) can 18 give the designer a good indication of just how well the model defined by Eqs (1) through (3) describes the system

  17. Computational tools for multi-linked flexible structures

    NASA Technical Reports Server (NTRS)

    Lee, Gordon K. F.; Brubaker, Thomas A.; Shults, James R.

    1990-01-01

    A software module which designs and tests controllers and filters in Kalman Estimator form, based on a polynomial state-space model is discussed. The user-friendly program employs an interactive graphics approach to simplify the design process. A variety of input methods are provided to test the effectiveness of the estimator. Utilities are provided which address important issues in filter design such as graphical analysis, statistical analysis, and calculation time. The program also provides the user with the ability to save filter parameters, inputs, and outputs for future use.

  18. Epiviz: a view inside the design of an integrated visual analysis software for genomics

    PubMed Central

    2015-01-01

    Background Computational and visual data analysis for genomics has traditionally involved a combination of tools and resources, of which the most ubiquitous consist of genome browsers, focused mainly on integrative visualization of large numbers of big datasets, and computational environments, focused on data modeling of a small number of moderately sized datasets. Workflows that involve the integration and exploration of multiple heterogeneous data sources, small and large, public and user specific have been poorly addressed by these tools. In our previous work, we introduced Epiviz, which bridges the gap between the two types of tools, simplifying these workflows. Results In this paper we expand on the design decisions behind Epiviz, and introduce a series of new advanced features that further support the type of interactive exploratory workflow we have targeted. We discuss three ways in which Epiviz advances the field of genomic data analysis: 1) it brings code to interactive visualizations at various different levels; 2) takes the first steps in the direction of collaborative data analysis by incorporating user plugins from source control providers, as well as by allowing analysis states to be shared among the scientific community; 3) combines established analysis features that have never before been available simultaneously in a genome browser. In our discussion section, we present security implications of the current design, as well as a series of limitations and future research steps. Conclusions Since many of the design choices of Epiviz are novel in genomics data analysis, this paper serves both as a document of our own approaches with lessons learned, as well as a start point for future efforts in the same direction for the genomics community. PMID:26328750

  19. ABISM: an interactive image quality assessment tool for adaptive optics instruments

    NASA Astrophysics Data System (ADS)

    Girard, Julien H.; Tourneboeuf, Martin

    2016-07-01

    ABISM (Automatic Background Interactive Strehl Meter) is a interactive tool to evaluate the image quality of astronomical images. It works on seeing-limited point spread functions (PSF) but was developed in particular for diffraction-limited PSF produced by adaptive optics (AO) systems. In the VLT service mode (SM) operations framework, ABISM is designed to help support astronomers or telescope and instruments operators (TIOs) to quickly measure the Strehl ratio (SR) during or right after an observing block (OB) to evaluate whether it meets the requirements/predictions or whether is has to be repeated and will remain in the SM queue. It's a Python-based tool with a graphical user interface (GUI) that can be used with little AO knowledge. The night astronomer (NA) or Telescope and Instrument Operator (TIO) can launch ABISM in one click and the program is able to read keywords from the FITS header to avoid mistakes. A significant effort was also put to make ABISM as robust (and forgiven) with a high rate of repeatability. As a matter of fact, ABISM is able to automatically correct for bad pixels, eliminate stellar neighbours and estimate/fit properly the background, etc.

  20. Transportable Applications Environment (TAE) Plus: A NASA tool used to develop and manage graphical user interfaces

    NASA Technical Reports Server (NTRS)

    Szczur, Martha R.

    1992-01-01

    The Transportable Applications Environment (TAE) Plus was built to support the construction of graphical user interfaces (GUI's) for highly interactive applications, such as real-time processing systems and scientific analysis systems. It is a general purpose portable tool that includes a 'What You See Is What You Get' WorkBench that allows user interface designers to layout and manipulate windows and interaction objects. The WorkBench includes both user entry objects (e.g., radio buttons, menus) and data-driven objects (e.g., dials, gages, stripcharts), which dynamically change based on values of realtime data. Discussed here is what TAE Plus provides, how the implementation has utilized state-of-the-art technologies within graphic workstations, and how it has been used both within and without NASA.

  1. Design for interaction between humans and intelligent systems during real-time fault management

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schreckenghost, Debra L.; Thronesbery, Carroll G.

