Sample records for interactive electronic means

  1. Spin and orbital exchange interactions from Dynamical Mean Field Theory

    NASA Astrophysics Data System (ADS)

    Secchi, A.; Lichtenstein, A. I.; Katsnelson, M. I.

    2016-02-01

    We derive a set of equations expressing the parameters of the magnetic interactions characterizing a strongly correlated electronic system in terms of single-electron Green's functions and self-energies. This allows to establish a mapping between the initial electronic system and a spin model including up to quadratic interactions between the effective spins, with a general interaction (exchange) tensor that accounts for anisotropic exchange, Dzyaloshinskii-Moriya interaction and other symmetric terms such as dipole-dipole interaction. We present the formulas in a format that can be used for computations via Dynamical Mean Field Theory algorithms.

  2. Coulomb versus spin-orbit interaction in few-electron carbon-nanotube quantum dots

    NASA Astrophysics Data System (ADS)

    Secchi, Andrea; Rontani, Massimo

    2009-07-01

    Few-electron states in carbon-nanotube quantum dots are studied by means of the configuration-interaction method. The peculiar noninteracting feature of the tunneling spectrum for two electrons, recently measured by F. Kuemmeth, S. Ilani, D. C. Ralph, and P. L. McEuen [Nature (London) 452, 448 (2008)], is explained by the splitting of a low-lying isospin multiplet due to spin-orbit interaction. Nevertheless, the strongly interacting ground state forms a “Wigner molecule” made of electrons localized in space. Signatures of the electron molecule may be seen in tunneling spectra by varying the tunable dot confinement potential.

  3. Towards a First-Principles Determination of Effective Coulomb Interactions in Correlated Electron Materials: Role of Intershell Interactions

    NASA Astrophysics Data System (ADS)

    Seth, Priyanka; Hansmann, Philipp; van Roekeghem, Ambroise; Vaugier, Loig; Biermann, Silke

    2017-08-01

    The determination of the effective Coulomb interactions to be used in low-energy Hamiltonians for materials with strong electronic correlations remains one of the bottlenecks for parameter-free electronic structure calculations. We propose and benchmark a scheme for determining the effective local Coulomb interactions for charge-transfer oxides and related compounds. Intershell interactions between electrons in the correlated shell and ligand orbitals are taken into account in an effective manner, leading to a reduction of the effective local interactions on the correlated shell. Our scheme resolves inconsistencies in the determination of effective interactions as obtained by standard methods for a wide range of materials, and allows for a conceptual understanding of the relation of cluster model and dynamical mean field-based electronic structure calculations.

  4. Towards a First-Principles Determination of Effective Coulomb Interactions in Correlated Electron Materials: Role of Intershell Interactions.

    PubMed

    Seth, Priyanka; Hansmann, Philipp; van Roekeghem, Ambroise; Vaugier, Loig; Biermann, Silke

    2017-08-04

    The determination of the effective Coulomb interactions to be used in low-energy Hamiltonians for materials with strong electronic correlations remains one of the bottlenecks for parameter-free electronic structure calculations. We propose and benchmark a scheme for determining the effective local Coulomb interactions for charge-transfer oxides and related compounds. Intershell interactions between electrons in the correlated shell and ligand orbitals are taken into account in an effective manner, leading to a reduction of the effective local interactions on the correlated shell. Our scheme resolves inconsistencies in the determination of effective interactions as obtained by standard methods for a wide range of materials, and allows for a conceptual understanding of the relation of cluster model and dynamical mean field-based electronic structure calculations.

  5. Formation of readiness for future physics teachers by using interactive learning tools

    NASA Astrophysics Data System (ADS)

    Kulikova, N. U.; Danilchuk, E. V.; Zhidkova, A. V.

    2017-01-01

    In this article we give the reviewing of approaches to the preparedness of future physics teachers for the usage of interactive means of education as an important part of their professional activity. We discuss the key concepts such as interactivity, an interactive dialogue, and interactive means of education. The conception of interactive means of education as a tool of teachers' professional activity, which provides a way for the students to intensify their learning in class by using interactive tools and electronic educational resources, is validated. Furthermore, it is proved that interactive means of education allow the students to intensify their learning in the course of an interactive dialogue by means of organization different types of feedback in electronic educational resources (the program behavior depending on a user actions in the form of comments, prompts, elements of arrangement of objects, etc, the control and correction of students' actions by the program, providing with recommendations for further learning, carrying out constant access to reference information, etc), involving in different types of educational activity (modeling, investigation, etc), self-selection of time, speed, content of learning, complexity and priority of the usage of educational information on the screen, etc. By training students - future teachers of physics authors consider technological aspects, methodical features and examples of creation of these resources for physics lesson.

  6. The electronic-commerce-oriented virtual merchandise model

    NASA Astrophysics Data System (ADS)

    Fang, Xiaocui; Lu, Dongming

    2004-03-01

    Electronic commerce has been the trend of commerce activities. Providing with Virtual Reality interface, electronic commerce has better expressing capacity and interaction means. But most of the applications of virtual reality technology in EC, 3D model is only the appearance description of merchandises. There is almost no information concerned with commerce information and interaction information. This resulted in disjunction of virtual model and commerce information. So we present Electronic Commerce oriented Virtual Merchandise Model (ECVMM), which combined a model with commerce information, interaction information and figure information of virtual merchandise. ECVMM with abundant information provides better support to information obtainment and communication in electronic commerce.

  7. Tuning of few-electron states and optical absorption anisotropy in GaAs quantum rings.

    PubMed

    Wu, Zhenhua; Li, Jian; Li, Jun; Yin, Huaxiang; Liu, Yu

    2017-11-15

    The electronic and optical properties of a GaAs quantum ring (QR) with few electrons in the presence of the Rashba spin-orbit interaction (RSOI) and the Dresselhaus spin-orbit interaction (DSOI) have been investigated theoretically. The configuration interaction (CI) method is employed to calculate the eigenvalues and eigenstates of the multiple-electron QR accurately. Our numerical results demonstrate that the symmetry breaking induced by the RSOI and DSOI leads to an anisotropic distribution of multi-electron states. The Coulomb interaction offers additional modulation of the electron distribution and thus the optical absorption indices in the quantum rings. By tuning the magnetic/electric fields and/or electron numbers in a quantum ring, one can change its optical properties significantly. Our theory provides a new way to control the multi-electron states and optical properties of a QR by hybrid modulations or by electrical means only.

  8. Study of ultrasonic attenuation in f-electron systems in the paramagnetic limit of Coulomb interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadangi, Asit Ku., E-mail: asitshad@iopb.res.in; Rout, G. C., E-mail: gcr@iopb.res.in

    2015-05-15

    We report here a microscopic model study of ultrasonic attenuation in f-electron systems based on Periodic Anderson Model in which Coulomb interaction is considered within a mean-field approximation for a weak interaction. The Phonon is coupled to the conduction band and f-electrons. The phonon Green's function is calculated by Zubarev's technique of the Green's function method. The temperature dependent ultrasonic attenuation co-efficient is calculated from the imaginary part of the phonon self-energy in the dynamic and long wave length limit. The f-electron occupation number is calculated self-consistently in paramagnetic limit of Coulomb interaction. The effect of the Coulomb interaction onmore » ultrasonic attenuation is studied by varying the phonon coupling parameters to the conduction and f-electrons, hybridization strength, the position of f-level and the Coulomb interaction Strength. Results are discussed on the basis of experimental results.« less

  9. Hilbert transform evaluation for electron-phonon self-energies

    NASA Astrophysics Data System (ADS)

    Bevilacqua, Giuseppe; Menichetti, Guido; Pastori Parravicini, Giuseppe

    2016-01-01

    The electron tunneling current through nanostructures is considered in the presence of the electron-phonon interactions. In the Keldysh nonequilibrium formalism, the lesser, greater, advanced and retarded self-energies components are expressed by means of appropriate Langreth rules. We discuss the key role played by the entailed Hilbert transforms, and provide an analytic way for their evaluation. Particular attention is given to the current-conserving lowest-order-expansion for the treament of the electron-phonon interaction; by means of an appropriate elaboration of the analytic properties and pole structure of the Green's functions and of the Fermi functions, we arrive at a surprising simple, elegant, fully analytic and easy-to-use expression of the Hilbert transforms and involved integrals in the energy domain.

  10. Proposed alteration of images of molecular orbitals obtained using a scanning tunneling microscope as a probe of electron correlation.

    PubMed

    Toroz, Dimitrios; Rontani, Massimo; Corni, Stefano

    2013-01-04

    Scanning tunneling spectroscopy (STS) allows us to image single molecules decoupled from the supporting substrate. The obtained images are routinely interpreted as the square moduli of molecular orbitals, dressed by the mean-field electron-electron interaction. Here we demonstrate that the effect of electron correlation beyond the mean field qualitatively alters the uncorrelated STS images. Our evidence is based on the ab initio many-body calculation of STS images of planar molecules with metal centers. We find that many-body correlations alter significantly the image spectral weight close to the metal center of the molecules. This change is large enough to be accessed experimentally, surviving to molecule-substrate interactions.

  11. Optical-model potential for electron and positron elastic scattering by atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvat, Francesc

    2003-07-01

    An optical-model potential for systematic calculations of elastic scattering of electrons and positrons by atoms and positive ions is proposed. The electrostatic interaction is determined from the Dirac-Hartree-Fock self-consistent atomic electron density. In the case of electron projectiles, the exchange interaction is described by means of the local-approximation of Furness and McCarthy. The correlation-polarization potential is obtained by combining the correlation potential derived from the local density approximation with a long-range polarization interaction, which is represented by means of a Buckingham potential with an empirical energy-dependent cutoff parameter. The absorption potential is obtained from the local-density approximation, using the Born-Ochkurmore » approximation and the Lindhard dielectric function to describe the binary collisions with a free-electron gas. The strength of the absorption potential is adjusted by means of an empirical parameter, which has been determined by fitting available absolute elastic differential cross-section data for noble gases and mercury. The Dirac partial-wave analysis with this optical-model potential provides a realistic description of elastic scattering of electrons and positrons with energies in the range from {approx}100 eV up to {approx}5 keV. At higher energies, correlation-polarization and absorption corrections are small and the usual static-exchange approximation is sufficiently accurate for most practical purposes.« less

  12. Side-band mutual interactions in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Chang, D. C. D.; Helliwell, R. A.; Bell, T. F.

    1980-01-01

    Sideband mutual interactions between VLF waves in the magnetosphere are investigated. Results of an experimental program involving the generation of sidebands by means of frequency shift keying are presented which indicate that the energetic electrons in the magnetosphere can interact only with sidebands generated by signals with short modulation periods. Using the value of the memory time during which electrons interact with the waves implied by the above result, it is estimated that the length of the electron interaction region in the magnetosphere is between 4000 and 2000 km. Sideband interactions are found to be similar to those between constant-frequency signals, exhibiting suppression and energy coupling. Results from a second sideband transmitting program show that for most cases the coherence bandwidth of sidebands is about 50 Hz. Sideband mutual interactions are then explained by the overlap of the ranges of the parallel velocity of the electrons which the sidebands organize, and the wave intensity in the interaction region is estimated to be 2.5-10 milli-gamma, in agreement with satellite measurements.

  13. Possible realization of interacting symmetry-protected topological phases in topological crystalline insulators

    NASA Astrophysics Data System (ADS)

    Isobe, Hiroki; Fu, Liang

    2015-03-01

    The effects of electron-electron interaction in edge states of mirror-symmetry protected topological crystalline insulators (TCI's) are discussed. The analysis is performed by using bosonized Hamiltonian following the Tomonaga-Luttinger liquid theory. When two pairs of helical edge states exist, electron-electron interaction could gap out one edge mode, which is a possible realization of interacting symmetry-protected topological (SPT) phases. This type of SPT phase is closely related to a Luther-Emery liquid in spinful 1D system. We also propose a method of detecting the SPT phases by STM. The other focus of the study is the classification of SPT phases in mirror-symmetry protected TCI's. By adopting the Chern-Simons theory, we find that electron-electron interaction reduces the classification from Z to Z4. It means that the edge states can be gapped out when four pairs of edge states exist. In other cases, the edge modes cannot be fully gapped. Each of these states corresponds to a different SPT phase depending on the relevant interaction process.

  14. Multiple mobility edges in a 1D Aubry chain with Hubbard interaction in presence of electric field: Controlled electron transport

    NASA Astrophysics Data System (ADS)

    Saha, Srilekha; Maiti, Santanu K.; Karmakar, S. N.

    2016-09-01

    Electronic behavior of a 1D Aubry chain with Hubbard interaction is critically analyzed in presence of electric field. Multiple energy bands are generated as a result of Hubbard correlation and Aubry potential, and, within these bands localized states are developed under the application of electric field. Within a tight-binding framework we compute electronic transmission probability and average density of states using Green's function approach where the interaction parameter is treated under Hartree-Fock mean field scheme. From our analysis we find that selective transmission can be obtained by tuning injecting electron energy, and thus, the present model can be utilized as a controlled switching device.

  15. A study of effective atomic numbers and electron densities of some vitamins for electron, H, He and C ion interactions

    NASA Astrophysics Data System (ADS)

    Büyükyıldız, M.

    2017-09-01

    The radiological properties of some vitamins such as Retinol, Beta-carotene, Riboflavin, Niacin, Niacinamide, Pantothenic acid, Pyridoxine, Pyridoxamine, Pyridoxal, Biotin, Folic acid, Ascorbic acid, Cholecalciferol, Alpha-tocopherol, Gamma-tocopherol, Phylloquinone have been investigated with respect to total electron interaction and some heavy charged particle interaction as means of effective atomic numbers (Z_{eff}) and electron densities (N_{eff}) for the first time. Calculations were performed for total electron interaction and heavy ions such as H, He and C ion interactions in the energy region 10keV-10MeV by using a logarithmic interpolation method. Variations in Z_{eff}'s and N_{eff}'s of given vitamins have been studied according to the energy of electron or heavy charged particles, and significant variations have been observed for all types of interaction in the given energy region. The maximum values of Z_{eff} have been found in the different energy regions for different interactions remarkably and variations in N_{eff} seem approximately to be the same with variation in Z_{eff} for the given vitamins as expected. Z_{eff} values of some vitamins were plotted together and compared with each other for electron, H, He and C interactions and the ratios of Z_{eff}/ < A > have been changed in the range of 0.25-0.36, 0.20-0.36, 0.22-0.35 and 0.20-0.35 for electron, H, He and C interactions, respectively.

  16. Analysis of dispersive interactions at polymer/TiAlN interfaces by means of dynamic force spectroscopy.

    PubMed

    Wiesing, M; de Los Arcos, T; Gebhard, M; Devi, A; Grundmeier, G

    2017-12-20

    The structural and electronic origins of the interactions between polycarbonate and sputter deposited TiAlN were analysed using a combined electron and force spectroscopic approach. Interaction forces were measured by means of dynamic force spectroscopy and the surface polarizability was analysed by X-ray photoelectron valence band spectroscopy. It could be shown that the adhesive interactions between polycarbonate and TiAlN are governed by van der Waals forces. Different surface cleansing and oxidizing treatments were investigated and the effect of the surface chemistry on the force interactions was analysed. Intense surface oxidation resulted in a decreased adhesion force by a factor of two due to the formation of a 2 nm thick Ti 0.21 Al 0.45 O surface oxide layer. The origin of the residual adhesion forces caused by the mixed Ti 0.21 Al 0.45 O surface oxide was clarified by considering the non-retarded Hamaker coefficients as calculated by Lifshitz theory, based on optical data from Reflection Electron Energy Loss Spectroscopy. This disclosed increased dispersion forces of Ti 0.21 Al 0.45 O due to the presence of Ti(iv) ions and related Ti 3d band optical transitions.

  17. Competing phases and orbital-selective behaviors in the two-orbital Hubbard-Holstein model

    NASA Astrophysics Data System (ADS)

    Li, Shaozhi; Khatami, Ehsan; Johnston, Steven

    2017-03-01

    We study the interplay between the electron-electron (e-e) and the electron-phonon (e-ph) interactions in the two-orbital Hubbard-Holstein model at half-filling using the dynamical mean-field theory. We find that the e-ph interaction, even at weak couplings, strongly modifies the phase diagram of this model and introduces an orbital-selective Peierls insulating phase (OSPI) that is analogous to the widely studied orbital-selective Mott phase (OSMP). At small e-e and e-ph couplings, we find a competition between the OSMP and the OSPI, while at large couplings, a competition occurs between Mott and charge-density-wave (CDW) insulating phases. We further demonstrate that the Hund's coupling influences the OSPI transition by lowering the energy associated with the CDW. Our results explicitly show that one must be cautious when neglecting the e-ph interaction in multiorbital systems, where multiple electronic interactions create states that are readily influenced by perturbing interactions.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey-Collard, Patrick; Jacobson, N. Tobias; Rudolph, Martin

    Individual donors in silicon chips are used as quantum bits with extremely low error rates. However, physical realizations have been limited to one donor because their atomic size causes fabrication challenges. Quantum dot qubits, in contrast, are highly adjustable using electrical gate voltages. This adjustability could be leveraged to deterministically couple donors to quantum dots in arrays of qubits. In this work, we demonstrate the coherent interaction of a 31P donor electron with the electron of a metal-oxide-semiconductor quantum dot. We form a logical qubit encoded in the spin singlet and triplet states of the two-electron system. We show thatmore » the donor nuclear spin drives coherent rotations between the electronic qubit states through the contact hyperfine interaction. This provides every key element for compact two-electron spin qubits requiring only a single dot and no additional magnetic field gradients, as well as a means to interact with the nuclear spin qubit.« less

  19. Ordered phases in the Holstein-Hubbard model: Interplay of strong Coulomb interaction and electron-phonon coupling

    NASA Astrophysics Data System (ADS)

    Murakami, Yuta; Werner, Philipp; Tsuji, Naoto; Aoki, Hideo

    2013-09-01

    We study the Holstein-Hubbard model at half filling to explore ordered phases including superconductivity (SC), antiferromagnetism (AF), and charge order (CO) in situations where the electron-electron and electron-phonon interactions are strong (comparable to the electronic bandwidth). The model is solved in the dynamical mean-field approximation with a continuous-time quantum Monte Carlo impurity solver. We determine the superconducting transition temperature Tc and the SC order parameter and show that the phonon-induced retardation or the strong Coulomb interaction leads to a significant reduction and shift of the Tc dome against the effective electron-electron interaction Ueff given by the Hubbard U reduced by the phonon-mediated attraction in the static limit. This behavior is analyzed by comparison to an effective static model in the polaron representation with a renormalized bandwidth. In addition, we discuss the superconducting gap Δ and 2Δ/Tc to reveal the effect of the retardation and the Coulomb interaction. We also determine the finite-temperature phase diagram including AF and CO. In the moderate-coupling regime, there is a hysteretic region of AF and CO around Ueff=0, while the two phases are separated by a paramagnetic metal in the weak-coupling regime and a paramagnetic insulator in the strong-coupling regime.

  20. An atomic mean-field spin-orbit approach within exact two-component theory for a non-perturbative treatment of spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Liu, Junzi; Cheng, Lan

    2018-04-01

    An atomic mean-field (AMF) spin-orbit (SO) approach within exact two-component theory (X2C) is reported, thereby exploiting the exact decoupling scheme of X2C, the one-electron approximation for the scalar-relativistic contributions, the mean-field approximation for the treatment of the two-electron SO contribution, and the local nature of the SO interactions. The Hamiltonian of the proposed SOX2CAMF scheme comprises the one-electron X2C Hamiltonian, the instantaneous two-electron Coulomb interaction, and an AMF SO term derived from spherically averaged Dirac-Coulomb Hartree-Fock calculations of atoms; no molecular relativistic two-electron integrals are required. Benchmark calculations for bond lengths, harmonic frequencies, dipole moments, and electric-field gradients for a set of diatomic molecules containing elements across the periodic table show that the SOX2CAMF scheme offers a balanced treatment for SO and scalar-relativistic effects and appears to be a promising candidate for applications to heavy-element containing systems. SOX2CAMF coupled-cluster calculations of molecular properties for bismuth compounds (BiN, BiP, BiF, BiCl, and BiI) are also presented and compared with experimental results to further demonstrate the accuracy and applicability of the SOX2CAMF scheme.

  1. Electronic health record use, intensity of hospital care, and patient outcomes.

    PubMed

    Blecker, Saul; Goldfeld, Keith; Park, Naeun; Shine, Daniel; Austrian, Jonathan S; Braithwaite, R Scott; Radford, Martha J; Gourevitch, Marc N

    2014-03-01

    Previous studies have suggested that weekend hospital care is inferior to weekday care and that this difference may be related to diminished care intensity. The purpose of this study was to determine whether a metric for measuring intensity of hospital care based on use of the electronic health record was associated with patient-level outcomes. We performed a cohort study of hospitalizations at an academic medical center. Intensity of care was defined as the hourly number of provider accessions of the electronic health record, termed "electronic health record interactions." Hospitalizations were categorized on the basis of the mean difference in electronic health record interactions between the first Friday and the first Saturday of hospitalization. We used regression models to determine the association of these categories with patient outcomes after adjusting for covariates. Electronic health record interactions decreased from Friday to Saturday in 77% of the 9051 hospitalizations included in the study. Compared with hospitalizations with no change in Friday to Saturday electronic health record interactions, the relative lengths of stay for hospitalizations with a small, moderate, and large decrease in electronic health record interactions were 1.05 (95% confidence interval [CI], 1.00-1.10), 1.11 (95% CI, 1.05-1.17), and 1.25 (95% CI, 1.15-1.35), respectively. Although a large decrease in electronic health record interactions was associated with in-hospital mortality, these findings were not significant after risk adjustment (odds ratio 1.74, 95% CI, 0.93-3.25). Intensity of inpatient care, measured by electronic health record interactions, significantly diminished from Friday to Saturday, and this decrease was associated with length of stay. Hospitals should consider monitoring and correcting temporal fluctuations in care intensity. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Development of Communication Conventions in Instructional Electronic Chats.

    ERIC Educational Resources Information Center

    Collins, Mauri P.; Murphy, Karen L.

    1997-01-01

    This study used content analysis to identify the communication conventions and protocols that real-time, interactive electronic chat users developed in instructional settings. Most frequently used conventions included sharing information/techniques for conveying meaning and indicating interest in a topic, using keywords and names of individuals,…

  3. Exploring the Interaction Natures in Plutonyl (VI) Complexes with Topological Analyses of Electron Density

    PubMed Central

    Du, Jiguang; Sun, Xiyuan; Jiang, Gang

    2016-01-01

    The interaction natures between Pu and different ligands in several plutonyl (VI) complexes are investigated by performing topological analyses of electron density. The geometrical structures in both gaseous and aqueous phases are obtained with B3LYP functional, and are generally in agreement with available theoretical and experimental results when combined with all-electron segmented all-electron relativistic contracted (SARC) basis set. The Pu–Oyl bond orders show significant linear dependence on bond length and the charge of oxygen atoms in plutonyl moiety. The closed-shell interactions were identified for Pu-Ligand bonds in most complexes with quantum theory of atoms in molecules (QTAIM) analyses. Meanwhile, we found that some Pu–Ligand bonds, like Pu–OH−, show weak covalent. The interactive nature of Pu–ligand bonds were revealed based on the interaction quantum atom (IQA) energy decomposition approach, and our results indicate that all Pu–Ligand interactions is dominated by the electrostatic attraction interaction as expected. Meanwhile it is also important to note that the quantum mechanical exchange-correlation contributions can not be ignored. By means of the non-covalent interaction (NCI) approach it has been found that some weak and repulsion interactions existed in plutonyl(VI) complexes, which can not be distinguished by QTAIM, can be successfully identified. PMID:27077844

  4. The happy marriage between electron-phonon superconductivity and Mott physics in Cs3C60: A first-principle phase diagram

    NASA Astrophysics Data System (ADS)

    Capone, Massimo; Nomura, Yusuke; Sakai, Shiro; Giovannetti, Gianluca; Arita, Ryotaro

    The phase diagram of doped fullerides like Cs3C60 as a function of the spacing between fullerene molecules is characterized by a first-order transition between a Mott insulator and an s-wave superconductor with a dome-shaped behavior of the critical temperature. By means of an ab-initio modeling of the bandstructure, the electron-phonon interaction and the interaction parameter and a Dynamical Mean-Field Theory solution, we reproduce the phase diagram and demonstrate that phonon superconductivity benefits from strong correlations confirming earlier model predictions. The role of correlations is manifest also in infrared measurements carried out by L. Baldassarre. The superconducting phase shares many similarities with ''exotic'' superconductors with electronic pairing, suggesting that the anomalies in the ''normal'' state, rather than the pairing glue, can be the real common element unifying a wide family of strongly correlated superconductors including cuprates and iron superconductors

  5. Observation of anisotropic interactions between metastable atoms and target molecules by two-dimensional collisional ionization electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Kishimoto, Naoki; Ohno, Koichi

    Excited metastable atoms colliding with target molecules can sensitively probe outer properties of molecules by chemi-ionization (Penning ionization) from molecular orbitals in the outer region, since metastable atoms cannot penetrate into the repulsive interaction wall around the molecules. By means of two-dimensional measurements using kinetic energy analysis of electrons combined with a velocity-resolved metastable beam, one can obtain information on the anisotropic interaction between the colliding particles without any control of orientation or alignment of target molecules. We have developed a classical trajectory method to calculate the collision energy dependence of partial ionization cross-sections (CEDPICS) on the anisotropic interaction potential energy surface, which has enabled us to study stereodynamics between metastable atoms and target molecules as well as the spatial distribution of molecular orbitals and electron ejection functions which have a relation with entrance and exit channels of the reaction. Based on the individual CEDPICS, the electronic structure of molecules can also be elucidated.

  6. Gamma-ray generation in the interaction of two tightly focused laser pulses with a low-density target composed of electrons

    NASA Astrophysics Data System (ADS)

    Jirka, M.; Klimo, O.; Weber, S.; Bulanov, Sergei V.; Esirkepov, Timur Zh.; Korn, G.

    2015-05-01

    With the continuing development of laser systems, new important and so-far unexplored fields of research related to interaction of ultra-intense laser beams with matter are opening. At intensities of the order of 1022 W=cm2, electrons may be accelerated in the electromagnetic field of the laser wave and achieve such a high energy that they can enter the regime affected by the radiation reaction. Due to the non-linear Thomson and Compton scattering the accelerated electrons emit photons. The interaction of emitted photons with the laser field may result in effective generation of electron-positron pairs by means of the Breit-Wheeler process. In this work we study the influence of laser pulse polarization on gamma-ray generation during interaction of two colliding and tightly focused laser pulses with a low density target composed of electrons. This paper focuses on evolution of electron trajectories and key parameters χe (probability of photon emission) and χγ(probability of pair generation) in the laser field. These interactions are studied using 2D PIC simulations. It is shown that in the case of circularly polarized and tightly focused laser beams, electrons are not following circular trajectories at the magnetic node of the standing wave established in the focus, which leads to lowering the radiation emission efficiency.

  7. Kinetic theory molecular dynamics and hot dense matter: theoretical foundations.

    PubMed

    Graziani, F R; Bauer, J D; Murillo, M S

    2014-09-01

    Electrons are weakly coupled in hot, dense matter that is created in high-energy-density experiments. They are also mildly quantum mechanical and the ions associated with them are classical and may be strongly coupled. In addition, the dynamical evolution of plasmas under these hot, dense matter conditions involve a variety of transport and energy exchange processes. Quantum kinetic theory is an ideal tool for treating the electrons but it is not adequate for treating the ions. Molecular dynamics is perfectly suited to describe the classical, strongly coupled ions but not the electrons. We develop a method that combines a Wigner kinetic treatment of the electrons with classical molecular dynamics for the ions. We refer to this hybrid method as "kinetic theory molecular dynamics," or KTMD. The purpose of this paper is to derive KTMD from first principles and place it on a firm theoretical foundation. The framework that KTMD provides for simulating plasmas in the hot, dense regime is particularly useful since current computational methods are generally limited by their inability to treat the dynamical quantum evolution of the electronic component. Using the N-body von Neumann equation for the electron-proton plasma, three variations of KTMD are obtained. Each variant is determined by the physical state of the plasma (e.g., collisional versus collisionless). The first variant of KTMD yields a closed set of equations consisting of a mean-field quantum kinetic equation for the electron one-particle distribution function coupled to a classical Liouville equation for the protons. The latter equation includes both proton-proton Coulombic interactions and an effective electron-proton interaction that involves the convolution of the electron density with the electron-proton Coulomb potential. The mean-field approach is then extended to incorporate equilibrium electron-proton correlations through the Singwi-Tosi-Land-Sjolander (STLS) ansatz. This is the second variant of KTMD. The STLS contribution produces an effective electron-proton interaction that involves the electron-proton structure factor, thereby extending the usual mean-field theory to correlated but near equilibrium systems. Finally, a third variant of KTMD is derived. It includes dynamical electrons and their correlations coupled to a MD description for the ions. A set of coupled equations for the one-particle electron Wigner function and the electron-electron and electron-proton correlation functions are coupled to a classical Liouville equation for the protons. This latter variation has both time and momentum dependent correlations.

  8. Structure and Electronic Properties of Nano-complex CCl4…Cr(AcacCl)3 on Evidence Derived from Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Slabzhennikov, S. N.; Kuarton, L. A.; Ryabchenko, O. B.

    In order to specify influence of intermolecular interaction on IR spectrum of interacting species, an investigation of a process CCl4 + Cr(AcacCl)3 → CCl4…Cr(AcacCl)3 has been performed by means of Hartree-Fock-Roothaan method in MIDI basis set with p- and d- polarization functions. An estimation of intermolecular interaction in geometrical parameters, electron density function both between interacting particles and inside themselves, frequencies and intensities of normal modes has been carried out. Chemical bonds with the most significant shifts of characteristics under formation of nano-complex CCl4…Cr(AcacCl)3 have been noted.

  9. A theory of local and global processes which affect solar wind electrons. I - The origin of typical 1 AU velocity distribution functions - Steady state theory

    NASA Technical Reports Server (NTRS)

    Scudder, J. D.; Olbert, S.

    1979-01-01

    A kinetic theory for the velocity distribution of solar wind electrons which illustrates the global and local properties of the solar wind expansion is proposed. By means of the Boltzmann equation with the Krook collision operator accounting for Coulomb collisions, it is found that Coulomb collisions determine the population and shape of the electron distribution function in both the thermal and suprathermal energy regimes. For suprathermal electrons, the cumulative effects of Coulomb interactions are shown to take place on the scale of the heliosphere itself, whereas the Coulomb interactions of thermal electrons occur on a local scale near the point of observation (1 AU). The bifurcation of the electron distribution between thermal and suprathermal electrons is localized to the deep solar corona (1 to 10 solar radii).

  10. Collision-energy-resolved angular distribution of Penning electrons for N 2-He ∗(2 3S)

    NASA Astrophysics Data System (ADS)

    Hanzawa, Yoshinori; Kishimoto, Naoki; Yamazaki, Masakazu; Ohno, Koichi

    2006-07-01

    The collision-energy-resolved angular distributions of Penning electrons for individual ionic state of N 2-He ∗(2 3S) were measured. The angular distributions showed increasing intensity in the backward (rebounding) directions with respect to initial He ∗(2 3S) beam vector because Penning ionization occurs with a collision against repulsive interaction wall followed by the electron emission from 2s orbital of He ∗. We also analyzed internal angular distribution by means of fitting parameters using classical trajectory calculations for N 2-He ∗(2 3S) on the modified interaction potential. These internal angular distributions suggested the electron emission from 2s orbital of He ∗ and they depended on collision energy and electron kinetic energy.

  11. Higher-Than-Ballistic Conduction in Viscous Electron Fluids

    NASA Astrophysics Data System (ADS)

    Levitov, Leonid

    Strongly interacting electrons can move in a neatly coordinated way, reminiscent of the movement of viscous fluids. This talk will argue that in viscous flows interactions facilitate transport, allowing conductance to exceed the fundamental Sharvin-Landauer quantum-ballistic limit. The effect is particularly striking for the flow through a viscous point contact, a constriction exhibiting the quantum-mechanical ballistic transport at T = 0 but governed by electron hydrodynamics at elevated temperatures. Conductance grows as a square of the constriction width, i.e. faster than the linear width dependence for noninteracting fermions. The crossover between the ballistic and viscous regimes occurs when the mean free path for e-e collisions becomes comparable to the constriction width. Further, we will discuss the negative nonlocal response, a signature effect of viscous transport. This response exhibits an interesting nonmonotonic behavior vs. T at the viscous-to-balistic transition. The response is negative but small in the highly viscous regime at elevated temperatures. The value grows as the temperature is lowered and the system becomes less viscous, reaching the most negative values in the crossover region where the mean free path is comparable to the distance between contacts. Subsequently, it reverses sign at even lower temperatures, becoming positive as the system enters the ballistic regime. This peculiar behavior provides a clear signature of the ballistic-to-viscous transition and enables a direct measurement of the electron-electron collision mean free path.

  12. Coherent coupling between a quantum dot and a donor in silicon

    DOE PAGES

    Harvey-Collard, Patrick; Jacobson, N. Tobias; Rudolph, Martin; ...

    2017-10-18

    Individual donors in silicon chips are used as quantum bits with extremely low error rates. However, physical realizations have been limited to one donor because their atomic size causes fabrication challenges. Quantum dot qubits, in contrast, are highly adjustable using electrical gate voltages. This adjustability could be leveraged to deterministically couple donors to quantum dots in arrays of qubits. In this work, we demonstrate the coherent interaction of a 31P donor electron with the electron of a metal-oxide-semiconductor quantum dot. We form a logical qubit encoded in the spin singlet and triplet states of the two-electron system. We show thatmore » the donor nuclear spin drives coherent rotations between the electronic qubit states through the contact hyperfine interaction. This provides every key element for compact two-electron spin qubits requiring only a single dot and no additional magnetic field gradients, as well as a means to interact with the nuclear spin qubit.« less

  13. Molecular dynamics simulations give insight into the conformational change, complex formation, and electron transfer pathway for cytochrome P450 reductase

    PubMed Central

    Sündermann, Axel; Oostenbrink, Chris

    2013-01-01

    Cytochrome P450 reductase (CYPOR) undergoes a large conformational change to allow for an electron transfer to a redox partner to take place. After an internal electron transfer over its cofactors, it opens up to facilitate the interaction and electron transfer with a cytochrome P450. The open conformation appears difficult to crystallize. Therefore, a model of a human CYPOR in the open conformation was constructed to be able to investigate the stability and conformational change of this protein by means of molecular dynamics simulations. Since the role of the protein is to provide electrons to a redox partner, the interactions with cytochrome P450 2D6 (2D6) were investigated and a possible complex structure is suggested. Additionally, electron pathway calculations with a newly written program were performed to investigate which amino acids relay the electrons from the FMN cofactor of CYPOR to the HEME of 2D6. Several possible interacting amino acids in the complex, as well as a possible electron transfer pathway were identified and open the way for further investigation by site directed mutagenesis studies. PMID:23832577

  14. Interacting Electrons in Graphene: Fermi Velocity Renormalization and Optical Response

    NASA Astrophysics Data System (ADS)

    Stauber, T.; Parida, P.; Trushin, M.; Ulybyshev, M. V.; Boyda, D. L.; Schliemann, J.

    2017-06-01

    We have developed a Hartree-Fock theory for electrons on a honeycomb lattice aiming to solve a long-standing problem of the Fermi velocity renormalization in graphene. Our model employs no fitting parameters (like an unknown band cutoff) but relies on a topological invariant (crystal structure function) that makes the Hartree-Fock sublattice spinor independent of the electron-electron interaction. Agreement with the experimental data is obtained assuming static self-screening including local field effects. As an application of the model, we derive an explicit expression for the optical conductivity and discuss the renormalization of the Drude weight. The optical conductivity is also obtained via precise quantum Monte Carlo calculations which compares well to our mean-field approach.

  15. Sextupole system for the correction of spherical aberration

    DOEpatents

    Crewe, A.V.; Kopf, D.A.

    In an electron beam device in which an electron beam is developed and then focused by a lens to a particular spot, there is provided a means for eliminating spherical aberration. A sextupole electromagnetic lens is positioned between two focusing lenses. The interaction of the sextupole with the beam compensates for spherical aberration. (GHT)

  16. Ab initio study on electronically excited states of lithium isocyanide, LiNC

    NASA Astrophysics Data System (ADS)

    Yasumatsu, Hisato; Jeung, Gwang-Hi

    2014-01-01

    The electronically excited states of the lithium isocyanide molecule, LiNC, were studied by means of ab initio calculations. The bonding nature of LiNC up to ∼10 eV is discussed on the basis of the potential energy surfaces according to the interaction between the ion-pair and covalent states. The ion-pair states are described by Coulomb attractive interaction in the long distance range, while the covalent ones are almost repulsive or bound with a very shallow potential dent. These two states interact each other to form adiabatic potential energy surfaces with non-monotonic change in the potential energy with the internuclear distance.

  17. Delocalized and localized states of eg electrons in half-doped manganites.

    PubMed

    Winkler, E L; Tovar, M; Causa, M T

    2013-07-24

    We have studied the magnetic behaviour of half-doped manganite Y0.5Ca0.5MnO3 in an extended range of temperatures by means of magnetic susceptibility, χ(T), and electron spin resonance (ESR) experiments. At high temperature the system crystallizes in an orthorhombic structure. The resistivity value, ρ ≃ 0.05 Ω cm at 500 K, indicates a metallic behaviour, while the Curie-Weiss dependence of χ(T) and the thermal evolution of the ESR parameters are very well described by a model that considers a system conformed by localized Mn(4+) cores, [Formula: see text], and itinerant, eg, electrons. The strong coupling between t2g and eg electrons results in an enhanced Curie constant and an FM Curie-Weiss temperature that overcomes the AFM interactions between the [Formula: see text] cores. A transition to a more distorted phase is observed at T ≈ 500 K and signatures of localization of the eg electrons appear in the χ(T) behaviour below 300 K. A new Curie-Weiss regime is observed, where the Curie-constant value is consistent with dimer formation. Based on mean-field calculations, the dimer formation is predicted as a function of the interaction strength between the t2g and eg electrons.

  18. A Deterministic Computational Procedure for Space Environment Electron Transport

    NASA Technical Reports Server (NTRS)

    Nealy, John E.; Chang, C. K.; Norman, Ryan B.; Blattnig, Steve R.; Badavi, Francis F.; Adamcyk, Anne M.

    2010-01-01

    A deterministic computational procedure for describing the transport of electrons in condensed media is formulated to simulate the effects and exposures from spectral distributions typical of electrons trapped in planetary magnetic fields. The primary purpose for developing the procedure is to provide a means of rapidly performing numerous repetitive transport calculations essential for electron radiation exposure assessments for complex space structures. The present code utilizes well-established theoretical representations to describe the relevant interactions and transport processes. A combined mean free path and average trajectory approach is used in the transport formalism. For typical space environment spectra, several favorable comparisons with Monte Carlo calculations are made which have indicated that accuracy is not compromised at the expense of the computational speed.

  19. Metal-insulator transition in a doubly orbitally degenerate model with correlated hopping

    NASA Astrophysics Data System (ADS)

    Didukh, L.; Skorenkyy, Yu.; Dovhopyaty, Yu.; Hankevych, V.

    2000-03-01

    In the present paper, we propose a doubly orbitally degenerate narrow-band model with correlated hopping. The peculiarity of the model is taking into account the matrix element of electron-electron interaction, which describes intersite hoppings of electrons. In particular, this leads to the concentration dependence of the effective hopping integral. The cases of the strong and weak Hund's coupling are considered. By means of a generalized mean-field approximation the single-particle Green function and quasiparticle energy spectrum are calculated. Metal-insulator transition is studied in the model at different integer values of the electron concentration. With the help of the obtained energy spectrum, we find energy gap width and criteria of metal-insulator transition.

  20. Localization of holes near charged defects in orbitally degenerate, doped Mott insulators

    NASA Astrophysics Data System (ADS)

    Avella, Adolfo; Oleś, Andrzej M.; Horsch, Peter

    2018-05-01

    We study the role of charged defects, disorder and electron-electron (e-e) interactions in a multiband model for t2g electrons in vanadium perovskites R1-xCaxVO3 (R = La,…,Y). By means of unrestricted Hartree-Fock calculations, we find that the atomic multiplet structure persists up to 50% Ca doping. Using the inverse participation number, we explore the degree of localization and its doping dependence for all electronic states. The observation of strongly localized wave functions is consistent with our conjecture that doped holes form spin-orbital polarons that are strongly bound to the charged Ca2+ defects. Interestingly, the long-range e-e interactions lead to a discontinuity in the wave function size across the chemical potential, where the electron removal states are more localized than the addition states.

  1. Analytical and numerical analysis of imaging mechanism of dynamic scanning electron microscopy.

    PubMed

    Schröter, M-A; Holschneider, M; Sturm, H

    2012-11-02

    The direct observation of small oscillating structures with the help of a scanning electron beam is a new approach to study the vibrational dynamics of cantilevers and microelectromechanical systems. In the scanning electron microscope, the conventional signal of secondary electrons (SE, dc part) is separated from the signal response of the SE detector, which is correlated to the respective excitation frequency for vibration by means of a lock-in amplifier. The dynamic response is separated either into images of amplitude and phase shift or into real and imaginary parts. Spatial resolution is limited to the diameter of the electron beam. The sensitivity limit to vibrational motion is estimated to be sub-nanometer for high integration times. Due to complex imaging mechanisms, a theoretical model was developed for the interpretation of the obtained measurements, relating cantilever shapes to interaction processes consisting of incident electron beam, electron-lever interaction, emitted electrons and detector response. Conclusions drawn from this new model are compared with numerical results based on the Euler-Bernoulli equation.

  2. Potential of mean force for electrical conductivity of dense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starrett, C. E.

    The electrical conductivity in dense plasmas can be calculated with the relaxation-time approximation provided that the interaction potential between the scattering electron and the ion is known. To date there has been considerable uncertainty as to the best way to define this interaction potential so that it correctly includes the effects of ionic structure, screening by electrons and partial ionization. The current approximations lead to significantly different results with varying levels of agreement when compared to bench-mark calculations and experiments. Here, we present a new way to define this potential, drawing on ideas from classical fluid theory to define amore » potential of mean force. This new potential results in significantly improved agreement with experiments and bench-mark calculations, and includes all the aforementioned physics self-consistently.« less

  3. Potential of mean force for electrical conductivity of dense plasmas

    DOE PAGES

    Starrett, C. E.

    2017-09-28

    The electrical conductivity in dense plasmas can be calculated with the relaxation-time approximation provided that the interaction potential between the scattering electron and the ion is known. To date there has been considerable uncertainty as to the best way to define this interaction potential so that it correctly includes the effects of ionic structure, screening by electrons and partial ionization. The current approximations lead to significantly different results with varying levels of agreement when compared to bench-mark calculations and experiments. Here, we present a new way to define this potential, drawing on ideas from classical fluid theory to define amore » potential of mean force. This new potential results in significantly improved agreement with experiments and bench-mark calculations, and includes all the aforementioned physics self-consistently.« less

  4. Potential of mean force for electrical conductivity of dense plasmas

    NASA Astrophysics Data System (ADS)

    Starrett, C. E.

    2017-12-01

    The electrical conductivity in dense plasmas can be calculated with the relaxation-time approximation provided that the interaction potential between the scattering electron and the ion is known. To date there has been considerable uncertainty as to the best way to define this interaction potential so that it correctly includes the effects of ionic structure, screening by electrons and partial ionization. Current approximations lead to significantly different results with varying levels of agreement when compared to bench-mark calculations and experiments. We present a new way to define this potential, drawing on ideas from classical fluid theory to define a potential of mean force. This new potential results in significantly improved agreement with experiments and bench-mark calculations, and includes all the aforementioned physics self-consistently.

  5. The suppression of radiation reaction and laser field depletion in laser-electron beam interaction

    NASA Astrophysics Data System (ADS)

    Ong, J. F.; Moritaka, T.; Takabe, H.

    2018-03-01

    The effects of radiation reaction (RR) have been studied extensively by using the interaction of ultraintense lasers with a counter-propagating relativistic electron. At the laser intensity at the order of 1023 W/cm2, the effects of RR are significant in a few laser periods for a relativistic electron. However, a laser at such intensity is tightly focused and the laser energy is usually assumed to be fixed. Then, the signal of RR and energy conservation cannot be guaranteed. To assess the effects of RR in a tightly focused laser pulse and the evolution of the laser energy, we simulated this interaction with a beam of 109 electrons by means of a Particle-In-Cell method. We observe that the effects of RR are suppressed due to the ponderomotive force and accompanied by a non-negligible amount of laser field energy reduction. This is because the ponderomotive force prevents the electrons from approaching the center of the laser pulse and leads to an interaction at the weaker field region. At the same time, the laser energy is absorbed through ponderomotive acceleration. Thus, the kinetic energy of the electron beam has to be carefully selected such that the effects of RR become obvious.

  6. On thermalization of electron-positron-photon plasma

    NASA Astrophysics Data System (ADS)

    Siutsou, I. A.; Aksenov, A. G.; Vereshchagin, G. V.

    2015-12-01

    Recently a progress has been made in understanding thermalization mechanism of relativistic plasma starting from a non-equilibrium state. Relativistic Boltzmann equations were solved numerically for homogeneous isotropic plasma with collision integrals for two- and three-particle interactions calculated from the first principles by means of QED matrix elements. All particles were assumed to fulfill Boltzmann statistics. In this work we follow plasma thermalization by accounting for Bose enhancement and Pauli blocking in particle interactions. Our results show that particle in equilibrium reach Bose-Einstein distribution for photons, and Fermi-Dirac one for electrons, respectively.

  7. Scanning electron microscopy of Ancylostoma spp. dog infective larvae captured and destroyed by the nematophagous fungus Duddingtonia flagrans.

    PubMed

    Maciel, A S; Araújo, J V; Campos, A K; Benjamin, L A; Freitas, L G

    2009-06-01

    The interaction between the nematode-trapping fungus Duddingtonia flagrans (isolate CG768) against Ancylostoma spp. dog infective larvae (L(3)) was evaluated by means of scanning electron microscopy. Adhesive network trap formation was observed 6h after the beginning of the interaction, and the capture of Ancylostoma spp. L(3) was observed 8h after the inoculation these larvae on the cellulose membranes colonized by the fungus. Scanning electron micrographs were taken at 0, 12, 24, 36 and 48 h, where 0 is the time when Ancylostoma spp. L(3) was first captured by the fungus. Details of the capture structure formed by the fungus were described. Nematophagous Fungus Helper Bacteria (NHB) were found at interactions points between the D. flagrans and Ancylostoma spp. L(3). The cuticle penetration by the differentiated fungal hyphae with the exit of nematode internal contents was observed 36 h after the capture. Ancylostoma spp. L(3) were completely destroyed after 48 h of interaction with the fungus. The scanning electron microscopy technique was efficient on the study of this interaction, showing that the nematode-trapping fungus D. flagrans (isolate CG768) is a potential exterminator of Ancylostoma spp. L(3).

  8. Understanding the role of electron and hole trions on current transport in aluminium tris(8-hydroxyquinoline) using organic magnetoresistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Sijie; Gillin, W. P., E-mail: w.gillin@qmul.ac.uk; Materials Research Institute and School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS

    The change in current through an organic light emitting diode (OLED) when it is placed in a magnetic field has been dubbed organic magnetoresistance and provides a means to understand the spin interactions that are occurring in working devices. Whilst there are a wide range of interactions that have been proposed to be the cause of the measured effects, there is still a need to identify their individual roles and in particular how they respond to an applied magnetic field. In this work, we investigate the effect of changing the balance of electron and hole injection in a simple aluminiummore » tris(8-hydroxyqinoline) based OLED and demonstrate that the triplet polaron interaction appears to be much stronger for electrons than for holes in this material.« less

  9. Laser-induced electron dynamics including photoionization: A heuristic model within time-dependent configuration interaction theory.

    PubMed

    Klinkusch, Stefan; Saalfrank, Peter; Klamroth, Tillmann

    2009-09-21

    We report simulations of laser-pulse driven many-electron dynamics by means of a simple, heuristic extension of the time-dependent configuration interaction singles (TD-CIS) approach. The extension allows for the treatment of ionizing states as nonstationary states with a finite, energy-dependent lifetime to account for above-threshold ionization losses in laser-driven many-electron dynamics. The extended TD-CIS method is applied to the following specific examples: (i) state-to-state transitions in the LiCN molecule which correspond to intramolecular charge transfer, (ii) creation of electronic wave packets in LiCN including wave packet analysis by pump-probe spectroscopy, and, finally, (iii) the effect of ionization on the dynamic polarizability of H(2) when calculated nonperturbatively by TD-CIS.

  10. The effects of transverse magnetic field and local electronic interaction on thermoelectric properties of monolayer graphene

    NASA Astrophysics Data System (ADS)

    Rezania, Hamed; Azizi, Farshad

    2018-02-01

    We study the effects of a transverse magnetic field and electron doping on the thermoelectric properties of monolayer graphene in the context of Hubbard model at the antiferromagnetic sector. In particular, the temperature dependence of thermal conductivity and Seebeck coefficient has been investigated. Mean field approximation has been employed in order to obtain the electronic spectrum of the system in the presence of local electron-electron interaction. Our results show the peak in thermal conductivity moves to higher temperatures with increase of both chemical potential and Hubbard parameter. Moreover the increase of magnetic field leads to shift of peak in temperature dependence of thermal conductivity to higher temperatures. Finally the behavior of Seebeck coefficient in terms of temperature has been studied and the effects of magnetic field and Hubbard parameter on this coefficient have been investigated in details.

  11. Magnetic edge states in Aharonov-Bohm graphene quantum rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farghadan, R., E-mail: rfarghadan@kashanu.ac.ir; Heidari Semiromi, E.; Saffarzadeh, A.

    2013-12-07

    The effect of electron-electron interaction on the electronic structure of Aharonov-Bohm (AB) graphene quantum rings (GQRs) is explored theoretically using the single-band tight-binding Hamiltonian and the mean-field Hubbard model. The electronic states and magnetic properties of hexagonal, triangular, and circular GQRs with different sizes and zigzag edge terminations are studied. The results show that, although the AB oscillations in the all types of nanoring are affected by the interaction, the spin splitting in the AB oscillations strongly depends on the geometry and the size of graphene nanorings. We found that the total spin of hexagonal and circular rings is zeromore » and therefore, no spin splitting can be observed in the AB oscillations. However, the non-zero magnetization of the triangular rings breaks the degeneracy between spin-up and spin-down electrons, which produces spin-polarized AB oscillations.« less

  12. Inhibition of electron thermal conduction by electromagnetic instabilities. [in stellar coronas

    NASA Technical Reports Server (NTRS)

    Levinson, Amir; Eichler, David

    1992-01-01

    Heat flux inhibition by electromagnetic instabilities in a hot magnetized plasma is investigated. Low-frequency electromagnetic waves become unstable due to anisotropy of the electron distribution function. The chaotic magnetic field thus generated scatters the electrons with a specific effective mean free path. Saturation of the instability due to wave-wave interaction, nonlinear scattering, wave propagation, and collisional damping is considered. The effective mean free path is found self-consistently, using a simple model to estimate saturation level and scattering, and is shown to decrease with the temperature gradient length. The results, limited to the assumptions of the model, are applied to astrophysical systems. For some interstellar clouds the instability is found to be important. Collisional damping stabilizes the plasma, and the heat conduction can be dominated by superthermal electrons.

  13. Weak-interaction rates in stellar conditions

    NASA Astrophysics Data System (ADS)

    Sarriguren, Pedro

    2018-05-01

    Weak-interaction rates, including β-decay and electron captures, are studied in several mass regions at various densities and temperatures of astrophysical interest. In particular, we study odd-A nuclei in the pf-shell region, which are involved in presupernova formations. Weak rates are relevant to understand the late stages of the stellar evolution, as well as the nucleosynthesis of heavy nuclei. The nuclear structure involved in the weak processes is studied within a quasiparticle proton-neutron random-phase approximation with residual interactions in both particle-hole and particle-particle channels on top of a deformed Skyrme Hartree-Fock mean field with pairing correlations. First, the energy distributions of the Gamow-Teller strength are discussed and compared with the available experimental information, measured under terrestrial conditions from charge-exchange reactions. Then, the sensitivity of the weak-interaction rates to both astrophysical densities and temperatures is studied. Special attention is paid to the relative contribution to these rates of thermally populated excited states in the decaying nucleus and to the electron captures from the degenerate electron plasma.

  14. Non-equilibrium magnetic interactions in strongly correlated systems

    NASA Astrophysics Data System (ADS)

    Secchi, A.; Brener, S.; Lichtenstein, A. I.; Katsnelson, M. I.

    2013-06-01

    We formulate a low-energy theory for the magnetic interactions between electrons in the multi-band Hubbard model under non-equilibrium conditions determined by an external time-dependent electric field which simulates laser-induced spin dynamics. We derive expressions for dynamical exchange parameters in terms of non-equilibrium electronic Green functions and self-energies, which can be computed, e.g., with the methods of time-dependent dynamical mean-field theory. Moreover, we find that a correct description of the system requires, in addition to exchange, a new kind of magnetic interaction, that we name twist exchange, which formally resembles Dzyaloshinskii-Moriya coupling, but is not due to spin-orbit, and is actually due to an effective three-spin interaction. Our theory allows the evaluation of the related time-dependent parameters as well.

  15. Fully gapped superconductivity with no sign change in the prototypical heavy-fermion CeCu2Si2.

    PubMed

    Yamashita, Takuya; Takenaka, Takaaki; Tokiwa, Yoshifumi; Wilcox, Joseph A; Mizukami, Yuta; Terazawa, Daiki; Kasahara, Yuichi; Kittaka, Shunichiro; Sakakibara, Toshiro; Konczykowski, Marcin; Seiro, Silvia; Jeevan, Hirale S; Geibel, Christoph; Putzke, Carsten; Onishi, Takafumi; Ikeda, Hiroaki; Carrington, Antony; Shibauchi, Takasada; Matsuda, Yuji

    2017-06-01

    In exotic superconductors, including high- T c copper oxides, the interactions mediating electron Cooper pairing are widely considered to have a magnetic rather than a conventional electron-phonon origin. Interest in this exotic pairing was initiated by the 1979 discovery of heavy-fermion superconductivity in CeCu 2 Si 2 , which exhibits strong antiferromagnetic fluctuations. A hallmark of unconventional pairing by anisotropic repulsive interactions is that the superconducting energy gap changes sign as a function of the electron momentum, often leading to nodes where the gap goes to zero. We report low-temperature specific heat, thermal conductivity, and magnetic penetration depth measurements in CeCu 2 Si 2 , demonstrating the absence of gap nodes at any point on the Fermi surface. Moreover, electron irradiation experiments reveal that the superconductivity survives even when the electron mean free path becomes substantially shorter than the superconducting coherence length. This indicates that superconductivity is robust against impurities, implying that there is no sign change in the gap function. These results show that, contrary to long-standing belief, heavy electrons with extremely strong Coulomb repulsions can condense into a fully gapped s-wave superconducting state, which has an on-site attractive pairing interaction.

  16. Interactions between alkaline earth cations and oxo ligands. DFT study of the affinity of the Mg²+ cation for phosphoryl ligands.

    PubMed

    da Costa, Leonardo Moreira; de Mesquita Carneiro, José Walkimar; Paes, Lilian Weitzel Coelho

    2011-08-01

    DFT (B3LYP/6-31+G(d)) calculations of Mg(2+) affinities for a set of phosphoryl ligands were performed. Two types of ligands were studied: a set of trivalent [O = P(R)] and a set of pentavalent phosphoryl ligands [O = P(R)(3)] (R = H, F, Cl, Br, OH, OCH(3), CH(3), CN, NH(2) and NO(2)), with R either bound directly to the phosphorus atom or to the para position of a phenyl ring. The affinity of the Mg(2+) cation for the ligands was quantified by means of the enthalpy for the substitution of one water molecule in the [Mg(H(2)O)(6)](2+) complex for a ligand. The enthalpy of substitution was correlated with electronic and geometric parameters. Electron-donor groups increase the interaction between the cation and the ligand, while electron-acceptor groups decrease the interaction enthalpy.

  17. X-ray emission reduction and photon dose lowering by energy loss of fast electrons induced by return current during the interaction of a short-pulse high-intensity laser on a metal solid target

    NASA Astrophysics Data System (ADS)

    Compant La Fontaine, A.

    2018-04-01

    During the interaction of a short-pulse high-intensity laser with the preplasma produced by the pulse's pedestal in front of a high-Z metal solid target, high-energy electrons are produced, which in turn create an X-ray source by interacting with the atoms of the converter target. The current brought by the hot electrons is almost completely neutralized by a return current j → driven by the background electrons of the conductive target, and the force exerted on the hot electrons by the electric field E → which induces Ohmic heating j → .E → , produced by the background electrons, reduces the energy of the hot electrons and thus lowers the X-ray emission and photon dose. This effect is analyzed here by means of a simple 1-D temperature model which contains the most significant terms of the relativistic Fokker-Planck equation with electron multiple scattering, and the energy equations of ions, hot, and cold electrons are then solved numerically. This Ohmic heating energy loss fraction τOh is introduced as a corrective term in an improved photon dose model. For instance, for a ps laser pulse with 10 μm spot size, the dose obtained with a tantalum target is reduced by less than about 10% to 40% by the Ohmic heating, depending upon the plasma scale length, target thickness, laser parameters, and in particular its spot size. The laser and plasma parameters may be optimized to limit the effect of Ohmic heating, for instance at a small plasma scale length or small laser spot size. Conversely, others regimes not suitable for dose production are identified. For instance, the resistive heating is enhanced in a foam target or at a long plasma scale length and high laser spot size and intensity, as the mean emission angle θ0 of the incident hot electron bunch given by the ponderomotive force is small; thus, the dose produced by a laser interacting in a gas jet may be inhibited under these circumstances. The resistive heating may also be maximized in order to reduce the X-ray emission to lower the radiation level for instance in a safety radiological goal.

  18. Propagation of electron beams in space

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; Okuda, H.

    1988-01-01

    Particle simulations were performed in order to study the effects of beam plasma interaction and the propagation of an electron beam in a plasma with a magnetic field. It is found that the beam plasma instability results in the formation of a high energy tail in the electron velocity distribution which enhances the mean free path of the beam electrons. Moreover, the simulations show that when the beam density is much smaller than the ambient plasma density, currents much larger than the thermal return current can be injected into a plasma.

  19. Analysis of the interaction of an electron beam with back surface field solar cells

    NASA Technical Reports Server (NTRS)

    Von Roos, O.; Luke, K. L.

    1983-01-01

    In this paper the short circuit current Isc induced by the electron beam of a scanning electron microscope in a back surface field solar cell will be determined theoretically. It will be shown that, in a configuration used previously for solar cells with an ohmic back surface, the Isc gives a convenient means for estimating the back surface recombination velocities and thus the quality of back surface field cells. Numerical data will be presented applicable to a point source model for the electron-hole pair generation.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwari, Pragya; Srivastava, A. K.; Khattak, B. Q.

    Polymethyl methacrylate (PMMA) is characterized for electron beam interactions in the resist layer in lithographic applications. PMMA thin films (free standing) were prepared by solvent casting method. These films were irradiated with 30keV electron beam at different doses. Structural and chemical properties of the films were studied by means of X-ray diffraction and Fourier transform infra-red (FTIR) spectroscopy The XRD results showed that the amorphization increases with electron beam irradiation dose. FTIR spectroscopic analysis reveals that electron beam irradiation promotes the scission of carbonyl group and depletes hydrogen and converts polymeric structure into hydrogen depleted carbon network.

  1. Electronic entanglement in late transition metal oxides.

    PubMed

    Thunström, Patrik; Di Marco, Igor; Eriksson, Olle

    2012-11-02

    We present a study of the entanglement in the electronic structure of the late transition metal monoxides--MnO, FeO, CoO, and NiO--obtained by means of density-functional theory in the local density approximation combined with dynamical mean-field theory. The impurity problem is solved through exact diagonalization, which grants full access to the thermally mixed many-body ground state density operator. The quality of the electronic structure is affirmed through a direct comparison between the calculated electronic excitation spectrum and photoemission experiments. Our treatment allows for a quantitative investigation of the entanglement in the electronic structure. Two main sources of entanglement are explicitly resolved through the use of a fidelity based geometrical entanglement measure, and additional information is gained from a complementary entropic entanglement measure. We show that the interplay of crystal field effects and Coulomb interaction causes the entanglement in CoO to take a particularly intricate form.

  2. Influence of the Li···π Interaction on the H/X···π Interactions in HOLi···C6H6···HOX/XOH (X=F, Cl, Br, I) complexes.

    PubMed

    Zeng, Yanli; Wu, Wenjie; Li, Xiaoyan; Zheng, Shijun; Meng, Lingpeng

    2013-06-03

    The influences of the Li···π interaction of C6H6···LiOH on the H···π interaction of C6H6···HOX (X=F, Cl, Br, I) and the X···π interaction of C6H6···XOH (X=Cl, Br, I) are investigated by means of full electronic second-order Møller-Plesset perturbation theory calculations and "quantum theory of atoms in molecules" (QTAIM) studies. The binding energies, binding distances, infrared vibrational frequencies, and electron densities at the bond critical points (BCPs) of the hydrogen bonds and halogen bonds prove that the addition of the Li···π interaction to benzene weakens the H···π and X···π interactions. The influences of the Li···π interaction on H···π interactions are greater than those on X···π interactions; the influences of the H···π interactions on the Li···π interaction are greater than X···π interactions on Li···π interaction. The greater the influence of Li···π interaction on H/X···π interactions, the greater the influences of H/X···π interactions on Li···π interaction. QTAIM studies show that the intermolecular interactions of C6H6···HOX and C6H6···XOH are mainly of the π type. The electron densities at the BCPs of hydrogen bonds and halogen bonds decrease on going from bimolecular complexes to termolecular complexes, and the π-electron densities at the BCPs show the same pattern. Natural bond orbital analyses show that the Li···π interaction reduces electron transfer from C6 H6 to HOX and XOH. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Microscale heat transfer in fusion welding of glass by ultra-short pulse laser using dual phase lag effects

    NASA Astrophysics Data System (ADS)

    Bag, Swarup

    2018-04-01

    The heat transfer in microscale has very different physical basis than macroscale where energy transport depends on collisions among energy carriers (electron and phonon), mean free path for the lattice (~ 10 – 100 nm) and mean free time between energy carriers. The heat transport is described on the basis of different types of energy carriers averaging over the grain scale in space and collations between them in time scale. The physical bases of heat transfer are developed by phonon-electron interaction for metals and alloys and phonon scattering for insulators and dielectrics. The non-Fourier effects in heating become more and more predominant as the duration of heating pulse becomes extremely small that is comparable with mean free time of the energy carriers. The mean free time for electron – phonon and phonon-phonon interaction is of the order of 1 and 10 picoseconds, respectively. In the present study, the mathematical formulation of the problem is defined considering dual phase lag i.e. two relaxation times in heat transport assuming a volumetric heat generation for ultra-short pulse laser interaction with dielectrics. The relaxation times are estimated based on phonon scattering model. A three dimensional finite element model is developed to find transient temperature distribution using quadruple ellipsoidal heat source model. The analysis is performed for single and multiple pulses to generate the time temperature history at different location and at different instant of time. The simulated results are validated with experiments reported in independent literature. The effect of two relaxation times and pulse width on the temperature profile is studied through numerical simulation.

  4. Influence of Coulomb interaction of tunable shapes on the collective transport of ultradilute two-dimensional holes.

    PubMed

    Huang, Jian; Pfeiffer, L N; West, K W

    2014-01-24

    In high quality updoped GaAs field-effect transistors, the two-dimensional charge carrier concentrations can be tuned to very low values similar to the density of electrons on helium surfaces. An important interaction effect, screening of the Coulomb interaction by the gate, rises as a result of the large charge spacing comparable to the distance between the channel and the gate. Based on the results of the temperature (T) dependence of the resistivity from measuring four different samples, a power-law characteristic is found for charge densities ≤2×10(9)  cm(-2). Moreover, the exponent exhibits a universal dependence on a single dimensionless parameter, the ratio between the mean carrier separation and the distance to the metallic gate that screens the Coulomb interaction. Thus, the electronic properties are tuned through varying the shape of the interaction potential.

  5. Competing interactions in semiconductor quantum dots

    DOE PAGES

    van den Berg, R.; Brandino, G. P.; El Araby, O.; ...

    2014-10-14

    In this study, we introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions atmore » longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.« less

  6. Applications of Fermi-Lowdin-Orbital Self-Interaction Correction Scheme to Organic Systems

    NASA Astrophysics Data System (ADS)

    Baruah, Tunna; Kao, Der-You; Yamamoto, Yoh

    Recent progress in treating the self-interaction errors by means of local, Lowdin-orthogonalized Fermi Orbitals offers a promising route to study the effect of self-interaction errors in the electronic structure of molecules. The Fermi orbitals depend on the location of the electronic positions, called as Fermi orbital descriptors. One advantage of using the Fermi orbitals is that the corrected Hamiltonian is unitarily invariant. Minimization of the corrected energies leads to an optimized set of centroid positions. Here we discuss the applications of this method to various systems from constituent atoms to several medium size molecules such as Mg-porphyrin, C60, pentacene etc. The applications to the ionic systems will also be discussed. De-SC0002168, NSF-DMR 125302.

  7. Quantum versus classical hyperfine-induced dynamics in a quantum dota)

    NASA Astrophysics Data System (ADS)

    Coish, W. A.; Loss, Daniel; Yuzbashyan, E. A.; Altshuler, B. L.

    2007-04-01

    In this article we analyze spin dynamics for electrons confined to semiconductor quantum dots due to the contact hyperfine interaction. We compare mean-field (classical) evolution of an electron spin in the presence of a nuclear field with the exact quantum evolution for the special case of uniform hyperfine coupling constants. We find that (in this special case) the zero-magnetic-field dynamics due to the mean-field approximation and quantum evolution are similar. However, in a finite magnetic field, the quantum and classical solutions agree only up to a certain time scale t <τc, after which they differ markedly.

  8. The Kubo-Greenwood formula as a result of the random phase approximation for the electrons of the metal

    NASA Astrophysics Data System (ADS)

    Ivliev, S. V.

    2017-12-01

    For calculation of short laser pulse absorption in metal the imaginary part of permittivity, which is simply related to the conductivity, is required. Currently to find the static and dynamic conductivity the Kubo-Greenwood formula is most commonly used. It describes the electromagnetic energy absorption in the one-electron approach. In the present study, this formula is derived directly from the expression for the permittivity expression in the random phase approximation, which in fact is equivalent to the method of the mean field. The detailed analysis of the role of electron-electron interaction in the calculation of the matrix elements of the velocity operator is given. It is shown that in the one-electron random phase approximation the single-particle conductive electron wave functions in the field of fixed ions should be used. The possibility of considering the exchange and correlation effects by means of an amendment to a local function field is discussed.

  9. Electronic structure, transport, and collective effects in molecular layered systems.

    PubMed

    Hahn, Torsten; Ludwig, Tim; Timm, Carsten; Kortus, Jens

    2017-01-01

    The great potential of organic heterostructures for organic device applications is exemplified by the targeted engineering of the electronic properties of phthalocyanine-based systems. The transport properties of two different phthalocyanine systems, a pure copper phthalocyanine (CoPc) and a flourinated copper phthalocyanine-manganese phthalocyanine (F 16 CoPc/MnPc) heterostructure, are investigated by means of density functional theory (DFT) and the non-equilibrium Green's function (NEGF) approach. Furthermore, a master-equation-based approach is used to include electronic correlations beyond the mean-field-type approximation of DFT. We describe the essential theoretical tools to obtain the parameters needed for the master equation from DFT results. Finally, an interacting molecular monolayer is considered within a master-equation approach.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    van den Berg, R.; Brandino, G. P.; El Araby, O.

