Vestibular-visual interactions in flight simulators
NASA Technical Reports Server (NTRS)
Clark, B.
1977-01-01
The following research work is reported: (1) vestibular-visual interactions; (2) flight management and crew system interactions; (3) peripheral cue utilization in simulation technology; (4) control of signs and symptoms of motion sickness; (5) auditory cue utilization in flight simulators, and (6) vestibular function: Animal experiments.
Vestibular-visual interactions in flight simulators
NASA Technical Reports Server (NTRS)
Clark, B.
1977-01-01
All 139 research papers published under this ten-year program are listed. Experimental work was carried out at the Ames Research Center involving man's sensitivity to rotational acceleration, and psychophysical functioning of the semicircular canals; vestibular-visual interactions and effects of other sensory systems were studied in flight simulator environments. Experiments also dealt with the neurophysiological vestibular functions of animals, and flight management investigations of man-vehicle interactions.
Real time digital propulsion system simulation for manned flight simulators
NASA Technical Reports Server (NTRS)
Mihaloew, J. R.; Hart, C. E.
1978-01-01
A real time digital simulation of a STOL propulsion system was developed which generates significant dynamics and internal variables needed to evaluate system performance and aircraft interactions using manned flight simulators. The simulation ran at a real-to-execution time ratio of 8.8. The model was used in a piloted NASA flight simulator program to evaluate the simulation technique and the propulsion system digital control. The simulation is described and results shown. Limited results of the flight simulation program are also presented.
The design and implementation of CRT displays in the TCV real-time simulation
NASA Technical Reports Server (NTRS)
Leavitt, J. B.; Tariq, S. I.; Steinmetz, G. G.
1975-01-01
The design and application of computer graphics to the Terminal Configured Vehicle (TCV) program were described. A Boeing 737-100 series aircraft was modified with a second flight deck and several computers installed in the passenger cabin. One of the elements in support of the TCV program is a sophisticated simulation system developed to duplicate the operation of the aft flight deck. This facility consists of an aft flight deck simulator, equipped with realistic flight instrumentation, a CDC 6600 computer, and an Adage graphics terminal; this terminal presents to the simulator pilot displays similar to those used on the aircraft with equivalent man-machine interactions. These two displays form the primary flight instrumentation for the pilot and are dynamic images depicting critical flight information. The graphics terminal is a high speed interactive refresh-type graphics system. To support the cockpit display, two remote CRT's were wired in parallel with two of the Adage scopes.
Gravity Modeling Effects on Surface-Interacting Vehicles in Supersonic Flight
NASA Technical Reports Server (NTRS)
Madden, Michael M.
2010-01-01
A vehicle simulation is "surface-interacting" if the state of the vehicle (position, velocity, and acceleration) relative to the surface is important. Surface-interacting simulations per-form ascent, entry, descent, landing, surface travel, or atmospheric flight. The dynamics of surface-interacting simulations are influenced by the modeling of gravity. Gravity is the sum of gravitation and the centrifugal acceleration due to the world s rotation. Both components are functions of position relative to the world s center and that position for a given set of geodetic coordinates (latitude, longitude, and altitude) depends on the world model (world shape and dynamics). Thus, gravity fidelity depends on the fidelities of the gravitation model and the world model and on the interaction of these two models. A surface-interacting simulation cannot treat gravitation separately from the world model. This paper examines the actual performance of different pairs of world and gravitation models (or direct gravity models) on the travel of a supersonic aircraft in level flight under various start-ing conditions.
Facilitating researcher use of flight simulators
NASA Technical Reports Server (NTRS)
Russell, C. Ray
1990-01-01
Researchers conducting experiments with flight simulators encounter numerous obstacles in bringing their ideas to the simulator. Research into how these simulators could be used more efficiently is presented. The study involved: (1) analyzing the Advanced Concepts Simulator software architecture, (2) analyzing the interaction between the researchers and simulation programmers, and (3) proposing a documentation tool for the researchers.
Further Investigations of Gravity Modeling on Surface-Interacting Vehicle Simulations
NASA Technical Reports Server (NTRS)
Madden, Michael M.
2009-01-01
A vehicle simulation is "surface-interacting" if the state of the vehicle (position, velocity, and acceleration) relative to the surface is important. Surface-interacting simulations perform ascent, entry, descent, landing, surface travel, or atmospheric flight. The dynamics of surface-interacting simulations are influenced by the modeling of gravity. Gravity is the sum of gravitation and the centrifugal acceleration due to the world s rotation. Both components are functions of position relative to the world s center and that position for a given set of geodetic coordinates (latitude, longitude, and altitude) depends on the world model (world shape and dynamics). Thus, gravity fidelity depends on the fidelities of the gravitation model and the world model and on the interaction of the gravitation and world model. A surface-interacting simulation cannot treat the gravitation separately from the world model. This paper examines the actual performance of different pairs of world and gravitation models (or direct gravity models) on the travel of a subsonic civil transport in level flight under various starting conditions.
Human-Centered Design of Human-Computer-Human Dialogs in Aerospace Systems
NASA Technical Reports Server (NTRS)
Mitchell, Christine M.
1998-01-01
A series of ongoing research programs at Georgia Tech established a need for a simulation support tool for aircraft computer-based aids. This led to the design and development of the Georgia Tech Electronic Flight Instrument Research Tool (GT-EFIRT). GT-EFIRT is a part-task flight simulator specifically designed to study aircraft display design and single pilot interaction. ne simulator, using commercially available graphics and Unix workstations, replicates to a high level of fidelity the Electronic Flight Instrument Systems (EFIS), Flight Management Computer (FMC) and Auto Flight Director System (AFDS) of the Boeing 757/767 aircraft. The simulator can be configured to present information using conventional looking B757n67 displays or next generation Primary Flight Displays (PFD) such as found on the Beech Starship and MD-11.
The impact of brain size on pilot performance varies with aviation training and years of education
Adamson, Maheen M.; Samarina, Viktoriya; Xiangyan, Xu; Huynh, Virginia; Kennedy, Quinn; Weiner, Michael; Yesavage, Jerome; Taylor, Joy L.
2010-01-01
Previous studies have consistently reported age-related changes in cognitive abilities and brain structure. Previous studies also suggest compensatory roles for specialized training, skill, and years of education in the age-related decline of cognitive function. The Stanford/VA Aviation Study examines the influence of specialized training and skill level (expertise) on age-related changes in cognition and brain structure. This preliminary report examines the effect of aviation expertise, years of education, age, and brain size on flight simulator performance in pilots aged 45–68 years. Fifty-one pilots were studied with structural magnetic resonance imaging, flight simulator, and processing speed tasks. There were significant main effects of age (p < .01) and expertise (p < .01), but not of whole brain size (p > .1) or education (p > .1), on flight simulator performance. However, even though age and brain size were correlated (r = −0.41), age differences in flight simulator performance were not explained by brain size. Both aviation expertise and education were involved in an interaction with brain size in predicting flight simulator performance (p < .05). These results point to the importance of examining measures of expertise and their interactions to assess age-related cognitive changes. PMID:20193103
ERIC Educational Resources Information Center
Pieper, William J.; And Others
This study was initiated to design, develop, implement, and evaluate a videodisc-based simulator system, the Interactive Graphics Simulator (IGS) for 6883 Converter Flight Control Test Station training at Lowry Air Force Base, Colorado. The simulator provided a means for performing task analysis online, developing simulations from the task…
NASA Technical Reports Server (NTRS)
Young, L. R.
1976-01-01
Investigations for the improvement of flight simulators are reported. Topics include: visual cues in landing, comparison of linear and nonlinear washout filters using a model of the vestibular system, and visual vestibular interactions (yaw axis). An abstract is given for a thesis on the applications of human dynamic orientation models to motion simulation.
Changes of catecholamine excretion during long-duration confinement.
Kraft, N; Inoue, N; Ohshima, H; Sekiguchi, C
2002-06-01
Simulation studies have become the main source of data about small group interactions during prolonged isolation, from which it should be possible to anticipate crew problems during actual space missions. International Space Station (ISS) astronauts and cosmonauts will form one international crew, although living in different national modules. They will have joint flight protocols, and at the same time, fulfill a number of different tasks in accord with their national flight programs. Consistent with these concepts, we studied two simultaneously functioning groups in a simulation of ISS flight. The objective of this study was to investigate physiological parameters (such as catecholamine excretions) related to long-duration confinement in the hermetic chamber, simulating International Space Station flight conditions. We also planned to evaluate the relationship between epinephrine/norepinephrine with group dynamics and social events to predict unfavorable changes in health and work capability of the subjects related to psychological interaction in the isolation chamber.
Assess 2: Spacelab simulation. Executive summary
NASA Technical Reports Server (NTRS)
1977-01-01
An Airborne Science/Spacelab Experiments System Simulation (ASSESS II) mission, was conducted with the CV-990 airborne laboratory in May 1977. The project studied the full range of Spacelab-type activities including management interactions, experiment selection and funding, hardware development, payload integration and checkout, mission specialist and payload specialist selection and training, mission control center payload operations control center arrangements and interactions, real time interaction during flight between principal investigators and the flight crew, and retrieval of scientific flight data. ESA established an integration and coordination center for the ESA portion of the payload as planned for Spacelab. A strongly realistic Spacelab mission was conducted on the CV-990 aircraft. U.S. and ESA scientific experiments were integrated into a payload and flown over a 10 day period, with the payload flight crew fully-confined to represent a Spacelab mission. Specific conclusions for Spacelab planning are presented along with a brief explanation of each.
Navier-Stokes Simulation of UH-60A Rotor/Wake Interaction Using Adaptive Mesh Refinement
NASA Technical Reports Server (NTRS)
Chaderjian, Neal M.
2017-01-01
Time-dependent Navier-Stokes simulations have been carried out for a flexible UH-60A rotor in forward flight, where the rotor wake interacts with the rotor blades. These flow conditions involved blade vortex interaction and dynamic stall, two common conditions that occur as modern helicopter designs strive to achieve greater flight speeds and payload capacity. These numerical simulations utilized high-order spatial accuracy and delayed detached eddy simulation. Emphasis was placed on understanding how improved rotor wake resolution affects the prediction of the normal force, pitching moment, and chord force of the rotor. Adaptive mesh refinement was used to highly resolve the turbulent rotor wake in a computationally efficient manner. Moreover, blade vortex interaction was found to trigger dynamic stall. Time-dependent flow visualization was utilized to provide an improved understanding of the numerical and physical mechanisms involved with three-dimensional dynamic stall.
2000-01-01
for flight test data, and both generic and specialized tools of data filtering , data calibration, modeling , system identification, and simulation...GRAMMATICAL MODEL AND PARSER FOR AIR TRAFFIC CONTROLLER’S COMMANDS 11 A SPEECH-CONTROLLED INTERACTIVE VIRTUAL ENVIRONMENT FOR SHIP FAMILIARIZATION 12... MODELING AND SIMULATION IN THE 21ST CENTURY 23 NEW COTS HARDWARE AND SOFTWARE REDUCE THE COST AND EFFORT IN REPLACING AGING FLIGHT SIMULATORS SUBSYSTEMS
NASA Technical Reports Server (NTRS)
Johnston, D. E.; Mcruer, D. T.
1986-01-01
A fixed-base simulation was performed to identify and quantify interactions between the pilot's hand/arm neuromuscular subsystem and such features of typical modern fighter aircraft roll rate command control system mechanization as: (1) force sensing side-stick type manipulator; (2) vehicle effective role time constant; and (3) flight control system effective time delay. The simulation results provide insight to high frequency pilot induced oscillations (PIO) (roll ratchet), low frequency PIO, and roll-to-right control and handling problems previously observed in experimental and production fly-by-wire control systems. The simulation configurations encompass and/or duplicate actual flight situations, reproduce control problems observed in flight, and validate the concept that the high frequency nuisance mode known as roll ratchet derives primarily from the pilot's neuromuscular subsystem. The simulations show that force-sensing side-stick manipulator force/displacement/command gradients, command prefilters, and flight control system time delays need to be carefully adjusted to minimize neuromuscular mode amplitude peaking (roll ratchet tendency) without restricting roll control bandwidth (with resulting sluggish or PIO prone control).
NASA Technical Reports Server (NTRS)
Corker, Kevin M.; Pisanich, Gregory M.; Lebacqz, Victor (Technical Monitor)
1996-01-01
The Man-Machine Interaction Design and Analysis System (MIDAS) has been under development for the past ten years through a joint US Army and NASA cooperative agreement. MIDAS represents multiple human operators and selected perceptual, cognitive, and physical functions of those operators as they interact with simulated systems. MIDAS has been used as an integrated predictive framework for the investigation of human/machine systems, particularly in situations with high demands on the operators. Specific examples include: nuclear power plant crew simulation, military helicopter flight crew response, and police force emergency dispatch. In recent applications to airborne systems development, MIDAS has demonstrated an ability to predict flight crew decision-making and procedural behavior when interacting with automated flight management systems and Air Traffic Control. In this paper we describe two enhancements to MIDAS. The first involves the addition of working memory in the form of an articulatory buffer for verbal communication protocols and a visuo-spatial buffer for communications via digital datalink. The second enhancement is a representation of multiple operators working as a team. This enhanced model was used to predict the performance of human flight crews and their level of compliance with commercial aviation communication procedures. We show how the data produced by MIDAS compares with flight crew performance data from full mission simulations. Finally, we discuss the use of these features to study communications issues connected with aircraft-based separation assurance.
Astolfi, L; Toppi, J; Borghini, G; Vecchiato, G; He, E J; Roy, A; Cincotti, F; Salinari, S; Mattia, D; He, B; Babiloni, F
2012-01-01
Controlling an aircraft during a flight is a compelling condition, which requires a strict and well coded interaction between the crew. The interaction level between the Captain and the First Officer changes during the flight, ranging from a maximum (during takeoff and landing, as well as in case of a failure of the instrumentation or other emergency situations) to a minimum during quiet mid-flight. In this study, our aim is to investigate the neural correlates of different kinds and levels of interaction between couples of professional crew members by means of the innovative technique called brain hyperscanning, i.e. the simultaneous recording of the hemodynamic or neuroelectrical activity of different human subjects involved in interaction tasks. This approach allows the observation and modeling of the neural signature specifically dependent on the interaction between subjects, and, even more interestingly, of the functional links existing between the brain activities of the subjects interacting together. In this EEG hyperscanning study, different phases of a flight were reproduced in a professional flight simulator, which allowed, on one side, to reproduce the ecological setting of a real flight, and, on the other, to keep under control the different levels of interaction induced in the crew by means of systematic and simulated failures of the aircraft instrumentation. Results of the procedure of linear inverse estimation, together with functional hyperconnectivity estimated by means of Partial Directed Coherence, showed a dense network of connections between the activity in the two brains in the takeoff and landing phases, when the cooperation between the crew is maximal, while conversely no significant links were shown during the phases in which the activity of the two pilots was independent.
The flight robotics laboratory
NASA Technical Reports Server (NTRS)
Tobbe, Patrick A.; Williamson, Marlin J.; Glaese, John R.
1988-01-01
The Flight Robotics Laboratory of the Marshall Space Flight Center is described in detail. This facility, containing an eight degree of freedom manipulator, precision air bearing floor, teleoperated motion base, reconfigurable operator's console, and VAX 11/750 computer system, provides simulation capability to study human/system interactions of remote systems. The facility hardware, software and subsequent integration of these components into a real time man-in-the-loop simulation for the evaluation of spacecraft contact proximity and dynamics are described.
NASA Technical Reports Server (NTRS)
Daiker, Ron; Schnell, Thomas
2010-01-01
A human motor model was developed on the basis of performance data that was collected in a flight simulator. The motor model is under consideration as one component of a virtual pilot model for the evaluation of NextGen crew alerting and notification systems in flight decks. This model may be used in a digital Monte Carlo simulation to compare flight deck layout design alternatives. The virtual pilot model is being developed as part of a NASA project to evaluate multiple crews alerting and notification flight deck configurations. Model parameters were derived from empirical distributions of pilot data collected in a flight simulator experiment. The goal of this model is to simulate pilot motor performance in the approach-to-landing task. The unique challenges associated with modeling the complex dynamics of humans interacting with the cockpit environment are discussed, along with the current state and future direction of the model.
NASA Technical Reports Server (NTRS)
Raiszadeh, Behzad; Queen, Eric M.; Hotchko, Nathaniel J.
2009-01-01
A capability to simulate trajectories of multiple interacting rigid bodies has been developed, tested and validated. This capability uses the Program to Optimize Simulated Trajectories II (POST 2). The standard version of POST 2 allows trajectory simulation of multiple bodies without force interaction. In the current implementation, the force interaction between the parachute and the suspended bodies has been modeled using flexible lines, allowing accurate trajectory simulation of the individual bodies in flight. The POST 2 multibody capability is intended to be general purpose and applicable to any parachute entry trajectory simulation. This research paper explains the motivation for multibody parachute simulation, discusses implementation methods, and presents validation of this capability.
Comparison of Fluka-2006 Monte Carlo Simulation and Flight Data for the ATIC Detector
NASA Technical Reports Server (NTRS)
Gunasingha, R.M.; Fazely, A.R.; Adams, J.H.; Ahn, H.S.; Bashindzhagyan, G.L.; Chang, J.; Christl, M.; Ganel, O.; Guzik, T.G.; Isbert, J.;
2007-01-01
We have performed a detailed Monte Carlo (MC) simulation for the Advanced Thin Ionization Calorimeter (ATIC) detector using the MC code FLUKA-2006 which is capable of simulating particles up to 10 PeV. The ATIC detector has completed two successful balloon flights from McMurdo, Antarctica lasting a total of more than 35 days. ATIC is designed as a multiple, long duration balloon flight, investigation of the cosmic ray spectra from below 50 GeV to near 100 TeV total energy; using a fully active Bismuth Germanate(BGO) calorimeter. It is equipped with a large mosaic of.silicon detector pixels capable of charge identification, and, for particle tracking, three projective layers of x-y scintillator hodoscopes, located above, in the middle and below a 0.75 nuclear interaction length graphite target. Our simulations are part of an analysis package of both nuclear (A) and energy dependences for different nuclei interacting in the ATIC detector. The MC simulates the response of different components of the detector such as the Si-matrix, the scintillator hodoscopes and the BGO calorimeter to various nuclei. We present comparisons of the FLUKA-2006 MC calculations with GEANT calculations and with the ATIC CERN data and ATIC flight data.