    1992-01-01

    Initial results are reported to provide guidance and assistance for designers of intelligent systems and their human interfaces. The objective is to achieve more effective human-computer interaction (HCI) for real time fault management support systems. Studies of the development of intelligent fault management systems within NASA have resulted in a new perspective of the user. If the user is viewed as one of the subsystems in a heterogeneous, distributed system, system design becomes the design of a flexible architecture for accomplishing system tasks with both human and computer agents. HCI requirements and design should be distinguished from user interface (displays and controls) requirements and design. Effective HCI design for multi-agent systems requires explicit identification of activities and information that support coordination and communication between agents. The effects are characterized of HCI design on overall system design and approaches are identified to addressing HCI requirements in system design. The results include definition of (1) guidance based on information level requirements analysis of HCI, (2) high level requirements for a design methodology that integrates the HCI perspective into system design, and (3) requirements for embedding HCI design tools into intelligent system development environments.

  2. Understanding How Families Use Magnifiers During Nature Center Walks

    NASA Astrophysics Data System (ADS)

    Zimmerman, Heather Toomey; McClain, Lucy Richardson; Crowl, Michele

    2013-10-01

    This analysis uses a sociocultural learning theory and parent-child interaction framework to understand families' interactions with one type of scientific tool, the magnifier, during nature walks offered by a nature center. Families were video recorded to observe how they organized their activities where they used magnifiers to explore in the outdoors. Findings include that families used magnifiers for scientific inquiry as well as for playful exploration. Using the concept of guided facilitation where families develop roles to support their joint endeavor, three roles to support family thinking were found to be: (a) tool suggester, (b) teacher, and (c) exploration ender. Some families struggled to use magnifiers and often, parents and older siblings provided support for younger children in using magnifying lenses. Implications to informal science learning theory are drawn and suggestions for future family learning research are offered: (a) inclusion of sociocultural and situated perspectives as theories to study informal learning in outdoor spaces, (b) further study on the role of siblings in family interactions, (c) design-based research is needed to encourage family role-taking when engaging in science practices, and (d) new conceptualizations on how to design informal programs that support science learning while leaving space for visitors' personal agendas and interests that can guide the families' activities.

  3. Workstation-Based Simulation for Rapid Prototyping and Piloted Evaluation of Control System Designs

    NASA Technical Reports Server (NTRS)

    Mansur, M. Hossein; Colbourne, Jason D.; Chang, Yu-Kuang; Aiken, Edwin W. (Technical Monitor)

    1998-01-01

    The development and optimization of flight control systems for modem fixed- and rotary-. wing aircraft consume a significant portion of the overall time and cost of aircraft development. Substantial savings can be achieved if the time required to develop and flight test the control system, and the cost, is reduced. To bring about such reductions, software tools such as Matlab/Simulink are being used to readily implement block diagrams and rapidly evaluate the expected responses of the completed system. Moreover, tools such as CONDUIT (CONtrol Designer's Unified InTerface) have been developed that enable the controls engineers to optimize their control laws and ensure that all the relevant quantitative criteria are satisfied, all within a fully interactive, user friendly, unified software environment.

  4. Six degree of freedom simulation system for evaluating automated rendezvous and docking spacecraft

    NASA Technical Reports Server (NTRS)

    Rourke, Kenneth H.; Tsugawa, Roy K.

    1991-01-01

    Future logistics supply and servicing vehicles such as cargo transfer vehicles (CTV) must have full 6 degree of freedom (6DOF) capability in order to perform requisite rendezvous, proximity operations, and capture operations. The design and performance issues encountered when developing a 6DOF maneuvering spacecraft are very complex with subtle interactions which are not immediately obvious or easily anticipated. In order to deal with these complexities and develop robust maneuvering spacecraft designs, a simulation system and associated family of tools are used at TRW for generating and validating spacecraft performance requirements and guidance algorithms. An overview of the simulator and tools is provided. These are used by TRW for autonomous rendezvous and docking research projects including CTV studies.