    In this study, we introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions atmore » longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.« less

  11. Phonon-Mediated Tunneling into Graphene

    NASA Astrophysics Data System (ADS)

    Wehling, T. O.; Grigorenko, I.; Lichtenstein, A. I.; Balatsky, A. V.

    2008-11-01

    Recent scanning tunneling spectroscopy experiments on graphene reported an unexpected gap of about ±60meV around the Fermi level [V. W. Brar , Appl. Phys. Lett.APPLAB0003-6951 91, 122102 (2007); 10.1063/1.2771084Y. Zhang , Nature Phys.NPAHAX1745-2481 4, 627 (2008)10.1038/nphys1022]. Here we give a theoretical investigation explaining the experimentally observed spectra and confirming the phonon-mediated tunneling as the reason for the gap: We study the real space properties of the wave functions involved in the tunneling process by means of ab initio theory and present a model for the electron-phonon interaction, which couples the graphene’s Dirac electrons with quasifree-electron states at the Brillouin zone center. The self-energy associated with this electron-phonon interaction is calculated, and its effects on tunneling into graphene are discussed. Good agreement of the tunneling density of states within our model and the experimental dI/dU spectra is found.

  12. Phonon mediated tunneling into graphene

    NASA Astrophysics Data System (ADS)

    Wehling, Tim; Grigorenko, Ilya; Lichtenstein, Alexander; Balatsky, Alexander

    2009-03-01

    Recent scanning tunneling spectroscopy experiments [V. W. Brar et al., Appl. Phys. Lett. 91, 122102 (2007); Y. Zhang et al., Nature Phys. 4, 627 (2008)] on graphene reported an unexpected gap of about ±60,eV around the Fermi level. Here, we give a theoretical investigation explaining the experimentally observed spectra and confirming the phonon mediated tunneling as the reason for the gap: We study the real space properties of the wave functions involved in the tunneling process by means of ab-initio theory and present a model for the electron-phonon interaction, which couples the graphene's Dirac electrons with quasi free electron states at the Brillouin zone center. The self-energy associated with this electron-phonon interaction is calculated and its effects on tunneling into graphene are discussed. In particular, good agreement of the tunneling density of states within our model and the experimental dI/dU spectra is found.

  13. Electronic Health Object

    PubMed Central

    Almunawar, Mohammad Nabil; Anshari, Muhammad; Younis, Mustafa Z.; Kisa, Adnan

    2015-01-01

    Electronic health records (EHRs) store health-related patient information in an electronic format, improving the quality of health care management and increasing efficiency of health care processes. However, in existing information systems, health-related records are generated, managed, and controlled by health care organizations. Patients are perceived as recipients of care and normally cannot directly interact with the system that stores their health-related records; their participation in enriching this information is not possible. Many businesses now allow customers to participate in generating information for their systems, strengthening customer relationships. This trend is supported by Web 2.0, which enables interactivity through various means, including social networks. Health care systems should be able to take advantage of this development. This article proposes a novel framework in addressing the emerging need for interactivity while preserving and extending existing electronic medical data. The framework has 3 dimensions of patient health record: personal, social, and medical dimensions. The framework is designed to empower patients, changing their roles from static recipient of health care services to dynamic and active partners in health care processes. PMID:26660486

  14. Electron-phonon interaction model and prediction of thermal energy transport in SOI transistor.

    PubMed

    Jin, Jae Sik; Lee, Joon Sik

    2007-11-01

    An electron-phonon interaction model is proposed and applied to thermal transport in semiconductors at micro/nanoscales. The high electron energy induced by the electric field in a transistor is transferred to the phonon system through electron-phonon interaction in the high field region of the transistor. Due to this fact, a hot spot occurs, which is much smaller than the phonon mean free path in the Si-layer. The full phonon dispersion model based on the Boltzmann transport equation (BTE) with the relaxation time approximation is applied for the interactions among different phonon branches and different phonon frequencies. The Joule heating by the electron-phonon scattering is modeled through the intervalley and intravalley processes for silicon by introducing average electron energy. The simulation results are compared with those obtained by the full phonon dispersion model which treats the electron-phonon scattering as a volumetric heat source. The comparison shows that the peak temperature in the hot spot region is considerably higher and more localized than the previous results. The thermal characteristics of each phonon mode are useful to explain the above phenomena. The optical mode phonons of negligible group velocity obtain the highest energy density from electrons, and resides in the hot spot region without any contribution to heat transport, which results in a higher temperature in that region. Since the acoustic phonons with low group velocity show the higher energy density after electron-phonon scattering, they induce more localized heating near the hot spot region. The ballistic features are strongly observed when phonon-phonon scattering rates are lower than 4 x 10(10) S(-1).

  15. Theoretical exploration of optical response of Fe3O4-reduced graphene oxide nanoparticle system within dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    Majidi, M. A.; Kusumaatmadja, R.; Fauzi, A. D.; Phan, W. Y.; Taufik, A.; Saleh, R.; Rusydi, A.

    2017-04-01

    We theoretically investigate the optical conductivity and its related optical response of Fe3O4-reduced graphene oxide (rGO) nanoparticle system. Experimental data of magnetization of the Fe3O4-rGO nanoparticle system have shown that the saturation magnetization can be enhanced by controlling the rGO content with the maximum enhancement reached at the optimal rGO content of about 5 weight percentage. We hypothesize that the magnetization enhancement is due to spin-flipping of Fe ions at tetrahedral sites induced by oxygen vacancies at the Fe3O4 nanoparticle boundaries. These oxygen vacancies are formed due to adsorption of oxygen atoms by rGO flakes around the Fe3O4 nanoparticle. In this study, we aim to explore the implications of this effect to the optical response of the system as a function of the rGO content. Our model incorporates Hubbard-repulsive interactions between electrons occupying the e g orbitals of Fe3+ and Heisenberg-like interactions between electron spins and spins of Fe3+ ions. We treat the relevant interactions within mean-field and dynamical mean-field approximations. Our results are to be compared with the existing experimental reflectance data of Fe3O4 nanoparticle system.

  16. Self-consistent analysis of radiation and relativistic electron beam dynamics in a helical wiggler using Lienard-Wiechert fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tecimer, M.; Elias, L.R.

    1995-12-31

    Lienard-Wiechert (LW) fields, which are exact solutions of the Wave Equation for a point charge in free space, are employed to formulate a self-consistent treatment of the electron beam dynamics and the evolution of the generated radiation in long undulators. In a relativistic electron beam the internal forces leading to the interaction of the electrons with each other can be computed by means of retarded LW fields. The resulting electron beam dynamics enables us to obtain three dimensional radiation fields starting from an initial incoherent spontaneous emission, without introducing a seed wave at start-up. Based on the formalism employed here,more » both the evolution of the multi-bucket electron phase space dynamics in the beam body as well as edges and the relative slippage of the radiation with respect to the electrons in the considered short bunch are naturally embedded into the simulation model. In this paper, we present electromagnetic radiation studies, including multi-bucket electron phase dynamics and angular distribution of radiation in the time and frequency domain produced by a relativistic short electron beam bunch interacting with a circularly polarized magnetic undulator.« less

  17. Fully gapped superconductivity with no sign change in the prototypical heavy-fermion CeCu2Si2

    PubMed Central

    Yamashita, Takuya; Takenaka, Takaaki; Tokiwa, Yoshifumi; Wilcox, Joseph A.; Mizukami, Yuta; Terazawa, Daiki; Kasahara, Yuichi; Kittaka, Shunichiro; Sakakibara, Toshiro; Konczykowski, Marcin; Seiro, Silvia; Jeevan, Hirale S.; Geibel, Christoph; Putzke, Carsten; Onishi, Takafumi; Ikeda, Hiroaki; Carrington, Antony; Shibauchi, Takasada; Matsuda, Yuji

    2017-01-01

    In exotic superconductors, including high-Tc copper oxides, the interactions mediating electron Cooper pairing are widely considered to have a magnetic rather than a conventional electron-phonon origin. Interest in this exotic pairing was initiated by the 1979 discovery of heavy-fermion superconductivity in CeCu2Si2, which exhibits strong antiferromagnetic fluctuations. A hallmark of unconventional pairing by anisotropic repulsive interactions is that the superconducting energy gap changes sign as a function of the electron momentum, often leading to nodes where the gap goes to zero. We report low-temperature specific heat, thermal conductivity, and magnetic penetration depth measurements in CeCu2Si2, demonstrating the absence of gap nodes at any point on the Fermi surface. Moreover, electron irradiation experiments reveal that the superconductivity survives even when the electron mean free path becomes substantially shorter than the superconducting coherence length. This indicates that superconductivity is robust against impurities, implying that there is no sign change in the gap function. These results show that, contrary to long-standing belief, heavy electrons with extremely strong Coulomb repulsions can condense into a fully gapped s-wave superconducting state, which has an on-site attractive pairing interaction. PMID:28691082

  18. Development of Colle-Salvetti type electron-nucleus correlation functional for MC-DFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Udagawa, Taro; Tsuneda, Takao; Tachikawa, Masanori

    2015-12-31

    A Colle-Salvetti type electron-nucleus correlation functional for multicomponent density-functional theory is proposed. We demonstrate that our correlation functional quantitatively reproduces the quantum nuclear effects of protons; the mean absolute deviation value is 2.8 millihartrees for the optimized structure of hydrogen-containing molecules. We also show other practical calculations with our new electron-deuteron and electron-triton correlation functionals. Since this functional is derived without any unphysical assumption, the strategy taken in this development will be a promising recipe to make new functionals for the potentials of other particles’ interactions.

  19. Plasmonic Landau damping in active environments

    NASA Astrophysics Data System (ADS)

    Thakkar, Niket; Montoni, Nicholas P.; Cherqui, Charles; Masiello, David J.

    2018-03-01

    Optical manipulation of charge on the nanoscale is of fundamental importance to an array of proposed technologies from selective photocatalysis to nanophotonics. Open plasmonic systems where collective electron oscillations release energy and charge to their environments offer a potential means to this end as plasmons can rapidly decay into energetic electron-hole pairs; however, isolating this decay from other plasmon-environment interactions remains a challenge. Here we present an analytic theory of noble-metal nanoparticles that quantitatively models plasmon decay into electron-hole pairs, demonstrates that this decay depends significantly on the nanoparticle's dielectric environment, and disentangles this effect from competing decay pathways. Using our approach to incorporate embedding material and substrate effects on plasmon-electron interaction, we show that predictions from the model agree with four separate experiments. Finally, examination of coupled nanoparticle-emitter systems further shows that the hybridized in-phase mode more efficiently decays to photons whereas the out-of-phase mode more efficiently decays to electron-hole pairs, offering a strategy to tailor open plasmonic systems for charge manipulation.

  20. Phonon Effects on Charge Transport Through a Two State Molecule

    NASA Astrophysics Data System (ADS)

    Ulloa, Sergio E.; Yudiarsah, Efta

    2008-03-01

    We study the effect of local and non-local phonon on the transport properties of a molecule model described by two- electronic states. The local phonon interaction is tackled by means of a Lang Firsov transformation [1,2]. The interaction with non-local phonons (phonon-assisted hopping) is considered perturbatively up to the first nonzero order in the self energy. The presence of different kinds of electron-phonon interaction open new transmission channels. In addition to the polaron shift and replicas due to local phonons, non-local phonons cause the appearance of new satellite states around the initial states. In the weak coupling regime of non-local phonon and electrons, states are shifted an amount proportional to square of the interaction. However, in the strong coupling regime, the non-linear effects emerge and display more interesting features on transport properties. Additional features on transport properties due to new transmission channel are shown to appear at finite temperatures. [1] G. D. Mahan, Many-particle physics, 3rd ed. (Plenum Publishers, New York, 2000). [2] R. Gutierrez et al., Phys. Rev. B. 74, 235105 (2006).

  1. Phase competition in a one-dimensional three-orbital Hubbard-Holstein model

    NASA Astrophysics Data System (ADS)

    Li, Shaozhi; Tang, Yanfei; Maier, Thomas A.; Johnston, Steven

    2018-05-01

    We study the interplay between the electron-phonon (e -ph) and on-site electron-electron (e-e) interactions in a three-orbital Hubbard-Holstein model on an extended one-dimensional lattice using determinant quantum Monte Carlo. For weak e-e and e -ph interactions, we observe a competition between an orbital-selective Mott phase (OSMP) and a (multicomponent) charge-density-wave (CDW) insulating phase, with an intermediate metallic phase located between them. For large e-e and e -ph couplings, the OSMP and CDW phases persist, while the metallic phase develops short-range orbital correlations and becomes insulating when both the e-e and e -ph interactions are large but comparable. Many of our conclusions are in line with those drawn from a prior dynamical mean-field theory study of the two-orbital Hubbard-Holstein model [Phys. Rev. B 95, 121112(R) (2017), 10.1103/PhysRevB.95.121112] in infinite dimension, suggesting that the competition between the e -ph and e-e interactions in multiorbital Hubbard-Holstein models leads to rich physics, regardless of the dimension of the system.

  2. Mean-field theory for multipole ordering in f-electron systems on the basis of a j-j coupling scheme

    NASA Astrophysics Data System (ADS)

    Yamamura, Ryosuke; Hotta, Takashi

    2018-05-01

    We develop a microscopic theory for multipole ordering, applicable to the system with plural numbers of f electrons per ion, from an itinerant picture on the basis of a j-j coupling scheme. For the purpose, by introducing the Γ8 Hubbard Hamiltonian as the minimum model to discuss the multipole ordering in f-electron systems, we describe the mean-field approximation in terms of the multipole operators. For the case of n = 2 , where n denotes the average f-electron number per ion, we analyze the model on a simple cubic lattice to obtain the multipole phase diagram. In particular, we find the order of non-Kramers Γ3 quadrupoles, O20 and O22 , with different ordering vectors. We attempt to explain the phase diagram from the discussion on the interaction energy.

  3. Nanocomposites from Stable Dispersions of Carbon Nanotubes in Polymeric Matrices Using Dispersion Interaction

    NASA Technical Reports Server (NTRS)

    Wise, Kristopher Eric (Inventor); Park, Cheol (Inventor); Kang, Jin Ho (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor)

    2016-01-01

    Stable dispersions of carbon nanotubes (CNTs) in polymeric matrices include CNTs dispersed in a host polymer or copolymer whose monomers have delocalized electron orbitals, so that a dispersion interaction results between the host polymer or copolymer and the CNTs dispersed therein. Nanocomposite products, which are presented in bulk, or when fabricated as a film, fiber, foam, coating, adhesive, paste, or molding, are prepared by standard means from the present stable dispersions of CNTs in polymeric matrices, employing dispersion interactions, as presented hereinabove.

  4. Microscopic theory of longitudinal sound velocity in charge ordered manganites.

    PubMed

    Rout, G C; Panda, S

    2009-10-14

    A microscopic theory of longitudinal sound velocity in a manganite system is reported here. The manganite system is described by a model Hamiltonian consisting of charge density wave (CDW) interaction in the e(g) band, an exchange interaction between spins of the itinerant e(g) band electrons and the core t(2g) electrons, and the Heisenberg interaction of the core level spins. The magnetization and the CDW order parameters are considered within mean-field approximations. The phonon Green's function was calculated by Zubarev's technique and hence the longitudinal velocity of sound was finally calculated for the manganite system. The results show that the elastic spring involved in the velocity of sound exhibits strong stiffening in the CDW phase with a decrease in temperature as observed in experiments.

  5. Nonequilibrium Langevin approach to quantum optics in semiconductor microcavities

    NASA Astrophysics Data System (ADS)

    Portolan, S.; di Stefano, O.; Savasta, S.; Rossi, F.; Girlanda, R.

    2008-01-01

    Recently, the possibility of generating nonclassical polariton states by means of parametric scattering has been demonstrated. Excitonic polaritons propagate in a complex interacting environment and contain real electronic excitations subject to scattering events and noise affecting quantum coherence and entanglement. Here, we present a general theoretical framework for the realistic investigation of polariton quantum correlations in the presence of coherent and incoherent interaction processes. The proposed theoretical approach is based on the nonequilibrium quantum Langevin approach for open systems applied to interacting-electron complexes described within the dynamics controlled truncation scheme. It provides an easy recipe to calculate multitime correlation functions which are key quantities in quantum optics. As a first application, we analyze the buildup of polariton parametric emission in semiconductor microcavities including the influence of noise originating from phonon-induced scattering.

  6. Time-Space Position of Warm Dense Matter in Laser Plasma Interaction Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, L F; Uschmann, I; Forster, E

    2006-09-25

    Laser plasma interaction experiments have been perform performed using an fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. Electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were cautiously compared with relevant 1D numerical simulation. Finally these results provide a first experience of searching for the time-space position of the so-called warm dense plasma in an ultra fast laser target interaction process. These experiments aim to prepare nearmore » solid-density plasmas for Thomson scattering experiments using the short wavelength free-electron laser FLASH, DESY Hamburg.« less

  7. Theoretical study of the hyperfine-interaction constants and the isotope-shift factors for the 3 s21S0-3 s 3 p 3,1P1o transitions in Al+

    NASA Astrophysics Data System (ADS)

    Zhang, Tingxian; Xie, Luyou; Li, Jiguang; Lu, Zehuang

    2017-07-01

    We calculated the magnetic dipole and the electric quadrupole hyperfine interaction constants of 3 s 3 p 3,1P1o states and the isotope shift, including mass and field shift, factors for transitions from these two states to the ground state 3 s 2 1S0 in Al+ ions using the multiconfiguration Dirac-Hartree-Fock method. The effects of the electron correlations and the Breit interaction on these physical quantities were investigated in detail based on the active space approach. It is found that the core-core and the higher order correlations are considerable for evaluating the uncertainties of the atomic parameters concerned. The uncertainties of the hyperfine interaction constants in this work are less than 1.6%. Although the isotope shift factors are highly sensitive to the electron correlations, reasonable uncertainties were obtained by exploring the effects of the electron correlations. Moreover, we found that the relativistic nuclear recoil corrections to the mass shift factors are very small and insensitive to the electron correlations for Al+. These atomic parameters present in this work are valuable for extracting the nuclear electric quadrupole moments and the mean-square charge radii of Al isotopes.

  8. Visual Systems for Interactive Exploration and Mining of Large-Scale Neuroimaging Data Archives

    PubMed Central

    Bowman, Ian; Joshi, Shantanu H.; Van Horn, John D.

    2012-01-01

    While technological advancements in neuroimaging scanner engineering have improved the efficiency of data acquisition, electronic data capture methods will likewise significantly expedite the populating of large-scale neuroimaging databases. As they do and these archives grow in size, a particular challenge lies in examining and interacting with the information that these resources contain through the development of compelling, user-driven approaches for data exploration and mining. In this article, we introduce the informatics visualization for neuroimaging (INVIZIAN) framework for the graphical rendering of, and dynamic interaction with the contents of large-scale neuroimaging data sets. We describe the rationale behind INVIZIAN, detail its development, and demonstrate its usage in examining a collection of over 900 T1-anatomical magnetic resonance imaging (MRI) image volumes from across a diverse set of clinical neuroimaging studies drawn from a leading neuroimaging database. Using a collection of cortical surface metrics and means for examining brain similarity, INVIZIAN graphically displays brain surfaces as points in a coordinate space and enables classification of clusters of neuroanatomically similar MRI images and data mining. As an initial step toward addressing the need for such user-friendly tools, INVIZIAN provides a highly unique means to interact with large quantities of electronic brain imaging archives in ways suitable for hypothesis generation and data mining. PMID:22536181

  9. Half-metallicity and electronic structures for carbon-doped group III-nitrides: Calculated with a modified Becke-Johnson potential

    NASA Astrophysics Data System (ADS)

    Fan, Shuai-wei; Wang, Ri-gao; Xu, Pemg

    2016-09-01

    The electronic structures and magnetism for carbon-doped group III-nitrides are investigated by utilizing the first principle method with the modified Becke-Johnson potential. Calculations show that carbon substituting cations (anions) would induce the group III-nitrides to be paramagnetic metals (half-metallic ferromagnets). Single carbon substituting nitrogen could produce 1.00μB magnetic moment. Electronic structures indicate that the carriers-mediated double-exchange interaction plays a crucial role in forming the ferromagnetism. Based on the mean-field theory, the Curie temperature for carbon-doped group III-nitrides would be above the room temperature. Negative chemical pair interactions imply that carbon dopants tend to form clustering distribution in group III-nitrides. The nitrogen vacancy would make the carbon-doped group III-nitrides lose the half-metallic ferromagnetism.

  10. 29 CFR 29.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the Administrator. Apprentice means a worker at least 16 years of age, except where a higher minimum age standard is otherwise fixed by law, who is employed to learn an apprenticeable occupation as... physical movement of removable/transportable electronic media and/or interactive distance learning...

  11. Characterization of two-dimensional hexagonal boron nitride using scanning electron and scanning helium ion microscopy

    NASA Astrophysics Data System (ADS)

    Guo, Hongxuan; Gao, Jianhua; Ishida, Nobuyuki; Xu, Mingsheng; Fujita, Daisuke

    2014-01-01

    Characterization of the structural and physical properties of two-dimensional (2D) materials, such as layer number and inelastic mean free path measurements, is very important to optimize their synthesis and application. In this study, we characterize the layer number and morphology of hexagonal boron nitride (h-BN) nanosheets on a metallic substrate using field emission scanning electron microscopy (FE-SEM) and scanning helium ion microscopy (HIM). Using scanning beams of various energies, we could analyze the dependence of the intensities of secondary electrons on the thickness of the h-BN nanosheets. Based on the interaction between the scanning particles (electrons and helium ions) and h-BN nanosheets, we deduced an exponential relationship between the intensities of secondary electrons and number of layers of h-BN. With the attenuation factor of the exponential formula, we calculate the inelastic mean free path of electrons and helium ions in the h-BN nanosheets. Our results show that HIM is more sensitive and consistent than FE-SEM for characterizing the number of layers and morphology of 2D materials.

  12. Model Hamiltonian Calculations of the Nonlinear Polarizabilities of Conjugated Molecules.

    NASA Astrophysics Data System (ADS)

    Risser, Steven Michael

    This dissertation advances the theoretical knowledge of the nonlinear polarizabilities of conjugated molecules. The unifying feature of these molecules is an extended delocalized pi electron structure. The pi electrons dominate the electronic properties of the molecules, allowing prediction of molecular properties based on the treatment of just the pi electrons. Two separate pi electron Hamiltonians are used in the research. The principal Hamiltonian used is the non-interacting single-particle Huckel Hamiltonian, which replaces the Coulomb interaction among the pi electrons with a mean field interaction. The simplification allows for exact solution of the Hamiltonian for large molecules. The second Hamiltonian used for this research is the interacting multi-particle Pariser-Parr-Pople (PPP) Hamiltonian, which retains explicit Coulomb interactions. This limits exact solutions to molecules containing at most eight electrons. The molecular properties being investigated are the linear polarizability, and the second and third order hyperpolarizabilities. The hyperpolarizabilities determine the nonlinear optical response of materials. These molecular parameters are determined by two independent approaches. The results from the Huckel Hamiltonian are obtained through first, second and third order perturbation theory. The results from the PPP Hamiltonian are obtained by including the applied field directly in the Hamiltonian and determining the ground state energy at a series of field strengths. By fitting the energy to a polynomial in field strength, the polarizability and hyperpolarizabilities are determined. The Huckel Hamiltonian is used to calculate the third order hyperpolarizability of polyenes. These calculations were the first to show the average hyperpolarizability of the polyenes to be positive, and also to show the saturation of the hyperpolarizability. Comparison of these Huckel results to those from the PPP Hamiltonian shows the lack of explicit Coulomb interactions in the Huckel Hamiltonian results in calculated hyperpolarizabilities that are much larger than the experimentally determined values. Comparison of hyperpolarizabilities calculated for small benzene derivatives using both the Huckel and PPP Hamiltonians shows that inclusion of explicit Coulomb interactions is not as significant for aromatic molecules. This assertion is supported by comparison of the calculated results to the experimentally determined values. This allows for predictions of the hyperpolarizability of various liquid crystal molecules to be made.

  13. Quasiclassical treatment of the Auger effect in slow ion-atom collisions

    NASA Astrophysics Data System (ADS)

    Frémont, F.

    2017-09-01

    A quasiclassical model based on the resolution of Hamilton equations of motion is used to get evidence for Auger electron emission following double-electron capture in 150-keV N e10 ++He collisions. Electron-electron interaction is taken into account during the collision by using pure Coulombic potential. To make sure that the helium target is stable before the collision, phenomenological potentials for the electron-nucleus interactions that simulate the Heisenberg principle are included in addition to the Coulombic potential. First, single- and double-electron captures are determined and compared with previous experiments and theories. Then, integration time evolution is calculated for autoionizing and nonautoionizing double capture. In contrast with single capture, the number of electrons originating from autoionization slowly increases with integration time. A fit of the calculated cross sections by means of an exponential function indicates that the average lifetime is 4.4 ×10-3a .u . , in very good agreement with the average lifetime deduced from experiments and a classical model introduced to calculate individual angular momentum distributions. The present calculation demonstrates the ability of classical models to treat the Auger effect, which is a pure quantum effect.

  14. Effects of electron irradiation on LDPE/MWCNT composites

    NASA Astrophysics Data System (ADS)

    Yang, Jianqun; Li, Xingji; Liu, Chaoming; Rui, Erming; Wang, Liqin

    2015-12-01

    In this study, mutiwalled carbon nanotubes (MWCNTs) were incorporated into low density polyethylene (LDPE) in different concentrations (2%, 4% and 8%) using a melt blending process. Structural, thermal stability and tensile property of the unirradiated/irradiated LDPE/MWCNT composites by 110 keV electrons were investigated by means of scanning electron microscopy (SEM), small angle X-ray scattering (SAXS), Raman spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, thermogravimetric analysis (TGA) and uniaxial tensile techniques. Experimental results show that the addition of MWCNTs obviously increases the ultimate tensile strength of LDPE and decreases the elongation at break, which is attributed to the homogeneous distribution of the MWCNTs in LDPE and intense interaction between MWCNTs and LDPE matrix. Also, the electron irradiation further increases the ultimate tensile strength of LDPE/MWCNT composites, which can be ascribed to the more intense interaction between MWCNTs and LDPE matrix, and the formation of crosslinking sites in LDPE matrix induced by the electron irradiation. The addition of MWCNTs significantly enhances thermal stability of the LDPE due to the hindering effect and the scavenging free radicals, while the electron irradiation decreases thermal stability of the LDPE/MWCNT composites since the structure of the MWCNTs and LDPE matrix damages.

  15. Model of biological quantum logic in DNA.

    PubMed

    Mihelic, F Matthew

    2013-08-02

    The DNA molecule has properties that allow it to act as a quantum logic processor. It has been demonstrated that there is coherent conduction of electrons longitudinally along the DNA molecule through pi stacking interactions of the aromatic nucleotide bases, and it has also been demonstrated that electrons moving longitudinally along the DNA molecule are subject to a very efficient electron spin filtering effect as the helicity of the DNA molecule interacts with the spin of the electron. This means that, in DNA, electrons are coherently conducted along a very efficient spin filter. Coherent electron spin is held in a logically and thermodynamically reversible chiral symmetry between the C2-endo and C3-endo enantiomers of the deoxyribose moiety in each nucleotide, which enables each nucleotide to function as a quantum gate. The symmetry break that provides for quantum decision in the system is determined by the spin direction of an electron that has an orbital angular momentum that is sufficient to overcome the energy barrier of the double well potential separating the C2-endo and C3-endo enantiomers, and that enantiomeric energy barrier is appropriate to the Landauer limit of the energy necessary to randomize one bit of information.

  16. Time-dependent mean-field theory for x-ray near-edge spectroscopy

    NASA Astrophysics Data System (ADS)

    Bertsch, G. F.; Lee, A. J.

    2014-02-01

    We derive equations of motion for calculating the near-edge x-ray absorption spectrum in molecules and condensed matter, based on a two-determinant approximation and Dirac's variational principle. The theory provides an exact solution for the linear response when the Hamiltonian or energy functional has only diagonal interactions in some basis. We numerically solve the equations to compare with the Mahan-Nozières-De Dominicis theory of the edge singularity in metallic conductors. Our extracted power-law exponents are similar to those of the analytic theory, but are not in quantitative agreement. The calculational method can be readily generalized to treat Kohn-Sham Hamiltonians with electron-electron interactions derived from correlation-exchange potentials.

  17. Kohn-Sham approach to quantum electrodynamical density-functional theory: Exact time-dependent effective potentials in real space.

    PubMed

    Flick, Johannes; Ruggenthaler, Michael; Appel, Heiko; Rubio, Angel

    2015-12-15

    The density-functional approach to quantum electrodynamics extends traditional density-functional theory and opens the possibility to describe electron-photon interactions in terms of effective Kohn-Sham potentials. In this work, we numerically construct the exact electron-photon Kohn-Sham potentials for a prototype system that consists of a trapped electron coupled to a quantized electromagnetic mode in an optical high-Q cavity. Although the effective current that acts on the photons is known explicitly, the exact effective potential that describes the forces exerted by the photons on the electrons is obtained from a fixed-point inversion scheme. This procedure allows us to uncover important beyond-mean-field features of the effective potential that mark the breakdown of classical light-matter interactions. We observe peak and step structures in the effective potentials, which can be attributed solely to the quantum nature of light; i.e., they are real-space signatures of the photons. Our findings show how the ubiquitous dipole interaction with a classical electromagnetic field has to be modified in real space to take the quantum nature of the electromagnetic field fully into account.

  18. Many-body effects in electron liquids with Rashba spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Simion, George E.

    The main topic of the present thesis is represented by the many-body effects which characterize the physical behavior of an electron liquid in various realizations. We begin by studying the problem of the response of an otherwise homogeneous electron liquid to the potential of an impurity embedded in its bulk. The most dramatic consequence of this perturbation is the existence of so called Friedel density oscillations. We present calculations of their amplitude valid in two as well as in three dimensions. The second problem we will discuss is that of the correlation effects in a three dimensional electron liquid in the metallic density regime. A number of quasiparticle properties are evaluated: the electron self-energy, the quasiparticle effective mass and the renormalization constant. We also present an analysis of the effective Lande g-factor as well as the compressibility. The effects of the Coulomb interactions beyond the random phase approximation have been treated by means of an approach based on the many-body local field factors theory and by utilizing the latest numerical results of Quantum Monte Carlo numerical simulations. The final chapter includes the results of our extensive work on various aspects regarding the two dimensional Fermi liquid in the presence of linear Rashba spin-orbit coupling. By using a number of many-body techniques, we have studied the interplay between spin-orbit coupling and electron-electron interaction. After proving an extension to the famous Overhauser Hartree-Fock instability theorem, a considerable amount of work will be presented on the problem of the density and spin response functions. For the study of the spin response, we will present the results of extensive numerical calculations based on the time dependent mean field theory approach.

  19. Study on mutual interactions and electronic structures of hyaluronan with Lysine, 6-Aminocaproic acid and Arginine.

    PubMed

    Chytil, Martin; Trojan, Martin; Kovalenko, Alexander

    2016-05-20

    Interactions between polyelectrolytes and oppositely charged surfactants have been in a great interest for several decades, yet the conventional surfactants may cause a problem in medical applications. Interactivity between polysaccharide hyaluronan (HA) and amino acids Lysine, 6-Aminocaproic acid (6-AcA), and Arginine as an alternative system is reported. The interactions were investigated by means of rheology and electric conductance and the electronic structures were explored by the density functional theory (DFT). Lysine exhibits the strongest interaction of all, which was manifested, e.g. by nearly 6-time drop of the initial viscosity comparing with only 1.3-time lower value in the case of 6-AcA. Arginine interaction with HA was surprisingly weaker in terms of viscosity than that of Lysine due to a lower and delocalized charge density on its guanidine group. According to the DFT calculations, the binding of Lysine to HA was found to be more flexible, while Arginine creates more rigid structure with HA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.

    PubMed

    Gabor, Nathaniel M

    2013-06-18

    In semiconductor photovoltaics, photoconversion efficiency is governed by a simple competition: the incident photon energy is either transferred to the crystal lattice (heat) or transferred to electrons. In conventional materials, energy loss to the lattice is more efficient than energy transferred to electrons, thus limiting the power conversion efficiency. Quantum electronic systems, such as quantum dots, nanowires, and two-dimensional electronic membranes, promise to tip the balance in this competition by simultaneously limiting energy transfer to the lattice and enhancing energy transfer to electrons. By exploring the optical, thermal, and electronic properties of quantum materials, we may perhaps find an ideal optoelectronic material that provides low cost fabrication, facile systems integration, and a means to surpass the standard limit for photoconversion efficiency. Nanoscale carbon materials, such as graphene and carbon nanotubes, provide ideal experimental quantum systems in which to explore optoelectronic behavior for applications in solar energy harvesting. Within essentially the same material, researchers can achieve a broad spectrum of energetic configurations, from a gapless semimetal to a large band-gap semiconducting nanowire. Owing to their nanoscale dimensions, graphene and carbon nanotubes exhibit electronic and optical properties that reflect strong electron-electron interactions. Such strong interactions may lead to exotic low-energy electron transport behavior and high-energy electron scattering processes such as impact excitation and the inverse process of Auger recombination. High-energy processes, which become very important under photoexcitation, may be particularly efficient in nanoscale carbon materials due to the relativistic-like, charged particle band structure and sensitivity to the dielectric environment. In addition, due to the covalently bonded carbon framework that makes up these materials, electron-phonon coupling is very weak. In carbon nanomaterials, strong electron-electron interactions combined with weak electron-phonon interactions results in excellent optical, thermal and electronic properties, the exploration of which promises to reveal fundamentally new physical processes and deliver advanced nanotechnologies. In this Account, we review the results of novel optoelectronic experiments that explore the intrinsic photoresponse of carbon nanomaterials integrated into nanoscale devices. By fabricating gate voltage-controlled photodetectors composed of atomically thin sheets of graphene and individual carbon nanotubes, we are able to fully explore electron transport in these systems under optical illumination. We find that strong electron-electron interactions play a key role in the intrinsic photoresponse of both materials, as evidenced by hot carrier transport in graphene and highly efficient multiple electron-hole pair generation in nanotubes. In both of these quantum systems, photoexcitation leads to high-energy electron-hole pairs that relax energy predominantly into the electronic system, rather than heating the lattice. Due to highly efficient energy transfer from photons into electrons, graphene and carbon nanotubes may be ideal materials for solar energy harvesting devices with efficiencies that could exceed the Shockley-Queisser limit.

  1. eV-TEM: Transmission electron microscopy in a low energy cathode lens instrument.

    PubMed

    Geelen, Daniël; Thete, Aniket; Schaff, Oliver; Kaiser, Alexander; van der Molen, Sense Jan; Tromp, Rudolf

    2015-12-01

    We are developing a transmission electron microscope that operates at extremely low electron energies, 0-40 eV. We call this technique eV-TEM. Its feasibility is based on the fact that at very low electron energies the number of energy loss pathways decreases. Hence, the electron inelastic mean free path increases dramatically. eV-TEM will enable us to study elastic and inelastic interactions of electrons with thin samples. With the recent development of aberration correction in cathode lens instruments, a spatial resolution of a few nm appears within range, even for these very low electron energies. Such resolution will be highly relevant to study biological samples such as proteins and cell membranes. The low electron energies minimize adverse effects due to radiation damage. Copyright © 2015. Published by Elsevier B.V.

  2. A model study of tunneling conductance spectra of ferromagnetically ordered manganites

    NASA Astrophysics Data System (ADS)

    Panda, Saswati; Kar, J. K.; Rout, G. C.

    2018-02-01

    We report here the interplay of ferromagnetism (FM) and charge density wave (CDW) in manganese oxide systems through the study of tunneling conductance spectra. The model Hamiltonian consists of strong Heisenberg coupling in core t2g band electrons within mean-field approximation giving rise to ferromagnetism. Ferromagnetism is induced in the itinerant eg electrons due to Kubo-Ohata type double exchange (DE) interaction among the t2g and eg electrons. The charge ordering (CO) present in the eg band giving rise to CDW interaction is considered as the extra-mechanism to explain the colossal magnetoresistance (CMR) property of manganites. The magnetic and CDW order parameters are calculated using Zubarev's Green's function technique and solved self-consistently and numerically. The eg electron density of states (DOS) calculated from the imaginary part of the Green's function explains the experimentally observed tunneling conductance spectra. The DOS graph exhibits a parabolic gap near the Fermi energy as observed in tunneling conductance spectra experiments.

  3. Diagrammatic routes to nonlocal correlations beyond dynamical mean field theory

    NASA Astrophysics Data System (ADS)

    Rohringer, G.; Hafermann, H.; Toschi, A.; Katanin, A. A.; Antipov, A. E.; Katsnelson, M. I.; Lichtenstein, A. I.; Rubtsov, A. N.; Held, K.

    2018-04-01

    Strong electronic correlations pose one of the biggest challenges to solid state theory. Recently developed methods that address this problem by starting with the local, eminently important correlations of dynamical mean field theory (DMFT) are reviewed. In addition, nonlocal correlations on all length scales are generated through Feynman diagrams, with a local two-particle vertex instead of the bare Coulomb interaction as a building block. With these diagrammatic extensions of DMFT long-range charge, magnetic, and superconducting fluctuations as well as (quantum) criticality can be addressed in strongly correlated electron systems. An overview is provided of the successes and results achieved, mainly for model Hamiltonians, and an outline is given of future prospects for realistic material calculations.

  4. Whistlers, Helicons, Lower Hybrid Waves: the Physics of RF Wave Absorption Without Cyclotron Resonances

    NASA Astrophysics Data System (ADS)

    Pinsker, R. I.

    2014-10-01

    In hot magnetized plasmas, two types of linear collisionless absorption processes are used to heat and drive noninductive current: absorption at ion or electron cyclotron resonances and their harmonics, and absorption by Landau damping and the transit-time-magnetic-pumping (TTMP) interactions. This tutorial discusses the latter process, i.e., parallel interactions between rf waves and electrons in which cyclotron resonance is not involved. Electron damping by the parallel interactions can be important in the ICRF, particularly in the higher harmonic region where competing ion cyclotron damping is weak, as well as in the Lower Hybrid Range of Frequencies (LHRF), which is in the neighborhood of the geometric mean of the ion and electron cyclotron frequencies. On the other hand, absorption by parallel processes is not significant in conventional ECRF schemes. Parallel interactions are especially important for the realization of high current drive efficiency with rf waves, and an application of particular recent interest is current drive with the whistler or helicon wave at high to very high (i.e., the LHRF) ion cyclotron harmonics. The scaling of absorption by parallel interactions with wave frequency is examined and the advantages and disadvantages of fast (helicons/whistlers) and slow (lower hybrid) waves in the LHRF in the context of reactor-grade tokamak plasmas are compared. In this frequency range, both wave modes can propagate in a significant fraction of the discharge volume; the ways in which the two waves can interact with each other are considered. The use of parallel interactions to heat and drive current in practice will be illustrated with examples from past experiments; also looking forward, this tutorial will provide an overview of potential applications in tokamak reactors. Supported by the US Department of Energy under DE-FC02-04ER54698.

  5. A Deterministic Transport Code for Space Environment Electrons

    NASA Technical Reports Server (NTRS)

    Nealy, John E.; Chang, C. K.; Norman, Ryan B.; Blattnig, Steve R.; Badavi, Francis F.; Adamczyk, Anne M.

    2010-01-01

    A deterministic computational procedure has been developed to describe transport of space environment electrons in various shield media. This code is an upgrade and extension of an earlier electron code. Whereas the former code was formulated on the basis of parametric functions derived from limited laboratory data, the present code utilizes well established theoretical representations to describe the relevant interactions and transport processes. The shield material specification has been made more general, as have the pertinent cross sections. A combined mean free path and average trajectory approach has been used in the transport formalism. Comparisons with Monte Carlo calculations are presented.

  6. Interaction of an ion bunch with a plasma slab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasovitskiy, V. B., E-mail: krasovit@mail.ru; Turikov, V. A.

    2016-11-15

    Charge neutralization of a short ion bunch passing through a plasma slab is studied by means of numerical simulation. It is shown that a fraction of plasma electrons are trapped by the bunch under the action of the collective charge separation field. The accelerated electrons generated in this process excite beam−plasma instability, thereby violating the trapping conditions. The process of electron trapping is also strongly affected by the high-frequency electric field caused by plasma oscillations at the slab boundaries. It is examined how the degree of charge neutralization depends on the parameters of the bunch and plasma slab.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubinov, Alexander E.; Petrik, Alexey G.; Kurkin, Semen A.

    We report on the possibility of the beam-plasma instability development in the system with electron beam interacting with the single-component hot electron plasma without ions. As considered system, we analyse the interaction of the low-current relativistic electron beam (REB) with squeezed state in the high-current REB formed in the relativistic magnetically insulated two-section vircator drift space. The numerical analysis is provided by means of 3D electromagnetic simulation in CST Particle Studio. We have conducted an extensive study of characteristic regimes of REB dynamics determined by the beam-plasma instability development in the absence of ions. As a result, the dependencies ofmore » instability increment and wavelength on the REB current value have been obtained. The considered process brings the new mechanism of controlled microwave amplification and generation to the device with a virtual cathode. This mechanism is similar to the action of the beam-plasma amplifiers and oscillators.« less

  8. Visual Culture and Electronic Government: Exploring a New Generation of E-Government

    NASA Astrophysics Data System (ADS)

    Bekkers, Victor; Moody, Rebecca

    E-government is becoming more picture-oriented. What meaning do stakeholders attach to visual events and visualization? Comparative case study research show the functional meaning primarily refers to registration, integration, transparency and communication. The political meaning refers to new ways of framing in order to secure specific interests and claims. To what the institutional meaning relates is ambiguous: either it improves the position of citizens, or it reinforces the existing bias presented by governments. Hence, we expect that the emergence of a visualized public space, through omnipresent penetration of (mobile) multimedia technologies, will influence government-citizen interactions.

  9. Can model Hamiltonians describe the electron-electron interaction in π-conjugated systems?: PAH and graphene

    NASA Astrophysics Data System (ADS)

    Chiappe, G.; Louis, E.; San-Fabián, E.; Vergés, J. A.

    2015-11-01

    Model Hamiltonians have been, and still are, a valuable tool for investigating the electronic structure of systems for which mean field theories work poorly. This review will concentrate on the application of Pariser-Parr-Pople (PPP) and Hubbard Hamiltonians to investigate some relevant properties of polycyclic aromatic hydrocarbons (PAH) and graphene. When presenting these two Hamiltonians we will resort to second quantisation which, although not the way chosen in its original proposal of the former, is much clearer. We will not attempt to be comprehensive, but rather our objective will be to try to provide the reader with information on what kinds of problems they will encounter and what tools they will need to solve them. One of the key issues concerning model Hamiltonians that will be treated in detail is the choice of model parameters. Although model Hamiltonians reduce the complexity of the original Hamiltonian, they cannot be solved in most cases exactly. So, we shall first consider the Hartree-Fock approximation, still the only tool for handling large systems, besides density functional theory (DFT) approaches. We proceed by discussing to what extent one may exactly solve model Hamiltonians and the Lanczos approach. We shall describe the configuration interaction (CI) method, a common technology in quantum chemistry but one rarely used to solve model Hamiltonians. In particular, we propose a variant of the Lanczos method, inspired by CI, that has the novelty of using as the seed of the Lanczos process a mean field (Hartree-Fock) determinant (the method will be named LCI). Two questions of interest related to model Hamiltonians will be discussed: (i) when including long-range interactions, how crucial is including in the Hamiltonian the electronic charge that compensates ion charges? (ii) Is it possible to reduce a Hamiltonian incorporating Coulomb interactions (PPP) to an ‘effective’ Hamiltonian including only on-site interactions (Hubbard)? The performance of CI will be checked on small molecules. The electronic structure of azulene and fused azulene will be used to illustrate several aspects of the method. As regards graphene, several questions will be considered: (i) paramagnetic versus antiferromagnetic solutions, (ii) forbidden gap versus dot size, (iii) graphene nano-ribbons, and (iv) optical properties.

  10. Ab initio Potential-Energy Surfaces and Electron-Spin-Exchange Cross Sections for H-O2 Interactions

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene

    1996-01-01

    Accurate quartet- and doublet-state potential-energy surfaces for the interaction of a hydrogen atom and an oxygen molecule in their ground states have been determined from an ab initio calculation using large-basis sets and the internally contracted multireference configuration interaction method. These potential surfaces have been used to calculate the H-O2 electron-spin-exchange cross section; the square root of the cross section (in a(sub 0)), not taking into account inelastic effects, can be obtained approximately from the expressions 2.390E(sup -1/6) and 5.266-0.708 log10(E) at low and high collision energies E (in E(sub h)), respectively. These functional forms, as well as the oscillatory structure of the cross section found at high energies, are expected from the nature of the interaction energy. The mean cross section (the cross section averaged over a Maxwellian velocity distribution) agrees reasonably well with the results of measurements.

  11. A molecular Debye-Hückel approach to the reorganization energy of electron transfer reactions in an electric cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Tiejun; Department of Chemistry, Iowa State University, Ames, Iowa 50011; Song, Xueyu

    2014-10-07

    Electron transfer near an electrode immersed in ionic fluids is studied using the linear response approximation, namely, mean value of the vertical energy gap can be used to evaluate the reorganization energy, and hence any linear response model that can treat Coulomb interactions successfully can be used for the reorganization energy calculation. Specifically, a molecular Debye-Hückel theory is used to calculate the reorganization energy of electron transfer reactions in an electric cell. Applications to electron transfer near an electrode in molten salts show that the reorganization energies from our molecular Debye-Hückel theory agree well with the results from MD simulations.

  12. Space-Time Characterization of Laser Plasma Interactions in the Warm Dense Matter Regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, L F; Uschmann, I; Forster, E

    2008-04-30

    Laser plasma interaction experiments have been performed using a fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. The electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were compared with hydrodynamic simulation. First results to characterize the plasma density and temperature as a function of space and time are obtained. This work aims to generate plasmas in the warm dense matter (WDM) regime at near solid-density in anmore » ultra-fast laser target interaction process. Plasmas under these conditions can serve as targets to develop x-ray Thomson scattering as a plasma diagnostic tool, e.g., using the VUV free-electron laser (FLASH) at DESY Hamburg.« less

  13. Electronic Delivery System: Presentation Features.

    DTIC Science & Technology

    1981-04-01

    THE INFOR’"TiO 1. 0 THE FULNCTIONALITY OF THE PRESENTATIO,’, NOT ITS REPLIC., NATURE IS WHAT COUNTS. S-12 REAL ISM _(CNTD. ) * A SEQUENCE OF...E.G, A MOUSE) IS USED FOR INPUTTINZ RESPONSES, THEY CAN BE VERY EFFICIENT, , S-21 -~i INTERACTION - MECHANISt, S (CONTD.) * TOUCH PANELS -- NATURAL , NO...INTERACTION - MECHANISMS (CONTD, i fm O VOICE INPUT --USED WHERE HANDS OR EYES ARE BUSY (E.G., FOR MAINTENANCE AIDING), -- A NATURAL MEANS OF CO;r UNICATION

  14. Manipulating molecular quantum states with classical metal atom inputs: demonstration of a single molecule NOR logic gate.

    PubMed

    Soe, We-Hyo; Manzano, Carlos; Renaud, Nicolas; de Mendoza, Paula; De Sarkar, Abir; Ample, Francisco; Hliwa, Mohamed; Echavarren, Antonio M; Chandrasekhar, Natarajan; Joachim, Christian

    2011-02-22

    Quantum states of a trinaphthylene molecule were manipulated by putting its naphthyl branches in contact with single Au atoms. One Au atom carries 1-bit of classical information input that is converted into quantum information throughout the molecule. The Au-trinaphthylene electronic interactions give rise to measurable energy shifts of the molecular electronic states demonstrating a NOR logic gate functionality. The NOR truth table of the single molecule logic gate was characterized by means of scanning tunnelling spectroscopy.

  15. Electronic-structure calculations of praseodymium metal by means of modified density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svane, A.; Trygg, J.; Johansson, B.

    1997-09-01

    Electronic-structure calculations of elemental praseodymium are presented. Several approximations are used to describe the Pr f electrons. It is found that the low-pressure, trivalent phase is well described using either the self-interaction corrected (SIC) local-spin-density (LSD) approximation or the generalized-gradient approximation (GGA) with spin and orbital polarization (OP). In the SIC-LSD approach the Pr f electrons are treated explicitly as localized with a localization energy given by the self-interaction of the f orbital. In the GGA+OP scheme the f-electron localization is described by the onset of spin and orbital polarization, the energetics of which is described by spin-moment formation energymore » and a term proportional to the total orbital moment, L{sub z}{sup 2}. The high-pressure phase is well described with the f electrons treated as band electrons, in either the LSD or the GGA approximations, of which the latter describes more accurately the experimental equation of state. The calculated pressure of the transition from localized to delocalized behavior is 280 kbar in the SIC-LSD approximation and 156 kbar in the GGA+OP approach, both comparing favorably with the experimentally observed transition pressure of 210 kbar. {copyright} {ital 1997} {ital The American Physical Society}« less

  16. Interaction of magnetized electrons with a boundary sheath: investigation of a specular reflection model

    NASA Astrophysics Data System (ADS)

    Krüger, Dennis; Brinkmann, Ralf Peter

    2017-11-01

    This publication reports analytical and numerical results concerning the interaction of gyrating electrons with a plasma boundary sheath, with focus on partially magnetized technological plasmas. It is assumed that the electron Debye length {λ }{{D}} is much smaller than the electron gyroradius {r}{{L}}, and {r}{{L}} in turn much smaller than the mean free path λ and the gradient length L of the fields. Focusing on the scale of the gyroradius, the sheath is assumed as infinitesimally thin ({λ }{{D}}\\to 0), collisions are neglected (λ \\to ∞ ), the magnetic field is taken as homogeneous, and electric fields (=potential gradients) in the bulk are neglected (L\\to ∞ ). The interaction of an electron with the electric field of the plasma boundary sheath is represented by a specular reflection {v}\\to {v}-2{v}\\cdot {{e}}z {{e}}z of the velocity {v} at the plane z = 0 of a naturally oriented Cartesian coordinate system (x,y,z). The electron trajectory is then given as sequences of helical sections, with the kinetic energy ɛ and the canonical momenta p x and p y conserved, but not the position of the axis (base point {{R}}0), the slope (pitch angle χ), and the phase (gyrophase φ). A ‘virtual interaction’ which directly maps the incoming electrons to the outgoing ones is introduced and studied in dependence of the angle γ between the field and the sheath normal {{e}}z. The corresponding scattering operator is constructed, mathematically characterized, and given as an infinite matrix. An equivalent boundary condition for a transformed kinetic model is derived.

  17. Interaction-induced conducting-non-conducting transition of ultra-cold atoms in one-dimensional optical lattices

    NASA Astrophysics Data System (ADS)

    Chien, Chih-Chun; Gruss, Daniel; Di Ventra, Massimiliano; Zwolak, Michael

    2013-06-01

    The study of time-dependent, many-body transport phenomena is increasingly within reach of ultra-cold atom experiments. We show that the introduction of spatially inhomogeneous interactions, e.g., generated by optically controlled collisions, induce negative differential conductance in the transport of atoms in one-dimensional optical lattices. Specifically, we simulate the dynamics of interacting fermionic atoms via a micro-canonical transport formalism within both a mean-field and a higher-order approximation, as well as with a time-dependent density-matrix renormalization group (DMRG). For weakly repulsive interactions, a quasi-steady-state atomic current develops that is similar to the situation occurring for electronic systems subject to an external voltage bias. At the mean-field level, we find that this atomic current is robust against the details of how the interaction is switched on. Further, a conducting-non-conducting transition exists when the interaction imbalance exceeds some threshold from both our approximate and time-dependent DMRG simulations. This transition is preceded by the atomic equivalent of negative differential conductivity observed in transport across solid-state structures.

  18. The effect of driven electron-phonon coupling on the electronic conductance of a polar nanowire

    NASA Astrophysics Data System (ADS)

    Mardaani, Mohammad; Rabani, Hassan; Esmaili, Esmat; Shariati, Ashrafalsadat

    2015-08-01

    A semi-classical model is proposed to explore the effect of electron-phonon coupling on the coherent electronic transport of a polar chain which is confined between two rigid leads in the presence of an external electric field. To this end, we construct the model by means of Green's function technique within the nearest neighbor tight-binding and harmonic approximations. For a time-periodic electric field, the atomic displacements from the equilibrium positions are obtained precisely. The result is then used to compute the electronic transport properties of the chain within the Peierls-type model. The numerical results indicate that the conductance of the system shows interesting behavior in some special frequencies. For each special frequency, there is an electronic quasi-state in which the scattering of electrons by vibrating atoms reaches maximum. The system electronic conductance decreases dramatically at the strong electron-phonon couplings and low electron energies. In the presence of damping forces, the electron-phonon interaction has a less significant effect on the conductance.

  19. Absorptive pinhole collimators for ballistic Dirac fermions in graphene

    PubMed Central

    Barnard, Arthur W.; Hughes, Alex; Sharpe, Aaron L.; Watanabe, Kenji; Taniguchi, Takashi; Goldhaber-Gordon, David

    2017-01-01

    Ballistic electrons in solids can have mean free paths far larger than the smallest features patterned by lithography. This has allowed development and study of solid-state electron-optical devices such as beam splitters and quantum point contacts, which have informed our understanding of electron flow and interactions. Recently, high-mobility graphene has emerged as an ideal two-dimensional semimetal that hosts unique chiral electron-optical effects due to its honeycomb crystalline lattice. However, this chiral transport prevents the simple use of electrostatic gates to define electron-optical devices in graphene. Here we present a method of creating highly collimated electron beams in graphene based on collinear pairs of slits, with absorptive sidewalls between the slits. By this method, we achieve beams with angular width 18° or narrower, and transmission matching classical ballistic predictions. PMID:28504264

  20. Electronic energy transfer: Localized operator partitioning of electronic energy in composite quantum systems

    NASA Astrophysics Data System (ADS)

    Khan, Yaser; Brumer, Paul

    2012-11-01

    A Hamiltonian based approach using spatially localized projection operators is introduced to give precise meaning to the chemically intuitive idea of the electronic energy on a quantum subsystem. This definition facilitates the study of electronic energy transfer in arbitrarily coupled quantum systems. In particular, the decomposition scheme can be applied to molecular components that are strongly interacting (with significant orbital overlap) as well as to isolated fragments. The result defines a consistent electronic energy at all internuclear distances, including the case of separated fragments, and reduces to the well-known Förster and Dexter results in their respective limits. Numerical calculations of coherent energy and charge transfer dynamics in simple model systems are presented and the effect of collisionally induced decoherence is examined.

  1. Laser-driven electron acceleration in a plasma channel with an additional electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Li-Hong; Xue, Ju-Kui, E-mail: xuejk@nwnu.edu.cn; Liu, Jie, E-mail: liu-jie@iapcm.ac.cn

    2016-05-15

    We examine the electron acceleration in a two-dimensional plasma channel under the action of a laser field and an additional static electric field. We propose to design an appropriate additional electric field (its direction and location), in order to launch the electron onto an energetic trajectory. We find that the electron acceleration strongly depends on the coupled effects of the laser polarization, the direction, and location of the additional electric field. The additional electric field affects the electron dynamics by changing the dephasing rate. Particularly, a suitably designed additional electric field leads to a considerable energy gain from the lasermore » pulse after the interaction with the additional electric field. The electron energy gain from the laser with the additional electric field can be much higher than that without the additional electric field. This engineering provides a possible means for producing high energetic electrons.« less

  2. Outrunning damage: Electrons vs X-rays-timescales and mechanisms.

    PubMed

    Spence, John C H

    2017-07-01

    Toward the end of his career, Zewail developed strong interest in fast electron spectroscopy and imaging, a field to which he made important contributions toward his aim of making molecular movies free of radiation damage. We therefore compare here the atomistic mechanisms leading to destruction of protein samples in diffract-and-destroy experiments for the cases of high-energy electron beam irradiation and X-ray laser pulses. The damage processes and their time-scales are compared and relevant elastic, inelastic, and photoelectron cross sections are given. Inelastic mean-free paths for ejected electrons at very low energies in insulators are compared with the bioparticle size. The dose rate and structural damage rate for electrons are found to be much lower, allowing longer pulses, reduced beam current, and Coulomb interactions for the formation of smaller probes. High-angle electron scattering from the nucleus, which has no parallel in the X-ray case, tracks the slowly moving nuclei during the explosion, just as the gain of the XFEL (X-ray free-electron laser) has no parallel in the electron case. Despite reduced damage and much larger elastic scattering cross sections in the electron case, leading to not dissimilar elastic scattering rates (when account is taken of the greatly increased incident XFEL fluence), progress for single-particle electron diffraction is seen to depend on the effort to reduce emittance growth due to Coulomb interactions, and so allow formation of intense sub-micron beams no larger than a virus.

  3. Outrunning damage: Electrons vs X-rays—timescales and mechanisms

    PubMed Central

    Spence, John C. H.

    2017-01-01

    Toward the end of his career, Zewail developed strong interest in fast electron spectroscopy and imaging, a field to which he made important contributions toward his aim of making molecular movies free of radiation damage. We therefore compare here the atomistic mechanisms leading to destruction of protein samples in diffract-and-destroy experiments for the cases of high-energy electron beam irradiation and X-ray laser pulses. The damage processes and their time-scales are compared and relevant elastic, inelastic, and photoelectron cross sections are given. Inelastic mean-free paths for ejected electrons at very low energies in insulators are compared with the bioparticle size. The dose rate and structural damage rate for electrons are found to be much lower, allowing longer pulses, reduced beam current, and Coulomb interactions for the formation of smaller probes. High-angle electron scattering from the nucleus, which has no parallel in the X-ray case, tracks the slowly moving nuclei during the explosion, just as the gain of the XFEL (X-ray free-electron laser) has no parallel in the electron case. Despite reduced damage and much larger elastic scattering cross sections in the electron case, leading to not dissimilar elastic scattering rates (when account is taken of the greatly increased incident XFEL fluence), progress for single-particle electron diffraction is seen to depend on the effort to reduce emittance growth due to Coulomb interactions, and so allow formation of intense sub-micron beams no larger than a virus. PMID:28653018

  4. N-representability-driven reconstruction of the two-electron reduced-density matrix for a real-time time-dependent electronic structure method

    NASA Astrophysics Data System (ADS)

    Jeffcoat, David B.; DePrince, A. Eugene

    2014-12-01

    Propagating the equations of motion (EOM) for the one-electron reduced-density matrix (1-RDM) requires knowledge of the corresponding two-electron RDM (2-RDM). We show that the indeterminacy of this expression can be removed through a constrained optimization that resembles the variational optimization of the ground-state 2-RDM subject to a set of known N-representability conditions. Electronic excitation energies can then be obtained by propagating the EOM for the 1-RDM and following the dipole moment after the system interacts with an oscillating external electric field. For simple systems with well-separated excited states whose symmetry differs from that of the ground state, excitation energies obtained from this method are comparable to those obtained from full configuration interaction computations. Although the optimized 2-RDM satisfies necessary N-representability conditions, the procedure cannot guarantee a unique mapping from the 1-RDM to the 2-RDM. This deficiency is evident in the mean-field-quality description of transitions to states of the same symmetry as the ground state, as well as in the inability of the method to describe Rabi oscillations.

  5. Magnon-drag thermopile.

    PubMed

    Costache, Marius V; Bridoux, German; Neumann, Ingmar; Valenzuela, Sergio O

    2011-12-18

    Thermoelectric effects in spintronics are gathering increasing attention as a means of managing heat in nanoscale structures and of controlling spin information by using heat flow. Thermal magnons (spin-wave quanta) are expected to play a major role; however, little is known about the underlying physical mechanisms involved. The reason is the lack of information about magnon interactions and of reliable methods to obtain it, in particular for electrical conductors because of the intricate influence of electrons. Here, we demonstrate a conceptually new device that enables us to gather information on magnon-electron scattering and magnon-drag effects. The device resembles a thermopile formed by a large number of pairs of ferromagnetic wires placed between a hot and a cold source and connected thermally in parallel and electrically in series. By controlling the relative orientation of the magnetization in pairs of wires, the magnon drag can be studied independently of the electron and phonon-drag thermoelectric effects. Measurements as a function of temperature reveal the effect on magnon drag following a variation of magnon and phonon populations. This information is crucial to understand the physics of electron-magnon interactions, magnon dynamics and thermal spin transport.

  6. Strong influence of coadsorbate interaction on CO desorption dynamics on Ru(0001) probed by ultrafast x-ray spectroscopy and ab initio simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xin, H.; LaRue, J.; Oberg, H.

    2015-04-16

    We show that coadsorbed oxygen atoms have a dramatic influence on the CO desorption dynamics from Ru(0001). In contrast to the precursor-mediated desorption mechanism on Ru(0001), the presence of surface oxygen modifies the electronic structure of Ru atoms such that CO desorption occurs predominantly via the direct pathway. This phenomenon is directly observed in an ultrafast pump-probe experiment using a soft x-ray free-electron laser to monitor the dynamic evolution of the valence electronic structure of the surface species. This is supported with the potential of mean force along the CO desorption path obtained from density-functional theory calculations. Charge density distributionmore » and frozen-orbital analysis suggest that the oxygen-induced reduction of the Pauli repulsion, and consequent increase of the dative interaction between the CO 5σ and the charged Ru atom, is the electronic origin of the distinct desorption dynamics. Ab initio molecular dynamics simulations of CO desorption from Ru(0001) and oxygen-coadsorbed Ru(0001) provide further insights into the surface bond-breaking process.« less

  7. 78 FR 54946 - Privacy Act; System of Records: Digital Outreach and Communications, State-79

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-06

    .... Only members of the public who choose to interact with the Department through a social media outlet or... social media outlet or other electronic means including by submitting feedback, requesting more... RECORDS IN THE SYSTEM: The system may contain information passed through a social media site to facilitate...

  8. Mott metal-insulator transition in the doped Hubbard-Holstein model

    NASA Astrophysics Data System (ADS)

    Kurdestany, Jamshid Moradi; Satpathy, S.

    2017-08-01

    Motivated by the current interest in the understanding of the Mott insulators away from half-filling, observed in many perovskite oxides, we study the Mott metal-insulator transition in the doped Hubbard-Holstein model using the Hartree-Fock mean field theory. The Hubbard-Holstein model is the simplest model containing both the Coulomb and the electron-lattice interactions, which are important ingredients in the physics of the perovskite oxides. In contrast to the half-filled Hubbard model, which always results in a single phase (either metallic or insulating), our results show that away from half-filling, a mixed phase of metallic and insulating regions occurs. As the dopant concentration is increased, the metallic part progressively grows in volume, until it exceeds the percolation threshold, leading to percolative conduction. This happens above a critical dopant concentration δc, which, depending on the strength of the electron-lattice interaction, can be a significant fraction of unity. This means that the material could be insulating even for a substantial amount of doping, in contrast to the expectation that doped holes would destroy the insulating behavior of the half-filled Hubbard model. While effects of fluctuation beyond the mean field remain an open question, our results provide a starting point for the understanding of the density-driven metal-insulator transition observed in many complex oxides.

  9. Multimedia And Internetworking Architecture Infrastructure On Interactive E-Learning System

    NASA Astrophysics Data System (ADS)

    Indah, K. A. T.; Sukarata, G.

    2018-01-01

    Interactive e-learning is a distance learning method that involves information technology, electronic system or computer as one means of learning system used for teaching and learning process that is implemented without having face to face directly between teacher and student. A strong dependence on emerging technologies greatly influences the way in which the architecture is designed to produce a powerful interactive e-learning network. In this paper analyzed an architecture model where learning can be done interactively, involving many participants (N-way synchronized distance learning) using video conferencing technology. Also used broadband internet network as well as multicast techniques as a troubleshooting method for bandwidth usage can be efficient.

  10. Biological Effects of Millimeter-Wave Irradiation.

    DTIC Science & Technology

    1982-12-01

    With the recent advances in millimeter-wave technology, including the availability of high - power transmitters in this band , the interaction of fields at... power was 14 mW for E- band , 10 mW for U- band ; and the frequency increment was 0.5 GHz. The mean values and the SD for the number of revertant colonies... high stability for short periods (i.e., about 30 minutes). We are now evaluating electronic means of stabilizing the klystron so that a ±1-MHz

  11. Molecular and electronic structure, magnetotropicity and absorption spectra of benzene-trinuclear copper(I) and silver(I) trihalide columnar binary stacks.

    PubMed

    Tsipis, A C; Stalikas, A V

    2012-02-20

    The molecular and electronic structures, stabilities, bonding features, magnetotropicity and absorption spectra of benzene-trinuclear Cu(I) and Ag(I) trihalide columnar binary stacks with the general formula [c-M(3)(μ(2)-X)(3)](n)(C(6)H(6))(m) (M = Cu, Ag; X = halide; n, m ≤ 2) have been investigated by means of electronic structure calculation methods. The interaction of c-M(3)(μ(2)-X)(3) clusters with one and two benzene molecules yields 1:1 and 1:2 binary stacks, while benzene sandwiched 2:1 stacks are formed upon interaction of two c-M(3)(μ(2)-X)(3) clusters with one benzene molecule. In all binary stacks the plane of the alternating c-M(3)(μ(2)-X)(3) and benzene components adopts an almost parallel orientation. The separation distance between the centroids of the benzene and the proximal c-M(3)(μ(2)-X)(3) metallic cluster found in the range 2.97-3.33 Å at the B97D/Def2-TZVP level is indicative of a π···π stacking interaction mode, for the centroid separation distance is very close to the sum of the van der Waals radii of Cu···C (3.10 Å) and Ag···C (3.44 Å). Energy decomposition analysis (EDA) at the SSB-D/TZP level revealed that the dominant term in the c-M(3)(μ(2)-X)(3)···C(6)H(6) interaction arises from dispersion and electrostatic forces while the covalent interactions are predicted to be negligible. On the other hand, charge decomposition analysis (CDA) illustrated very small charge transfer from C(6)H(6) toward the c-M(3)(μ(2)-X)(3) clusters, thus reflecting weak π-base/π-acid interactions which are further corroborated by the respective electrostatic potentials and the fact that the total dipole moment vector points to the center of the metallic ring of the c-M(3)(μ(2)-X)(3) cluster. The absorption spectra of all aromatic columnar binary stacks simulated by means of TD-DFT calculations showed strong absorptions in the UV region. The main features of the simulated absorption spectra are thoroughly analyzed, and assignments of the contributing electronic transitions are given. The magnetotropicity of the binary stacks evaluated by the NICS(zz)-scan curves indicated an enhancement of the diatropicity of the inorganic ring upon interaction with the aromatic benzene molecule. Noteworthy is the slight enhancement of the diatropicity of the benzene ring, particularly in the region between the interacting rings, probably due to the superposition (coupling) of the diamagnetic ring currents of the interacting aromatic ring systems.