NASA Technical Reports Server (NTRS)
Yuchnovicz, Daniel E.; Dennehy, Cornelius J.; Schuster, David M.
2011-01-01
The National Aeronautics and Space Administration (NASA) Engineering and Safety Center was chartered to develop an alternate launch abort system (LAS) as risk mitigation for the Orion Project. Its successful flight test provided data for the design of future LAS vehicles. Design of the flight test vehicle (FTV) and pad abort trajectory relied heavily on modeling and simulation including computational fluid dynamics for vehicle aero modeling, 6-degree-of-freedom kinematics models for flight trajectory modeling, and 3-degree-of-freedom kinematics models for parachute force modeling. This paper highlights the simulation techniques and the interaction between the aerodynamics, flight mechanics, and aerodynamic decelerator disciplines during development of the Max Launch Abort System FTV.
Vecchiato, Giovanni; Borghini, Gianluca; Aricò, Pietro; Graziani, Ilenia; Maglione, Anton Giulio; Cherubino, Patrizia; Babiloni, Fabio
2016-10-01
Brain-computer interfaces (BCIs) are widely used for clinical applications and exploited to design robotic and interactive systems for healthy people. We provide evidence to control a sensorimotor electroencephalographic (EEG) BCI system while piloting a flight simulator and attending a double attentional task simultaneously. Ten healthy subjects were trained to learn how to manage a flight simulator, use the BCI system, and answer to the attentional tasks independently. Afterward, the EEG activity was collected during a first flight where subjects were required to concurrently use the BCI, and a second flight where they were required to simultaneously use the BCI and answer to the attentional tasks. Results showed that the concurrent use of the BCI system during the flight simulation does not affect the flight performances. However, BCI performances decrease from the 83 to 63 % while attending additional alertness and vigilance tasks. This work shows that it is possible to successfully control a BCI system during the execution of multiple tasks such as piloting a flight simulator with an extra cognitive load induced by attentional tasks. Such framework aims to foster the knowledge on BCI systems embedded into vehicles and robotic devices to allow the simultaneous execution of secondary tasks.
Artificial evolution of the morphology and kinematics in a flapping-wing mini-UAV.
de Margerie, E; Mouret, J B; Doncieux, S; Meyer, J-A
2007-12-01
Birds demonstrate that flapping-wing flight (FWF) is a versatile flight mode, compatible with hovering, forward flight and gliding to save energy. This extended flight domain would be especially useful on mini-UAVs. However, design is challenging because aerodynamic efficiency is conditioned by complex movements of the wings, and because many interactions exist between morphological (wing area, aspect ratio) and kinematic parameters (flapping frequency, stroke amplitude, wing unfolding). Here we used artificial evolution to optimize these morpho-kinematic features on a simulated 1 kg UAV, equipped with wings articulated at the shoulder and wrist. Flight tests were conducted in a dedicated steady aerodynamics simulator. Parameters generating horizontal flight for minimal mechanical power were retained. Results showed that flight at medium speed (10-12 m s(-1)) can be obtained for reasonable mechanical power (20 W kg(-1)), while flight at higher speed (16-20 m s(-1)) implied increased power (30-50 W kg(-1)). Flight at low speed (6-8 m s(-1)) necessitated unrealistic power levels (70-500 W kg(-1)), probably because our simulator neglected unsteady aerodynamics. The underlying adaptation of morphology and kinematics to varying flight speed were compared to available biological data on the flight of birds.
NASA Astrophysics Data System (ADS)
Oruc, Ilker
This thesis presents the development of computationally efficient coupling of Navier-Stokes CFD with a helicopter flight dynamics model, with the ultimate goal of real-time simulation of fully coupled aerodynamic interactions between rotor flow and the surrounding terrain. A particular focus of the research is on coupled airwake effects in the helicopter / ship dynamic interface. A computationally efficient coupling interface was developed between the helicopter flight dynamics model, GENHEL-PSU and the Navier-Stokes solvers, CRUNCH/CRAFT-CFD using both FORTRAN and C/C++ programming languages. In order to achieve real-time execution speeds, the main rotor was modeled with a simplified actuator disk using unsteady momentum sources, instead of resolving the full blade geometry in the CFD. All the airframe components, including the fuselage are represented by single aerodynamic control points in the CFD calculations. The rotor downwash influence on the fuselage and empennage are calculated by using the CFD predicted local flow velocities at these aerodynamic control points defined on the helicopter airframe. In the coupled simulations, the flight dynamics model is free to move within a computational domain, where the main rotor forces are translated into source terms in the momentum equations of the Navier-Stokes equations. Simultaneously, the CFD calculates induced velocities those are fed back to the simulation and affect the aerodynamic loads in the flight dynamics. The CFD solver models the inflow, ground effect, and interactional aerodynamics in the flight dynamics simulation, and these calculations can be coupled with solution of the external flow (e.g. ship airwake effects). The developed framework was utilized for various investigations of hovering, forward flight and helicopter/terrain interaction simulations including standard ground effect, partial ground effect, sloped terrain, and acceleration in ground effect; and results compared with different flight and experimental data. In near ground cases, the fully-coupled flight dynamics and CFD simulations predicted roll oscillations due to interactions of the rotor downwash, ground plane, and the feedback controller, which are not predicted by the conventional simulation models. Fully coupled simulations of a helicopter accelerating near ground predicted flow formations similar to the recirculation and ground vortex flow regimes observed in experiments. The predictions of hover power reductions due to ground effect compared well to a recent experimental data and the results showed 22% power reduction for a hover flight z/R=0.55 above ground level. Fully coupled simulations performed for a helicopter hovering over and approaching to a ship flight deck and results compared with the standalone GENHEL-PSU simulations without ship airwake and one-way coupled simulations. The fully-coupled simulations showed higher pilot workload compared to the other two cases. In order to increase the execution speeds of the CFD calculations, several improvements were made on the CFD solver. First, the initial coupling approach File I/O was replaced with a more efficient method called Multiple Program Multiple Data MPI framework, where the two executables communicate with each other by MPI calls. Next, the unstructured solver (CRUNCH CFD), which is 2nd-order accurate in space, was replaced with the faster running structured solver (CRAFT CFD) that is 5th-order accurate in space. Other improvements including a more efficient k-d tree search algorithm and the bounding of the source term search space within a small region of the grid surrounding the rotor were made on the CFD solver. The final improvement was to parallelize the search task with the CFD solver tasks within the solver. To quantify the speed-up of the improvements to the coupling interface described above, a study was performed to demonstrate the speedup achieved from each of the interface improvements. The improvements made on the CFD solver showed more than 40 times speedup from the baseline file I/O and unstructured solver CRUNCH CFD. Using a structured CFD solver with 5th-order spacial accuracy provided the largest reductions in execution times. Disregarding the solver numeric, the total speedup of all of the interface improvements including the MPMD rotor point exchange, k-d tree search algorithm, bounded search space, and paralleled search task, was approximately 231%, more than a factor of 2. All these improvements provided the necessary speedup for approach real-time CFD. (Abstract shortened by ProQuest.).
Research flight software engineering and MUST, an integrated system of support tools
NASA Technical Reports Server (NTRS)
Straeter, T. A.; Foudriat, E. C.; Will, R. W.
1977-01-01
Consideration is given to software development to support NASA flight research. The Multipurpose User-Oriented Software Technology (MUST) program, designed to integrate digital systems into flight research, is discussed. Particular attention is given to the program's special interactive user interface, subroutine library, assemblers, compiler, automatic documentation tools, and test and simulation subsystems.
Fused Reality for Enhanced Flight Test Capabilities
NASA Technical Reports Server (NTRS)
Bachelder, Ed; Klyde, David
2011-01-01
The feasibility of using Fused Reality-based simulation technology to enhance flight test capabilities has been investigated. In terms of relevancy to piloted evaluation, there remains no substitute for actual flight tests, even when considering the fidelity and effectiveness of modern ground-based simulators. In addition to real-world cueing (vestibular, visual, aural, environmental, etc.), flight tests provide subtle but key intangibles that cannot be duplicated in a ground-based simulator. There is, however, a cost to be paid for the benefits of flight in terms of budget, mission complexity, and safety, including the need for ground and control-room personnel, additional aircraft, etc. A Fused Reality(tm) (FR) Flight system was developed that allows a virtual environment to be integrated with the test aircraft so that tasks such as aerial refueling, formation flying, or approach and landing can be accomplished without additional aircraft resources or the risk of operating in close proximity to the ground or other aircraft. Furthermore, the dynamic motions of the simulated objects can be directly correlated with the responses of the test aircraft. The FR Flight system will allow real-time observation of, and manual interaction with, the cockpit environment that serves as a frame for the virtual out-the-window scene.
NASA/ESA CV-990 Spacelab Simulation (ASSESS 2)
NASA Technical Reports Server (NTRS)
1977-01-01
Cost effective techniques for addressing management and operational activities on Spacelab were identified and analyzed during a ten day NASA-ESA cooperative mission with payload and flight responsibilities handled by the organization assigned for early Spacelabs. Topics discussed include: (1) management concepts and interface relationships; (2) experiment selection; (3) hardware development; (4) payload integration and checkout; (5) selection and training of mission specialists and payload specialists; (6) mission control center/payload operations control center interactions with ground and flight problems; (7) real time interaction during flight between principal investigators and the mission specialist/payload specialist flight crew; and (8) retrieval of scientific data and its analysis.
NASA Technical Reports Server (NTRS)
Ali, Syed Firasat; Khan, M. Javed; Rossi, Marcia J.; Heath, Bruce e.; Crane, Peter; Ward, Marcus; Crier, Tomyka; Knighten, Tremaine; Culpepper, Christi
2007-01-01
One result of the relatively recent advances in computing technology has been the decreasing cost of computers and increasing computational power. This has allowed high fidelity airplane simulations to be run on personal computers (PC). Thus, simulators are now used routinely by pilots to substitute real flight hours for simulated flight hours for training for an aircraft type rating thereby reducing the cost of flight training. However, FAA regulations require that such substitution training must be supervised by Certified Flight Instructors (CFI). If the CFI presence could be reduced or eliminated for certain tasks this would mean a further cost savings to the pilot. This would require that the flight simulator have a certain level of 'intelligence' in order to provide feedback on pilot performance similar to that of a CFI. The 'intelligent' flight simulator would have at least the capability to use data gathered from the flight to create a measure for the performance of the student pilot. Also, to fully utilize the advances in computational power, the simulator would be capable of interacting with the student pilot using the best possible training interventions. This thesis reports on the two studies conducted at Tuskegee University investigating the effects of interventions on the learning of two flight maneuvers on a flight simulator and the robustness and accuracy of calculated performance indices as compared to CFI evaluations of performance. The intent of these studies is to take a step in the direction of creating an 'intelligent' flight simulator. The first study deals with the comparisons of novice pilot performance trained at different levels of above real-time to execute a level S-turn. The second study examined the effect of out-of-the-window (OTW) visual cues in the form of hoops on the performance of novice pilots learning to fly a landing approach on the flight simulator. The reliability/robustness of the computed performance metrics was assessed by comparing them with the evaluations of the landing approach maneuver by a number of CFIs.
Model-Based Verification and Validation of Spacecraft Avionics
NASA Technical Reports Server (NTRS)
Khan, M. Omair; Sievers, Michael; Standley, Shaun
2012-01-01
Verification and Validation (V&V) at JPL is traditionally performed on flight or flight-like hardware running flight software. For some time, the complexity of avionics has increased exponentially while the time allocated for system integration and associated V&V testing has remained fixed. There is an increasing need to perform comprehensive system level V&V using modeling and simulation, and to use scarce hardware testing time to validate models; the norm for thermal and structural V&V for some time. Our approach extends model-based V&V to electronics and software through functional and structural models implemented in SysML. We develop component models of electronics and software that are validated by comparison with test results from actual equipment. The models are then simulated enabling a more complete set of test cases than possible on flight hardware. SysML simulations provide access and control of internal nodes that may not be available in physical systems. This is particularly helpful in testing fault protection behaviors when injecting faults is either not possible or potentially damaging to the hardware. We can also model both hardware and software behaviors in SysML, which allows us to simulate hardware and software interactions. With an integrated model and simulation capability we can evaluate the hardware and software interactions and identify problems sooner. The primary missing piece is validating SysML model correctness against hardware; this experiment demonstrated such an approach is possible.
NASA Technical Reports Server (NTRS)
Schoenenberger, Mark; VanNorman, John; Rhode, Matthew; Paulson, John
2013-01-01
On August 5 , 2012, the Mars Science Laboratory (MSL) entry capsule successfully entered Mars' atmosphere and landed the Curiosity rover in Gale Crater. The capsule used a reaction control system (RCS) consisting of four pairs of hydrazine thrusters to fly a guided entry. The RCS provided bank control to fly along a flight path commanded by an onboard computer and also damped unwanted rates due to atmospheric disturbances and any dynamic instabilities of the capsule. A preliminary assessment of the MSL's flight data from entry showed that the capsule flew much as predicted. This paper will describe how the MSL aerodynamics team used engineering analyses, computational codes and wind tunnel testing in concert to develop the RCS system and certify it for flight. Over the course of MSL's development, the RCS configuration underwent a number of design iterations to accommodate mechanical constraints, aeroheating concerns and excessive aero/RCS interactions. A brief overview of the MSL RCS configuration design evolution is provided. Then, a brief description is presented of how the computational predictions of RCS jet interactions were validated. The primary work to certify that the RCS interactions were acceptable for flight was centered on validating computational predictions at hypersonic speeds. A comparison of computational fluid dynamics (CFD) predictions to wind tunnel force and moment data gathered in the NASA Langley 31-Inch Mach 10 Tunnel was the lynch pin to validating the CFD codes used to predict aero/RCS interactions. Using the CFD predictions and experimental data, an interaction model was developed for Monte Carlo analyses using 6-degree-of-freedom trajectory simulation. The interaction model used in the flight simulation is presented.
NASA Astrophysics Data System (ADS)
Kaya, N.; Tsutsui, M.; Matsumoto, H.; Kimura, I.
1980-09-01
A pre-flight test experiment of a microwave-ionosphere nonlinear interaction rocket experiment (MINIX) has been carried out in a space plasma simulation chamber. Though the first rocket experiment ended up in failure because of a high voltage trouble, interesting results are observed in the pre-flight experiment. A significant microwave heating of plasma up to 300% temperature increase is observed. Strong excitations of plasma waves by the transmitted microwaves in the VLF and HF range are observed as well. These microwave effects may have to be taken into account in solar power satellite projects in the future.
Multi-Agent Flight Simulation with Robust Situation Generation
NASA Technical Reports Server (NTRS)
Johnson, Eric N.; Hansman, R. John, Jr.
1994-01-01
A robust situation generation architecture has been developed that generates multi-agent situations for human subjects. An implementation of this architecture was developed to support flight simulation tests of air transport cockpit systems. This system maneuvers pseudo-aircraft relative to the human subject's aircraft, generating specific situations for the subject to respond to. These pseudo-aircraft maneuver within reasonable performance constraints, interact in a realistic manner, and make pre-recorded voice radio communications. Use of this system minimizes the need for human experimenters to control the pseudo-agents and provides consistent interactions between the subject and the pseudo-agents. The achieved robustness of this system to typical variations in the subject's flight path was explored. It was found to successfully generate specific situations within the performance limitations of the subject-aircraft, pseudo-aircraft, and the script used.
Variable-Speed Simulation of a Dual-Clutch Gearbox Tiltrotor Driveline
NASA Technical Reports Server (NTRS)
DeSmidt, Hans; Wang, Kon-Well; Smith, Edward C.; Lewicki, David G.
2012-01-01
This investigation explores the variable-speed operation and shift response of a prototypical two-speed dual-clutch transmission tiltrotor driveline in forward flight. Here, a Comprehensive Variable-Speed Rotorcraft Propulsion System Modeling (CVSRPM) tool developed under a NASA funded NRA program is utilized to simulate the drive system dynamics. In this study, a sequential shifting control strategy is analyzed under a steady forward cruise condition. This investigation attempts to build upon previous variable-speed rotorcraft propulsion studies by 1) including a fully nonlinear transient gas-turbine engine model, 2) including clutch stick-slip friction effects, 3) including shaft flexibility, 4) incorporating a basic flight dynamics model to account for interactions with the flight control system. Through exploring the interactions between the various subsystems, this analysis provides important insights into the continuing development of variable-speed rotorcraft propulsion systems.
Astolfi, L; Toppi, J; Borghini, G; Vecchiato, G; Isabella, R; De Vico Fallani, F; Cincotti, F; Salinari, S; Mattia, D; He, B; Caltagirone, C; Babiloni, F
2011-01-01
Brain Hyperscanning, i.e. the simultaneous recording of the cerebral activity of different human subjects involved in interaction tasks, is a very recent field of Neuroscience aiming at understanding the cerebral processes generating and generated by social interactions. This approach allows the observation and modeling of the neural signature specifically dependent on the interaction between subjects, and, even more interestingly, of the functional links existing between the activities in the brains of the subjects interacting together. In this EEG hyperscanning study we explored the functional hyperconnectivity between the activity in different scalp sites of couples of Civil Aviation Pilots during different phases of a flight reproduced in a flight simulator. Results shown a dense network of connections between the two brains in the takeoff and landing phases, when the cooperation between them is maximal, in contrast with phases during which the activity of the two pilots was independent, when no or quite few links were shown. These results confirms that the study of the brain connectivity between the activity simultaneously acquired in human brains during interaction tasks can provide important information about the neural basis of the "spirit of the group".