  5. Interactions of double patterning technology with wafer processing, OPC and design flows

    NASA Astrophysics Data System (ADS)

    Lucas, Kevin; Cork, Chris; Miloslavsky, Alex; Luk-Pat, Gerry; Barnes, Levi; Hapli, John; Lewellen, John; Rollins, Greg; Wiaux, Vincent; Verhaegen, Staf

    2008-03-01

    Double patterning technology (DPT) is one of the main options for printing logic devices with half-pitch less than 45nm; and flash and DRAM memory devices with half-pitch less than 40nm. DPT methods decompose the original design intent into two individual masking layers which are each patterned using single exposures and existing 193nm lithography tools. The results of the individual patterning layers combine to re-create the design intent pattern on the wafer. In this paper we study interactions of DPT with lithography, masks synthesis and physical design flows. Double exposure and etch patterning steps create complexity for both process and design flows. DPT decomposition is a critical software step which will be performed in physical design and also in mask synthesis. Decomposition includes cutting (splitting) of original design intent polygons into multiple polygons where required; and coloring of the resulting polygons. We evaluate the ability to meet key physical design goals such as: reduce circuit area; minimize rework; ensure DPT compliance; guarantee patterning robustness on individual layer targets; ensure symmetric wafer results; and create uniform wafer density for the individual patterning layers.

  6. Can social support work virtually? Evaluation of rheumatoid arthritis patients' experiences with an interactive online tool.

    PubMed

    Kostova, Zlatina; Caiata-Zufferey, Maria; Schulz, Peter J

    2015-01-01

    There is strong empirical evidence that the support that chronic patients receive from their environment is fundamental for the way they cope with physical and psychological suffering. Nevertheless, in the case of rheumatoid arthritis (RA), providing the appropriate social support is still a challenge, and such support has often proven to be elusive and unreliable in helping patients to manage the disease. To explore whether and how social support for RA patients can be provided online, and to assess the conditions under which such support is effective. An online support tool was designed to provide patients with both tailored information and opportunities to interact online with health professionals and fellow sufferers. The general purpose was to identify where the support provided did - or did not - help patients, and to judge whether the determinants of success lay more within patients - their engagement and willingness to participate - or within the design of the website itself. The present study reports qualitative interviews with 19 users of the tool. A more specific purpose was to elaborate qualitatively on results from a quantitative survey of users, which indicated that any positive impact was confined to practical matters of pain management rather than extending to more fundamental psychological outcomes such as acceptance. Overall, online learning and interaction can do much to help patients with the everyday stresses of their disease; however, its potential for more durable positive impact depends on various individual characteristics such as personality traits, existing social networks, and the severity and longevity of the disease.

  7. Towards a capabilities database to inform inclusive design: experimental investigation of effective survey-based predictors of human-product interaction.

    PubMed

    Tenneti, Raji; Johnson, Daniel; Goldenberg, Liz; Parker, Richard A; Huppert, Felicia A

    2012-07-01

    A key issue in the field of inclusive design is the ability to provide designers with an understanding of people's range of capabilities. Since it is not feasible to assess product interactions with a large sample, this paper assesses a range of proxy measures of design-relevant capabilities. It describes a study that was conducted to identify which measures provide the best prediction of people's abilities to use a range of products. A detailed investigation with 100 respondents aged 50-80 years was undertaken to examine how they manage typical household products. Predictor variables included self-report and performance measures across a variety of capabilities (vision, hearing, dexterity and cognitive function), component activities used in product interactions (e.g. using a remote control, touch screen) and psychological characteristics (e.g. self-efficacy, confidence with using electronic devices). Results showed, as expected, a higher prevalence of visual, hearing, dexterity, cognitive and product interaction difficulties in the 65-80 age group. Regression analyses showed that, in addition to age, performance measures of vision (acuity, contrast sensitivity) and hearing (hearing threshold) and self-report and performance measures of component activities are strong predictors of successful product interactions. These findings will guide the choice of measures to be used in a subsequent national survey of design-relevant capabilities, which will lead to the creation of a capability database. This will be converted into a tool for designers to understand the implications of their design decisions, so that they can design products in a more inclusive way. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  8. Pedagogical Utilization and Assessment of the Statistic Online Computational Resource in Introductory Probability and Statistics Courses.