  12. Orbital dependent functionals: An atom projector augmented wave method implementation

    NASA Astrophysics Data System (ADS)

    Xu, Xiao

    This thesis explores the formulation and numerical implementation of orbital dependent exchange-correlation functionals within electronic structure calculations. These orbital-dependent exchange-correlation functionals have recently received renewed attention as a means to improve the physical representation of electron interactions within electronic structure calculations. In particular, electron self-interaction terms can be avoided. In this thesis, an orbital-dependent functional is considered in the context of Hartree-Fock (HF) theory as well as the Optimized Effective Potential (OEP) method and the approximate OEP method developed by Krieger, Li, and Iafrate, known as the KLI approximation. In this thesis, the Fock exchange term is used as a simple well-defined example of an orbital-dependent functional. The Projected Augmented Wave (PAW) method developed by P. E. Blochl has proven to be accurate and efficient for electronic structure calculations for local and semi-local functions because of its accurate evaluation of interaction integrals by controlling multiple moments. We have extended the PAW method to treat orbital-dependent functionals in Hartree-Fock theory and the Optimized Effective Potential method, particularly in the KLI approximation. In the course of study we develop a frozen-core orbital approximation that accurately treats the core electron contributions for above three methods. The main part of the thesis focuses on the treatment of spherical atoms. We have investigated the behavior of PAW-Hartree Fock and PAW-KLI basis, projector, and pseudopotential functions for several elements throughout the periodic table. We have also extended the formalism to the treatment of solids in a plane wave basis and implemented PWPAW-KLI code, which will appear in future publications.

  13. Characterization of the fast electrons distribution produced in a high intensity laser target interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westover, B.; Lawrence Livermore National Laboratory, Livermore, California 94550; Chen, C. D.

    2014-03-15

    Experiments on the Titan laser (∼150 J, 0.7 ps, 2 × 10{sup 20} W cm{sup −2}) at the Lawrence Livermore National Laboratory were carried out in order to study the properties of fast electrons produced by high-intensity, short pulse laser interacting with matter under conditions relevant to Fast Ignition. Bremsstrahlung x-rays produced by these fast electrons were measured by a set of compact filter-stack based x-ray detectors placed at three angles with respect to the target. The measured bremsstrahlung signal allows a characterization of the fast electron beam spectrum, conversion efficiency of laser energy into fast electron kinetic energy and angular distribution. A Monte Carlo codemore » Integrated Tiger Series was used to model the bremsstrahlung signal and infer a laser to fast electron conversion efficiency of 30%, an electron slope temperature of about 2.2 MeV, and a mean divergence angle of 39°. Simulations were also performed with the hybrid transport code ZUMA which includes fields in the target. In this case, a conversion efficiency of laser energy to fast electron energy of 34% and a slope temperature between 1.5 MeV and 4 MeV depending on the angle between the target normal direction and the measuring spectrometer are found. The observed temperature of the bremsstrahlung spectrum, and therefore the inferred electron spectrum are found to be angle dependent.« less

  14. Surface Behavior of BSA/Water/Carbohydrate Systems from Molecular Polarizability Measurements.

    PubMed

    Alvarado, Ysaías J; Ferrebuz, Atilio; Paz, Jose Luis; Rodríguez-Lugo, Patricia; Restrepo, Jelem; Romero, Freddy; Fernández-Acuña, Jaqueline; Williams, Yhan O'Neil; Toro-Mendoza, Jhoan

    2018-04-19

    The effect of the presence of glucose and sucrose on the nonintrinsic contribution to partial molar volume ⟨Θ⟩ ni of bovine serum albumin (BSA) is determined by means of static and dynamic electronic polarizability measurements. For that aim, a combined strategy based on high-resolution refractometry, high exactitude densitometry, and synchronous fluorescence spectroscopy is applied. Both static and dynamic mean electronic molecular polarizability values are found to be sensitive to the presence of glucose. In the case of sucrose, the polarizability of BSA is not appreciably affected. In fact, our results revealed that the electronic changes observed occurred without a modification of the native conformation of BSA. On the contrary, a nonmonotonous behavior with the concentration is observed in presence of glucose. These results advocate the influence of the electronic polarization on the repulsive and attractive protein-carbohydrate interactions. An analysis using the scaled particle theory indicates that the accumulation of glucose on the protein surface promotes dehydration. Inversely, hydration and preferential exclusion occur in the vicinity of the protein surface for sucrose-enriched systems.

  15. Electrical control of flying spin precession in chiral 1D edge states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakajima, Takashi; Komiyama, Susumu; Lin, Kuan-Ting

    2013-12-04

    Electrical control and detection of spin precession are experimentally demonstrated by using spin-resolved edge states in the integer quantum Hall regime. Spin precession is triggered at a corner of a biased metal gate, where electron orbital motion makes a sharp turn leading to a nonadiabatic change in the effective magnetic field via spin-orbit interaction. The phase of precession is controlled by the group velocity of edge-state electrons tuned by gate bias voltage: Spin-FET-like coherent control of spin precession is thus realized by all-electrical means.

  16. The pressure coefficient of the Curie temperature of ferromagnetic superconductors

    NASA Astrophysics Data System (ADS)

    Konno, R.; Hatayama, N.

    2012-12-01

    The pressure coefficient of the Curie temperature of ferromagnetic superconductors is studied numerically. In our previous study the pressure coefficient of the Curie temperature and that of the superconducting transition temperature were shown based on the Hamiltonian derived by Linder et al. within the mean field approximation about the electron-electron interaction analytically. There have been no numerical results of the pressure coefficient of the Curie temperature derived from the microscopic model. In this study the numerical results are reported. These results are qualitatively consistent with the experimental data in UGe2.

  17. Electron beam injection into space plasmas

    NASA Astrophysics Data System (ADS)

    Matsumoto, H.

    1985-12-01

    Eight papers presented at the URSI Open Symposium on Active Experiments in Space Plasma on August 30-31, 1984 are reviewed. Consideration is given to in-space electron beam experiments studying means of controlling the electrical potential of low earth orbit vehicles and nonlinear wave excitation in the magnetosphere. The results from the Space Experiments with Particle Accelerators (SEPAC) flown on Spacelab-1 are described; the use of a computer to interpret the SEPAC wave-particle interaction and charge potential data is discussed. Two laboratory simulation experiments analyzing the beam-plasma discharge phenomenon are examined.

  18. Reexamination of the interaction of atoms with a LiF(001) surface

    NASA Astrophysics Data System (ADS)

    Miraglia, J. E.; Gravielle, M. S.

    2017-02-01

    Pairwise additive potentials for multielectronic atoms interacting with a LiF(001) surface are revisited by including an improved description of the electron density associated with the different lattice sites, as well as nonlocal electron density contributions. Within this model, the electron distribution around each ionic site of the crystal is described by means of a so-called "onion" approach that accounts for the influence of the Madelung potential. From such densities, binary interatomic potentials are then derived by using well-known nonlocal functionals. Rumpling and long-range contributions due to projectile polarization and van der Waals forces are also included. We apply this pairwise additive approximation to evaluate the interaction potential between closed-shell (He, Ne, Ar, Kr, and Xe) and open-shell (N, S, and Cl) atoms and the LiF surface, analyzing the relative importance of the different contributions. The performance of the proposed potentials is assessed by contrasting angular positions of rainbow and supernumerary rainbow maxima produced by fast grazing incidence with available experimental data. One important result of our model is that both van der Waals contributions and thermal lattice vibrations play a negligible role for normal energies in the eV range.

  19. Exciton-phonon cooperative mechanism of the triple-q charge-density-wave and antiferroelectric electron polarization in TiSe2

    NASA Astrophysics Data System (ADS)

    Kaneko, Tatsuya; Ohta, Yukinori; Yunoki, Seiji

    2018-04-01

    We investigate the microscopic mechanisms of the charge-density-wave (CDW) formation in a monolayer TiSe2 using a realistic multiorbital d -p model with electron-phonon coupling and intersite Coulomb (excitonic) interactions. First, we estimate the tight-binding bands of Ti 3 d and Se 4 p orbitals in the monolayer TiSe2 on the basis of the first-principles band-structure calculations. We thereby show orbital textures of the undistorted band structure near the Fermi level. Next, we derive the electron-phonon coupling using the tight-binding approximation and show that the softening occurs in the transverse phonon mode at the M point of the Brillouin zone. The stability of the triple-q CDW state is thus examined to show that the transverse phonon modes at the M1, M2, and M3 points are frozen simultaneously. Then, we introduce the intersite Coulomb interactions between the nearest-neighbor Ti and Se atoms that lead to the excitonic instability between the valence Se 4 p and conduction Ti 3 d bands. Treating the intersite Coulomb interactions in the mean-field approximation, we show that the electron-phonon and excitonic interactions cooperatively stabilize the triple-q CDW state in TiSe2. We also calculate a single-particle spectrum in the CDW state and reproduce the band folding spectra observed in photoemission spectroscopies. Finally, to clarify the nature of the CDW state, we examine the electronic charge density distribution and show that the CDW state in TiSe2 is of a bond type and induces a vortexlike antiferroelectric polarization in the kagome network of Ti atoms.

  20. Nanostructured films employed as sensing units in an "electronic tongue" system.

    PubMed

    da Silva, B A; Antunes, P A; Pasquini, D; Curvelo, A A S; Aroca, R F; Riul, A Júnior; Constantino, C J L

    2007-02-01

    Nanostructured films of lignin (macromolecule extracted from sugar cane bagasse), polypyrrole (conducting polymer) and bis butylimido perylene (organic dye) were used in the detection of trace levels of fluorine (from H2SiF6), chlorine (from NaClO), Pb(+2), Cu(+2), and Cd(+2) in aqueous solutions. Langmuir monolayers on ultrapure water were characterised by surface pressure-mean molecular area (II-A) isotherms. Langmuir-Blodgett (LB) films were transferred onto gold interdigitated electrodes and used as individual sensing units of an electronic tongue system. Impedance spectroscopy measurements were taken with the sensor immersed into aqueous solutions containing the ions described above in different molar concentrations. Fourier transform infrared absorption (FTIR) was employed to identify possible interactions between the LB films and the analytes in solution, and no significant changes could be observed in the FTIR spectra of BuPTCD and Ppy. Therefore, the results for lignin point to an interaction involving the electronic cloud of the phenyl groups with the metallic ions.

  1. Proton acceleration by multi-terawatt interaction with a near-critical density hydrogen jet

    NASA Astrophysics Data System (ADS)

    Goers, Andy; Feder, Linus; Hine, George; Salehi, Fatholah; Woodbury, Daniel; Su, J. J.; Papadopoulos, Dennis; Zigler, Arie; Milchberg, Howard

    2016-10-01

    We investigate the high intensity laser interaction with thin, near critical density plasmas as a means of efficient acceleration of MeV protons. A promising mechanism is magnetic vortex acceleration, where the ponderomotive force of a tightly focused laser pulse drives a relativistic electron current which generates a strong azimuthal magnetic field. The rapid expansion of this azimuthal magnetic field at the back side of the target can accelerate plasma ions to MeV scale energies. Compared to typical ion acceleration experiments utilizing a laser- thin solid foil interaction, magnetic vortex acceleration in near critical density plasma may be realized in a high density gas jet, making it attractive for applications requiring high repetition rates. We present preliminary experiments studying laser-plasma interaction and proton acceleration in a thin (< 200 μm) near-critical density hydrogen gas jet delivering electron densities 1020 -1021 cm-3 . This research was funded by the United States Department of Energy and the Defense Advanced Research Projects Agency (DARPA) under Contract Number W911-NF-15-C-0217, issued by the Army Research Office.

  2. Reduced-Density-Matrix Description of Decoherence and Relaxation Processes for Electron-Spin Systems

    NASA Astrophysics Data System (ADS)

    Jacobs, Verne

    2017-04-01

    Electron-spin systems are investigated using a reduced-density-matrix description. Applications of interest include trapped atomic systems in optical lattices, semiconductor quantum dots, and vacancy defect centers in solids. Complimentary time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations are self-consistently developed. The general non-perturbative and non-Markovian formulations provide a fundamental framework for systematic evaluations of corrections to the standard Born (lowest-order-perturbation) and Markov (short-memory-time) approximations. Particular attention is given to decoherence and relaxation processes, as well as spectral-line broadening phenomena, that are induced by interactions with photons, phonons, nuclear spins, and external electric and magnetic fields. These processes are treated either as coherent interactions or as environmental interactions. The environmental interactions are incorporated by means of the general expressions derived for the time-domain and frequency-domain Liouville-space self-energy operators, for which the tetradic-matrix elements are explicitly evaluated in the diagonal-resolvent, lowest-order, and Markov (short-memory time) approximations. Work supported by the Office of Naval Research through the Basic Research Program at The Naval Research Laboratory.

  3. Short-ranged interaction effects on Z2 topological phase transitions: The perturbative mean-field method

    NASA Astrophysics Data System (ADS)

    Lai, Hsin-Hua; Hung, Hsiang-Hsuan

    2015-02-01

    Time-reversal symmetric topological insulator (TI) is a novel state of matter that a bulk-insulating state carries dissipationless spin transport along the surfaces, embedded by the Z2 topological invariant. In the noninteracting limit, this exotic state has been intensively studied and explored with realistic systems, such as HgTe/(Hg, Cd)Te quantum wells. On the other hand, electronic correlation plays a significant role in many solid-state systems, which further influences topological properties and triggers topological phase transitions. Yet an interacting TI is still an elusive subject and most related analyses rely on the mean-field approximation and numerical simulations. Among the approaches, the mean-field approximation fails to predict the topological phase transition, in particular at intermediate interaction strength without spontaneously breaking symmetry. In this paper, we develop an analytical approach based on a combined perturbative and self-consistent mean-field treatment of interactions that is capable of capturing topological phase transitions beyond either method when used independently. As an illustration of the method, we study the effects of short-ranged interactions on the Z2 TI phase, also known as the quantum spin Hall (QSH) phase, in three generalized versions of the Kane-Mele (KM) model at half-filling on the honeycomb lattice. The results are in excellent agreement with quantum Monte Carlo (QMC) calculations on the same model and cannot be reproduced by either a perturbative treatment or a self-consistent mean-field treatment of the interactions. Our analytical approach helps to clarify how the symmetries of the one-body terms of the Hamiltonian determine whether interactions tend to stabilize or destabilize a topological phase. Moreover, our method should be applicable to a wide class of models where topological transitions due to interactions are in principle possible, but are not correctly predicted by either perturbative or self-consistent treatments.

  4. Two-dimensional Yukawa interactions from nonlocal Proca quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Alves, Van Sérgio; Macrı, Tommaso; Magalhães, Gabriel C.; Marino, E. C.; Nascimento, Leandro O.

    2018-05-01

    We derive two versions of an effective model to describe dynamical effects of the Yukawa interaction among Dirac electrons in the plane. Such short-range interaction is obtained by introducing a mass term for the intermediate particle, which may be either scalar or an abelian gauge field, both of them in (3 +1 ) dimensions. Thereafter, we consider that the fermionic matter field propagates only in (2 +1 ) dimensions, whereas the bosonic field is free to propagate out of the plane. Within these assumptions, we apply a mechanism for dimensional reduction, which yields an effective model in (2 +1 ) dimensions. In particular, for the gauge-field case, we use the Stueckelberg mechanism in order to preserve gauge invariance. We refer to this version as nonlocal-Proca quantum electrodynamics (NPQED). For both scalar and gauge cases, the effective models reproduce the usual Yukawa interaction in the static limit. By means of perturbation theory at one loop, we calculate the mass renormalization of the Dirac field. Our model is a generalization of Pseudo quantum electrodynamics (PQED), which is a gauge-field model that provides a Coulomb interaction for two-dimensional electrons. Possibilities of application to Fermi-Bose mixtures in mixed dimensions, using cold atoms, are briefly discussed.

  5. Renormalization of effective interactions in a negative charge transfer insulator

    NASA Astrophysics Data System (ADS)

    Seth, Priyanka; Peil, Oleg E.; Pourovskii, Leonid; Betzinger, Markus; Friedrich, Christoph; Parcollet, Olivier; Biermann, Silke; Aryasetiawan, Ferdi; Georges, Antoine

    2017-11-01

    We compute from first principles the effective interaction parameters appropriate for a low-energy description of the rare-earth nickelate LuNiO3 involving the partially occupied eg states only. The calculation uses the constrained random-phase approximation and reveals that the effective on-site Coulomb repulsion is strongly reduced by screening effects involving the oxygen-p and nickel-t2 g states. The long-range component of the effective low-energy interaction is also found to be sizable. As a result, the effective on-site interaction between parallel-spin electrons is reduced down to a small negative value. This validates effective low-energy theories of these materials that were proposed earlier. Electronic structure methods combined with dynamical mean-field theory are used to construct and solve an appropriate low-energy model and explore its phase diagram as a function of the on-site repulsion and Hund's coupling. For the calculated values of these effective interactions, we find that in agreement with experiments, LuNiO3 is a metal without disproportionation of the eg occupancy when considered in its orthorhombic structure, while the monoclinic phase is a disproportionated insulator.

  6. Experimental studies of interactions between Alfv'en waves and striated density depletions in the LAPD

    NASA Astrophysics Data System (ADS)

    Auerbach, D. W.; Carter, T. A.; Vincena, S.

    2008-11-01

    Satellite measurements in the earth's magnetosphere have associated Alfv'en frequency fluctuations with density depletions striated along the geomagnetic field. This poster presents laboratory studies in the LADP experiment at UCLA modeling this phenomena. Density depletions are pre-formed in the plasma column by selectively blocking a portion of the drive beam, and Alfv'en waves are driven in the cavity by means of an inserted antenna. Relevant experimental parameters include an ion cyclotron radius around a mm, alfven parallel wavelength several meters, electron inertial length around 6 mm, and electron thermal speeds about a third of the alfv'en speed. We report here on modifications to the wave propagation due to the density depletion. We also report on the details of the interactions between the driven wave and the secondary drift-alfv'en wave instabilities that arise on the density boundary, including wave-wave interactions and possible turbulent broadening effects on the main wave.

  7. Time-resolved K α spectroscopy measurements of hot-electron equilibration dynamics in thin-foil solid targets: collisional and collective effects

    NASA Astrophysics Data System (ADS)

    Nilson, P. M.; Solodov, A. A.; Davies, J. R.; Theobald, W.; Mileham, C.; Stoeckl, C.; Begishev, I. A.; Zuegel, J. D.; Froula, D. H.; Betti, R.; Meyerhofer, D. D.

    2015-11-01

    Time-resolved K α spectroscopy measurements from high-intensity laser interactions with thin-foil solid targets are reviewed. Thin Cu foils were irradiated with 1-10 J, 1 ps pulses at focused intensities from 1018 to 1019 W cm-2. The experimental data show K α -emission pulse widths from 3 to 6 ps, increasing with laser intensity. The time-resolved K α -emission data are compared to a hot-electron transport and K α -production model that includes collisional electron-energy coupling, resistive heating, and electromagnetic field effects. The experimental data show good agreement with the model when a reduced ponderomotive scaling is used to describe the initial mean hot-electron energy over the relevant intensity range.

  8. Effects of target plasma electron-electron collisions on correlated motion of fragmented protons.

    PubMed

    Barriga-Carrasco, Manuel D

    2006-02-01

    The objective of the present work is to examined the effects of plasma target electron-electron collisions on H2 + protons traversing it. Specifically, the target is deuterium in a plasma state with temperature Te=10 eV and density n=10(23) cm(-3), and proton velocities are vp=vth, vp=2vth, and vp=3vth, where vth is the electron thermal velocity of the target plasma. Proton interactions with plasma electrons are treated by means of the dielectric formalism. The interactions among close protons through plasma electronic medium are called vicinage forces. It is checked that these forces always screen the Coulomb explosions of the two fragmented protons from the same H2 + ion decreasing their relative distance. They also align the interproton vector along the motion direction, and increase the energy loss of the two protons at early dwell times while for longer times the energy loss tends to the value of two isolated protons. Nevertheless, vicinage forces and effects are modified by the target electron collisions. These collisions enhance the calculated self-stopping and vicinage forces over the collisionless results. Regarding proton correlated motion, when these collisions are included, the interproton vector along the motion direction overaligns at slower proton velocities (vp=vth) and misaligns for faster ones (vp=2vth, vp=3vth). They also contribute to a great extend to increase the energy loss of the fragmented H2 + ion. This later effect is more significant in reducing projectile velocity.

  9. Self-consistent electrostatic simulations of reforming double layers in the downward current region of the aurora

    NASA Astrophysics Data System (ADS)

    Gunell, H.; Andersson, L.; De Keyser, J.; Mann, I.

    2015-10-01

    The plasma on a magnetic field line in the downward current region of the aurora is simulated using a Vlasov model. It is found that an electric field parallel to the magnetic fields is supported by a double layer moving toward higher altitude. The double layer accelerates electrons upward, and these electrons give rise to plasma waves and electron phase-space holes through beam-plasma interaction. The double layer is disrupted when reaching altitudes of 1-2 Earth radii where the Langmuir condition no longer can be satisfied due to the diminishing density of electrons coming up from the ionosphere. During the disruption the potential drop is in part carried by the electron holes. The disruption creates favourable conditions for double layer formation near the ionosphere and double layers form anew in that region. The process repeats itself with a period of approximately 1 min. This period is determined by how far the double layer can reach before being disrupted: a higher disruption altitude corresponds to a longer repetition period. The disruption altitude is, in turn, found to increase with ionospheric density and to decrease with total voltage. The current displays oscillations around a mean value. The period of the oscillations is the same as the recurrence period of the double layer formations. The oscillation amplitude increases with increasing voltage, whereas the mean value of the current is independent of voltage in the 100 to 800 V range covered by our simulations. Instead, the mean value of the current is determined by the electron density at the ionospheric boundary.

  10. Tunable Electron-Electron Interactions in LaAlO 3 / SrTiO 3 Nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Guanglei; Tomczyk, Michelle; Tacla, Alexandre B.

    The interface between the two complex oxides LaAlO 3 and SrTiO 3 has remarkable properties that can be locally reconfigured between conducting and insulating states using a conductive atomic force microscope. Prior investigations of “sketched” quantum dot devices revealed a phase in which electrons form pairs, implying a strongly attractive electron-electron interaction. Here, we show that these devices with strong electron-electron interactions can exhibit a gate-tunable transition from a pair-tunneling regime to a single-electron (Andreev bound state) tunneling regime where the interactions become repulsive. The electron-electron interaction sign change is associated with a Lifshitz transition where the d xz andmore » d yz bands start to become occupied. This electronically tunable electron-electron interaction, combined with the nanoscale reconfigurability of this system, provides an interesting starting point towards solid-state quantum simulation.« less

  11. Tunable Electron-Electron Interactions in LaAlO 3 / SrTiO 3 Nanostructures

    DOE PAGES

    Cheng, Guanglei; Tomczyk, Michelle; Tacla, Alexandre B.; ...

    2016-12-01

    The interface between the two complex oxides LaAlO 3 and SrTiO 3 has remarkable properties that can be locally reconfigured between conducting and insulating states using a conductive atomic force microscope. Prior investigations of “sketched” quantum dot devices revealed a phase in which electrons form pairs, implying a strongly attractive electron-electron interaction. Here, we show that these devices with strong electron-electron interactions can exhibit a gate-tunable transition from a pair-tunneling regime to a single-electron (Andreev bound state) tunneling regime where the interactions become repulsive. The electron-electron interaction sign change is associated with a Lifshitz transition where the d xz andmore » d yz bands start to become occupied. This electronically tunable electron-electron interaction, combined with the nanoscale reconfigurability of this system, provides an interesting starting point towards solid-state quantum simulation.« less

  12. Electron tomography and nano-diffraction enabling the investigation of individual magnetic nanoparticles inside fibers of MR visible implants

    NASA Astrophysics Data System (ADS)

    Slabu, I.; Wirch, N.; Caumanns, T.; Theissmann, R.; Krüger, M.; Schmitz-Rode, T.; Weirich, T. E.

    2017-08-01

    Superparamagnetic iron oxide nanoparticles (SPIONPs) incorporated into the base material of implants are used as contrast agents in magnetic resonance imaging for the delineation of the implants from the surrounding tissue. However, the delineation quality is strongly related to the structural characteristics of the incorporated SPIONPs and their interparticle interaction as well as their interaction with the polymer matrix of the implant. Consequently, a profound knowledge of the formation of aggregates inside the polymer matrix, which are responsible for strong interparticle interactions, and of their structural characteristics, is required for controlling the magnetic resonance image quality of the implants. In this work, transmission electron microscopy methods such as electron tomography and nano-electron diffraction were used to depict SPIONP aggregates inside the melt-spin polyvinylidene fluoride fibers used for the assembly of implants and to determine the crystal structure of individual nanocrystals inside these aggregates, respectively. Using these techniques it was possible for the first time to characterize the aggregates inside the fibers of implants and to validate the magnetization measurements that have been previously used to assess the interaction phenomena inside the fibers of implants. With electron tomography, inhomogeneously sized distributed aggregates were delineated and 3D models of these aggregates were constructed. Furthermore, the distribution of the aggregates inside the fibers was verified by means of magnetic force microscopy. With nano-diffraction measurements, the SPIONP crystal structure inside the fibers of the implant could not be clearly assigned to that of magnetite (Fe3O4) or maghemite (γ-Fe2O3). Therefore, additional electron energy loss spectroscopy measurements were performed, which revealed the presence of both phases of Fe3O4 and γ-Fe2O3, probably caused by oxidation processes during the manufacture of the fibers by melt-spinning.

  13. Theoretical electronic transition moments for the Ballik-Ramsay, Fox-Herzberg, and Swan systems of C2

    NASA Technical Reports Server (NTRS)

    Cooper, D. M.

    1981-01-01

    Electronic transition moments and their variation with internuclear separation are calculated for the Ballik-Ramsay (b 3 Sigma g - a 3 Pi u), Fox-Herzberg (e 3 Pi g-a 3 Pi u) and Swan (d 3 Pi g-a 3 Pi u) band systems of C2, which appear in a variety of terrestrial and astrophysical sources. Electronic wave functions of the a 3 Pi u, b 2 Sigma g -, d 3 Pi g and e 3 Pi g states of C2 are obtained by means of a self-consistent field plus configuration interaction calculation using an atomic basis of 46 Slater-type orbitals, and theoretical potential energy curves and spectroscopic constants for the four electronic states were computed. The results obtained for both the potential energy curves and electronic transition moments are found to be in good agreement with experimental data.

  14. Water and tissue equivalence properties of biological materials for photons, electrons, protons and alpha particles in the energy region 10 keV-1 GeV: a comparative study.

    PubMed

    Kurudirek, Murat

    2016-09-01

    To compare some biological materials in respect to the water and tissue equivalence properties for photon, electron, proton and alpha particle interactions as means of the effective atomic number (Zeff) and electron density (Ne). A Z-wise interpolation procedure has been adopted for calculation of Zeff using the mass attenuation coefficients for photons and the mass stopping powers for charged particles. At relatively low energies (100 keV-3 MeV), Zeff and Ne for photons and electrons were found to be constant while they vary much more for protons and alpha particles. In contrast, Zeff and Ne for protons and alpha particles were found to be constant after 3 MeV whereas for photons and electrons they were found to increase with the increasing energy. Also, muscle eq. liquid (with sucrose) have Zeff and Ne values close to the Muscle Skeletal (ICRP) and Muscle Striated (ICRU) within low relative differences below 9%. Muscle eq. liquid (without sucrose) have Zeff and Ne values close to the Muscle Skeletal (ICRP) and Muscle Striated (ICRU) with difference below 10%. The reported data should be useful in determining best water as well as tissue equivalent materials for photon, electron, proton and alpha particle interactions.

  15. Dynamics of Charge Transfer in DNA Wires: A Proton-Coupled Approach

    NASA Astrophysics Data System (ADS)

    Behnia, Sohrab; Fathizadeh, Samira; Ziaei, Javid; Akhshani, Afshin

    2017-12-01

    The advent of molecular electronics has fueled interest in studying DNA as a nanowire. The well-known Peyrard-Bishop-Dauxois (PBD) model, which was proposed for the purpose of understanding the mechanism of DNA denaturation, has a limited number of degrees of freedom. In addition, considering the Peyrard-Bishop-Holstein (PBH) model as a means of studying the charge transfer effect, in which the dynamical motion is described via the PBD model, may apply limitations on observing all the phenomena. Therefore, we have attempted to add the mutual interaction of a proton and electron in the form of proton-coupled electron transfer (PCET) to the PBH model. PCET has been implicated in a variety of oxidative processes that ultimately lead to mutations. When we have considered the PCET approach to DNA based on a proton-combined PBH model, we were able to extract the electron and proton currents independently. In this case, the reciprocal influence of electron and proton current is considered. This interaction does not affect the general form of the electronic current in DNA, but it changes the threshold of the occurrence of phenomena such as negative differential resistance. It is worth mentioning that perceiving the structural properties of the attractors in phase space via the Rényi dimension and concentrating on the critical regions through a scalogram can present a clear picture of the critical points in such phenomena.

  16. Electron microscopy study of antioxidant interaction with bacterial cells

    NASA Astrophysics Data System (ADS)

    Plotnikov, Oleg P.; Novikova, Olga V.; Konnov, Nikolai P.; Korsukov, Vladimir N.; Gunkin, Ivan F.; Volkov, Uryi P.

    2000-10-01

    To maintain native microorganisms genotype and phenotype features a lyophylization technique is widely used. However in this case cells are affected by influences of vacuum and low temperature that cause a part of the cells population to be destruction. Another factor reduced microorganisms vitality is formation of reactive oxygen forms that damage certain biological targets (such as DNA, membranes etc.) Recently to raise microorganism's resistance against adverse condition natural and synthetic antioxidants are used. Antioxidant- are antagonists of free radicals. Introduction of antioxidants in protective medium for lyophylization increase bacteria storage life about 2,0-4,8 fold in comparison with reference samples. In the article the main results of our investigation of antioxidants interaction with microorganism cells is described. As bacteria cells we use vaccine strain yersinia pestis EV, that were grown for 48 h at 28 degree(s)C on the Hottinger agar (pH 7,2). Antioxidants are inserted on the agar surface in specimen under test. To investigate a localization of antioxidants for electron microscopy investigation, thallium organic antioxidants were used. The thallium organic compounds have an antioxidant features if thallium is in low concentration (about 1(mu) g/ml). The localization of the thallium organic antioxidants on bacteria Y. pestis EV is visible in electron microscopy images, thallium being heavy metal with high electron density. The negatively stained bacteria and bacteria thin sections with thallium organic compounds were investigated by means of transmission electron microscopy. The localization of the thallium organic compounds is clearly visible in electron micrographs as small dark spots with size about 10-80nm. Probably mechanisms of interaction of antioxidants with bacteria cells are discussed.

  17. Studies of dynamic processes related to active experiments in space plasmas

    NASA Technical Reports Server (NTRS)

    Banks, Peter M.; Neubert, Torsten

    1992-01-01

    This is the final report for grant NAGw-2055, 'Studies of Dynamic Processes Related to Active Experiments in Space Plasmas', covering research performed at the University of Michigan. The grant was awarded to study: (1) theoretical and data analysis of data from the CHARGE-2 rocket experiment (1keV; 1-46 mA electron beam ejections) and the Spacelab-2 shuttle experiment (1keV; 100 mA); (2) studies of the interaction of an electron beam, emitted from an ionospheric platform, with the ambient neutral atmosphere and plasma by means of a newly developed computer simulation model, relating model predictions with CHARGE-2 observations of return currents observed during electron beam emissions; and (3) development of a self-consistent model for the charge distribution on a moving conducting tether in a magnetized plasma and for the potential structure in the plasma surrounding the tether. Our main results include: (1) the computer code developed for the interaction of electrons beams with the neutral atmosphere and plasma is able to model observed return fluxes to the CHARGE-2 sounding rocket payload; and (2) a 3-D electromagnetic and relativistic particle simulation code was developed.

  18. Association of the Type of Toy Used During Play With the Quantity and Quality of Parent-Infant Communication.

    PubMed

    Sosa, Anna V

    2016-02-01

    The early language environment of a child influences language outcome, which in turn affects reading and academic success. It is unknown which types of everyday activities promote the best language environment for children. To investigate whether the type of toy used during play is associated with the parent-infant communicative interaction. Controlled experiment in a natural environment of parent-infant communication during play with 3 different toy sets. Participant recruitment and data collection were conducted between February 1, 2013, and June 30, 2014. The volunteer sample included 26 parent-infant (aged 10-16 months) dyads. Fifteen-minute in-home parent-infant play sessions with electronic toys, traditional toys, and books. Numbers of adult words, child vocalizations, conversational turns, parent verbal responses to child utterances, and words produced by parents in 3 different semantic categories (content-specific words) per minute during play sessions. Among the 26 parent-infant dyads, toy type was associated with all outcome measures. During play with electronic toys, there were fewer adult words (mean, 39.62; 95% CI, 33.36-45.65), fewer conversational turns (mean, 1.64; 95% CI, 1.12-2.19), fewer parental responses (mean, 1.31; 95% CI, 0.87-1.77), and fewer productions of content-specific words (mean, 1.89; 95% CI, 1.49-2.35) than during play with traditional toys or books. Children vocalized less during play with electronic toys (mean per minute, 2.9; 95% CI, 2.16-3.69) than during play with books (mean per minute, 3.91; 95% CI, 3.09-4.68). Parents produced fewer words during play with traditional toys (mean per minute, 55.56; 95% CI, 46.49-64.17) than during play with books (mean per minute, 66.89; 95% CI, 59.93-74.19) and use of content-specific words was lower during play with traditional toys (mean per minute, 4.09; 95% CI, 3.26-4.99) than during play with books (mean per minute, 6.96; 95% CI, 6.07-7.97). Play with electronic toys is associated with decreased quantity and quality of language input compared with play with books or traditional toys. To promote early language development, play with electronic toys should be discouraged. Traditional toys may be a valuable alternative for parent-infant play time if book reading is not a preferred activity.

  19. Theory and simulation of an inverse free-electron laser experiment

    NASA Astrophysics Data System (ADS)

    Gou, S. K.; Bhattacharjee, A.; Fang, J.-M.; Marshall, T. C.

    1997-03-01

    An experimental demonstration of the acceleration of electrons using a high-power CO2 laser interacting with a relativistic electron beam moving along a wiggler has been carried out at the Accelerator Test Facility of the Brookhaven National Laboratory [Phys. Rev. Lett. 77, 2690 (1996)]. The data generated by this inverse free-electron-laser (IFEL) experiment are studied by means of theory and simulation. Included in the simulations are such effects as: a low-loss metallic waveguide with a dielectric coating on the walls; multi-mode coupling due to self-consistent interaction between the electrons and the optical wave; space charge; energy spread of the electrons; and arbitrary wiggler-field profile. Two types of wiggler profile are considered: a linear taper of the period, and a step-taper of the period. (The period of the wiggler is ˜3 cm, its magnetic field is ˜1 T, and the wiggler length is 0.47 m.) The energy increment of the electrons (˜1-2%) is analyzed in detail as a function of laser power, wiggler parameters, and the initial beam energy (˜40 MeV). At a laser power level ˜0.5 Gw, the simulation results on energy gain are in reasonable agreement with the experimental results. Preliminary results on the electron energy distribution at the end of the IFEL are presented. Whereas the experiment produces a near-monotone distribution of electron energies with the peak shifted to higher energy, the simulation shows a more structured and non-monotonic distribution at the end of the wiggler. Effects that may help reconcile these differences are considered.

  20. Simulation of electron transport during electron-beam-induced deposition of nanostructures

    PubMed Central

    Jeschke, Harald O; Valentí, Roser

    2013-01-01

    Summary We present a numerical investigation of energy and charge distributions during electron-beam-induced growth of tungsten nanostructures on SiO2 substrates by using a Monte Carlo simulation of the electron transport. This study gives a quantitative insight into the deposition of energy and charge in the substrate and in the already existing metallic nanostructures in the presence of the electron beam. We analyze electron trajectories, inelastic mean free paths, and the distribution of backscattered electrons in different compositions and at different depths of the deposit. We find that, while in the early stages of the nanostructure growth a significant fraction of electron trajectories still interacts with the substrate, when the nanostructure becomes thicker the transport takes place almost exclusively in the nanostructure. In particular, a larger deposit density leads to enhanced electron backscattering. This work shows how mesoscopic radiation-transport techniques can contribute to a model that addresses the multi-scale nature of the electron-beam-induced deposition (EBID) process. Furthermore, similar simulations can help to understand the role that is played by backscattered electrons and emitted secondary electrons in the change of structural properties of nanostructured materials during post-growth electron-beam treatments. PMID:24367747

  1. Semiclassical theory of the tunneling anomaly in partially spin-polarized compressible quantum Hall states

    NASA Astrophysics Data System (ADS)

    Chowdhury, Debanjan; Skinner, Brian; Lee, Patrick A.

    2018-05-01

    Electron tunneling into a system with strong interactions is known to exhibit an anomaly, in which the tunneling conductance vanishes continuously at low energy due to many-body interactions. Recent measurements have probed this anomaly in a quantum Hall bilayer of the half-filled Landau level, and shown that the anomaly apparently gets stronger as the half-filled Landau level is increasingly spin polarized. Motivated by this result, we construct a semiclassical hydrodynamic theory of the tunneling anomaly in terms of the charge-spreading action associated with tunneling between two copies of the Halperin-Lee-Read state with partial spin polarization. This theory is complementary to our recent work (D. Chowdhury, B. Skinner, and P. A. Lee, arXiv:1709.06091) where the electron spectral function was computed directly using an instanton-based approach. Our results show that the experimental observation cannot be understood within conventional theories of the tunneling anomaly, in which the spreading of the injected charge is driven by the mean-field Coulomb energy. However, we identify a qualitatively new regime, in which the mean-field Coulomb energy is effectively quenched and the tunneling anomaly is dominated by the finite compressibility of the composite Fermion liquid.

  2. Detection of the adsorption of water monolayers through the ion oscillation frequency in the magnesium oxide lattice by means of low energy electron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guevara-Bertsch, M.; Avendaño, E.; Centro de Investigación en Ciencia e Ingeniería de Materiales, Universidad de Costa Rica, 2060 San Pedro, San José

    We investigate the variation of the oscillation frequency of the Mg{sup 2+} and O{sup 2−} ions in the magnesium oxide lattice due to the interactions of the surface with water monolayers by means of Low Energy Electron Diffraction. Our key result is a new technique to determine the adsorbate vibrations produced by the water monolayers on the surface lattice as a consequence of their change in the surface Debye temperature and its chemical shift. The latter was systematically investigated for different annealing times and for a constant external thermal perturbation in the range of 110–300 K in order to accomplish adsorptionmore » or desorption of water monolayers in the surface lattice.« less

  3. Non-renewal statistics for electron transport in a molecular junction with electron-vibration interaction

    NASA Astrophysics Data System (ADS)

    Kosov, Daniel S.

    2017-09-01

    Quantum transport of electrons through a molecule is a series of individual electron tunneling events separated by stochastic waiting time intervals. We study the emergence of temporal correlations between successive waiting times for the electron transport in a vibrating molecular junction. Using the master equation approach, we compute the joint probability distribution for waiting times of two successive tunneling events. We show that the probability distribution is completely reset after each tunneling event if molecular vibrations are thermally equilibrated. If we treat vibrational dynamics exactly without imposing the equilibration constraint, the statistics of electron tunneling events become non-renewal. Non-renewal statistics between two waiting times τ1 and τ2 means that the density matrix of the molecule is not fully renewed after time τ1 and the probability of observing waiting time τ2 for the second electron transfer depends on the previous electron waiting time τ1. The strong electron-vibration coupling is required for the emergence of the non-renewal statistics. We show that in the Franck-Condon blockade regime, extremely rare tunneling events become positively correlated.

  4. Communication: Relativistic Fock-space coupled cluster study of small building blocks of larger uranium complexes.

    PubMed

    Tecmer, Paweł; Gomes, André Severo Pereira; Knecht, Stefan; Visscher, Lucas

    2014-07-28

    We present a study of the electronic structure of the [UO2](+), [UO2](2 +), [UO2](3 +), NUO, [NUO](+), [NUO](2 +), [NUN](-), NUN, and [NUN](+) molecules with the intermediate Hamiltonian Fock-space coupled cluster method. The accuracy of mean-field approaches based on the eXact-2-Component Hamiltonian to incorporate spin-orbit coupling and Gaunt interactions are compared to results obtained with the Dirac-Coulomb Hamiltonian. Furthermore, we assess the reliability of calculations employing approximate density functionals in describing electronic spectra and quantities useful in rationalizing Uranium (VI) species reactivity (hardness, electronegativity, and electrophilicity).

  5. Communication: Relativistic Fock-space coupled cluster study of small building blocks of larger uranium complexes

    NASA Astrophysics Data System (ADS)

    Tecmer, Paweł; Severo Pereira Gomes, André; Knecht, Stefan; Visscher, Lucas

    2014-07-01

    We present a study of the electronic structure of the [UO2]+, [UO2]2 +, [UO2]3 +, NUO, [NUO]+, [NUO]2 +, [NUN]-, NUN, and [NUN]+ molecules with the intermediate Hamiltonian Fock-space coupled cluster method. The accuracy of mean-field approaches based on the eXact-2-Component Hamiltonian to incorporate spin-orbit coupling and Gaunt interactions are compared to results obtained with the Dirac-Coulomb Hamiltonian. Furthermore, we assess the reliability of calculations employing approximate density functionals in describing electronic spectra and quantities useful in rationalizing Uranium (VI) species reactivity (hardness, electronegativity, and electrophilicity).

  6. The tight binding model study of the role of band filling on the charge gap in graphene-on-substrate in paramagnetic state

    NASA Astrophysics Data System (ADS)

    Panda, Rudrashish; Sahu, Sivabrata; Rout, G. C.

    2017-05-01

    We communicate here a tight binding theoretical model study of the band filling effect on the charge gap in graphene-on-substrate. The Hamiltonian consists of nearest neighbor electron hopping and substrate induced gap. Besides this the Coulomb interaction is considered here within mean-field approximation in the paramagnetic limit. The electron occupancies at two sublattices are calculated by Green's function technique and are solved self consistently. Finally the charge gap i.e. Δ ¯=U [ < na > -< nb > ] is calculated and computed numerically. The results are reported.

  7. Giant spin-splitting and gap renormalization driven by trions in single-layer WS2/h-BN heterostructures

    NASA Astrophysics Data System (ADS)

    Katoch, Jyoti; Ulstrup, Søren; Koch, Roland J.; Moser, Simon; McCreary, Kathleen M.; Singh, Simranjeet; Xu, Jinsong; Jonker, Berend T.; Kawakami, Roland K.; Bostwick, Aaron; Rotenberg, Eli; Jozwiak, Chris

    2018-04-01

    In two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs), new electronic phenomena such as tunable bandgaps1-3 and strongly bound excitons and trions emerge from strong many-body effects4-6, beyond the spin and valley degrees of freedom induced by spin-orbit coupling and by lattice symmetry7. Combining single-layer TMDs with other 2D materials in van der Waals heterostructures offers an intriguing means of controlling the electronic properties through these many-body effects, by means of engineered interlayer interactions8-10. Here, we use micro-focused angle-resolved photoemission spectroscopy (microARPES) and in situ surface doping to manipulate the electronic structure of single-layer WS2 on hexagonal boron nitride (WS2/h-BN). Upon electron doping, we observe an unexpected giant renormalization of the spin-orbit splitting of the single-layer WS2 valence band, from 430 meV to 660 meV, together with a bandgap reduction of at least 325 meV, attributed to the formation of trionic quasiparticles. These findings suggest that the electronic, spintronic and excitonic properties are widely tunable in 2D TMD/h-BN heterostructures, as these are intimately linked to the quasiparticle dynamics of the materials11-13.

  8. Skin self-examination education for early detection of melanoma: a randomized controlled trial of Internet, workbook, and in-person interventions.

    PubMed

    Robinson, June K; Gaber, Rikki; Hultgren, Brittney; Eilers, Steven; Blatt, Hanz; Stapleton, Jerod; Mallett, Kimberly; Turrisi, Rob; Duffecy, Jenna; Begale, Mark; Martini, Mary; Bilimoria, Karl; Wayne, Jeffrey

    2014-01-13

    Early detection of melanoma improves survival. Since many melanoma patients and their spouses seek the care of a physician after discovering their melanoma, an ongoing study will determine the efficacy of teaching at-risk melanoma patients and their skin check partner how to conduct skin self-examinations (SSEs). Internet-based health behavior interventions have proven efficacious in creating behavior change in patients to better prevent, detect, or cope with their health issues. The efficacy of electronic interactive SSE educational intervention provided on a tablet device has not previously been determined. The electronic interactive educational intervention was created to develop a scalable, effective intervention to enhance performance and accuracy of SSE among those at-risk to develop melanoma. The intervention in the office was conducted using one of the following three methods: (1) in-person through a facilitator, (2) with a paper workbook, or (3) with a tablet device used in the clinical office. Differences related to method of delivery were elucidated by having the melanoma patient and their skin check partner provide a self-report of their confidence in performing SSE and take a knowledge-based test immediately after receiving the intervention. The three interventions used 9 of the 26 behavioral change techniques defined by Abraham and Michie to promote planning of monthly SSE, encourage performing SSE, and reinforce self-efficacy by praising correct responses to knowledge-based decision making and offering helpful suggestions to improve performance. In creating the electronic interactive SSE educational intervention, the educational content was taken directly from both the scripted in-person presentation delivered with Microsoft PowerPoint by a trained facilitator and the paper workbook training arms of the study. Enrollment totaled 500 pairs (melanoma patient and their SSE partner) with randomization of 165 pairs to the in-person, 165 pairs to the workbook, and 70 pairs to electronic interactive SSE educational intervention. The demographic survey data showed no significant mean differences between groups in age, education, or income. The tablet usability survey given to the first 30 tablet pairs found that, overall, participants found the electronic interactive intervention easy to use and that the video of the doctor-patient-partner dialogue accompanying the dermatologist's examination was particularly helpful in understanding what they were asked to do for the study. The interactive group proved to be just as good as the workbook group in self-confidence of scoring moles, and just as good as both the workbook and the in-person intervention groups in self-confidence of monitoring their moles. While the in-person intervention performed significantly better on a skill-based quiz, the electronic interactive group performed significantly better than the workbook group. The electronic interactive and in-person interventions were more efficient (30 minutes), while the workbook took longer (45 minutes). This study suggests that an electronic interactive intervention can deliver skills training comparable to other training methods, and the experience can be accommodated during the customary outpatient office visit with the physician. Further testing of the electronic interactive intervention's role in the anxiety of the pair and pair-discovered melanomas upon self-screening will elucidate the impact of these tools on outcomes in at-risk patient populations. ClinicalTrials.gov NCT01013844; http://clinicaltrials.gov/show/NCT01013844 (Archived by WebCite at http://www.webcitation.org/6LvGGSTKK).

  9. Interaction of Individual Skyrmions in a Nanostructured Cubic Chiral Magnet

    NASA Astrophysics Data System (ADS)

    Du, Haifeng; Zhao, Xuebing; Rybakov, Filipp N.; Borisov, Aleksandr B.; Wang, Shasha; Tang, Jin; Jin, Chiming; Wang, Chao; Wei, Wensheng; Kiselev, Nikolai S.; Zhang, Yuheng; Che, Renchao; Blügel, Stefan; Tian, Mingliang

    2018-05-01

    We report direct evidence of the field-dependent character of the interaction between individual magnetic skyrmions as well as between skyrmions and edges in B 20 -type FeGe nanostripes observed by means of high-resolution Lorentz transmission electron microscopy. It is shown that above certain critical values of an external magnetic field the character of such long-range skyrmion interactions changes from attraction to repulsion. Experimentally measured equilibrium inter-skyrmion and skyrmion-edge distances as a function of the applied magnetic field shows quantitative agreement with the results of micromagnetic simulations. The important role of demagnetizing fields and the internal symmetry of three-dimensional magnetic skyrmions are discussed in detail.

  10. Theoretical investigation into the possibility of multiorbital magnetically ordered states in isotropically superstrained graphene

    NASA Astrophysics Data System (ADS)

    Craco, L.

    2017-10-01

    Using density functional dynamical mean-field theory (DFDMFT) we address the problem of antiferromagnetic spin ordering in isotropically superstrained graphene. It is shown that the interplay between strain-induced one-particle band narrowing and sizable on-site electron-electron interactions naturally stabilizes a magnetic phase with orbital-selective spin-polarized p -band electronic states. While an antiferromagnetic phase with strong local moments arises in the pz orbitals, the px ,y bands reveal a metallic state with quenched sublattice magnetization. We next investigate the possibility of superconductivity to emerge in this selective magnetoelectronic state. Our theory is expected to be an important step to understanding the next generation of flexible electronics made of Mott localized carbon-based materials as well as the ability of superstrained graphene to host coexisting superconductivity and magnetism at low temperatures.

  11. Time-resolved K α spectroscopy measurements of hot-electron equilibration dynamics in thin-foil solid targets: Collisional and collective effects

    DOE PAGES

    Nilson, P. M.; Solodov, A. A.; Davies, J. R.; ...

    2015-09-25

    Time-resolved K α spectroscopy measurements from high-intensity laser interactions with thin-foil solid targets are reviewed. Thin Cu foils were irradiated with 1- to 10-J, 1-ps pulses at focused intensities from 10 18 to 10 19 W/cm 2. The experimental data show K α-emission pulse widths from 3 to 6 ps, increasing with laser intensity. The time-resolved K α-emission data are compared to a hot-electron transport and K α-production model that includes collisional electron-energy coupling, resistive heating, and electromagnetic field effects. The experimental data show good agreement with the model when a reduced ponderomotive scaling is used to describe the initialmore » mean hot-electron energy over the relevant intensity range.« less

  12. Multistep Ionization of Argon Clusters in Intense Femtosecond Extreme Ultraviolet Pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostedt, C.; Thomas, H.; Hoener, M.

    The interaction of intense extreme ultraviolet femtosecond laser pulses ({lambda}=32.8 nm) from the FLASH free electron laser (FEL) with clusters has been investigated by means of photoelectron spectroscopy and modeled by Monte Carlo simulations. For laser intensities up to 5x10{sup 13} W/cm{sup 2}, we find that the cluster ionization process is a sequence of direct electron emission events in a developing Coulomb field. A nanoplasma is formed only at the highest investigated power densities where ionization is frustrated due to the deep cluster potential. In contrast with earlier studies in the IR and vacuum ultraviolet spectral regime, we find nomore » evidence for electron emission from plasma heating processes.« less

  13. On the elimination of the electronic structure bottleneck in on the fly nonadiabatic dynamics for small to moderate sized (10-15 atom) molecules using fit diabatic representations based solely on ab initio electronic structure data: The photodissociation of phenol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiaolei, E-mail: virtualzx@gmail.com; Yarkony, David R., E-mail: yarkony@jhu.edu

    2016-01-14

    In this work, we demonstrate that for moderate sized systems, here a system with 13 atoms, global coupled potential energy surfaces defined for several electronic states over a wide energy range and for distinct regions of nuclear coordinate space characterized by distinct electron configurations, can be constructed with precise energetics and an excellent description of non-adiabatic interactions in all regions. This is accomplished using a recently reported algorithm for constructing quasi-diabatic representations, H{sup d}, of adiabatic electronic states coupled by conical intersections. In this work, the algorithm is used to construct an H{sup d} to describe the photodissociation of phenolmore » from its first and second excited electronic states. The representation treats all 33 internal degrees of freedom in an even handed manner. The ab initio adiabatic electronic structure data used to construct the fit are obtained exclusively from multireference configuration interaction with single and double excitation wave functions comprised of 88 × 10{sup 6} configuration state functions, at geometries determined by quasi-classical trajectories. Since the algorithm uses energy gradients and derivative couplings in addition to electronic energies to construct H{sup d}, data at only 7379 nuclear configurations are required to construct a representation, which describes all nuclear configurations involved in H atom photodissociation to produce the phenoxyl radical in its ground or first excited electronic state, with a mean unsigned energy error of 202.9 cm{sup −1} for electronic energies <60 000 cm{sup −1}.« less

  14. Structural analysis of the antimalarial drug halofantrine by means of Raman spectroscopy and density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Frosch, Torsten; Popp, Jürgen

    2010-07-01

    The structure of the antimalarial drug halofantrine is analyzed by means of density functional theory (DFT) calculations, IR, and Raman spectroscopy. Strong, selective enhancements of the Raman bands of halofantrine at 1621 and 1590 cm-1 are discovered by means of UV resonance Raman spectroscopy with excitation wavelength λexc=244 nm. These signal enhancements can be exploited for a localization of small concentrations of halofantrine in a biological environment. The Raman spectrum of halofantrine is calculated by means of DFT calculations [B3LYP/6-311+G(d,p)]. The calculation is very useful for a thorough mode assignment of the Raman bands of halofantrine. The strong bands at 1621 and 1590 cm-1 in the UV Raman spectrum are assigned to combined C=C stretching vibrations in the phenanthrene ring of halofantrine. These bands are considered as putative marker bands for ππ interactions with the biological target molecules. The calculation of the electron density demonstrates a strong distribution across the phenanthrene ring of halofantrine, besides the electron withdrawing effect of the Cl and CF3 substituents. This strong and even electron density distribution supports the hypothesis of ππ stacking as a possible mode of action of halofantrine. Complementary IR spectroscopy is performed for an investigation of vibrations of polar functional groups of the halofantrine molecule.

  15. A theoretical investigation on Cu/Ag/Au bonding in XH2P⋯MY(X = H, CH3, F, CN, NO2; M = Cu, Ag, Au; Y = F, Cl, Br, I) complexes

    NASA Astrophysics Data System (ADS)

    Wang, Zhaoxu; Liu, Yi; Zheng, Baishu; Zhou, Fengxiang; Jiao, Yinchun; Liu, Yuan; Ding, XunLei; Lu, Tian

    2018-05-01

    Intermolecular interaction of XH2P...MY (X = H, CH3, F, CN, NO2; M = Cu, Ag, Au; Y = F, Cl, Br, I) complexes was investigated by means of an ab initio method. The molecular interaction energies are in the order Ag < Cu < Au and increased with the decrease of RP...M. Interaction energies are strengthened when electron-donating substituents X connected to XH2P, while electron-withdrawing substituents produce the opposite effect. The strongest P...M bond was found in CH3H2P...AuF with -70.95 kcal/mol, while the weakest one was found in NO2H2P...AgI with -20.45 kcal/mol. The three-center/four-electron (3c/4e) resonance-type of P:-M-:Y hyperbond was recognized by the natural resonance theory and the natural bond orbital analysis. The competition of P:M-Y ↔ P-M:Y resonance structures mainly arises from hyperconjugation interactions; the bond order of bP-M and bM-Y is in line with the conservation of the idealized relationship bP-M + bM-Y ≈ 1. In all MF-containing complexes, P-M:F resonance accounted for a larger proportion which leads to the covalent characters for partial ionicity of MF. The interaction energies of these Cu/Ag/Au complexes are basically above the characteristic values of the halogen-bond complexes and close to the observed strong hydrogen bonds in ionic hydrogen-bonded species.

  16. Optical excitations dynamics at hetero-interfaces fullerene/quantum dots

    NASA Astrophysics Data System (ADS)

    Righetto, Marcello; Privitera, Alberto; Franco, Lorenzo; Bozio, Renato

    2017-08-01

    Embedding Semiconductor Quantum Dots (QDs) into hybrid organic-inorganic solar cell holds promises for improving photovoltaic performances. Thanks to their strong coupling with electro-magnetic radiation field, QDs represent paradigmatic photon absorbers. Nevertheless, the quest for suitable charge separating hetero-interfaces is still an open challenge. Within this framework, the excited state interactions between QDs and fullerene derivatives are of great interest for ternary solar cells (polymer:QDs:fullerene). In this work, we investigated the exciton dynamics of core/shell CdSe/CdS QDs both in solution and in blends with fullerene derivative (PCBM). By means of transient optical techniques, we aimed to unveil the dynamics of the QDs-PCBM interaction. Indeed, the observed excited state depopulation of QDs in blends is compatible with an excited state interaction living on picosecond timescale. Through electron paramagnetic resonance, we delved into the nature of this interaction, identifying the presence of charge separated states. The concurrence of these observations suggest a fast electron transfer process, where QDs act as donors and PCBM molecules as acceptors, followed by effective charge separation. Therefore, our experimental results indicate the QDs-PCBM heterointerface as suitable exciton separating interface, paving the way for possible applications in photovoltaics.

  17. Lorentz-violating contributions to the nuclear Schiff moment and nuclear EDM

    NASA Astrophysics Data System (ADS)

    Araujo, Jonas B.; Casana, Rodolfo; Ferreira, Manoel M.

    2018-03-01

    In the context of an atom endowed with nuclear electric dipole moments (EDM), we consider the effects on the Schiff moment of C P T -even Lorentz-violating (LV) terms that modify the Coulomb potential. First, we study the modifications on the Schiff moment when the nucleus interacts with the electronic cloud by means of a Coulomb potential altered only by the P -even LV components. Next, by supposing the existence of an additional intrinsic LV EDM generated by other LV sources, we assess the corrections to the Schiff moment when the interaction nucleus-electrons runs mediated by a Coulomb potential modified by both the P -odd and P -even LV components. We then use known estimates and EDM measurements to discuss upper bounds on the new Schiff moment components and the possibility of a nuclear EDM component ascribed to LV effects.

  18. Accurate van der Waals coefficients from density functional theory

    PubMed Central

    Tao, Jianmin; Perdew, John P.; Ruzsinszky, Adrienn

    2012-01-01

    The van der Waals interaction is a weak, long-range correlation, arising from quantum electronic charge fluctuations. This interaction affects many properties of materials. A simple and yet accurate estimate of this effect will facilitate computer simulation of complex molecular materials and drug design. Here we develop a fast approach for accurate evaluation of dynamic multipole polarizabilities and van der Waals (vdW) coefficients of all orders from the electron density and static multipole polarizabilities of each atom or other spherical object, without empirical fitting. Our dynamic polarizabilities (dipole, quadrupole, octupole, etc.) are exact in the zero- and high-frequency limits, and exact at all frequencies for a metallic sphere of uniform density. Our theory predicts dynamic multipole polarizabilities in excellent agreement with more expensive many-body methods, and yields therefrom vdW coefficients C6, C8, C10 for atom pairs with a mean absolute relative error of only 3%. PMID:22205765

  19. Reprint of "Theoretical description of metal/oxide interfacial properties: The case of MgO/Ag(001)"

    NASA Astrophysics Data System (ADS)

    Prada, Stefano; Giordano, Livia; Pacchioni, Gianfranco; Goniakowski, Jacek

    2017-02-01

    We compare the performances of different DFT functionals applied to ultra-thin MgO(100) films supported on the Ag(100) surface, a prototypical system of a weakly interacting oxide/metal interface, extensively studied in the past. Beyond semi-local DFT-GGA approximation, we also use the hybrid DFT-HSE approach to improve the description of the oxide electronic structure. Moreover, to better account for the interfacial adhesion, we include the van de Waals interactions by means of either the semi-empirical force fields by Grimme (DFT-D2 and DFT-D2*) or the self-consistent density functional optB88-vdW. We compare and discuss the results on the structural, electronic, and adhesion characteristics of the interface as obtained for pristine and oxygen-deficient Ag-supported MgO films in the 1-4 ML thickness range.

  20. Theoretical description of metal/oxide interfacial properties: The case of MgO/Ag(001)

    NASA Astrophysics Data System (ADS)

    Prada, Stefano; Giordano, Livia; Pacchioni, Gianfranco; Goniakowski, Jacek

    2016-12-01

    We compare the performances of different DFT functionals applied to ultra-thin MgO(100) films supported on the Ag(100) surface, a prototypical system of a weakly interacting oxide/metal interface, extensively studied in the past. Beyond semi-local DFT-GGA approximation, we also use the hybrid DFT-HSE approach to improve the description of the oxide electronic structure. Moreover, to better account for the interfacial adhesion, we include the van de Waals interactions by means of either the semi-empirical force fields by Grimme (DFT-D2 and DFT-D2*) or the self-consistent density functional optB88-vdW. We compare and discuss the results on the structural, electronic, and adhesion characteristics of the interface as obtained for pristine and oxygen-deficient Ag-supported MgO films in the 1-4 ML thickness range.

  1. A video processing method for convenient mobile reading of printed barcodes with camera phones

    NASA Astrophysics Data System (ADS)

    Bäckström, Christer; Södergård, Caj; Udd, Sture

    2006-01-01

    Efficient communication requires an appropriate choice and combination of media. The print media has succeeded to attract audiences also in our electronic age because of its high usability. However, the limitations of print are self evident. By finding ways of combining printed and electronic information into so called hybrid media, the strengths of both media can be obtained. In hybrid media, paper functions as an interface to the web, integrating printed products into the connected digital world. This is a "reinvention" of printed matter making it into a more communicative technology. Hybrid media means that printed products can be updated in real time. Multimedia clips, personalization and e-shopping can be added as a part of the interactive medium. The concept of enhancing print with interactive features has been around for years. However, the technology has been so far too restricting - people don't want to be tied in front of their PC's reading newspapers. Our solution is communicative and totally mobile. A code on paper or electronic media constitutes the link to mobility.

  2. Team Electronic Gameplay Combining Different Means of Control

    NASA Technical Reports Server (NTRS)

    Palsson, Olafur S. (Inventor); Pope, Alan T. (Inventor)

    2014-01-01

    Disclosed are methods and apparatuses provided for modifying the effect of an operator controlled input device on an interactive device to encourage the self-regulation of at least one physiological activity by a person different than the operator. The interactive device comprises a display area which depicts images and apparatus for receiving at least one input from the operator controlled input device to thus permit the operator to control and interact with at least some of the depicted images. One effect modification comprises measurement of the physiological activity of a person different from the operator, while modifying the ability of the operator to control and interact with at least some of the depicted images by modifying the input from the operator controlled input device in response to changes in the measured physiological signal.

  3. Experimental and numerical investigations of air plasmas induced by multi-MeV pulsed X-ray from low to atmospheric pressures

    NASA Astrophysics Data System (ADS)

    Maulois, Mélissa; Ribière, Maxime; Eichwald, Olivier; Yousfi, Mohammed; Pouzalgues, Romain; Garrigues, Alain; Delbos, Christophe; Azaïs, Bruno

    2016-09-01

    This research work is devoted to the experimental and theoretical analysis of air plasmas induced by multi-MeV pulsed X-ray for a large pressure range of humid air background gas varying from 20 mbar to atmospheric pressure. The time evolution of the electron density of the air plasma is determined by electromagnetic wave absorption measurements. The measurements have uncertainties of about ±30%, taking into account the precision of the dose measurement and also the shot to shot fluctuations of the generator. The experimental electron density is obtained by comparing the measurements of the transmitted microwave signals to the calculated ones. The calculations need the knowledge of the time evolution of the electron mean energy, which is determined by a chemical kinetic model based on a reaction scheme involving 39 species interacting following 265 reactions. During the X-ray pulse, a good agreement is obtained between time evolution of the electron density obtained from absorption measurements and calculations based on the kinetic model. The relative deviation on the maximum electron density and the corresponding plasma frequency is always lower than 10%. The maximum electron density varies from 4 × 1011 to 3.5 × 1013 cm-3 between 30 mbar to atmospheric pressure, while the peak of the electron mean energy decreases from 5.64 eV to 4.27 eV in the same pressure range.

  4. Ion/Neutral, Ion/Electron, Ion/Photon, and Ion/Ion Interactions in Tandem Mass Spectrometry: Do we need them all? Are they enough?

    PubMed Central

    McLuckey, Scott A.; Mentinova, Marija

    2011-01-01

    A range of strategies and tools has been developed to facilitate the determination of primary structures of analyte molecules of interest via tandem mass spectrometry (MS/MS). The two main factors that determine the primary structural information present in an MS/MS spectrum are the type of ion generated from the analyte molecule and the dissociation method. The ion-type subjected to dissociation is determined by the ionization method/conditions and ion transformation processes that might take place after initial gas-phase ion formation. Furthermore, the range of analyte-related ion types can be expanded via derivatization reactions prior to mass spectrometry. Dissociation methods include those that simply alter the population of internal states of the mass-selected ion (i.e., activation methods like collision-induced dissociation) as well as processes that rely on transformation of the ion-type prior to dissociation (e.g., electron capture dissociation). A variety of ionic interactions has been studied for the purpose of ion dissociation and ion transformation that include ion/neutral, ion/photon, ion/electron, and ion/ion interactions. A wide range of phenomena has been observed, many of which have been explored/developed as means for structural analysis. The techniques arising from these phenomena are discussed within the context of the elements of structure determination in tandem mass spectrometry, viz., ion-type definition and dissociation. Unique aspects of the various ion interactions are emphasized along with any barriers to widespread implementation. PMID:21472539

  5. Student Support in E-Learning Courses in Higher Education--Insights from a Metasynthesis "A Pedagogy of Panic Attacks"

    ERIC Educational Resources Information Center

    Minnaar, A.

    2011-01-01

    E-learning includes the use of the internet for accessing learning materials, interacting with learning content and with instructors and students to obtain support during the learning process in order to gain knowledge and personal meaning and to grow. It occurs when students have electronic access to resources and where they are in regular online…

  6. CONDUCTION ELECTRON-MAGNETIC ION INTERACTION IN RARE EARTHS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, G.S.; Legvold, S.

    1958-11-01

    The proposal is maade that there is an additional effective electron- electron interaction in the rare earths which results from the conduction electron-magnetic ion exchange. The strength of the net electron-electron interaction should tnen be expected to be a function of spin as well as solute concentrations. (W.D.M.)

  7. Relativistic-electron-beam/target interaction in plasma channels

    NASA Astrophysics Data System (ADS)

    Halbleib, J. A., Sr.; Wright, T. P.

    1980-08-01

    A model describing the transport of relativistic electron beams in plasma channels and their subsequent interaction with solid targets is developed and applied to single-beam and multiple-beam configurations. For single beams the targets consist of planar tantalum foils and, in some cases, cusp fields on the transmission side of the foils are employed to improve beam/target coupling efficiency. In the multi-beam configurations, several beams are arranged in wagon-wheel fashion so as to converge upon cylindrical targets, consisting of either hollow tantalum or solid graphite cylinders, located at the hub. For 0.3-cm beam radii that are less than or equal to the channel radii, mean specific power depositions up to about 17 TW/g per MA of injected beam current are obtained for single beams; 12-beam results are typically an order-of-magnitude less. The corresponding enhancements are up to five times the collisional stopping power for either single or multiple beams. Substantial improvement is predicted for the multi-beam interaction should future channel technology permit transport at higher current densities in smaller channels.

  8. Interlayer electron-phonon coupling in WSe2/hBN heterostructures

    NASA Astrophysics Data System (ADS)

    Jin, Chenhao; Kim, Jonghwan; Suh, Joonki; Shi, Zhiwen; Chen, Bin; Fan, Xi; Kam, Matthew; Watanabe, Kenji; Taniguchi, Takashi; Tongay, Sefaattin; Zettl, Alex; Wu, Junqiao; Wang, Feng

    2017-02-01

    Engineering layer-layer interactions provides a powerful way to realize novel and designable quantum phenomena in van der Waals heterostructures. Interlayer electron-electron interactions, for example, have enabled fascinating physics that is difficult to achieve in a single material, such as the Hofstadter's butterfly in graphene/boron nitride (hBN) heterostructures. In addition to electron-electron interactions, interlayer electron-phonon interactions allow for further control of the physical properties of van der Waals heterostructures. Here we report an interlayer electron-phonon interaction in WSe2/hBN heterostructures, where optically silent hBN phonons emerge in Raman spectra with strong intensities through resonant coupling to WSe2 electronic transitions. Excitation spectroscopy reveals the double-resonance nature of such enhancement, and identifies the two resonant states to be the A exciton transition of monolayer WSe2 and a new hybrid state present only in WSe2/hBN heterostructures. The observation of an interlayer electron-phonon interaction could open up new ways to engineer electrons and phonons for device applications.