Aviation Simulators for the Desktop: Panel and Demonstrations
NASA Technical Reports Server (NTRS)
Pisanich, Greg; Rosekind, Marl R. (Technical Monitor)
1997-01-01
Panel Members are: Christine M. Mitchell (Georgia Tech), Michael T. Palmer (NASA Langley), Greg Pisani (NASA Ames), and Amy R. Pritchett (MIT). The Panel members are affiliated with aviation human factors groups from NASA Ames, NASA Langley, MITCHELL Department of Aerospace and Aeronautical Engineering, and Georgia Technics Center for Human-Machine Systems Research. Panelists will describe the simulator(s) used in their respective institutions including a description of the FMS aircraft models, software, hardware, and displays. Panelists will summarize previous, on-going, and planned empirical studies conducted with the simulators. Greg Pisanich will describe two NASA Ames simulation systems: the Stone Soup Simulator (SSS), and the Airspace Operations Human Factors Simulation Laboratory. The the Stone Soup Simulator is a desktop-based, research flight simulator that includes mode control, flight management, and datalink functionality. It has been developed as a non-proprietary simulator that can be easily distributed to academic and industry researchers who are collaborating on NASA research projects. It will be used and extended by research groups represented by at least two panelists (Mitchell and Palmer). The Airspace Operations Simulator supports the study of air traffic control in conjunction with the flight deck. This simulator will be used provide an environment in which many AATT and free flight concepts can be demonstrated and evaluated. Mike Palmer will describe two NASA Langley efforts: The Langley Simulator and MD-11 extensions to the NASA Amesbury simulator. The first simulator is publicly available and combines a B-737 model with a high fidelity flight management system. The second simulator enhances the S3 simulator with MD-11 electronic flight displays together with modifications to the flight and FMS models to emulate MD-11 dynamics and operations. Chris Mitchell will describe GT-EFIRT (Georgia Tech-Electronic Flight Instrument Research Tool) and B-757 enhancements to the NASA Ames S3. GT-EFIRT is a medium fidelity simulator used to conduct preliminary studies of the CATS (crew activity tracking system). Like the Langley efforts with S3, the Georgia Tech enhancements will allow it to emulate the dynamics and operations of a widely used glass cockpit. Amy Pritchett will describe the MIT simulator(s) that have been used in a range of research investigating cockpit displays, warning devices, and flight deck-ATC interaction.
NASA Technical Reports Server (NTRS)
Fay, Stanley; Gates, Stephen; Henderson, Timothy; Sackett, Lester; Kirchwey, Kim; Stoddard, Isaac; Storch, Joel
1988-01-01
The second Control Of Flexible Structures Flight Experiment (COFS-2) includes a long mast as in the first flight experiment, but with the Langley 15-m hoop column antenna attached via a gimbal system to the top of the mast. The mast is to be mounted in the Space Shuttle cargo bay. The servo-driven gimbal system could be used to point the antenna relative to the mast. The dynamic interaction of the Shuttle Orbiter/COFS-2 system with the Orbiter on-orbit Flight Control System (FCS) and the gimbal pointing control system has been studied using analysis and simulation. The Orbiter pointing requirements have been assessed for their impact on allowable free drift time for COFS experiments. Three fixed antenna configurations were investigated. Also simulated was Orbiter attitude control behavior with active vernier jets during antenna slewing. The effect of experiment mast dampers was included. Control system stability and performance and loads on various portions of the COFS-2 structure were investigated. The study indicates possible undesirable interaction between the Orbiter FCS and the flexible, articulated COFS-2 mast/antenna system, even when restricted to vernier reaction jets.
Models of Human Information Requirements: "When Reasonable Aiding Systems Disagree"
NASA Technical Reports Server (NTRS)
Corker, Kevin; Pisanich, Gregory; Shafto, Michael (Technical Monitor)
1994-01-01
Aircraft flight management and Air Traffic Control (ATC) automation are under development to maximize the economy of flight and to increase the capacity of the terminal area airspace while maintaining levels of flight safety equal to or better than current system performance. These goals are being realized by the introduction of flight management automation aiding and operations support systems on the flight deck and by new developments of ATC aiding systems that seek to optimize scheduling of aircraft while potentially reducing required separation and accounting for weather and wake vortex turbulence. Aiding systems on both the flight deck and the ground operate through algorithmic functions on models of the aircraft and of the airspace. These models may differ from each other as a result of variations in their models of the immediate environment. The resultant flight operations or ATC commands may differ in their response requirements (e.g. different preferred descent speeds or descent initiation points). The human operators in the system must then interact with the automation to reconcile differences and resolve conflicts. We have developed a model of human performance including cognitive functions (decision-making, rule-based reasoning, procedural interruption recovery and forgetting) that supports analysis of the information requirements for resolution of flight aiding and ATC conflicts. The model represents multiple individuals in the flight crew and in ATC. The model is supported in simulation on a Silicon Graphics' workstation using Allegro Lisp. Design guidelines for aviation automation aiding systems have been developed using the model's specification of information and team procedural requirements. Empirical data on flight deck operations from full-mission flight simulation are provided to support the model's predictions. The paper describes the model, its development and implementation, the simulation test of the model predictions, and the empirical validation process. The model and its supporting data provide a generalizable tool that is being expanded to include air/ground compatibility and ATC crew interactions in air traffic management.
NASA Technical Reports Server (NTRS)
Whelan, Todd Michael
1996-01-01
In a real-time or batch mode simulation that is designed to model aircraft dynamics over a wide range of flight conditions, a table look- up scheme is implemented to determine the forces and moments on the vehicle based upon the values of parameters such as angle of attack, altitude, Mach number, and control surface deflections. Simulation Aerodynamic Variable Interface (SAVI) is a graphical user interface to the flight simulation input data, designed to operate on workstations that support X Windows. The purpose of the application is to provide two and three dimensional visualization of the data, to allow an intuitive sense of the data set. SAVI also allows the user to manipulate the data, either to conduct an interactive study of the influence of changes on the vehicle dynamics, or to make revisions to data set based on new information such as flight test. This paper discusses the reasons for developing the application, provides an overview of its capabilities, and outlines the software architecture and operating environment.
NASA Astrophysics Data System (ADS)
Mohon, N.
A 'simulator' is defined as a machine which imitates the behavior of a real system in a very precise manner. The major components of a simulator and their interaction are outlined in brief form, taking into account the major components of an aircraft flight simulator. Particular attention is given to the visual display portion of the simulator, the basic components of the display, their interactions, and their characteristics. Real image displays are considered along with virtual image displays, and image generators. Attention is given to an advanced simulator for pilot training, a holographic pancake window, a scan laser image generator, the construction of an infrared target simulator, and the Apollo Command Module Simulator.
Status of NASA/Army rotorcraft research and development piloted flight simulation
NASA Technical Reports Server (NTRS)
Condon, Gregory W.; Gossett, Terrence D.
1988-01-01
The status of the major NASA/Army capabilities in piloted rotorcraft flight simulation is reviewed. The requirements for research and development piloted simulation are addressed as well as the capabilities and technologies that are currently available or are being developed by NASA and the Army at Ames. The application of revolutionary advances (in visual scene, electronic cockpits, motion, and modelling of interactive mission environments and/or vehicle systems) to the NASA/Army facilities are also addressed. Particular attention is devoted to the major advances made in integrating these individual capabilities into fully integrated simulation environment that were or are being applied to new rotorcraft mission requirements. The specific simulators discussed are the Vertical Motion Simulator and the Crew Station Research and Development Facility.
[EEG-correlates of pilots' functional condition in simulated flight dynamics].
Kiroy, V N; Aslanyan, E V; Bakhtin, O M; Minyaeva, N R; Lazurenko, D M
2015-01-01
The spectral characteristics of the EEG recorded on two professional pilots in the simulator TU-154 aircraft in flight dynamics, including takeoff, landing and horizontal flight (in particular during difficult conditions) were analyzed. EEG recording was made with frequency band 0.1-70 Hz continuously from 15 electrodes. The EEG recordings were evaluated using analysis of variance and discriminant analysis. Statistical significant of the identified differences and the influence of the main factors and their interactions were evaluated using Greenhouse - Gaiser corrections. It was shown that the spectral characteristics of the EEG are highly informative features of the state of the pilots, reflecting the different flight phases. High validity ofthe differences including individual characteristic, indicates their non-random nature and the possibility of constructing a system of pilots' state control during all phases of flight, based on EEG features.
NASA Technical Reports Server (NTRS)
Heath, Bruce E.
2007-01-01
One result of the relatively recent advances in computing technology has been the decreasing cost of computers and increasing computational power. This has allowed high fidelity airplane simulations to be run on personal computers (PC). Thus, simulators are now used routinely by pilots to substitute real flight hours for simulated flight hours for training for an aircraft type rating thereby reducing the cost of flight training. However, FAA regulations require that such substitution training must be supervised by Certified Flight Instructors (CFI). If the CFI presence could be reduced or eliminated for certain tasks this would mean a further cost savings to the pilot. This would require that the flight simulator have a certain level of 'intelligence' in order to provide feedback on pilot perfolmance similar to that of a CFI. The 'intelligent' flight sinlulator would have at least the capability to use data gathered from the flight to create a measure for the performance of the student pilot. Also, to fully utilize the advances in computational power, the sinlulator would be capable of interacting with the student pilot using the best possible training interventions. This thesis reposts on the two studies conducted at Tuskegee University investigating the effects of interventions on the learning of two flight maneuvers on a flight sinlulator and the robustness and accuracy of calculated perfornlance indices as compared to CFI evaluations of performance. The intent of these studies is to take a step in the direction of creating an 'intelligent' flight simulator. The first study deals with the comparisons of novice pilot performance trained at different levels of above real-time to execute a level S-turn. The second study examined the effect of out-of-the-window (OTW) visual cues in the form of hoops on the performance of novice pilots learning to fly a landing approach on the flight simulator. The reliability/robustness of the computed performance metrics was assessed by comparing them with the evaluations of the landing approach maneuver by a number of CFIs.
Economical graphics display system for flight simulation avionics
NASA Technical Reports Server (NTRS)
1990-01-01
During the past academic year the focal point of this project has been to enhance the economical flight simulator system by incorporating it into the aero engineering educational environment. To accomplish this goal it was necessary to develop appropriate software modules that provide a foundation for student interaction with the system. In addition experiments had to be developed and tested to determine if they were appropriate for incorporation into the beginning flight simulation course, AERO-41B. For the most part these goals were accomplished. Experiments were developed and evaluated by graduate students. More work needs to be done in this area. The complexity and length of the experiments must be refined to match the programming experience of the target students. It was determined that few undergraduate students are ready to absorb the full extent and complexity of a real-time flight simulation. For this reason the experiments developed are designed to introduce basic computer architectures suitable for simulation, the programming environment and languages, the concept of math modules, evaluation of acquired data, and an introduction to the meaning of real-time. An overview is included of the system environment as it pertains to the students, an example of a flight simulation experiment performed by the students, and a summary of the executive programming modules created by the students to achieve a user-friendly multi-processor system suitable to an aero engineering educational program.
Silver Wings, Golden Valor: The USAF Remembers Korea
2006-01-01
better high-speed qualities and a better flight control system than the MiG-15. The Sabre jet came to be considered one of the greatest fighter...the advent of fully hydraulic flight control systems with various forms of stability augmentation led to the reintroduction of the slab tail. The...Calif.: Empire Interactive, 1999) designed for use on a Windows 95/98 CD-ROM operating system . This game, one of the finest flight simulations creat
The Use of Human Factors Simulation to Conserve Operations Expense
NASA Technical Reports Server (NTRS)
Hamilton, George S.; Dischinger, H. Charles, Jr.; Wu, Hsin-I.
1999-01-01
In preparation for on-orbit operations, NASA performs experiments aboard a KC-135 which performs parabolic maneuvers, resulting in short periods of microgravity. While considerably less expensive than space operations, the use of this aircraft is costly. Simulation of tasks to be performed during the flight can allow the participants to optimize hardware configuration and crew interaction prior to flight. This presentation will demonstrate the utility of such simulation. The experiment simulated is the fluid dynamics of epoxy components which may be used in a patch kit in the event of meteoroid damage to the International Space Station. Improved configuration and operational efficiencies were reflected in early and increased data collection.
Wing-wake interaction destabilizes hover equilibrium of a flapping insect-scale wing.
Bluman, James; Kang, Chang-Kwon
2017-06-15
Wing-wake interaction is a characteristic nonlinear flow feature that can enhance unsteady lift in flapping flight. However, the effects of wing-wake interaction on the flight dynamics of hover are inadequately understood. We use a well-validated 2D Navier-Stokes equation solver and a quasi-steady model to investigate the role of wing-wake interaction on the hover stability of a fruit fly scale flapping flyer. The Navier-Stokes equations capture wing-wake interaction, whereas the quasi-steady models do not. Both aerodynamic models are tightly coupled to a flight dynamic model, which includes the effects of wing mass. The flapping amplitude, stroke plane angle, and flapping offset angle are adjusted in free flight for various wing rotations to achieve hover equilibrium. We present stability results for 152 simulations which consider different kinematics involving the pitch amplitude and pitch axis as well as the duration and timing of pitch rotation. The stability of all studied motions was qualitatively similar, with an unstable oscillatory mode present in each case. Wing-wake interaction has a destabilizing effect on the longitudinal stability, which cannot be predicted by a quasi-steady model. Wing-wake interaction increases the tendency of the flapping flyer to pitch up in the presence of a horizontal velocity perturbation, which further destabilizes the unstable oscillatory mode of hovering flight dynamics.
Foster, Jamie S.; Khodadad, Christina L. M.; Ahrendt, Steven R.; Parrish, Mirina L.
2013-01-01
The microgravity environment during space flight imposes numerous adverse effects on animal and microbial physiology. It is unclear, however, how microgravity impacts those cellular interactions between mutualistic microbes and their hosts. Here, we used the symbiosis between the host squid Euprymna scolopes and its luminescent bacterium Vibrio fischeri as a model system. We examined the impact of simulated microgravity on the timeline of bacteria-induced development in the host light organ, the site of the symbiosis. To simulate the microgravity environment, host squid and symbiosis-competent bacteria were incubated together in high-aspect ratio rotating wall vessel bioreactors and examined throughout the early stages of the bacteria-induced morphogenesis. The host innate immune response was suppressed under simulated microgravity; however, there was an acceleration of bacteria-induced apoptosis and regression in the host tissues. These results suggest that the space flight environment may alter the cellular interactions between animal hosts and their natural healthy microbiome. PMID:23439280
Airborne Systems Technology Application to the Windshear Threat
NASA Technical Reports Server (NTRS)
Arbuckle, P. Douglas; Lewis, Michael S.; Hinton, David A.
1996-01-01
The general approach and products of the NASA/FAA Airborne Windshear Program conducted by NASA Langley Research Center are summarized, with references provided for the major technical contributions. During this period, NASA conducted 2 years of flight testing to characterize forward-looking sensor performance. The NASA/FAA Airborne Windshear Program was divided into three main elements: Hazard Characterization, Sensor Technology, and Flight Management Systems. Simulation models developed under the Hazard Characterization element are correlated with flight test data. Flight test results comparing the performance and characteristics of the various Sensor Technologies (microwave radar, lidar, and infrared) are presented. Most of the activities in the Flight Management Systems element were conducted in simulation. Simulation results from a study evaluating windshear crew procedures and displays for forward-looking sensor-equipped airplanes are discussed. NASA Langley researchers participated heavily in the FAA process of generating certification guidelines for predictive windshear detection systems. NASA participants felt that more valuable technology products were generated by the program because of this interaction. NASA involvement in the process and the resulting impact on products and technology transfer are discussed in this paper.
Motion sickness adaptation to Coriolis-inducing head movements in a sustained G flight simulator.
Newman, Michael C; McCarthy, Geoffrey W; Glaser, Scott T; Bonato, Frederick; Bubka, Andrea
2013-02-01
Technological advances have allowed centrifuges to become more than physiological testing and training devices; sustained G, fully interactive flight simulation is now possible. However, head movements under G can result in vestibular stimulation that can lead to motion sickness (MS) symptoms that are potentially distracting, nauseogenic, and unpleasant. In the current study an MS adaptation protocol was tested for head movements under +Gz. Experienced pilots made 14 predetermined head movements in a sustained G flight simulator (at 3 +Gz) on 5 consecutive days and 17 d after training. Symptoms were measured after each head turn using a subjective 0-10 MS scale. The Simulator Sickness Questionnaire (SSQ) was also administered before and after each daily training session. After five daily training sessions, normalized mean MS scores were 58% lower than on Day 1. Mean total, nausea, and disorientation SSQ scores were 55%, 52%, and 78% lower, respectively. During retesting 17 d after training, nearly all scores indicated 90-100% retention of training benefits. The reduction of unpleasant effects associated with sustained G flight simulation using an adaptation training protocol may enhance the effectiveness of simulation. Practical use of sustained G simulators is also likely to be interspersed with other types of ground and in-flight training. Hence, it would be undesirable and unpleasant for trainees to lose adaptation benefits after a short gap in centrifuge use. However, current results suggest that training gaps in excess of 2 wk may be permissible with almost no loss of adaptation training benefits.
Ishihara, Daisuke; Horie, T; Denda, Mitsunori
2009-01-01
In this study, the passive pitching due to wing torsional flexibility and its lift generation in dipteran flight were investigated using (a) the non-linear finite element method for the fluid-structure interaction, which analyzes the precise motions of the passive pitching of the wing interacting with the surrounding fluid flow, (b) the fluid-structure interaction similarity law, which characterizes insect flight, (c) the lumped torsional flexibility model as a simplified dipteran wing, and (d) the analytical wing model, which explains the characteristics of the passive pitching motion in the simulation. Given sinusoidal flapping with a frequency below the natural frequency of the wing torsion, the resulting passive pitching in the steady state, under fluid damping, is approximately sinusoidal with the advanced phase shift. We demonstrate that the generated lift can support the weight of some Diptera.
NASA Technical Reports Server (NTRS)
Lee, A. T.
1984-01-01
The differences between flight training technology and flight simulation technology are highlighted. Examples of training technologies are provided, including the Navy's training system and the interactive cockpit training device. Training problems that might arise in the near future are discussed. These challenges follow from the increased amount and variety of information that a pilot must have access to in the cockpit.
Paper simulation techniques in user requirements analysis for interactive computer systems
NASA Technical Reports Server (NTRS)
Ramsey, H. R.; Atwood, M. E.; Willoughby, J. K.