    PubMed

    Dinov, Ivo D; Sanchez, Juana; Christou, Nicolas

    2008-01-01

    Technology-based instruction represents a new recent pedagogical paradigm that is rooted in the realization that new generations are much more comfortable with, and excited about, new technologies. The rapid technological advancement over the past decade has fueled an enormous demand for the integration of modern networking, informational and computational tools with classical pedagogical instruments. Consequently, teaching with technology typically involves utilizing a variety of IT and multimedia resources for online learning, course management, electronic course materials, and novel tools of communication, engagement, experimental, critical thinking and assessment.The NSF-funded Statistics Online Computational Resource (SOCR) provides a number of interactive tools for enhancing instruction in various undergraduate and graduate courses in probability and statistics. These resources include online instructional materials, statistical calculators, interactive graphical user interfaces, computational and simulation applets, tools for data analysis and visualization. The tools provided as part of SOCR include conceptual simulations and statistical computing interfaces, which are designed to bridge between the introductory and the more advanced computational and applied probability and statistics courses. In this manuscript, we describe our designs for utilizing SOCR technology in instruction in a recent study. In addition, present the results of the effectiveness of using SOCR tools at two different course intensity levels on three outcome measures: exam scores, student satisfaction and choice of technology to complete assignments. Learning styles assessment was completed at baseline. We have used three very different designs for three different undergraduate classes. Each course included a treatment group, using the SOCR resources, and a control group, using classical instruction techniques. Our findings include marginal effects of the SOCR treatment per individual classes; however, pooling the results across all courses and sections, SOCR effects on the treatment groups were exceptionally robust and significant. Coupling these findings with a clear decrease in the variance of the quantitative examination measures in the treatment groups indicates that employing technology, like SOCR, in a sound pedagogical and scientific manner enhances overall the students' understanding and suggests better long-term knowledge retention.

  9. Pedagogical Utilization and Assessment of the Statistic Online Computational Resource in Introductory Probability and Statistics Courses

    PubMed Central

    Dinov, Ivo D.; Sanchez, Juana; Christou, Nicolas

    2009-01-01

    Technology-based instruction represents a new recent pedagogical paradigm that is rooted in the realization that new generations are much more comfortable with, and excited about, new technologies. The rapid technological advancement over the past decade has fueled an enormous demand for the integration of modern networking, informational and computational tools with classical pedagogical instruments. Consequently, teaching with technology typically involves utilizing a variety of IT and multimedia resources for online learning, course management, electronic course materials, and novel tools of communication, engagement, experimental, critical thinking and assessment. The NSF-funded Statistics Online Computational Resource (SOCR) provides a number of interactive tools for enhancing instruction in various undergraduate and graduate courses in probability and statistics. These resources include online instructional materials, statistical calculators, interactive graphical user interfaces, computational and simulation applets, tools for data analysis and visualization. The tools provided as part of SOCR include conceptual simulations and statistical computing interfaces, which are designed to bridge between the introductory and the more advanced computational and applied probability and statistics courses. In this manuscript, we describe our designs for utilizing SOCR technology in instruction in a recent study. In addition, present the results of the effectiveness of using SOCR tools at two different course intensity levels on three outcome measures: exam scores, student satisfaction and choice of technology to complete assignments. Learning styles assessment was completed at baseline. We have used three very different designs for three different undergraduate classes. Each course included a treatment group, using the SOCR resources, and a control group, using classical instruction techniques. Our findings include marginal effects of the SOCR treatment per individual classes; however, pooling the results across all courses and sections, SOCR effects on the treatment groups were exceptionally robust and significant. Coupling these findings with a clear decrease in the variance of the quantitative examination measures in the treatment groups indicates that employing technology, like SOCR, in a sound pedagogical and scientific manner enhances overall the students’ understanding and suggests better long-term knowledge retention. PMID:19750185

  10. Software for Secondary-School Learning About Robotics

    NASA Technical Reports Server (NTRS)

    Shelton, Robert O.; Smith, Stephanie L.; Truong, Dat; Hodgson, Terry R.