  9. Spin-electron acoustic soliton and exchange interaction in separate spin evolution quantum plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru

    Separate spin evolution quantum hydrodynamics is generalized to include the Coulomb exchange interaction, which is considered as interaction between the spin-down electrons being in quantum states occupied by one electron. The generalized model is applied to study the non-linear spin-electron acoustic waves. Existence of the spin-electron acoustic soliton is demonstrated. Contributions of concentration, spin polarization, and exchange interaction to the properties of the spin electron acoustic soliton are studied.

  10. Role of impurities on the optical properties of rectangular graphene flakes

    NASA Astrophysics Data System (ADS)

    Sadeq, Z. S.; Muniz, Rodrigo A.; Sipe, J. E.

    2018-01-01

    We study rectangular graphene flakes using mean field states as the basis for a configuration interaction calculation, which allows us to analyze the low lying electronic excited states including electron correlations beyond the mean field level. We find that the lowest energy transition is polarized along the long axis of the flake, but the charge distributions involved in these transitions are invariably localized on the zigzag edges. We also investigate the impact of both short and long range impurity potentials on the optical properties of these systems. We predict that even a weak impurity localized at a zigzag edge of the flake can have a significant—and often dramatic—effect on its optical properties. This is in contrast to impurities localized at armchair edges or central regions of the flake, for which we predict almost no change to the optical properties of the flake even with strong impurity potentials.

  11. Antiferromagnetic and topological states in silicene: A mean field study

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Liu, Cheng-Cheng; Yao, Yu-Gui

    2015-08-01

    It has been widely accepted that silicene is a topological insulator, and its gap closes first and then opens again with increasing electric field, which indicates a topological phase transition from the quantum spin Hall state to the band insulator state. However, due to the relatively large atomic spacing of silicene, which reduces the bandwidth, the electron-electron interaction in this system is considerably strong and cannot be ignored. The Hubbard interaction, intrinsic spin orbital coupling (SOC), and electric field are taken into consideration in our tight-binding model, with which the phase diagram of silicene is carefully investigated on the mean field level. We have found that when the magnitudes of the two mass terms produced by the Hubbard interaction and electric potential are close to each other, the intrinsic SOC flips the sign of the mass term at either K or K‧ for one spin and leads to the emergence of the spin-polarized quantum anomalous Hall state. Project supported by the National Key Basic Research Program of China (Grant Nos. 2014CB920903, 2013CB921903, 2011CBA00108, and 2012CB937500), the National Natural Science Foundation of China (Grant Nos. 11021262, 11172303, 11404022, 11225418, and 11174337), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20121101110046), the Excellent Young Scholars Research Fund of Beijing Institute of Technology (Grant No. 2014CX04028), and the Basic Research Funds of Beijing Institute of Technology (Grant No. 20141842001).

  12. Linked-cluster formulation of electron-hole interaction kernel in real-space representation without using unoccupied states.

    PubMed

    Bayne, Michael G; Scher, Jeremy A; Ellis, Benjamin H; Chakraborty, Arindam

    2018-05-21

    Electron-hole or quasiparticle representation plays a central role in describing electronic excitations in many-electron systems. For charge-neutral excitation, the electron-hole interaction kernel is the quantity of interest for calculating important excitation properties such as optical gap, optical spectra, electron-hole recombination and electron-hole binding energies. The electron-hole interaction kernel can be formally derived from the density-density correlation function using both Green's function and TDDFT formalism. The accurate determination of the electron-hole interaction kernel remains a significant challenge for precise calculations of optical properties in the GW+BSE formalism. From the TDDFT perspective, the electron-hole interaction kernel has been viewed as a path to systematic development of frequency-dependent exchange-correlation functionals. Traditional approaches, such as MBPT formalism, use unoccupied states (which are defined with respect to Fermi vacuum) to construct the electron-hole interaction kernel. However, the inclusion of unoccupied states has long been recognized as the leading computational bottleneck that limits the application of this approach for larger finite systems. In this work, an alternative derivation that avoids using unoccupied states to construct the electron-hole interaction kernel is presented. The central idea of this approach is to use explicitly correlated geminal functions for treating electron-electron correlation for both ground and excited state wave functions. Using this ansatz, it is derived using both diagrammatic and algebraic techniques that the electron-hole interaction kernel can be expressed only in terms of linked closed-loop diagrams. It is proved that the cancellation of unlinked diagrams is a consequence of linked-cluster theorem in real-space representation. The electron-hole interaction kernel derived in this work was used to calculate excitation energies in many-electron systems and results were found to be in good agreement with the EOM-CCSD and GW+BSE methods. The numerical results highlight the effectiveness of the developed method for overcoming the computational barrier of accurately determining the electron-hole interaction kernel to applications of large finite systems such as quantum dots and nanorods.

  13. Electron correlation in the interacting quantum atoms partition via coupled-cluster lagrangian densities.

    PubMed

    Holguín-Gallego, Fernando José; Chávez-Calvillo, Rodrigo; García-Revilla, Marco; Francisco, Evelio; Pendás, Ángel Martín; Rocha-Rinza, Tomás

    2016-07-15

    The electronic energy partition established by the Interacting Quantum Atoms (IQA) approach is an important method of wavefunction analyses which has yielded valuable insights about different phenomena in physical chemistry. Most of the IQA applications have relied upon approximations, which do not include either dynamical correlation (DC) such as Hartree-Fock (HF) or external DC like CASSCF theory. Recently, DC was included in the IQA method by means of HF/Coupled-Cluster (CC) transition densities (Chávez-Calvillo et al., Comput. Theory Chem. 2015, 1053, 90). Despite the potential utility of this approach, it has a few drawbacks, for example, it is not consistent with the calculation of CC properties different from the total electronic energy. To improve this situation, we have implemented the IQA energy partition based on CC Lagrangian one- and two-electron orbital density matrices. The development presented in this article is tested and illustrated with the H2 , LiH, H2 O, H2 S, N2 , and CO molecules for which the IQA results obtained under the consideration of (i) the CC Lagrangian, (ii) HF/CC transition densities, and (iii) HF are critically analyzed and compared. Additionally, the effect of the DC in the different components of the electronic energy in the formation of the T-shaped (H2 )2 van der Waals cluster and the bimolecular nucleophilic substitution between F(-) and CH3 F is examined. We anticipate that the approach put forward in this article will provide new understandings on subjects in physical chemistry wherein DC plays a crucial role like molecular interactions along with chemical bonding and reactivity. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Laboratory Experimentation Model of the 270 Degree Electron Tophat Analyzer

    NASA Technical Reports Server (NTRS)

    Frahm, R. A.; Sharber, J. R.; Link, R.; Winningham, J. D.

    2002-01-01

    One of the most important space plasma measurements is that of a well-resolved low-energy (approx.1 eV to 1 keV) electron spectrum. This range includes the regime where photoelectron and Auger processes are important [Winningham et at., 1989] as well as the very low-energy range (down to 1 eV) where electron distributions of temperature 11,000 K are measurable. Knowledge of the structure (approx. eV scale) of the photoelectron spectrum can provide information on the composition of a planetary or cometary atmosphere. As evidence, scientists developing the Analyzer of Space Plasma and Energetic Atoms (ASPERA-3) Electron Spectrometer (ELS) flying on the European Space Agency (ESA) Mars Express Mission have adapted their electron instrument to increase energy resolution in the photoelectron energy region as a means of remotely sensing the Martian atmosphere; the idea being that the Martian magnetic field is so weak that electron interaction between the source and point of detection is nonexistent; the measured electrons are therefore reflective of the processes occurring in the Martian atmosphere.

  15. Electron-phonon interaction in the binary superconductor lutetium carbide LuC2 via first-principles calculations

    NASA Astrophysics Data System (ADS)

    Dilmi, S.; Saib, S.; Bouarissa, N.

    2018-06-01

    Structural, electronic, electron-phonon coupling and superconducting properties of the intermetallic compound LuC2 are investigated by means of ab initio pseudopotential plane wave method within the generalized gradient approximation. The calculated equilibrium lattice parameters yielded a very good accord with experiment. There is no imaginary phonon frequency in the whole Brillouin zone supporting thus the dynamical stability in the material of interest. The average electron-phonon coupling parameter is found to be 0.59 indicating thus a weak-coupling BCS superconductor. Using a reasonable value of μ* = 0.12 for the effective Coulomb repulsion parameter, the superconducting critical temperature Tc is found to be 3.324 which is in excellent agreement with the experimental value of 3.33 K. The effect of the spin-orbit coupling on the superconducting properties of the material of interest has been examined and found to be weak.

  16. Measurement of the Charged-Current Quasi-Elastic Cross-Section for Electron Neutrinos on a Hydrocarbon Target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolcott, Jeremy

    2016-01-01

    Appearance-type neutrino oscillation experiments, which observe the transition from muon neutrinos to electron neutrinos, promise to help answer some of the fundamental questions surrounding physics in the post-Standard-Model era. Because they wish to observe the interactions of electron neutrinos in their detectors, and because the power of current results is typically limited by their systematic uncertainties, these experiments require precise estimates of the cross-section for electron neutrino interactions. Of particular interest is the charged-current quasi-elastic (CCQE) process, which gures signi cantly in the composition of the reactions observed at the far detector. However, no experimental measurements of this crosssection currentlymore » exist for electron neutrinos; instead, current experiments typically work from the abundance of muon neutrino CCQE cross-section data and apply corrections from theoretical arguments to obtain a prediction for electron neutrinos. Veri cation of these predictions is challenging due to the di culty of constructing an electron neutrino beam, but the advent of modern high-intensity muon neutrino beams|together with the percent-level electron neutrino impurity inherent in these beams| nally presents the opportunity to make such a measurement. We report herein the rst-ever measurement of a cross-section for an exclusive state in electron neutrino scattering, which was made using the MINER A detector in the NuMI neutrino beam at Fermilab. We present the electron neutrino CCQE di erential cross-sections, which are averaged over neutrinos of energies 1-10 GeV (with mean energy of about 3 GeV), in terms of various kinematic variables: nal-state electron angle, nal-state electron energy, and the square of the fourmomentum transferred to the nucleus by the neutrino , Q 2. We also provide a total cross-section vs. neutrino energy. While our measurement of this process is found to be in agreement with the predictions of the GENIE event generator, we also report on an unpredicted photon-like process we observe in a similar kinematic regime. The absence of this process from models for neutrino interactions is a potential stumbling block for future on-axis neutrino oscillation experiments. We include kinematic and particle species identi cation characterizations which can be used in building models to help address this shortcoming.« less

  17. Molecular Fingerprints in the Electronic Properties of Crystalline Organic Semiconductors: From Experiment to Theory

    NASA Astrophysics Data System (ADS)

    Ciuchi, S.; Hatch, R. C.; Höchst, H.; Faber, C.; Blase, X.; Fratini, S.

    2012-06-01

    By comparing photoemission spectroscopy with a nonperturbative dynamical mean field theory extension to many-body ab initio calculations, we show in the prominent case of pentacene crystals that an excellent agreement with experiment for the bandwidth, dispersion, and lifetime of the hole carrier bands can be achieved in organic semiconductors, provided that one properly accounts for the coupling to molecular vibrational modes and the presence of disorder. Our findings rationalize the growing experimental evidence that even the best band structure theories based on a many-body treatment of electronic interactions cannot reproduce the experimental photoemission data in this important class of materials.

  18. Free Energies of Quantum Particles: The Coupled-Perturbed Quantum Umbrella Sampling Method.

    PubMed

    Glover, William J; Casey, Jennifer R; Schwartz, Benjamin J

    2014-10-14

    We introduce a new simulation method called Coupled-Perturbed Quantum Umbrella Sampling that extends the classical umbrella sampling approach to reaction coordinates involving quantum mechanical degrees of freedom. The central idea in our method is to solve coupled-perturbed equations to find the response of the quantum system's wave function along a reaction coordinate of interest. This allows for propagation of the system's dynamics under the influence of a quantum biasing umbrella potential and provides a method to rigorously undo the effects of the bias to compute equilibrium ensemble averages. In this way, one can drag electrons into regions of high free energy where they would otherwise not go, thus enabling chemistry by fiat. We demonstrate the applicability of our method for two condensed-phase systems of interest. First, we consider the interaction of a hydrated electron with an aqueous sodium cation, and we calculate a potential of mean force that shows that an e(-):Na(+) contact pair is the thermodynamically favored product starting from either a neutral sodium atom or the separate cation and electron species. Second, we present the first determination of a hydrated electron's free-energy profile relative to an air/water interface. For the particular model parameters used, we find that the hydrated electron is more thermodynamically stable in the bulk rather than at the interface. Our analysis suggests that the primary driving force keeping the electron away from the interface is the long-range electron-solvent polarization interaction rather than the short-range details of the chosen pseudopotential.

  19. Enhanced vibronic interaction caused by local lattice symmetry lowering in the (Fe, Mg)As2 ternary system

    NASA Astrophysics Data System (ADS)

    Pishtshev, A.; Rubin, P.

    2018-04-01

    By means of periodic density functional theory (DFT) electronic structure calculations, we investigate iron-site doping effects in a structural model of bulk FeAs2. Simulations performed within the projector augmented-wave method-Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) functional scheme reveal that the impacts of the two stoichiometric substitutions Fe → Mg and Fe → Ni are radically different with respect to the structural and electronic behavior of the dopants. In particular, unlike the Ni dopant, the Mg dopant incorporated in FeAs2 occupies a noncentral equilibrium position characterized by an off-center displacement from the reference higher-symmetry position. Analysis of the respective electron and vibrational factors allows us to explain this result in terms of the local pseudo Jahn-Teller effect (pJTE). On the basis of DFT calculations, we deduce which electron orbitals and lattice vibrational modes are appropriate for promoting the local instability at the origin of the pJTE. Quantitative evaluations of the pJTE parameters performed within the polyatomic formalism of an effective tight-binding model show that it is just the enhanced vibronic interaction in the Mg-[FeAs6] cluster that is responsible for the local lattice symmetry breaking.

  20. Probing 1D superlattices at the LaAlO3 / SrTiO3 interface

    NASA Astrophysics Data System (ADS)

    Briggeman, M.; Huang, M.; Tylan-Tyler, A.; Irvin, P.; Levy, J.; Lee, J.-W.; Lee, H.; Eom, C.-B.

    Complex oxides and other quantum systems exhibit behavior that is currently too complex to be understood using analytic or computational methods. One approach is to use a configurable quantum system whose Hamiltonian can be mapped onto the system of interest. This approach, known as quantum simulation, requires a rich physical system whose quanta and interactions can be controlled precisely, at the level of single electrons and other degrees of freedom. Here we describe steps toward developing a quantum simulation platform, using the complex oxide heterostructure LaAlO3 / SrTiO3 , by creating quantum systems with features comparable to the mean spacing between electrons. This interface has strong, sign changing, gate-tunable electron-electron interactions that can strongly influence the quantum ground state. We explore the magnetotransport properties of 1D superlattices, where periodic modulation produces reproducible dispersive features not seen in control structures. The results of these experiments can be compared with effective 1D model Hamiltonians to bridge experiment and theory and enable quantum simulation of more complex systems. We gratefully acknowledge financial support from AFOSR (FA9550-12-1- 0057 (JL) and FA9550-12-1-0342 (CBE)), ONR N00014-15-1-2847 (JL), and NSF DMR-1234096 (CBE).

  1. Resonant Thermalization of Periodically Driven Strongly Correlated Electrons

    NASA Astrophysics Data System (ADS)

    Peronaci, Francesco; Schiró, Marco; Parcollet, Olivier

    2018-05-01

    We study the dynamics of the Fermi-Hubbard model driven by a time-periodic modulation of the interaction within nonequilibrium dynamical mean-field theory. For moderate interaction, we find clear evidence of thermalization to a genuine infinite-temperature state with no residual oscillations. Quite differently, in the strongly correlated regime, we find a quasistationary extremely long-lived state with oscillations synchronized with the drive (Floquet prethermalization). Remarkably, the nature of this state dramatically changes upon tuning the drive frequency. In particular, we show the existence of a critical frequency at which the system rapidly thermalizes despite the large interaction. We characterize this resonant thermalization and provide an analytical understanding in terms of a breakdown of the periodic Schrieffer-Wolff transformation.

  2. Enhancement of ohmic and stochastic heating by resonance effects in capacitive radio frequency discharges: a theoretical approach.

    PubMed

    Mussenbrock, T; Brinkmann, R P; Lieberman, M A; Lichtenberg, A J; Kawamura, E

    2008-08-22

    In low-pressure capacitive radio frequency discharges, two mechanisms of electron heating are dominant: (i) Ohmic heating due to collisions of electrons with neutrals of the background gas and (ii) stochastic heating due to momentum transfer from the oscillating boundary sheath. In this work we show by means of a nonlinear global model that the self-excitation of the plasma series resonance which arises in asymmetric capacitive discharges due to nonlinear interaction of plasma bulk and sheath significantly affects both Ohmic heating and stochastic heating. We observe that the series resonance effect increases the dissipation by factors of 2-5. We conclude that the nonlinear plasma dynamics should be taken into account in order to describe quantitatively correct electron heating in asymmetric capacitive radio frequency discharges.

  3. An introduction to electronic learning and its use to address challenges in surgical training.

    PubMed

    Baran, Szczepan W; Johnson, Elizabeth J; Kehler, James

    2009-06-01

    The animal research community faces a shortage of surgical training opportunities along with an increasing demand for expertise in surgical techniques. One possible means of overcoming this challenge is the use of computer-based or electronic learning (e-learning) to disseminate material to a broad range of animal users. E-learning platforms can take many different forms, ranging from simple text documents that are posted online to complex virtual courses that incorporate dynamic video or audio content and in which students and instructors can interact in real time. The authors present an overview of e-learning and discuss its potential benefits as a supplement to hands-on rodent surgical training. They also discuss a few basic considerations in developing and implementing electronic courses.

  4. Numerical method for N electrons bound to a polar quantum dot with a Coulomb impurity

    NASA Astrophysics Data System (ADS)

    Yau, J. K.; Lee, C. M.

    2003-03-01

    A numerical method is proposed to calculate the Frohlich Hamiltonian containing N electrons bound to polar quantum dot with a Coulomb impurity without transformation to the coordination frame of the center of mass and by direct diagonalization. As an example to demonstrate the formalism of this method, the low-lying spectra of three interacting electrons bound to an on-center Coulomb impurity, both for accepter and donor, are calculated and analyzed in a polar quantum dot under a perpendicular magnetic field. Taking polaron effect into account, the physical meaning of the phonon-induced terms, both self-square terms and cross terms of the Hamiltonian are discussed. The calculation can also be applied to systems containing particles with opposite charges, such as excitons.

  5. Intrinsic phonon-limited charge carrier mobilities in thermoelectric SnSe

    NASA Astrophysics Data System (ADS)

    Ma, Jinlong; Chen, Yani; Li, Wu

    2018-05-01

    Within the past few years, tin selenide (SnSe) has attracted intense interest due to its remarkable thermoelectric potential for both n - and p -type crystals. In this work, the intrinsic phonon-limited electron/hole mobilities of SnSe are investigated using a Boltzmann transport equation based on first-principles calculated electron-phonon interactions. We find that the electrons have much larger mobilities than the holes. At room temperature, the mobilities of electrons along the a , b , and c axes are 325, 801, and 623 cm2/V s, respectively, whereas those of holes are 100, 299, and 291 cm2/V s, respectively. The anisotropy of mobilities is consistent with the reciprocal effective mass at band edges. The mode-specific analysis shows that the highest longitudinal optical phonons, rather than previously assumed acoustic phonons, dominate the scattering processes and consequently the mobilities in SnSe. The room-temperature largest mean free paths of electrons and holes in SnSe are about 21 and 13 nm, respectively.

  6. Renormalization group method based on the ionization energy theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arulsamy, Andrew Das, E-mail: sadwerdna@gmail.com; School of Physics, University of Sydney, Sydney, New South Wales 2006

    2011-03-15

    Proofs are developed to explicitly show that the ionization energy theory is a renormalized theory, which mathematically exactly satisfies the renormalization group formalisms developed by Gell-Mann-Low, Shankar and Zinn-Justin. However, the cutoff parameter for the ionization energy theory relies on the energy-level spacing, instead of lattice point spacing in k-space. Subsequently, we apply the earlier proofs to prove that the mathematical structure of the ionization-energy dressed electron-electron screened Coulomb potential is exactly the same as the ionization-energy dressed electron-phonon interaction potential. The latter proof is proven by means of the second-order time-independent perturbation theory with the heavier effective mass condition,more » as required by the electron-electron screened Coulomb potential. The outcome of this proof is that we can derive the heat capacity and the Debye frequency as a function of ionization energy, which can be applied in strongly correlated matter and nanostructures.« less

  7. Quantification of correlations in quantum many-particle systems.

    PubMed

    Byczuk, Krzysztof; Kuneš, Jan; Hofstetter, Walter; Vollhardt, Dieter

    2012-02-24

    We introduce a well-defined and unbiased measure of the strength of correlations in quantum many-particle systems which is based on the relative von Neumann entropy computed from the density operator of correlated and uncorrelated states. The usefulness of this general concept is demonstrated by quantifying correlations of interacting electrons in the Hubbard model and in a series of transition-metal oxides using dynamical mean-field theory.

  8. Scattering of magnetized electrons at the boundary of low temperature plasmas

    NASA Astrophysics Data System (ADS)

    Krüger, Dennis; Trieschmann, Jan; Brinkmann, Ralf Peter

    2018-02-01

    Magnetized technological plasmas with magnetic fields of 10-200 mT, plasma densities of 1017-1019 m-3, gas pressures of less than 1 Pa, and electron energies from a few to (at most) a few hundred electron volts are characterized by electron Larmor radii r L, that are small compared to all other length scales of the system, including the spatial scale L of the magnetic field and the collisional mean free path λ. In this regime, the classical drift approximation applies. In the boundary sheath of these discharges, however, that approximation breaks down: The sheath penetration depth of electrons (a few to some ten Debye length λ D; depending on the kinetic energy; typically much smaller than the sheath thickness of tens/hundreds of λ D) is even smaller than r L. For a model description of the electron dynamics, an appropriate boundary condition for the plasma/sheath interface is required. To develop such, the interaction of magnetized electrons with the boundary sheath is investigated using a 3D kinetic single electron model that sets the larger scales L and λ to infinity, i.e. neglects magnetic field gradients, the electric field in the bulk, and collisions. A detailed comparison of the interaction for a Bohm sheath (which assumes a finite Debye length) and a hard wall model (representing the limit {λ }{{D}}\\to 0; also called the specular reflection model) is conducted. Both models are found to be in remarkable agreement with respect to the sheath-induced drift. It is concluded that the assumption of specular reflection can be used as a valid boundary condition for more realistic kinetic models of magnetized technological plasmas.

  9. The degree of π electron delocalization and the formation of 3D-extensible sandwich structures.

    PubMed

    Wang, Xiang; Wang, Qiang; Yuan, Caixia; Zhao, Xue-Feng; Li, Jia-Jia; Li, Debao; Wu, Yan-Bo; Wang, Xiaotai

    2016-04-28

    DFT B3LYP/6-31G(d) calculations were performed to examine the feasibility of graphene-like C42H18 and starbenzene C6(BeH)6 (SBz) polymers as ligands of 3D-extensible sandwich compounds (3D-ESCs) with uninterrupted sandwich arrays. The results revealed that sandwich compounds with three or more C42H18 ligands were not feasible. The possible reason may be the localization of π electrons on certain C6 hexagons due to π-metal interactions, which makes the whole ligand lose its electronic structure basis (higher degree of π electron delocalization) to maintain the planar structure. For comparison, with the aid of benzene (Bz) molecules, the SBz polymers can be feasible ligands for designing 3D-ESCs because the C-Be interactions in individual SBz are largely ionic, which will deter the π electrons on one C6 ring from connecting to those on neighbouring C6 rings. This means that high degree of π electron delocalization is not necessary for maintaining the planarity of SBz polymers. Such a locally delocalized π electron structure is desirable for the ligands of 3D-ESCs. Remarkably, the formation of a sandwich compound with SBz is thermodynamically more favourable than that found for bis(Bz)chromium. The assembly of 3D-ESCs is largely exothermic, which will facilitate future experimental synthesis. The different variation trends on the HOMO-LUMO gaps in different directions (relative to the sandwich axes) suggest that they can be developed to form directional conductors or semiconductors, which may be useful in the production of electronic devices.

  10. Interactive multimedia consent for biobanking: a randomized trial.

    PubMed

    Simon, Christian M; Klein, David W; Schartz, Helen A

    2016-01-01

    The potential of interactive multimedia to improve biobank informed consent has yet to be investigated. The aim of this study was to test the separate effectiveness of interactivity and multimedia at improving participant understanding and confidence in understanding of informed consent compared with a standard, face-to-face (F2F) biobank consent process. A 2 (face-to-face versus multimedia) × 2 (standard versus enhanced interactivity) experimental design was used with 200 patients randomly assigned to receive informed consent. All patients received the same information provided in the biobank's nine-page consent document. Interactivity (F(1,196) = 7.56, P = 0.007, partial η(2) = 0.037) and media (F(1,196) = 4.27, P = 0.04, partial η(2) = 0.021) independently improved participants' understanding of the biobank consent. Interactivity (F(1,196) = 6.793, P = 0.01, partial η(2) = 0.033), but not media (F(1,196) = 0.455, not significant), resulted in increased participant confidence in their understanding of the biobank's consent materials. Patients took more time to complete the multimedia condition (mean = 18.2 min) than the face-to-face condition (mean = 12.6 min). This study demonstrated that interactivity and multimedia each can be effective at promoting an individual's understanding and confidence in their understanding of a biobank consent, albeit with additional time investment. Researchers should not assume that multimedia is inherently interactive, but rather should separate the two constructs when studying electronic consent.

  11. 2012 Gordon Research Conference, Electron donor-acceptor interactions, August 5-10 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCusker, James

    The upcoming incarnation of the Gordon Research Conference on Electron Donor Acceptor Interactions will feature sessions on classic topics including proton-coupled electron transfer, dye-sensitized solar cells, and biological electron transfer, as well as emerging areas such as quantum coherence effects in donor-acceptor interactions, spintronics, and the application of donor-acceptor interactions in chemical synthesis.

  12. Crossover from Super- to Subdiffusive Motion and Memory Effects in Crystalline Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    De Filippis, G.; Cataudella, V.; Mishchenko, A. S.; Nagaosa, N.; Fierro, A.; de Candia, A.

    2015-02-01

    The transport properties at finite temperature of crystalline organic semiconductors are investigated, within the Su-Schrieffer-Heeger model, by combining an exact diagonalization technique, Monte Carlo approaches, and a maximum entropy method. The temperature-dependent mobility data measured in single crystals of rubrene are successfully reproduced: a crossover from super- to subdiffusive motion occurs in the range 150 ≤T ≤200 K , where the mean free path becomes of the order of the lattice parameter and strong memory effects start to appear. We provide an effective model, which can successfully explain features of the absorption spectra at low frequencies. The observed response to slowly varying electric field is interpreted by means of a simple model where the interaction between the charge carrier and lattice polarization modes is simulated by a harmonic interaction between a fictitious particle and an electron embedded in a viscous fluid.

  13. Crossover from super- to subdiffusive motion and memory effects in crystalline organic semiconductors.

    PubMed

    De Filippis, G; Cataudella, V; Mishchenko, A S; Nagaosa, N; Fierro, A; de Candia, A

    2015-02-27

    The transport properties at finite temperature of crystalline organic semiconductors are investigated, within the Su-Schrieffer-Heeger model, by combining an exact diagonalization technique, Monte Carlo approaches, and a maximum entropy method. The temperature-dependent mobility data measured in single crystals of rubrene are successfully reproduced: a crossover from super- to subdiffusive motion occurs in the range 150≤T≤200  K, where the mean free path becomes of the order of the lattice parameter and strong memory effects start to appear. We provide an effective model, which can successfully explain features of the absorption spectra at low frequencies. The observed response to slowly varying electric field is interpreted by means of a simple model where the interaction between the charge carrier and lattice polarization modes is simulated by a harmonic interaction between a fictitious particle and an electron embedded in a viscous fluid.

  14. Superfluidity of dipolar excitons in a transition metal dichalcogenide double layer

    NASA Astrophysics Data System (ADS)

    Berman, Oleg L.; Kezerashvili, Roman Ya.

    2017-09-01

    We study formation and superfluidity of dipolar excitons in double layer heterostructures formed by two transition metal dichalcogenide (TMDC) atomically thin layers. Considering screening effects for an electron-hole interaction via the harmonic oscillator approximation for the Keldysh potential, the analytical expressions for the exciton energy spectrum and the mean field critical temperature Tc for the superfluidity are obtained. It is shown that binding energies of A excitons are larger than for B excitons. The mean field critical temperature for a two-component dilute exciton system in a TMDC double layer is analyzed and shown that the latter is an increasing function of the factor Q , determined by the effective masses of A and B excitons and their reduced mass. Comparison of the calculations for Tc performed by employing the Coulomb and Keldysh interactions demonstrates the importance of screening effects in TMDC.

  15. Tunneling conductance in superconductor-hybrid double quantum dots Josephson junction

    NASA Astrophysics Data System (ADS)

    Chamoli, Tanuj; Ajay

    2018-05-01

    The present work deals with the theoretical model study to analyse the tunneling conductance across a superconductor hybrid double quantum dots tunnel junction (S-DQD-S). Recently, there are many experimental works where the Josephson current across such nanoscopic junction is found to be dependent on nature of the superconducting electrodes, coupling of the hybrid double quantum dot's electronic states with the electronic states of the superconductors and nature of electronic structure of the coupled dots. For this, we have attempted a theoretical model containing contributions of BCS superconducting leads, magnetic coupled quantum dot states and coupling of superconducting leads with QDs. In order to include magnetic coupled QDs the contributions of competitive Kondo and Ruderman-Kittel- Kasuya-Yosida (RKKY) interaction terms are also introduced through many body effects in the model Hamiltonian at low temperatures (where Kondo temperature TK < superconducting transition temperature TC). Employing non-equilibrium Green's function approach within mean field approximation, we have obtained expressions for density of states (DOS) and analysed the same using numerical computation to underline the nature of DOS close to Fermi level in S-DQD-S junctions. On the basis of numerical computation, it is pointed out that indirect exchange interaction between impurities (QD) i.e. RKKY interaction suppresses the screening of magnetic QD due to Cooper pair electrons i.e. Kondo effect in the form of reduction in the magnitude of sharp DOS peak close to Fermi level which is in qualitative agreement with the experimental observations in such tunnel junctions. Tunneling conductance is proportional to DOS, hence we can analyse it's behaviour with the help of DOS.

  16. Mutual influence between triel bond and cation-π interactions: an ab initio study

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Mousavian, Parisasadat

    2017-12-01

    Using ab initio calculations, the cooperative and solvent effects on cation-π and B...N interactions are studied in some model ternary complexes, where these interactions coexist. The nature of the interactions and the mechanism of cooperativity are investigated by means of quantum theory of atoms in molecules (QTAIM), noncovalent interaction (NCI) index and natural bond orbital analysis. The results indicate that all cation-π and B...N binding distances in the ternary complexes are shorter than those of corresponding binary systems. The QTAIM analysis reveals that ternary complexes have higher electron density at their bond critical points relative to the corresponding binary complexes. In addition, according to the QTAIM analysis, the formation of cation-π interaction increases covalency of B...N bonds. The NCI analysis indicates that the cooperative effects in the ternary complexes make a shift in the location of the spike associated with each interaction, which can be regarded as an evidence for the reinforcement of both cation-π and B...N interactions in these systems. Solvent effects on the cooperativity of cation-π and B...N interactions are also investigated.

  17. Temperature Dependence of the Spin-Hall Conductivity of a Two-Dimensional Impure Rashba Electron Gas in the Presence of Electron-Phonon and Electron-Electron Interactions

    NASA Astrophysics Data System (ADS)

    Yavari, H.; Mokhtari, M.; Bayervand, A.

    2015-03-01

    Based on Kubo's linear response formalism, temperature dependence of the spin-Hall conductivity of a two-dimensional impure (magnetic and nonmagnetic impurities) Rashba electron gas in the presence of electron-electron and electron-phonon interactions is analyzed theoretically. We will show that the temperature dependence of the spin-Hall conductivity is determined by the relaxation rates due to these interactions. At low temperature, the elastic lifetimes ( and are determined by magnetic and nonmagnetic impurity concentrations which are independent of the temperature, while the inelastic lifetimes ( and related to the electron-electron and electron-phonon interactions, decrease when the temperature increases. We will also show that since the spin-Hall conductivity is sensitive to temperature, we can distinguish the intrinsic and extrinsic contributions.

  18. Hydrodynamic and kinetic models for spin-1/2 electron-positron quantum plasmas: Annihilation interaction, helicity conservation, and wave dispersion in magnetized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru

    2015-06-15

    We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular tomore » an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction.« less

  19. Electron-phonon coupling and superconductivity in the (4/3)-monolayer of Pb on Si(111): Role of spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Sklyadneva, I. Yu.; Heid, R.; Bohnen, K.-P.; Echenique, P. M.; Chulkov, E. V.

    2018-05-01

    The effect of spin-orbit coupling on the electron-phonon interaction in a (4/3)-monolayer of Pb on Si(111) is investigated within the density-functional theory and linear-response approach in the mixed-basis pseudopotential representation. We show that the spin-orbit interaction produces a large weakening of the electron-phonon coupling strength, which appears to be strongly overestimated in the scalar relativistic calculations. The effect of spin-orbit interaction is largely determined by the induced modification of Pb electronic bands and a stiffening of the low-energy part of phonon spectrum, which favor a weakening of the electron-phonon coupling strength. The state-dependent strength of the electron-phonon interaction in occupied Pb electronic bands varies depending on binding energy rather than electronic momentum. It is markedly larger than the value averaged over electron momentum because substrate electronic bands make a small contribution to the phonon-mediated scattering and agrees well with the experimental data.

  20. Enzymatic mechanisms of biological magnetic sensitivity.

    PubMed

    Letuta, Ulyana G; Berdinskiy, Vitaly L; Udagawa, Chikako; Tanimoto, Yoshifumi

    2017-10-01

    Primary biological magnetoreceptors in living organisms is one of the main research problems in magnetobiology. Intracellular enzymatic reactions accompanied by electron transfer have been shown to be receptors of magnetic fields, and spin-dependent ion-radical processes can be a universal mechanism of biological magnetosensitivity. Magnetic interactions in intermediate ion-radical pairs, such as Zeeman and hyperfine (HFI) interactions, in accordance with proposed strict quantum mechanical theory, can determine magnetic-field dependencies of reactions that produce biologically important molecules needed for cell growth. Hyperfine interactions of electrons with nuclear magnetic moments of magnetic isotopes can explain the most important part of biomagnetic sensitivities in a weak magnetic field comparable to the Earth's magnetic field. The theoretical results mean that magnetic-field dependencies of enzymatic reaction rates in a weak magnetic field that can be independent of HFI constant a, if H < a, and are determined by the rate constant of chemical transformations in the enzyme active site. Both Zeeman and HFI interactions predict strong magnetic-field dependence in weak magnetic fields and magnetic-field independence of enzymatic reaction rate constants in strong magnetic fields. The theoretical results can explain the magnetic sensitivity of E. coli cell and demonstrate that intracellular enzymatic reactions are primary magnetoreceptors in living organisms. Bioelectromagnetics. 38:511-521, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Adequacy of damped dynamics to represent the electron-phonon interaction in solids

    DOE PAGES

    Caro, A.; Correa, A. A.; Tamm, A.; ...

    2015-10-16

    Time-dependent density functional theory and Ehrenfest dynamics are used to calculate the electronic excitations produced by a moving Ni ion in a Ni crystal in the case of energetic MeV range (electronic stopping power regime), as well as thermal energy meV range (electron-phonon interaction regime). Results at high energy compare well to experimental databases of stopping power, and at low energy the electron-phonon interaction strength determined in this way is very similar to the linear response calculation and experimental measurements. This approach to electron-phonon interaction as an electronic stopping process provides the basis for a unified framework to perform classicalmore » molecular dynamics of ion-solid interaction with ab initio type nonadiabatic terms in a wide range of energies.« less

  2. Theoretical modeling of the absorption spectrum of aqueous riboflavin

    NASA Astrophysics Data System (ADS)

    Zanetti-Polzi, Laura; Aschi, Massimiliano; Daidone, Isabella; Amadei, Andrea

    2017-02-01

    In this study we report the modeling of the absorption spectrum of riboflavin in water using a hybrid quantum/classical mechanical approach, the MD-PMM methodology. By means of MD-PMM calculations, with which the effect of riboflavin internal motions and of solvent interactions on the spectroscopic properties can be explicitly taken into account, we obtain an absorption spectrum in very good agreement with the experimental spectrum. In particular, the calculated peak maxima show a consistent improvement with respect to previous computational approaches. Moreover, the calculations show that the interaction with the environment may cause a relevant recombination of the gas-phase electronic states.

  3. Low-energy electron interaction with retusin extracted from Maackia amurensis: towards a molecular mechanism of the biological activity of flavonoids.

    PubMed

    Pshenichnyuk, Stanislav A; Elkin, Yury N; Kulesh, Nadezda I; Lazneva, Eleonora F; Komolov, Alexei S

    2015-07-14

    The antioxidant isoflavone retusin efficiently attaches low-energy electrons in vacuo, generating fragment species via dissociative electron attachment (DEA), as has been shown by DEA spectroscopy. According to in silico results obtained by means of density functional theory, retusin is able to attach solvated electrons and could be decomposed under reductive conditions in vivo, for instance, near the mitochondrial electron transport chain, analogous to gas-phase DEA. The most intense decay channels of retusin temporary negative ions were found to be associated with the elimination of H atoms and H2 molecules. Doubly dehydrogenated fragment anions were predicted to possess a quinone structure. It is thought that molecular hydrogen, known for its selective antioxidant properties, can be efficiently generated via electron attachment to retusin in mitochondria and may be responsible for its antioxidant activity. The second abundant species, i.e., quinone bearing an excess negative charge, can serve as an electron carrier and can return the captured electron back to the respiration cycle. The number of OH substituents and their relative positions are crucial for the present molecular mechanism, which can explain the radical scavenging activity of polyphenolic compounds.

  4. Interactions between multiple filaments and bacterial biofilms on the surface of an apple

    NASA Astrophysics Data System (ADS)

    He, CHENG; Maoyuan, XU; Shuhui, PAN; Xinpei, LU; Dawei, LIU

    2018-04-01

    In this paper, the interactions between two dielectric barrier discharge (DBD) filaments and three bacterial biofilms are simulated. The modeling of a DBD streamer is studied by means of 2D finite element calculation. The model is described by the proper governing equations of air DBD at atmospheric pressure and room temperature. The electric field in the computing domain and the self-consistent transportation of reactive species between a cathode and biofilms on the surface of an apple are realized by solving a Poisson equation and continuity equations. The electron temperature is solved by the electron energy conservation equation. The conductivity and permittivity of bacterial biofilms are considered, and the shapes of the bacterial biofilms are irregular in the uncertainty and randomness of colony growth. The distribution of the electrons suggests that two plasma channels divide into three plasma channels when the streamer are 1 mm from the biofilms. The toe-shapes of the biofilms and the simultaneous effect of two streamer heads result in a high electric field around the biofilms, therefore the stronger ionization facilitates the major part of two streamers combined into one streamer and three streamers arise. The distribution of the reactive oxygen species and the reactive nitrogen species captured by time fluences are non-uniform due to the toe-shaped bacterial biofilms. However, the plasma can intrude into the cavities in the adjacent biofilms due to the μm-scale mean free path. The two streamers case has a larger treatment area and realizes the simultaneous treatment of three biofilms compared with one streamer case.

  5. Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy

    PubMed Central

    Lakowicz, Joseph R.; Ray, Krishanu; Chowdhury, Mustafa; Szmacinski, Henryk; Fu, Yi; Zhang, Jian; Nowaczyk, Kazimierz

    2009-01-01

    Fluorescence spectroscopy is widely used in biological research. Until recently, essentially all fluorescence experiments were performed using optical energy which has radiated to the far-field. By far-field we mean at least several wavelengths from the fluorophore, but propagating far-field radiation is usually detected at larger macroscopic distances from the sample. In recent years there has been a growing interest in the interactions of fluorophores with metallic surfaces or particles. Near-field interactions are those occurring within a wavelength distance of an excited fluorophore. The spectral properties of fluorophores can be dramatically altered by near-field interactions with the electron clouds present in metals. These interactions modify the emission in ways not seen in classical fluorescence experiments. In this review we provide an intuitive description of the complex physics of plasmons and near-field interactions. Additionally, we summarize the recent work on metal–fluorophore interactions and suggest how these effects will result in new classes of experimental procedures, novel probes, bioassays and devices. PMID:18810279

  6. Spin polarized and density modulated phases in symmetric electron-electron and electron-hole bilayers.

    PubMed

    Kumar, Krishan; Moudgil, R K

    2012-10-17

    We have studied symmetric electron-electron and electron-hole bilayers to explore the stable homogeneous spin phase and the feasibility of inhomogeneous charge-/spin-density ground states. The former is resolved by comparing the ground-state energies in states of different spin polarizations, while the latter is resolved by searching for a divergence in the wavevector-dependent static charge/spin susceptibility. For this endeavour, we have used the dielectric approach within the self-consistent mean-field theory of Singwi et al. We find that the inter-layer interactions tend to change an abrupt spin-polarization transition of an isolated layer into a nearly gradual one, even though the partially spin-polarized phases are not clearly stable within the accuracy of our calculation. The transition density is seen to decrease with a reduction in layer spacing, implying a suppression of spin polarization by inter-layer interactions. Indeed, the suppression shows up distinctly in the spin susceptibility computed from the spin-polarization dependence of the ground-state energy. However, below a critical layer spacing, the unpolarized liquid becomes unstable against a charge-density-wave (CDW) ground state at a density preceding full spin polarization, with the transition density for the CDW state increasing on further reduction in the layer spacing. Due to attractive e-h correlations, the CDW state is found to be more pronounced in the e-h bilayer. On the other hand, the static spin susceptibility diverges only in the long-wavelength limit, which simply represents a transition to the homogeneous spin-polarized phase.

  7. Structure-property relationships in cubic cuprous iodide: A novel view on stability, chemical bonding, and electronic properties

    NASA Astrophysics Data System (ADS)

    Pishtshev, A.; Karazhanov, S. Zh.

    2017-02-01

    Based on the combination of density functional theory and theory-group methods, we performed systematic modeling of γ-CuI structural design at the atomistic level. Being started from the metallic copper lattice, we treated a crystal assembly as a stepwise iodination process characterized in terms of a sequence of intermediate lattice geometries. These geometries were selected and validated via screening of possible structural transformations. The genesis of chemical bonding was studied for three structural transformations by analyzing the relevant changes in the topology of valence electron densities. We determined structural trends driven by metal-ligand coupling. This allowed us to suggest the improved scenario of chemical bonding in γ-CuI. In particular, the unconventional effect of spatial separation of metallic and covalent interactions was found to be very important with respect to the preferred arrangements of valence electrons in the iodination process. We rigorously showed that useful electronic and optical properties of γ-CuI originate from the combination of two separated bonding patterns—strong covalency established in I-Cu tetrahedral connections and noncovalent interactions of copper cores is caused by the 3d10 closed-shell electron configurations. The other finding of ours is that the self-consistency of the GW calculations is crucial for correctly determining the dynamic electronic correlations in γ-CuI. Detail reinvestigation of the quasi-particle energy structure by means of the self-consistent GW approach allowed us to explain how p-type electrical conductivity can be engineered in the material.

  8. Calculating the radiation characteristics of accelerated electrons in laser-plasma interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X. F.; Graduate School of Engineering, Utsunomiya University, 7-1-2 Yohtoh, Utsunomiya 321-8585; Yu, Q.

    2016-03-15

    In this paper, we studied the characteristics of radiation emitted by electrons accelerated in a laser–plasma interaction by using the Lienard–Wiechert field. In the interaction of a laser pulse with a underdense plasma, electrons are accelerated by two mechanisms: direct laser acceleration (DLA) and laser wakefield acceleration (LWFA). At the beginning of the process, the DLA electrons emit most of the radiation, and the DLA electrons emit a much higher peak photon energy than the LWFA electrons. As the laser–plasma interaction progresses, the LWFA electrons become the major radiation emitter; however, even at this stage, the contribution from DLA electronsmore » is significant, especially to the peak photon energy.« less

  9. Alkali metal mediated C-C bond coupling reaction

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto

    2015-02-01

    Metal catalyzed carbon-carbon (C-C) bond formation is one of the important reactions in pharmacy and in organic chemistry. In the present study, the electron and hole capture dynamics of a lithium-benzene sandwich complex, expressed by Li(Bz)2, have been investigated by means of direct ab-initio molecular dynamics method. Following the electron capture of Li(Bz)2, the structure of [Li(Bz)2]- was drastically changed: Bz-Bz parallel form was rapidly fluctuated as a function of time, and a new C-C single bond was formed in the C1-C1' position of Bz-Bz interaction system. In the hole capture, the intermolecular vibration between Bz-Bz rings was only enhanced. The mechanism of C-C bond formation in the electron capture was discussed on the basis of theoretical results.

  10. Electronic Structures and Nanofilm Growth of 2,7-Dioctyl[1]Benzothieno[3,2-b]Benzothiophene on Black Phosphorus.

    PubMed

    Wei, Xuhui; Wang, Shitan; Wang, Can; Zhu, Menglong; Zhao, Yuan; Xie, Haipeng; Niu, Dongmei; Gao, Yongli

    2018-06-01

    The interfacial electronic structure and morphology of nanofilm of 2,7-dioctyl[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on black phosphorus (BP) was investigated with photoemission spectroscopy (PES) and atomic force microscopy (AFM). The heterojunction of C8-BTBT/BP is a straddling one with a hole injection barrier of 1.41 eV and electron injection barrier of 2.43 eV from BP to C8-BTBT. There is a 0.18 eV interface dipole pointing from BP to C8-BTBT, which means a relative weak interaction of substrate BP and the C8-BTBT molecules. Volmer-Weber growth mode of C8-BTBT nanofilm on BP was confirmed and the C8-BTBT molecules adopt standing up configuration.

  11. Coherent band excitations in CePd 3: A comparison of neutron scattering and ab initio theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goremychkin, Eugene A.; Park, Hyowon; Osborn, Raymond

    In common with many strongly correlated electron systems, intermediate valence compounds are believed to display a crossover from a high-temperature regime of incoherently fluctuating local moments to a low-temperature regime of coherent hybridized bands. In this work, we show that inelastic neutron scattering measurements of the dynamic magnetic susceptibility of CePd 3 provides a benchmark for ab initio calculations based on dynamical mean field theory. The magnetic response is strongly momentum dependent thanks to the formation of coherent f-electron bands at low temperature, with an amplitude that is strongly enhanced by local particle-hole interactions. Finally, the agreement between experiment andmore » theory shows that we have a robust first-principles understanding of the temperature dependence of f-electron coherence.« less

  12. Theory of electron-phonon-dislon interacting system—toward a quantized theory of dislocations

    NASA Astrophysics Data System (ADS)

    Li, Mingda; Tsurimaki, Yoichiro; Meng, Qingping; Andrejevic, Nina; Zhu, Yimei; Mahan, Gerald D.; Chen, Gang

    2018-02-01

    We provide a comprehensive theoretical framework to study how crystal dislocations influence the functional properties of materials, based on the idea of a quantized dislocation, namely a ‘dislon’. In contrast to previous work on dislons which focused on exotic phenomenology, here we focus on their theoretical structure and computational power. We first provide a pedagogical introduction that explains the necessity and benefits of taking the dislon approach and why the dislon Hamiltonian takes its current form. Then, we study the electron-dislocation and phonon-dislocation scattering problems using the dislon formalism. Both the effective electron and phonon theories are derived, from which the role of dislocations on electronic and phononic transport properties is computed. Compared with traditional dislocation scattering studies, which are intrinsically single-particle, low-order perturbation and classical quenched defect in nature, the dislon theory not only allows easy incorporation of quantum many-body effects such as electron correlation, electron-phonon interaction, and higher-order scattering events, but also allows proper consideration of the dislocation’s long-range strain field and dynamic aspects on equal footing for arbitrary types of straight-line dislocations. This means that instead of developing individual models for specific dislocation scattering problems, the dislon theory allows for the calculation of electronic structure and electrical transport, thermal transport, optical and superconducting properties, etc, under one unified theory. Furthermore, the dislon theory has another advantage over empirical models in that it requires no fitting parameters. The dislon theory could serve as a major computational tool to understand the role of dislocations on multiple materials’ functional properties at an unprecedented level of clarity, and may have wide applications in dislocated energy materials.

  13. Characterization With Scanning Electron Microscopy/Energy-Dispersive X-ray Spectrometry of Microtraces From the Ligature Mean in Hanging Mechanical Asphyxia: A Series of Forensic Cases.

    PubMed

    Maghin, Francesca; Andreola, Salvatore Ambrogio; Boracchi, Michele; Gentile, Guendalina; Maciocco, Francesca; Zoja, Riccardo

    2018-03-01

    The authors applied scanning electron microscopy with energy-dispersive x-ray spectrometry to the furrow derived from hanging means. The study was conducted with the purpose to detect possible extraneous microtraces, deriving from the ligature, that could have had an interaction with the cutaneous biological matrix, thanks to a transfert mechanism, in the proximities of the lesion.Fifteen cutaneous samples of the furrow and an equal number of fragments of graphite tape, directly positioned on the lesion produced by the ligature mean and used as a "conductor" of possible traces, were analyzed using scanning electron microscopy with energy-dispersive x-ray spectrometry.The research of microscopic traces on the furrow using this technique highlights extraneous traces leading to 3 main categories: natural fabrics, and synthetic and metallic materials, excluding possible environmental pollutants. The analysis, run on 7 hanging deaths, made available by the judicial authority, found a morphological and compositional compatibility with the traces found on the cutaneous furrow produced during hanging.The technique used in this study is innovative in the pathological-forensic field, and can be considered useful in clarifying and studying this typology of asphyxia leading to a specific ligature material, when missing, or attributing the cause of death to hanging when the furrow is not macroscopically obvious.

  14. Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond

    NASA Astrophysics Data System (ADS)

    Epstein, R. J.; Mendoza, F. M.; Kato, Y. K.; Awschalom, D. D.

    2005-11-01

    Experiments on single nitrogen-vacancy (N-V) centres in diamond, which include electron spin resonance, Rabi oscillations, single-shot spin readout and two-qubit operations with a nearby13C nuclear spin, show the potential of this spin system for solid-state quantum information processing. Moreover, N-V centre ensembles can have spin-coherence times exceeding 50 μs at room temperature. We have developed an angle-resolved magneto-photoluminescence microscope apparatus to investigate the anisotropic electron-spin interactions of single N-V centres at room temperature. We observe negative peaks in the photoluminescence as a function of both magnetic-field magnitude and angle that are explained by coherent spin precession and anisotropic relaxation at spin-level anti-crossings. In addition, precise field alignment unmasks the resonant coupling to neighbouring `dark' nitrogen spins, otherwise undetected by photoluminescence. These results demonstrate the capability of our spectroscopic technique for measuring small numbers of dark spins by means of a single bright spin under ambient conditions.

  15. Pairing in a dry Fermi sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier, Thomas A.; Staar, Peter; Mishra, V.

    In the traditional Bardeen–Cooper–Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. In this paper, wemore » report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. Finally, in contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin–fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability.« less

  16. Pairing in a dry Fermi sea

    DOE PAGES

    Maier, Thomas A.; Staar, Peter; Mishra, V.; ...

    2016-06-17

    In the traditional Bardeen–Cooper–Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. In this paper, wemore » report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. Finally, in contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin–fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability.« less

  17. Investigation of the gas-phase structure and rotational barrier of trimethylsilyl trifluoromethanesulfonate and comparison with covalent sulfonates

    NASA Astrophysics Data System (ADS)

    Defonsi Lestard, María E.; Tuttolomondo, María E.; Varetti, Eduardo L.; Wann, Derek A.; Robertson, Heather E.; Rankin, David W. H.; Altabef, Aida Ben

    2010-12-01

    The molecular structure of trimethylsilyl trifluoromethanesulfonate, CF 3SO 2OSi(CH 3) 3, has been determined in the gas phase from electron-diffraction data supplemented by ab initio (MP2) and DFT calculations using 6-31G(d), 6-311++G(d,p) and 6-311G++(3df,3pd) basis sets. Both experimental and theoretical data indicate that only one gauche conformer is possible by rotating about the O-S bond. The anomeric effect is a fundamental stereoelectronic interaction and presents a profound influence on the electronic geometry. We have investigated the origin of the anomeric effect by means of NBO and AIM analysis. A natural bond orbital analysis showed that the lpπ[O bonded to Si)] → σ *[C-S] hyperconjugative interaction favors the gauche conformation. In addition, comparison of the structural and stereoelectronic properties of the title molecule with those of silyl trifluoromethanesulfonate and methyl trifluoromethanesulfonate has been carried out.

  18. Spin-polarized electron current from carbon-doped open armchair boron nitride nanotubes: Implication for nano-spintronic devices

    NASA Astrophysics Data System (ADS)

    Zhou, Gang; Duan, Wenhui

    2007-03-01

    Spin-polarized density functional calculations show that the substitutional doping of carbon (C) atom at the mouth changes the atomic and spin configurations of open armchair boron nitride nanotubes (BNNTs). The occupied/unoccupied deep gap states are observed with the significant spin-splitting. The structures and spin-polarized properties are basically stable under the considerable electric field, which is important for practical applications. The magnetization mechanism is attributed to the interactions of s, p states between the C and its neighboring B or N atoms. Ultimately, advantageous geometrical and electronic effects mean that C-doped open armchair BNNTs would have promising applications in nano-spintronic devices.

  19. Spectral resolution control of acousto-optical cells operating with collimated and divergent beams

    NASA Astrophysics Data System (ADS)

    Voloshinov, Vitaly B.; Mishin, Dimitry D.

    1994-01-01

    The paper is devoted to theoretical and experimental investigations of acousto-optical interactions in crystals which may be used for spectral filtration of light in tunable acousto- optical filters. Attention is paid to spectral resolution control during operation with divergent or collimated noncoherent optical beams. In all examined cases spectral bands of anisotropic Bragg diffraction were regulated by means of novel electronical methods. Resolution control was achieved in paratellurite cells with non-collinear and quasi-collinear regimes of the diffraction. Filtration spectral bandwidths for visible light were electronically changed by a factor of 10 divided by 20 by drive electrical signals switching and drive electrical power regulations.

  20. Ultracoherent operation of spin qubits with superexchange coupling

    NASA Astrophysics Data System (ADS)

    Rančić, Marko J.; Burkard, Guido

    2017-11-01

    With the use of nuclear-spin-free materials such as silicon and germanium, spin-based quantum bits (qubits) have evolved to become among the most coherent systems for quantum information processing. The new frontier for spin qubits has therefore shifted to the ubiquitous charge noise and spin-orbit interaction, which are limiting the coherence times and gate fidelities of solid-state qubits. In this paper we investigate superexchange, as a means of indirect exchange interaction between two single electron spin qubits, each embedded in a single semiconductor quantum dot (QD), mediated by an intermediate, empty QD. Our results suggest the existence of "supersweet spots", in which the qubit operations implemented by superexchange interaction are simultaneously first-order-insensitive to charge noise and to errors due to spin-orbit interaction. The proposed spin-qubit architecture is scalable and within the manufacturing capabilities of semiconductor industry.

  1. Strategies for Analyzing Sub-Micrometer Features with the FE-EPMA

    NASA Astrophysics Data System (ADS)

    McSwiggen, P.; Armstrong, J. T.; Nielsen, C.

    2013-12-01

    Changes in column design and electronics, as well as new types of spectrometers and analyzing crystals, have significantly advanced electron microprobes, in terms of stability, reproducibility and detection limits. A major advance in spatial resolution has occurred through the use of the field emission electron gun. The spatial resolution of an analysis is controlled by the diameter of the electron beam and the amount of scatter that takes place within the sample. The beam diameter is controlled by the column and type of electron gun being used. The accelerating voltage and the average atomic number/density of the sample control the amount of electron scatter within the sample. However a large electron interaction volume does not necessarily mean a large analytical volume. The beam electrons may spread out within a large volume, but if the electrons lack sufficient energy to produce the X-ray of interest, the analytical volume could be significantly smaller. Therefore there are two competing strategies for creating the smallest analytical volumes. The first strategy is to reduce the accelerating voltage to produce the smallest electron interaction volume. This low kV analytical approach is ultimately limited by the size of the electron beam itself. With a field emission gun, normally the smallest analytical area is achieved at around 5-7 kV. At lower accelerating voltages, the increase in the beam diameter begins to overshadow the reduction in internal scattering. For tungsten filament guns, the smallest analytical volume is reached at higher accelerating voltages. The second strategy is to minimize the overvoltage during the analysis. If the accelerating voltage is only 1-3 kV greater than the critical ionization energy for the X-ray line of interest, then even if the overall electron interaction volume is large, those electrons quickly loose sufficient energy to produce the desired X-rays. The portion of the interaction volume in which the desired X-rays will be produce will be very small and very near the surface. Both strategies have advantages and disadvantages depending on the ultimate goal of the analysis and the elements involved. This work will examine a number of considerations when attempting to decide which approach is best for a given analytical situation. These include: (1) the size of the analytical volumes, (2) minimum detection limits, (3) quality of the matrix corrections, (4) secondary fluorescence, (5) effects of surface contamination, oxide layers, and carbon coatings. This work is based on results largely from the Fe-Ni binary. A simple conclusion cannot be draw as to which strategy is better overall. The determination is highly system dependent. For many mineral systems, both strategies used in combination will produce the best results. Using multiple accelerating voltages to preform a single analysis allows the analyst to optimize their analytical conditions for each element individually.

  2. Transverse Mode Electron Beam Microwave Generator

    NASA Technical Reports Server (NTRS)

    Wharton, Lawrence E.

    1994-01-01

    An electron beam microwave device having an evacuated interaction chamber to which are coupled a resonant cavity which has an opening between the resonant cavity and the evacuated interaction chamber and an electron gun which causes a narrow beam of electrons to traverse the evacuated interaction chamber. The device also contains a mechanism for feeding back a microwave electromagnetic field from the resonant cavity to the evacuated interaction chamber in such a way as to modulate the direction of propagation of the electron beam, thereby further amplifyjng the microwave electromagnetic field. Furthermore, provision is made for coupling the electromagnetic field out of the electron beam microwave device.

  3. Interacting Electrons and Holes in Quasi-2D Quantum Dots in Strong Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Hawrylak, P.; Sheng, W.; Cheng, S.-J.

    2004-09-01

    Theory of optical properties of interacting electrons and holes in quasi-2D quantum dots in strong magnetic fields is discussed. In two dimensions and the lowest Landau level, hidden symmetries control the interaction of the interacting system with light. By confining electrons and holes into quantum dots hidden symmetries can be removed and the excitation spectrum of electrons and excitons can be observed. We discuss a theory electronic and of excitonic quantum Hall droplets at a filling factorν=2. For an excitonic quantum Hall droplet the characteristic emission spectra are predicted to be related to the total spin of electron and hole configurations. For the electronic droplet the excitation spectrum of the droplet can be mapped out by measuring the emission for increasing number of electrons.

  4. Comparative analysis of characteristic electron energy loss spectra and inelastic scattering cross-section spectra of Fe

    NASA Astrophysics Data System (ADS)

    Parshin, A. S.; Igumenov, A. Yu.; Mikhlin, Yu. L.; Pchelyakov, O. P.; Zhigalov, V. S.

    2016-05-01

    The inelastic electron scattering cross section spectra of Fe have been calculated based on experimental spectra of characteristic reflection electron energy loss as dependences of the product of the inelastic mean free path by the differential inelastic electron scattering cross section on the electron energy loss. It has been shown that the inelastic electron scattering cross-section spectra have certain advantages over the electron energy loss spectra in the analysis of the interaction of electrons with substance. The peaks of energy loss in the spectra of characteristic electron energy loss and inelastic electron scattering cross sections have been determined from the integral and differential spectra. It has been shown that the energy of the bulk plasmon is practically independent of the energy of primary electrons in the characteristic electron energy loss spectra and monotonically increases with increasing energy of primary electrons in the inelastic electron scattering cross-section spectra. The variation in the maximum energy of the inelastic electron scattering cross-section spectra is caused by the redistribution of intensities over the peaks of losses due to various excitations. The inelastic electron scattering cross-section spectra have been analyzed using the decomposition of the spectra into peaks of the energy loss. This method has been used for the quantitative estimation of the contributions from different energy loss processes to the inelastic electron scattering cross-section spectra of Fe and for the determination of the nature of the energy loss peaks.

  5. Symmetry breaking by quantum coherence in single electron attachment

    NASA Astrophysics Data System (ADS)

    Krishnakumar, E.; Prabhudesai, Vaibhav S.; Mason, Nigel J.

    2018-02-01

    Quantum coherence-induced effects in atomic and molecular systems are the basis of several proposals for laser-based control of chemical reactions. So far, these rely on coherent photon beams inducing coherent reaction pathways that may interfere with one another, to achieve the desired outcome. This concept has been successfully exploited for removing the inversion symmetry in the dissociation of homonuclear diatomic molecules, but it remains to be seen if such quantum coherent effects can also be generated by the interaction of incoherent electrons with such molecules. Here we show that resonant electron attachment to H2 and the subsequent dissociation into H (n = 2) + H- is asymmetric about the inter-nuclear axis, whereas the asymmetry in D2 is far less pronounced. We explain this observation as due to attachment of a single electron resulting in a coherent superposition of two resonances of opposite parity. In addition to exemplifying a new quantum coherent process, our observation of coherent quantum dynamics involves the active participation of all three electrons and two nuclei, which could provide new tools for studying electron correlations as a means to control chemical processes, and demonstrates the role of coherent effects in electron-induced chemistry.

  6. Acceleration of electrons in strong beam-plasma interactions

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Bernstein, W.; Kellogg, P. J.; Whalen, B. A.

    1984-01-01

    The effects of strong beam-plasma interactions on the electron population of the upper atmosphere have been investigated in an electron acceleration experiment performed with a sounding rocket. The rocket carried the Several Complex Experiments (SCEX) payload which included an electron accelerator, three disposable 'throwaway' detectors (TADs), and a stepped electron energy analyzer. The payload was launched in an auroral arc over the rocket at altitudes of 157 and 178 km, respectively. The performance characteristics of the instruments are discussed in detail. The data are combined with the results of laboratory measurements and show that electrons with energies of at least two and probably four times the injection energy of 2 keV were observed during strong beam-plasma interaction events. The interaction events occurred at pitch angles of 54 and 126 degrees. On the basis of the data it is proposed that the superenergization of the electrons is correlated with the length of the beam-plasma interaction region.

  7. Mean-trajectory approximation for electronic and vibrational-electronic nonlinear spectroscopy

    NASA Astrophysics Data System (ADS)

    Loring, Roger F.

    2017-04-01

    Mean-trajectory approximations permit the calculation of nonlinear vibrational spectra from semiclassically quantized trajectories on a single electronically adiabatic potential surface. By describing electronic degrees of freedom with classical phase-space variables and subjecting these to semiclassical quantization, mean-trajectory approximations may be extended to compute both nonlinear electronic spectra and vibrational-electronic spectra. A general mean-trajectory approximation for both electronic and nuclear degrees of freedom is presented, and the results for purely electronic and for vibrational-electronic four-wave mixing experiments are quantitatively assessed for harmonic surfaces with linear electronic-nuclear coupling.

  8. Observation of a remarkable reduction of correlation effects in BaCr2As2 by ARPES.

    PubMed

    Nayak, Jayita; Filsinger, Kai; Fecher, Gerhard H; Chadov, Stanislav; Minár, Ján; Rienks, Emile D L; Büchner, Bernd; Parkin, Stuart P; Fink, Jörg; Felser, Claudia

    2017-11-21

    The superconducting phase in iron-based high-[Formula: see text] superconductors (FeSC), as in other unconventional superconductors such as the cuprates, neighbors a magnetically ordered one in the phase diagram. This proximity hints at the importance of electron correlation effects in these materials, and Hund's exchange interaction has been suggested to be the dominant correlation effect in FeSCs because of their multiband nature. By this reasoning, correlation should be strongest for materials closest to a half-filled [Formula: see text] electron shell (Mn compounds, hole-doped FeSCs) and decrease for systems with both higher (electron-doped FeSCs) and lower (Cr-pnictides) [Formula: see text] counts. Here we address the strength of correlation effects in nonsuperconducting antiferromagnetic BaCr 2 As 2 by means of angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations. This combination provides us with two handles on the strength of correlation: First, a comparison of the experimental and calculated effective masses yields the correlation-induced mass renormalization. In addition, the lifetime broadening of the experimentally observed dispersions provides another measure of the correlation strength. Both approaches reveal a reduction of electron correlation in BaCr 2 As 2 with respect to systems with a [Formula: see text] count closer to five. Our results thereby support the theoretical predictions that Hund's exchange interaction is important in these materials.

  9. Stabilization of the electron-nuclear spin orientation in quantum dots by the nuclear quadrupole interaction.

    PubMed

    Dzhioev, R I; Korenev, V L

    2007-07-20

    The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.

  10. Stabilization of the Electron-Nuclear Spin Orientation in Quantum Dots by the Nuclear Quadrupole Interaction

    NASA Astrophysics Data System (ADS)

    Dzhioev, R. I.; Korenev, V. L.

    2007-07-01

    The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.

  11. Direct observation of children's preferences and activity levels during interactive and online electronic games.

    PubMed

    Sit, Cindy H P; Lam, Jessica W K; McKenzie, Thomas L

    2010-07-01

    Interactive electronic games have recently been popularized and are believed to help promote children's physical activity (PA). The purpose of the study was to examine preferences and PA levels during interactive and online electronic games among overweight and nonoverweight boys and girls. Using a modification of the SOFIT, we systematically observed 70 Hong Kong Chinese children (35 boys, 35 girls; 50 nonoverweight, 20 overweight), age 9 to 12 years, during 2 60-minute recreation sessions and recorded their game mode choices and PA levels. During Session One children could play either an interactive or an online electronic bowling game and during Session Two they could play an interactive or an online electronic running game. Children chose to play the games during 94% of session time and split this time between interactive (52%) and online (48%) versions. They engaged in significantly more moderate-to-vigorous physical activity (MVPA) during interactive games than their online electronic versions (70% vs. 2% of game time). Boys and nonoverweight children expended relatively more energy during the interactive games than girls and overweight children, respectively. New-generation interactive games can facilitate physical activity in children, and given the opportunity children may select them over sedentary versions.