1979-01-01
This paper describes the use of a technique called 'paper simulation' in the analysis of user requirements for interactive computer systems. In a paper simulation, the user solves problems with the aid of a 'computer', as in normal man-in-the-loop simulation. In this procedure, though, the computer does not exist, but is simulated by the experimenters. This allows simulated problem solving early in the design effort, and allows the properties and degree of structure of the system and its dialogue to be varied. The technique, and a method of analyzing the results, are illustrated with examples from a recent paper simulation exercise involving a Space Shuttle flight design task
NASA Technical Reports Server (NTRS)
Murphy, M. R.; Randle, R. J.; Tanner, T. A.; Frankel, R. M.; Goguen, J. A.; Linde, C.
1984-01-01
Sixteen three man crews flew a full mission scenario in an airline flight simulator. A high level of verbal interaction during instances of critical decision making was located. Each crew flew the scenario only once, without prior knowledge of the scenario problem. Following a simulator run and in accord with formal instructions, each of the three crew members independently viewed and commented on a videotape of their performance. Two check pilot observers rated pilot performance across all crews and, following each run, also commented on the video tape of the crew's performance. A linguistic analysis of voice transcript is made to provide assessment of crew coordination and decision making qualities. Measures of crew coordination and decision making factors are correlated with flight task performance measures.
Le, Tuyen Quang; Truong, Tien Van; Park, Soo Hyung; Quang Truong, Tri; Ko, Jin Hwan; Park, Hoon Cheol; Byun, Doyoung
2013-01-01
In this work, the aerodynamic performance of beetle wing in free-forward flight was explored by a three-dimensional computational fluid dynamics (CFDs) simulation with measured wing kinematics. It is shown from the CFD results that twist and camber variation, which represent the wing flexibility, are most important when determining the aerodynamic performance. Twisting wing significantly increased the mean lift and camber variation enhanced the mean thrust while the required power was lower than the case when neither was considered. Thus, in a comparison of the power economy among rigid, twisting and flexible models, the flexible model showed the best performance. When the positive effect of wing interaction was added to that of wing flexibility, we found that the elytron created enough lift to support its weight, and the total lift (48.4 mN) generated from the simulation exceeded the gravity force of the beetle (47.5 mN) during forward flight. PMID:23740486
Researcher's guide to the NASA Ames Flight Simulator for Advanced Aircraft (FSAA)
NASA Technical Reports Server (NTRS)
Sinacori, J. B.; Stapleford, R. L.; Jewell, W. F.; Lehman, J. M.
1977-01-01
Performance, limitations, supporting software, and current checkout and operating procedures are presented for the flight simulator, in terms useful to the researcher who intends to use it. Suggestions to help the researcher prepare the experimental plan are also given. The FSAA's central computer, cockpit, and visual and motion systems are addressed individually but their interaction is considered as well. Data required, available options, user responsibilities, and occupancy procedures are given in a form that facilitates the initial communication required with the NASA operations' group.
Pilot expertise and hippocampal size: associations with longitudinal flight simulator performance.
Adamson, Maheen M; Bayley, Peter J; Scanlon, Blake K; Farrell, Michelle E; Hernandez, Beatriz; Weiner, Michael W; Yesavage, Jerome A; Taylor, Joy L
2012-09-01
Previous research suggests that the size of the hippocampus can vary in response to intensive training (e.g., during the acquisition of expert knowledge). However, the role of the hippocampus in maintenance of skilled performance is not well understood. The Stanford/Veterans Affairs Aviation MRI Study offers a unique opportunity to observe the interaction of brain structure and multiple levels of expertise on longitudinal flight simulator performance. The current study examined the relationship between hippocampal volume and three levels of aviation expertise, defined by pilot proficiency ratings issued by the U.S. Federal Aviation Administration (11). At 3 annual time points, 60 pilots who varied in their level of aviation expertise (ages ranging from 45 to 69 yr) were tested. At baseline, higher expertise was associated with better flight simulator performance, but not with hippocampal volume. Longitudinally, there was an Expertise x Hippocampal volume interaction, in the direction that a larger hippocampus was associated with better performance at higher levels of expertise. These results are consistent with the notion that expertise in a cognitively demanding domain involves the interplay of acquired knowledge ('mental schemas') and basic hippocampal-dependent processes.
NASA Technical Reports Server (NTRS)
1993-01-01
MOOG, Inc. supplies hydraulic actuators for the Space Shuttle. When MOOG learned NASA was interested in electric actuators for possible future use, the company designed them with assistance from Marshall Space Flight Center. They also decided to pursue the system's commercial potential. This led to partnership with InterActive Simulation, Inc. for production of cabin flight simulators for museums, expositions, etc. The resulting products, the Magic Motion Simulator 30 Series, are the first electric powered simulators. Movements are computer-guided, including free fall to heighten the sense of moving through space. A projection system provides visual effects, and the 11 speakers of a digital laser based sound system add to the realism. The electric actuators are easier to install, have lower operating costs, noise, heat and staff requirements. The U.S. Space & Rocket Center and several other organizations have purchased the simulators.
Free Flight Simulation: An Initial Examination of Air-Ground Integration Issues
NASA Technical Reports Server (NTRS)
Lozito, Sandra; McGann, Alison; Cashion, Patricia; Dunbar, Melisa; Mackintosh, Margaret; Dulchinos, Victoria; Jordan, Kevin; Remington, Roger (Technical Monitor)
2000-01-01
The concept of "free flight" is intended to emphasize more flexibility for operators in the National Airspace System (RTCA, 1995). This may include the potential for aircraft self-separation. The purpose of this simulation was to begin examining some of the communication and procedural issues associated with self-separation in an integrated air-ground environment. Participants were 10 commercial U.S. flight crews who flew the B747-400 simulator and 10 Denver ARTCC controllers who monitored traffic in an ATC simulation. A prototypic airborne alerting logic and flight deck display features were designed to allow for increased traffic and maneuvering information. Eight different scenarios representing different conflict types were developed. The effects of traffic density (high and low) and different traffic convergence angles (obtuse, acute, and right) were assessed. Conflict detection times were found to be lower for the flight crews in low density compared to high density scenarios. For the controllers, an interaction between density and convergence angle was revealed. Analyses on the controller detection times found longer detection times in the obtuse high density compared to obtuse low density, as well as the shortest detection times in the high density acute angle condition. Maneuvering and communication events are summarized, and a discussion of future research issues is provided.
Radiation: Physical Characterization and Environmental Measurements
NASA Technical Reports Server (NTRS)
1997-01-01
In this session, Session WP4, the discussion focuses on the following topics: Production of Neutrons from Interactions of GCR-Like Particles; Solar Particle Event Dose Distributions, Parameterization of Dose-Time Profiles; Assessment of Nuclear Events in the Body Produced by Neutrons and High-Energy Charged Particles; Ground-Based Simulations of Cosmic Ray Heavy Ion Interactions in Spacecraft and Planetary Habitat Shielding Materials; Radiation Measurements in Space Missions; Radiation Measurements in Civil Aircraft; Analysis of the Pre-Flight and Post-Flight Calibration Procedures Performed on the Liulin Space Radiation Dosimeter; and Radiation Environment Monitoring for Astronauts.
Influences of APOE ε4 and Expertise on Performance of Older Pilots
Taylor, Joy L.; Kennedy, Quinn; Adamson, Maheen M.; Lazzeroni, Laura C.; Noda, Art; Murphy, Greer M.; Yesavage, Jerome A.
2010-01-01
Little is known about how APOE ε4-related differences in cognitive performance translate to real-life performance, where training and experience may help to sustain performance. We investigated the influences of APOE ε4 status, expertise (FAA pilot proficiency ratings), and their interaction on longitudinal flight simulator performance. Over a 2-year period, 139 pilots aged 42–69 years were tested annually. APOE ε4 carriers had lower memory performance than noncarriers (p = .019). APOE interacted with Expertise (p = .036), such that the beneficial influence of expertise (p = .013) on longitudinal flight simulator performance was more pronounced for ε4 carriers. Results suggest that relevant training and activity may help sustain middle-aged and older adults’ real-world performance, especially among APOE ε4 carriers. PMID:21668123
Influence of World and Gravity Model Selection on Surface Interacting Vehicle Simulations
NASA Technical Reports Server (NTRS)
Madden, Michael M.
2007-01-01
A vehicle simulation is surface-interacting if the state of the vehicle (position, velocity, and acceleration) relative to the surface is important. Surface-interacting simulations perform ascent, entry, descent, landing, surface travel, or atmospheric flight. Modeling of gravity is an influential environmental factor for surface-interacting simulations. Gravity is the free-fall acceleration observed from a world-fixed frame that rotates with the world. Thus, gravity is the sum of gravitation and the centrifugal acceleration due to the world s rotation. In surface-interacting simulations, the fidelity of gravity at heights above the surface is more significant than gravity fidelity at locations in inertial space. A surface-interacting simulation cannot treat the gravity model separately from the world model, which simulates the motion and shape of the world. The world model's simulation of the world's rotation, or lack thereof, produces the centrifugal acceleration component of gravity. The world model s reproduction of the world's shape will produce different positions relative to the world center for a given height above the surface. These differences produce variations in the gravitation component of gravity. This paper examines the actual performance of world and gravity/gravitation pairs in a simulation using the Earth.
NASA Technical Reports Server (NTRS)
Lebacqz, J. V.; Forrest, R. D.; Gerdes, R. M.
1982-01-01
A ground-simulation experiment was conducted to investigate the influence and interaction of flight-control system, fight-director display, and crew-loading situation on helicopter flying qualities during terminal area operations in instrument conditions. The experiment was conducted on the Flight Simulator for Advanced Aircraft at Ames Research Center. Six levels of control complexity, ranging from angular rate damping to velocity augmented longitudinal and vertical axes, were implemented on a representative helicopter model. The six levels of augmentation were examined with display variations consisting of raw elevation and azimuth data only, and of raw data plus one-, two-, and three-cue flight directors. Crew-loading situations simulated for the control-display combinations were dual-pilot operation (representative auxiliary tasks of navigation, communications, and decision-making). Four pilots performed a total of 150 evaluations of combinations of these parameters for a representative microwave landing system (MLS) approach task.
Simulation of Flight-Type Engine Fan Noise in the NASA-Lewis 9X15 Anechoic Wind Tunnel
NASA Technical Reports Server (NTRS)
Heidmann, M. F.; Dietrich, D. A.
1976-01-01
Flight type noise as contrasted to the usual ground static test noise exhibits substantial reductions in the time unsteadiness of tone noise, and in the mean level of tones calculated to be nonpropagating or cut-off. A model fan designed with cuttoff of the fundamental tone was acoustically tested in the anechoic wind tunnel under both static and tunnel flow conditions. The properties that characterize flight type noise were progressively simulated with increasing tunnel flow. The distinctly lobed directivity pattern of propagating rotor/stator interaction modes was also observed. Excess noise attributed to the ingestion of the flow disturbances that prevail near most static test facilities is substantially reduced with tunnel flow.
NASA Technical Reports Server (NTRS)
Grove, R. D.; Mayhew, S. C.
1973-01-01
A computer program (Langley program C1123) has been developed for estimating aircraft stability and control parameters from flight test data. These parameters are estimated by the maximum likelihood estimation procedure implemented on a real-time digital simulation system, which uses the Control Data 6600 computer. This system allows the investigator to interact with the program in order to obtain satisfactory results. Part of this system, the control and display capabilities, is described for this program. This report also describes the computer program by presenting the program variables, subroutines, flow charts, listings, and operational features. Program usage is demonstrated with a test case using pseudo or simulated flight data.
Ride qualities criteria validation/pilot performance study: Flight test results
NASA Technical Reports Server (NTRS)
Nardi, L. U.; Kawana, H. Y.; Greek, D. C.
1979-01-01
Pilot performance during a terrain following flight was studied for ride quality criteria validation. Data from manual and automatic terrain following operations conducted during low level penetrations were analyzed to determine the effect of ride qualities on crew performance. The conditions analyzed included varying levels of turbulence, terrain roughness, and mission duration with a ride smoothing system on and off. Limited validation of the B-1 ride quality criteria and some of the first order interactions between ride qualities and pilot/vehicle performance are highlighted. An earlier B-1 flight simulation program correlated well with the flight test results.
Development of a Aerothermoelastic-Acoustics Simulation Capability of Flight Vehicles
NASA Technical Reports Server (NTRS)
Gupta, K. K.; Choi, S. B.; Ibrahim, A.
2010-01-01
A novel numerical, finite element based analysis methodology is presented in this paper suitable for accurate and efficient simulation of practical, complex flight vehicles. An associated computer code, developed in this connection, is also described in some detail. Thermal effects of high speed flow obtained from a heat conduction analysis are incorporated in the modal analysis which in turn affects the unsteady flow arising out of interaction of elastic structures with the air. Numerical examples pertaining to representative problems are given in much detail testifying to the efficacy of the advocated techniques. This is a unique implementation of temperature effects in a finite element CFD based multidisciplinary simulation analysis capability involving large scale computations.
NASA Technical Reports Server (NTRS)
Hammrs, Stephan R.
2008-01-01
Virtual Satellite (VirtualSat) is a computer program that creates an environment that facilitates the development, verification, and validation of flight software for a single spacecraft or for multiple spacecraft flying in formation. In this environment, enhanced functionality and autonomy of navigation, guidance, and control systems of a spacecraft are provided by a virtual satellite that is, a computational model that simulates the dynamic behavior of the spacecraft. Within this environment, it is possible to execute any associated software, the development of which could benefit from knowledge of, and possible interaction (typically, exchange of data) with, the virtual satellite. Examples of associated software include programs for simulating spacecraft power and thermal- management systems. This environment is independent of the flight hardware that will eventually host the flight software, making it possible to develop the software simultaneously with, or even before, the hardware is delivered. Optionally, by use of interfaces included in VirtualSat, hardware can be used instead of simulated. The flight software, coded in the C or C++ programming language, is compilable and loadable into VirtualSat without any special modifications. Thus, VirtualSat can serve as a relatively inexpensive software test-bed for development test, integration, and post-launch maintenance of spacecraft flight software.
Control theory analysis of a three-axis VTOL flight director. M.S. Thesis - Pennsylvania State Univ.
NASA Technical Reports Server (NTRS)
Niessen, F. R.
1971-01-01
A control theory analysis of a VTOL flight director and the results of a fixed-based simulator evaluation of the flight-director commands are discussed. The VTOL configuration selected for this study is a helicopter-type VTOL which controls the direction of the thrust vector by means of vehicle-attitude changes and, furthermore, employs high-gain attitude stabilization. This configuration is the same as one which was simulated in actual instrument flight tests with a variable stability helicopter. Stability analyses are made for each of the flight-director commands, assuming a single input-output, multi-loop system model for each control axis. The analyses proceed from the inner-loops to the outer-loops, using an analytical pilot model selected on the basis of the innermost-loop dynamics. The time response of the analytical model of the system is primarily used to adjust system gains, while root locus plots are used to identify dominant modes and mode interactions.
Justification for, and design of, an economical programmable multiple flight simulator
NASA Technical Reports Server (NTRS)
Kreifeldt, J. G.; Wittenber, J.; Macdonald, G.
1981-01-01
The considered research interests in air traffic control (ATC) studies revolve about the concept of distributed ATC management based on the assumption that the pilot has a cockpit display of traffic and navigation information (CDTI) via CRT graphics. The basic premise is that a CDTI equipped pilot can, in coordination with a controller, manage a part of his local traffic situation thereby improving important aspects of ATC performance. A modularly designed programmable flight simulator system is prototyped as a means of providing an economical facility of up to eight simulators to interface with a mainframe/graphics system for ATC experimentation, particularly CDTI-distributed management in which pilot-pilot interaction can have a determining effect on system performance. Need for a multiman simulator facility is predicted on results from an earlier three simulator facility.
Development of a neural net paradigm that predicts simulator sickness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allgood, G.O.
1993-03-01
A disease exists that affects pilots and aircrew members who use Navy Operational Flight Training Systems. This malady, commonly referred to as simulator sickness and whose symptomatology closely aligns with that of motion sickness, can compromise the use of these systems because of a reduced utilization factor, negative transfer of training, and reduction in combat readiness. A report is submitted that develops an artificial neural network (ANN) and behavioral model that predicts the onset and level of simulator sickness in the pilots and aircrews who sue these systems. It is proposed that the paradigm could be implemented in real timemore » as a biofeedback monitor to reduce the risk to users of these systems. The model captures the neurophysiological impact of use (human-machine interaction) by developing a structure that maps the associative and nonassociative behavioral patterns (learned expectations) and vestibular (otolith and semicircular canals of the inner ear) and tactile interaction, derived from system acceleration profiles, onto an abstract space that predicts simulator sickness for a given training flight.« less
Design Challenges Encountered in a Propulsion-Controlled Aircraft Flight Test Program
NASA Technical Reports Server (NTRS)
Maine, Trindel; Burken, John; Burcham, Frank; Schaefer, Peter
1994-01-01
The NASA Dryden Flight Research Center conducted flight tests of a propulsion-controlled aircraft system on an F-15 airplane. This system was designed to explore the feasibility of providing safe emergency landing capability using only the engines to provide flight control in the event of a catastrophic loss of conventional flight controls. Control laws were designed to control the flightpath and bank angle using only commands to the throttles. Although the program was highly successful, this paper highlights some of the challenges associated with using engine thrust as a control effector. These challenges include slow engine response time, poorly modeled nonlinear engine dynamics, unmodeled inlet-airframe interactions, and difficulties with ground effect and gust rejection. Flight and simulation data illustrate these difficulties.
Energy requirements for space flight
NASA Technical Reports Server (NTRS)
Lane, Helen W.
1992-01-01
Both the United States and the Soviet Union perform human space research. This paper reviews data available on energy metabolism in the microgravity of space flight. The level of energy utilization in space seems to be similar to that on earth, as does energy availability. However, despite adequate intake of energy and protein and in-flight exercise, lean body mass was catabolized, as indicated by negative nitrogen balance. Metabolic studies during simulated microgravity (bed rest) and true microgravity in flight have shown changes in blood glucose, fatty acids and insulin concentrations, suggesting that energy metabolism may be altered during space flight. Future research should focus on the interactions of lean body mass, diet and exercise in space, and their roles in energy metabolism during space flight.