    2005-01-01

    The ROVer Ranch is an interactive computer program designed to help secondary-school students learn about space-program robotics and related basic scientific concepts by involving the students in simplified design and programming tasks that exercise skills in mathematics and science. The tasks involve building simulated robots and then observing how they behave. The program furnishes (1) programming tools that a student can use to assemble and program a simulated robot and (2) a virtual three-dimensional mission simulator for testing the robot. First, the ROVer Ranch presents fundamental information about robotics, mission goals, and facts about the mission environment. On the basis of this information, and using the aforementioned tools, the student assembles a robot by selecting parts from such subsystems as propulsion, navigation, and scientific tools, the student builds a simulated robot to accomplish its mission. Once the robot is built, it is programmed and then placed in a three-dimensional simulated environment. Success or failure in the simulation depends on the planning and design of the robot. Data and results of the mission are available in a summary log once the mission is concluded.

  11. A Design Tool for Liquid Rocket Engine Injectors

    NASA Technical Reports Server (NTRS)

    Farmer, R.; Cheng, G.; Trinh, H.; Tucker, K.

    2000-01-01

    A practical design tool which emphasizes the analysis of flowfields near the injector face of liquid rocket engines has been developed and used to simulate preliminary configurations of NASA's Fastrac and vortex engines. This computational design tool is sufficiently detailed to predict the interactive effects of injector element impingement angles and points and the momenta of the individual orifice flows and the combusting flow which results. In order to simulate a significant number of individual orifices, a homogeneous computational fluid dynamics model was developed. To describe sub- and supercritical liquid and vapor flows, the model utilized thermal and caloric equations of state which were valid over a wide range of pressures and temperatures. The model was constructed such that the local quality of the flow was determined directly. Since both the Fastrac and vortex engines utilize RP-1/LOX propellants, a simplified hydrocarbon combustion model was devised in order to accomplish three-dimensional, multiphase flow simulations. Such a model does not identify drops or their distribution, but it does allow the recirculating flow along the injector face and into the acoustic cavity and the film coolant flow to be accurately predicted.

  12. Interactive Media and Simulation Tools for Technical Training

    NASA Technical Reports Server (NTRS)

    Gramoll, Kurt

    1997-01-01

    Over the last several years, integration of multiple media sources into a single information system has been rapidly developing. It has been found that when sound, graphics, text, animations, and simulations are skillfully integrated, the sum of the parts exceeds the individual parts for effective learning. In addition, simulations can be used to design and understand complex engineering processes. With the recent introduction of many high-level authoring, animation, modeling, and rendering programs for personal computers, significant multimedia programs can be developed by practicing engineers, scientists and even managers for both training and education. However, even with these new tools, a considerable amount of time is required to produce an interactive multimedia program. The development of both CD-ROM and Web-based programs are discussed in addition to the use of technically oriented animations. Also examined are various multimedia development tools and how they are used to develop effective engineering education courseware. Demonstrations of actual programs in engineering mechanics are shown.

  13. Activity Catalog Tool (ACT) user manual, version 2.0

    NASA Technical Reports Server (NTRS)

    Segal, Leon D.; Andre, Anthony D.

    1994-01-01

    This report comprises the user manual for version 2.0 of the Activity Catalog Tool (ACT) software program, developed by Leon D. Segal and Anthony D. Andre in cooperation with NASA Ames Aerospace Human Factors Research Division, FLR branch. ACT is a software tool for recording and analyzing sequences of activity over time that runs on the Macintosh platform. It was designed as an aid for professionals who are interested in observing and understanding human behavior in field settings, or from video or audio recordings of the same. Specifically, the program is aimed at two primary areas of interest: human-machine interactions and interactions between humans. The program provides a means by which an observer can record an observed sequence of events, logging such parameters as frequency and duration of particular events. The program goes further by providing the user with a quantified description of the observed sequence, through application of a basic set of statistical routines, and enables merging and appending of several files and more extensive analysis of the resultant data.