  12. Improving intermolecular interactions in DFTB3 using extended polarization from chemical-potential equalization

    PubMed Central

    Christensen, Anders S.; Elstner, Marcus; Cui, Qiang

    2015-01-01

    Semi-empirical quantum mechanical methods traditionally expand the electron density in a minimal, valence-only electron basis set. The minimal-basis approximation causes molecular polarization to be underestimated, and hence intermolecular interaction energies are also underestimated, especially for intermolecular interactions involving charged species. In this work, the third-order self-consistent charge density functional tight-binding method (DFTB3) is augmented with an auxiliary response density using the chemical-potential equalization (CPE) method and an empirical dispersion correction (D3). The parameters in the CPE and D3 models are fitted to high-level CCSD(T) reference interaction energies for a broad range of chemical species, as well as dipole moments calculated at the DFT level; the impact of including polarizabilities of molecules in the parameterization is also considered. Parameters for the elements H, C, N, O, and S are presented. The Root Mean Square Deviation (RMSD) interaction energy is improved from 6.07 kcal/mol to 1.49 kcal/mol for interactions with one charged species, whereas the RMSD is improved from 5.60 kcal/mol to 1.73 for a set of 9 salt bridges, compared to uncorrected DFTB3. For large water clusters and complexes that are dominated by dispersion interactions, the already satisfactory performance of the DFTB3-D3 model is retained; polarizabilities of neutral molecules are also notably improved. Overall, the CPE extension of DFTB3-D3 provides a more balanced description of different types of non-covalent interactions than Neglect of Diatomic Differential Overlap type of semi-empirical methods (e.g., PM6-D3H4) and PBE-D3 with modest basis sets. PMID:26328834

  13. Improving intermolecular interactions in DFTB3 using extended polarization from chemical-potential equalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Anders S., E-mail: andersx@chem.wisc.edu, E-mail: cui@chem.wisc.edu; Cui, Qiang, E-mail: andersx@chem.wisc.edu, E-mail: cui@chem.wisc.edu; Elstner, Marcus

    Semi-empirical quantum mechanical methods traditionally expand the electron density in a minimal, valence-only electron basis set. The minimal-basis approximation causes molecular polarization to be underestimated, and hence intermolecular interaction energies are also underestimated, especially for intermolecular interactions involving charged species. In this work, the third-order self-consistent charge density functional tight-binding method (DFTB3) is augmented with an auxiliary response density using the chemical-potential equalization (CPE) method and an empirical dispersion correction (D3). The parameters in the CPE and D3 models are fitted to high-level CCSD(T) reference interaction energies for a broad range of chemical species, as well as dipole moments calculatedmore » at the DFT level; the impact of including polarizabilities of molecules in the parameterization is also considered. Parameters for the elements H, C, N, O, and S are presented. The Root Mean Square Deviation (RMSD) interaction energy is improved from 6.07 kcal/mol to 1.49 kcal/mol for interactions with one charged species, whereas the RMSD is improved from 5.60 kcal/mol to 1.73 for a set of 9 salt bridges, compared to uncorrected DFTB3. For large water clusters and complexes that are dominated by dispersion interactions, the already satisfactory performance of the DFTB3-D3 model is retained; polarizabilities of neutral molecules are also notably improved. Overall, the CPE extension of DFTB3-D3 provides a more balanced description of different types of non-covalent interactions than Neglect of Diatomic Differential Overlap type of semi-empirical methods (e.g., PM6-D3H4) and PBE-D3 with modest basis sets.« less

  14. Unraveling the role of secondary electrons upon their interaction with photoresist during EUV exposure

    NASA Astrophysics Data System (ADS)

    Pollentier, Ivan; Vesters, Yannick; Jiang, Jing; Vanelderen, Pieter; de Simone, Danilo

    2017-10-01

    The interaction of 91.6eV EUV photons with photoresist is very different to that of optical lithography at DUV wavelength. The latter is understood quite well and it is known that photons interact with the resist in a molecular way through the photoacid generator (PAG) of the chemically amplified resist (CAR). In EUV however, the high energy photons interact with the matter on atomic scale, resulting in the generation of secondary electrons. It is believed that these secondary electrons in their turn are responsible in chemical modification and lead to switching reactions that enable resist local dissolution. However, details of the interaction are still unclear, e.g. which reaction an electron with a given energy can initiate. In this work we have introduced a method to measure the chemical interaction of the secondary electrons with the EUV resist. The method is based on electron gun exposures of low energy electrons (range 1eV to 80eV) in the photoresist. The chemical interaction is then measured by Residual Gas Analysis (RGA), which can analyze out of the outgassing which and how much reaction products are generated. In this way a `chemical yield' can be quantified as function of electron energy. This method has been successfully applied to understand the interaction of secondary electrons on the traditional CAR materials. The understanding was facilitated by testing different compositions of an advanced EUV CAR, where resp. polymer only, polymer+PAG, and polymer+PAG+quencher are tested with the electron gun. It was found that low energy electrons down to 3-4eV can activate PAG dissociation, which can lead to polymer deprotection. However it was observed too that energy electrons of 12eV and higher can do direct deprotection even in absence of the PAG. In addition, testing suggests that electrons can generate also other chemical changes on the polymer chain that could lead to cross-linking.

  15. Microscopic theory for coupled atomistic magnetization and lattice dynamics

    NASA Astrophysics Data System (ADS)

    Fransson, J.; Thonig, D.; Bessarab, P. F.; Bhattacharjee, S.; Hellsvik, J.; Nordström, L.

    2017-12-01

    A coupled atomistic spin and lattice dynamics approach is developed which merges the dynamics of these two degrees of freedom into a single set of coupled equations of motion. The underlying microscopic model comprises local exchange interactions between the electron spin and magnetic moment and the local couplings between the electronic charge and lattice displacements. An effective action for the spin and lattice variables is constructed in which the interactions among the spin and lattice components are determined by the underlying electronic structure. In this way, expressions are obtained for the electronically mediated couplings between the spin and lattice degrees of freedom, besides the well known interatomic force constants and spin-spin interactions. These former susceptibilities provide an atomistic ab initio description for the coupled spin and lattice dynamics. It is important to notice that this theory is strictly bilinear in the spin and lattice variables and provides a minimal model for the coupled dynamics of these subsystems and that the two subsystems are treated on the same footing. Questions concerning time-reversal and inversion symmetry are rigorously addressed and it is shown how these aspects are absorbed in the tensor structure of the interaction fields. By means of these results regarding the spin-lattice coupling, simple explanations of ionic dimerization in double-antiferromagnetic materials, as well as charge density waves induced by a nonuniform spin structure, are given. In the final parts, coupled equations of motion for the combined spin and lattice dynamics are constructed, which subsequently can be reduced to a form which is analogous to the Landau-Lifshitz-Gilbert equations for spin dynamics and a damped driven mechanical oscillator for the ionic motion. It is important to notice, however, that these equations comprise contributions that couple these descriptions into one unified formulation. Finally, Kubo-like expressions for the discussed exchanges in terms of integrals over the electronic structure and, moreover, analogous expressions for the damping within and between the subsystems are provided. The proposed formalism and types of couplings enable a step forward in the microscopic first principles modeling of coupled spin and lattice quantities in a consistent format.

  16. Dynamically reconfigurable holographic metasurface aperture for a Mills-Cross monochromatic microwave camera.

    PubMed

    Yurduseven, Okan; Marks, Daniel L; Fromenteze, Thomas; Smith, David R

    2018-03-05

    We present a reconfigurable, dynamic beam steering holographic metasurface aperture to synthesize a microwave camera at K-band frequencies. The aperture consists of a 1D printed microstrip transmission line with the front surface patterned into an array of slot-shaped subwavelength metamaterial elements (or meta-elements) dynamically tuned between "ON" and "OFF" states using PIN diodes. The proposed aperture synthesizes a desired radiation pattern by converting the waveguide-mode to a free space radiation by means of a binary modulation scheme. This is achieved in a holographic manner; by interacting the waveguide-mode (reference-wave) with the metasurface layer (hologram layer). It is shown by means of full-wave simulations that using the developed metasurface aperture, the radiated wavefronts can be engineered in an all-electronic manner without the need for complex phase-shifting circuits or mechanical scanning apparatus. Using the dynamic beam steering capability of the developed antenna, we synthesize a Mills-Cross composite aperture, forming a single-frequency all-electronic microwave camera.

  17. Importance of nonlocal electron correlation in the BaNiS2 semimetal from quantum oscillations studies

    NASA Astrophysics Data System (ADS)

    Klein, Yannick; Casula, Michele; Santos-Cottin, David; Audouard, Alain; Vignolles, David; Fève, Gwendal; Freulon, Vincent; Plaçais, Bernard; Verseils, Marine; Yang, Hancheng; Paulatto, Lorenzo; Gauzzi, Andrea

    2018-02-01

    By means of Shubnikov-de Haas and de Haas-van Alphen oscillations, and ab initio calculations, we have studied the Fermi surface of high-quality BaNiS2 single crystals, with mean free path l ˜400 Å . The angle and temperature dependence of quantum oscillations indicates a quasi-two-dimensional Fermi surface, made of an electronlike tube centered at Γ , and of four holelike cones, generated by Dirac bands, weakly dispersive in the out-of-plane direction. Ab initio electronic structure calculations, in the density functional theory framework, show that the inclusion of screened exchange is necessary to account for the experimental Fermi pockets. Therefore, the choice of the functional becomes crucial. A modified HSE hybrid functional with 7% of exact exchange outperforms both GGA and GGA +U density functionals, signaling the importance of nonlocal screened-exchange interactions in BaNiS2, and, more generally, in 3 d compensated semimetals.

  18. Two-component relativistic coupled-cluster methods using mean-field spin-orbit integrals

    NASA Astrophysics Data System (ADS)

    Liu, Junzi; Shen, Yue; Asthana, Ayush; Cheng, Lan

    2018-01-01

    A novel implementation of the two-component spin-orbit (SO) coupled-cluster singles and doubles (CCSD) method and the CCSD augmented with the perturbative inclusion of triple excitations [CCSD(T)] method using mean-field SO integrals is reported. The new formulation of SO-CCSD(T) features an atomic-orbital-based algorithm for the particle-particle ladder term in the CCSD equation, which not only removes the computational bottleneck associated with the large molecular-orbital integral file but also accelerates the evaluation of the particle-particle ladder term by around a factor of 4 by taking advantage of the spin-free nature of the instantaneous electron-electron Coulomb interaction. Benchmark calculations of the SO splittings for the thallium atom and a set of diatomic 2Π radicals as well as of the bond lengths and harmonic frequencies for a set of closed-shell diatomic molecules are presented. The basis-set and core-correlation effects in the calculations of these properties have been carefully analyzed.

  19. Analysis of the interaction of an electron beam with a solar cell. III - The effect of spacial variations of the number density of recombination centers on SEM measurements

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1979-01-01

    By means of an exactly soluble model the short circuit current generated by a scanning electron microscope in a P-N junction has been determined in cases where the trap density is inhomogeneous. The diffusion length for minority carriers becomes then dependent on the spacial coordinates. It is shown that in this case the dependence of the Isc on characteristic parameters as cell thickness, distance of the beam excitation spot from ohmic contacts, etc., becomes very intricate. This fact precludes the determination of the local diffusion length in the usual manner. Although the model is somewhat simplified in order to make it amenable to exact solutions, it is nevertheless realistic enough to lead to the conclusion that SEM measurements of bulk transport parameters in inhomogeneous semiconductor material are impractical since they may lead to serious errors in the interpretation of the data by customary means.

  20. High thermoelectric performance of graphite nanofibers.

    PubMed

    Tran, Van-Truong; Saint-Martin, Jérôme; Dollfus, Philippe; Volz, Sebastian

    2018-02-22

    Graphite nanofibers (GNFs) have been demonstrated to be a promising material for hydrogen storage and heat management in electronic devices. Here, by means of first-principles and transport simulations, we show that GNFs can also be an excellent material for thermoelectric applications thanks to the interlayer weak van der Waals interaction that induces low thermal conductance and a step-like shape in the electronic transmission with mini-gaps, which are necessary ingredients to achieve high thermoelectric performance. This study unveils that the platelet form of GNFs in which graphite layers are perpendicular to the fiber axis can exhibit outstanding thermoelectric properties with a figure of merit ZT reaching 3.55 in a 0.5 nm diameter fiber and 1.1 in a 1.1 nm diameter one. Interestingly, by introducing 14 C isotope doping, ZT can even be enhanced up to more than 5, and more than 8 if we include the effect of finite phonon mean free path, which demonstrates the amazing thermoelectric potential of GNFs.

  1. Two-dimensional Electronic Double-Quantum Coherence Spectroscopy

    PubMed Central

    Kim, Jeongho; Mukamel, Shaul

    2009-01-01

    CONSPECTUS The theory of electronic structure of many-electron systems like molecules is extraordinarily complicated. A lot can be learned by considering how electron density is distributed, on average, in the average field of the other electrons in the system. That is, mean field theory. However, to describe quantitatively chemical bonds, reactions, and spectroscopy requires consideration of the way that electrons avoid each other by the way they move; this is called electron correlation (or in physics, the many-body problem for fermions). While great progress has been made in theory, there is a need for incisive experimental tests that can be undertaken for large molecular systems in the condensed phase. Here we report a two-dimensional (2D) optical coherent spectroscopy that correlates the double excited electronic states to constituent single excited states. The technique, termed two-dimensional double-coherence spectroscopy (2D-DQCS), makes use of multiple, time-ordered ultrashort coherent optical pulses to create double- and single-quantum coherences over time intervals between the pulses. The resulting two-dimensional electronic spectrum maps the energy correlation between the first excited state and two-photon allowed double-quantum states. The principle of the experiment is that when the energy of the double-quantum state, viewed in simple models as a double HOMO to LUMO excitation, equals twice that of a single excitation, then no signal is radiated. However, electron-electron interactions—a combination of exchange interactions and electron correlation—in real systems generates a signal that reveals precisely how the energy of the double-quantum resonance differs from twice the single-quantum resonance. The energy shift measured in this experiment reveals how the second excitation is perturbed by both the presence of the first excitation and the way that the other electrons in the system have responded to the presence of that first excitation. We compare a series of organic dye molecules and find that the energy offset for adding a second electronic excitation to the system relative to the first excitation is on the order of tens of milli-electronvolts, and it depends quite sensitively on molecular geometry. These results demonstrate the effectiveness of 2D-DQCS for elucidating quantitative information about electron-electron interactions, many-electron wavefunctions, and electron correlation in electronic excited states and excitons. PMID:19552412

  2. A theoretical study on the electronic structure of Au-XO(0,-1,+1) (X=C, N, and O) complexes: effect of an external electric field.

    PubMed

    Tielens, Frederik; Gracia, Lourdes; Polo, Victor; Andrés, Juan

    2007-12-20

    A theoretical study on the nature of Au-XO(0,-1,+1) (X=C, N, O) interaction is carried out in order to provide a better understanding on the adsorption process of XO molecules on Au surfaces or Au-supported surfaces. The effect of the total charge as well as the presence of an external electric field on the formation processes of the Au-XO complex are analyzed and discussed using DFT (B3LYP) and high-level ab initio (CCSD(T)//MP2) methods employing a 6-311+G(3df) basis set for X and O atoms and Stuttgart pseudopotentials for Au atom. The presence of an electric field can increase the binding of O2 molecule to Au while weakening the formation of the Au-CO complex. These behaviors are discussed in the context of adsorption or deadsorption of these molecules on Au clusters. The formation of the Au-XO complex, the effect of addition/removal of one electron, and the role of the electric field are rationalized by studying the nature of the bonding interactions by means of the electron localization function (ELF) analysis. The net interaction between Au and XO fragments is governed by the interplay of three factors: (i) the amount of charge transfer from Au to XO, (ii) the sharing of the lone pair from X atom by the Au core (V(X, Au) basin), and (iii) the role of the lone pair of Au (V(Au) basin) mainly formed by 6s electrons. The total charge of the system and the applied electric field determine the population and orientation of the V(Au) basin and, subsequently, the degree of repulsion with the V(X, Au) basin.

  3. Non invasive radiofrequency diagnostics of cancer. The Bioscanner — Trimprob technology and clinical applications

    NASA Astrophysics Data System (ADS)

    Vedruccio, Clarbruno; Ricci Vedruccio, Carla

    2011-12-01

    A new paper by Pokorny, Vedruccio, Cifra, Kucera, titled Cancer physics: Diagnostics based on damped cellular elasto-electrical vibrations in microtubules, recently available on Eur. Biophys. J., discloses the mechanism of active grown cancer tissues interaction with a Non- Linear Resonance Interaction (NLRI) Bioscanner Trimprob diagnostic device that is certified and ready to be used to investigate suspected cases of disease and cancer. This technology spreads early capabilities of cancer detection by means of low level radiofrequency oscillations in UHF band. The system is based on an unique and extremely innovative non- linear radiofrequency oscillator working on 462-465 MHz plus the harmonics. The diseased tissues suspected of cancer, are irradiated by means of a handy probe near field emission, while a spectrum analyzer placed in the far field detects by means of a small antenna, the oscillator interaction within the tissues. The Bioscanner is characterized by a high dynamic range, in the order of 30 or more decibel, and is useful for detection of small cancer agglomerates, if used by a well trained operator. At the resonance, the free running oscillator locks-in on the specific interaction frequency, in a sharp frequency window centered on 462 MHz; the resulting effect is evidenced by a deep decrease of the 462 MHz spectral line propagation in the far field around the oscillator probe. The NLRI provides a selective characterization, like a sort of a electronic biopsy response of biologic tissues in support of modern imaging diagnostics. Further to existing literature describing methods for cancer detections by means of electromagnetic fields this paper shows this innovative in vivo medical diagnostic equipment and some clinical applications.

  4. Linking high harmonics from gases and solids.

    PubMed

    Vampa, G; Hammond, T J; Thiré, N; Schmidt, B E; Légaré, F; McDonald, C R; Brabec, T; Corkum, P B

    2015-06-25

    When intense light interacts with an atomic gas, recollision between an ionizing electron and its parent ion creates high-order harmonics of the fundamental laser frequency. This sub-cycle effect generates coherent soft X-rays and attosecond pulses, and provides a means to image molecular orbitals. Recently, high harmonics have been generated from bulk crystals, but what mechanism dominates the emission remains uncertain. To resolve this issue, we adapt measurement methods from gas-phase research to solid zinc oxide driven by mid-infrared laser fields of 0.25 volts per ångström. We find that when we alter the generation process with a second-harmonic beam, the modified harmonic spectrum bears the signature of a generalized recollision between an electron and its associated hole. In addition, we find that solid-state high harmonics are perturbed by fields so weak that they are present in conventional electronic circuits, thus opening a route to integrate electronics with attosecond and high-harmonic technology. Future experiments will permit the band structure of a solid to be tomographically reconstructed.

  5. Insulator-semimetallic transition in quasi-1D charged impurity-infected armchair boron-nitride nanoribbons

    NASA Astrophysics Data System (ADS)

    Dinh Hoi, Bui; Yarmohammadi, Mohsen

    2018-04-01

    We address control of electronic phase transition in charged impurity-infected armchair-edged boron-nitride nanoribbons (ABNNRs) with the local variation of Fermi energy. In particular, the density of states of disordered ribbons produces the main features in the context of pretty simple tight-binding model and Green's functions approach. To this end, the Born approximation has been implemented to find the effect of π-band electron-impurity interactions. A modulation of the π-band depending on the impurity concentrations and scattering potentials leads to the phase transition from insulator to semimetallic. We present here a detailed physical meaning of this transition by studying the treatment of massive Dirac fermions. From our findings, it is found that the ribbon width plays a crucial role in determining the electronic phase of disordered ABNNRs. The obtained results in controllable gap engineering are useful for future experiments. Also, the observations in this study have also fueled interest in the electronic properties of other 2D materials.

  6. First-principles calculations on electronic properties of single-walled carbon nanotubes for H{sub 2}S gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muliyati, Dewi, E-mail: dmuliyati@unj.ac.id; Dept. of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta; Wella, Sasfan A.

    2015-09-30

    In this research, we performed first-principles calculations by means of density functional theory (DFT) to investigate the interaction of H{sub 2}S gas on the surface of single-walled carbon nanotubes (SWNTs). In order to understand the effect of chirality to the electronic structure of SWNTs/H{sub 2}S, the pristine SWNTs was varied to become SWNTs (5,0), (6,0), (7,0), (8,0), (9,0), and (10,0). From the calculation we found that after H{sub 2}S adsorbed on surface of SWNTs, the electronic properties of system changes from semiconductor to metal but not vice versa. It was only SWNTs (5,0), (7,0), (8,0), and (10,0) occuring the changingmore » on its electronic properties behavior, others were remain similar with its initial behavior. In the degassing process, metal return to semiconductor behavior, which is an indication that SWNTs is a good gas sensors, responsive and reversible.« less

  7. Density-functional calculations of transport properties in the nondegenerate limit and the role of electron-electron scattering

    DOE PAGES

    Desjarlais, Michael P.; Scullard, Christian R.; Benedict, Lorin X.; ...

    2017-03-13

    We compute electrical and thermal conductivities of hydrogen plasmas in the non-degenerate regime using Kohn-Sham Density Functional Theory (DFT) and an application of the Kubo- Greenwood response formula, and demonstrate that for thermal conductivity, the mean-field treatment of the electron-electron (e-e) interaction therein is insufficient to reproduce the weak-coupling limit obtained by plasma kinetic theories. An explicit e-e scattering correction to the DFT is posited by appealing to Matthiessen's Rule and the results of our computations of conductivities with the quantum Lenard-Balescu (QLB) equation. Further motivation of our correction is provided by an argument arising from the Zubarev quantum kineticmore » theory approach. Significant emphasis is placed on our efforts to produce properly converged results for plasma transport using Kohn-Sham DFT, so that an accurate assessment of the importance and efficacy of our e-e scattering corrections to the thermal conductivity can be made.« less

  8. The nature of the interaction of dimethylselenide with IIIA group element compounds.

    PubMed

    Madzhidov, Timur I; Chmutova, Galina A

    2013-05-16

    The first systematic theoretical study of the nature of intermolecular bonding of dimethylselenide as donor and IIIA group element halides as acceptors was made with the help of the approach of Quantum Theory of Atoms in Molecules. Density Functional Theory with "old" Sapporo triple-ζ basis sets was used to calculate geometry, thermodynamics, and wave function of Me2Se···AX3 complexes. The analysis of the electron density distribution and the Laplacian of the electron density allowed us to reveal and explain the tendencies in the influence of the central atom (A = B, Al, Ga, In) and halogen (X = F, Cl, Br, I) on the nature of Se···A bonding. Significant changes in properties of the selenium lone pair upon complexation were described by means of the analysis of the Laplacian of the charge density. Charge transfer characteristics and the contributions to it from electron localization and delocalization were analyzed in terms of localization and delocalization indexes. Common features of the complexation and differences in the nature of bonding were revealed. Performed analysis evidenced that gallium and indium halide complexes can be attributed to charge transfer-driven complexes; aluminum halides complexes seem to be mainly of an electrostatic nature. The nature of bonding in different boron halides essentially varies; these complexes are stabilized mainly by covalent Se···B interaction. In all the complexes under study covalence of the Se···A interaction is rather high.

  9. Damping of acoustic flexural phonons in silicene: influence on high-field electronic transport

    NASA Astrophysics Data System (ADS)

    Rengel, Raúl; Iglesias, José M.; Mokhtar Hamham, El; Martín, María J.

    2018-06-01

    Silicene is a two-dimensional buckled material with broken horizontal mirror symmetry and Dirac-like dispersion. Under such conditions, flexural acoustic (ZA) phonons play a dominant role. Consequently, it is necessary to consider some suppression mechanism for electron–phonon interactions with long wavelengths in order to reach mobilities useful for electronic applications. In this work, we analyze, by means of an ensemble Monte Carlo simulator, the influence of several possibilities for the description of the effect of ZA phonon damping on electronic transport in silicene. The results show that a hard cutoff situation (total suppression for phonons with a wavelength longer than a critical one), as it has been proposed in the literature, does not yield a realistic picture regarding the electronic distribution function, and it artificially induces a negative differential resistance at moderate and high fields. Sub-parabolic dispersions, on the other hand, may provide a more realistic description in terms of the behavior of the electron distribution in the momentum space, but need extremely short cutoff wavelengths to reach functional mobility and drift velocity values.

  10. Kinetic theory of turbulence for parallel propagation revisited: Low-to-intermediate frequency regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Peter H., E-mail: yoonp@umd.edu; School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701

    2015-09-15

    A previous paper [P. H. Yoon, “Kinetic theory of turbulence for parallel propagation revisited: Formal results,” Phys. Plasmas 22, 082309 (2015)] revisited the second-order nonlinear kinetic theory for turbulence propagating in directions parallel/anti-parallel to the ambient magnetic field, in which the original work according to Yoon and Fang [Phys. Plasmas 15, 122312 (2008)] was refined, following the paper by Gaelzer et al. [Phys. Plasmas 22, 032310 (2015)]. The main finding involved the dimensional correction pertaining to discrete-particle effects in Yoon and Fang's theory. However, the final result was presented in terms of formal linear and nonlinear susceptibility response functions. Inmore » the present paper, the formal equations are explicitly written down for the case of low-to-intermediate frequency regime by making use of approximate forms for the response functions. The resulting equations are sufficiently concrete so that they can readily be solved by numerical means or analyzed by theoretical means. The derived set of equations describe nonlinear interactions of quasi-parallel modes whose frequency range covers the Alfvén wave range to ion-cyclotron mode, but is sufficiently lower than the electron cyclotron mode. The application of the present formalism may range from the nonlinear evolution of whistler anisotropy instability in the high-beta regime, and the nonlinear interaction of electrons with whistler-range turbulence.« less

  11. Specular Reflectivity and Hot-Electron Generation in High-Contrast Relativistic Laser-Plasma Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemp, Gregory Elijah

    2013-01-01

    Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the costmore » of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic laser-plasma interactions.« less

  12. Strong electronic interaction and multiple quantum Hall ferromagnetic phases in trilayer graphene

    NASA Astrophysics Data System (ADS)

    Datta, Biswajit; Dey, Santanu; Samanta, Abhisek; Agarwal, Hitesh; Borah, Abhinandan; Watanabe, Kenji; Taniguchi, Takashi; Sensarma, Rajdeep; Deshmukh, Mandar M.

    2017-02-01

    Quantum Hall effect provides a simple way to study the competition between single particle physics and electronic interaction. However, electronic interaction becomes important only in very clean graphene samples and so far the trilayer graphene experiments are understood within non-interacting electron picture. Here, we report evidence of strong electronic interactions and quantum Hall ferromagnetism seen in Bernal-stacked trilayer graphene. Due to high mobility ~500,000 cm2 V-1 s-1 in our device compared to previous studies, we find all symmetry broken states and that Landau-level gaps are enhanced by interactions; an aspect explained by our self-consistent Hartree-Fock calculations. Moreover, we observe hysteresis as a function of filling factor and spikes in the longitudinal resistance which, together, signal the formation of quantum Hall ferromagnetic states at low magnetic field.

  13. Effect of electron spin-spin interaction on level crossings and spin flips in a spin-triplet system

    NASA Astrophysics Data System (ADS)

    Jia, Wei; Hu, Fang-Qi; Wu, Ning; Zhao, Qing

    2017-12-01

    We study level crossings and spin flips in a system consisting of a spin-1 (an electron spin triplet) coupled to a nuclear spin of arbitrary size K , in the presence of a uniform magnetic field and the electron spin-spin interaction within the triplet. Through an analytical diagonalization based on the SU (3 ) Lie algebra, we find that the electron spin-spin interaction not only removes the curious degeneracy which appears in the absence of the interaction, but also produces some level anticrossings (LACs) for strong interactions. The real-time dynamics of the system shows that periodic spin flips occur at the LACs for arbitrary K , which might provide an option for nuclear or electron spin polarization.

  14. Low-voltage electron microscopy of polymer and organic molecular thin films.

    PubMed

    Drummy, Lawrence F; Yang, Junyan; Martin, David C

    2004-06-01

    We have demonstrated the capabilities of a novel low-voltage electron microscope (LVEM) for imaging polymer and organic molecular thin films. The LVEM can operate in transmission electron microscopy, scanning transmission electron microscopy, scanning electron microscopy, and electron diffraction modes. The microscope operates at a nominal accelerating voltage of 5 kV and fits on a tabletop. A detailed discussion of the electron-sample interaction processes is presented, and the mean free path for total electron scattering was calculated to be 15 nm for organic samples at 5 kV. The total end point dose for the destruction of crystallinity at 5 kV was estimated at 5 x 10(-4) and 3.5 x 10(-2) C/cm2 for polyethylene and pentacene, respectively. These values are significantly lower than those measured at voltages greater than 100 kV. A defocus series of colloidal gold particles allowed us to estimate the experimental contrast transfer function of the microscope. Images taken of several organic materials have shown high contrast for low atomic number elements and a resolution of 2.5 nm. The materials studied here include thin films of the organic semiconductor pentacene, triblock copolymer films, single-molecule dendrimers, electrospun polymer fibers and gold nanoparticles. Copyright 2004 Elsevier B.V.

  15. Electron beam transport in heterogeneous slab media from MeV down to eV.

    PubMed

    Yousfi, M; Leger, J; Loiseau, J F; Held, B; Eichwald, O; Defoort, B; Dupillier, J M

    2006-01-01

    An optimized Monte Carlo method based on the null collision technique and on the treatment of individual interactions is used for the simulation of the electron transport in multilayer materials from high energies (MeV or several hundred of keV) down to low cutoff energies (between 1 and 10 eV). In order to better understand the electron transport and the energy deposition at the interface in the composite application framework, two layer materials are considered (carbon and polystyrene with densities of 1.7 g cm(-3) and 1.06 g cm(-3), respectively) under two slab or three slab configurations as, e.g. a thin layer of carbon sandwiched between two polystyrene layers. The electron-matter cross-sections (electron-carbon and electron-polystyrene) used in the case of pure material (carbon and polystyrene) as well as our Monte-Carlo code have been first validated. The boundary interface layer is considered without any mean free path truncation and with a rigorous treatment of the backscattered and also the forward scattered electrons from one layer to another. The large effect of the choice of a low cutoff energy and the dissociation process consideration are also clearly shown in the heterogeneous multi-layer media more particularly on the secondary electron emission, inelastic collision number and energy spectra.

  16. Alkali metal mediated C–C bond coupling reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tachikawa, Hiroto, E-mail: hiroto@eng.hokudai.ac.jp

    2015-02-14

    Metal catalyzed carbon-carbon (C–C) bond formation is one of the important reactions in pharmacy and in organic chemistry. In the present study, the electron and hole capture dynamics of a lithium-benzene sandwich complex, expressed by Li(Bz){sub 2}, have been investigated by means of direct ab-initio molecular dynamics method. Following the electron capture of Li(Bz){sub 2}, the structure of [Li(Bz){sub 2}]{sup −} was drastically changed: Bz–Bz parallel form was rapidly fluctuated as a function of time, and a new C–C single bond was formed in the C{sub 1}–C{sub 1}′ position of Bz–Bz interaction system. In the hole capture, the intermolecular vibrationmore » between Bz–Bz rings was only enhanced. The mechanism of C–C bond formation in the electron capture was discussed on the basis of theoretical results.« less

  17. Note: Cold spectra of the electronic transition A{sup 2}Σ{sup +}-X{sup 2}Π of N{sub 2}O{sup +} radical: High resolution analysis of the bands 000-100, 100-100, and 001-101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lessa, L. L.; Martins, A. S.; Fellows, C. E., E-mail: fellows@if.uff.br

    2015-10-28

    In this note, three vibrational bands of the electronic transition A{sup 2}Σ{sup +}-X{sup 2}Π of the N{sub 2}O{sup +} radical (000-100, 100-100, and 001-101) were theoretically analysed. Starting from Hamiltonian models proposed for this kind of molecule, their parameters were calculated using a Levenberg-Marquardt fit procedure in order to reduce the root mean square deviation from the experimental transitions below to 0.01 cm{sup −1}. The main objective of this work is to obtain new and reliable values for rotational constant B″ and the spin-orbit interaction parameter A of the analysed vibrational levels of the X{sup 2}Π electronic state of thismore » molecule.« less

  18. Diffusion, convection, and solidification in cw-mode free electron laser nitrided titanium

    NASA Astrophysics Data System (ADS)

    Höche, Daniel; Shinn, Michelle; Müller, Sven; Schaaf, Peter

    2009-04-01

    Titanium sheets were irradiated by free electron laser radiation in cw mode in pure nitrogen. Due to the interaction, nitrogen diffusion occurs and titanium nitride was synthesized in the tracks. Overlapping tracks have been utilized to create coatings in order to improve the tribological properties of the sheets. Caused by the local heating and the spatial dimension of the melt pool, convection effects were observed and related to the track properties. Stress, hardness, and nitrogen content were investigated with x-ray diffraction, nanoindention, and resonant nuclear reaction analysis. The measured results were correlated with the scan parameters, especially to the lateral track shift. Cross section micrographs were prepared and investigated by means of scanning electron microscopy. They show the solidification behavior, phase formation, and the nitrogen distribution. The experiments give an insight into the possibilities of materials processing using such a unique heat source.

  19. Transport spin dependent in nanostructures: Current and geometry effect of quantum dots in presence of spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Paredes-Gutiérrez, H.; Pérez-Merchancano, S. T.; Beltran-Rios, C. L.

    2017-12-01

    In this work, we study the quantum electron transport through a Quantum Dots Structure (QDs), with different geometries, embedded in a Quantum Well (QW). The behaviour of the current through the nanostructure (dot and well) is studied considering the orbital spin coupling of the electrons and the Rashba effect, by means of the second quantization theory and the standard model of Green’s functions. Our results show the behaviour of the current in the quantum system as a function of the electric field, presenting resonant states for specific values of both the external field and the spin polarization. Similarly, the behaviour of the current on the nanostructure changes when the geometry of the QD and the size of the same are modified as a function of the polarization of the electron spin and the potential of quantum confinement.

  20. 46 CFR 4.05-40 - Alternate electronic means of reporting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Alternate electronic means of reporting. 4.05-40 Section 4.05-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC... electronic means of reporting. The Commandant may approve alternate electronic means of submitting notices...

  1. 46 CFR 4.05-40 - Alternate electronic means of reporting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Alternate electronic means of reporting. 4.05-40 Section 4.05-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC... electronic means of reporting. The Commandant may approve alternate electronic means of submitting notices...

  2. Transient absorption phenomena and related structural transformations in femtosecond laser-excited Si

    NASA Astrophysics Data System (ADS)

    Kudryashov, Sergey I.

    2004-09-01

    Analysis of processes affecting transient optical absorption and photogeneration of electron-hole plasma in silicon pumped by an intense NIR or visible femtosecond laser pulse has been performed taking into account the most important electron-photon, electron-electron and electron-phonon interactions and, as a result, two main regimes of such laser-matter interaction have been revealed. The first regime is concerned with indirect interband optical absorption in Si, enhanced by a coherent shrinkage of its smallest indirect bandgap due to dynamic Franz-Keldysh effect (DFKE). The second regime takes place due to the critical renormalization of the Si direct bandgap along Λ-axis of its first Brillouin zone because of DFKE and the deformation potential electron-phonon interaction and occurs as intense direct single-photon excitation of electrons into one of the quadruplet of equivalent Λ-valleys in the lowest conduction band, which is split down due to the electron-phonon interaction.

  3. Cytoskeleton-amyloplast interactions in sweet clover

    NASA Technical Reports Server (NTRS)

    Guikema, J. A.; Hilaire, E.; Odom, W. R.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The distribution of organelles within columella cells of sweet clover was examined by transmission electron microscopy following growth under static or clinorotating conditions. A developmentally conditioned polarity was observed, with a proximal location of the nucleus and a distal accumulation of the endoplasmic reticulum. This polarity was insensitive to clinorotation. In contrast, clinorotation altered the location of amyloplasts. Application of cytoskeletal poisons (colchicine, cytochalasin D, taxol, and phalloidin), especially during clinorotation, had interesting effects on the maintenance of columella cell polarity, with a profound effect on the extent, location, and structure of the endoplasmic reticulum. The site of cytoskeletal interactions with sedimenting amyloplasts is thought to be the amyloplast envelope. An envelope fraction, having over 17 polypeptides, was isolated using immobilized antibody technology, and will provide a means of assessing the role of specific peptides in cytoskeleton/amyloplast interactions.

  4. Calculating electronic correlation effects from densities of transitions

    NASA Astrophysics Data System (ADS)

    Haydock, Roger

    Adding a localized electron to a system of interacting electrons induces a density of transitions described by the time-independent Heisenberg equation. Sequences of these transitions generate interacting states whose total energy is the sum of energies of the constituent transitions. A calculation of magnetic moments for itinerant electrons with Ising interactions illustrates this method. supported by the H. V. Snyder Gift to the University of Oregon.

  5. Current correlations for the transport of interacting electrons through parallel quantum dots in a photon cavity

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Vidar; Abdullah, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei

    2018-06-01

    We calculate the current correlations for the steady-state electron transport through multi-level parallel quantum dots embedded in a short quantum wire, that is placed in a non-perfect photon cavity. We account for the electron-electron Coulomb interaction, and the para- and diamagnetic electron-photon interactions with a stepwise scheme of configuration interactions and truncation of the many-body Fock spaces. In the spectral density of the temporal current-current correlations we identify all the transitions, radiative and non-radiative, active in the system in order to maintain the steady state. We observe strong signs of two types of Rabi oscillations.

  6. Quantum-mechanical parameters for the risk assessment of multi-walled carbon-nanotubes: A study using adsorption of probe compounds and its application to biomolecules.

    PubMed

    Chayawan; Vikas

    2016-11-01

    This work forwards new insights into the risk-assessment of multi-walled carbon-nanotubes (MWCNTs) while analysing the role of quantum-mechanical interactions between the electrons in the adsorption of probe compounds and biomolecules by MWCNTs. For this, the quantitative models are developed using quantum-chemical descriptors and their electron-correlation contribution. The major quantum-chemical factors contributing to the adsorption are found to be mean polarizability, electron-correlation energy, and electron-correlation contribution to the absolute electronegativity and LUMO energy. The proposed models, based on only three quantum-chemical factors, are found to be even more robust and predictive than the previously known five or four factors based linear free-energy and solvation-energy relationships. The proposed models are employed to predict the adsorption of biomolecules including steroid hormones and DNA bases. The steroid hormones are predicted to be strongly adsorbed by the MWCNTs, with the order: hydrocortisone > aldosterone > progesterone > ethinyl-oestradiol > testosterone > oestradiol, whereas the DNA bases are found to be relatively less adsorbed but follow the order as: guanine > adenine > thymine > cytosine > uracil. Besides these, the developed electron-correlation based models predict several insecticides, pesticides, herbicides, fungicides, plasticizers and antimicrobial agents in cosmetics, to be strongly adsorbed by the carbon-nanotubes. The present study proposes that the instantaneous inter-electronic interactions may be quite significant in various physico-chemical processes involving MWCNTs, and can be used as a reliable predictor for their risk assessment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Attractive electron-electron interactions within robust local fitting approximations.

    PubMed

    Merlot, Patrick; Kjærgaard, Thomas; Helgaker, Trygve; Lindh, Roland; Aquilante, Francesco; Reine, Simen; Pedersen, Thomas Bondo

    2013-06-30

    An analysis of Dunlap's robust fitting approach reveals that the resulting two-electron integral matrix is not manifestly positive semidefinite when local fitting domains or non-Coulomb fitting metrics are used. We present a highly local approximate method for evaluating four-center two-electron integrals based on the resolution-of-the-identity (RI) approximation and apply it to the construction of the Coulomb and exchange contributions to the Fock matrix. In this pair-atomic resolution-of-the-identity (PARI) approach, atomic-orbital (AO) products are expanded in auxiliary functions centered on the two atoms associated with each product. Numerical tests indicate that in 1% or less of all Hartree-Fock and Kohn-Sham calculations, the indefinite integral matrix causes nonconvergence in the self-consistent-field iterations. In these cases, the two-electron contribution to the total energy becomes negative, meaning that the electronic interaction is effectively attractive, and the total energy is dramatically lower than that obtained with exact integrals. In the vast majority of our test cases, however, the indefiniteness does not interfere with convergence. The total energy accuracy is comparable to that of the standard Coulomb-metric RI method. The speed-up compared with conventional algorithms is similar to the RI method for Coulomb contributions; exchange contributions are accelerated by a factor of up to eight with a triple-zeta quality basis set. A positive semidefinite integral matrix is recovered within PARI by introducing local auxiliary basis functions spanning the full AO product space, as may be achieved by using Cholesky-decomposition techniques. Local completion, however, slows down the algorithm to a level comparable with or below conventional calculations. Copyright © 2013 Wiley Periodicals, Inc.

  8. Variation Process of Radiation Belt Electron Fluxes due to Interaction With Chorus and EMIC Rising-tone Emissions Localized in Longitude

    NASA Astrophysics Data System (ADS)

    Kubota, Y.; Omura, Y.

    2017-12-01

    Using results of test particle simulations of a large number of electrons interacting with a pair of chorus emissions, we create Green's functions to model the electron distribution function after all of the possible interactions with the waves [Omura et al., 2015]. Assuming that the waves are generated in a localized range of longitudes in the dawn side, we repeat taking the convolution integral of the Green's function with the distribution function of the electrons injected into the generation region of the localized waves. From numerical and theoretical analyses, we find that electron acceleration process only takes place efficiently below 4 MeV. Because extremely relativistic electrons go through the wave generation region rapidly due to grad-B0 and curvature drift, they don't have enough interaction time to be accelerated. In setting up the electrons after all interaction with chorus emissions as initial electron distribution function, we also compute the loss process of radiation belt electron fluxes due to interaction with EMIC rising-tone emissions generated in a localized range of longitudes in the dusk side [Kubota and Omura,2017]. References: (1) Omura, Y., Y. Miyashita, M. Yoshikawa, D. Summers, M. Hikishima, Y. Ebihara, and Y. Kubota (2015), Formation process of relativistic electron flux through interaction with chorus emissions in the Earth's inner magnetosphere, J. Geophys. Res. Space Physics, 120, 9545-9562, doi:10.1002/2015JA021563. (2) Kubota, Y., and Y. Omura (2017), Rapid precipitation of radiation belt electrons induced by EMIC rising tone emissions localized in longitude inside and outside the plasmapause, J. Geophys. Res. Space Physics, 122, 293-309, doi:10.1002/2016JA023267.

  9. The role of localised Ultra-Low Frequency waves in energetic electron precipitation

    NASA Astrophysics Data System (ADS)

    Rae, J.; Murphy, K. R.; Watt, C.; Mann, I. R.; Ozeke, L.; Halford, A. J.; Sibeck, D. G.; Clilverd, M. A.; Rodger, C. J.; Degeling, A. W.; Singer, H. J.

    2016-12-01

    Electromagnetic waves play pivotal roles in radiation belt dynamics through a variety of different means. Typically, Ultra-Low Frequency (ULF) waves have historically been invoked for radial diffusive transport leading to both acceleration and loss of outer radiation belt electrons. Very-Low Frequency (VLF) and Extremely-Low Frequency (ELF) waves are generally thought to provide a mechanism for localized acceleration and loss through precipitation into the ionosphere. In this study we present a new mechanism for electron loss through precipitation into the ionosphere due to direct modulation of the loss cone via localized compressional ULF waves. Observational evidence is presented demonstrating that modulation of the equatorial loss cone can occur via localized compressional wave activity. We then perform statistical computations of the probability distribution to determine how likely a given magnetic perturbation would produce a given percentage change in the bounce loss-cone (BLC). We discuss the ramifications of the action of coherent, localized compressional ULF waves on drifting electron populations; their precipitation response can be a complex interplay between electron energy, the shape of the phase space density profile at pitch angles close to the loss cone, ionospheric decay timescales, and the time-dependence of the electron source. We present a case study of compressional wave activity in tandem with riometer and balloon-borne electron precipitation across keV-MeV energies to demonstrate that the experimental measurements can be explained by our new enhanced loss cone mechanism. We determine that the two pivotal components not usually considered are localized ULF wave fields and ionospheric decay timescales. We conclude that ULF wave modulation of the loss cone is a viable candidate for direct precipitation of radiation belt electrons without any additional requirement for gyroresonant wave-particle interaction. Additional mechanisms would be complementary and additive in providing means to precipitate electrons from the radiation belts during storm-times.

  10. Exchange Enhancement of the Electron-Phonon Interaction: The Case of Weakly Doped Two-Dimensional Multivalley Semiconductors

    NASA Astrophysics Data System (ADS)

    Pamuk, Betül; Zoccante, Paolo; Baima, Jacopo; Mauri, Francesco; Calandra, Matteo

    2018-04-01

    The effect of the exchange interaction on the vibrational properties and on the electron-phonon coupling were investigated in several recent works. In most of the cases, exchange tends to enhance the electron-phonon interaction, although the motivations for such behaviour are not completely understood. Here we consider the class of weakly doped two-dimensional multivalley semiconductors and we demonstrate that a more global picture emerges. In particular we show that in these systems, at low enough doping, even a moderate electron-electron interaction enhances the response to any perturbation inducing a valley polarization. If the valley polarization is due to the electron-phonon coupling, the electron-electron interaction results in an enhancement of the superconducting critical temperature. We demonstrate the applicability of the theory by performing random phase approximation and first principles calculations in transition metal chloronitrides. We find that exchange is responsible for the enhancement of the superconducting critical temperature in LixZrNCl and that much larger Tcs could be obtained in intercalated HfNCl if the synthesis of cleaner samples could remove the Anderson insulating state competing with superconductivity.

  11. Effects of thunderstorm-driven runaway electrons in the conjugate hemisphere: Purple sprites, ionization enhancements, and gamma rays

    NASA Astrophysics Data System (ADS)

    Lehtinen, N. G.; Inan, U. S.; Bell, T. F.

    2001-12-01

    The presence of energetic runaway electron beams above thunderstorms is suggested by observations of terrestrial gamma ray flashes [Fishman et al., 1994], as well as by theoretical work [Roussel-Dupré and Gurevich, 1996; Lehtinen et al., 1999], although such beams have not been directly measured. In this paper we consider possible measurable effects of such beams in the conjugate hemisphere as a means to confirm their existence and quantify their properties. High-density relativistic runaway electron beams, driven upward by intense lightning-generated mesospheric quasi-static electric fields, have been predicted [Lehtinen et al., 2000] to be isotropized and thermalized during their interhemispherical traverse along the Earth's magnetic field lines so that only ~10% of the electrons which are below the loss cone should arrive at the geomagnetically conjugate ionosphere. As they encounter the Earth's atmosphere, the energetic electrons would be scattered and produce light and ionization, much like a beam of precipitating auroral electrons. A Monte Carlo approach is used to model the interaction of the downgoing electrons with the conjugate atmosphere, including the backscattering of electrons, as well as production of optical and gamma ray emissions and enhanced secondary ionization. Results indicate that these conjugate ionospheric effects of the runaway electron beam are detectable and thus may be used to quantify the runaway electron mechanism.

  12. Electron-phonon mediated heat flow in disordered graphene

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Clerk, Aashish A.

    2012-09-01

    We calculate the heat flux and electron-phonon thermal conductance in a disordered graphene sheet, going beyond a Fermi’s golden rule approach to fully account for the modification of the electron-phonon interaction by disorder. Using the Keldysh technique combined with standard impurity averaging methods in the regime kFl≫1 (where kF is the Fermi wave vector and l is the mean free path), we consider both scalar potential (i.e., deformation potential) and vector-potential couplings between electrons and phonons. We also consider the effects of electronic screening at the Thomas-Fermi level. We find that the temperature dependence of the heat flux and thermal conductance is sensitive to the presence of disorder and screening, and reflects the underlying chiral nature of electrons in graphene and the corresponding modification of their diffusive behavior. In the case of weak screening, disorder enhances the low-temperature heat flux over the clean system (changing the associated power law from T4 to T3), and the deformation potential dominates. For strong screening, both the deformation potential and vector-potential couplings make comparable contributions, and the low-temperature heat flux obeys a T5 power law.

  13. Ultrafast electron diffraction study of ab-plane dynamics in superconducting Bi2Sr<2CaCu2O8+d

    NASA Astrophysics Data System (ADS)

    Konstantinova, Tatiana; Reid, Alexander; Wu, Lijun; Durr, Hermann; Wang, Xijie; Zhu, Yimei

    The role of phonons and other collective modes in cooperative electron phenomena in high-TC cuprate superconductors is an extensively interesting topic. Time-resolved experiments provide temporal hierarchy of the bosonic modes interacting with electrons. However, majority of research in this field explore dynamics of electronic states and can only make indirect conclusion about involvement of the lattice. We report time-resolved study of optimally doped Bi2Sr2CaCu2O8+d lattice response to photo-excitation by means of ultrafast electron diffraction that is directly sensitive to atomic motion. Data analysis utilizing Bloch-wave calculation of diffraction peak intensity allows separation of Cu-O in-plane vibration building up on the sub picosecond time scale from the low energy phonon population growth with a much slower rate. This study confirms the assumption of strong electron coupling to the Cu-O plane phonons. This work was supported by the US DOE, Office of Science, Basic Energy Science, Materials Science and Engineering Division under Contract No: DE-AC02-98CH10886; DOE LDRD funding under contract DE-AC02-76SF00515 and BNL.

  14. Cavity-photon contribution to the effective interaction of electrons in parallel quantum dots

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Vidar; Sitek, Anna; Abdullah, Nzar Rauf; Tang, Chi-Shung; Manolescu, Andrei

    2016-05-01

    A single cavity photon mode is expected to modify the Coulomb interaction of an electron system in the cavity. Here we investigate this phenomena in a parallel double quantum dot system. We explore properties of the closed system and the system after it has been opened up for electron transport. We show how results for both cases support the idea that the effective electron-electron interaction becomes more repulsive in the presence of a cavity photon field. This can be understood in terms of the cavity photons dressing the polarization terms in the effective mutual electron interaction leading to nontrivial delocalization or polarization of the charge in the double parallel dot potential. In addition, we find that the effective repulsion of the electrons can be reduced by quadrupolar collective oscillations excited by an external classical dipole electric field.

  15. Controlling Spin Coherence with Semiconductor Nanostructures

    NASA Astrophysics Data System (ADS)

    Awschalom, David D.

    We present two emerging opportunities for manipulating and communicating coherent spin states in semiconductors. First, we show that semiconductor microcavities offer unique means of controlling light-matter interactions in confined geometries, resulting in a wide range of applications in optical communications and inspiring proposals for quantum information processing and computational schemes. Studies of spin dynamics in microcavities — a new and promising research field — have revealed novel effects such as polarization beats, stimulated spin scattering, and giant Faraday rotation. Here, we study the electron spin dynamics in optically-pumped GaAs microdisk lasers with quantum wells and interface-fluctuation quantum dots in the active region. In particular, we examine how the electron spin dynamics are modified by the stimulated emission in the disks, and observe an enhancement of the spin coherence time when the optical excitation is in resonance with a high quality (Q ~ 5000) lasing mode.1 This resonant enhancement, contrary to expectations from the observed trend in the carrier recombination time, is then manipulated by altering the cavity design and dimensions. In analogy to devices based on excitonic coherence, this ability to engineer coherent interactions between electron spins and photons may provide novel pathways towards spin dependent quantum optoelectronics. In a second example, the nitrogen-vacancy (N-V) center in diamond has garnered interest as a room-temperature solid-state system not only for exploring electronic and nuclear spin phenomena but also as a candidate for spin-based quantum information processing. Spin coherence times of up to 50 microseconds have been reported for ensembles of N-V centers and a two-qubit gate utilizing the electron spin of a N-V center and the nuclear spin of a nearby C-13 atom has been demonstrated. Here, we present experiments using angle-resolved magneto-photoluminescence microscopy to investigate anisotropic spin interactions of single N-V centers in diamond at room temperature.2 Negative peaks in the photoluminescence intensity are observed as a function of both magnetic field magnitude and angle, and can be explained by coherent spin precession and anisotropic relaxation at spin-level anticrossings. Additionally, precise field alignment with the symmetry axis of a single N-V center reveals the resonant magnetic dipolar coupling of a single "bright" electron spin of an N-V center to small numbers of "dark" spins of nitrogen defects in its immediate vicinity, which are otherwise undetected by photoluminescence. Most recently, we are exploring the possibility of utilizing this magnetic dipole coupling between bright and dark spins to couple two spatially separated single N-V center spins by means of intermediate nitrogen spins. Note from Publisher: This article contains the abstract only.

  16. Allosteric control of internal electron transfer in cytochrome cd1 nitrite reductase

    PubMed Central

    Farver, Ole; Kroneck, Peter M. H.; Zumft, Walter G.; Pecht, Israel

    2003-01-01

    Cytochrome cd1 nitrite reductase is a bifunctional multiheme enzyme catalyzing the one-electron reduction of nitrite to nitric oxide and the four-electron reduction of dioxygen to water. Kinetics and thermodynamics of the internal electron transfer process in the Pseudomonas stutzeri enzyme have been studied and found to be dominated by pronounced interactions between the c and the d1 hemes. The interactions are expressed both in dramatic changes in the internal electron-transfer rates between these sites and in marked cooperativity in their electron affinity. The results constitute a prime example of intraprotein control of the electron-transfer rates by allosteric interactions. PMID:12802018

  17. Ultrafast Magnetization of a Dense Molecular Gas with an Optical Centrifuge.

    PubMed

    Milner, A A; Korobenko, A; Milner, V

    2017-06-16

    Strong laser-induced magnetization of oxygen gas at room temperature and atmospheric pressure is achieved experimentally on the subnanosecond time scale. The method is based on controlling the electronic spin of paramagnetic molecules by means of manipulating their rotation with an optical centrifuge. Spin-rotational coupling results in a high degree of spin polarization on the order of one Bohr magneton per centrifuged molecule. Owing to the nonresonant interaction with the laser pulses, the demonstrated technique is applicable to a broad class of paramagnetic rotors. Executed in a high-density gas, it may offer an efficient way of generating macroscopic magnetic fields remotely (as shown in this work) and producing a large amount of spin-polarized electrons.

  18. Ultrafast Magnetization of a Dense Molecular Gas with an Optical Centrifuge

    NASA Astrophysics Data System (ADS)

    Milner, A. A.; Korobenko, A.; Milner, V.

    2017-06-01

    Strong laser-induced magnetization of oxygen gas at room temperature and atmospheric pressure is achieved experimentally on the subnanosecond time scale. The method is based on controlling the electronic spin of paramagnetic molecules by means of manipulating their rotation with an optical centrifuge. Spin-rotational coupling results in a high degree of spin polarization on the order of one Bohr magneton per centrifuged molecule. Owing to the nonresonant interaction with the laser pulses, the demonstrated technique is applicable to a broad class of paramagnetic rotors. Executed in a high-density gas, it may offer an efficient way of generating macroscopic magnetic fields remotely (as shown in this work) and producing a large amount of spin-polarized electrons.

  19. Effects of space environment on composites: An analytical study of critical experimental parameters

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Carroll, W. F.; Moacanin, J.

    1979-01-01

    A generalized methodology currently employed at JPL, was used to develop an analytical model for effects of high-energy electrons and interactions between electron and ultraviolet effects. Chemical kinetic concepts were applied in defining quantifiable parameters; the need for determining short-lived transient species and their concentration was demonstrated. The results demonstrates a systematic and cost-effective means of addressing the issues and show qualitative and quantitative, applicable relationships between space radiation and simulation parameters. An equally important result is identification of critical initial experiments necessary to further clarify the relationships. Topics discussed include facility and test design; rastered vs. diffuse continuous e-beam; valid acceleration level; simultaneous vs. sequential exposure to different types of radiation; and interruption of test continuity.

  20. Propagation distance-resolved characteristics of filament-induced copper plasma

    DOE PAGES

    Ghebregziabher, Isaac; Hartig, Kyle C.; Jovanovic, Igor

    2016-03-02

    Copper plasma generated at different filament-copper interaction points was characterized by spectroscopic, acoustic, and imaging measurements. The longitudinal variation of the filament intensity was qualitatively determined by acoustic measurements in air. The maximum plasma temperature was measured at the location of peak filament intensity, corresponding to the maximum mean electron energy during plasma formation. The highest copper plasma density was measured past the location of the maximum electron density in the filament, where spectral broadening of the filament leads to enhanced ionization. Acoustic measurements in air and on solid target were correlated to reconstructed plasma properties. Lastly, optimal line emissionmore » is measured near the geometric focus of the lens used to produce the filament.« less

  1. Strongly enhanced thermal transport in a lightly doped Mott insulator at low temperature.

    PubMed

    Zlatić, V; Freericks, J K

    2012-12-28

    We show how a lightly doped Mott insulator has hugely enhanced electronic thermal transport at low temperature. It displays universal behavior independent of the interaction strength when the carriers can be treated as nondegenerate fermions and a nonuniversal "crossover" region where the Lorenz number grows to large values, while still maintaining a large thermoelectric figure of merit. The electron dynamics are described by the Falicov-Kimball model which is solved for arbitrary large on-site correlation with a dynamical mean-field theory algorithm on a Bethe lattice. We show how these results are generic for lightly doped Mott insulators as long as the renormalized Fermi liquid scale is pushed to very low temperature and the system is not magnetically ordered.

  2. K-shell Photoionization of Na-like to Cl-like Ions of Mg, Si, S, Ar, and Ca

    NASA Technical Reports Server (NTRS)

    Witthoeft, M. C.; Garcia, J.; Kallman, T. R.; Bautista, M. A.; Mendoza, C.; Palmeri, P.; Quinet, P.

    2010-01-01

    We present R-matrix calculations of photoabsorption and photoionization cross sections across the K edge of Mg, Si, S, Ar, and Ca ions with more than 10 electrons. The calculations include the effects of radiative and Auger damping by means of an optical potential. The wave functions are constructed from single-electron. orbital bases obtained using a Thomas-Fermi-Dirac statistical model potential. Configuration interaction is considered among all states up to n = 3. The damping processes affect the resonances converging to the K-thresholds causing them to display symmetric profiles of constant width that smear the otherwise sharp edge at the photoionization threshold. These data are important for the modeling of features found in photoionized plasmas.

  3. Electronic structure of graphene- and BN-supported phosphorene

    NASA Astrophysics Data System (ADS)

    Davletshin, Artur R.; Ustiuzhanina, Svetlana V.; Kistanov, Andrey A.; Saadatmand, Danial; Dmitriev, Sergey V.; Zhou, Kun; Korznikova, Elena A.

    2018-04-01

    By using first-principles calculations, the effects of graphene and boron nitride (BN) substrates on the electronic properties of phosphorene are studied. Graphene-supported phosphorene is found to be metallic, while the BN-supported phosphorene is a semiconductor with a moderate band gap of 1.02 eV. Furthermore, the effects of the van der Waals interactions between the phosphorene and graphene or BN layers by means of the interlayer distance change are investigated. It is shown that the interlayer distance change leads to significant band gap size modulations and direct-indirect band gap transitions in the phosphorene-BN heterostructure. The presented band gap engineering of phosphorene may be a powerful technique for the fabrication of high-performance phosphorene-based nanodevices.

  4. Stable quasi-monoenergetic ion acceleration from the laser-driven shocks in a collisional plasma

    NASA Astrophysics Data System (ADS)

    Bhadoria, Shikha; Kumar, Naveen; Keitel, Christoph H.

    2017-10-01

    Effect of collisions on the shock formation and subsequent ion acceleration from the laser-plasma interaction is explored by the means of particle-in-cell simulations. In this setup, the incident laser pushes the laser-plasma interface inside the plasma target through the hole-boring effect and generates hot electrons. The propagation of these hot electrons inside the target excites a return plasma current, leading to filamentary structures caused by the Weibel/filamentation instability. Weakening of the space-charge effects due to collisions results in the shock formation with a higher density jump than in a collisionless plasma. This results in the formation of a stronger shock leading to a stable quasi-monoenergetic acceleration of ions.

  5. Electron spin resonance modes in a strong-leg ladder in the Tomonaga-Luttinger liquid phase

    NASA Astrophysics Data System (ADS)

    Ozerov, M.; Maksymenko, M.; Wosnitza, J.; Honecker, A.; Landee, C. P.; Turnbull, M. M.; Furuya, S. C.; Giamarchi, T.; Zvyagin, S. A.

    2015-12-01

    Magnetic excitations in the strong-leg quantum spin ladder compound (C7H10N) 2CuBr4 (known as DIMPY) in the field-induced Tomonaga-Luttinger spin-liquid phase are studied by means of high-field electron spin resonance (ESR) spectroscopy. The presence of a gapped ESR mode with unusual nonlinear frequency-field dependence is revealed experimentally. Using a combination of analytic and exact-diagonalization methods, we compute the dynamical structure factor and identify this mode with longitudinal excitations in the antisymmetric channel. We argue that these excitations constitute a fingerprint of the spin dynamics in a strong-leg spin-1/2 Heisenberg antiferromagnetic ladder and owe their ESR observability to the uniform Dzyaloshinskii-Moriya interaction.

  6. Electron-electron interaction and spin-orbit coupling in InAs/AlSb heterostructures with a two-dimensional electron gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavrilenko, V. I.; Krishtopenko, S. S., E-mail: ds_a-teens@mail.ru; Goiran, M.

    2011-01-15

    The effect of electron-electron interaction on the spectrum of two-dimensional electron states in InAs/AlSb (001) heterostructures with a GaSb cap layer with one filled size-quantization subband. The energy spectrum of two-dimensional electrons is calculated in the Hartree and Hartree-Fock approximations. It is shown that the exchange interaction decreasing the electron energy in subbands increases the energy gap between subbands and the spin-orbit splitting of the spectrum in the entire region of electron concentrations, at which only the lower size-quantization band is filled. The nonlinear dependence of the Rashba splitting constant at the Fermi wave vector on the concentration of two-dimensionalmore » electrons is demonstrated.« less

  7. Comment on "Generalization of the Kohn-Sham system that can represent arbitrary one-electron density matrices"

    NASA Astrophysics Data System (ADS)

    Piris, Mario; Pernal, Katarzyna

    2017-10-01

    van Dam [Phys. Rev. A 93, 052512 (2016), 10.1103/PhysRevA.93.052512] claims that the one-particle reduced density matrix (1RDM) of an interacting system can be represented by means of a single-determinant wave function of fictitious noninteracting particles. van Dam [Phys. Rev. A 93, 052512 (2016), 10.1103/PhysRevA.93.052512] introduced orbitals within a mean-field framework that produce energy levels similar to Hartree-Fock orbital energies, therefore he also claims that conventional analyses based on Koopmans' theorem are possible in 1RDM functional theory. In this Comment, we demonstrate that both claims are unfounded.

  8. Ab initio study of the Coulomb interaction in NbxCo clusters: Strong on-site versus weak nonlocal screening

    NASA Astrophysics Data System (ADS)

    Peters, L.; Şaşıoǧlu, E.; Mertig, I.; Katsnelson, M. I.

    2018-01-01

    By means of ab initio calculations in conjunction with the random-phase approximation (RPA) within the full-potential linearized augmented plane wave method, we study the screening of the Coulomb interaction in NbxCo (1 ≤x ≤9 ) clusters. In addition, these results are compared with pure bcc Nb bulk. We find that for all clusters the on-site Coulomb interaction in RPA is strongly screened, whereas the intersite nonlocal Coulomb interaction is weakly screened and for some clusters it is unscreened or even antiscreened. This is in strong contrast with pure Nb bulk, where the intersite Coulomb interaction is almost completely screened. Furthermore, constrained RPA calculations reveal that the contribution of the Co 3 d → 3 d channel to the total screening of the Co 3 d electrons is small. Moreover, we find that both the on-site and intersite Coulomb interaction parameters decrease in a reasonable approximation linearly with the cluster size and for clusters having more than 20 Nb atoms a transition from 0D to 3D screening is expected to take place.

  9. Measurement of the magnetic interaction between two bound electrons of two separate ions.

    PubMed

    Kotler, Shlomi; Akerman, Nitzan; Navon, Nir; Glickman, Yinnon; Ozeri, Roee

    2014-06-19

    Electrons have an intrinsic, indivisible, magnetic dipole aligned with their internal angular momentum (spin). The magnetic interaction between two electronic spins can therefore impose a change in their orientation. Similar dipolar magnetic interactions exist between other spin systems and have been studied experimentally. Examples include the interaction between an electron and its nucleus and the interaction between several multi-electron spin complexes. The challenge in observing such interactions for two electrons is twofold. First, at the atomic scale, where the coupling is relatively large, it is often dominated by the much larger Coulomb exchange counterpart. Second, on scales that are substantially larger than the atomic, the magnetic coupling is very weak and can be well below the ambient magnetic noise. Here we report the measurement of the magnetic interaction between the two ground-state spin-1/2 valence electrons of two (88)Sr(+) ions, co-trapped in an electric Paul trap. We varied the ion separation, d, between 2.18 and 2.76 micrometres and measured the electrons' weak, millihertz-scale, magnetic interaction as a function of distance, in the presence of magnetic noise that was six orders of magnitude larger than the magnetic fields the electrons apply on each other. The cooperative spin dynamics was kept coherent for 15 seconds, during which spin entanglement was generated, as verified by a negative measured value of -0.16 for the swap entanglement witness. The sensitivity necessary for this measurement was provided by restricting the spin evolution to a decoherence-free subspace that is immune to collective magnetic field noise. Our measurements show a d(-3.0(4)) distance dependence for the coupling, consistent with the inverse-cube law.

  10. Fast-Ion Spectrometry of ICF Implosions and Laser-Foil Experiments at the Omega and MTW Laser Facilities

    NASA Astrophysics Data System (ADS)

    Sinenian, Nareg

    Fast ions generated from laser-plasma interactions (LPI) have been used to study inertial confinement fusion (ICF) implosions and laser-foil interactions. LPI, which vary in nature depending on the wavelength and intensity of the driver, generate hot electrons with temperatures ranging from tens to thousands of kilo-electron-volts. These electrons, which accelerate the ions measured in this work, can be either detrimental or essential to implosion performance depending on the ICF scheme employed. In direct-drive hot-spot ignition, hot electrons can preheat the fuel and raise the adiabat, potentially degrading compression in the implosion. The amount of preheat depends on the hot-electron source characteristics and the time duration over which electrons can deposit energy into the fuel. This time duration is prescribed by the evolution of a sheath that surrounds the implosion and traps electrons. Fast-ion measurements have been used to develop a circuit model that describes the time decay of the sheath voltage for typical OMEGA implosions. In the context of electron fast ignition, the produced fast ions are considered a loss channel that has been characterized for the first time. These ions have also been used as a diagnostic tool to infer the temperature of the hot electrons in fast-ignition experiments. It has also been shown that the hot-electron temperature scales with laser intensity as expected, but is enhanced by a factor of 2-3. This enhancement is possibly due to relativistic effects and leads to poor implosion performance. Finally, fast-ion generation by ultra-intense lasers has also been studied using planar targets. The mean and maximum energies of protons and heavy ions has been measured, and it has been shown that a two-temperature hot-electron distribution affects the energies of heavy ions and protons. This work is important for advanced fusion concepts that utilize ion beams and also has applications in medicine. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)

  11. Breit interaction effects in relativistic theory of the nuclear spin-rotation tensor.

    PubMed

    Aucar, I Agustín; Gómez, Sergio S; Giribet, Claudia G; Ruiz de Azúa, Martín C

    2013-09-07

    In this work, relativistic effects on the nuclear spin-rotation (SR) tensor originated in the electron-nucleus and electron-electron Breit interactions are analysed. To this end, four-component numerical calculations were carried out in model systems HX (X=H,F,Cl,Br,I). The electron-nucleus Breit interaction couples the electrons and nuclei dynamics giving rise to a purely relativistic contribution to the SR tensor. Its leading order in 1/c is of the same value as that of relativistic corrections on the usual second order expression of the SR tensor considered in previous work [I. A. Aucar, S. S. Gómez, J. I. Melo, C. G. Giribet, and M. C. Ruiz de Azúa, J. Chem. Phys. 138, 134107 (2013)], and therefore it is absolutely necessary to establish its relative importance. For the sake of completeness, the corresponding effect originating in the electron-electron Breit interaction is also considered. It is verified that in all cases these Breit interactions yield only very small corrections to the SR tensors of both the X and H nuclei in the present series of compounds. Results of the present work strongly suggest that in order to achieve experimental accuracy in the theoretical study of the SR tensor both electron-nucleus and electron-electron Breit effects can be safely neglected.