Metabolic energy required for flight
NASA Astrophysics Data System (ADS)
Lane, H. W.; Gretebeck, R. J.
1994-11-01
This paper reviews data available from U.S. and U.S.S.R. studies on energy metabolism in the microgravity of space flight. Energy utilization and energy availability in space seem to be similar to those on Earth. However, negative nitrogen balances in space in the presence of adequate energy and protein intakes and in-flight exercise, suggest that lean body mass decreases in space. Metabolic studies during simulated (bed rest) and actual microgravity have shown changes in blood glucose, fatty acids, and insulin levels, suggesting that energy metabolism may be altered during flight. Future research should focus on the interactions of lean body mass, diet, and exercise in space and their roles in energy metabolism during space flight.
Metabolic energy required for flight
NASA Technical Reports Server (NTRS)
Lane, H. W.; Gretebeck, R. J.
1994-01-01
This paper reviews data available from U.S. and U.S.S.R. studies on energy metabolism in the microgravity of space flight. Energy utilization and energy availability in space seem to be similar to those on Earth. However, negative nitrogen balances in space in the presence of adequate energy and protein intakes and in-flight exercise, suggest that lean body mass decreases in space. Metabolic studies during simulated (bed rest) and actual microgravity have shown changes in blood glucose, fatty acids, and insulin levels, suggesting that energy metabolism may be altered during flight. Future research should focus on the interactions of lean body mass, diet, and exercise in spaced and their roles in energy metabolism during space flight.
Senator Doug Jones (D-AL) Tour of MSFC Facilities
2018-02-22
Senator Doug Jones (D-Al.) and wife Louise tour the Payload Crew Training Complex (PCTC) at Marshall Space Flight Center. The PCTC simulates International Space Station habitat modules and is interactive for different activities.
Simulation of the Simbol-X Telescope
NASA Astrophysics Data System (ADS)
Chauvin, M.; Roques, J. P.
2009-05-01
We have developed a simulation tool for a Wolter I telescope operating in formation flight. The aim is to understand and predict the behavior of the Simbol-X instrument. As the geometry is variable, formation flight introduces new challenges and complex implications. Our code, based on Monte Carlo ray tracing, computes the full photon trajectories up to the detector plane, along with the relative drifts of the two spacecrafts. It takes into account angle and energy dependent interactions of the photons with the mirrors and applies to any grazing incidence telescope. The resulting images of simulated sources from 0.1 keV to 100 keV allow us to optimize the configuration of the instrument and to assess the performance of the Simbol-X telescope.
Building Airport Surface HITL Simulation Capability
NASA Technical Reports Server (NTRS)
Chinn, Fay Cherie
2016-01-01
FutureFlight Central is a high fidelity, real-time simulator designed to study surface operations and automation. As an air traffic control tower simulator, FFC allows stakeholders such as the FAA, controllers, pilots, airports, and airlines to develop and test advanced surface and terminal area concepts and automation including NextGen and beyond automation concepts and tools. These technologies will improve the safety, capacity and environmental issues facing the National Airspace system. FFC also has extensive video streaming capabilities, which combined with the 3-D database capability makes the facility ideal for any research needing an immersive virtual and or video environment. FutureFlight Central allows human in the loop testing which accommodates human interactions and errors giving a more complete picture than fast time simulations. This presentation describes FFCs capabilities and the components necessary to build an airport surface human in the loop simulation capability.
NASA Technical Reports Server (NTRS)
Sarter, Nadine B.; Woods, David D.
1994-01-01
Technological developments have made it possible to automate more and more functions on the commercial aviation flight deck and in other dynamic high-consequence domains. This increase in the degrees of freedom in design has shifted questions away from narrow technological feasibility. Many concerned groups, from designers and operators to regulators and researchers, have begun to ask questions about how we should use the possibilities afforded by technology skillfully to support and expand human performance. In this article, we report on an experimental study that addressed these questions by examining pilot interaction with the current generation of flight deck automation. Previous results on pilot-automation interaction derived from pilot surveys, incident reports, and training observations have produced a corpus of features and contexts in which human-machine coordination is likely to break down (e.g., automation surprises). We used these data to design a simulated flight scenario that contained a variety of probes designed to reveal pilots' mental model of one major component of flight deck automation: the Flight Management System (FMS). The events within the scenario were also designed to probe pilots' ability to apply their knowledge and understanding in specific flight contexts and to examine their ability to track the status and behavior of the automated system (mode awareness). Although pilots were able to 'make the system work' in standard situations, the results reveal a variety of latent problems in pilot-FMS interaction that can affect pilot performance in nonnormal time critical situations.
NASA Astrophysics Data System (ADS)
Paschalis, Pavlos; Tezari, Anastasia; Gerontidou, Maria; Mavromichalaki, Helen
2016-04-01
Galactic cosmic rays and solar energetic particles can penetrate the Earth's atmosphere and interact with its molecules, which can cause atmospheric showers of secondary particles that are detected by ground based neutron monitor detectors. The cascades are of great importance for the study of the radiation exposure of aircraft crews. A new Geant4 software application is presented based on DYASTIMA (Dynamic Atmospheric Shower Tracking Interactive Model Application), which calculates the effective dose that aviators may receive in different flight scenarios characterized by different altitudes and different flight routes, during quiet and disturbed solar and cosmic ray activity. The concept is based on Monte Carlo simulations by using phantoms for the aircraft and the aviator and experimenting with different shielding materials.
Synchronization Of Parallel Discrete Event Simulations
NASA Technical Reports Server (NTRS)
Steinman, Jeffrey S.
1992-01-01
Adaptive, parallel, discrete-event-simulation-synchronization algorithm, Breathing Time Buckets, developed in Synchronous Parallel Environment for Emulation and Discrete Event Simulation (SPEEDES) operating system. Algorithm allows parallel simulations to process events optimistically in fluctuating time cycles that naturally adapt while simulation in progress. Combines best of optimistic and conservative synchronization strategies while avoiding major disadvantages. Algorithm processes events optimistically in time cycles adapting while simulation in progress. Well suited for modeling communication networks, for large-scale war games, for simulated flights of aircraft, for simulations of computer equipment, for mathematical modeling, for interactive engineering simulations, and for depictions of flows of information.
Path planning and Ground Control Station simulator for UAV
NASA Astrophysics Data System (ADS)
Ajami, A.; Balmat, J.; Gauthier, J.-P.; Maillot, T.
In this paper we present a Universal and Interoperable Ground Control Station (UIGCS) simulator for fixed and rotary wing Unmanned Aerial Vehicles (UAVs), and all types of payloads. One of the major constraints is to operate and manage multiple legacy and future UAVs, taking into account the compliance with NATO Combined/Joint Services Operational Environment (STANAG 4586). Another purpose of the station is to assign the UAV a certain degree of autonomy, via autonomous planification/replanification strategies. The paper is organized as follows. In Section 2, we describe the non-linear models of the fixed and rotary wing UAVs that we use in the simulator. In Section 3, we describe the simulator architecture, which is based upon interacting modules programmed independently. This simulator is linked with an open source flight simulator, to simulate the video flow and the moving target in 3D. To conclude this part, we tackle briefly the problem of the Matlab/Simulink software connection (used to model the UAV's dynamic) with the simulation of the virtual environment. Section 5 deals with the control module of a flight path of the UAV. The control system is divided into four distinct hierarchical layers: flight path, navigation controller, autopilot and flight control surfaces controller. In the Section 6, we focus on the trajectory planification/replanification question for fixed wing UAV. Indeed, one of the goals of this work is to increase the autonomy of the UAV. We propose two types of algorithms, based upon 1) the methods of the tangent and 2) an original Lyapunov-type method. These algorithms allow either to join a fixed pattern or to track a moving target. Finally, Section 7 presents simulation results obtained on our simulator, concerning a rather complicated scenario of mission.
Kennedy, Quinn; Taylor, Joy; Noda, Art; Yesavage, Jerome; Lazzeroni, Laura C.
2015-01-01
Understanding the possible effects of the number of practice sessions (practice) and time between practice sessions (interval) among middle-aged and older adults in real world tasks has important implications for skill maintenance. Prior training and cognitive ability may impact practice and interval effects on real world tasks. In this study, we took advantage of existing practice data from five simulated flights among 263 middle-aged and older pilots with varying levels of flight expertise (defined by FAA proficiency ratings). We developed a new STEP (Simultaneous Time Effects on Practice) model to: (1) model the simultaneous effects of practice and interval on performance of the five flights, and (2) examine the effects of selected covariates (age, flight expertise, and three composite measures of cognitive ability). The STEP model demonstrated consistent positive practice effects, negative interval effects, and predicted covariate effects. Age negatively moderated the beneficial effects of practice. Additionally, cognitive processing speed and intra-individual variability (IIV) in processing speed moderated the benefits of practice and/or the negative influence of interval for particular flight performance measures. Expertise did not interact with either practice or interval. Results indicate that practice and interval effects occur in simulated flight tasks. However, processing speed and IIV may influence these effects, even among high functioning adults. Results have implications for the design and assessment of training interventions targeted at middle-aged and older adults for complex real world tasks. PMID:26280383
Simple Sensitivity Analysis for Orion GNC
NASA Technical Reports Server (NTRS)
Pressburger, Tom; Hoelscher, Brian; Martin, Rodney; Sricharan, Kumar
2013-01-01
The performance of Orion flight software, especially its GNC software, is being analyzed by running Monte Carlo simulations of Orion spacecraft flights. The simulated performance is analyzed for conformance with flight requirements, expressed as performance constraints. Flight requirements include guidance (e.g. touchdown distance from target) and control (e.g., control saturation) as well as performance (e.g., heat load constraints). The Monte Carlo simulations disperse hundreds of simulation input variables, for everything from mass properties to date of launch.We describe in this paper a sensitivity analysis tool (Critical Factors Tool or CFT) developed to find the input variables or pairs of variables which by themselves significantly influence satisfaction of requirements or significantly affect key performance metrics (e.g., touchdown distance from target). Knowing these factors can inform robustness analysis, can inform where engineering resources are most needed, and could even affect operations. The contributions of this paper include the introduction of novel sensitivity measures, such as estimating success probability, and a technique for determining whether pairs of factors are interacting dependently or independently. The tool found that input variables such as moments, mass, thrust dispersions, and date of launch were found to be significant factors for success of various requirements. Examples are shown in this paper as well as a summary and physics discussion of EFT-1 driving factors that the tool found.
Influence of the menstrual cycle on flight simulator performance after alcohol ingestion.
Mumenthaler, M S; O'Hara, R; Taylor, J L; Friedman, L; Yesavage, J A
2001-07-01
Previous studies investigating the influence of the menstrual cycle on cognitive functioning of women after alcohol ingestion have obtained inconsistent results. The present study tested the hypothesis that flight simulator performance during acute alcohol intoxication and 8 hours after drinking differs between the menstrual and the luteal phase of the menstrual cycle. White female pilots (N = 24) were tested during the menstrual and the luteal phases of their menstrual cycles. On each test day they performed a baseline simulator flight, consumed 0.67 g/kg ethanol, and performed an acute-intoxication and an 8-hour-carryover simulator flight. Subjects reached highly significant increases in estradiol (E2) as well as progesterone (P) levels during the luteal test day. Yet, there were no significant differences in overall flight performance after alcohol ingestion between the menstrual and luteal phases during acute intoxication or at 8-hour carryover. We found no correlations between E, or P levels and overall flight performance. However, there was a statistically significant Phase x Order interaction: Pilots who started the experiment with their menstrual day were less susceptible to the effects of alcohol during the second test day than were pilots who started with their luteal day. The tested menstrual cycle phases and varying E2 and P levels did not significantly influence postdrink flight performance. Because the present study included a comparatively large sample size and because it involved complex "real world" tasks (piloting an aircraft), we believe that the present findings are important. We hope that our failure to detect menstrual cycle effects will encourage researchers to include women in their investigations of alcohol effects and human performance.
NASA Technical Reports Server (NTRS)
Cross, Jon B.; Koontz, Steven L.; Lan, Esther H.
1993-01-01
The effects of atomic oxygen on boron nitride (BN), silicon nitride (Si3N4), Intelsat 6 solar cell interconnects, organic polymers, and MoS2 and WS2 dry lubricant, were studied in Low Earth Orbit (LEO) flight experiments and in a ground based simulation facility. Both the inflight and ground based experiments employed in situ electrical resistance measurements to detect penetration of atomic oxygen through materials and Electron Spectroscopy for Chemical Analysis (ESCA) analysis to measure chemical composition changes. Results are given. The ground based results on the materials studied to date show good qualitative correlation with the LEO flight results, thus validating the simulation fidelity of the ground based facility in terms of reproducing LEO flight results. In addition it was demonstrated that ground based simulation is capable of performing more detailed experiments than orbital exposures can presently perform. This allows the development of a fundamental understanding of the mechanisms involved in the LEO environment degradation of materials.
F-16XL Hybrid Reynolds-Averaged Navier-Stokes/Large Eddy Simulation on Unstructured Grids
NASA Technical Reports Server (NTRS)
Park, Michael A.; Abdol-Hamid, Khaled S.; Elmiligui, Alaa
2015-01-01
This study continues the Cranked Arrow Wing Aerodynamics Program, International (CAWAPI) investigation with the FUN3D and USM3D flow solvers. CAWAPI was established to study the F-16XL, because it provides a unique opportunity to fuse fight test, wind tunnel test, and simulation to understand the aerodynamic features of swept wings. The high-lift performance of the cranked-arrow wing planform is critical for recent and past supersonic transport design concepts. Simulations of the low speed high angle of attack Flight Condition 25 are compared: Detached Eddy Simulation (DES), Modi ed Delayed Detached Eddy Simulation (MDDES), and the Spalart-Allmaras (SA) RANS model. Iso- surfaces of Q criterion show the development of coherent primary and secondary vortices on the upper surface of the wing that spiral, burst, and commingle. SA produces higher pressure peaks nearer to the leading-edge of the wing than flight test measurements. Mean DES and MDDES pressures better predict the flight test measurements, especially on the outer wing section. Vorticies and vortex-vortex interaction impact unsteady surface pressures. USM3D showed many sharp tones in volume points spectra near the wing apex with low broadband noise and FUN3D showed more broadband noise with weaker tones. Spectra of the volume points near the outer wing leading-edge was primarily broadband for both codes. Without unsteady flight measurements, the flight pressure environment can not be used to validate the simulations containing tonal or broadband spectra. Mean forces and moment are very similar between FUN3D models and between USM3D models. Spectra of the unsteady forces and moment are broadband with a few sharp peaks for USM3D.
14 CFR 125.297 - Approval of flight simulators and flight training devices.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., testing, and checking required by this subpart. (b) Each flight simulator and flight training device that... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Approval of flight simulators and flight... Flight Crewmember Requirements § 125.297 Approval of flight simulators and flight training devices. (a...
14 CFR 125.297 - Approval of flight simulators and flight training devices.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., testing, and checking required by this subpart. (b) Each flight simulator and flight training device that... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Approval of flight simulators and flight... Flight Crewmember Requirements § 125.297 Approval of flight simulators and flight training devices. (a...
14 CFR 125.297 - Approval of flight simulators and flight training devices.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., testing, and checking required by this subpart. (b) Each flight simulator and flight training device that... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Approval of flight simulators and flight... Flight Crewmember Requirements § 125.297 Approval of flight simulators and flight training devices. (a...
14 CFR 125.297 - Approval of flight simulators and flight training devices.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., testing, and checking required by this subpart. (b) Each flight simulator and flight training device that... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Approval of flight simulators and flight... Flight Crewmember Requirements § 125.297 Approval of flight simulators and flight training devices. (a...
14 CFR 125.297 - Approval of flight simulators and flight training devices.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., testing, and checking required by this subpart. (b) Each flight simulator and flight training device that... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Approval of flight simulators and flight... Flight Crewmember Requirements § 125.297 Approval of flight simulators and flight training devices. (a...
Rocket Plume Scaling for Orion Wind Tunnel Testing
NASA Technical Reports Server (NTRS)
Brauckmann, Gregory J.; Greathouse, James S.; White, Molly E.
2011-01-01
A wind tunnel test program was undertaken to assess the jet interaction effects caused by the various solid rocket motors used on the Orion Launch Abort Vehicle (LAV). These interactions of the external flowfield and the various rocket plumes can cause localized aerodynamic disturbances yielding significant and highly non-linear control amplifications and attenuations. This paper discusses the scaling methodologies used to model the flight plumes in the wind tunnel using cold air as the simulant gas. Comparisons of predicted flight, predicted wind tunnel, and measured wind tunnel forces-and-moments and plume flowfields are made to assess the effectiveness of the selected scaling methodologies.
Numerical simulation of base flow of a long range flight vehicle
NASA Astrophysics Data System (ADS)
Saha, S.; Rathod, S.; Chandra Murty, M. S. R.; Sinha, P. K.; Chakraborty, Debasis
2012-05-01
Numerical exploration of base flow of a long range flight vehicle is presented for different flight conditions. Three dimensional Navier-Stokes equations are solved along with k-ɛ turbulence model using commercial CFD software. Simulation captured all essential flow features including flow separation at base shoulder, shear layer formation at the jet boundary, recirculation at the base region etc. With the increase in altitude, the plume of the rocket exhaust is seen to bulge more and more and caused more intense free stream and rocket plume interaction leading to higher gas temperature in the base cavity. The flow field in the base cavity is investigated in more detail, which is found to be fairly uniform at different instant of time. Presence of the heat shield is seen to reduce the hot gas entry to the cavity region due to different recirculation pattern in the base region. Computed temperature history obtained from conjugate heat transfer analysis is found to compare very well with flight measured data.
NASA Technical Reports Server (NTRS)
Moss, J. E., Jr.