  14. An interactive, stereoscopic virtual environment for medical imaging visualization, simulation and training

    NASA Astrophysics Data System (ADS)

    Krueger, Evan; Messier, Erik; Linte, Cristian A.; Diaz, Gabriel

    2017-03-01

    Recent advances in medical image acquisition allow for the reconstruction of anatomies with 3D, 4D, and 5D renderings. Nevertheless, standard anatomical and medical data visualization still relies heavily on the use of traditional 2D didactic tools (i.e., textbooks and slides), which restrict the presentation of image data to a 2D slice format. While these approaches have their merits beyond being cost effective and easy to disseminate, anatomy is inherently three-dimensional. By using 2D visualizations to illustrate more complex morphologies, important interactions between structures can be missed. In practice, such as in the planning and execution of surgical interventions, professionals require intricate knowledge of anatomical complexities, which can be more clearly communicated and understood through intuitive interaction with 3D volumetric datasets, such as those extracted from high-resolution CT or MRI scans. Open source, high quality, 3D medical imaging datasets are freely available, and with the emerging popularity of 3D display technologies, affordable and consistent 3D anatomical visualizations can be created. In this study we describe the design, implementation, and evaluation of one such interactive, stereoscopic visualization paradigm for human anatomy extracted from 3D medical images. A stereoscopic display was created by projecting the scene onto the lab floor using sequential frame stereo projection and viewed through active shutter glasses. By incorporating a PhaseSpace motion tracking system, a single viewer can navigate an augmented reality environment and directly manipulate virtual objects in 3D. While this paradigm is sufficiently versatile to enable a wide variety of applications in need of 3D visualization, we designed our study to work as an interactive game, which allows users to explore the anatomy of various organs and systems. In this study we describe the design, implementation, and evaluation of an interactive and stereoscopic visualization platform for exploring and understanding human anatomy. This system can present medical imaging data in three dimensions and allows for direct physical interaction and manipulation by the viewer. This should provide numerous benefits over traditional, 2D display and interaction modalities, and in our analysis, we aim to quantify and qualify users' visual and motor interactions with the virtual environment when employing this interactive display as a 3D didactic tool.

  15. Children with Autism Spectrum Disorders Make a Fruit Salad with Probo, the Social Robot: An Interaction Study.

    PubMed

    Simut, Ramona E; Vanderfaeillie, Johan; Peca, Andreea; Van de Perre, Greet; Vanderborght, Bram

    2016-01-01

    Social robots are thought to be motivating tools in play tasks with children with autism spectrum disorders. Thirty children with autism were included using a repeated measurements design. It was investigated if the children's interaction with a human differed from the interaction with a social robot during a play task. Also, it was examined if the two conditions differed in their ability to elicit interaction with a human accompanying the child during the task. Interaction of the children with both partners did not differ apart from the eye-contact. Participants had more eye-contact with the social robot compared to the eye-contact with the human. The conditions did not differ regarding the interaction elicited with the human accompanying the child.

  16. SpirPro: A Spirulina proteome database and web-based tools for the analysis of protein-protein interactions at the metabolic level in Spirulina (Arthrospira) platensis C1.

    PubMed

    Senachak, Jittisak; Cheevadhanarak, Supapon; Hongsthong, Apiradee

    2015-07-29

    Spirulina (Arthrospira) platensis is the only cyanobacterium that in addition to being studied at the molecular level and subjected to gene manipulation, can also be mass cultivated in outdoor ponds for commercial use as a food supplement. Thus, encountering environmental changes, including temperature stresses, is common during the mass production of Spirulina. The use of cyanobacteria as an experimental platform, especially for photosynthetic gene manipulation in plants and bacteria, is becoming increasingly important. Understanding the mechanisms and protein-protein interaction networks that underlie low- and high-temperature responses is relevant to Spirulina mass production. To accomplish this goal, high-throughput techniques such as OMICs analyses are used. Thus, large datasets must be collected, managed and subjected to information extraction. Therefore, databases including (i) proteomic analysis and protein-protein interaction (PPI) data and (ii) domain/motif visualization tools are required for potential use in temperature response models for plant chloroplasts and photosynthetic bacteria. A web-based repository was developed including an embedded database, SpirPro, and tools for network visualization. Proteome data were analyzed integrated with protein-protein interactions and/or metabolic pathways from KEGG. The repository provides various information, ranging from raw data (2D-gel images) to associated results, such as data from interaction and/or pathway analyses. This integration allows in silico analyses of protein-protein interactions affected at the metabolic level and, particularly, analyses of interactions between and within the affected metabolic pathways under temperature stresses for comparative proteomic analysis. The developed tool, which is coded in HTML with CSS/JavaScript and depicted in Scalable Vector Graphics (SVG), is designed for interactive analysis and exploration of the constructed network. SpirPro is publicly available on the web at http://spirpro.sbi.kmutt.ac.th . SpirPro is an analysis platform containing an integrated proteome and PPI database that provides the most comprehensive data on this cyanobacterium at the systematic level. As an integrated database, SpirPro can be applied in various analyses, such as temperature stress response networking analysis in cyanobacterial models and interacting domain-domain analysis between proteins of interest.