  12. Combined first-principles and model Hamiltonian study of the perovskite series R MnO 3 (R =La ,Pr ,Nd ,Sm ,Eu , and Gd )

    NASA Astrophysics Data System (ADS)

    Kováčik, Roman; Murthy, Sowmya Sathyanarayana; Quiroga, Carmen E.; Ederer, Claude; Franchini, Cesare

    2016-02-01

    We merge advanced ab initio schemes (standard density functional theory, hybrid functionals, and the G W approximation) with model Hamiltonian approaches (tight-binding and Heisenberg Hamiltonian) to study the evolution of the electronic, magnetic, and dielectric properties of the manganite family R MnO3 (R =La,Pr,Nd,Sm,Eu, and Gd) . The link between first principles and tight binding is established by downfolding the physically relevant subset of 3 d bands with eg character by means of maximally localized Wannier functions (MLWFs) using the VASP2WANNIER90 interface. The MLWFs are then used to construct a general tight-binding Hamiltonian written as a sum of the kinetic term, the Hund's rule coupling, the JT coupling, and the electron-electron interaction. The dispersion of the tight-binding (TB) eg bands at all levels are found to match closely the MLWFs. We provide a complete set of TB parameters which can serve as guidance for the interpretation of future studies based on many-body Hamiltonian approaches. In particular, we find that the Hund's rule coupling strength, the Jahn-Teller coupling strength, and the Hubbard interaction parameter U remain nearly constant for all the members of the R MnO3 series, whereas the nearest-neighbor hopping amplitudes show a monotonic attenuation as expected from the trend of the tolerance factor. Magnetic exchange interactions, computed by mapping a large set of hybrid functional total energies onto an Heisenberg Hamiltonian, clarify the origin of the A-type magnetic ordering observed in the early rare-earth manganite series as arising from a net negative out-of-plane interaction energy. The obtained exchange parameters are used to estimate the Néel temperature by means of Monte Carlo simulations. The resulting data capture well the monotonic decrease of the ordering temperature down the series from R =La to Gd, in agreement with experiments. This trend correlates well with the modulation of structural properties, in particular with the progressive reduction of the Mn-O-Mn bond angle which is associated with the quenching of the volume and the decrease of the tolerance factor due to the shrinkage of the ionic radii of R going from La to Gd.

  13. X-ray two-photon absorption with high fluence XFEL pulses

    DOE PAGES

    Hoszowska, Joanna; Szlachetko, J.; Dousse, J. -Cl.; ...

    2015-09-07

    Here, we report on nonlinear interaction of solid Fe with intense femtosecond hard x-ray free-electron laser (XFEL) pulses. The experiment was performed at the CXI end-station of the Linac Coherent Light Source (LCLS) by means of high- resolution x-ray emission spectroscopy. The focused x-ray beam provided extreme fluence of ~10 5 photons/Å 2. Two-photon absorption leading to K-shell hollow atom formation and to single K-shell ionization of solid Fe was investigated.

  14. Poem: A Fast Monte Carlo Code for the Calculation of X-Ray Transition Zone Dose and Current

    DTIC Science & Technology

    1975-01-15

    stored on the photon interaction data tape. Following the photoelectric ionization the atom will relax emitting either a fluorescent photon or an Auger 50...shell fluorescence yield CL have been obtained from the Storm and Israel1 9 and 25 Bambynek, et al. compilations, with preference given to the...Bambynek compilation, and stored on the photon inter- action data tape. The mean M fluorescence yield wM is approximated by zero. The total electron source

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papashvili, A G; Smetanin, S N; Doroshenko, M E

    A study of spectral and laser properties of the LiF : F{sub 2}{sup -} crystal at low temperatures has revealed an electronic – vibrational interaction of electrons of the F{sub 2}{sup -} centre with the local vibration of the centre, which occurs against the background of coupling between electrons of F{sub 2}{sup -} centres and lattice phonons. The interaction of electrons with the local vibration manifests itself in spectra in the form of narrow lines superimposed on wide electron – phonon lines that are due to the electron – lattice interaction. An anomalous behaviour of spectral LiF : F{sub 2}{supmore » -} laser lines is also found at liquid nitrogen temperature upon selective excitation; this behaviour is explained by the difference in the probabilities of the lattice and local interactions. (active media)« less

  16. The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors

    PubMed Central

    Thorman, Rachel M; Kumar T. P., Ragesh; Fairbrother, D Howard

    2015-01-01

    Summary Focused electron beam induced deposition (FEBID) is a single-step, direct-write nanofabrication technique capable of writing three-dimensional metal-containing nanoscale structures on surfaces using electron-induced reactions of organometallic precursors. Currently FEBID is, however, limited in resolution due to deposition outside the area of the primary electron beam and in metal purity due to incomplete precursor decomposition. Both limitations are likely in part caused by reactions of precursor molecules with low-energy (<100 eV) secondary electrons generated by interactions of the primary beam with the substrate. These low-energy electrons are abundant both inside and outside the area of the primary electron beam and are associated with reactions causing incomplete ligand dissociation from FEBID precursors. As it is not possible to directly study the effects of secondary electrons in situ in FEBID, other means must be used to elucidate their role. In this context, gas phase studies can obtain well-resolved information on low-energy electron-induced reactions with FEBID precursors by studying isolated molecules interacting with single electrons of well-defined energy. In contrast, ultra-high vacuum surface studies on adsorbed precursor molecules can provide information on surface speciation and identify species desorbing from a substrate during electron irradiation under conditions more representative of FEBID. Comparing gas phase and surface science studies allows for insight into the primary deposition mechanisms for individual precursors; ideally, this information can be used to design future FEBID precursors and optimize deposition conditions. In this review, we give a summary of different low-energy electron-induced fragmentation processes that can be initiated by the secondary electrons generated in FEBID, specifically, dissociative electron attachment, dissociative ionization, neutral dissociation, and dipolar dissociation, emphasizing the different nature and energy dependence of each process. We then explore the value of studying these processes through comparative gas phase and surface studies for four commonly-used FEBID precursors: MeCpPtMe3, Pt(PF3)4, Co(CO)3NO, and W(CO)6. Through these case studies, it is evident that this combination of studies can provide valuable insight into potential mechanisms governing deposit formation in FEBID. Although further experiments and new approaches are needed, these studies are an important stepping-stone toward better understanding the fundamental physics behind the deposition process and establishing design criteria for optimized FEBID precursors. PMID:26665061

  17. The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors.

    PubMed

    Thorman, Rachel M; Kumar T P, Ragesh; Fairbrother, D Howard; Ingólfsson, Oddur

    2015-01-01

    Focused electron beam induced deposition (FEBID) is a single-step, direct-write nanofabrication technique capable of writing three-dimensional metal-containing nanoscale structures on surfaces using electron-induced reactions of organometallic precursors. Currently FEBID is, however, limited in resolution due to deposition outside the area of the primary electron beam and in metal purity due to incomplete precursor decomposition. Both limitations are likely in part caused by reactions of precursor molecules with low-energy (<100 eV) secondary electrons generated by interactions of the primary beam with the substrate. These low-energy electrons are abundant both inside and outside the area of the primary electron beam and are associated with reactions causing incomplete ligand dissociation from FEBID precursors. As it is not possible to directly study the effects of secondary electrons in situ in FEBID, other means must be used to elucidate their role. In this context, gas phase studies can obtain well-resolved information on low-energy electron-induced reactions with FEBID precursors by studying isolated molecules interacting with single electrons of well-defined energy. In contrast, ultra-high vacuum surface studies on adsorbed precursor molecules can provide information on surface speciation and identify species desorbing from a substrate during electron irradiation under conditions more representative of FEBID. Comparing gas phase and surface science studies allows for insight into the primary deposition mechanisms for individual precursors; ideally, this information can be used to design future FEBID precursors and optimize deposition conditions. In this review, we give a summary of different low-energy electron-induced fragmentation processes that can be initiated by the secondary electrons generated in FEBID, specifically, dissociative electron attachment, dissociative ionization, neutral dissociation, and dipolar dissociation, emphasizing the different nature and energy dependence of each process. We then explore the value of studying these processes through comparative gas phase and surface studies for four commonly-used FEBID precursors: MeCpPtMe3, Pt(PF3)4, Co(CO)3NO, and W(CO)6. Through these case studies, it is evident that this combination of studies can provide valuable insight into potential mechanisms governing deposit formation in FEBID. Although further experiments and new approaches are needed, these studies are an important stepping-stone toward better understanding the fundamental physics behind the deposition process and establishing design criteria for optimized FEBID precursors.

  18. A new fluorogenic sensing platform for salicylic acid derivatives based on π-π and NH-π interactions between electron-deficient and electron-rich aromatics.

    PubMed

    Pandith, Anup; Hazra, Giridhari; Kim, Hong-Seok

    2017-05-05

    A novel simple fluorescent probe was designed for the recognition of electron-rich salicylic acid derivatives (SAs). The imidazole-appended aminomethyl perylene probe 1 selectively differentiated between electron-rich amino-SAs and electron-deficient nitro-SAs in EtOH, exhibiting the highest selectivity and sensitivity toward 5-aminosalicylic acid (5-ASA) and showing strong 1:1 binding (K a =1.37×10 7 M -1 ). This high selectivity and sensitivity resulted from the synergistic multiple hydrogen bonding interactions of secondary amine and imidazole units and π-π interactions between electron-rich and electron-deficient rings, along with the unusual NH-π interactions between 5-ASA and the perylene moiety of 1. The limit of detection (LOD) for 5-ASA in EtOH was 0.012ppb. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Negative exchange interactions in coupled few-electron quantum dots

    NASA Astrophysics Data System (ADS)

    Deng, Kuangyin; Calderon-Vargas, F. A.; Mayhall, Nicholas J.; Barnes, Edwin

    2018-06-01

    It has been experimentally shown that negative exchange interactions can arise in a linear three-dot system when a two-electron double quantum dot is exchange coupled to a larger quantum dot containing on the order of one hundred electrons. The origin of this negative exchange can be traced to the larger quantum dot exhibiting a spin tripletlike rather than singletlike ground state. Here we show using a microscopic model based on the configuration interaction (CI) method that both tripletlike and singletlike ground states are realized depending on the number of electrons. In the case of only four electrons, a full CI calculation reveals that tripletlike ground states occur for sufficiently large dots. These results hold for symmetric and asymmetric quantum dots in both Si and GaAs, showing that negative exchange interactions are robust in few-electron double quantum dots and do not require large numbers of electrons.

  20. Specular reflectivity and hot-electron generation in high-contrast relativistic laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Kemp, Gregory Elijah

    Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the cost of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic laser-plasma interactions. Spatial, temporal and spectral properties of the incident and specular pulses, both near and far away from the interaction region where experimental measurements are obtained, are used to benchmark simulations designed to infer dominant hot-electron acceleration mechanisms and their corresponding energy/angular distributions. To handle this highly coupled interaction, I employed particle-in-cell modeling using a wide variety of algorithms (verified to be numerically stable and consistent with analytic expressions) and physical models (validated by experimental results) to reasonably model the interaction's sweeping range of plasma densities, temporal and spatial scales, electromagnetic wave propagation and its interaction with solid density matter. Due to the fluctuations in the experimental conditions and limited computational resources, only a limited number of full-scale simulations were performed under typical experimental conditions to infer the relevant physical phenomena in the interactions. I show the usefulness of the often overlooked specular reflectivity measurements in constraining both high and low-contrast simulations, as well as limitations of their experimental interpretations. Using these experimental measurements to reasonably constrain the simulation results, I discuss the sensitivity of relativistic electron generation in ultra-intense laser plasma interactions to initial target conditions and the dynamic evolution of the interaction region.

  1. The Statistical Properties of Solar Wind Temperature Parameters Near 1 au

    NASA Astrophysics Data System (ADS)

    Wilson, Lynn B., III; Stevens, Michael L.; Kasper, Justin C.; Klein, Kristopher G.; Maruca, Bennett A.; Bale, Stuart D.; Bowen, Trevor A.; Pulupa, Marc P.; Salem, Chadi S.

    2018-06-01

    We present a long-duration (∼10 yr) statistical analysis of the temperatures, plasma betas, and temperature ratios for the electron, proton, and alpha-particle populations observed by the Wind spacecraft near 1 au. The mean(median) scalar temperatures are T e,tot = 12.2(11.9) eV, T p,tot = 12.7(8.6) eV, and T α,tot = 23.9(10.8) eV. The mean(median) total plasma betas are β e,tot = 2.31(1.09), β p,tot = 1.79(1.05), and β α,tot = 0.17(0.05). The mean(median) temperature ratios are (T e /T p )tot = 1.64(1.27), (T e /T α )tot = 1.24(0.82), and (T α /T p )tot = 2.50(1.94). We also examined these parameters during time intervals that exclude interplanetary (IP) shocks, times within the magnetic obstacles (MOs) of interplanetary coronal mass ejections (ICMEs), and times that exclude MOs. The only times that show significant alterations to any of the parameters examined are those during MOs. In fact, the only parameter that does not show a significant change during MOs is the electron temperature. Although each parameter shows a broad range of values, the vast majority are near the median. We also compute particle–particle collision rates and compare to effective wave–particle collision rates. We find that, for reasonable assumptions of wave amplitude and occurrence rates, the effect of wave–particle interactions on the plasma is equal to or greater than the effect of Coulomb collisions. Thus, wave–particle interactions should not be neglected when modeling the solar wind.

  2. Rippled beam free electron laser amplifier

    DOEpatents

    Carlsten, Bruce E.

    1999-01-01

    A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

  3. Interactive or static reports to guide clinical interpretation of cancer genomics.

    PubMed

    Gray, Stacy W; Gagan, Jeffrey; Cerami, Ethan; Cronin, Angel M; Uno, Hajime; Oliver, Nelly; Lowenstein, Carol; Lederman, Ruth; Revette, Anna; Suarez, Aaron; Lee, Charlotte; Bryan, Jordan; Sholl, Lynette; Van Allen, Eliezer M

    2018-05-01

    Misinterpretation of complex genomic data presents a major challenge in the implementation of precision oncology. We sought to determine whether interactive genomic reports with embedded clinician education and optimized data visualization improved genomic data interpretation. We conducted a randomized, vignette-based survey study to determine whether exposure to interactive reports for a somatic gene panel, as compared to static reports, improves physicians' genomic comprehension and report-related satisfaction (overall scores calculated across 3 vignettes, range 0-18 and 1-4, respectively, higher score corresponding with improved endpoints). One hundred and five physicians at a tertiary cancer center participated (29% participation rate): 67% medical, 20% pediatric, 7% radiation, and 7% surgical oncology; 37% female. Prior to viewing the case-based vignettes, 34% of the physicians reported difficulty making treatment recommendations based on the standard static report. After vignette/report exposure, physicians' overall comprehension scores did not differ by report type (mean score: interactive 11.6 vs static 10.5, difference = 1.1, 95% CI, -0.3, 2.5, P = .13). However, physicians exposed to the interactive report were more likely to correctly assess sequencing quality (P < .001) and understand when reports needed to be interpreted with caution (eg, low tumor purity; P = .02). Overall satisfaction scores were higher in the interactive group (mean score 2.5 vs 2.1, difference = 0.4, 95% CI, 0.2-0.7, P = .001). Interactive genomic reports may improve physicians' ability to accurately assess genomic data and increase report-related satisfaction. Additional research in users' genomic needs and efforts to integrate interactive reports into electronic health records may facilitate the implementation of precision oncology.

  4. A measurement of electron-wall interactions using transmission diffraction from nanofabricated gratings

    NASA Astrophysics Data System (ADS)

    Barwick, Brett; Gronniger, Glen; Yuan, Lu; Liou, Sy-Hwang; Batelaan, Herman

    2006-10-01

    Electron diffraction from metal coated freestanding nanofabricated gratings is presented, with a quantitative path integral analysis of the electron-grating interactions. Electron diffraction out to the 20th order was observed indicating the high quality of our nanofabricated gratings. The electron beam is collimated to its diffraction limit with ion-milled material slits. Our path integral analysis is first tested against single slit electron diffraction, and then further expanded with the same theoretical approach to describe grating diffraction. Rotation of the grating with respect to the incident electron beam varies the effective distance between the electron and grating bars. This allows the measurement of the image charge potential between the electron and the grating bars. Image charge potentials that were about 15% of the value for that of a pure electron-metal wall interaction were found. We varied the electron energy from 50to900eV. The interaction time is of the order of typical metal image charge response times and in principle allows the investigation of image charge formation. In addition to the image charge interaction there is a dephasing process reducing the transverse coherence length of the electron wave. The dephasing process causes broadening of the diffraction peaks and is consistent with a model that ascribes the dephasing process to microscopic contact potentials. Surface structures with length scales of about 200nm observed with a scanning tunneling microscope, and dephasing interaction strength typical of contact potentials of 0.35eV support this claim. Such a dephasing model motivated the investigation of different metallic coatings, in particular Ni, Ti, Al, and different thickness Au-Pd coatings. Improved quality of diffraction patterns was found for Ni. This coating made electron diffraction possible at energies as low as 50eV. This energy was limited by our electron gun design. These results are particularly relevant for the use of these gratings as coherent beam splitters in low energy electron interferometry.

  5. Mobile technology: Creation and use of an iBook to teach the anatomy of the brachial plexus.

    PubMed

    Stewart, Stuart; Choudhury, Bipasha

    2015-01-01

    In an era of digitally connected students, there is a demand for academic material to be delivered through electronic mobile devices and not just through traditional methods such as lectures and tutorials. A digital interactive book-iBook (for use on the Apple iPad)-was created to teach undergraduate anatomical science students (n = 26) four key areas of the brachial plexus: definitions, gross anatomy, relative anatomy, and functions of terminal branches. Students were asked to complete preresource and postresource questionnaires, which were used to calculate the mean improvement score and ultimately the efficacy of the resource. Free text comments were gathered to evaluate student opinions on this mode of learning. The mean score on the preresource and postresource questionnaires was 4.07 of 8 and 5.69 of 8, respectively. The overall mean improvement score was 1.62, determined statistically significant by a dependent t-test (P = 0.0004). Findings demonstrate that digital books on the iPad provide a uniquely interactive way of delivering information and engaging students. Furthermore, digital books can be used alongside traditional methods of teaching anatomy to enhance and promote deep learning in students. © 2014 American Association of Anatomists.

  6. How 3D immersive visualization is changing medical diagnostics

    NASA Astrophysics Data System (ADS)

    Koning, Anton H. J.

    2011-03-01

    Originally the only way to look inside the human body without opening it up was by means of two dimensional (2D) images obtained using X-ray equipment. The fact that human anatomy is inherently three dimensional leads to ambiguities in interpretation and problems of occlusion. Three dimensional (3D) imaging modalities such as CT, MRI and 3D ultrasound remove these drawbacks and are now part of routine medical care. While most hospitals 'have gone digital', meaning that the images are no longer printed on film, they are still being viewed on 2D screens. However, this way valuable depth information is lost, and some interactions become unnecessarily complex or even unfeasible. Using a virtual reality (VR) system to present volumetric data means that depth information is presented to the viewer and 3D interaction is made possible. At the Erasmus MC we have developed V-Scope, an immersive volume visualization system for visualizing a variety of (bio-)medical volumetric datasets, ranging from 3D ultrasound, via CT and MRI, to confocal microscopy, OPT and 3D electron-microscopy data. In this talk we will address the advantages of such a system for both medical diagnostics as well as for (bio)medical research.

  7. Propagation of modulated electron and X-ray beams through matter and interactions with radio-frequency structures

    NASA Astrophysics Data System (ADS)

    Harris, J. R.; Miller, R. B.

    2018-02-01

    The generation and evolution of modulated particle beams and their interactions with resonant radiofrequency (RF) structures are of fundamental interest for both particle accelerator and vacuum electronic systems. When the constraint of propagation in a vacuum is removed, the evolution of such beams can be greatly affected by interactions with matter including scattering, absorption, generation of atmospheric plasma, and the production of multiple generations of secondary particles. Here, we study the propagation of 21 MeV and 25 MeV electron beams produced in S-band and L-band linear accelerators, and their interaction with resonant RF structures, under a number of combinations of geometry, including transmission through both air and metal. Both resonant and nonresonant interactions were observed, with the resonant interactions indicating that the RF modulation on the electron beam is at least partially preserved as the beam propagates through air and metal. When significant thicknesses of metal are placed upstream of a resonant structure, preventing any primary beam electrons from reaching the structure, RF signals could still be induced in the structures. This indicated that the RF modulation present on the electron beam was also impressed onto the x-rays generated when the primary electrons were stopped in the metal, and that this RF modulation was also present on the secondary electrons generated when the x-rays struck the resonant structures. The nature of these interactions and their sensitivities to changes in system configurations will be discussed.

  8. Quantitative analysis of intermolecular interactions in orthorhombic rubrene

    DOE PAGES

    Hathwar, Venkatesha R.; Sist, Mattia; Jørgensen, Mads R. V.; ...

    2015-08-14

    Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically,more » the presence of C π...C πinteractions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI) analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H—H interactions. The electron density features of H—H bonding, and the interaction energy of molecular dimers connected by H—H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. Finally, the quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations.« less

  9. A Scheme for the Evaluation of Electron Delocalization and Conjugation Efficiency in Linearly π-Conjugated Systems.

    PubMed

    Bruschi, Maurizio; Limacher, Peter A; Hutter, Jürg; Lüthi, Hans Peter

    2009-03-10

    In this study, we present a scheme for the evaluation of electron delocalization and conjugation efficiency in lineraly π-conjugated systems. The scheme, based on the natural bond orbital theory, allows monitoring the evolution of electron delocalization along an extended conjugation path as well as its response to chemical modification. The scheme presented is evaluated and illustrated by means of a computational investigation of π-conjugation in all-trans polyacetylene [PA; H(-CH═CH)n-H], polydiacetylene [PDA, H(-C≡C-CH═CH)n-H], and polytriacetylene [PTA, H(-C≡C-CH═CH-C≡C)n-H] with up to 180 carbon atoms, all related by the number of ethynyl units incorporated in the chain. We are able to show that for short oligomers the incorporation of ethynyl spacers into the PA chain increases the π-delocalization energy, but, on the other hand, reduces the efficiency with which π-electron delocalization is promoted along the backbone. This explains the generally shorter effective conjugation lengths observed for the properties of the polyeneynes (PDA and PTA) relative to the polyenes (PA). It will also be shown that the reduced conjugation efficiency, within the NBO-based model presented in this work, can be related to the orbital interaction pattern along the π-conjugated chain. We will show that the orbital interaction energy pattern is characteristic for the type and the length of the backbone and may therefore serve as a descriptor for linearly π-conjugated chains.

  10. Nuclear spin relaxation in ligands outside of the first coordination sphere in a gadolinium (III) complex: Effects of intermolecular forces

    NASA Astrophysics Data System (ADS)

    Kruk, Danuta; Kowalewski, Jozef

    2002-07-01

    This article describes paramagnetic relaxation enhancement (PRE) in systems with high electron spin, S, where there is molecular interaction between a paramagnetic ion and a ligand outside of the first coordination sphere. The new feature of our treatment is an improved handling of the electron-spin relaxation, making use of the Redfield theory. Following a common approach, a well-defined second coordination sphere is assumed, and the PRE contribution from these more distant and shorter-lived ligands is treated in a way similar to that used for the first coordination sphere. This model is called "ordered second sphere," OSS. In addition, we develop here a formalism similar to that of Hwang and Freed [J. Chem. Phys. 63, 4017 (1975)], but accounting for the electron-spin relaxation effects. We denote this formalism "diffuse second sphere," DSS. The description of the dynamics of the intermolecular dipole-dipole interaction is based on the Smoluchowski equation, with a potential of mean force related to the radial distribution function. We have used a finite-difference method to calculate numerically a correlation function for translational motion, taking into account the intermolecular forces leading to an arbitrary radial distribution of the ligand protons. The OSS and DSS models, including the Redfield description of the electron-spin relaxation, were used to interpret the PRE in an aqueous solution of a slowly rotating gadolinium (III) complex (S=7/2) bound to a protein.

  11. Electronic couplings for molecular charge transfer: Benchmarking CDFT, FODFT, and FODFTB against high-level ab initio calculations

    NASA Astrophysics Data System (ADS)

    Kubas, Adam; Hoffmann, Felix; Heck, Alexander; Oberhofer, Harald; Elstner, Marcus; Blumberger, Jochen

    2014-03-01

    We introduce a database (HAB11) of electronic coupling matrix elements (Hab) for electron transfer in 11 π-conjugated organic homo-dimer cations. High-level ab inito calculations at the multireference configuration interaction MRCI+Q level of theory, n-electron valence state perturbation theory NEVPT2, and (spin-component scaled) approximate coupled cluster model (SCS)-CC2 are reported for this database to assess the performance of three DFT methods of decreasing computational cost, including constrained density functional theory (CDFT), fragment-orbital DFT (FODFT), and self-consistent charge density functional tight-binding (FODFTB). We find that the CDFT approach in combination with a modified PBE functional containing 50% Hartree-Fock exchange gives best results for absolute Hab values (mean relative unsigned error = 5.3%) and exponential distance decay constants β (4.3%). CDFT in combination with pure PBE overestimates couplings by 38.7% due to a too diffuse excess charge distribution, whereas the economic FODFT and highly cost-effective FODFTB methods underestimate couplings by 37.6% and 42.4%, respectively, due to neglect of interaction between donor and acceptor. The errors are systematic, however, and can be significantly reduced by applying a uniform scaling factor for each method. Applications to dimers outside the database, specifically rotated thiophene dimers and larger acenes up to pentacene, suggests that the same scaling procedure significantly improves the FODFT and FODFTB results for larger π-conjugated systems relevant to organic semiconductors and DNA.

  12. Commentary: Lost in translation? How electronic health records structure communication, relationships, and meaning.

    PubMed

    Lown, Beth A; Rodriguez, Dayron

    2012-04-01

    The media through which we communicate shape how we think, how we act, and who we are. Electronic health records (EHRs) may promote more effective, efficient, coordinated, safer care. Research is emerging, but more is needed to assess the effect of EHRs on communication, relationships, patients' trust, adherence, and health outcomes. The authors posit that EHRs introduce a "third party" into exam room interactions that competes with the patient for clinicians' attention, affects clinicians' capacity to be fully present, and alters the nature of communication, relationships, and physicians' sense of professional role. Screen-driven communication inhibits patients' narratives and diminishes clinicians' responses to patients' cues about psychosocial issues and emotional concerns. Students, trainees, and clinicians can, however, learn to integrate EHRs into triadic exam room interactions to facilitate information sharing and shared decision making.Student exposure to EHRs is currently limited. Educators and researchers should implement curricula and assessment tools to help learners integrate EHRs into clinical interactions in ways that foster, rather than diminish, communication and relationships. Further, educators must prioritize the teaching and modeling of self-awareness and self-calibration, mindful presence, and compassion within such curricula to prevent these important qualities and skills from being lost in translation in the digital era.

  13. Maximally localized Wannier functions in LaMnO3 within PBE + U, hybrid functionals and partially self-consistent GW: an efficient route to construct ab initio tight-binding parameters for eg perovskites.

    PubMed

    Franchini, C; Kováčik, R; Marsman, M; Murthy, S Sathyanarayana; He, J; Ederer, C; Kresse, G

    2012-06-13

    Using the newly developed VASP2WANNIER90 interface we have constructed maximally localized Wannier functions (MLWFs) for the e(g) states of the prototypical Jahn-Teller magnetic perovskite LaMnO(3) at different levels of approximation for the exchange-correlation kernel. These include conventional density functional theory (DFT) with and without the additional on-site Hubbard U term, hybrid DFT and partially self-consistent GW. By suitably mapping the MLWFs onto an effective e(g) tight-binding (TB) Hamiltonian we have computed a complete set of TB parameters which should serve as guidance for more elaborate treatments of correlation effects in effective Hamiltonian-based approaches. The method-dependent changes of the calculated TB parameters and their interplay with the electron-electron (el-el) interaction term are discussed and interpreted. We discuss two alternative model parameterizations: one in which the effects of the el-el interaction are implicitly incorporated in the otherwise 'noninteracting' TB parameters and a second where we include an explicit mean-field el-el interaction term in the TB Hamiltonian. Both models yield a set of tabulated TB parameters which provide the band dispersion in excellent agreement with the underlying ab initio and MLWF bands.

  14. Electron-phonon interaction in three-barrier nanosystems as active elements of quantum cascade detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tkach, N. V., E-mail: ktf@chnu.edu.ua; Seti, Ju. A.; Grynyshyn, Yu. B.

    2015-04-15

    The theory of electron tunneling through an open nanostructure as an active element of a quantum cascade detector is developed, which takes into account the interaction of electrons with confined and interface phonons. Using the method of finite-temperature Green’s functions and the electron-phonon Hamiltonian in the representation of second quantization over all system variables, the temperature shifts and electron-level widths are calculated and the contributions of different electron-phonon-interaction mechanisms to renormalization of the spectral parameters are analyzed depending on the geometrical configuration of the nanosystem. Due to weak electron-phonon coupling in a GaAs/Al{sub 0.34}Ga{sub 0.66}As-based resonant tunneling nanostructure, the temperaturemore » shift and rf field absorption peak width are not very sensitive to the electron-phonon interaction and result from a decrease in potential barrier heights caused by a difference in the temperature dependences of the well and barrier band gaps.« less

  15. 12 CFR 555.300 - Must I inform OTS before I use electronic means or facilities?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Must I inform OTS before I use electronic means... I inform OTS before I use electronic means or facilities? (a) General. A savings association (“you”) are not required to inform OTS before you use electronic means or facilities, except as provided in...

  16. 17 CFR 260.0-2 - Definitions of terms used in the rules and regulations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Electronic filing. The term electronic filing means a document under the federal securities laws that is... “control” means the power to direct the management and policies of a person, directly or through one or...) Electronic filer. The term electronic filer means a person or an entity that submits filings electronically...

  17. 17 CFR 260.0-2 - Definitions of terms used in the rules and regulations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Electronic filing. The term electronic filing means a document under the federal securities laws that is... “control” means the power to direct the management and policies of a person, directly or through one or...) Electronic filer. The term electronic filer means a person or an entity that submits filings electronically...

  18. 17 CFR 260.0-2 - Definitions of terms used in the rules and regulations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Electronic filing. The term electronic filing means a document under the federal securities laws that is... “control” means the power to direct the management and policies of a person, directly or through one or...) Electronic filer. The term electronic filer means a person or an entity that submits filings electronically...

  19. 17 CFR 260.0-2 - Definitions of terms used in the rules and regulations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Electronic filing. The term electronic filing means a document under the federal securities laws that is... “control” means the power to direct the management and policies of a person, directly or through one or...) Electronic filer. The term electronic filer means a person or an entity that submits filings electronically...

  20. 17 CFR 260.0-2 - Definitions of terms used in the rules and regulations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Electronic filing. The term electronic filing means a document under the federal securities laws that is... “control” means the power to direct the management and policies of a person, directly or through one or...) Electronic filer. The term electronic filer means a person or an entity that submits filings electronically...

  1. Ion properties in a Hall current thruster operating at high voltage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrigues, L., E-mail: laurent.garrigues@laplace.univ-tlse.fr

    2016-04-28

    Operation of a 5 kW-class Hall current Thruster for various voltages from 400 V to 800 V and a xenon mass flow rate of 6 mg s{sup −1} have been studied with a quasi-neutral hybrid model. In this model, anomalous electron transport is fitted from ion mean velocity measurements, and energy losses due to electron–wall interactions are used as a tuned parameter to match expected electron temperature strength for same class of thruster. Doubly charged ions production has been taken into account and detailed collisions between heavy species included. As the electron temperature increases, the main channel of Xe{sup 2+} ion production becomes stepwisemore » ionization of Xe{sup +} ions. For an applied voltage of 800 V, the mass utilization efficiency is in the range of 0.8–1.1, and the current fraction of doubly charged ions varies between 0.1 and 0.2. Results show that the region of ion production of each species is located at the same place inside the thruster channel. Because collision processes mean free path is larger than the acceleration region, each type of ions experiences same potential drop, and ion energy distributions of singly and doubly charged are very similar.« less

  2. Molecular electrostatics for probing lone pair-π interactions.

    PubMed

    Mohan, Neetha; Suresh, Cherumuttathu H; Kumar, Anmol; Gadre, Shridhar R

    2013-11-14

    An electrostatics-based approach has been proposed for probing the weak interactions between lone pair containing molecules and π deficient molecular systems. For electron-rich molecules, the negative minima in molecular electrostatic potential (MESP) topography give the location of electron localization and the MESP value at the minimum (Vmin) quantifies the electron-rich character of that region. Interactive behavior of a lone pair bearing molecule with electron deficient π-systems, such as hexafluorobenzene, 1,3,5-trinitrobenzene, 2,4,6-trifluoro-1,3,5-triazine and 1,2,4,5-tetracyanobenzene explored within DFT brings out good correlation of the lone pair-π interaction energy (E(int)) with the Vmin value of the electron-rich system. Such interaction is found to be portrayed well with the Electrostatic Potential for Intermolecular Complexation (EPIC) model. On the basis of the precise location of MESP minimum, a prediction for the orientation of a lone pair bearing molecule with an electron deficient π-system is possible in the majority of the cases studied.

  3. Constraints on Exotic Dipole-Dipole Couplings between Electrons at the Micrometer Scale

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Ozeri, Roee; Kimball, Derek F. Jackson

    2015-08-01

    New constraints on exotic dipole-dipole interactions between electrons at the micrometer scale are established, based on a recent measurement of the magnetic interaction between two trapped 88Sr+ ions. For light bosons (mass≤0.1 eV ) we obtain a 90% confidence interval for an axial-vector-mediated interaction strength of |gAegAe/4 π ℏc | ≤1.2 ×10-17 . Assuming C P T invariance, this constraint is compared to that on anomalous electron-positron interactions, derived from positronium hyperfine spectroscopy. We find that the electron-electron constraint is 6 orders of magnitude more stringent than the electron-positron counterpart. Bounds on pseudoscalar-mediated interaction as well as on torsion gravity are also derived and compared with previous work performed at different length scales. Our constraints benefit from the high controllability of the experimental system which contained only two trapped particles. It therefore suggests a useful new platform for exotic particle searches, complementing other experimental efforts.

  4. Constraints on Exotic Dipole-Dipole Couplings between Electrons at the Micrometer Scale.

    PubMed

    Kotler, Shlomi; Ozeri, Roee; Kimball, Derek F Jackson

    2015-08-21

    New constraints on exotic dipole-dipole interactions between electrons at the micrometer scale are established, based on a recent measurement of the magnetic interaction between two trapped 88Sr(+) ions. For light bosons (mass≤0.1  eV) we obtain a 90% confidence interval for an axial-vector-mediated interaction strength of |g(A)(e)g(A)(e)/4πℏc|≤1.2×10(-17). Assuming CPT invariance, this constraint is compared to that on anomalous electron-positron interactions, derived from positronium hyperfine spectroscopy. We find that the electron-electron constraint is 6 orders of magnitude more stringent than the electron-positron counterpart. Bounds on pseudoscalar-mediated interaction as well as on torsion gravity are also derived and compared with previous work performed at different length scales. Our constraints benefit from the high controllability of the experimental system which contained only two trapped particles. It therefore suggests a useful new platform for exotic particle searches, complementing other experimental efforts.

  5. Mapping Photoemission and Hot-Electron Emission from Plasmonic Nanoantennas

    DOE PAGES

    Hobbs, Richard G.; Putnam, William P.; Fallahi, Arya; ...

    2017-09-19

    Understanding plasmon-mediated electron emission and energy transfer on the nanometer length scale is critical to controlling light–matter interactions at nanoscale dimensions. In a high-resolution lithographic material, electron emission and energy transfer lead to chemical transformations. Here, we employ such chemical transformations in two different high-resolution electron-beam lithography resists, poly(methyl methacrylate) (PMMA) and hydrogen silsesquioxane (HSQ), to map local electron emission and energy transfer with nanometer resolution from plasmonic nanoantennas excited by femtosecond laser pulses. We observe exposure of the electron-beam resists (both PMMA and HSQ) in regions on the surface of nanoantennas where the local field is significantly enhanced. Exposuremore » in these regions is consistent with previously reported optical-field-controlled electron emission from plasmonic hotspots as well as earlier work on low-electron-energy scanning probe lithography. For HSQ, in addition to exposure in hotspots, we observe resist exposure at the centers of rod-shaped nanoantennas in addition to exposure in plasmonic hotspots. Optical field enhancement is minimized at the center of nanorods suggesting that exposure in these regions involves a different mechanism to that in plasmonic hotspots. Our simulations suggest that exposure at the center of nanorods results from the emission of hot electrons produced via plasmon decay in the nanorods. Our results provide a means to map both optical-field-controlled electron emission and hot-electron transfer from nanoparticles via chemical transformations produced locally in lithographic materials.« less

  6. Mapping Photoemission and Hot-Electron Emission from Plasmonic Nanoantennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, Richard G.; Putnam, William P.; Fallahi, Arya

    Understanding plasmon-mediated electron emission and energy transfer on the nanometer length scale is critical to controlling light–matter interactions at nanoscale dimensions. In a high-resolution lithographic material, electron emission and energy transfer lead to chemical transformations. Here, we employ such chemical transformations in two different high-resolution electron-beam lithography resists, poly(methyl methacrylate) (PMMA) and hydrogen silsesquioxane (HSQ), to map local electron emission and energy transfer with nanometer resolution from plasmonic nanoantennas excited by femtosecond laser pulses. We observe exposure of the electron-beam resists (both PMMA and HSQ) in regions on the surface of nanoantennas where the local field is significantly enhanced. Exposuremore » in these regions is consistent with previously reported optical-field-controlled electron emission from plasmonic hotspots as well as earlier work on low-electron-energy scanning probe lithography. For HSQ, in addition to exposure in hotspots, we observe resist exposure at the centers of rod-shaped nanoantennas in addition to exposure in plasmonic hotspots. Optical field enhancement is minimized at the center of nanorods suggesting that exposure in these regions involves a different mechanism to that in plasmonic hotspots. Our simulations suggest that exposure at the center of nanorods results from the emission of hot electrons produced via plasmon decay in the nanorods. Our results provide a means to map both optical-field-controlled electron emission and hot-electron transfer from nanoparticles via chemical transformations produced locally in lithographic materials.« less

  7. Thermally Driven Electronic Topological Transition in FeTi

    NASA Astrophysics Data System (ADS)

    Yang, F. C.; Muñoz, J. A.; Hellman, O.; Mauger, L.; Lucas, M. S.; Tracy, S. J.; Stone, M. B.; Abernathy, D. L.; Xiao, Yuming; Fultz, B.

    2016-08-01

    Ab initio molecular dynamics, supported by inelastic neutron scattering and nuclear resonant inelastic x-ray scattering, showed an anomalous thermal softening of the M5- phonon mode in B 2 -ordered FeTi that could not be explained by phonon-phonon interactions or electron-phonon interactions calculated at low temperatures. A computational investigation showed that the Fermi surface undergoes a novel thermally driven electronic topological transition, in which new features of the Fermi surface arise at elevated temperatures. The thermally induced electronic topological transition causes an increased electronic screening for the atom displacements in the M5- phonon mode and an adiabatic electron-phonon interaction with an unusual temperature dependence.

  8. First-Principles Study on the Ferromagnetism and Curie Temperature of Mn-Doped AlX and InX (X=N, P, As, and Sb)

    NASA Astrophysics Data System (ADS)

    Sato, Kazunori; Dederichs, Peter H.; Katayama-Yoshida, Hiroshi

    2007-02-01

    We investigate the electronic structure and magnetic properties of AlN-, AlP-, AlAs-, AlSb-, InN-, InP-, InAs-, and InSb-based dilute magnetic semiconductors (DMS) with Mn impurities from first-principles. The electronic structure of DMS is calculated by using the Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) method in connection with the local density approximation (LDA) and the LDA+U method. Describing the magnetic properties by a classical Heisenberg model, effective exchange interactions are calculated by applying magnetic force theorem for two impurities embedded in the CPA medium. With the calculated exchange interactions, TC is estimated by using the mean field approximation, the random phase approximation and the Monte Carlo simulation. It is found that the p-d exchange model [Dietl et al.: Science 287 (2000) 1019] is adequate for a limited class of DMS and insufficient to describe the ferromagnetism in wide gap semiconductor based DMS such as (Ga,Mn)N and the presently investigated (Al,Mn)N and (In,Mn)N.

  9. Dynamical photo-induced electronic properties of molecular junctions

    NASA Astrophysics Data System (ADS)

    Beltako, K.; Michelini, F.; Cavassilas, N.; Raymond, L.

    2018-03-01

    Nanoscale molecular-electronic devices and machines are emerging as promising functional elements, naturally flexible and efficient, for next-generation technologies. A deeper understanding of carrier dynamics in molecular junctions is expected to benefit many fields of nanoelectronics and power devices. We determine time-resolved charge current flowing at the donor-acceptor interface in molecular junctions connected to metallic electrodes by means of quantum transport simulations. The current is induced by the interaction of the donor with a Gaussian-shape femtosecond laser pulse. Effects of the molecular internal coupling, metal-molecule tunneling, and light-donor coupling on photocurrent are discussed. We then define the time-resolved local density of states which is proposed as an efficient tool to describe the absorbing molecule in contact with metallic electrodes. Non-equilibrium reorganization of hybridized molecular orbitals through the light-donor interaction gives rise to two phenomena: the dynamical Rabi shift and the appearance of Floquet-like states. Such insights into the dynamical photoelectronic structure of molecules are of strong interest for ultrafast spectroscopy and open avenues toward the possibility of analyzing and controlling the internal properties of quantum nanodevices with pump-push photocurrent spectroscopy.

  10. Structural and electronic properties of graphene nanoflakes on Au(111) and Ag(111)

    PubMed Central

    Tesch, Julia; Leicht, Philipp; Blumenschein, Felix; Gragnaniello, Luca; Fonin, Mikhail; Marsoner Steinkasserer, Lukas Eugen; Paulus, Beate; Voloshina, Elena; Dedkov, Yuriy

    2016-01-01

    We investigate the electronic properties of graphene nanoflakes on Ag(111) and Au(111) surfaces by means of scanning tunneling microscopy and spectroscopy as well as density functional theory calculations. Quasiparticle interference mapping allows for the clear distinction of substrate-derived contributions in scattering and those originating from graphene nanoflakes. Our analysis shows that the parabolic dispersion of Au(111) and Ag(111) surface states remains unchanged with the band minimum shifted to higher energies for the regions of the metal surface covered by graphene, reflecting a rather weak interaction between graphene and the metal surface. The analysis of graphene-related scattering on single nanoflakes yields a linear dispersion relation E(k), with a slight p-doping for graphene/Au(111) and a larger n-doping for graphene/Ag(111). The obtained experimental data (doping level, band dispersions around EF, and Fermi velocity) are very well reproduced within DFT-D2/D3 approaches, which provide a detailed insight into the site-specific interaction between graphene and the underlying substrate. PMID:27002297

  11. Electronic polarizability, optical basicity and interaction parameter for Nd2O3 doped lithium-zinc-phosphate glasses

    NASA Astrophysics Data System (ADS)

    Algradee, M. A.; Sultan, M.; Samir, O. M.; Alwany, A. Elwhab B.

    2017-08-01

    The Nd3+-doped lithium-zinc-phosphate glasses were prepared by means of conventional melt quenching method. X-ray diffraction results confirmed the glassy nature of the studied glasses. The physical parameters such as the density, molar volume, ion concentration, polaron radius, inter-ionic distance, field strength and oxygen packing density were calculated using different formulae. The transmittance and reflectance spectra of glasses were recorded in the wavelength range 190-1200 nm. The values of optical band gap and Urbach energy were determined based on Mott-Davis model. The refractive indices for the studied glasses were evaluated from optical band gap values using different methods. The average electronic polarizability of the oxide ions, optical basicity and an interaction parameter were investigated from the calculated values of the refractive index and the optical band gap for the studied glasses. The variations in the different physical and optical properties of glasses with Nd2O3 content were discussed in terms of different parameters such as non-bridging oxygen and different concentrations of Nd cation in glass system.

  12. Electron beam cooling in intense focussed laser pulses

    NASA Astrophysics Data System (ADS)

    Yoffe, Samuel R.; Noble, Adam; Macleod, Alexander J.; Jaroszynski, Dino A.

    2017-05-01

    In the coming years, a new generation of high-power laser facilities (such as the Extreme Light Infrastructure) will become operational, for which it is important to understand how the interaction with intense laser pulses affects the bulk properties of relativistic electron bunches. At such high field intensities, we expect both radiation reaction and quantum effects to have a dominant role to play in determining the dynamics. The reduction in relative energy spread (beam cooling) at the expense of mean beam energy predicted by classical theories of radiation reaction has been shown to occur equally in the longitudinal and transverse directions, whereas this symmetry is broken when the theory is extended to approximate certain quantum effects. The reduction in longitudinal cooling suggests that the effects of radiation reaction could be better observed in measurements of the transverse distribution, which for real-world laser pulses motivates the investigation of the angular dependence of the interaction. Using a stochastic single-photon emission model with a (Gaussian beam) focussed pulse, we find strong angular dependence of the stochastic heating.

  13. Extended Hubbard model for mesoscopic transport in donor arrays in silicon

    NASA Astrophysics Data System (ADS)

    Le, Nguyen H.; Fisher, Andrew J.; Ginossar, Eran

    2017-12-01

    Arrays of dopants in silicon are promising platforms for the quantum simulation of the Fermi-Hubbard model. We show that the simplest model with only on-site interaction is insufficient to describe the physics of an array of phosphorous donors in silicon due to the strong intersite interaction in the system. We also study the resonant tunneling transport in the array at low temperature as a mean of probing the features of the Hubbard physics, such as the Hubbard bands and the Mott gap. Two mechanisms of localization which suppresses transport in the array are investigated: The first arises from the electron-ion core attraction and is significant at low filling; the second is due to the sharp oscillation in the tunnel coupling caused by the intervalley interference of the donor electron's wave function. This disorder in the tunnel coupling leads to a steep exponential decay of conductance with channel length in one-dimensional arrays, but its effect is less prominent in two-dimensional ones. Hence, it is possible to observe resonant tunneling transport in a relatively large array in two dimensions.

  14. Profound vision loss impairs psychological well-being in young and middle-aged individuals.

    PubMed

    Garcia, Giancarlo A; Khoshnevis, Matin; Gale, Jesse; Frousiakis, Starleen E; Hwang, Tiffany J; Poincenot, Lissa; Karanjia, Rustum; Baron, David; Sadun, Alfredo A

    2017-01-01

    The aim of this study was to evaluate the effects of profound vision loss on psychological well-being in adolescents, young adults, and middle-aged adults with regard to mood, interpersonal interactions, and career-related goals. In addition, we assessed the significance of the resources that may be used to enhance psychological well-being in cases of profound vision loss, and in particular, examined the utility of low vision aids and the role of the ophthalmologist as a provider of emotional support. A questionnaire was issued to individuals aged 13-65 years with profound vision loss resulting from Leber's hereditary optic neuropathy (LHON). Depression prevalence was evaluated with questions regarding major depressive disorder symptomatology. Participants appraised the effects of vision loss on their interpersonal interactions and career goals by providing an impact rating (IR) on a 21-point psychometric scale from -10 to +10. Social well-being index was defined as the average of interpersonal IR and career IR. Subjects were additionally asked about the use of low vision aids and sources of emotional support. A total of 103 participants (mean age =26.4±11.2 years at LHON diagnosis; mean ± standard deviation) completed the questionnaire. Nearly half (49.5%) met the depression criteria after vision loss. Negative impacts on interpersonal interactions (median IR = -5) and career goals (median IR = -6) were observed; both ratings were worse ( P <0.001) for depressed versus nondepressed subjects. Older age at diagnosis corresponded to higher depression prevalence and increased incidence of negative interpersonal IR and career IR. Sixty-eight percent of subjects used electronic vision aids; controlling for age, social well-being index was higher among these individuals than for those who did not use electronic aids ( P =0.03). Over half of the participants (52.4%) asserted that they derived emotional support from their ophthalmologist. Profound vision loss in adolescents, young adults, and middle-aged adults is associated with significant negative psychological and psychosocial effects, which are influenced by age and use of electronic vision aids. Ophthalmologists, in addition to managing vision loss, may serve an important role in the emotional adaptation of these patients.

  15. Electron interaction in matter

    NASA Technical Reports Server (NTRS)

    Dance, W. E.; Rainwater, W. J.; Rester, D. H.

    1969-01-01

    Data on the scattering of 1-MeV electrons in aluminum for the case of non-normal incidence, electron-bremsstrahlung cross-sections in thin targets, and the production of bremstrahlung by electron interaction in thick targets, are presented both in tabular and graphic form. These results may interest physicists and radiologists.

  16. Theory of inhomogeneous quantum systems. III. Variational wave functions for Fermi fluids

    NASA Astrophysics Data System (ADS)

    Krotscheck, E.

    1985-04-01

    We develop a general variational theory for inhomogeneous Fermi systems such as the electron gas in a metal surface, the surface of liquid 3He, or simple models of heavy nuclei. The ground-state wave function is expressed in terms of two-body correlations, a one-body attenuation factor, and a model-system Slater determinant. Massive partial summations of cluster expansions are performed by means of Born-Green-Yvon and hypernetted-chain techniques. An optimal single-particle basis is generated by a generalized Hartree-Fock equation in which the two-body correlations screen the bare interparticle interaction. The optimization of the pair correlations leads to a state-averaged random-phase-approximation equation and a strictly microscopic determination of the particle-hole interaction.

  17. Competing orders in the Hofstadter t -J model

    NASA Astrophysics Data System (ADS)

    Tu, Wei-Lin; Schindler, Frank; Neupert, Titus; Poilblanc, Didier

    2018-01-01

    The Hofstadter model describes noninteracting fermions on a lattice in the presence of an external magnetic field. Motivated by the plethora of solid-state phases emerging from electron interactions, we consider an interacting version of the Hofstadter model, including a Hubbard repulsion U . We investigate this model in the large-U limit corresponding to a t -J Hamiltonian with an external (orbital) magnetic field. By using renormalized mean-field theory supplemented by exact diagonalization calculations of small clusters, we find evidence for competing symmetry-breaking phases, exhibiting (possibly coexisting) charge, bond, and superconducting orders. Topological properties of the states are also investigated, and some of our results are compared to related experiments involving ultracold atoms loaded on optical lattices in the presence of a synthetic gauge field.

  18. 17 CFR 232.202 - Continuing hardship exemption.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... electronic format or post the Interactive Data File on its corporate Web site, as applicable, on the required... Interactive Data File, the electronic filer need not post on its Web site any statement with regard to the... submitted in electronic format or, in the case of an Interactive Data File (§ 232.11), to be posted on the...

  19. 17 CFR 232.202 - Continuing hardship exemption.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... electronic format or post the Interactive Data File on its corporate Web site, as applicable, on the required... Interactive Data File, the electronic filer need not post on its Web site any statement with regard to the... submitted in electronic format or, in the case of an Interactive Data File (§ 232.11), to be posted on the...

  20. 17 CFR 232.202 - Continuing hardship exemption.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... electronic format or post the Interactive Data File on its corporate Web site, as applicable, on the required... Interactive Data File, the electronic filer need not post on its Web site any statement with regard to the... submitted in electronic format or, in the case of an Interactive Data File (§ 232.11), to be posted on the...

  1. 17 CFR 232.202 - Continuing hardship exemption.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... electronic format or post the Interactive Data File on its corporate Web site, as applicable, on the required... Interactive Data File, the electronic filer need not post on its Web site any statement with regard to the... submitted in electronic format or, in the case of an Interactive Data File (§ 232.11), to be posted on the...

  2. 17 CFR 232.202 - Continuing hardship exemption.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... electronic format or post the Interactive Data File on its corporate Web site, as applicable, on the required... Interactive Data File, the electronic filer need not post on its Web site any statement with regard to the... submitted in electronic format or, in the case of an Interactive Data File (§ 232.11), to be posted on the...

  3. Electron-phonon interaction in efficient perovskite blue emitters

    NASA Astrophysics Data System (ADS)

    Gong, Xiwen; Voznyy, Oleksandr; Jain, Ankit; Liu, Wenjia; Sabatini, Randy; Piontkowski, Zachary; Walters, Grant; Bappi, Golam; Nokhrin, Sergiy; Bushuyev, Oleksandr; Yuan, Mingjian; Comin, Riccardo; McCamant, David; Kelley, Shana O.; Sargent, Edward H.

    2018-06-01

    Low-dimensional perovskites have—in view of their high radiative recombination rates—shown great promise in achieving high luminescence brightness and colour saturation. Here we investigate the effect of electron-phonon interactions on the luminescence of single crystals of two-dimensional perovskites, showing that reducing these interactions can lead to bright blue emission in two-dimensional perovskites. Resonance Raman spectra and deformation potential analysis show that strong electron-phonon interactions result in fast non-radiative decay, and that this lowers the photoluminescence quantum yield (PLQY). Neutron scattering, solid-state NMR measurements of spin-lattice relaxation, density functional theory simulations and experimental atomic displacement measurements reveal that molecular motion is slowest, and rigidity greatest, in the brightest emitter. By varying the molecular configuration of the ligands, we show that a PLQY up to 79% and linewidth of 20 nm can be reached by controlling crystal rigidity and electron-phonon interactions. Designing crystal structures with electron-phonon interactions in mind offers a previously underexplored avenue to improve optoelectronic materials' performance.

  4. Triel Bonds, π-Hole-π-Electrons Interactions in Complexes of Boron and Aluminium Trihalides and Trihydrides with Acetylene and Ethylene.

    PubMed

    Grabowski, Sławomir J

    2015-06-19

    MP2/aug-cc-pVTZ calculations were performed on complexes of aluminium and boron trihydrides and trihalides with acetylene and ethylene. These complexes are linked through triel bonds where the triel center (B or Al) is characterized by the Lewis acid properties through its π-hole region while π-electrons of C2H2 or C2H4 molecule play the role of the Lewis base. Some of these interactions possess characteristics of covalent bonds, i.e., the Al-π-electrons links as well as the interaction in the BH3-C2H2 complex. The triel-π-electrons interactions are classified sometimes as the 3c-2e bonds. In the case of boron trihydrides, these interactions are often the preliminary stages of the hydroboration reaction. The Quantum Theory of "Atoms in Molecules" as well as the Natural Bond Orbitals approach are applied here to characterize the π-hole-π-electrons interactions.

  5. Magnetosensitive e-skins with directional perception for augmented reality

    PubMed Central

    Cañón Bermúdez, Gilbert Santiago; Karnaushenko, Dmitriy D.; Karnaushenko, Daniil; Lebanov, Ana; Bischoff, Lothar; Kaltenbrunner, Martin; Fassbender, Jürgen; Schmidt, Oliver G.; Makarov, Denys

    2018-01-01

    Electronic skins equipped with artificial receptors are able to extend our perception beyond the modalities that have naturally evolved. These synthetic receptors offer complimentary information on our surroundings and endow us with novel means of manipulating physical or even virtual objects. We realize highly compliant magnetosensitive skins with directional perception that enable magnetic cognition, body position tracking, and touchless object manipulation. Transfer printing of eight high-performance spin valve sensors arranged into two Wheatstone bridges onto 1.7-μm-thick polyimide foils ensures mechanical imperceptibility. This resembles a new class of interactive devices extracting information from the surroundings through magnetic tags. We demonstrate this concept in augmented reality systems with virtual knob-turning functions and the operation of virtual dialing pads, based on the interaction with magnetic fields. This technology will enable a cornucopia of applications from navigation, motion tracking in robotics, regenerative medicine, and sports and gaming to interaction in supplemented reality. PMID:29376121

  6. Capturing Structural Heterogeneity in Chromatin Fibers.

    PubMed

    Ekundayo, Babatunde; Richmond, Timothy J; Schalch, Thomas

    2017-10-13

    Chromatin fiber organization is implicated in processes such as transcription, DNA repair and chromosome segregation, but how nucleosomes interact to form higher-order structure remains poorly understood. We solved two crystal structures of tetranucleosomes with approximately 11-bp DNA linker length at 5.8 and 6.7 Å resolution. Minimal intramolecular nucleosome-nucleosome interactions result in a fiber model resembling a flat ribbon that is compatible with a two-start helical architecture, and that exposes histone and DNA surfaces to the environment. The differences in the two structures combined with electron microscopy reveal heterogeneous structural states, and we used site-specific chemical crosslinking to assess the diversity of nucleosome-nucleosome interactions through identification of structure-sensitive crosslink sites that provide a means to characterize fibers in solution. The chromatin fiber architectures observed here provide a basis for understanding heterogeneous chromatin higher-order structures as they occur in a genomic context. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Interaction of electrons with light metal hydrides in the transmission electron microscope.

    PubMed

    Wang, Yongming; Wakasugi, Takenobu; Isobe, Shigehito; Hashimoto, Naoyuki; Ohnuki, Somei

    2014-12-01

    Transmission electron microscope (TEM) observation of light metal hydrides is complicated by the instability of these materials under electron irradiation. In this study, the electron kinetic energy dependences of the interactions of incident electrons with lithium, sodium and magnesium hydrides, as well as the constituting element effect on the interactions, were theoretically discussed, and electron irradiation damage to these hydrides was examined using in situ TEM. The results indicate that high incident electron kinetic energy helps alleviate the irradiation damage resulting from inelastic or elastic scattering of the incident electrons in the TEM. Therefore, observations and characterizations of these materials would benefit from increased, instead decreased, TEM operating voltage. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Theory of Raman scattering in coupled electron-phonon systems

    NASA Astrophysics Data System (ADS)

    Itai, K.

    1992-01-01

    The Raman spectrum is calculated for a coupled conduction-electron-phonon system in the zero-momentum-transfer limit. The Raman scattering is due to electron-hole excitations and phonons as well. The phonons of those branches that contribute to the electron self-energy and the correction of the electron-phonon vertex are assumed to have flat energy dispersion (the Einstein phonons). The effect of electron-impurity scattering is also incorporated. Both the electron-phonon interaction and the electron-impurity interaction cause the fluctuation of the electron distribution between different parts of the Fermi surface, which results in overdamped zero-sound modes of various symmetries. The scattering cross section is obtained by solving the Bethe-Salpeter equation. The spectrum shows a lower threshold at the smallest Einstein phonon energy when only the electron-phonon interaction is taken into consideration. When impurities are also taken into consideration, the threshold disappears.

  9. Emergence of liquid crystalline order in the lowest Landau level of a quantum Hall system with internal anisotropy

    NASA Astrophysics Data System (ADS)

    Ciftja, Orion

    2018-05-01

    It has now become evident that interplay between internal anisotropy parameters (such as electron mass anisotropy and/or anisotropic coupling of electrons to the substrate) and electron-electron correlation effects can create a rich variety of possibilities especially in quantum Hall systems. The electron mass anisotropy or material substrate effects (for example, the piezoelectric effect in GaAs) can lead to an effective anisotropic interaction potential between electrons. For lack of knowledge of realistic ab-initio potentials that may describe such effects, we adopt a phenomenological approach and assume that an anisotropic Coulomb interaction potential mimics the internal anisotropy of the system. In this work we investigate the emergence of liquid crystalline order at filling factor ν = 1/6 of the lowest Landau level, a state very close to the point where a transition from the liquid to the Wigner solid happens. We consider small finite systems of electrons interacting with an anisotropic Coulomb interaction potential and study the energy stability of an anisotropic liquid crystalline state relative to its isotropic Fermi-liquid counterpart. Quantum Monte Carlo simulation results in disk geometry show stabilization of liquid crystalline order driven by an anisotropic Coulomb interaction potential at all values of the interaction anisotropy parameter studied.

  10. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses

    NASA Astrophysics Data System (ADS)

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2013-06-01

    The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  11. On the roles of close shell interactions in the structure of acyl-substituted hydrazones: An experimental and theoretical approach

    NASA Astrophysics Data System (ADS)

    Saeed, Aamer; Ifzan Arshad, M.; Bolte, Michael; Fantoni, Adolfo C.; Delgado Espinoza, Zuly Y.; Erben, Mauricio F.

    2016-03-01

    The 2-(phenyl-hydrazono)-succinic acid dimethyl ester compound was synthesized by reacting phenylhydrazine with dimethylacetylene dicarboxylate at room temperature and characterized by elemental analysis, infrared, Raman, 1H and 13C NMR spectroscopies and mass spectrometry. Its solid state structure was determined by X-ray diffraction methods. The X-ray structure determination corroborates that the molecule is present in the crystal as the hydrazone tautomer, probably favored by a strong intramolecular N-H···Odbnd C hydrogen bond occurring between the carbonyl (-Cdbnd O) and the hydrazone -Cdbnd N-NH- groups. A substantial fragment of the molecular skeleton is planar due to an extended π-bonding delocalization. The topological analysis of the electron densities (Atom in Molecule, AIM) allows characterization of intramolecular N-H···O interaction, that can be classified as a resonant assisted hydrogen bond (RAHB). Moreover, the Natural Bond Orbital population analysis confirms that a strong hyperconjugative lpO1 → σ*(N2-H) remote interaction between the C2dbnd O1 and N2-H groups takes place. Periodic system electron density and topological analysis have been applied to characterize the intermolecular interactions in the crystal. Weak intermolecular interactions determine the crystal packing, and the prevalence of non-directional dispersive contributions are inferred on topological grounds. The IR spectrum of the crystalline compound was investigated by means of density functional theory calculations carried out with periodic boundary conditions on the crystal, showing excellent agreement between theory and the experiments. The vibrational assignment is complemented with the analysis of the Raman spectrum.

  12. Plasma Flowfields Around Low Earth Orbit Objects: Aerodynamics to Underpin Orbit Predictions

    NASA Astrophysics Data System (ADS)

    Capon, Christopher; Boyce, Russell; Brown, Melrose

    2016-07-01

    Interactions between orbiting bodies and the charged space environment are complex. The large variation in passive body parameters e.g. size, geometry and materials, makes the plasma-body interaction in Low Earth Orbit (LEO) a region rich in fundamental physical phenomena. The aerodynamic interaction of LEO orbiting bodies with the neutral environment constitutes the largest non-conservative force on the body. However in general, study of the LEO plasma-body interaction has not been concerned with external flow physics, but rather with the effects on surface charging. The impact of ionospheric flow physics on the forces on space debris (and active objects) is not well understood. The work presented here investigates the contribution that plasma-body interactions have on the flow structure and hence on the total atmospheric force vector experienced by a polar orbiting LEO body. This work applies a hybrid Particle-in-Cell (PIC) - Direct Simulation Monte Carlo (DSMC) code, pdFoam, to self-consistently model the electrostatic flowfield about a cylinder with a uniform, fixed surface potential. Flow conditions are representative of the mean conditions experienced by the Earth Observing Satellite (EOS) based on the International Reference Ionosphere model (IRI-86). The electron distribution function is represented by a non-linear Boltzmann electron fluid and ion gas-surface interactions are assumed to be that of a neutralising, conducting, thermally accommodating solid wall with diffuse reflections. The variation in flowfield and aerodynamic properties with surface potential at a fixed flow condition is investigated, and insight into the relative contributions of charged and neutral species to the flow physics experienced by a LEO orbiting body is provided. This in turn is intended to help improve the fidelity of physics-based orbit predictions for space debris and other near-Earth space objects.

  13. Is the Pauli exclusion principle the origin of electron localisation?

    NASA Astrophysics Data System (ADS)

    Rincón, Luis; Torres, F. Javier; Almeida, Rafael

    2018-03-01

    In this work, we inquire into the origins of the electron localisation as obtained from the information content of the same-spin pair density, γσ, σ(r2∣r1). To this end, we consider systems of non-interacting and interacting identical Fermions contained in two simple 1D potential models: (1) an infinite potential well and (2) the Kronig-Penney periodic potential. The interparticle interaction is considered through the Hartree-Fock approximation as well as the configuration interaction expansion. Morover, the electron localisation is described through the Kullback-Leibler divergence between γσ, σ(r2∣r1) and its associated marginal probability. The results show that, as long as the adopted method properly includes the Pauli principle, the electronic localisation depends only modestly on the interparticle interaction. In view of the latter, one may conclude that the Pauli principle is the main responsible for the electron localisation.

  14. Carbohydrate–Aromatic Interactions in Proteins

    PubMed Central

    2015-01-01

    Protein–carbohydrate interactions play pivotal roles in health and disease. However, defining and manipulating these interactions has been hindered by an incomplete understanding of the underlying fundamental forces. To elucidate common and discriminating features in carbohydrate recognition, we have analyzed quantitatively X-ray crystal structures of proteins with noncovalently bound carbohydrates. Within the carbohydrate-binding pockets, aliphatic hydrophobic residues are disfavored, whereas aromatic side chains are enriched. The greatest preference is for tryptophan with an increased prevalence of 9-fold. Variations in the spatial orientation of amino acids around different monosaccharides indicate specific carbohydrate C–H bonds interact preferentially with aromatic residues. These preferences are consistent with the electronic properties of both the carbohydrate C–H bonds and the aromatic residues. Those carbohydrates that present patches of electropositive saccharide C–H bonds engage more often in CH−π interactions involving electron-rich aromatic partners. These electronic effects are also manifested when carbohydrate–aromatic interactions are monitored in solution: NMR analysis indicates that indole favorably binds to electron-poor C–H bonds of model carbohydrates, and a clear linear free energy relationships with substituted indoles supports the importance of complementary electronic effects in driving protein–carbohydrate interactions. Together, our data indicate that electrostatic and electronic complementarity between carbohydrates and aromatic residues play key roles in driving protein–carbohydrate complexation. Moreover, these weak noncovalent interactions influence which saccharide residues bind to proteins, and how they are positioned within carbohydrate-binding sites. PMID:26561965

  15. Carbohydrate-Aromatic Interactions in Proteins.

    PubMed

    Hudson, Kieran L; Bartlett, Gail J; Diehl, Roger C; Agirre, Jon; Gallagher, Timothy; Kiessling, Laura L; Woolfson, Derek N

    2015-12-09

    Protein-carbohydrate interactions play pivotal roles in health and disease. However, defining and manipulating these interactions has been hindered by an incomplete understanding of the underlying fundamental forces. To elucidate common and discriminating features in carbohydrate recognition, we have analyzed quantitatively X-ray crystal structures of proteins with noncovalently bound carbohydrates. Within the carbohydrate-binding pockets, aliphatic hydrophobic residues are disfavored, whereas aromatic side chains are enriched. The greatest preference is for tryptophan with an increased prevalence of 9-fold. Variations in the spatial orientation of amino acids around different monosaccharides indicate specific carbohydrate C-H bonds interact preferentially with aromatic residues. These preferences are consistent with the electronic properties of both the carbohydrate C-H bonds and the aromatic residues. Those carbohydrates that present patches of electropositive saccharide C-H bonds engage more often in CH-π interactions involving electron-rich aromatic partners. These electronic effects are also manifested when carbohydrate-aromatic interactions are monitored in solution: NMR analysis indicates that indole favorably binds to electron-poor C-H bonds of model carbohydrates, and a clear linear free energy relationships with substituted indoles supports the importance of complementary electronic effects in driving protein-carbohydrate interactions. Together, our data indicate that electrostatic and electronic complementarity between carbohydrates and aromatic residues play key roles in driving protein-carbohydrate complexation. Moreover, these weak noncovalent interactions influence which saccharide residues bind to proteins, and how they are positioned within carbohydrate-binding sites.