1981-01-01
Emissions of carbon dioxide, total oxides of nitrogen, unburned hydrocarbons, and carbon monoxide from an F100 afterburning two spool turbofan engine at simulated flight conditions are reported. Tests were run at Mach 0.8 at altitudes of 10.97 and 13.71 km (36,000 and 45,000 ft), and at Mach 1.2 at 13.71 km (45,000 ft). Emission measurements were made from intermediate power (nonafterburning) through maximum afterburning, using a single point gas sample probe traversed across the horizontal diameter of the exhaust nozzle. The data show that emissions vary with flight speed, altitude, power level, and radial position across the nozzle. Carbon monoxide emissions were low for intermediate and partial afterburning power. Unburned hydrocarbons were near zero for most of the simulated flight conditions. At maximum afterburning, there were regions of NOx deficiency in regions of high CO. The results suggest that the low NOx levels observed in the tests are a result of interaction with high CO in the thermal converter. CO2 emissions were proportional to local fuel air ratio for all test conditions.
NASA Astrophysics Data System (ADS)
Fairchild, A. J.; Chirayath, V. A.; Gladen, R. W.; Chrysler, M. D.; Koymen, A. R.; Weiss, A. H.
2017-01-01
In this paper, we present results of numerical modelling of the University of Texas at Arlington’s time of flight positron annihilation induced Auger electron spectrometer (UTA TOF-PAES) using SIMION® 8.1 Ion and Electron Optics Simulator. The time of flight (TOF) spectrometer measures the energy of electrons emitted from the surface of a sample as a result of the interaction of low energy positrons with the sample surface. We have used SIMION® 8.1 to calculate the times of flight spectra of electrons leaving the sample surface with energies and angles dispersed according to distribution functions chosen to model the positron induced electron emission process and have thus obtained an estimate of the true electron energy distribution. The simulated TOF distribution was convolved with a Gaussian timing resolution function and compared to the experimental distribution. The broadening observed in the simulated TOF spectra was found to be consistent with that observed in the experimental secondary electron spectra of Cu generated as a result of positrons incident with energy 1.5 eV to 901 eV, when a timing resolution of 2.3 ns was assumed.
NASA Technical Reports Server (NTRS)
Visentine, James T.; Leger, Lubert J.
1987-01-01
To resolve uncertainties in estimated LEO atomic oxygen fluence and provide reaction product composition data for comparison to data obtained in ground-based simulation laboratories, a flight experiment has been proposed for the space shuttle which utilizes an ion-neutral mass spectrometer to obtain in-situ ambient density measurements and identify reaction products from modeled polymers exposed to the atomic oxygen environment. An overview of this experiment is presented and the methodology of calibrating the flight mass spectrometer in a neutral beam facility prior to its use on the space shuttle is established. The experiment, designated EOIM-3 (Evaluation of Oxygen Interactions with Materials, third series), will provide a reliable materials interaction data base for future spacecraft design and will furnish insight into the basic chemical mechanisms leading to atomic oxygen interactions with surfaces.
Development of a virtual flight simulator.
Kuntz Rangel, Rodrigo; Guimarães, Lamartine N F; de Assis Correa, Francisco
2002-10-01
We present the development of a flight simulator that allows the user to interact in a created environment by means of virtual reality devices. This environment simulates the sight of a pilot in an airplane cockpit. The environment is projected in a helmet visor and allows the pilot to see inside as well as outside the cockpit. The movement of the airplane is independent of the movement of the pilot's head, which means that the airplane might travel in one direction while the pilot is looking at a 30 degrees angle with respect to the traveled direction. In this environment, the pilot will be able to take off, fly, and land the airplane. So far, the objects in the environment are geometrical figures. This is an ongoing project, and only partial results are available now.
The development and implementation of cockpit resource management in UAL recurrent training
NASA Technical Reports Server (NTRS)
Shroyer, David H.
1987-01-01
Line Oriented Flight Training (LOFT) for United Airlines started in 1976. At that time it was basically no more than a line-simulated training function conducted in a full-mission simulator with no attention or stress on its human factor content. Very soon after the implementation of the LOFT program concerns were voiced about certain crew behavioral situations they were observing in the flight crew's execution of cockpit duties. These duties involved emergency procedures as well as irregular and normal procedures and situations. It was evident that new information was surfacing concerning crew interaction, or its lack thereof, in the cockpit and its effect on satisfactory performance. These observations naturally raised the question of how this information translated into the safety of aircraft operations. A training system had to be repetitive, the crew interactive, and the training had to be conducted under the crew concept. The foundation had to have two other factors: (1) it was necessary to have adequate human factor content, and (2) an advanced state-of-the-art simulator and appropriate electronic devices were required. These concepts are further discussed.
Supersonic Flight Dynamics Test 1 - Post-Flight Assessment of Simulation Performance
NASA Technical Reports Server (NTRS)
Dutta, Soumyo; Bowes, Angela L.; Striepe, Scott A.; Davis, Jody L.; Queen, Eric M.; Blood, Eric M.; Ivanov, Mark C.
2015-01-01
NASA's Low Density Supersonic Decelerator (LDSD) project conducted its first Supersonic Flight Dynamics Test (SFDT-1) on June 28, 2014. Program to Optimize Simulated Trajectories II (POST2) was one of the flight dynamics codes used to simulate and predict the flight performance and Monte Carlo analysis was used to characterize the potential flight conditions experienced by the test vehicle. This paper compares the simulation predictions with the reconstructed trajectory of SFDT-1. Additionally, off-nominal conditions seen during flight are modeled in post-flight simulations to find the primary contributors that reconcile the simulation with flight data. The results of these analyses are beneficial for the pre-flight simulation and targeting of the follow-on SFDT flights currently scheduled for summer 2015.
14 CFR 91.1091 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).
Code of Federal Regulations, 2011 CFR
2011-01-01
... (aircraft) and flight instructors (simulator). 91.1091 Section 91.1091 Aeronautics and Space FEDERAL... Qualifications: Flight instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this... aircraft, in a flight simulator, or in a flight training device for a particular type, class, or category...
14 CFR 91.1091 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).
Code of Federal Regulations, 2012 CFR
2012-01-01
... (aircraft) and flight instructors (simulator). 91.1091 Section 91.1091 Aeronautics and Space FEDERAL... Qualifications: Flight instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this... aircraft, in a flight simulator, or in a flight training device for a particular type, class, or category...
14 CFR 91.1091 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).
Code of Federal Regulations, 2013 CFR
2013-01-01
... (aircraft) and flight instructors (simulator). 91.1091 Section 91.1091 Aeronautics and Space FEDERAL... Qualifications: Flight instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this... aircraft, in a flight simulator, or in a flight training device for a particular type, class, or category...
14 CFR 91.1091 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).
Code of Federal Regulations, 2014 CFR
2014-01-01
... (aircraft) and flight instructors (simulator). 91.1091 Section 91.1091 Aeronautics and Space FEDERAL... Qualifications: Flight instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this... aircraft, in a flight simulator, or in a flight training device for a particular type, class, or category...
Post-Flight Assessment of Low Density Supersonic Decelerator Flight Dynamics Test 2 Simulation
NASA Technical Reports Server (NTRS)
Dutta, Soumyo; Bowes, Angela L.; White, Joseph P.; Striepe, Scott A.; Queen, Eric M.; O'Farrel, Clara; Ivanov, Mark C.
2016-01-01
NASA's Low Density Supersonic Decelerator (LDSD) project conducted its second Supersonic Flight Dynamics Test (SFDT-2) on June 8, 2015. The Program to Optimize Simulated Trajectories II (POST2) was one of the flight dynamics tools used to simulate and predict the flight performance and was a major tool used in the post-flight assessment of the flight trajectory. This paper compares the simulation predictions with the reconstructed trajectory. Additionally, off-nominal conditions seen during flight are modeled in the simulation to reconcile the predictions with flight data. These analyses are beneficial to characterize the results of the flight test and to improve the simulation and targeting of the subsequent LDSD flights.
Kennedy, Quinn; Taylor, Joy; Noda, Art; Yesavage, Jerome; Lazzeroni, Laura C
2015-09-01
Understanding the possible effects of the number of practice sessions (practice) and time between practice sessions (interval) among middle-aged and older adults in real-world tasks has important implications for skill maintenance. Prior training and cognitive ability may impact practice and interval effects on real-world tasks. In this study, we took advantage of existing practice data from 5 simulated flights among 263 middle-aged and older pilots with varying levels of flight expertise (defined by U.S. Federal Aviation Administration proficiency ratings). We developed a new Simultaneous Time Effects on Practice (STEP) model: (a) to model the simultaneous effects of practice and interval on performance of the 5 flights, and (b) to examine the effects of selected covariates (i.e., age, flight expertise, and 3 composite measures of cognitive ability). The STEP model demonstrated consistent positive practice effects, negative interval effects, and predicted covariate effects. Age negatively moderated the beneficial effects of practice. Additionally, cognitive processing speed and intraindividual variability (IIV) in processing speed moderated the benefits of practice and/or the negative influence of interval for particular flight performance measures. Expertise did not interact with practice or interval. Results indicated that practice and interval effects occur in simulated flight tasks. However, processing speed and IIV may influence these effects, even among high-functioning adults. Results have implications for the design and assessment of training interventions targeted at middle-aged and older adults for complex real-world tasks. (c) 2015 APA, all rights reserved).
Ema, T
1992-01-01
In general, most vehicles can be modelled by a multi-variable system which has interactive variables. It can be clearly shown that there is an interactive response in an aircraft's velocity and altitude obtained by stick control and/or throttle control. In particular, if the flight conditions fall to backside of drag curve in the flight of an STOL aircraft at approach and landing then the ratio of drag variation to velocity change has a negative value (delta D/delta u less than 0) and the system of motion presents a non-minimum phase. Therefore, the interaction between velocity and altitude response becomes so complicated that it affects to pilot's control actions and it may be difficult to control the STOL aircraft at approach and landing. In this paper, experimental results of a pilot's ability to control the STOL aircraft are presented for a multi-variable manual control system using a fixed ground base simulator and the pilot's control ability is discussed for the flight of an STOL aircraft at backside of drag curve at approach and landing.
NASA Technical Reports Server (NTRS)
Harendra, P. B.; Joglekar, M. J.; Gaffey, T. M.; Marr, R. L.
1973-01-01
A mathematical model for real-time flight simulation of a tilt rotor research aircraft was developed. The mathematical model was used to support the aircraft design, pilot training, and proof-of-concept aspects of the development program. The structure of the mathematical model is indicated by a block diagram. The mathematical model differs from that for a conventional fixed wing aircraft principally in the added requirement to represent the dynamics and aerodynamics of the rotors, the interaction of the rotor wake with the airframe, and the rotor control and drive systems. The constraints imposed on the mathematical model are defined.
Aerial Survey of Ames Research Center - Flight Simulation Complex' Flight simulators create an
NASA Technical Reports Server (NTRS)
1967-01-01
Aerial Survey of Ames Research Center - Flight Simulation Complex' Flight simulators create an authentic aircraft environment by generating the appropriate physical cues that provide the sensations of flight.
14 CFR 61.64 - Use of a flight simulator and flight training device.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Use of a flight simulator and flight... Ratings and Pilot Authorizations § 61.64 Use of a flight simulator and flight training device. (a) Use of a flight simulator or flight training device. If an applicant for a certificate or rating uses a...
14 CFR 61.64 - Use of a flight simulator and flight training device.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Use of a flight simulator and flight... Ratings and Pilot Authorizations § 61.64 Use of a flight simulator and flight training device. (a) Use of a flight simulator or flight training device. If an applicant for a certificate or rating uses a...
Orion Pad Abort 1 Flight Test: Simulation Predictions Versus Flight Data
NASA Technical Reports Server (NTRS)
Stillwater, Ryan Allanque; Merritt, Deborah S.
2011-01-01
The presentation covers the pre-flight simulation predictions of the Orion Pad Abort 1. The pre-flight simulation predictions are compared to the Orion Pad Abort 1 flight test data. Finally the flight test data is compared to the updated simulation predictions, which show a ove rall improvement in the accuracy of the simulation predictions.
Flight testing and simulation of an F-15 airplane using throttles for flight control
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Maine, Trindel; Wolf, Thomas
1992-01-01
Flight tests and simulation studies using the throttles of an F-15 airplane for emergency flight control have been conducted at the NASA Dryden Flight Research Facility. The airplane and the simulation are capable of extended up-and-away flight, using only throttles for flight path control. Initial simulation results showed that runway landings using manual throttles-only control were difficult, but possible with practice. Manual approaches flown in the airplane were much more difficult, indicating a significant discrepancy between flight and simulation. Analysis of flight data and development of improved simulation models that resolve the discrepancy are discussed. An augmented throttle-only control system that controls bank angle and flight path with appropriate feedback parameters has also been developed, evaluated in simulations, and is planned for flight in the F-15.
Simple Sensitivity Analysis for Orion Guidance Navigation and Control
NASA Technical Reports Server (NTRS)
Pressburger, Tom; Hoelscher, Brian; Martin, Rodney; Sricharan, Kumar
2013-01-01
The performance of Orion flight software, especially its GNC software, is being analyzed by running Monte Carlo simulations of Orion spacecraft flights. The simulated performance is analyzed for conformance with flight requirements, expressed as performance constraints. Flight requirements include guidance (e.g. touchdown distance from target) and control (e.g., control saturation) as well as performance (e.g., heat load constraints). The Monte Carlo simulations disperse hundreds of simulation input variables, for everything from mass properties to date of launch. We describe in this paper a sensitivity analysis tool ("Critical Factors Tool" or CFT) developed to find the input variables or pairs of variables which by themselves significantly influence satisfaction of requirements or significantly affect key performance metrics (e.g., touchdown distance from target). Knowing these factors can inform robustness analysis, can inform where engineering resources are most needed, and could even affect operations. The contributions of this paper include the introduction of novel sensitivity measures, such as estimating success probability, and a technique for determining whether pairs of factors are interacting dependently or independently. The tool found that input variables such as moments, mass, thrust dispersions, and date of launch were found to be significant factors for success of various requirements. Examples are shown in this paper as well as a summary and physics discussion of EFT-1 driving factors that the tool found.
14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Flight Rules General § 91.109 Flight instruction; Simulated instrument flight and...
14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Flight Rules General § 91.109 Flight instruction; Simulated instrument flight and...
14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Flight Rules General § 91.109 Flight instruction; Simulated instrument flight and...
14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Flight Rules General § 91.109 Flight instruction; Simulated instrument flight and...
14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Flight Rules General § 91.109 Flight instruction; Simulated instrument flight and...
Control Law-Control Allocation Interaction: F/A-18 PA Simulation Test - Bed
NASA Technical Reports Server (NTRS)
Durham, Wayne; Nelson, Mark
2001-01-01
This report documents the first stage of research into Control Law - Control Allocation Interactions. A three-year research effort was originally proposed: 1. Create a desktop flight simulation environment under which experiments related to the open questions may be conducted. 2. Conduct research to determine which aspects of control allocation have impact upon control law design that merits further research. 3. Conduct research into those aspects of control allocation identified above, and their impacts upon control law design. Simulation code was written utilizing the F/A-18 airframe in the power approach (PA) configuration. A dynamic inversion control law was implemented and used to drive a state-of-the-art control allocation subroutine.
Technology research for strapdown inertial experiment and digital flight control and guidance
NASA Technical Reports Server (NTRS)
Carestia, R. A.; Cottrell, D. E.
1985-01-01
A helicopter flight-test program to evaluate the performance of Honeywell's Tetrad - a strapdown, laser gyro, inertial navitation system is discussed. The results of 34 flights showed a mean final navigational velocity error of 5.06 knots, with a standard deviation of 3.84 knots; a corresponding mean final position error of 2.66 n.mi., with a standard deviation of 1.48 n.m.; and a modeled mean-position-error growth rate for the 34 tests of 1.96 knots, with a standard deviation of 1.09 knots. Tetrad's four-ring laser gyros provided reliable and accurate angular rate sensing during the test program and on sensor failures were detected during the evaluation. Criteria suitable for investigating cockpit systems in rotorcraft were developed. This criteria led to the development of two basic simulators. The first was a standard simulator which could be used to obtain baseline information for studying pilot workload and interactions. The second was an advanced simulator which integrated the RODAAS developed by Honeywell into this simulator. The second area also included surveying the aerospace industry to determine the level of use and impact of microcomputers and related components on avionics systems.
Low cost training aids and devices
NASA Technical Reports Server (NTRS)
Lawver, J.; Lee, A.
1984-01-01
The need for advanced flight simulators for two engine aircraft is discussed. Cost effectiveness is a major requirement. Other training aids available for increased effectiveness are recommended. Training aids include: (1) audio-visual slides; (2) information transfer; (3) programmed instruction; and (4) interactive training systems.
14 CFR 135.337 - Qualifications: Check airmen (aircraft) and check airmen (simulator).
Code of Federal Regulations, 2011 CFR
2011-01-01
... who is qualified to conduct flight checks in an aircraft, in a flight simulator, or in a flight... to conduct flight checks, but only in a flight simulator, in a flight training device, or both, for a... the 12-month preceding the performance of any check airman duty in a flight simulator; or (2...
14 CFR 135.337 - Qualifications: Check airmen (aircraft) and check airmen (simulator).
Code of Federal Regulations, 2014 CFR
2014-01-01
... who is qualified to conduct flight checks in an aircraft, in a flight simulator, or in a flight... to conduct flight checks, but only in a flight simulator, in a flight training device, or both, for a... the 12-month preceding the performance of any check airman duty in a flight simulator; or (2...
14 CFR 135.337 - Qualifications: Check airmen (aircraft) and check airmen (simulator).
Code of Federal Regulations, 2012 CFR
2012-01-01
... who is qualified to conduct flight checks in an aircraft, in a flight simulator, or in a flight... to conduct flight checks, but only in a flight simulator, in a flight training device, or both, for a... the 12-month preceding the performance of any check airman duty in a flight simulator; or (2...
14 CFR 135.337 - Qualifications: Check airmen (aircraft) and check airmen (simulator).
Code of Federal Regulations, 2013 CFR
2013-01-01
... who is qualified to conduct flight checks in an aircraft, in a flight simulator, or in a flight... to conduct flight checks, but only in a flight simulator, in a flight training device, or both, for a... the 12-month preceding the performance of any check airman duty in a flight simulator; or (2...