  17. Geo-Sandbox: An Interactive Geoscience Training Tool with Analytics to Better Understand Student Problem Solving Approaches

    NASA Astrophysics Data System (ADS)

    Butt, N.; Pidlisecky, A.; Ganshorn, H.; Cockett, R.

    2015-12-01

    The software company 3 Point Science has developed three interactive learning programs designed to teach, test and practice visualization skills and geoscience concepts. A study was conducted with 21 geoscience students at the University of Calgary who participated in 2 hour sessions of software interaction and written pre and post-tests. Computer and SMART touch table interfaces were used to analyze user interaction, problem solving methods and visualization skills. By understanding and pinpointing user problem solving methods it is possible to reconstruct viewpoints and thought processes. This could allow us to give personalized feedback in real time, informing the user of problem solving tips and possible misconceptions.

  18. Design, Synthesis, and Evaluation of N- and C-Terminal Protein Bioconjugates as G Protein-Coupled Receptor Agonists.

    PubMed

    Healey, Robert D; Wojciechowski, Jonathan P; Monserrat-Martinez, Ana; Tan, Susan L; Marquis, Christopher P; Sierecki, Emma; Gambin, Yann; Finch, Angela M; Thordarson, Pall

    2018-02-21

    A G protein-coupled receptor (GPCR) agonist protein, thaumatin, was site-specifically conjugated at the N- or C-terminus with a fluorophore for visualization of GPCR:agonist interactions. The N-terminus was specifically conjugated using a synthetic 2-pyridinecarboxyaldehyde reagent. The interaction profiles observed for N- and C-terminal conjugates were varied; N-terminal conjugates interacted very weakly with the GPCR of interest, whereas C-terminal conjugates bound to the receptor. These chemical biology tools allow interactions of therapeutic proteins:GPCR to be monitored and visualized. The methodology used for site-specific bioconjugation represents an advance in application of 2-pyridinecarboxyaldehydes for N-terminal specific bioconjugations.

  19. New tool holder design for cryogenic machining of Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Bellin, Marco; Sartori, Stefano; Ghiotti, Andrea; Bruschi, Stefania

    2017-10-01

    The renewed demand of increasing the machinability of the Ti6Al4V titanium alloy to produce biomedical and aerospace parts working at high temperature has recently led to the application of low-temperature coolants instead of conventional cutting fluids to increase both the tool life and the machined surface integrity. In particular, the liquid nitrogen directed to the tool rake face has shown a great capability of reducing the temperature at the chip-tool interface, as well as the chemical interaction between the tool coating and the titanium to be machined, therefore limiting the tool crater wear, and improving, at the same time, the chip breakability. Furthermore, the nitrogen is a safe, non-harmful, non-corrosive, odorless, recyclable, non-polluting and abundant gas, characteristics that further qualify it as an environmental friendly coolant to be applied to machining processes. However, the behavior of the system composed by the tool and the tool holder, exposed to the cryogenics temperatures may represent a critical issue in order to obtain components within the required geometrical tolerances. On this basis, the paper aims at presenting the design of an innovative tool holder installed on a CNC lathe, which includes the cryogenic coolant provision system, and which is able to hinder the part possible distortions due to the liquid nitrogen adduction by stabilizing its dimensions through the use of heating cartridges and appropriate sensors to monitor the temperature evolution of the tool holder.

  20. Human Centered Design and Development for NASA's MerBoard

    NASA Technical Reports Server (NTRS)

    Trimble, Jay

    2003-01-01

    This viewgraph presentation provides an overview of the design and development process for NASA's MerBoard. These devices are large interactive display screens which can be shown on the user's computer, which will allow scientists in many locations to interpret and evaluate mission data in real-time. These tools are scheduled to be used during the 2003 Mars Exploration Rover (MER) expeditions. Topics covered include: mission overview, Mer Human Centered Computers, FIDO 2001 observations and MerBoard prototypes.

Top