  16. Electron-phonon effects in graphene and an armchair (10,10) single-wall carbon nanotube

    NASA Astrophysics Data System (ADS)

    Woods, Lilia Milcheva Rapatinska

    New effects due to the electron-phonon interaction in some low-dimensional tight-binding systems are discussed. A sheet of graphite (two-dimensional) and an armchair single wall carbon nanotube (SWNT) (quasi-one dimensional) are taken as examples. The geometrical structure and the linear dispersion of the energy with respect to the electron wave vector are expected to play a significant role. For the ordinary electron-phonon coupling which includes modulated hopping and linear electron-phonon interaction the matrix elements for both systems are derived in the context of a two parameter model for the phonon vibrational spectrum. It is found that they (for both structures) strongly depend on the geometry, display a deformation type of potential and are reduced by a factor of (1 - R), where R depends uniquely on the introduced phonon parameters. Next a new type of interaction is derived; it arises from the phonon modulation of the electron-electron interaction. After writing the matrix elements for the new Hamiltonian, the problem is considered in the context of many body physics. There are two contributions. One of them is the random phase approximation with one phonon line. The electron self-energy for it is calculated. It is shown that one might expect that this is not a large effect. Analytical expressions are obtained for the armchair single wall carbon nanotube. The exchange interaction in the one-phonon approximation is another term that arises and is also considered. One is able to write four new Feynman diagrams and derive an expression for -ImSk⃗ . The contribution from this type of coupling could be large and comparable to the one from the modulated hopping. These results are supported by numerical estimates of some characteristics of graphene and SWNT. The values of the electron-phonon coupling constant, lambda, and the electron lifetime, tau, are compared between the traditional electron-phonon interaction and the phonon modulated electron-electron interaction. Finally, for a perfect (defect-free) arm chair SWNT the diffusion thermopower and the phonon drag thermopower should be zero because of the complete symmetry of the energy bands of the system.

  17. In situ oligomerization of 2-(thiophen-3-yl)acetate intercalated into Zn{sub 2}Al layered double hydroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tronto, Jairo, E-mail: jairotronto@ufv.br; Pinto, Frederico G.; Costa, Liovando M. da

    2015-01-15

    A layered double hydroxide (LDH) with cation composition Zn{sub 2}Al was intercalated with 2-(thiophen-3-yl)acetate (3-TA) monomers. To achieve in situ polymerization and/or oligomerization of the intercalated monomers, soft thermal treatments were carried out, and subsequent hybrid LDH materials were analyzed by means of several characterization techniques using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), {sup 13}C CP–MAS nuclear magnetic resonance (NMR), electron spin resonance (EPR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), inductively coupled plasma optical emission spectroscopy (ICP–OES), and elemental analysis. PXRD analysis suggested that the intercalated monomers formed a bilayer. Thermalmore » treatment of the hybrid LDH assembly above 120 °C provokes partially the breakdown of the layered structure, generating the phase zincite. EPR results indicated that vicinal monomers (oligomerization) were bound to each other after hydrothermal or thermal treatment, leading to a polaron response characteristic of electron conductivity localized on a restricted number of thiophene-based monomer segments. Localized unpaired electrons exist in the material and interact with the {sup 27}Al nuclei of the LDH layers by superhyperfine coupling. These unpaired electrons also interact with the surface of ZnO (O{sup 2−} vacancies), formed during the thermal treatments. - Graphical abstract: We synthesized a layered double hydroxide (LDH) with cation composition Zn{sub 2}Al, intercalated with 2-(thiophen-3-yl)acetate (3-TA) monomers, by coprecipitation at constant pH. We thermally treated the material, to achieve in situ polymerization and/or oligomerization of the intercalated monomers. - Highlights: • A Zn{sub 2}Al–LDH was intercalated with 2-(thiophen-3-yl)acetate monomers. • To achieve in situ oligomerization of the monomers, thermal treatments were made. • Thermal treatment above 120 °C causes partially breakdown of the LDH structure. • ESR results indicated a polaron response characteristic of electron conductivity.« less

  18. Electron-plasmon and electron-phonon satellites in the angle-resolved photoelectron spectra of n -doped anatase TiO2

    NASA Astrophysics Data System (ADS)

    Caruso, Fabio; Verdi, Carla; Poncé, Samuel; Giustino, Feliciano

    2018-04-01

    We develop a first-principles approach based on many-body perturbation theory to investigate the effects of the interaction between electrons and carrier plasmons on the electronic properties of highly doped semiconductors and oxides. Through the evaluation of the electron self-energy, we account simultaneously for electron-plasmon and electron-phonon coupling in theoretical calculations of angle-resolved photoemission spectra, electron linewidths, and relaxation times. We apply this methodology to electron-doped anatase TiO2 as an illustrative example. The simulated spectra indicate that electron-plasmon coupling in TiO2 underpins the formation of satellites at energies comparable to those of polaronic spectral features. At variance with phonons, however, the energy of plasmons and their spectral fingerprints depends strongly on the carrier concentration, revealing a complex interplay between plasmon and phonon satellites. The electron-plasmon interaction accounts for approximately 40% of the total electron-boson interaction strength, and it is key to improve the agreement with measured quasiparticle spectra.

  19. Interference effects on vibration-mediated tunneling through interacting degenerate molecular states.

    PubMed

    Zhong, X; Cao, J C

    2009-07-22

    We study the combined effects of quantum electronic interference and Coulomb interaction on electron transport through near-degenerate molecular states with strong electron-vibration interaction. It is found that quantum electronic interference strongly affects the current and its noise properties. In particular, destructive interference induces pronounced negative differential conductances (NDCs) accompanying the vibrational excited states, and such NDC characters are not related to asymmetric tunnel coupling and are robust to the damping of a thermal bath. In a certain transport regime, the non-equilibrium vibration distribution even shows a peculiar sub-Poissonian behavior, which is enhanced by quantum electronic interference.

  20. Magnetism in curved geometries

    NASA Astrophysics Data System (ADS)

    Streubel, Robert; Fischer, Peter; Kronast, Florian; Kravchuk, Volodymyr P.; Sheka, Denis D.; Gaididei, Yuri; Schmidt, Oliver G.; Makarov, Denys

    2016-09-01

    Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines, including electronics, photonics, plasmonics and magnetics. This approach provides means to modify conventional or to launch novel functionalities by tailoring the geometry of an object, e.g. its local curvature. In a generic electronic system, curvature results in the appearance of scalar and vector geometric potentials inducing anisotropic and chiral effects. In the specific case of magnetism, even in the simplest case of a curved anisotropic Heisenberg magnet, the curvilinear geometry manifests two exchange-driven interactions, namely effective anisotropy and antisymmetric exchange, i.e. Dzyaloshinskii-Moriya-like interaction. As a consequence, a family of novel curvature-driven effects emerges, which includes magnetochiral effects and topologically induced magnetization patterning, resulting in theoretically predicted unlimited domain wall velocities, chirality symmetry breaking and Cherenkov-like effects for magnons. The broad range of altered physical properties makes these curved architectures appealing in view of fundamental research on e.g. skyrmionic systems, magnonic crystals or exotic spin configurations. In addition to these rich physics, the application potential of three-dimensionally shaped objects is currently being explored as magnetic field sensorics for magnetofluidic applications, spin-wave filters, advanced magneto-encephalography devices for diagnosis of epilepsy or for energy-efficient racetrack memory devices. These recent developments ranging from theoretical predictions over fabrication of three-dimensionally curved magnetic thin films, hollow cylinders or wires, to their characterization using integral means as well as the development of advanced tomography approaches are in the focus of this review.

  1. Writing an Electronic Astronomy Book with Interactive Curricular Material

    NASA Astrophysics Data System (ADS)

    Thompson, Kristen L.; Belloni, Mario; Christian, Wolfgang

    2015-01-01

    With the rise of tablets, the past few years have seen an increase in the demand for quality electronic textbooks. Unfortunately, most of the current offerings do not exploit the accessibility and interactivity that electronic books can deliver. In this poster, we discuss how we are merging our curriculum development projects (Physlets, Easy Java/JavaScript Simulations, and Open Source Physics) with the EPUB electronic book format to develop an interactive textbook for use in a one-semester introductory astronomy course. The book, Astronomy: An Interactive Introduction, combines the narrative, equations, and images of a traditional astronomy text with new JavaScript simulations.

  2. Self-Localized Quasi-Particle Excitation in Quantum Electrodynamics and Its Physical Interpretation

    NASA Astrophysics Data System (ADS)

    Feranchuk, Ilya D.; Feranchuk, Sergey I.

    2007-12-01

    The self-localized quasi-particle excitation of the electron-positron field (EPF) is found for the first time in the framework of a standard form of the quantum electrodynamics. This state is interpreted as the ''physical'' electron (positron) and it allows one to solve the following problems: i) to express the ''primary'' charge e0 and the mass m0 of the ''bare'' electron in terms of the observed values of e and m of the ''physical'' electron without any infinite parameters and by essentially nonperturbative way; ii) to consider μ-meson as another self-localized EPF state and to estimate the ratio mμ/m; iii) to prove that the self-localized state is Lorentz-invariant and its energy spectrum corresponds to the relativistic free particle with the observed mass m; iv) to show that the expansion in a power of the observed charge e << 1 corresponds to the strong coupling e! xpansion in a power of the ''primary'' charge e-10 ~ e when the interaction between the ``physical'' electron and the transverse electromagnetic field is considered by means of the perturbation theory and all terms of this series are free from the ultraviolet divergence.

  3. A Hot-electron Direct Detector for Radioastronomy

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; McGrath, William R.; LeDuc, Henry G.; Gershenson, Michael E.

    1999-01-01

    A hot-electron transition-edge superconducting bolometer with adjustable thermal relaxation speed is proposed. The bolometer contacts are made from a superconductor with high critical temperature which blocks the thermal diffusion of hot carriers into the contacts. Thus electron-phonon interaction is the only mechanism for heat removal. The speed of thermal relaxation for hot electrons in a nanometer-size superconducting bolometer with T(sub c) = 100-300 mK is controlled by the elastic electron mean free path l. The relaxation rate behaves as T(sup 4)l at subkelvin temperatures and can be reduced by a factor of 10-100 by decreasing 1. Then an antenna- or wave guide-coupled bolometer with a time constant approx. = 10(exp -3) to 10(exp -4) s will exhibit photon-noise limited performance at millimeter and submillimeter wavelengths. The bolometer will have a figure-of-merit NEPtau = 10(exp -22) - 10(exp -21) W/Hz at 100 mK which is 10(exp 3) to 10(exp 4) times better (ie: smaller) than that of a state-of-the-art bolometer. A tremendous increase in speed and sensitivity will have a significant impact for observational mapping applications.

  4. Ready to use bioinformatics analysis as a tool to predict immobilisation strategies for protein direct electron transfer (DET).

    PubMed

    Cazelles, R; Lalaoui, N; Hartmann, T; Leimkühler, S; Wollenberger, U; Antonietti, M; Cosnier, S

    2016-11-15

    Direct electron transfer (DET) to proteins is of considerable interest for the development of biosensors and bioelectrocatalysts. While protein structure is mainly used as a method of attaching the protein to the electrode surface, we employed bioinformatics analysis to predict the suitable orientation of the enzymes to promote DET. Structure similarity and secondary structure prediction were combined underlying localized amino-acids able to direct one of the enzyme's electron relays toward the electrode surface by creating a suitable bioelectrocatalytic nanostructure. The electro-polymerization of pyrene pyrrole onto a fluorine-doped tin oxide (FTO) electrode allowed the targeted orientation of the formate dehydrogenase enzyme from Rhodobacter capsulatus (RcFDH) by means of hydrophobic interactions. Its electron relays were directed to the FTO surface, thus promoting DET. The reduction of nicotinamide adenine dinucleotide (NAD(+)) generating a maximum current density of 1μAcm(-2) with 10mM NAD(+) leads to a turnover number of 0.09electron/s/molRcFDH. This work represents a practical approach to evaluate electrode surface modification strategies in order to create valuable bioelectrocatalysts. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oloff, L.-P., E-mail: oloff@physik.uni-kiel.de; Hanff, K.; Stange, A.

    With the advent of ultrashort-pulsed extreme ultraviolet sources, such as free-electron lasers or high-harmonic-generation (HHG) sources, a new research field for photoelectron spectroscopy has opened up in terms of femtosecond time-resolved pump-probe experiments. The impact of the high peak brilliance of these novel sources on photoemission spectra, so-called vacuum space-charge effects caused by the Coulomb interaction among the photoemitted probe electrons, has been studied extensively. However, possible distortions of the energy and momentum distributions of the probe photoelectrons caused by the low photon energy pump pulse due to the nonlinear emission of electrons have not been studied in detail yet.more » Here, we systematically investigate these pump laser-induced space-charge effects in a HHG-based experiment for the test case of highly oriented pyrolytic graphite. Specifically, we determine how the key parameters of the pump pulse—the excitation density, wavelength, spot size, and emitted electron energy distribution—affect the measured time-dependent energy and momentum distributions of the probe photoelectrons. The results are well reproduced by a simple mean-field model, which could open a path for the correction of pump laser-induced space-charge effects and thus toward probing ultrafast electron dynamics in strongly excited materials.« less

  6. Quantized impedance dealing with the damping behavior of the one-dimensional oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jinghao; Zhang, Jing; Li, Yuan

    2015-11-15

    A quantized impedance is proposed to theoretically establish the relationship between the atomic eigenfrequency and the intrinsic frequency of the one-dimensional oscillator in this paper. The classical oscillator is modified by the idea that the electron transition is treated as a charge-discharge process of a suggested capacitor with the capacitive energy equal to the energy level difference of the jumping electron. The quantized capacitance of the impedance interacting with the jumping electron can lead the resonant frequency of the oscillator to the same as the atomic eigenfrequency. The quantized resistance reflects that the damping coefficient of the oscillator is themore » mean collision frequency of the transition electron. In addition, the first and third order electric susceptibilities based on the oscillator are accordingly quantized. Our simulation of the hydrogen atom emission spectrum based on the proposed method agrees well with the experimental one. Our results exhibits that the one-dimensional oscillator with the quantized impedance may become useful in the estimations of the refractive index and one- or multi-photon absorption coefficients of some nonmagnetic media composed of hydrogen-like atoms.« less

  7. Quantized impedance dealing with the damping behavior of the one-dimensional oscillator

    NASA Astrophysics Data System (ADS)

    Zhu, Jinghao; Zhang, Jing; Li, Yuan; Zhang, Yong; Fang, Zhengji; Zhao, Peide; Li, Erping

    2015-11-01

    A quantized impedance is proposed to theoretically establish the relationship between the atomic eigenfrequency and the intrinsic frequency of the one-dimensional oscillator in this paper. The classical oscillator is modified by the idea that the electron transition is treated as a charge-discharge process of a suggested capacitor with the capacitive energy equal to the energy level difference of the jumping electron. The quantized capacitance of the impedance interacting with the jumping electron can lead the resonant frequency of the oscillator to the same as the atomic eigenfrequency. The quantized resistance reflects that the damping coefficient of the oscillator is the mean collision frequency of the transition electron. In addition, the first and third order electric susceptibilities based on the oscillator are accordingly quantized. Our simulation of the hydrogen atom emission spectrum based on the proposed method agrees well with the experimental one. Our results exhibits that the one-dimensional oscillator with the quantized impedance may become useful in the estimations of the refractive index and one- or multi-photon absorption coefficients of some nonmagnetic media composed of hydrogen-like atoms.

  8. Evolution of the orbitals Dy-4f in the DyB2 compound using the LDA, PBE approximations, and the PBE0 hybrid functional

    NASA Astrophysics Data System (ADS)

    Rasero Causil, Diego; Ortega López, César; Espitia Rico, Miguel

    2018-04-01

    Computational calculations of total energy based on density functional theory were used to investigate the structural, electronic, and magnetic properties of the DyB2 compounds in the hexagonal structure. The calculations were carried out by means of the full-potential linearized augmented plane wave (FP-LAPW) method, employing the computational Wien2k package. The local density approximation (LDA) and the generalized gradient approximation (GGA) were used for the electron-electron interactions. Additionally, we used the functional hybrid PBE0 for a better description the electronic and magnetic properties, because the DyB2 compound is a strongly-correlated system. We found that the calculated lattice constant agrees well with the values reported theoretically and experimentally. The density of states (DOS) calculation shows that the compound exhibits a metallic behavior and has magnetic properties, with a total magnetic moment of 5.47 μ0/cell determined mainly by the 4f states of the rare earth elements. The functional PBE0 shows a strong localization of the Dy-4f orbitals.

  9. The Hofstadter Butterfly and some physical consequences

    NASA Astrophysics Data System (ADS)

    Claro, Francisco

    Opening its beautiful wings for the first time four decades ago, the Hofstadter Butterfly emerged as a self-similar pattern of bands and gaps displaying the allowed energies for two dimensional crystalline electrons in a perpendicular magnetic field. Within the Harper model, as the external field parameter is varied well defined gaps traverse the spectrum, some closing at a Dirac point where two approaching bands touch. Such band edges degeneracy is lifted in more realistic models. Gaps have a unique label that determines the Hall conductivity of a noninteracting electron system, as observed in recent experiments. When the 2D electron assembly is allowed to interact in the absence of an underlying periodic potential, the mean field approximation predicts a liquid at integer filling fractions and electron density fluctuations otherwise, which if periodic may be represented again by a Harper equation. The intriguing odd denominator rule observed in experiment in the fractional quantum Hall regime is then a natural prediction of the model. Although I have an affiliation (lifetime Granted) I am actually retired (do not have a paid contract).

  10. Tuning electronic properties of graphene nanoflake polyaromatic hydrocarbon through molecular charge-transfer interactions

    NASA Astrophysics Data System (ADS)

    Sharma, Vaishali; Dabhi, Shweta D.; Shinde, Satyam; Jha, Prafulla K.

    2018-05-01

    By means of first principles calculation we have tuned the electronic properties of graphene nanoflake polyaromatic hydrocarbon via molecular charge transfer. Acceptor/donor Tetracyanoquinodimethane (TCNQ) and Tetrathiafulvalene (TTF) organic molecules are adsorbed on polyaromatic hydrocarbons (PAH) in order to introduce the charge transfer. The substrate's n- or p- type nature depends on the accepting/donating behavior of dopant molecules. Two different classes of PAH (extended form of triangulene) namely Bow-tie graphene nanoflake (BTGNF) and triangular zigzag graphene nanoflake (TZGNF). It is revealed that all the TCNQ and TTF modified graphene nanoflakes exhibit significant changes in HOMO-LUMO gap in range from 0.58 eV to 0.64 eV and 0.01 eV to 0.05 eV respectively. The adsorption energies are in the range of -0.05 kcal/mol to -2.6 kcal/mol. The change in work function is also calculated and discussed, the maximum charge transfer is for TCNQ adsorbed BTGNF. These alluring findings in the tuning of electronic properties will be advantageous for promoting graphene nanoflake polyaromatic hydrocarbon for their applications in electronic devices.

  11. Assurance Against Radiation Effects on Electronics

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2004-01-01

    Contents include the following: The Space Radiation Environment. The Effects on Electronics. The Environment in Action. NASA Approaches to Commercial Electronics: the mission mix, flight projects, and proactive research. Final Thoughts: atomic interactions, direct ionization, interaction with nucleus.

  12. Preparation of high performance NBR/HNTs nanocomposites using an electron transferring interaction method

    NASA Astrophysics Data System (ADS)

    Yang, Shuyan; Zhou, Yanxue; Zhang, Peng; Cai, Zhuodi; Li, Yangping; Fan, Hongbo

    2017-12-01

    Interfacial interaction is one of the key factors to improve comprehensive properties of polymer/inorganic filler nanocomposites. In this work, a new interfacial interaction called electron transferring interaction is reported in the nitrile-butadiene rubber/halloysite nanotubes (NBR/HNTs) nanocomposites. The X-ray photoelectron spectroscopy (XPS) and in-situ controlling temperature Fourier transform infrared spectroscopy (FTIR) have confirmed that electrons of electron-rich -CN groups in NBR can transfer to the electron-deficiency aluminum atoms of HNTs, which packs a part of NBR molecules onto the surface of HNTs to form bound rubber and stabilize the homogeneous dispersion of HNTs with few agglomeration as revealed by scanning electron microscope (SEM) and dynamic mechanical analysis (DMA) performances, even at high HNTs addition, resulting in high light transmittance. The tensile strength of NBR/30wt%HNTs nanocomposites is about 291% higher than pure NBR, without sacrificing the elongation at break.

  13. Hole doping, hybridization gaps, and electronic correlation in graphene on a platinum substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Jinwoong; Hwang, Hwihyeon; Kim, Min-Jeong

    The interaction between graphene and substrates provides a viable route to enhance the functionality of both materials. Depending on the nature of electronic interaction at the interface, the electron band structure of graphene is strongly influenced, allowing us to make use of the intrinsic properties of graphene or to design additional functionalities in graphene. In this paper, we present an angle-resolved photoemission study on the interaction between graphene and a platinum substrate. The formation of an interface between graphene and platinum leads to a strong deviation in the electronic structure of graphene not only from its freestanding form but alsomore » from the behavior observed on typical metals. Finally, the combined study on the experimental and theoretical electron band structure unveils the unique electronic properties of graphene on a platinum substrate, which singles out graphene/platinum as a model system investigating graphene on a metallic substrate with strong interaction.« less

  14. Hole doping, hybridization gaps, and electronic correlation in graphene on a platinum substrate

    DOE PAGES

    Hwang, Jinwoong; Hwang, Hwihyeon; Kim, Min-Jeong; ...

    2017-08-02

    The interaction between graphene and substrates provides a viable route to enhance the functionality of both materials. Depending on the nature of electronic interaction at the interface, the electron band structure of graphene is strongly influenced, allowing us to make use of the intrinsic properties of graphene or to design additional functionalities in graphene. In this paper, we present an angle-resolved photoemission study on the interaction between graphene and a platinum substrate. The formation of an interface between graphene and platinum leads to a strong deviation in the electronic structure of graphene not only from its freestanding form but alsomore » from the behavior observed on typical metals. Finally, the combined study on the experimental and theoretical electron band structure unveils the unique electronic properties of graphene on a platinum substrate, which singles out graphene/platinum as a model system investigating graphene on a metallic substrate with strong interaction.« less

  15. Quantifying electronic band interactions in van der Waals materials using angle-resolved reflected-electron spectroscopy.

    PubMed

    Jobst, Johannes; van der Torren, Alexander J H; Krasovskii, Eugene E; Balgley, Jesse; Dean, Cory R; Tromp, Rudolf M; van der Molen, Sense Jan

    2016-11-29

    High electron mobility is one of graphene's key properties, exploited for applications and fundamental research alike. Highest mobility values are found in heterostructures of graphene and hexagonal boron nitride, which consequently are widely used. However, surprisingly little is known about the interaction between the electronic states of these layered systems. Rather pragmatically, it is assumed that these do not couple significantly. Here we study the unoccupied band structure of graphite, boron nitride and their heterostructures using angle-resolved reflected-electron spectroscopy. We demonstrate that graphene and boron nitride bands do not interact over a wide energy range, despite their very similar dispersions. The method we use can be generally applied to study interactions in van der Waals systems, that is, artificial stacks of layered materials. With this we can quantitatively understand the 'chemistry of layers' by which novel materials are created via electronic coupling between the layers they are composed of.

  16. Helium like impurity in CdTe/ Cd1-xMnxTe semimagnetic semiconductors under magnetic field: Dimensionality effect on electron - Electron interaction

    NASA Astrophysics Data System (ADS)

    Kalpana, Panneer Selvam; Jayakumar, Kalyanasundaram

    2017-11-01

    We study the effect of magnetic field on the Coulomb interaction between the two electrons confined inside a CdTe/Cd1-xMnxTe Quantum Well (QW), Quantum Well Wire (QWW) and Quantum Dot (QD) for the composition of Mn2+ ion, x = 0.3. The two particle Schrodinger equation has been solved using variational technique in the effective mass approximation. The results show that the applied magnetic field tremendously alters the Coulomb interaction of the electrons and their binding to the donor impurity by shrinking the spatial extension of the two particle wavefunction and leads to tunnelling through the barrier. The qualitative phenomenon involved in such variation of electron - electron interaction with the magnetic field has also been explained through the 3D - plot of the probability density function.

  17. Electronic structure of atoms: atomic spectroscopy information system

    NASA Astrophysics Data System (ADS)

    Kazakov, V. V.; Kazakov, V. G.; Kovalev, V. S.; Meshkov, O. I.; Yatsenko, A. S.

    2017-10-01

    The article presents a Russian atomic spectroscopy, information system electronic structure of atoms (IS ESA) (http://grotrian.nsu.ru), and describes its main features and options to support research and training. The database contains over 234 000 records, great attention paid to experimental data and uniform filling of the database for all atomic numbers Z, including classified levels and transitions of rare earth and transuranic elements and their ions. Original means of visualization of scientific data in the form of spectrograms and Grotrian diagrams have been proposed. Presentation of spectral data in the form of interactive color charts facilitates understanding and analysis of properties of atomic systems. The use of the spectral data of the IS ESA together with its functionality is effective for solving various scientific problems and training of specialists.

  18. Effects of acoustic- and optical-phonon sidebands on the fundamental optical-absorption edge in crystals and disordered semiconductors

    NASA Astrophysics Data System (ADS)

    Grein, C. H.; John, Sajeev

    1990-04-01

    We present the results of a parameter-free first-principles theory for the fine structure of the Urbach optical-absorption edge in crystalline and disordered semiconductors. The dominant features are recaptured by means of a simple physical argument based on the most probable potential-well analogy. At finite temperatures, the overall linear exponential Urbach behavior of the subgap optical-absorption coefficient is a consequence of multiple LA-phonon emission and absorption sidebands that accompany the electronic transition. The fine structure of subgap absorption spectra observed in some materials is accounted for by multiple TO-, LO-, and TA-phonon absorption and emission sidebands. Good agreement is found with experimental data on crystalline silicon. The effects of nonadiabaticity in the electron-phonon interaction are calculated.

  19. Collective charge excitations and the metal-insulator transition in the square lattice Hubbard-Coulomb model

    DOE PAGES

    Ulybyshev, Maksim; Winterowd, Christopher; Zafeiropoulos, Savvas

    2017-11-09

    Here in this article, we discuss the nontrivial collective charge excitations (plasmons) of the extended square lattice Hubbard model. Using a fully nonperturbative approach, we employ the hybrid Monte Carlo algorithm to simulate the system at half-filling. A modified Backus-Gilbert method is introduced to obtain the spectral functions via numerical analytic continuation. We directly compute the single-particle density of states which demonstrates the formation of Hubbard bands in the strongly correlated phase. The momentum-resolved charge susceptibility also is computed on the basis of the Euclidean charge-density-density correlator. In agreement with previous extended dynamical mean-field theory studies, we find that, atmore » high strength of the electron-electron interaction, the plasmon dispersion develops two branches.« less

  20. Collective charge excitations and the metal-insulator transition in the square lattice Hubbard-Coulomb model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulybyshev, Maksim; Winterowd, Christopher; Zafeiropoulos, Savvas

    Here in this article, we discuss the nontrivial collective charge excitations (plasmons) of the extended square lattice Hubbard model. Using a fully nonperturbative approach, we employ the hybrid Monte Carlo algorithm to simulate the system at half-filling. A modified Backus-Gilbert method is introduced to obtain the spectral functions via numerical analytic continuation. We directly compute the single-particle density of states which demonstrates the formation of Hubbard bands in the strongly correlated phase. The momentum-resolved charge susceptibility also is computed on the basis of the Euclidean charge-density-density correlator. In agreement with previous extended dynamical mean-field theory studies, we find that, atmore » high strength of the electron-electron interaction, the plasmon dispersion develops two branches.« less

  1. Local structure study of Fe dopants in Ni-deficit Ni 3Al alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    V. N. Ivanovski; Umicevic, A.; Belosevic-Cavor, J.

    2015-08-24

    We found that the local electronic and magnetic structure, hyperfine interactions, and phase composition of polycrystalline Ni–deficient Ni 3-x FexAl (x = 0.18 and 0.36) were investigated by means of 57 Fe Mössbauer spectroscopy. The samples were characterized by X–ray diffraction and magnetization measurements. The ab initio calculations performed with the projector augmented wave method and the calculations of the energies of iron point defects were done to elucidate the electronic structure and site preference of Fe doped Ni 3 Al. Moreover, the value of calculated electric field gradient tensor V zz=1.6 10 21Vm -2 matches well with the resultsmore » of Mössbauer spectroscopy and indicates that the Fe atoms occupy Ni sites.« less

  2. 1-Pentamethylbenzyl-3-(n)buthylbenzimidazolesilver(I)bromide complex: synthesis, characterization and DFT calculations.

    PubMed

    Kunduracıoğlu, Ahmet; Tamer, Ömer; Avcı, Davut; Kani, Ibrahim; Atalay, Yusuf; Cetinkaya, Bekir

    2014-01-01

    A novel NHC complex of silver(I) ion, 1-pentamethylbenzyl-3-(n)buthylbenzimidazolesilver(I)bromide, was prepared and fully characterized by single crystal X-ray structure determination. FT-IR, NMR and UV-vis spectroscopies were employed to investigate the electronic transition behaviors of the complex. Additionally, the molecular geometry, vibrational frequencies, gauge including atomic orbital (GIAO) (1)H and (13)C chemical shift and electronic transition values of silver(I) complex were calculated by using density functional theory levels (B3LYP and PBE1PBE) with LANL2DZ basis set. Also, the vibrational frequencies were supported on the basis of the potential energy distribution (PED) analysis calculated for PBE1PBE level. We were also investigated total static dipole moment (μ), the mean polarizability (〈α〉), the anisotropy of the polarizability (Δα), the mean first-order hyperpolarizability (〈β〉) of the title complex. Natural bond orbital (NBO) analysis was performed to determine the presence of hyperconjugative interactions, and charge distributions. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Interfacial fluctuations of block copolymers: a coarse-grain molecular dynamics simulation study.

    PubMed

    Srinivas, Goundla; Swope, William C; Pitera, Jed W

    2007-12-13

    The lamellar and cylindrical phases of block copolymers have a number of technological applications, particularly when they occur in supported thin films. One such application is block copolymer lithography, the use of these materials to subdivide or enhance submicrometer patterns defined by optical or electron beam methods. A key parameter of all lithographic methods is the line edge roughness (LER), because the electronic or optical activities of interest are sensitive to small pattern variations. While mean-field models provide a partial picture of the LER and interfacial width expected for the block interface in a diblock copolymer, these models lack chemical detail. To complement mean-field approaches, we have carried out coarse-grain molecular dynamics simulations on model poly(ethyleneoxide)-poly(ethylethylene) (PEO-PEE) lamellae, exploring the influence of chain length and hypothetical chemical modifications on the observed line edge roughness. As expected, our simulations show that increasing chi (the Flory-Huggins parameter) is the most direct route to decreased roughness, although the addition of strong specific interactions at the block interface can also produce smoother patterns.

  4. Thermally Driven Electronic Topological Transition in FeTi

    DOE PAGES

    Yang, F. C.; Muñoz, J. A.; Hellman, O.; ...

    2016-08-08

    In this paper, ab initio molecular dynamics, supported by inelastic neutron scattering and nuclear resonant inelastic x-ray scattering, showed an anomalous thermal softening of the M 5 - phonon mode in B2-ordered FeTi that could not be explained by phonon-phonon interactions or electron-phonon interactions calculated at low temperatures. A computational investigation showed that the Fermi surface undergoes a novel thermally driven electronic topological transition, in which new features of the Fermi surface arise at elevated temperatures. Finally, the thermally induced electronic topological transition causes an increased electronic screening for the atom displacements in the M 5 - phonon mode andmore » an adiabatic electron-phonon interaction with an unusual temperature dependence.« less

  5. Multireference configuration interaction study of the mixed Valence-Rydberg character of the C2H4 1(π,π*) V state

    NASA Astrophysics Data System (ADS)

    Krebs, Stefan; Buenker, Robert J.

    1997-05-01

    The spatial extension of the C2H41(π,π*) V state is investigated by means of low selection threshold multireference configuration interaction (CI) calculations employing two atomic orbital (AO) basis sets with different numbers of polarization and Rydberg functions. The results are shown to be nearly independent of the choice of one-electron basis (ground N, triplet T, and singlet V self-consistent field molecular orbitals (SCF MOs)) in forming the many-electron basis for the configuration interaction indicating that the AO basis limit has been closely approached in each case. The calculations indicate that the value for the <ΨV|Σxi2|ΨV>≡V matrix element falls in the 18±1 a02 range, 50% larger than the corresponding values computed for N and T, respectively, for the corresponding N and T states. This result is interpreted to be a consequence of the mixing of diabatic 1(π,π*) valence and 1(π,dπ) Rydberg states in the Franck-Condon region of the V-N transition. The corresponding excitation energy is computed to lie in the 7.90-7.95 eV range, indicating that there is a distinct nonverticality in the measured absorption spectrum which is caused in part by nonadiabatic interactions between the V and 1(π,3py) Rydberg states as a result of torsional motion of the C2H4 molecule.

  6. Radio Emission from a Young Supernova Remnant Interacting with an Interstellar Cloud: Magnetohydrodynamic Simulation with Relativistic Electrons

    NASA Astrophysics Data System (ADS)

    Jun, Byung-Il; Jones, T. W.

    1999-02-01

    We present two-dimensional MHD simulations of the evolution of a young Type Ia supernova remnant (SNR) during its interaction with an interstellar cloud of comparable size at impact. We include for the first time in such simulations explicit relativistic electron transport. This was done using a simplified treatment of the diffusion-advection equation, thus allowing us to model injection and acceleration of cosmic-ray electrons at shocks and their subsequent transport. From this information we also model radio synchrotron emission, including spectral information. The simulations were carried out in spherical coordinates with azimuthal symmetry and compare three different situations, each incorporating an initially uniform interstellar magnetic field oriented in the polar direction on the grid. In particular, we modeled the SNR-cloud interactions for a spherical cloud on the polar axis, a toroidal cloud whose axis is aligned with the polar axis, and, for comparison, a uniform medium with no cloud. We find that the evolution of the overrun cloud qualitatively resembles that seen in simulations of simpler but analogous situations: that is, the cloud is crushed and begins to be disrupted by Rayleigh-Taylor and Kelvin-Helmholtz instabilities. However, we demonstrate here that, in addition, the internal structure of the SNR is severely distorted as such clouds are engulfed. This has important dynamical and observational implications. The principal new conclusions we draw from these experiments are the following. (1) Independent of the cloud interaction, the SNR reverse shock can be an efficient site for particle acceleration in a young SNR. (2) The internal flows of the SNR become highly turbulent once it encounters a large cloud. (3) An initially uniform magnetic field is preferentially amplified along the magnetic equator of the SNR, primarily because of biased amplification in that region by Rayleigh-Taylor instabilities. A similar bias produces much greater enhancement to the magnetic energy in the SNR during an encounter with a cloud when the interstellar magnetic field is partially transverse to the expansion of the SNR. The enhanced magnetic fields have a significant radial component, independent of the field orientation external to the SNR. This leads to a strong equatorial bias in synchrotron brightness that could easily mask any enhancements to electron-acceleration efficiency near the magnetic equator of the SNR. Thus, to establish the latter effect, it will be essential to establish that the magnetic field in the brightest regions are actually tangential to the blast wave. (4) The filamentary radio structures correlate well with ``turbulence-enhanced'' magnetic structures, while the diffuse radio emission more closely follows the gas-density distribution within the SNR. (5) At these early times, the synchrotron spectral index due to electrons accelerated at the primary shocks should be close to 0.5 unless those shocks are modified by cosmic-ray proton pressures. While that result is predictable, we find that this simple result can be significantly complicated in practice by SNR interactions with clouds. Those events can produce regions with significantly steeper spectra. Especially if there are multiple cloud encounters, this interaction can lead to nonuniform spatial spectral distributions or, through turbulent mixing, produce a spectrum that is difficult to relate to the actual strength of the blast wave. (6) Interaction with the cloud enhances the nonthermal electron population in the SNR in our simulations because of additional electron injection taking place in the shocks associated with the cloud. Together with point 3, this means that SNR-cloud encounters can significantly increase the radio emission from the SNR.

  7. Mechanisms of relaxation and spin decoherence in nanomagnets

    NASA Astrophysics Data System (ADS)

    van Tol, Johan

    Relaxation in spin systems is of great interest with respect to various possible applications like quantum information processing and storage, spintronics, and dynamic nuclear polarization (DNP). The implementation of high frequencies and fields is crucial in the study of systems with large zero-field splitting or large interactions, as for example molecular magnets and low dimensional magnetic materials. Here we will focus on the implementation of pulsed Electron Paramagnetic Resonance (ERP) at multiple frequencies of 10, 95, 120, 240, and 336 GHz, and the relaxation and decoherence processes as a function of magnetic field and temperature. Firstly, at higher frequencies the direct single-phonon spin-lattice relaxation (SLR) is considerably enhanced, and will more often than not be the dominant relaxation mechanism at low temperatures, and can be much faster than at lower fields and frequencies. In principle the measurement of the SLR rates as a function of the frequency provides a means to map the phonon density of states. Secondly, the high electron spin polarization at high fields has a strong influence on the spin fluctuations in relatively concentrated spin systems, and the contribution of the electron-electron dipolar interactions to the coherence rate can be partially quenched at low temperatures. This not only allows the study of relatively concentrated spin systems by pulsed EPR (as for example magnetic nanoparticles and molecular magnets), it enables the separation of the contribution of the fluctuations of the electron spin system from other decoherence mechanisms. Besides choice of temperature and field, several strategies in sample design, pulse sequences, or clock transitions can be employed to extend the coherence time in nanomagnets. A review will be given of the decoherence mechanisms with an attempt at a quantitative comparison of experimental rates with theory.

  8. Nonempirical Calculation of Superconducting Transition Temperatures in Light-Element Superconductors.

    PubMed

    Arita, Ryotaro; Koretsune, Takashi; Sakai, Shiro; Akashi, Ryosuke; Nomura, Yusuke; Sano, Wataru

    2017-07-01

    Recent progress in the fully nonempirical calculation of the superconducting transition temperature (T c ) is reviewed. Especially, this study focuses on three representative light-element high-T c superconductors, i.e., elemental Li, sulfur hydrides, and alkali-doped fullerides. Here, it is discussed how crucial it is to develop the beyond Migdal-Eliashberg (ME) methods. For Li, a scheme of superconducting density functional theory for the plasmon mechanism is formulated and it is found that T c is dramatically enhanced by considering the frequency dependence of the screened Coulomb interaction. For sulfur hydrides, it is essential to go beyond not only the static approximation for the screened Coulomb interaction, but also the constant density-of-states approximation for electrons, the harmonic approximation for phonons, and the Migdal approximation for the electron-phonon vertex, all of which have been employed in the standard ME calculation. It is also shown that the feedback effect in the self-consistent calculation of the self-energy and the zero point motion considerably affect the calculation of T c . For alkali-doped fullerides, the interplay between electron-phonon coupling and electron correlations becomes more nontrivial. It has been demonstrated that the combination of density functional theory and dynamical mean field theory with the ab initio downfolding scheme for electron-phonon coupled systems works successfully. This study not only reproduces the experimental phase diagram but also obtains a unified view of the high-T c superconductivity and the Mott-Hubbard transition in the fullerides. The results for these high-T c superconductors will provide a firm ground for future materials design of new superconductors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Interplay of spin-dependent delocalization and magnetic anisotropy in the ground and excited states of [Gd2@C78]- and [Gd2@C80]-

    NASA Astrophysics Data System (ADS)

    Mansikkamäki, Akseli; Popov, Alexey A.; Deng, Qingming; Iwahara, Naoya; Chibotaru, Liviu F.

    2017-09-01

    The magnetic properties and electronic structure of the ground and excited states of two recently characterized endohedral metallo-fullerenes, [Gd2@C78]- (1) and [Gd2@C80]- (2), have been studied by theoretical methods. The systems can be considered as [Gd2]5+ dimers encapsulated in a fullerene cage with the fifteen unpaired electrons ferromagnetically coupled into an S = 15/2 high-spin configuration in the ground state. The microscopic mechanisms governing the Gd-Gd interactions leading to the ferromagnetic ground state are examined by a combination of density functional and ab initio calculations and the full energy spectrum of the ground and lowest excited states is constructed by means of ab initio model Hamiltonians. The ground state is characterized by strong electron delocalization bordering on a σ type one-electron covalent bond and minor zero-field splitting (ZFS) that is successfully described as a second order spin-orbit coupling effect. We have shown that the observed ferromagnetic interaction originates from Hund's rule coupling and not from the conventional double exchange mechanism. The calculated ZFS parameters of 1 and 2 in their optimized geometries are in qualitative agreement with experimental EPR results. The higher excited states display less electron delocalization, but at the same time they possess unquenched first-order angular momentum. This leads to strong spin-orbit coupling and highly anisotropic energy spectrum. The analysis of the excited states presented here constitutes the first detailed study of the effects of spin-dependent delocalization in the presence of first order orbital angular momentum and the obtained results can be applied to other mixed valence lanthanide systems.

  10. Transferable Pseudo-Classical Electrons for Aufbau of Atomic Ions

    PubMed Central

    Ekesan, Solen; Kale, Seyit; Herzfeld, Judith

    2014-01-01

    Generalizing the LEWIS reactive force field from electron pairs to single electrons, we present LEWIS• in which explicit valence electrons interact with each other and with nuclear cores via pairwise interactions. The valence electrons are independently mobile particles, following classical equations of motion according to potentials modified from Coulombic as required to capture quantum characteristics. As proof of principle, the aufbau of atomic ions is described for diverse main group elements from the first three rows of the periodic table, using a single potential for interactions between electrons of like spin and another for electrons of unlike spin. The electrons of each spin are found to distribute themselves in a fashion akin to the major lobes of the hybrid atomic orbitals, suggesting a pointillist description of the electron density. The broader validity of the LEWIS• force field is illustrated by predicting the vibrational frequencies of diatomic and triatomic hydrogen species. PMID:24752384

  11. Transferable pseudoclassical electrons for aufbau of atomic ions.

    PubMed

    Ekesan, Solen; Kale, Seyit; Herzfeld, Judith

    2014-06-05

    Generalizing the LEWIS reactive force field from electron pairs to single electrons, we present LEWIS• in which explicit valence electrons interact with each other and with nuclear cores via pairwise interactions. The valence electrons are independently mobile particles, following classical equations of motion according to potentials modified from Coulombic as required to capture quantum characteristics. As proof of principle, the aufbau of atomic ions is described for diverse main group elements from the first three rows of the periodic table, using a single potential for interactions between electrons of like spin and another for electrons of unlike spin. The electrons of each spin are found to distribute themselves in a fashion akin to the major lobes of the hybrid atomic orbitals, suggesting a pointillist description of the electron density. The broader validity of the LEWIS• force field is illustrated by predicting the vibrational frequencies of diatomic and triatomic hydrogen species. Copyright © 2014 Wiley Periodicals, Inc.

  12. Electroluminescence Caused by the Transport of Interacting Electrons through Parallel Quantum Dots in a Photon Cavity

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Vidar; Abdulla, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei

    2018-02-01

    We show that a Rabi-splitting of the states of strongly interacting electrons in parallel quantum dots embedded in a short quantum wire placed in a photon cavity can be produced by either the para- or the dia-magnetic electron-photon interactions when the geometry of the system is properly accounted for and the photon field is tuned close to a resonance with the electron system. We use these two resonances to explore the electroluminescence caused by the transport of electrons through the one- and two-electron ground states of the system and their corresponding conventional and vacuum electroluminescense as the central system is opened up by coupling it to external leads acting as electron reservoirs. Our analysis indicates that high-order electron-photon processes are necessary to adequately construct the cavity-photon dressed electron states needed to describe both types of electroluminescence.

  13. Electronic system

    DOEpatents

    Robison, G H; Dickson, J F

    1960-11-15

    An electronic system is designed for indicating the occurrence of a plurality of electrically detectable events within predetermined time intervals. The system comprises separate input means electrically associated with the events under observation an electronic channel associated with each input means, including control means and indicating means; timing means adapted to apply a signal from the input means after a predetermined time to the control means to deactivate each of the channels; and means for resetting the system to its initial condition after the observation of each group of events. (D.L.C.)

  14. Electron Inelastic-Mean-Free-Path Database

    National Institute of Standards and Technology Data Gateway

    SRD 71 NIST Electron Inelastic-Mean-Free-Path Database (PC database, no charge)   This database provides values of electron inelastic mean free paths (IMFPs) for use in quantitative surface analyses by AES and XPS.

  15. One-electron propagation in Fermi, Pasta, Ulam disordered chains with Gaussian acoustic pulse pumping

    NASA Astrophysics Data System (ADS)

    Silva, L. D. Da; Dos Santos, J. L. L.; Ranciaro Neto, A.; Sales, M. O.; de Moura, F. A. B. F.

    In this work, we consider a one-electron moving on a Fermi, Pasta, Ulam disordered chain under effect of electron-phonon interaction and a Gaussian acoustic pulse pumping. We describe electronic dynamics using quantum mechanics formalism and the nonlinear atomic vibrations using standard classical physics. Solving numerical equations related to coupled quantum/classical behavior of this system, we study electronic propagation properties. Our calculations suggest that the acoustic pumping associated with the electron-lattice interaction promote a sub-diffusive electronic dynamics.

  16. Electronic structure and spectra of the RbHe van der Waals system including spin orbit interaction

    NASA Astrophysics Data System (ADS)

    Dhiflaoui, Jamila; Bejaoui, Mohamed; Berriche, Hamid

    2017-12-01

    The potential energy interaction, the spectroscopic properties and dipole functions of the RbHe van der Waals dimer have been investigated. We used a one-electron pseudopotential approach and large Gaussian basis sets to represent the two atoms Rb and He. The Rb+ core and the electron-He interactions were replaced by semi-local pseudopotentials and a core-core interaction is included. Therefore, the number of active electrons of RbHe is reduced to only one electron. Consequently, the potential energy curves and dipole moments for many electronic states dissociating into Rb(5s,5p,4d,6s,6p,5d,7s)+He are performed at the SCF level. In addition, the spin-orbit coupling is included in the calculation. The Rb+He interaction, in its ground state, is taken from accurate CCSD (T) calculations and fitted to an analytical expression for a better description of the potential in all internuclear ranges. The spectroscopic properties of the RbHe electronic states are extracted. The comparison of these constants has shown a very good agreement for the ground state as well as for the lower excited states when compared with existing theoretical and experimental studies.

  17. Effective mass in bilayer graphene at low carrier densities: The role of potential disorder and electron-electron interaction

    NASA Astrophysics Data System (ADS)

    Li, J.; Tan, L. Z.; Zou, K.; Stabile, A. A.; Seiwell, D. J.; Watanabe, K.; Taniguchi, T.; Louie, Steven G.; Zhu, J.

    2016-10-01

    In a two-dimensional electron gas, the electron-electron interaction generally becomes stronger at lower carrier densities and renormalizes the Fermi-liquid parameters, such as the effective mass of carriers. We combine experiment and theory to study the effective masses of electrons and holes me* and mh* in bilayer graphene in the low carrier density regime on the order of 1 ×1011c m-2 . Measurements use temperature-dependent low-field Shubnikov-de Haas oscillations observed in high-mobility hexagonal boron nitride supported samples. We find that while me* follows a tight-binding description in the whole density range, mh* starts to drop rapidly below the tight-binding description at a carrier density of n =6 ×1011c m-2 and exhibits a strong suppression of 30% when n reaches 2 ×1011c m-2 . Contributions from the electron-electron interaction alone, evaluated using several different approximations, cannot explain the experimental trend. Instead, the effect of the potential fluctuation and the resulting electron-hole puddles play a crucial role. Calculations including both the electron-electron interaction and disorder effects explain the experimental data qualitatively and quantitatively. This Rapid Communication reveals an unusual disorder effect unique to two-dimensional semimetallic systems.

  18. Variable energy, high flux, ground-state atomic oxygen source

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Orient, Otto J. (Inventor)

    1987-01-01

    A variable energy, high flux atomic oxygen source is described which is comprised of a means for producing a high density beam of molecules which will emit O(-) ions when bombarded with electrons; a means of producing a high current stream of electrons at a low energy level passing through the high density beam of molecules to produce a combined stream of electrons and O(-) ions; means for accelerating the combined stream to a desired energy level; means for producing an intense magnetic field to confine the electrons and O(-) ions; means for directing a multiple pass laser beam through the combined stream to strip off the excess electrons from a plurality of the O(-) ions to produce ground-state O atoms within the combined stream; electrostatic deflection means for deflecting the path of the O(-) ions and the electrons in the combined stream; and, means for stopping the O(-) ions and the electrons and for allowing only the ground-state O atoms to continue as the source of the atoms of interest. The method and apparatus are also adaptable for producing other ground-state atoms and/or molecules.

  19. Reversible electron heating vs. wave-particle interactions in quasi-perpendicular shocks

    NASA Technical Reports Server (NTRS)

    Veltri, P.; Mangeney, A.; Scudder, J. D.

    1992-01-01

    The energy necessary to explain the electron heating in quasi-perpendicular collisionless shocks can be derived either from the electron acceleration in the d.c. cross shock electric potential, or by the interactions between the electrons and the waves existing in the shock. A Monte Carlo simulation has been performed to study the electron distribution function evolution through the shock structure, with and without particle diffusion on waves. This simulation has allowed us to clarify the relative importance of the two possible energy sources; in particular it has been shown that the electron parallel temperature is determined by the d.c. electromagnetic field and not by any wave-particle-induced heating. Wave particle interactions are effective in smoothing out the large gradients in phase space produced by the 'reversible' motion of the electrons, thus producing a 'cooling' of the electrons.

  20. Exploring the molecular mechanisms of electron shuttling across the microbe/metal space

    PubMed Central

    Paquete, Catarina M.; Fonseca, Bruno M.; Cruz, Davide R.; Pereira, Tiago M.; Pacheco, Isabel; Soares, Cláudio M.; Louro, Ricardo O.

    2014-01-01

    Dissimilatory metal reducing organisms play key roles in the biogeochemical cycle of metals as well as in the durability of submerged and buried metallic structures. The molecular mechanisms that support electron transfer across the microbe-metal interface in these organisms remain poorly explored. It is known that outer membrane proteins, in particular multiheme cytochromes, are essential for this type of metabolism, being responsible for direct and indirect, via electron shuttles, interaction with the insoluble electron acceptors. Soluble electron shuttles such as flavins, phenazines, and humic acids are known to enhance extracellular electron transfer. In this work, this phenomenon was explored. All known outer membrane decaheme cytochromes from Shewanella oneidensis MR-1 with known metal terminal reductase activity and a undecaheme cytochrome from Shewanella sp. HRCR-6 were expressed and purified. Their interactions with soluble electron shuttles were studied using stopped-flow kinetics, NMR spectroscopy, and molecular simulations. The results show that despite the structural similarities, expected from the available structural data and sequence homology, the detailed characteristics of their interactions with soluble electron shuttles are different. MtrC and OmcA appear to interact with a variety of different electron shuttles in the close vicinity of some of their hemes, and with affinities that are biologically relevant for the concentrations typical found in the medium for this type of compounds. All data support a view of a distant interaction between the hemes of MtrF and the electron shuttles. For UndA a clear structural characterization was achieved for the interaction with AQDS a humic acid analog. These results provide guidance for future work of the manipulation of these proteins toward modulation of their role in metal attachment and reduction. PMID:25018753

  1. Collisional, radiative and total electron interaction in compound semiconductor detectors and solid state nuclear track detectors: effective atomic number and electron density.

    PubMed

    Kurudirek, Murat; Kurudirek, Sinem V

    2015-05-01

    Effective atomic numbers, Zeff and electron densities, Ne are widely used for characterization of interaction processes in radiation related studies. A variety of detectors are employed to detect different types of radiations i.e. photons and charged particles. In the present work, some compound semiconductor detectors (CSCD) and solid state nuclear track detectors (SSNTD) were investigated with respect to the partial as well as total electron interactions. Zeff and Ne of the given detectors were calculated for collisional, radiative and total electron interactions in the kinetic energy region 10keV-1GeV. Maximum values of Zeff and Ne were observed at higher kinetic energies of electrons. Significant variations in Zeff and Ne up to ≈20-25% were noticed for the detectors, GaN, ZnO, Amber and CR-39 for total electron interaction. Moreover, the obtained Zeff and Ne for electrons were compared to those obtained for photons in the entire energy region. Significant variations in Zeff were also noted not only for photons (up to ≈40% for GaN) but also between photons and electrons (up to ≈60% for CR-39) especially at lower energies. Except for the lower energies, Zeff and Ne keep more or less constant values for the given materials. The energy regions where Zeff and Ne keep constant clearly show the availability of using these parameters for characterization of the materials with respect to the radiation interaction processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Carrier interactions and porosity initiated reversal of temperature dependence of thermal conduction in nanoscale tin films

    NASA Astrophysics Data System (ADS)

    Kaul, Pankaj B.; Prakash, Vikas

    2014-01-01

    Recently, tin has been identified as an attractive electrode material for energy storage/conversion technologies. Tin thin films have also been utilized as an important constituent of thermal interface materials in thermal management applications. In this regards, in the present paper, we investigate thermal conductivity of two nanoscale tin films, (i) with thickness 500 ± 50 nm and 0.45% porosity and (ii) with thickness 100 ± 20 nm and 12.21% porosity. Thermal transport in these films is characterized over the temperature range from 40 K-310 K, using a three-omega method for multilayer configurations. The experimental results are compared with analytical predictions obtained by considering both phonon and electron contributions to heat conduction as described by existing frequency-dependent phenomenological models and BvK dispersion for phonons. The thermal conductivity of the thicker tin film (500 nm) is measured to be 46.2 W/m-K at 300 K and is observed to increase with reduced temperatures; the mechanisms for thermal transport are understood to be governed by strong phonon-electron interactions in addition to the normal phonon-phonon interactions within the temperature range 160 K-300 K. In the case of the tin thin film with 100 nm thickness, porosity and electron-boundary scattering supersede carrier interactions, and a reversal in the thermal conductivity trend with reduced temperatures is observed; the thermal conductivity falls to 1.83 W/m-K at 40 K from its room temperature value of 36.1 W/m-K. In order to interpret the experimental results, we utilize the existing analytical models that account for contributions of electron-boundary scattering using the Mayadas-Shatzkes and Fuchs-Sondheimer models for the thin and thick films, respectively. Moreover, the effects of porosity on carrier transport are included using a previous treatment based on phonon radiative transport involving frequency-dependent mean free paths and the morphology of the nanoporous channels. The systematic modeling approach presented in here can, in general, also be utilized to understand thermal transport in semi-metals and semiconductor nano-porous thin films and/or phononic nanocrystals.

  3. Ionization heating in rare-gas clusters under intense XUV laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arbeiter, Mathias; Fennel, Thomas

    The interaction of intense extreme ultraviolet (XUV) laser pulses ({lambda}=32 nm, I=10{sup 11}-10{sup 14} W/cm{sup 2}) with small rare-gas clusters (Ar{sub 147}) is studied by quasiclassical molecular dynamics simulations. Our analysis supports a very general picture of the charging and heating dynamics in finite samples under short-wavelength radiation that is of relevance for several applications of free-electron lasers. First, up to a certain photon flux, ionization proceeds as a series of direct photoemission events producing a jellium-like cluster potential and a characteristic plateau in the photoelectron spectrum as observed in Bostedt et al. [Phys. Rev. Lett. 100, 133401 (2008)]. Second,more » beyond the onset of photoelectron trapping, nanoplasma formation leads to evaporative electron emission with a characteristic thermal tail in the electron spectrum. A detailed analysis of this transition is presented. Third, in contrast to the behavior in the infrared or low vacuum ultraviolet range, the nanoplasma energy capture proceeds via ionization heating, i.e., inner photoionization of localized electrons, whereas collisional heating of conduction electrons is negligible up to high laser intensities. A direct consequence of the latter is a surprising evolution of the mean energy of emitted electrons as function of laser intensity.« less

  4. Effects of 1 MeV electrons on the deformation mechanisms of polyethylene/carbon nanotube composites

    NASA Astrophysics Data System (ADS)

    Yang, Jianqun; Zhang, Xiaodong; Liu, Chaoming; Li, Xingji; Li, Hongxia; Ma, Guoliang; Tian, Feng

    2017-10-01

    Polymer nano-composites, especially in polyethylene (PE)/carbon nanotube (CNT) composites can be employed as radiation shielding and structural materials in space. When the PE/CNT composites are used in space, it is easy to suffer from radiation damage caused by charged particles. However, few studies about deformation mechanisms of the composites exposed to electron become available so far. In this paper, mutiwalled carbon nanotubes (MWCNTs) were incorporated into low density polyethylene (LDPE) with MWCNT loadings concentrations of 0.1 wt%. The structural evolution during uniaxial tensile deformation of the LDPE/0.1% MWCNT composites before and after 1 MeV electrons were investigated by means of a small angle X-ray scattering (SAXS) and wide angle X-ray diffraction (WAXD). Experimental results show that 1 MeV electrons obviously increase the ultimate tensile strength of the LDPE/MWCNT composites. From SAXS and WAXD analyses, it is shown that 1 MeV electrons inhibit the disintegration and the rotation of the lamellae, and slow down the formation of the new crystals. It is concluded that the intense interaction between MWCNTs and LDPE matrix and the crosslinking strengthening generated by 1 MeV electrons is the dominant reason for the changes of the deformation behaviors of LDPE.

  5. Existence of ground state of an electron in the BDF approximation

    NASA Astrophysics Data System (ADS)

    Sok, Jérémy

    2014-05-01

    The Bogoliubov-Dirac-Fock (BDF) model allows us to describe relativistic electrons interacting with the Dirac sea. It can be seen as a mean-field approximation of Quantum Electrodynamics (QED) where photons are neglected. This paper treats the case of an electron together with the Dirac sea in the absence of any external field. Such a system is described by its one-body density matrix, an infinite rank, self-adjoint operator. The parameters of the model are the coupling constant α > 0 and the ultraviolet cut-off Λ > 0: we consider the subspace of squared integrable functions made of the functions whose Fourier transform vanishes outside the ball B(0, Λ). We prove the existence of minimizers of the BDF energy under the charge constraint of one electron and no external field provided that α, Λ-1 and α log(Λ) are sufficiently small. The interpretation is the following: in this regime the electron creates a polarization in the Dirac vacuum which allows it to bind. We then study the non-relativistic limit of such a system in which the speed of light tends to infinity (or equivalently α tends to zero) with αlog(Λ) fixed: after rescaling and translation the electronic solution tends to a Choquard-Pekar ground state.

  6. Diagrammatic Monte Carlo approach for diagrammatic extensions of dynamical mean-field theory: Convergence analysis of the dual fermion technique

    NASA Astrophysics Data System (ADS)

    Gukelberger, Jan; Kozik, Evgeny; Hafermann, Hartmut

    2017-07-01

    The dual fermion approach provides a formally exact prescription for calculating properties of a correlated electron system in terms of a diagrammatic expansion around dynamical mean-field theory (DMFT). Most practical implementations, however, neglect higher-order interaction vertices beyond two-particle scattering in the dual effective action and further truncate the diagrammatic expansion in the two-particle scattering vertex to a leading-order or ladder-type approximation. In this work, we compute the dual fermion expansion for the two-dimensional Hubbard model including all diagram topologies with two-particle interactions to high orders by means of a stochastic diagrammatic Monte Carlo algorithm. We benchmark the obtained self-energy against numerically exact diagrammatic determinant Monte Carlo simulations to systematically assess convergence of the dual fermion series and the validity of these approximations. We observe that, from high temperatures down to the vicinity of the DMFT Néel transition, the dual fermion series converges very quickly to the exact solution in the whole range of Hubbard interactions considered (4 ≤U /t ≤12 ), implying that contributions from higher-order vertices are small. As the temperature is lowered further, we observe slower series convergence, convergence to incorrect solutions, and ultimately divergence. This happens in a regime where magnetic correlations become significant. We find, however, that the self-consistent particle-hole ladder approximation yields reasonable and often even highly accurate results in this regime.

  7. Terahertz electron cyclotron maser interactions with an axis-encircling electron beam

    NASA Astrophysics Data System (ADS)

    Li, G. D.; Kao, S. H.; Chang, P. C.; Chu, K. R.

    2015-04-01

    To generate terahertz radiation via the electron cyclotron maser instability, harmonic interactions are essential in order to reduce the required magnetic field to a practical value. Also, high-order mode operation is required to avoid excessive Ohmic losses. The weaker harmonic interaction and mode competition associated with an over-moded structure present challenging problems to overcome. The axis-encircling electron beam is a well-known recipe for both problems. It strengthens the harmonic interaction, as well as minimizing the competing modes. Here, we examine these advantages through a broad data base obtained for a low-power, step-tunable, gyrotron oscillator. Linear results indicate far more higher-harmonic modes can be excited with an axis-encircling electron beam than with an off-axis electron beam. However, multi-mode, time-dependent simulations reveal an intrinsic tendency for a higher-harmonic mode to switch over to a lower-harmonic mode at a high beam current or upon a rapid current rise. Methods are presented to identify the narrow windows in the parameter space for stable harmonic interactions.

  8. Effect of spin-orbit and on-site Coulomb interactions on the electronic structure and lattice dynamics of uranium monocarbide

    NASA Astrophysics Data System (ADS)

    Wdowik, U. D.; Piekarz, P.; Legut, D.; Jagło, G.

    2016-08-01

    Uranium monocarbide, a potential fuel material for the generation IV reactors, is investigated within density functional theory. Its electronic, magnetic, elastic, and phonon properties are analyzed and discussed in terms of spin-orbit interaction and localized versus itinerant behavior of the 5 f electrons. The localization of the 5 f states is tuned by varying the local Coulomb repulsion interaction parameter. We demonstrate that the theoretical electronic structure, elastic constants, phonon dispersions, and their densities of states can reproduce accurately the results of x-ray photoemission and bremsstrahlung isochromat measurements as well as inelastic neutron scattering experiments only when the 5 f states experience the spin-orbit interaction and simultaneously remain partially localized. The partial localization of the 5 f electrons could be represented by a moderate value of the on-site Coulomb interaction parameter of about 2 eV. The results of the present studies indicate that both strong electron correlations and spin-orbit effects are crucial for realistic theoretical description of the ground-state properties of uranium carbide.

  9. Double layers in expanding plasmas and their relevance to the auroral plasma processes

    NASA Astrophysics Data System (ADS)

    Singh, Nagendra; Khazanov, George

    2003-04-01

    When a dense plasma consisting of a cold and a sufficiently warm electron population expands, a rarefaction shock forms [, 1978]. In the expansion of the polar wind in the magnetosphere, it has been previously shown that when a sufficiently warm electron population also exists, in addition to the usual cold ionospheric one, a discontinuity forms in the electrostatic potential distribution along the magnetic field lines [, 1984]. Despite the lack of spatial resolution and the assumption of quasi-neutrality in the polar wind models, such discontinuities have been called double layers (DLs). Recently similar discontinuities have been invoked to partly explain the auroral acceleration of electrons and ions in the upward current region [, 2000]. By means of one-dimensional Vlasov simulations of expanding plasmas, for the first time we make here the connection between (1) the rarefaction shocks, (2) the discontinuities in the potential distributions, and (3) DLs. We show that when plasmas expand from opposite directions into a deep density cavity with a potential drop across it and when the plasma on the high-potential side contains hot and cold electron populations, the temporal evolution of the potential and the plasma distribution generates evolving multiple double layers with an extended density cavity between them. One of the DLs is the rarefaction-shock (RFS) and it forms by the reflections of the cold electrons coming from the high-potential side; it supports a part of the potential drop approximately determined by the hot electron temperature. The other DLs evolve from charge separations arising either from reflection of ions coming from the low-potential side or stemming from plasma instabilities; they support the rest of the potential drop. The instabilities forming these additional double layers involve electron-ion (e-i) Buneman or ion-ion (i-i) two-stream interactions. The electron-electron two-stream interactions on the high-potential side of the RFS generate electron-acoustic waves, which evolve into electron phase-space holes. The ion population originating from the low-potential side and trapped by the RFS is energized by the e-i and i-i instabilities and it eventually precipitates into the high-potential plasma along with an electron beam. Applications of these findings to the auroral plasma physics are discussed.

  10. Double Layers in Expanding Plasmas and Their Relevance to the Auroral Plasma Processes

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Khazanov, George

    2003-01-01

    When a dense plasma consisting of a cold and a sufficiently warm electron population expands, a rarefaction shock forms [Bezzerides et al., 1978]. In the expansion of the polar wind in the magnetosphere, it has been previously shown that when a sufficiently warm electron population also exists, in addition to the usual cold ionospheric one, a discontinuity forms in the electrostatic potential distribution along the magnetic field lines [Barakat and Schunk, 1984]. Despite the lack of spatial resolution and the assumption of quasi-neutrality in the polar wind models, such discontinuities have been called double layers (DLs). Recently similar discontinuities have been invoked to partly explain the auroral acceleration of electrons and ions in the upward current region [Ergun et al., 2000]. By means of one-dimensional Vlasov simulations of expanding plasmas, for the first time we make here the connection between (1) the rarefaction shocks, (2) the discontinuities in the potential distributions, and (3) DLs. We show that when plasmas expand from opposite directions into a deep density cavity with a potential drop across it and when the plasma on the high-potential side contains hot and cold electron populations, the temporal evolution of the potential and the plasma distribution generates evolving multiple double layers with an ,extended density cavity between them. One of the DLs is the rarefaction-shock (RFS) and it forms by the reflections of the cold electrons coming from the high-potential side; it supports a part of the potential drop approximately determined by the hot electron temperature. The other DLs evolve from charge separations arising either from reflection of ions coming from the low-potential side or stemming from plasma instabilities; they support the rest of the potential drop. The instabilities forming these additional double layers involve electron-ion (e-i) Buneman or ion-ion (i-i) two-stream interactions. The electron-electron two-stream interactions on the high-potential side of the RFS generate electron-acoustic waves, which evolve into electron phase-space holes. The ion population originating from the low-potential side and trapped by the RFS is energized by the e-i and i-i instabilities and it eventually precipitates into the high-potential plasma along with an electron beam. Applications of these findings to the auroral plasma physics are discussed.

  11. Radiative double electron capture in collisions of fully-stripped fluorine ions with thin carbon foils

    NASA Astrophysics Data System (ADS)

    Elkafrawy, Tamer Mohammad Samy

    Radiative double electron capture (RDEC) is a one-step process in ion-atom collisions occurring when two target electrons are captured to a bound state of the projectile simultaneously with the emission of a single photon. The emitted photon has approximately double the energy of the photon emitted due to radiative electron capture (REC), which occurs when a target electron is captured to a projectile bound state with simultaneous emission of a photon. REC and RDEC can be treated as time-reversed photoionization (PI) and double photoionization (DPI), respectively, if loosely-bound target electrons are captured. This concept can be formulated with the principle of detailed balance, in which the processes of our interest can be described in terms of their time-reversed ones. Fully-stripped ions were used as projectiles in the performed RDEC experiments, providing a recipient system free of electron-related Coulomb fields. This allows the target electrons to be transferred without interaction with any of the projectile electrons, enabling accurate investigation of the electron-electron interaction in the vicinity of electromagnetic field. In this dissertation, RDEC was investigated during the collision of fully-stripped fluorine ions with a thin carbon foil and the results are compared with the recent experimental and theoretical studies. In the current work, x rays associated with projectile charge-changing by single and double electron capture and no charge change by F9+ ions were observed and compared with recent work for O8+ ions and with theory. Both the F 9+ and O8+ ions had energies in the ˜MeV/u range. REC, in turn, was investigated as a means to compare with the theoretical predictions of the RDEC/REC cross section ratio. The most significant background processes including various mechanisms of x-ray emission that may interfere with the energy region of interest are addressed in detail. This enables isolation of the contributions of REC and RDEC from the entire continuous spectrum of x-ray emission or at least ensures that the background processes have negligible contribution to the energy range of interest. Special emphasis is given to showing how the data analysis was carried out by the subtraction of the x rays due to contamination lines.