Code of Federal Regulations, 2014 CFR
2014-01-01
... flight simulator, or in a flight training device. This paragraph applies after March 19, 1997. (b) The... simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training... simulator or in a flight training device. (2) Training in the operation of flight simulators or flight...
Integrated Test Facility (ITF)
NASA Technical Reports Server (NTRS)
1992-01-01
The NASA-Dryden Integrated Test Facility (ITF), also known as the Walter C. Williams Research Aircraft Integration Facility (RAIF), provides an environment for conducting efficient and thorough testing of advanced, highly integrated research aircraft. Flight test confidence is greatly enhanced by the ability to qualify interactive aircraft systems in a controlled environment. In the ITF, each element of a flight vehicle can be regulated and monitored in real time as it interacts with the rest of the aircraft systems. Testing in the ITF is accomplished through automated techniques in which the research aircraft is interfaced to a high-fidelity real-time simulation. Electric and hydraulic power are also supplied, allowing all systems except the engines to function as if in flight. The testing process is controlled by an engineering workstation that sets up initial conditions for a test, initiates the test run, monitors its progress, and archives the data generated. The workstation is also capable of analyzing results of individual tests, comparing results of multiple tests, and producing reports. The computers used in the automated aircraft testing process are also capable of operating in a stand-alone mode with a simulation cockpit, complete with its own instruments and controls. Control law development and modification, aerodynamic, propulsion, guidance model qualification, and flight planning -- functions traditionally associated with real-time simulation -- can all be performed in this manner. The Remotely Augmented Vehicles (RAV) function, now located in the ITF, is a mainstay in the research techniques employed at Dryden. This function is used for tests that are too dangerous for direct human involvement or for which computational capacity does not exist onboard a research aircraft. RAV provides the researcher with a ground-based computer that is radio linked to the test aircraft during actual flight. The Ground Vibration Testing (GVT) system, formerly housed in the Thermostructural Laboratory, now also resides in the ITF. In preparing a research aircraft for flight testing, it is vital to measure its structural frequencies and mode shapes and compare results to the models used in design analysis. The final function performed in the ITF is routine aircraft maintenance. This includes preflight and post-flight instrumentation checks and the servicing of hydraulics, avionics, and engines necessary on any research aircraft. Aircraft are not merely moved to the ITF for automated testing purposes but are housed there throughout their flight test programs.
Integrated Test Facility (ITF)
NASA Technical Reports Server (NTRS)
1991-01-01
The NASA-Dryden Integrated Test Facility (ITF), also known as the Walter C. Williams Research Aircraft Integration Facility (RAIF), provides an environment for conducting efficient and thorough testing of advanced, highly integrated research aircraft. Flight test confidence is greatly enhanced by the ability to qualify interactive aircraft systems in a controlled environment. In the ITF, each element of a flight vehicle can be regulated and monitored in real time as it interacts with the rest of the aircraft systems. Testing in the ITF is accomplished through automated techniques in which the research aircraft is interfaced to a high-fidelity real-time simulation. Electric and hydraulic power are also supplied, allowing all systems except the engines to function as if in flight. The testing process is controlled by an engineering workstation that sets up initial conditions for a test, initiates the test run, monitors its progress, and archives the data generated. The workstation is also capable of analyzing results of individual tests, comparing results of multiple tests, and producing reports. The computers used in the automated aircraft testing process are also capable of operating in a stand-alone mode with a simulation cockpit, complete with its own instruments and controls. Control law development and modification, aerodynamic, propulsion, guidance model qualification, and flight planning -- functions traditionally associated with real-time simulation -- can all be performed in this manner. The Remotely Augmented Vehicles (RAV) function, now located in the ITF, is a mainstay in the research techniques employed at Dryden. This function is used for tests that are too dangerous for direct human involvement or for which computational capacity does not exist onboard a research aircraft. RAV provides the researcher with a ground-based computer that is radio linked to the test aircraft during actual flight. The Ground Vibration Testing (GVT) system, formerly housed in the Thermostructural Laboratory, now also resides in the ITF. In preparing a research aircraft for flight testing, it is vital to measure its structural frequencies and mode shapes and compare results to the models used in design analysis. The final function performed in the ITF is routine aircraft maintenance. This includes preflight and post-flight instrumentation checks and the servicing of hydraulics, avionics, and engines necessary on any research aircraft. Aircraft are not merely moved to the ITF for automated testing purposes but are housed there throughout their flight test programs.
Walter C. Williams Research Aircraft Integration Facility (RAIF)
NASA Technical Reports Server (NTRS)
1996-01-01
The NASA-Dryden Integrated Test Facility (ITF), also known as the Walter C. Williams Research Aircraft Integration Facility (RAIF), provides an environment for conducting efficient and thorough testing of advanced, highly integrated research aircraft. Flight test confidence is greatly enhanced by the ability to qualify interactive aircraft systems in a controlled environment. In the ITF, each element of a flight vehicle can be regulated and monitored in real time as it interacts with the rest of the aircraft systems. Testing in the ITF is accomplished through automated techniques in which the research aircraft is interfaced to a high-fidelity real-time simulation. Electric and hydraulic power are also supplied, allowing all systems except the engines to function as if in flight. The testing process is controlled by an engineering workstation that sets up initial conditions for a test, initiates the test run, monitors its progress, and archives the data generated. The workstation is also capable of analyzing results of individual tests, comparing results of multiple tests, and producing reports. The computers used in the automated aircraft testing process are also capable of operating in a stand-alone mode with a simulation cockpit, complete with its own instruments and controls. Control law development and modification, aerodynamic, propulsion, guidance model qualification, and flight planning -- functions traditionally associated with real-time simulation -- can all be performed in this manner. The Remotely Augmented Vehicles (RAV) function, now located in the ITF, is a mainstay in the research techniques employed at Dryden. This function is used for tests that are too dangerous for direct human involvement or for which computational capacity does not exist onboard a research aircraft. RAV provides the researcher with a ground-based computer that is radio linked to the test aircraft during actual flight. The Ground Vibration Testing (GVT) system, formerly housed in the Thermostructural Laboratory, now also resides in the ITF. In preparing a research aircraft for flight testing, it is vital to measure its structural frequencies and mode shapes and compare results to the models used in design analysis. The final function performed in the ITF is routine aircraft maintenance. This includes preflight and post-flight instrumentation checks and the servicing of hydraulics, avionics, and engines necessary on any research aircraft. Aircraft are not merely moved to the ITF for automated testing purposes but are housed there throughout their flight test programs.
An investigation of bleed configurations and their effect on shock wave/boundary layer interactions
NASA Technical Reports Server (NTRS)
Hamed, Awatef
1995-01-01
The design of high efficiency supersonic inlets is a complex task involving the optimization of a number of performance parameters such as pressure recovery, spillage, drag, and exit distortion profile, over the flight Mach number range. Computational techniques must be capable of accurately simulating the physics of shock/boundary layer interactions, secondary corner flows, flow separation, and bleed if they are to be useful in the design. In particular, bleed and flow separation, play an important role in inlet unstart, and the associated pressure oscillations. Numerical simulations were conducted to investigate some of the basic physical phenomena associated with bleed in oblique shock wave boundary layer interactions that affect the inlet performance.
Interactive Concept of Operations Narrative Simulators
NASA Technical Reports Server (NTRS)
Denham, Andre R.
2017-01-01
This paper reports on an exploratory design and development project. Specifically this paper discusses the design and development of Interactive Concept of Operations Narrative Simulators (ICONS) as a means of enhancing the functionality of traditional Concept of Operations documents by leveraging the affordances provided by applications commonly used within the Interactive Fiction literary genre. Recommendations for an ICONS design and development methodology, along a detailed description of a practical proof-of-concept ICONS created using this approach are discussed. The report concludes with a discussion of how ICONS can be extended to the K-12 mathematics education domain and conclude with a discussion of how ICONS can be used to assist those involved with strategic planning at Marshall Space Flight Center.
Design and Development of a Flight Route Modification, Logging, and Communication Network
NASA Technical Reports Server (NTRS)
Merlino, Daniel K.; Wilson, C. Logan; Carboneau, Lindsey M.; Wilder, Andrew J.; Underwood, Matthew C.
2016-01-01
There is an overwhelming desire to create and enhance communication mechanisms between entities that operate within the National Airspace System. Furthermore, airlines are always extremely interested in increasing the efficiency of their flights. An innovative system prototype was developed and tested that improves collaborative decision making without modifying existing infrastructure or operational procedures within the current Air Traffic Management System. This system enables collaboration between flight crew and airline dispatchers to share and assess optimized flight routes through an Internet connection. Using a sophisticated medium-fidelity flight simulation environment, a rapid-prototyping development, and a unified modeling language, the software was designed to ensure reliability and scalability for future growth and applications. Ensuring safety and security were primary design goals, therefore the software does not interact or interfere with major flight control or safety systems. The system prototype demonstrated an unprecedented use of in-flight Internet to facilitate effective communication with Airline Operations Centers, which may contribute to increased flight efficiency for airlines.
Comparison of Observed Beta Cloth Interactions with Simulated and Actual Space Environment
NASA Technical Reports Server (NTRS)
Kamenetzy, R. R.; Finckenor, M. M.
1999-01-01
A common component of multilayer insulation blankets is beta cloth, a woven fiberglass cloth impregnated with Teflon(TM). It is planned for extensive use on the International Space Station. The Environmental Etl'ects Group of the Marshall Space Flight Center Materials, Processing, and Manufacturing Department has investigated the impact of atomic oxygen (AO) and ultraviolet (UV) radiation on the optical properties of plain and aluminized beta cloth. both in the laboratory and as part of long-duration flight experiments. These investigations indicate that beta cloth is susceptible to darkening in the presence of UV radiation, dependent on the additives used. AO interactions resulted in bleaching of the beta cloth.
NASA Marshall Space Flight Center Controls Systems Design and Analysis Branch
NASA Technical Reports Server (NTRS)
Gilligan, Eric
2014-01-01
Marshall Space Flight Center maintains a critical national capability in the analysis of launch vehicle flight dynamics and flight certification of GN&C algorithms. MSFC analysts are domain experts in the areas of flexible-body dynamics and control-structure interaction, thrust vector control, sloshing propellant dynamics, and advanced statistical methods. Marshall's modeling and simulation expertise has supported manned spaceflight for over 50 years. Marshall's unparalleled capability in launch vehicle guidance, navigation, and control technology stems from its rich heritage in developing, integrating, and testing launch vehicle GN&C systems dating to the early Mercury-Redstone and Saturn vehicles. The Marshall team is continuously developing novel methods for design, including advanced techniques for large-scale optimization and analysis.
The effects of expressivity and flight task on cockpit communication and resource management
NASA Technical Reports Server (NTRS)
Jensen, R. S.
1986-01-01
The results of an investigation to develop a methodology for evaluating crew communication behavior on the flight deck and a flight simulator experiment to test the effects of crew member expressivity, as measured by the Personal Attributes Questionnarie, and flight task on crew communication and flight performance are discussed. A methodology for coding and assessing flight crew communication behavior as well as a model for predicting that behavior is advanced. Although not enough crews were found to provide valid statistical tests, the results of the study tend to indicate that crews in which the captain has high expressivity perform better than those whose captain is low in expressivity. There appears to be a strong interaction between captains and first officers along the level of command dimension of communication. The PAQ appears to identify those pilots who offer disagreements and inititate new subjects for discussion.
NASA Technical Reports Server (NTRS)
Powell, R. W.
1975-01-01
There are six degree-of-freedom simulations of the space shuttle orbiter entry with aerodynamic control hysteresis conducted on the NASA Langley Research Center interactive simulator known as the Automatic Reentry Flight Dynamics Simulator. These were performed to determine if the presence of aerodynamic control hysteresis would endanger the mission, either by making the vehicle unable to maintain proper attitude for a safe entry, or by increasing the amount of the reaction control system's fuel consumption beyond that carried.
14 CFR 121.915 - Continuing qualification curriculum.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., flight training device, flight simulator, or other equipment, as appropriate, on normal, abnormal, and... training in the type flight training device or the type flight simulator, as appropriate, regarding... flight simulators or flight training devices: Training in operational flight procedures and maneuvers...
14 CFR 121.915 - Continuing qualification curriculum.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., flight training device, flight simulator, or other equipment, as appropriate, on normal, abnormal, and... training in the type flight training device or the type flight simulator, as appropriate, regarding... flight simulators or flight training devices: Training in operational flight procedures and maneuvers...
14 CFR 121.915 - Continuing qualification curriculum.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., flight training device, flight simulator, or other equipment, as appropriate, on normal, abnormal, and... training in the type flight training device or the type flight simulator, as appropriate, regarding... flight simulators or flight training devices: Training in operational flight procedures and maneuvers...
Advances in Rotor Performance and Turbulent Wake Simulation Using DES and Adaptive Mesh Refinement
NASA Technical Reports Server (NTRS)
Chaderjian, Neal M.
2012-01-01
Time-dependent Navier-Stokes simulations have been carried out for a rigid V22 rotor in hover, and a flexible UH-60A rotor in forward flight. Emphasis is placed on understanding and characterizing the effects of high-order spatial differencing, grid resolution, and Spalart-Allmaras (SA) detached eddy simulation (DES) in predicting the rotor figure of merit (FM) and resolving the turbulent rotor wake. The FM was accurately predicted within experimental error using SA-DES. Moreover, a new adaptive mesh refinement (AMR) procedure revealed a complex and more realistic turbulent rotor wake, including the formation of turbulent structures resembling vortical worms. Time-dependent flow visualization played a crucial role in understanding the physical mechanisms involved in these complex viscous flows. The predicted vortex core growth with wake age was in good agreement with experiment. High-resolution wakes for the UH-60A in forward flight exhibited complex turbulent interactions and turbulent worms, similar to the V22. The normal force and pitching moment coefficients were in good agreement with flight-test data.
Space Construction Experiment Definition Study (SCEDS), part 2. Volume 2: Study results
NASA Technical Reports Server (NTRS)
1982-01-01
The Space Construction Experiment (SCE) was defined for integration into the Space Shuttle. This included development of flight assignment data, revision and update of preliminary mission timelines and test plans, analysis of flight safety issues, and definition of ground operations scenarios. New requirements for the flight experiment and changes for a large space antenna feed mask test article were incorporated. The program plan and cost estimates were updated. Revised SCE structural dynamics characteristics were provided for simulation and analysis of experimental tests to define and verify control limits and interactions effects between the SCE and the Orbiter digital automatic pilot.
NASA Technical Reports Server (NTRS)
Straeter, T. A.; Foudriat, E. C.; Will, R. W.
1977-01-01
The objectives of NASA's MUST (Multipurpose User-oriented Software Technology) program at Langley Research Center are to cut the cost of producing software which effectively utilizes digital systems for flight research. These objectives will be accomplished by providing an integrated system of support software tools for use throughout the research flight software development process. A description of the overall MUST program and its progress toward the release of a first MUST system will be presented. This release includes: a special interactive user interface, a library of subroutines, assemblers, a compiler, automatic documentation tools, and a test and simulation system.
14 CFR 135.338 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).
Code of Federal Regulations, 2013 CFR
2013-01-01
... (aircraft) and flight instructors (simulator). 135.338 Section 135.338 Aeronautics and Space FEDERAL... instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this section and § 135.340... flight simulator, or in a flight training device for a particular type, class, or category aircraft. (2...
14 CFR 135.338 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).
Code of Federal Regulations, 2011 CFR
2011-01-01
... (aircraft) and flight instructors (simulator). 135.338 Section 135.338 Aeronautics and Space FEDERAL... instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this section and § 135.340... flight simulator, or in a flight training device for a particular type, class, or category aircraft. (2...
14 CFR 135.338 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).
Code of Federal Regulations, 2014 CFR
2014-01-01
... (aircraft) and flight instructors (simulator). 135.338 Section 135.338 Aeronautics and Space FEDERAL... instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this section and § 135.340... flight simulator, or in a flight training device for a particular type, class, or category aircraft. (2...
14 CFR 135.338 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).
Code of Federal Regulations, 2012 CFR
2012-01-01
... (aircraft) and flight instructors (simulator). 135.338 Section 135.338 Aeronautics and Space FEDERAL... instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this section and § 135.340... flight simulator, or in a flight training device for a particular type, class, or category aircraft. (2...
Predictive performance models and multiple task performance
NASA Technical Reports Server (NTRS)
Wickens, Christopher D.; Larish, Inge; Contorer, Aaron
1989-01-01
Five models that predict how performance of multiple tasks will interact in complex task scenarios are discussed. The models are shown in terms of the assumptions they make about human operator divided attention. The different assumptions about attention are then empirically validated in a multitask helicopter flight simulation. It is concluded from this simulation that the most important assumption relates to the coding of demand level of different component tasks.
Navier-Stokes Simulation of UH-60A Rotor/Wake Interaction Using Adaptive Mesh Refinement
NASA Technical Reports Server (NTRS)
Chaderjian, Neal M.
2017-01-01
High-resolution simulations of rotor/vortex-wake interaction for a UH60-A rotor under BVI and dynamic stallconditions were carried out with the OVERFLOW Navier-Stokes code.a. The normal force and pitching moment variation with azimuth angle were in good overall agreementwith flight-test data, similar to other CFD results reported in the literature.b. The wake-grid resolution did not have a significant effect on the rotor-blade airloads. This surprisingresult indicates that a wake grid spacing of (Delta)S=10% ctip is sufficient for engineering airloads predictionfor hover and forward flight. This assumes high-resolution body grids, high-order spatial accuracy, anda hybrid RANS/DDES turbulence model.c. Three-dimensional dynamic stall was found to occur due the presence of blade-tip vortices passing overa rotor blade on the retreating side. This changed the local airfoil angle of attack, causing stall, unlikethe 2D perspective of pure pitch oscillation of the local airfoil section.
Heart rate and performance during combat missions in a flight simulator.