  12. Quantifying electron transfer reactions in biological systems: what interactions play the major role?

    NASA Astrophysics Data System (ADS)

    Sjulstok, Emil; Olsen, Jógvan Magnus Haugaard; Solov'Yov, Ilia A.

    2015-12-01

    Various biological processes involve the conversion of energy into forms that are usable for chemical transformations and are quantum mechanical in nature. Such processes involve light absorption, excited electronic states formation, excitation energy transfer, electrons and protons tunnelling which for example occur in photosynthesis, cellular respiration, DNA repair, and possibly magnetic field sensing. Quantum biology uses computation to model biological interactions in light of quantum mechanical effects and has primarily developed over the past decade as a result of convergence between quantum physics and biology. In this paper we consider electron transfer in biological processes, from a theoretical view-point; namely in terms of quantum mechanical and semi-classical models. We systematically characterize the interactions between the moving electron and its biological environment to deduce the driving force for the electron transfer reaction and to establish those interactions that play the major role in propelling the electron. The suggested approach is seen as a general recipe to treat electron transfer events in biological systems computationally, and we utilize it to describe specifically the electron transfer reactions in Arabidopsis thaliana cryptochrome-a signaling photoreceptor protein that became attractive recently due to its possible function as a biological magnetoreceptor.

  13. Use of electronic games by young children and fundamental movement skills?

    PubMed

    Barnett, Lisa M; Hinkley, Trina; Okely, Anthony D; Hesketh, Kylie; Salmon, Jo

    2012-06-01

    This study investigated associations between pre-school children's time spent playing electronic games and their fundamental movement skills. In 2009, 53 children had physical activity (Actigraph accelerometer counts per minute), parent proxy-report of child's time in interactive and non-interactive electronic games (min./week), and movement skill (Test of Gross Motor Development-2) assessed. Hierarchical linear regression, adjusting for age (range = 3-6 years), sex (Step 1), and physical activity (cpm; M=687, SD=175.42; Step 2), examined the relationship between time in (a) non-interactive and (b) interactive electronic games and locomotor and object control skill. More than half (59%, n=31) of the children were female. Adjusted time in interactive game use was associated with object control but not locomotor skill. Adjusted time in non-interactive game use had no association with object control or locomotor skill. Greater time spent playing interactive electronic games is associated with higher object control skill proficiency in these young children. Longitudinal and experimental research is required to determine if playing these games improves object control skills or if children with greater object control skill proficiency prefer and play these games.

  14. Substituent Effects in the Benzene Dimer are Due to Direct Interactions of the Substituents with the Unsubstituted Benzene

    PubMed Central

    Wheeler, Steven E.; Houk, K. N.

    2009-01-01

    The prevailing views of substituent effects in the sandwich configuration of the benzene dimer are flawed. For example, in the polar/π model of Cozzi and co-workers (J. Am. Chem. Soc. 1992, 114, 5729), electron-withdrawing substituents enhance binding in the benzene dimer by withdrawing electron density from the π-cloud of the substituted ring, reducing the repulsive electrostatic interaction with the non-substituted benzene. Conversely, electron-donating substituents donate excess electrons into the π-system and diminish the π-stacking interaction. We present computed interaction energies for the sandwich configuration of the benzene dimer and 24 substituted dimers, as well as sandwich complexes of substituted benzenes with perfluorobenzene. While the computed interaction energies correlate well with σm values for the substituents, interaction energies for related model systems demonstrate that this trend is independent of the substituted ring. Instead, the observed trends are consistent with direct electrostatic and dispersive interactions of the substituents with the unsubstituted ring. PMID:18652453

  15. 12 CFR 609.925 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... systems. (c) Electronic business (E-business) or electronic commerce (E-commerce) means buying, selling, producing, or working in an electronic medium. (d) Electronic mail (E-mail) means: (1) To send or submit... Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM ELECTRONIC COMMERCE Interpretations and Definitions...

  16. 12 CFR 609.925 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... systems. (c) Electronic business (E-business) or electronic commerce (E-commerce) means buying, selling, producing, or working in an electronic medium. (d) Electronic mail (E-mail) means: (1) To send or submit... Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM ELECTRONIC COMMERCE Interpretations and Definitions...

  17. 12 CFR 609.925 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... systems. (c) Electronic business (E-business) or electronic commerce (E-commerce) means buying, selling, producing, or working in an electronic medium. (d) Electronic mail (E-mail) means: (1) To send or submit... Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM ELECTRONIC COMMERCE Interpretations and Definitions...

  18. 12 CFR 609.925 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... systems. (c) Electronic business (E-business) or electronic commerce (E-commerce) means buying, selling, producing, or working in an electronic medium. (d) Electronic mail (E-mail) means: (1) To send or submit... Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM ELECTRONIC COMMERCE Interpretations and Definitions...

  19. 12 CFR 609.925 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... systems. (c) Electronic business (E-business) or electronic commerce (E-commerce) means buying, selling, producing, or working in an electronic medium. (d) Electronic mail (E-mail) means: (1) To send or submit... Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM ELECTRONIC COMMERCE Interpretations and Definitions...

  20. Adverse events caused by potential drug-drug interactions in an intensive care unit of a teaching hospital

    PubMed Central

    Alvim, Mariana Macedo; da Silva, Lidiane Ayres; Leite, Isabel Cristina Gonçalves; Silvério, Marcelo Silva

    2015-01-01

    Objective To evaluate the incidence of potential drug-drug interactions in an intensive care unit of a hospital, focusing on antimicrobial drugs. Methods This cross-sectional study analyzed electronic prescriptions of patients admitted to the intensive care unit of a teaching hospital between January 1 and March 31, 2014 and assessed potential drug-drug interactions associated with antimicrobial drugs. Antimicrobial drug consumption levels were expressed in daily doses per 100 patient-days. The search and classification of the interactions were based on the Micromedex® system. Results The daily prescriptions of 82 patients were analyzed, totaling 656 prescriptions. Antimicrobial drugs represented 25% of all prescription drugs, with meropenem, vancomycin and ceftriaxone being the most prescribed medications. According to the approach of daily dose per 100 patient-days, the most commonly used antimicrobial drugs were cefepime, meropenem, sulfamethoxazole + trimethoprim and ciprofloxacin. The mean number of interactions per patient was 2.6. Among the interactions, 51% were classified as contraindicated or significantly severe. Highly significant interactions (clinical value 1 and 2) were observed with a prevalence of 98%. Conclusion The current study demonstrated that antimicrobial drugs are frequently prescribed in intensive care units and present a very high number of potential drug-drug interactions, with most of them being considered highly significant. PMID:26761473

  1. Interactions of Condensed Tannins with Saccharomyces cerevisiae Yeast Cells and Cell Walls: Tannin Location by Microscopy.

    PubMed

    Mekoue Nguela, Julie; Vernhet, Aude; Sieczkowski, Nathalie; Brillouet, Jean-Marc

    2015-09-02

    Interactions between grape tannins/red wine polyphenols and yeast cells/cell walls was previously studied within the framework of red wine aging and the use of yeast-derived products as an alternative to aging on lees. Results evidenced a quite different behavior between whole cells (biomass grown to elaborate yeast-derived products, inactivated yeast, and yeast inactivated after autolysis) and yeast cell walls (obtained from mechanical disruption of the biomass). Briefly, whole cells exhibited a high capacity to irreversibly adsorb grape and wine tannins, whereas only weak interactions were observed for cell walls. This last point was quite unexpected considering the literature and called into question the real role of cell walls in yeasts' ability to fix tannins. In the present work, tannin location after interactions between grape and wine tannins and yeast cells and cell walls was studied by means of transmission electron microscopy, light epifluorescence, and confocal microscopy. Microscopy observations evidenced that if tannins interact with cell walls, and especially cell wall mannoproteins, they also diffuse freely through the walls of dead cells to interact with their plasma membrane and cytoplasmic components.

  2. Insight on the formation of chitosan nanoparticles through ionotropic gelation with tripolyphosphate.

    PubMed

    Koukaras, Emmanuel N; Papadimitriou, Sofia A; Bikiaris, Dimitrios N; Froudakis, George E

    2012-10-01

    This work reports details pertaining to the formation of chitosan nanoparticles that we prepare by the ionic gelation method. The molecular interactions of the ionic cross-linking of chitosan with tripolyphosphate have been investigated and elucidated by means of all-electron density functional theory. Solvent effects have been taken into account using implicit models. We have identified primary-interaction ionic cross-linking configurations that we define as H-link, T-link, and M-link, and we have quantified the corresponding interaction energies. H-links, which display high interaction energies and are also spatially broadly accessible, are the most probable cross-linking configurations. At close range, proton transfer has been identified, with maximum interaction energies ranging from 12.3 up to 68.3 kcal/mol depending on the protonation of the tripolyphosphate polyanion and the relative coordination of chitosan with tripolyphosphate. On the basis of our results for the linking types (interaction energies and torsion bias), we propose a simple mechanism for their impact on the chitosan/TPP nanoparticle formation process. We introduce the β ratio, which is derived from the commonly used α ratio but is more fundamental since it additionally takes into account structural details of the oligomers.

  3. Herbert P. Broida Prize Talk: A single Rydberg electron in a Bose-Einstein condensate: from two to few to many-body physics

    NASA Astrophysics Data System (ADS)

    Pfau, Tilman

    2017-04-01

    Modern quantum scattering theory was developed in the context of Rydberg spectroscopy in 1934 by Enrico Fermi. He showed that for slow electrons the scattering from polarizable atoms via a 1/r4 potential is purely s-wave and can be described by a Fermi pseudopotential and a scattering length. To study this interaction Rydberg electrons are well suited as they are slow and trapped by the charged nucleus. In a high pressure discharge Amaldi and Segre, observed a line shift proportional to the scattering length. At ultracold temperatures one can ask the opposite question: What does a Rydberg electron do to the neutral atom sitting in the electronic orbit? We found that one, two or many ground state atoms can be trapped in the mean-field potential created by the Rydberg electron, leading to so called ultra-long range Rydberg molecules. I will explain this novel molecular binding mechanism and the properties of these exotic molecules. At higher Rydberg states the spatial extent of the Rydberg electron orbit is increasing. For principal quantum numbers n in the range of 100-200 up to several ten thousand ultracold ground state atoms can be located inside one Rydberg atom, When we excite a single Rydberg electron in a Bose-Einstein Condensate, the orbital size of which becomes comparable to the size of the BEC we observe the coupling between the electron and phonons in the BEC.

  4. ELECTRONIC SYSTEM

    DOEpatents

    Robison, G.H. et al.

    1960-11-15

    An electronic system is described for indicating the occurrence of a plurality of electrically detectable events within predetermined time intervals. It is comprised of separate input means electrically associated with the events under observation: an electronic channel associated with each input means including control means and indicating means; timing means associated with each of the input means and the control means and adapted to derive a signal from the input means and apply it after a predetermined time to the control means to effect deactivation of each of the channels; and means for resetting the system to its initial condition after observation of each group of events.

  5. Axial interaction free-electron laser

    DOEpatents

    Carlsten, Bruce E.

    1997-01-01

    Electron orbits from a helical axial wiggler in an axial guide field are absolutely unstable as power is extracted from the particles. For off-axis beams an axial FEL mechanism exists when the axial electric field in a TM mode is wiggled to interact with the axial velocity of the electrons that form the beam. The interaction strength is comparable to that for helical FELs and is insensitive to beam orbit errors. The orbits for this mechanism are extremely stable in the absence of space charge and lead to high extraction efficiencies without particle phasing incoherence or interception. This interaction mechanism is suitable for use with intense annular electron beams for high power generation at microwave frequencies.

  6. Axial interaction free-electron laser

    DOEpatents

    Carlsten, B.E.

    1997-09-02

    Electron orbits from a helical axial wiggler in an axial guide field are absolutely unstable as power is extracted from the particles. For off-axis beams an axial FEL mechanism exists when the axial electric field in a TM mode is wiggled to interact with the axial velocity of the electrons that form the beam. The interaction strength is comparable to that for helical FELs and is insensitive to beam orbit errors. The orbits for this mechanism are extremely stable in the absence of space charge and lead to high extraction efficiencies without particle phasing incoherence or interception. This interaction mechanism is suitable for use with intense annular electron beams for high power generation at microwave frequencies. 5 figs.

  7. Terahertz control of nanotip photoemission

    NASA Astrophysics Data System (ADS)

    Wimmer, L.; Herink, G.; Solli, D. R.; Yalunin, S. V.; Echternkamp, K. E.; Ropers, C.

    2014-06-01

    The active control of matter by strong electromagnetic fields is of growing importance, with applications all across the optical spectrum from the extreme-ultraviolet to the far-infrared. In recent years, phase-stable terahertz fields have shown tremendous potential for observing and manipulating elementary excitations in solids. In the gas phase, on the other hand, driving free charges with terahertz transients provides insight into ultrafast ionization dynamics. Developing such approaches for locally enhanced terahertz fields in nanostructures will create new means to govern electron currents on the nanoscale. Here, we use single-cycle terahertz transients to demonstrate extensive control over nanotip photoelectron emission. The terahertz near-field is shown to either enhance or suppress photocurrents, with the tip acting as an ultrafast rectifying diode. We record phase-resolved sub-cycle dynamics and find spectral compression and expansion arising from electron propagation within the terahertz near-field. These interactions produce rich spectro-temporal features and offer unprecedented control over ultrashort free electron pulses for imaging and diffraction.

  8. Breaking the regioselectivity rule for acrylate insertion in the Mizoroki-Heck reaction.

    PubMed

    Wucher, Philipp; Caporaso, Lucia; Roesle, Philipp; Ragone, Francesco; Cavallo, Luigi; Mecking, Stefan; Göttker-Schnetmann, Inigo

    2011-05-31

    In modern methods for the preparation of small molecules and polymers, the insertion of substrate carbon-carbon double bonds into metal-carbon bonds is a fundamental step of paramount importance. This issue is illustrated by Mizoroki-Heck coupling as the most prominent example in organic synthesis and also by catalytic insertion polymerization. For unsymmetric substrates H(2)C = CHX the regioselectivity of insertion is decisive for the nature of the product formed. Electron-deficient olefins insert selectively in a 2,1-fashion for electronic reasons. A means for controlling this regioselectivity is lacking to date. In a combined experimental and theoretical study, we now report that, by destabilizing the transition state of 2,1-insertion via steric interactions, the regioselectivity of methyl acrylate insertion into palladium-methyl and phenyl bonds can be inverted entirely to yield the opposite "regioirregular" products in stoichiometric reactions. Insights from these experiments will aid the rational design of complexes which enable a catalytic and regioirregular Mizoroki-Heck reaction of electron-deficient olefins.

  9. Templating effect of the substrate on the structure of Cu-phthalocyanine thin film

    NASA Astrophysics Data System (ADS)

    Pierantozzi, Gian Marco; Sbroscia, Marco; Ruocco, Alessandro

    2018-03-01

    An experimental study of electronic properties, structure and morphology of Copper-phthalocyanine films deposited onto Al(100) and Au(110), as a function of thickness up to tens of nanometers, is presented. The monolayers grown on these two model substrates are already known to exhibit very different behavior for what concerns both the degree of interaction with the substrate and the formation of long range order; in this experiment, by means of low energy electron scattering and Electron Energy Loss Spectroscopy (EELS), remarkable differences are revealed also in the successive growth. Exploiting the link between the crystal structure and the lineshape of HOMO-LUMO transition in EELS spectrum, two different structural phases are identified, compatible with α and β phases, respectively in the case of the film grown on aluminum and on gold. Besides, the evolution of the specular reflection elastic peak indicates the formation of islands on the gold substrate and a more homogeneous growth on the aluminum one.

  10. X-ray radiation generated by a beam of relativistic electrons in composite structure

    NASA Astrophysics Data System (ADS)

    Blazhevich, S. V.; Noskov, A. V.

    2018-04-01

    The dynamic theory of coherent X-ray radiation generated by a beam of relativistic electrons in the three-layer structure consisting of an amorphous layer, a vacuum (air) layer and a single crystal has been developed. The phenomenon description is based on two main radiation mechanisms, namely, parametric X-ray radiation (PXR) and diffracted transition radiation (DTR). The possibility to increase the spectral-angular density of DTR under the condition of constructive interference of the transition radiation waves from different boundaries of such a structure has been demonstrated. It is shown that little changes in the layers thicknesses should not cause a considerable change in the interference picture, for example, the transition of constructive interference into destructive one. It means that in the considered process the conditions of constructive interference are enough stable to use them for increasing the intensity of X-ray source that can be created based on the interaction of relativistic electrons with such a structure.

  11. Molecular structure and conformational preferences of gaseous 1-iodo-1-silacyclohexane

    NASA Astrophysics Data System (ADS)

    Belyakov, A. V.; Baskakov, A. A.; Berger, R. J. F.; Mitzel, N. W.; Oberhammer, H.; Arnason, I.; Wallevik, S. Ò.

    2012-03-01

    The molecular structure of the axial and equatorial conformers of 1-iodo-1-silacyclohexane, CH2(CH2CH2)2SiH-I, as well as thermodynamic equilibrium between these species were investigated by means of gas-phase electron diffraction (GED) and quantum chemical calculations up to MP2(full)/SDB-AUG-CC-pVTZ level of theory (MP2). According to electron diffraction data, the vapor of this compound comprises a mixture of conformers with chair conformation and Cs symmetry differing in the axial and equatorial position of the Si-I bond (axial = 73(7) mol%/equatorial = 27(7) mol%) at T = 352 K. This corresponds to a free energy difference of A = -0.59(22) kcal mol-1. The observed gas-phase electron diffraction parameters are in good agreement with those obtained from theory. NBO analysis revealed that axial conformer of 1-iodo-1-silacyclohexane is an example for electrostatic stabilization of a conformer which is unfavorable in terms of steric and conjugation interaction.

  12. Spin polarized electronic states and spin textures at the surface of oxygen-deficient SrTiO3

    NASA Astrophysics Data System (ADS)

    Jeschke, Harald O.; Altmeyer, Michaela; Rozenberg, Marcelo; Gabay, Marc; Valenti, Roser

    We investigate the electronic structure and spin texture at the (001) surface of SrTiO3 in the presence of oxygen vacancies by means of ab initio density functional theory (DFT) calculations of slabs. Relativistic non-magnetic DFT calculations exhibit Rashba-like spin winding with a characteristic energy scale ~ 10 meV. However, when surface magnetism on the Ti ions is included, bands become spin-split with an energy difference ~ 100 meV at the Γ point. This energy scale is comparable to the observations in SARPES experiments performed on the two-dimensional electronic states confined near the (001) surface of SrTiO3. We find the spin polarized state to be the ground state of the system, and while magnetism tends to suppress the effects of the relativistic Rashba interaction, signatures of it are still clearly visible in terms of complex spin textures. We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft through grants SFB/TR 49 and FOR 1346.

  13. The Role of Kinetic Alfven Waves in Plasma Transport in an Ion-scale Flux Rope

    NASA Astrophysics Data System (ADS)

    Tang, B.; Li, W.; Wang, C.; Dai, L.

    2017-12-01

    Magnetic flux ropes, if generated by multiply X-line reconnections, would be born as a crater type one, meaning the plasma density within is relatively high. They will then evolve into typical flux ropes as plasma are transported away along the magnetic field lines [Zhang et al., 2010]. In this study, we report an ion-scale flux rope observed by MMS on November 28, 2016, which is accompanied by strong kinetic Alfven waves (KAW). The related wave parallel electric field can effectively accelerate electrons inside the flux rope by Landau resonance, resulting into a significant decrease of the electron at 90° pitch angle. The change of electron pitch angle distribution would cause the rapid plasma transport along the magnetic field lines, and help the flux rope evolve into a strong magnetic core in a short time. This wave-particle interaction would be a candidate mechanism to explain the rareness of crater flux ropes in reality.

  14. Relaxation of ferroelectric states in 2D distributions of quantum dots: EELS simulation

    NASA Astrophysics Data System (ADS)

    Cortés, C. M.; Meza-Montes, L.; Moctezuma, R. E.; Carrillo, J. L.

    2016-06-01

    The relaxation time of collective electronic states in a 2D distribution of quantum dots is investigated theoretically by simulating EELS experiments. From the numerical calculation of the probability of energy loss of an electron beam, traveling parallel to the distribution, it is possible to estimate the damping time of ferroelectric-like states. We generate this collective response of the distribution by introducing a mean field interaction among the quantum dots, and then, the model is extended incorporating effects of long-range correlations through a Bragg-Williams approximation. The behavior of the dielectric function, the energy loss function, and the relaxation time of ferroelectric-like states is then investigated as a function of the temperature of the distribution and the damping constant of the electronic states in the single quantum dots. The robustness of the trends and tendencies of our results indicate that this scheme of analysis can guide experimentalists to develop tailored quantum dots distributions for specific applications.

  15. Effect of supercritical fluid density on nanoencapsulated drug particle size using the supercritical antisolvent method.

    PubMed

    Kalani, Mahshid; Yunus, Robiah

    2012-01-01

    The reported work demonstrates and discusses the effect of supercritical fluid density (pressure and temperature of supercritical fluid carbon dioxide) on particle size and distribution using the supercritical antisolvent (SAS) method in the purpose of drug encapsulation. In this study, paracetamol was encapsulated inside L-polylactic acid, a semicrystalline polymer, with different process parameters, including pressure and temperature, using the SAS process. The morphology and particle size of the prepared nanoparticles were determined by scanning electron microscopy and transmission electron microscopy. The results revealed that increasing temperature enhanced mean particle size due to the plasticizing effect. Furthermore, increasing pressure enhanced molecular interaction and solubility; thus, particle size was reduced. Transmission electron microscopy images defined the internal structure of nanoparticles. Thermal characteristics of nanoparticles were also investigated via differential scanning calorimetry. Furthermore, X-ray diffraction pattern revealed the changes in crystallinity structure during the SAS process. In vitro drug release analysis determined the sustained release of paracetamol in over 4 weeks.

  16. Preferential cross-linking of the small subunit of the electron-transfer flavoprotein to general acyl-CoA dehydrogenase.

    PubMed Central

    Steenkamp, D J

    1987-01-01

    The interaction between pig liver mitochondrial electron-transfer flavoprotein (ETF) and general acyl-CoA dehydrogenase (GAD) was investigated by means of the heterobifunctional reagent N-succinimidyl 3-(2-pyridyldithio)propionate. Neither ETF or GAD contained reactive thiol groups. The substitution of 9.4 lysine residues/FAD group in GAD with pyridyl disulphide structures did not affect the catalytic activity of the enzyme. Thiol groups were introduced into ETF by thiolation with methyl 4-mercaptobutyrimidate. ETF containing 10.5 reactive thiol groups/FAD group showed undiminished electron-acceptor activity with respect to GAD. The reaction of thiolated ETF and GAD containing pyridyl disulphide structures resulted in a decreased staining intensity of the small subunit of ETF on SDS/polyacrylamide-gel electrophoresis. Preferential cross-linking of the smaller subunit of ETF to GAD did not take place when ETF was first treated with SDS, but was unaffected by reduction of GAD by octanoyl-CoA. Images Fig. 2. Fig. 3. Fig. 5. PMID:3115254

  17. Organic photochemical storage of solar energy. Progress report, July 1, 1977--Feburary 28, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, G. II

    1978-03-01

    The prospects for driving endoergic reactions of simple, relatively abundant organic chemicals by photochemical means have been examined. Strategies for utilization of light of varying wavelength involve sensitization mechanisms which depend on the redox properties of energy storing substrates and photosensitizers. Of principal interest is valence isomerization which can be induced by electron donor-acceptor interaction between substrate and sensitizer in an excited complex or exciplex. Photophysical studies show that potentially isomerizable substrates efficiently intercept redox photosensitizers. The quenching of emission of electron acceptor sensitizers by non conjugated hydrocarbon dienes is indeed a function of the reduction potential of the acceptorsmore » (a series of aromatics with varying absorption characteristics) and the oxidation potentials of the substrates. Electron deficient dienes have been shown alternatively to be efficient quenchers of excited donor sensitizers. That exciplexes are formed between isomerizable substrates and donor or acceptor sensitizers has been confirmed by emission spectroscopy. The rearrangement of hexamethyldewarbenzene, a model exciplex isomerization has been examined in some detail.« less

  18. Performances Of The New Streak Camera TSN 506

    NASA Astrophysics Data System (ADS)

    Nodenot, P.; Imhoff, C.; Bouchu, M.; Cavailler, C.; Fleurot, N.; Launspach, J.

    1985-02-01

    The number of streack cameras used in research laboratory has been continuously increased du-ring the past years. The increasing of this type of equipment is due to the development of various measurement techniques in the nanosecond and picosecond range. Among the many different applications, we would mention detonics chronometry measurement, measurement of the speed of matter by means of Doppler-laser interferometry, laser and plasma diagnostics associated with laser-matter interaction. The old range of cameras have been remodelled, in order to standardize and rationalize the production of ultrafast cinematography instruments, to produce a single camera known as TSN 506. Tne TSN 506 is composed of an electronic control unit, built around the image converter tube it can be fitted with a nanosecond sweep circuit covering the whole range from 1 ms to 200 ns or with a picosecond circuit providing streak durations from 1 to 100 ns. We shall describe the main electronic and opto-electronic performance of the TSN 506 operating in these two temporal fields.

  19. Hallmarks of Hunds coupling in the Mott insulator Ca2RuO4

    PubMed Central

    Sutter, D.; Fatuzzo, C. G.; Moser, S.; Kim, M.; Fittipaldi, R.; Vecchione, A.; Granata, V.; Sassa, Y.; Cossalter, F.; Gatti, G.; Grioni, M.; Rønnow, H. M.; Plumb, N. C.; Matt, C. E.; Shi, M.; Hoesch, M.; Kim, T. K.; Chang, T-R; Jeng, H-T; Jozwiak, C.; Bostwick, A.; Rotenberg, E.; Georges, A.; Neupert, T.; Chang, J.

    2017-01-01

    A paradigmatic case of multi-band Mott physics including spin-orbit and Hund's coupling is realized in Ca2RuO4. Progress in understanding the nature of this Mott insulating phase has been impeded by the lack of knowledge about the low-energy electronic structure. Here we provide—using angle-resolved photoemission electron spectroscopy—the band structure of the paramagnetic insulating phase of Ca2RuO4 and show how it features several distinct energy scales. Comparison to a simple analysis of atomic multiplets provides a quantitative estimate of the Hund's coupling J=0.4 eV. Furthermore, the experimental spectra are in good agreement with electronic structure calculations performed with Dynamical Mean-Field Theory. The crystal field stabilization of the dxy orbital due to c-axis contraction is shown to be essential to explain the insulating phase. These results underscore the importance of multi-band physics, Coulomb interaction and Hund's coupling that together generate the Mott insulating state of Ca2RuO4. PMID:28474681

  20. Effect of supercritical fluid density on nanoencapsulated drug particle size using the supercritical antisolvent method

    PubMed Central

    Kalani, Mahshid; Yunus, Robiah

    2012-01-01

    The reported work demonstrates and discusses the effect of supercritical fluid density (pressure and temperature of supercritical fluid carbon dioxide) on particle size and distribution using the supercritical antisolvent (SAS) method in the purpose of drug encapsulation. In this study, paracetamol was encapsulated inside L-polylactic acid, a semicrystalline polymer, with different process parameters, including pressure and temperature, using the SAS process. The morphology and particle size of the prepared nanoparticles were determined by scanning electron microscopy and transmission electron microscopy. The results revealed that increasing temperature enhanced mean particle size due to the plasticizing effect. Furthermore, increasing pressure enhanced molecular interaction and solubility; thus, particle size was reduced. Transmission electron microscopy images defined the internal structure of nanoparticles. Thermal characteristics of nanoparticles were also investigated via differential scanning calorimetry. Furthermore, X-ray diffraction pattern revealed the changes in crystallinity structure during the SAS process. In vitro drug release analysis determined the sustained release of paracetamol in over 4 weeks. PMID:22619552

  1. Strong spin-orbit coupling and Zeeman spin splitting in angle dependent magnetoresistance of Bi{sub 2}Te{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dey, Rik, E-mail: rikdey@utexas.edu; Pramanik, Tanmoy; Roy, Anupam

    We have studied angle dependent magnetoresistance of Bi{sub 2}Te{sub 3} thin film with field up to 9 T over 2–20 K temperatures. The perpendicular field magnetoresistance has been explained by the Hikami-Larkin-Nagaoka theory alone in a system with strong spin-orbit coupling, from which we have estimated the mean free path, the phase coherence length, and the spin-orbit relaxation time. We have obtained the out-of-plane spin-orbit relaxation time to be small and the in-plane spin-orbit relaxation time to be comparable to the momentum relaxation time. The estimation of these charge and spin transport parameters are useful for spintronics applications. For parallel field magnetoresistance,more » we have confirmed the presence of Zeeman effect which is otherwise suppressed in perpendicular field magnetoresistance due to strong spin-orbit coupling. The parallel field data have been explained using both the contributions from the Maekawa-Fukuyama localization theory for non-interacting electrons and Lee-Ramakrishnan theory of electron-electron interactions. The estimated Zeeman g-factor and the strength of Coulomb screening parameter agree well with the theory. Finally, the anisotropy in magnetoresistance with respect to angle has been described by the Hikami-Larkin-Nagaoka theory. This anisotropy can be used in anisotropic magnetic sensor applications.« less

  2. An amino-functionalized magnetic framework composite of type Fe3O4-NH2@MIL-101(Cr) for extraction of pyrethroids coupled with GC-ECD.

    PubMed

    He, Xi; Yang, Wei; Li, Sijia; Liu, Yu; Hu, Baichun; Wang, Ting; Hou, Xiaohong

    2018-01-24

    An amino-functionalized magnetic framework composite of type Fe 3 O 4 -NH 2 @MIL-101(Cr) was synthesized using a solvothermal method. The material was characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, nitrogen adsorption, and magnetometry. The composite combines the advantages of amino-modified Fe 3 O 4 and MIL-101(Cr). The presence of amino groups facilitates the fairly specific adsorption of pyrethroids. The composite was employed as a sorbent for magnetic solid phase extraction of five pyrethroids from environmental water samples. Following desorption with acidified acetone, the pyrethroids were quantified by gas chromatography with electron capture detection. The detection limits for bifenthrin, fenpropathrin, λ-cyhalothrin, permethrin, and deltamethrin range from 5 to 9 pg·mL -1 . The method is rapid, accurate, and highly sensitive. The molecular interactions and free binding energies between MIL-101(Cr) and the five pyrethroids were calculated by means of molecular docking. Graphical abstract A novel functionalized magnetic framework composite of type Fe 3 O 4 -NH 2 @MIL-101(Cr) was synthesized. It was applied as a sorbent for magnetic solid phase extraction of pyrethroids prior to their quantitation by gas chromatography with electron capture detection. The molecular interactions of analytes and MIL-101(Cr) were studied.

  3. Electronic spectrum of trilayer graphene

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Ajay

    2014-08-01

    Present work deals with the analysis of the single particle electronic spectral function in trilayer (ABC-, ABA- and AAA-stacked) graphene. Tight binding Hamiltonian containing intralayer nearest-neighbor and next-nearest neighbor hopping along-with the interlayer coupling parameter within two triangular sub-lattice approach for trilayer graphene has been employed. The expression of single particle spectral functions A(kw) is obtained within mean-field Green's function equations of motion approach. Spectral function at Γ, M and K points of the Brillouin zone has been numerically computed. It is pointed out that the nature of electronic states at different points of Brillouin zone is found to be influenced by stacking order and Coulomb interactions. At Γ and M points, a trilayer splitting is predicted while at K point a bilayer splitting effect is observed due to crossing of two bands (at K point). Interlayer coupling ( t_{ bot } ) is found to be responsible for the splitting of quasi-particle peaks at each point of Brillouin zone. The influence of t_{ bot } in trilayer graphene is prominent for AAA-stacking compared to ABC- and ABA-stacking. On the other hand, onsite Coulomb interaction reduces the trilayer splitting effect into bilayer splitting at Γ and M points of Brillouin zone and bilayer splitting into single peak spectral function at K point with a shifting of the peak away from Fermi level.

  4. Temperature dependences of the time of electron-electron interactions in two-dimensional heterojunction

    NASA Astrophysics Data System (ADS)

    Bukhenskyy, K. V.; Dubois, A. B.; Kucheryavyy, S. I.; Mashnina, S. N.; Safoshkin, A. S.; Baukov, A. A.; Shchigorev, E. Yu

    2017-12-01

    The article discusses the joint solution of the Schrödinger and Poisson equations for two-dimensional semiconductor heterojunction. The application of a triangular potential of well approximation for the calculation of the electron-electron interaction is offered in the paper. The influence of the parameters of the selected approximation was analyzed.

  5. Attosecond control of electron beams at dielectric and absorbing membranes

    NASA Astrophysics Data System (ADS)

    Morimoto, Yuya; Baum, Peter

    2018-03-01

    Ultrashort electron pulses are crucial for time-resolved electron diffraction and microscopy of the fundamental light-matter interaction. In this work, we study experimentally and theoretically the generation and characterization of attosecond electron pulses by optical-field-driven compression and streaking at dielectric or absorbing interaction elements. The achievable acceleration and deflection gradient depends on the laser-electron angle, the laser's electric and magnetic field directions, and the foil orientation. Electric and magnetic fields have similar contributions to the final effect and both need to be considered. Experiments and theory agree well and reveal the optimum conditions for highly efficient, velocity-matched electron-field interactions in the longitudinal or transverse direction. We find that metallic membranes are optimum for light-electron control at mid-infrared or terahertz wavelengths, but dielectric membranes are excellent in the visible and near-infrared regimes and are therefore ideal for the formation of attosecond electron pulses.

  6. Observation and spectroscopy of a two-electron Wigner molecule in an ultraclean carbon nanotube

    NASA Astrophysics Data System (ADS)

    Pecker, S.; Kuemmeth, F.; Secchi, A.; Rontani, M.; Ralph, D. C.; McEuen, P. L.; Ilani, S.

    2013-09-01

    Two electrons on a string form a simple model system where Coulomb interactions are expected to play an interesting role. In the presence of strong interactions, these electrons are predicted to form a Wigner molecule, separating to the ends of the string. This spatial structure is believed to be clearly imprinted on the energy spectrum, yet so far a direct measurement of such a spectrum in a controllable one-dimensional setting is still missing. Here we use an ultraclean carbon nanotube to realize this system in a tunable potential. Using tunnelling spectroscopy we measure the addition spectra of two interacting carriers, electrons or holes, and identify seven low-energy states characterized by their exchange symmetries. The formation of a Wigner molecule is evident from a tenfold quenching of the fundamental excitation energy as compared with the non-interacting value. Our ability to tune the two-carrier state in space and to study it for both electrons and holes provides an unambiguous demonstration of this strongly interacting quantum ground state.

  7. Differential Cross Sections for Ionization of Argon by 1 keV Positron and Electron Impact

    NASA Astrophysics Data System (ADS)

    Gavin, J.; DuBois, R. D.; de Lucio, O. G.

    2014-04-01

    Differential information was generated by establishing coincidences and imposing conditions on data recorded for target ions, scattered projectiles, and ejected electrons, as a function of projectile energy loss and scattering angles; in order to describe the interaction between a positron (electron) 1 keV beam and a simple Ar jet. Single ionization triply differential cross section (TDCS) results exhibit two distinct regions (lobes) for which binary (events arising from 2-body interaction) and recoil (events which can only be produced by many-body interactions) interactions are associated. Results indicate that binary events are significantly larger for positron impact, in accordance with theoretical predictions. A similar feature is found for different energy losses and scattering angles. Intensity of the recoil lobe for both projectiles, positron and electron, is observed to depend on the energy loss and scattering angle. Also, it can be noticed that for positron impact the recoil interactions intensity is larger than that observed for electron impact.

  8. Many-body interactions in quasi-freestanding graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegel, David; Park, Cheol-Hwan; Hwang, Choongyu

    2011-06-03

    The Landau-Fermi liquid picture for quasiparticles assumes that charge carriers are dressed by many-body interactions, forming one of the fundamental theories of solids. Whether this picture still holds for a semimetal such as graphene at the neutrality point, i.e., when the chemical potential coincides with the Dirac point energy, is one of the long-standing puzzles in this field. Here we present such a study in quasi-freestanding graphene by using high-resolution angle-resolved photoemission spectroscopy. We see the electron-electron and electron-phonon interactions go through substantial changes when the semimetallic regime is approached, including renormalizations due to strong electron-electron interactions with similarities tomore » marginal Fermi liquid behavior. These findings set a new benchmark in our understanding of many-body physics in graphene and a variety of novel materials with Dirac fermions.« less

  9. Creative Uses of Custom Electronics for Environmental Monitoring

    NASA Astrophysics Data System (ADS)

    Hicks, S.; Aufdenkampe, A. K.; Montgomery, D. S.

    2012-12-01

    The ability to build custom electronic devices specifically suited to a unique task has gotten easier and cheaper, thanks to the recent popularity of open source electronics platforms like Arduino. Using Arduino-based processor boards, we have been creating a variety of helpful devices to perform functions that would have been too expensive to implement with standard methods and commercial hardware. The Christina River Basin CZO is currently operating dozens of homemade dataloggers that are connected to different types of environmental sensors. Most of these Arduino loggers have been deployed for over a year, so our experiences with them and their sensors have taught us a lot about the reliability and accuracy of both the loggers and the sensors. Some loggers also have the capability for wireless radio or ethernet data transmission for reporting live data to web sites for instant graphing or archiving. Other Arduino devices have the ability to be controlled remotely through web sites or telephones, making it easy to remotely trigger sample pumps or valves. The open-source nature of Arduino means collaboration is easy because the circuit schematics and source code for programming the boards can be shared between users. And because Arduino devices are easy to use and program, we developed an interface board that allows educators to easily connect a variety of inexpensive environmental sensors to an Arduino board. Then the students can write and upload simple programs to interact with the sensors, making it a very effective tool for teaching electronics and environmental science at the same time. The flexibility and capability of electronics prototyping platforms like Arduino mean these simple boards can cheaply and effectively perform a countless number of tasks for projects in environmental science and education.

  10. Improving the distinguishable cluster results: spin-component scaling

    NASA Astrophysics Data System (ADS)

    Kats, Daniel

    2018-06-01

    The spin-component scaling is employed in the energy evaluation to improve the distinguishable cluster approach. SCS-DCSD reaction energies reproduce reference values with a root-mean-squared deviation well below 1 kcal/mol, the interaction energies are three to five times more accurate than DCSD, and molecular systems with a large amount of static electron correlation are still described reasonably well. SCS-DCSD represents a pragmatic approach to achieve chemical accuracy with a simple method without triples, which can also be applied to multi-configurational molecular systems.

  11. Polarizable atomistic calculation of site energy disorder in amorphous Alq3.

    PubMed

    Nagata, Yuki

    2010-02-01

    A polarizable molecular dynamics simulation and calculation scheme for site energy disorder is presented in amorphous tris(8-hydroxyquinolinato)aluminum (Alq(3)) by means of the charge response kernel (CRK) method. The CRK fit to the electrostatic potential and the tight-binding approximation are introduced, which enables modeling of the polarizable electrostatic interaction for a large molecule systematically from an ab initio calculation. The site energy disorder for electron and hole transfers is calculated in amorphous Alq(3) and the effect of the polarization on the site energy disorder is discussed.

  12. Synthesis and magnetic properties of nickel nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Jaiveer, E-mail: jaiveer24singh@gmail.com, E-mail: netramkaurav@yahoo.co.uk; Patel, Tarachand; Okram, Gunadhor S.

    2016-05-23

    Monodisperse nickel nanoparticles (Ni-NPs) were synthesized via a thermal decomposition process. The NPs were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). They were spherical with mean diameter of 4 nm. Zero field cooled (ZFC) and field cooled (FC) magnetization versus temperature data displayed interesting magnetic interactions. ZFC showed a peak at 4.49 K, indicating the super paramagnetic behavior. Magnetic anisotropic constant was estimated to be 4.62×10{sup 5} erg/cm{sup 3} and coercive field was 168 Oe at 3 K.

  13. Role of electron-electron interference in ultrafast time-resolved imaging of electronic wavepackets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixit, Gopal; Santra, Robin; Department of Physics, University of Hamburg, D-20355 Hamburg

    2013-04-07

    Ultrafast time-resolved x-ray scattering is an emerging approach to image the dynamical evolution of the electronic charge distribution during complex chemical and biological processes in real-space and real-time. Recently, the differences between semiclassical and quantum-electrodynamical (QED) theory of light-matter interaction for scattering of ultrashort x-ray pulses from the electronic wavepacket were formally demonstrated and visually illustrated by scattering patterns calculated for an electronic wavepacket in atomic hydrogen [G. Dixit, O. Vendrell, and R. Santra, Proc. Natl. Acad. Sci. U.S.A. 109, 11636 (2012)]. In this work, we present a detailed analysis of time-resolved x-ray scattering from a sample containing a mixturemore » of non-stationary and stationary electrons within both the theories. In a many-electron system, the role of scattering interference between a non-stationary and several stationary electrons to the total scattering signal is investigated. In general, QED and semiclassical theory provide different results for the contribution from the scattering interference, which depends on the energy resolution of the detector and the x-ray pulse duration. The present findings are demonstrated by means of a numerical example of x-ray time-resolved imaging for an electronic wavepacket in helium. It is shown that the time-dependent scattering interference vanishes within semiclassical theory and the corresponding patterns are dominated by the scattering contribution from the time-independent interference, whereas the time-dependent scattering interference contribution do not vanish in the QED theory and the patterns are dominated by the scattering contribution from the non-stationary electron scattering.« less

  14. Role of electron-electron interference in ultrafast time-resolved imaging of electronic wavepackets

    NASA Astrophysics Data System (ADS)

    Dixit, Gopal; Santra, Robin

    2013-04-01

    Ultrafast time-resolved x-ray scattering is an emerging approach to image the dynamical evolution of the electronic charge distribution during complex chemical and biological processes in real-space and real-time. Recently, the differences between semiclassical and quantum-electrodynamical (QED) theory of light-matter interaction for scattering of ultrashort x-ray pulses from the electronic wavepacket were formally demonstrated and visually illustrated by scattering patterns calculated for an electronic wavepacket in atomic hydrogen [G. Dixit, O. Vendrell, and R. Santra, Proc. Natl. Acad. Sci. U.S.A. 109, 11636 (2012)], 10.1073/pnas.1202226109. In this work, we present a detailed analysis of time-resolved x-ray scattering from a sample containing a mixture of non-stationary and stationary electrons within both the theories. In a many-electron system, the role of scattering interference between a non-stationary and several stationary electrons to the total scattering signal is investigated. In general, QED and semiclassical theory provide different results for the contribution from the scattering interference, which depends on the energy resolution of the detector and the x-ray pulse duration. The present findings are demonstrated by means of a numerical example of x-ray time-resolved imaging for an electronic wavepacket in helium. It is shown that the time-dependent scattering interference vanishes within semiclassical theory and the corresponding patterns are dominated by the scattering contribution from the time-independent interference, whereas the time-dependent scattering interference contribution do not vanish in the QED theory and the patterns are dominated by the scattering contribution from the non-stationary electron scattering.

  15. Role of electron-electron interference in ultrafast time-resolved imaging of electronic wavepackets.

    PubMed

    Dixit, Gopal; Santra, Robin

    2013-04-07

    Ultrafast time-resolved x-ray scattering is an emerging approach to image the dynamical evolution of the electronic charge distribution during complex chemical and biological processes in real-space and real-time. Recently, the differences between semiclassical and quantum-electrodynamical (QED) theory of light-matter interaction for scattering of ultrashort x-ray pulses from the electronic wavepacket were formally demonstrated and visually illustrated by scattering patterns calculated for an electronic wavepacket in atomic hydrogen [G. Dixit, O. Vendrell, and R. Santra, Proc. Natl. Acad. Sci. U.S.A. 109, 11636 (2012)]. In this work, we present a detailed analysis of time-resolved x-ray scattering from a sample containing a mixture of non-stationary and stationary electrons within both the theories. In a many-electron system, the role of scattering interference between a non-stationary and several stationary electrons to the total scattering signal is investigated. In general, QED and semiclassical theory provide different results for the contribution from the scattering interference, which depends on the energy resolution of the detector and the x-ray pulse duration. The present findings are demonstrated by means of a numerical example of x-ray time-resolved imaging for an electronic wavepacket in helium. It is shown that the time-dependent scattering interference vanishes within semiclassical theory and the corresponding patterns are dominated by the scattering contribution from the time-independent interference, whereas the time-dependent scattering interference contribution do not vanish in the QED theory and the patterns are dominated by the scattering contribution from the non-stationary electron scattering.

  16. The Interactive Electronic Technical Manual: Requirements, Current Status, and Implementation. Strategy Considerations.

    DTIC Science & Technology

    1991-07-01

    authoring systems. Concurrently, great strides in computer-aided design and computer-aided maintenance have contributed to this capability. 12 Junod ...J.; William A. Nugent; and L. John Junod . Plan for the Navy/Air Force Test of the Interactive Electronic Technical Manual (IETM) at Cecil Field...AFHRL Logistics and Human Factors Division, WPAFB. Aug 1990. 12. Junod , John L. PY90 Interactive Electronic Technical Manual (IETM) Portable Delivery

  17. Turbulent current drive mechanisms

    NASA Astrophysics Data System (ADS)

    McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua

    2017-08-01

    Mechanisms through which plasma microturbulence can drive a mean electron plasma current are derived. The efficiency through which these turbulent contributions can drive deviations from neoclassical predictions of the electron current profile is computed by employing a linearized Coulomb collision operator. It is found that a non-diffusive contribution to the electron momentum flux as well as an anomalous electron-ion momentum exchange term provide the most efficient means through which turbulence can modify the mean electron current for the cases considered. Such turbulent contributions appear as an effective EMF within Ohm's law and hence provide an ideal means for driving deviations from neoclassical predictions.

  18. Nonlinear thermoelectric transport in single-molecule junctions: the effect of electron-phonon interactions.

    PubMed

    Zimbovskaya, Natalya A

    2016-07-27

    In this paper, we theoretically analyze steady-state thermoelectric transport through a single-molecule junction with a vibrating bridge. The thermally induced charge current in the system is explored using a nonequilibrium Green function formalism. We study the combined effects of Coulomb interactions between charge carriers on the bridge and electron-phonon interactions on the thermocurrent beyond the linear response regime. It is shown that electron-vibron interactions may significantly affect both the magnitude and the direction of the thermocurrent, and vibrational signatures may appear.

  19. Halogen bond: a long overlooked interaction.

    PubMed

    Cavallo, Gabriella; Metrangolo, Pierangelo; Pilati, Tullio; Resnati, Giuseppe; Terraneo, Giancarlo

    2015-01-01

    Because of their high electronegativity, halogen atoms are typically considered, in most of their derivatives, as sites of high electron density and it is commonly accepted that they can form attractive interactions by functioning as the electron donor site (nucleophilic site). This is the case when they work as hydrogen bond acceptor sites. However, the electron density in covalently bound halogens is anisotropically distributed. There is a region of higher electron density, accounting for the ability of halogens to function as electron donor sites in attractive interactions, and a region of lower electron density where the electrostatic potential is frequently positive (mainly in the heavier halogens). This latter region is responsible for the ability of halogen atoms to function as the electron-acceptor site (electrophilic site) in attractive interactions formed with a variety of lone pair-possessing atoms, anions, and π-systems. This ability is quite general and is shown by a wide diversity of halogenated compounds (e.g., organohalogen derivatives and dihalogens). According to the definition proposed by the International Union of Pure and Applied Chemistry, any attractive interactions wherein the halogen atom is the electrophile is named halogen bond (XB). In this chapter, it is discussed how the practice and the concept of XB developed and a brief history of the interaction is presented. Papers (either from the primary or secondary literature) which have reported major experimental findings in the field or which have given important theoretical contributions for the development of the concept are recollected in order to trace how a unifying and comprehensive categorization emerged encompassing all interactions wherein halogen atoms function as the electrophilic site.

  20. Irreducible Brillouin conditions and contracted Schrödinger equations for n-electron systems. III. Systems of noninteracting electrons.

    PubMed

    Kutzelnigg, Werner; Mukherjee, Debashis

    2004-04-22

    We analyze the structure and the solutions of the irreducible k-particle Brillouin conditions (IBCk) and the irreducible contracted Schrödinger equations (ICSEk) for an n-electron system without electron interaction. This exercise is very instructive in that it gives one both the perspective and the strategies to be followed in applying the IBC and ICSE to physically realistic systems with electron interaction. The IBC1 leads to a Liouville equation for the one-particle density matrix gamma1=gamma, consistent with our earlier analysis that the IBC1 holds both for a pure and an ensemble state. The IBC1 or the ICSE1 must be solved subject to the constraints imposed by the n-representability condition, which is particularly simple for gamma. For a closed-shell state gamma is idempotent, i.e., all natural spin orbitals (NSO's) have occupation numbers 0 or 1, and all cumulants lambdak with k> or =2 vanish. For open-shell states there are NSO's with fractional occupation number, and at the same time nonvanishing elements of lambda2, which are related to spin and symmetry coupling. It is often useful to describe an open-shell state by a totally symmetric ensemble state. If one wants to treat a one-particle perturbation by means of perturbation theory, this mainly as a run-up for the study of a two-particle perturbation, one is faced with the problem that the perturbation expansion of the Liouville equation gives information only on the nondiagonal elements (in a basis of the unperturbed states) of gamma. There are essentially three possibilities to construct the diagonal elements of gamma: (i) to consider the perturbation expansion of the characteristic polynomial of gamma, especially the idempotency for closed-shell states, (ii) to rely on the ICSE1, which (at variance with the IBC1) also gives information on the diagonal elements, though not in a very efficient manner, and (iii) to formulate the perturbation theory in terms of a unitary transformation in Fock space. The latter is particularly powerful, especially, when one wishes to study realistic Hamiltonians with a two-body interaction. (c) 2004 American Institute of Physics

  1. Impact of Pre-Plasma on Electron Generation and Transport in Laser Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Peebles, Jonathan Lee

    Relativistic laser plasma interactions in conjunction with an underdense pre-plasma have been shown to generate a two temperature component electron spectrum. The lower temperature component described by "ponderomotive scaling'" is relatively well known and understood and is useful for applications such as the fast ignition inertial confinement fusion scheme. The higher energy electrons generated due to pre-plasma are denoted as "super-ponderomotive" electrons and facilitate interesting and useful applications. These include but are not limited to table top particle acceleration and generating high energy protons, x-rays and neutrons from secondary interactions. This dissertation describes experimental and particle-in-cell computational studies of the electron spectra produced from interactions between short pulse high intensity lasers and controlled pre-plasma conditions. Experiments were conducted at 3 laser labs: Texas Petawatt (University of Texas at Austin), Titan (Lawrence Livermore National Laboratory) and OMEGA-EP (University of Rochester). These lasers have different capabilities, and multiple experiments were carried out in order to fully understand super-ponderomotive electron generation and transport in the high intensity laser regime (I > 1018 W/cm2). In these experiments, an additional secondary long pulse beam was used to generate different scale lengths of "injected" pre-plasma while the pulse length and intensity of the short pulse beam were varied. The temperature and quantity of super-ponderomotive electrons were monitored with magnetic spectrometers and inferred via bremsstrahlung spectrometers while trajectory was estimated via Cu-Kalpha imaging. The experimental and simulation data show that super-ponderomotive electrons require pulse lengths of at least 450 fs to be accelerated and that higher intensity interactions generate large magnetic fields which cause severe deflection of the super-ponderomotive electrons. Laser incidence angle is shown to be extremely important in determining hot electron trajectory. Longer pulse length data taken on OMEGA-EP and Titan showed that super-ponderomotive electrons could be created without the need for an initial pre-plasma due to the underdense plasma created during the high intensity interaction alone.

  2. Quantum Thermal Transistor.

    PubMed

    Joulain, Karl; Drevillon, Jérémie; Ezzahri, Younès; Ordonez-Miranda, Jose

    2016-05-20

    We demonstrate that a thermal transistor can be made up with a quantum system of three interacting subsystems, coupled to a thermal reservoir each. This thermal transistor is analogous to an electronic bipolar one with the ability to control the thermal currents at the collector and at the emitter with the imposed thermal current at the base. This is achieved by determining the heat fluxes by means of the strong-coupling formalism. For the case of three interacting spins, in which one of them is coupled to the other two, that are not directly coupled, it is shown that high amplification can be obtained in a wide range of energy parameters and temperatures. The proposed quantum transistor could, in principle, be used to develop devices such as a thermal modulator and a thermal amplifier in nanosystems.

  3. TRIQS: A toolbox for research on interacting quantum systems

    NASA Astrophysics Data System (ADS)

    Parcollet, Olivier; Ferrero, Michel; Ayral, Thomas; Hafermann, Hartmut; Krivenko, Igor; Messio, Laura; Seth, Priyanka

    2015-11-01

    We present the TRIQS library, a Toolbox for Research on Interacting Quantum Systems. It is an open-source, computational physics library providing a framework for the quick development of applications in the field of many-body quantum physics, and in particular, strongly-correlated electronic systems. It supplies components to develop codes in a modern, concise and efficient way: e.g. Green's function containers, a generic Monte Carlo class, and simple interfaces to HDF5. TRIQS is a C++/Python library that can be used from either language. It is distributed under the GNU General Public License (GPLv3). State-of-the-art applications based on the library, such as modern quantum many-body solvers and interfaces between density-functional-theory codes and dynamical mean-field theory (DMFT) codes are distributed along with it.

  4. Nonlinear wave interaction in a plasma column

    NASA Technical Reports Server (NTRS)

    Larsen, J.

    1972-01-01

    Two particular cases of nonlinear wave interaction in a plasma column were investigated. The frequencies of the waves were on the order of magnitude of the electron plasma frequency, and ion motion was neglected. The nonlinear coupling of slow waves on a plasma column was studied by means of cold plasma theory, and the case of a plasma column surrounded by an infinite dielectric in the absence of a magnetic field was also examined. Nonlinear scattering from a plasma column in an electromagnetic field having it's magnetic field parallel to the axis of the column was investigated. Some experimental results on mode conversion in the presence of loss are presented along with some observations of nonlinear scattering, The effect of the earth's magnetic field and of discharge symmetry on the radiation pattern are discussed.

  5. Constraint on the second functional derivative of the exchange-correlation energy

    NASA Astrophysics Data System (ADS)

    Joubert, D. P.

    2012-09-01

    Using the density functional adiabatic connection approach for an N-electron system it is shown that ? γ is the coupling constant that scales the electron-electron interaction strength. For the non-interacting Kohn-Sham Hamiltonian γ = 0 and for the fully interacting system γ = 1. ? is the Hartree plus exchange-correlation energy while f 0(r) and fγ(r) are the Fukui functions of the non-interacting and interacting systems, respectively. This identity can serve to test the internal self-consistency or quality of approximate functionals. The quality of some popular approximate exchange and correlation functionals are tested for a simple model system.

  6. Many-body Green’s function theory for electron-phonon interactions: Ground state properties of the Holstein dimer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Säkkinen, Niko; Leeuwen, Robert van; Peng, Yang

    2015-12-21

    We study ground-state properties of a two-site, two-electron Holstein model describing two molecules coupled indirectly via electron-phonon interaction by using both exact diagonalization and self-consistent diagrammatic many-body perturbation theory. The Hartree and self-consistent Born approximations used in the present work are studied at different levels of self-consistency. The governing equations are shown to exhibit multiple solutions when the electron-phonon interaction is sufficiently strong, whereas at smaller interactions, only a single solution is found. The additional solutions at larger electron-phonon couplings correspond to symmetry-broken states with inhomogeneous electron densities. A comparison to exact results indicates that this symmetry breaking is stronglymore » correlated with the formation of a bipolaron state in which the two electrons prefer to reside on the same molecule. The results further show that the Hartree and partially self-consistent Born solutions obtained by enforcing symmetry do not compare well with exact energetics, while the fully self-consistent Born approximation improves the qualitative and quantitative agreement with exact results in the same symmetric case. This together with a presented natural occupation number analysis supports the conclusion that the fully self-consistent approximation describes partially the bipolaron crossover. These results contribute to better understanding how these approximations cope with the strong localizing effect of the electron-phonon interaction.« less

  7. First-principles electron dynamics control simulation of diamond under femtosecond laser pulse train irradiation.

    PubMed

    Wang, Cong; Jiang, Lan; Wang, Feng; Li, Xin; Yuan, Yanping; Xiao, Hai; Tsai, Hai-Lung; Lu, Yongfeng

    2012-07-11

    A real-time and real-space time-dependent density functional is applied to simulate the nonlinear electron-photon interactions during shaped femtosecond laser pulse train ablation of diamond. Effects of the key pulse train parameters such as the pulse separation, spatial/temporal pulse energy distribution and pulse number per train on the electron excitation and energy absorption are discussed. The calculations show that photon-electron interactions and transient localized electron dynamics can be controlled including photon absorption, electron excitation, electron density, and free electron distribution by the ultrafast laser pulse train.

  8. Earth's Most Powerful Natural Particle Accelerator

    NASA Technical Reports Server (NTRS)

    Rowland, Doug

    2012-01-01

    Thunderstorms launch antimatter, gamma rays, and highly energetic electrons and neutrons to the edge of space. This witches' brew of radiation is generated at the edge of the stratopause, by the strong electric fields associated with lightning discharges. In less than a quarter millisecond, an explosive feedback process takes an initial seed population of electrons, perhaps produced by cosmic rays from dying stars, and amplifies them a billion billion-fold in the rarefied air over high altitude thunderheads. The electrons generate gamma radiation as they travel through the stratosphere and lower mesosphere, momentarily brighter and of harder spectrum than cosmic gamma ray bursts. These electrons ultimately are absorbed by the atmosphere, but the gamma rays continue on, into the upper reaches of the atmosphere, where they in turn generate a new population of electrons, positrons, and energetic neutrons. These secondary electrons and positrons move along the magnetic field, and can reach near-earth space, streaming through the inner radiation belts, and possibly contributing to the trapped populations there. First postulated by Wilson in 1925, and serendipitously discovered by the Compton Gamma Ray Observatory in 1994 [Fishman et al.], these events, known as "Terrestrial Gamma ray Flashes" (TGFs), represent the most intense episodes of particle acceleration on or near the Earth, resulting in electrons with energies up to 100 MeV. Recent observations by the RHESSI [Smith et al., 2004], Fermi [Briggs et al., 2010], and AGILE [Tavani et al., 2011] satellites, and theoretical and computational modeling, have suggested that the relativistic runaway electron avalanche (RREA) mechanism [Gurevich, 1992], and important modifications, such as the relativistic feedback discharge (RFD) model [Dwyer 2012] can best explain the observations at present. In these models, strong thunderstorm electric fields drive seed electrons, generated from cosmic ray interactions, into a runaway discharge, in which the seed electrons continually gain energy from the electric field, creating a host of secondaries as they interact with the background atmospheric gas. The feedback mechanisms include backwards-propagating positrons and gamma rays, which then can generate new "seed" electrons at the base of the acceleration region, and themselves generate further avalanche chain reactions, greatly amplifying the initial seed population. All these processes happen in the stratosphere, in the altitude range near 15-20 km, where the electric fields and mean free paths are appropriate to allow the discharge to develop.

  9. Novel symmetries in an interacting 𝒩 = 2 supersymmetric quantum mechanical model

    NASA Astrophysics Data System (ADS)

    Krishna, S.; Shukla, D.; Malik, R. P.

    2016-07-01

    In this paper, we demonstrate the existence of a set of novel discrete symmetry transformations in the case of an interacting 𝒩 = 2 supersymmetric quantum mechanical model of a system of an electron moving on a sphere in the background of a magnetic monopole and establish its interpretation in the language of differential geometry. These discrete symmetries are, over and above, the usual three continuous symmetries of the theory which together provide the physical realizations of the de Rham cohomological operators of differential geometry. We derive the nilpotent 𝒩 = 2 SUSY transformations by exploiting our idea of supervariable approach and provide geometrical meaning to these transformations in the language of Grassmannian translational generators on a (1, 2)-dimensional supermanifold on which our 𝒩 = 2 SUSY quantum mechanical model is generalized. We express the conserved supercharges and the invariance of the Lagrangian in terms of the supervariables (obtained after the imposition of the SUSY invariant restrictions) and provide the geometrical meaning to (i) the nilpotency property of the 𝒩 = 2 supercharges, and (ii) the SUSY invariance of the Lagrangian of our 𝒩 = 2 SUSY theory.

  10. Bose-Einstein condensation and superfluidity of dipolar excitons in a phosphorene double layer

    NASA Astrophysics Data System (ADS)

    Berman, Oleg L.; Gumbs, Godfrey; Kezerashvili, Roman Ya.

    2017-07-01

    We study the formation of dipolar excitons and their superfluidity in a phosphorene double layer. The analytical expressions for the single dipolar exciton energy spectrum and wave function are obtained. It is predicted that a weakly interacting gas of dipolar excitons in a double layer of black phosphorus exhibits superfluidity due to the dipole-dipole repulsion between the dipolar excitons. In calculations are employed the Keldysh and Coulomb potentials for the interaction between the charge carriers to analyze the influence of the screening effects on the studied phenomena. It is shown that the critical velocity of superfluidity, the spectrum of collective excitations, concentrations of the superfluid and normal component, and mean-field critical temperature for superfluidity are anisotropic and demonstrate the dependence on the direction of motion of dipolar excitons. The critical temperature for superfluidity increases if the exciton concentration and the interlayer separation increase. It is shown that the dipolar exciton binding energy and mean-field critical temperature for superfluidity are sensitive to the electron and hole effective masses. The proposed experiment to observe a directional superfluidity of excitons is addressed.

  11. 41 CFR 102-118.550 - How does a TSP file an administrative claim using EDI or other electronic means?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... administrative claim using EDI or other electronic means? 102-118.550 Section 102-118.550 Public Contracts and... EDI or other electronic means? The medium and precise format of data for an administrative claim filed electronically must be approved in advance by the GSA Audit Division. GSA will use an authenticating EDI...

  12. 12 CFR 155.300 - Must I inform the OCC before I use electronic means or facilities?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 1 2013-01-01 2013-01-01 false Must I inform the OCC before I use electronic means or facilities? 155.300 Section 155.300 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY ELECTRONIC OPERATIONS § 155.300 Must I inform the OCC before I use electronic means...

  13. Toward an Experimental Quantum Chemistry: Exploring a New Energy Partitioning.

    PubMed

    Rahm, Martin; Hoffmann, Roald

    2015-08-19

    Following the work of L. C. Allen, this work begins by relating the central chemical concept of electronegativity with the average binding energy of electrons in a system. The average electron binding energy, χ̅, is in principle accessible from experiment, through photoelectron and X-ray spectroscopy. It can also be estimated theoretically. χ̅ has a rigorous and understandable connection to the total energy. That connection defines a new kind of energy decomposition scheme. The changing total energy in a reaction has three primary contributions to it: the average electron binding energy, the nuclear-nuclear repulsion, and multielectron interactions. This partitioning allows one to gain insight into the predominant factors behind a particular energetic preference. We can conclude whether an energy change in a transformation is favored or resisted by collective changes to the binding energy of electrons, the movement of nuclei, or multielectron interactions. For example, in the classical formation of H2 from atoms, orbital interactions dominate nearly canceling nuclear-nuclear repulsion and two-electron interactions. While in electron attachment to an H atom, the multielectron interactions drive the reaction. Looking at the balance of average electron binding energy, multielectron, and nuclear-nuclear contributions one can judge when more traditional electronegativity arguments can be justifiably invoked in the rationalization of a particular chemical event.

  14. Decoherence and lead-induced interdot coupling in nonequilibrium electron transport through interacting quantum dots: A hierarchical quantum master equation approach

    NASA Astrophysics Data System (ADS)

    Härtle, R.; Cohen, G.; Reichman, D. R.; Millis, A. J.

    2013-12-01

    The interplay between interference effects and electron-electron interactions in electron transport through an interacting double quantum dot system is investigated using a hierarchical quantum master equation approach which becomes exact if carried to infinite order and converges well if the temperature is not too low. Decoherence due to electron-electron interactions is found to give rise to pronounced negative differential resistance, enhanced broadening of structures in current-voltage characteristics, and an inversion of the electronic population. Dependence on gate voltage is shown to be a useful method of distinguishing decoherence-induced phenomena from effects induced by other mechanisms such as the presence of a blocking state. Comparison of results obtained by the hierarchical quantum master equation approach to those obtained from the Born-Markov approximation to the Nakajima-Zwanzig equation and from the noncrossing approximation to the nonequilibrium Green's function reveals the importance of an interdot coupling that originates from the energy dependence of the conduction bands in the leads and the need for a systematic perturbative expansion.

  15. 22 CFR 51.1 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Relations DEPARTMENT OF STATE NATIONALITY AND PASSPORTS PASSPORTS § 51.1 Definitions. The following...) Electronic passport means a passport containing an electronically readable device, an electronic chip encoded.... (c) Minor means an unmarried, unemancipated person under 18 years of age. (d) Passport means a travel...

  16. 22 CFR 51.1 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Relations DEPARTMENT OF STATE NATIONALITY AND PASSPORTS PASSPORTS § 51.1 Definitions. The following...) Electronic passport means a passport containing an electronically readable device, an electronic chip encoded.... (c) Minor means an unmarried, unemancipated person under 18 years of age. (d) Passport means a travel...

  17. 22 CFR 51.1 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Relations DEPARTMENT OF STATE NATIONALITY AND PASSPORTS PASSPORTS § 51.1 Definitions. The following...) Electronic passport means a passport containing an electronically readable device, an electronic chip encoded.... (c) Minor means an unmarried, unemancipated person under 18 years of age. (d) Passport means a travel...

  18. 22 CFR 51.1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Relations DEPARTMENT OF STATE NATIONALITY AND PASSPORTS PASSPORTS § 51.1 Definitions. The following...) Electronic passport means a passport containing an electronically readable device, an electronic chip encoded.... (c) Minor means an unmarried, unemancipated person under 18 years of age. (d) Passport means a travel...

  19. Quantifying electronic band interactions in van der Waals materials using angle-resolved reflected-electron spectroscopy

    PubMed Central

    Jobst, Johannes; van der Torren, Alexander J. H.; Krasovskii, Eugene E.; Balgley, Jesse; Dean, Cory R.; Tromp, Rudolf M.; van der Molen, Sense Jan

    2016-01-01

    High electron mobility is one of graphene's key properties, exploited for applications and fundamental research alike. Highest mobility values are found in heterostructures of graphene and hexagonal boron nitride, which consequently are widely used. However, surprisingly little is known about the interaction between the electronic states of these layered systems. Rather pragmatically, it is assumed that these do not couple significantly. Here we study the unoccupied band structure of graphite, boron nitride and their heterostructures using angle-resolved reflected-electron spectroscopy. We demonstrate that graphene and boron nitride bands do not interact over a wide energy range, despite their very similar dispersions. The method we use can be generally applied to study interactions in van der Waals systems, that is, artificial stacks of layered materials. With this we can quantitatively understand the ‘chemistry of layers' by which novel materials are created via electronic coupling between the layers they are composed of. PMID:27897180

  20. Transmission electron microscope CCD camera

    DOEpatents

    Downing, Kenneth H.

    1999-01-01

    In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.

Top