Lahtinen, Taija M M; Koskelo, Jukka P; Laitinen, Tomi; Leino, Tuomo K
2007-04-01
The psychological workload of flying has been shown to increase heart rate (HR) during flight simulator operation. The association between HR changes and flight performance remains unclear. There were 15 pilots who performed a combat flight mission in a Weapons Tactics Trainer simulator of an F-18 Hornet. An electrocardiogram (ECG) was recorded, and individual incremental heart rates (deltaHR) from the HR during rest were calculated for each flight phase and used in statistical analyses. The combat flight period was divided into 13 phases, which were evaluated on a scale of 1 to 5 by the flight instructor. HR increased during interceptions (from a mean resting level of 79.0 to mean value of 96.7 bpm in one of the interception flight phases) and decreased during the return to base and slightly increased during the ILS approach and landing. DeltaHR appeared to be similar among experienced and less experienced pilots. DeltaHR responses during the flight phases did not correlate with simulator flight performance scores. Overall simulator flight performance correlated statistically significantly (r = 0.50) with the F-18 Hornet flight experience. HR reflected the amount of cognitive load during the simulated flight. Hence, HR analysis can be used in the evaluation of the psychological workload of military simulator flight phases. However, more detailed flight performance evaluation methods are needed for this kind of complex flight simulation to replace the traditional but rough interval scales. Use of a visual analog scale by the flight instructors is suggested for simulator flight performance evaluation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... an aircraft, in a flight simulator, or in a flight training device. This paragraph applies after... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for check airmen (simulator) must include the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... an aircraft, in a flight simulator, or in a flight training device. This paragraph applies after... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for check airmen (simulator) must include the...
Code of Federal Regulations, 2014 CFR
2014-01-01
... an aircraft, in a flight simulator, or in a flight training device. This paragraph applies after... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for check airmen (simulator) must include the...
Code of Federal Regulations, 2013 CFR
2013-01-01
... an aircraft, in a flight simulator, or in a flight training device. This paragraph applies after... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for check airmen (simulator) must include the...
Code of Federal Regulations, 2012 CFR
2012-01-01
... an aircraft, in a flight simulator, or in a flight training device. This paragraph applies after... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for check airmen (simulator) must include the...
14 CFR 91.1089 - Qualifications: Check pilots (aircraft) and check pilots (simulator).
Code of Federal Regulations, 2013 CFR
2013-01-01
... simulator, or in a flight training device for a particular type aircraft. (2) A check pilot (simulator) is a person who is qualified to conduct flight checks, but only in a flight simulator, in a flight training... (simulator) must accomplish the following— (1) Fly at least two flight segments as a required crewmember for...
14 CFR 91.1089 - Qualifications: Check pilots (aircraft) and check pilots (simulator).
Code of Federal Regulations, 2014 CFR
2014-01-01
... simulator, or in a flight training device for a particular type aircraft. (2) A check pilot (simulator) is a person who is qualified to conduct flight checks, but only in a flight simulator, in a flight training... (simulator) must accomplish the following— (1) Fly at least two flight segments as a required crewmember for...
14 CFR 91.1089 - Qualifications: Check pilots (aircraft) and check pilots (simulator).
Code of Federal Regulations, 2012 CFR
2012-01-01
... simulator, or in a flight training device for a particular type aircraft. (2) A check pilot (simulator) is a person who is qualified to conduct flight checks, but only in a flight simulator, in a flight training... (simulator) must accomplish the following— (1) Fly at least two flight segments as a required crewmember for...
Peacock, Corey A; Weber, Raymond; Sanders, Gabriel J; Seo, Yongsuk; Kean, David; Pollock, Brandon S; Burns, Keith J; Cain, Mark; LaScola, Phillip; Glickman, Ellen L
2017-03-01
Hypoxia is a physiological state defined as a reduction in the distribution of oxygen to the tissues of the body. It has been considered a major factor in aviation safety worldwide because of its potential for pilot disorientation. Pilots are able to operate aircrafts up to 3810 m without the use of supplemental oxygen and may exhibit symptoms associated with hypoxia. To determine the effects of 3810 m on physiology, cognition and performance in pilots during a flight simulation. Ten healthy male pilots engaged in a counterbalanced experimental protocol comparing a 0-m normoxic condition (NORM) with a 3810-m hypoxic condition (HYP) on pilot physiology, cognition and flight performance. Repeated-measures analysis of variance demonstrated a significant (p ≤ 0.05) time by condition interaction for physiological and cognitive alterations during HYP. A paired-samples t test demonstrated no differences in pilot performance (p ≥ 0.05) between conditions. Pilots exhibited physiological and cognitive impairments; however, pilot performance was not affected by HYP.
Effects of the Orion Launch Abort Vehicle Plumes on Aerodynamics and Controllability
NASA Technical Reports Server (NTRS)
Vicker, Darby; Childs, Robert; Rogers,Stuart E.; McMullen, Matthew; Garcia, Joseph; Greathouse, James
2013-01-01
Characterization of the launch abort system of the Multi-purpose Crew Vehicle (MPCV) for control design and accurate simulation has provided a significant challenge to aerodynamicists and design engineers. The design space of the launch abort vehicle (LAV) includes operational altitudes from ground level to approximately 300,000 feet, Mach numbers from 0-9, and peak dynamic pressure near 1300psf during transonic flight. Further complicating the characterization of the aerodynamics and the resultant vehicle controllability is the interaction of the vehicle flowfield with the plumes of the two solid propellant motors that provide attitude control and the main propulsive impulse for the LAV. These interactions are a function of flight parameters such as Mach number, altitude, dynamic pressure, vehicle attitude, as well as parameters relating to the operation of the motors themselves - either as a function of time for the AM, or as a result of the flight control system requests for control torque from the ACM. This paper discusses the computational aerodynamic modeling of the aerodynamic interaction caused by main abort motor and the attitude control motor of the MPCV LAV, showing the effects of these interactions on vehicle controllability.
Orion Launch Abort Vehicle Attitude Control Motor Testing
NASA Technical Reports Server (NTRS)
Murphy, Kelly J.; Brauckmann, Gregory J.; Paschal, Keith B.; Chan, David T.; Walker, Eric L.; Foley, Robert; Mayfield, David; Cross, Jared
2011-01-01
Current Orion Launch Abort Vehicle (LAV) configurations use an eight-jet, solid-fueled Attitude Control Motor (ACM) to provide required vehicle control for all proposed abort trajectories. Due to the forward position of the ACM on the LAV, it is necessary to assess the effects of jet-interactions (JI) between the various ACM nozzle plumes and the external flow along the outside surfaces of the vehicle. These JI-induced changes in flight control characteristics must be accounted for in developing ACM operations and LAV flight characteristics. A test program to generate jet interaction aerodynamic increment data for multiple LAV configurations was conducted in the NASA Ames and NASA Langley Unitary Plan Wind Tunnels from August 2007 through December 2009. Using cold air as the simulant gas, powered subscale models were used to generate interaction data at subsonic, transonic, and supersonic test conditions. This paper presents an overview of the complete ACM JI experimental test program for Orion LAV configurations, highlighting ACM system modeling, nozzle scaling assumptions, experimental test techniques, and data reduction methodologies. Lessons learned are discussed, and sample jet interaction data are shown. These data, in conjunction with computational predictions, were used to create the ACM JI increments for all relevant flight databases.
NASA Technical Reports Server (NTRS)
Allen, B. Danette; Alexandrov, Natalia
2016-01-01
Incremental approaches to air transportation system development inherit current architectural constraints, which, in turn, place hard bounds on system capacity, efficiency of performance, and complexity. To enable airspace operations of the future, a clean-slate (ab initio) airspace design(s) must be considered. This ab initio National Airspace System (NAS) must be capable of accommodating increased traffic density, a broader diversity of aircraft, and on-demand mobility. System and subsystem designs should scale to accommodate the inevitable demand for airspace services that include large numbers of autonomous Unmanned Aerial Vehicles and a paradigm shift in general aviation (e.g., personal air vehicles) in addition to more traditional aerial vehicles such as commercial jetliners and weather balloons. The complex and adaptive nature of ab initio designs for the future NAS requires new approaches to validation, adding a significant physical experimentation component to analytical and simulation tools. In addition to software modeling and simulation, the ability to exercise system solutions in a flight environment will be an essential aspect of validation. The NASA Langley Research Center (LaRC) Autonomy Incubator seeks to develop a flight simulation infrastructure for ab initio modeling and simulation that assumes no specific NAS architecture and models vehicle-to-vehicle behavior to examine interactions and emergent behaviors among hundreds of intelligent aerial agents exhibiting collaborative, cooperative, coordinative, selfish, and malicious behaviors. The air transportation system of the future will be a complex adaptive system (CAS) characterized by complex and sometimes unpredictable (or unpredicted) behaviors that result from temporal and spatial interactions among large numbers of participants. A CAS not only evolves with a changing environment and adapts to it, it is closely coupled to all systems that constitute the environment. Thus, the ecosystem that contains the system and other systems evolves with the CAS as well. The effects of the emerging adaptation and co-evolution are difficult to capture with only combined mathematical and computational experimentation. Therefore, an ab initio flight simulation environment must accommodate individual vehicles, groups of self-organizing vehicles, and large-scale infrastructure behavior. Inspired by Massively Multiplayer Online Role Playing Games (MMORPG) and Serious Gaming, the proposed ab initio simulation environment is similar to online gaming environments in which player participants interact with each other, affect their environment, and expect the simulation to persist and change regardless of any individual player's active participation.
14 CFR 142.59 - Flight simulators and flight training devices.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight simulators and flight training... TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS Personnel and Flight Training Equipment Requirements § 142.59 Flight simulators and flight training devices. (a) An applicant for, or...
14 CFR 142.59 - Flight simulators and flight training devices.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight simulators and flight training... TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS Personnel and Flight Training Equipment Requirements § 142.59 Flight simulators and flight training devices. (a) An applicant for, or...
14 CFR 142.59 - Flight simulators and flight training devices.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight simulators and flight training... TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS Personnel and Flight Training Equipment Requirements § 142.59 Flight simulators and flight training devices. (a) An applicant for, or...
14 CFR 142.59 - Flight simulators and flight training devices.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight simulators and flight training... TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS Personnel and Flight Training Equipment Requirements § 142.59 Flight simulators and flight training devices. (a) An applicant for, or...
14 CFR 142.59 - Flight simulators and flight training devices.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight simulators and flight training... TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS Personnel and Flight Training Equipment Requirements § 142.59 Flight simulators and flight training devices. (a) An applicant for, or...
NASA Technical Reports Server (NTRS)
Clancey, William J.; Linde, Charlotte; Seah, Chin; Shafto, Michael
2013-01-01
The transition from the current air traffic system to the next generation air traffic system will require the introduction of new automated systems, including transferring some functions from air traffic controllers to on-board automation. This report describes a new design verification and validation (V&V) methodology for assessing aviation safety. The approach involves a detailed computer simulation of work practices that includes people interacting with flight-critical systems. The research is part of an effort to develop new modeling and verification methodologies that can assess the safety of flight-critical systems, system configurations, and operational concepts. The 2002 Ueberlingen mid-air collision was chosen for analysis and modeling because one of the main causes of the accident was one crew's response to a conflict between the instructions of the air traffic controller and the instructions of TCAS, an automated Traffic Alert and Collision Avoidance System on-board warning system. It thus furnishes an example of the problem of authority versus autonomy. It provides a starting point for exploring authority/autonomy conflict in the larger system of organization, tools, and practices in which the participants' moment-by-moment actions take place. We have developed a general air traffic system model (not a specific simulation of Überlingen events), called the Brahms Generalized Ueberlingen Model (Brahms-GUeM). Brahms is a multi-agent simulation system that models people, tools, facilities/vehicles, and geography to simulate the current air transportation system as a collection of distributed, interactive subsystems (e.g., airports, air-traffic control towers and personnel, aircraft, automated flight systems and air-traffic tools, instruments, crew). Brahms-GUeM can be configured in different ways, called scenarios, such that anomalous events that contributed to the Überlingen accident can be modeled as functioning according to requirements or in an anomalous condition, as occurred during the accident. Brahms-GUeM thus implicitly defines a class of scenarios, which include as an instance what occurred at Überlingen. Brahms-GUeM is a modeling framework enabling "what if" analysis of alternative work system configurations and thus facilitating design of alternative operations concepts. It enables subsequent adaption (reusing simulation components) for modeling and simulating NextGen scenarios. This project demonstrates that BRAHMS provides the capacity to model the complexity of air transportation systems, going beyond idealized and simple flights to include for example the interaction of pilots and ATCOs. The research shows clearly that verification and validation must include the entire work system, on the one hand to check that mechanisms exist to handle failures of communication and alerting subsystems and/or failures of people to notice, comprehend, or communicate problematic (unsafe) situations; but also to understand how people must use their own judgment in relating fallible systems like TCAS to other sources of information and thus to evaluate how the unreliability of automation affects system safety. The simulation shows in particular that distributed agents (people and automated systems) acting without knowledge of each others' actions can create a complex, dynamic system whose interactive behavior is unexpected and is changing too quickly to comprehend and control.
A Unique Software System For Simulation-to-Flight Research
NASA Technical Reports Server (NTRS)
Chung, Victoria I.; Hutchinson, Brian K.
2001-01-01
"Simulation-to-Flight" is a research development concept to reduce costs and increase testing efficiency of future major aeronautical research efforts at NASA. The simulation-to-flight concept is achieved by using common software and hardware, procedures, and processes for both piloted-simulation and flight testing. This concept was applied to the design and development of two full-size transport simulators, a research system installed on a NASA B-757 airplane, and two supporting laboratories. This paper describes the software system that supports the simulation-to-flight facilities. Examples of various simulation-to-flight experimental applications were also provided.
In-flight angular alignment of inertial navigation systems by means of radio aids
NASA Technical Reports Server (NTRS)
Tanner, W.
1972-01-01
The principles involved in the angular alignment of the inertial reference by nondirectional data from radio aids are developed and compared with conventional methods of alignment such as gyro-compassing and pendulous vertical determination. The specific problem is considered of the space shuttle reentry and a proposed technique for the alignment of the inertial reference system some time before landing. A description is given of the digital simulation of a transponder interrogation system and of its interaction with the inertial navigation system. Data from reentry simulations are used to demonstrate the effectiveness of in-flight inertial system alignment. Concluding remarks refer to other potential applications such as space shuttle orbit insertion and air navigation of conventional aircraft.
14 CFR 61.1 - Applicability and definitions.
Code of Federal Regulations, 2014 CFR
2014-01-01
....2. Aeronautical experience means pilot time obtained in an aircraft, flight simulator, or flight... from an authorized instructor in an aircraft, flight simulator, or flight training device; or (iii) Gives training as an authorized instructor in an aircraft, flight simulator, or flight training device...
Flight Tasks and Metrics to Evaluate Laser Eye Protection in Flight Simulators
2017-07-07
AFRL-RH-FS-TR-2017-0026 Flight Tasks and Metrics to Evaluate Laser Eye Protection in Flight Simulators Thomas K. Kuyk Peter A. Smith Solangia...34Flight Tasks and Metrics to Evaluate Laser Eye Protection in Flight Simulators" (AFRL-RH-FS-TR- 2017 - 0026 SHORTER.PATRI CK.D.1023156390 Digitally...SUBTITLE Flight Tasks and Metrics to Evaluate Laser Eye Protection in Flight Simulators 5a. CONTRACT NUMBER FA8650-14-D-6519 5b. GRANT NUMBER 5c
Physiological Based Simulator Fidelity Design Guidance
NASA Technical Reports Server (NTRS)
Schnell, Thomas; Hamel, Nancy; Postnikov, Alex; Hoke, Jaclyn; McLean, Angus L. M. Thom, III
2012-01-01
The evolution of the role of flight simulation has reinforced assumptions in aviation that the degree of realism in a simulation system directly correlates to the training benefit, i.e., more fidelity is always better. The construct of fidelity has several dimensions, including physical fidelity, functional fidelity, and cognitive fidelity. Interaction of different fidelity dimensions has an impact on trainee immersion, presence, and transfer of training. This paper discusses research results of a recent study that investigated if physiological-based methods could be used to determine the required level of simulator fidelity. Pilots performed a relatively complex flight task consisting of mission task elements of various levels of difficulty in a fixed base flight simulator and a real fighter jet trainer aircraft. Flight runs were performed using one forward visual channel of 40 deg. field of view for the lowest level of fidelity, 120 deg. field of view for the middle level of fidelity, and unrestricted field of view and full dynamic acceleration in the real airplane. Neuro-cognitive and physiological measures were collected under these conditions using the Cognitive Avionics Tool Set (CATS) and nonlinear closed form models for workload prediction were generated based on these data for the various mission task elements. One finding of the work described herein is that simple heart rate is a relatively good predictor of cognitive workload, even for short tasks with dynamic changes in cognitive loading. Additionally, we found that models that used a wide range of physiological and neuro-cognitive measures can further boost the accuracy of the workload prediction.
Airborne Simulation of Launch Vehicle Dynamics
NASA Technical Reports Server (NTRS)
Gilligan, Eric T.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.
2014-01-01
In this paper we present a technique for approximating the short-period dynamics of an exploration-class launch vehicle during flight test with a high-performance surrogate aircraft in relatively benign endoatmospheric flight conditions. The surrogate vehicle relies upon a nonlinear dynamic inversion scheme with proportional-integral feedback to drive a subset of the aircraft states into coincidence with the states of a time-varying reference model that simulates the unstable rigid body dynamics, servodynamics, and parasitic elastic and sloshing dynamics of the launch vehicle. The surrogate aircraft flies a constant pitch rate trajectory to approximate the boost phase gravity-turn ascent, and the aircraft's closed-loop bandwidth is sufficient to simulate the launch vehicle's fundamental lateral bending and sloshing modes by exciting the rigid body dynamics of the aircraft. A novel control allocation scheme is employed to utilize the aircraft's relatively fast control effectors in inducing various failure modes for the purposes of evaluating control system performance. Sufficient dynamic similarity is achieved such that the control system under evaluation is optimized for the full-scale vehicle with no changes to its parameters, and pilot-control system interaction studies can be performed to characterize the effects of guidance takeover during boost. High-fidelity simulation and flight test results are presented that demonstrate the efficacy of the design in simulating the Space Launch System (SLS) launch vehicle dynamics using NASA Dryden Flight Research Center's Full-scale Advanced Systems Testbed (FAST), a modified F/A-18 airplane, over a range of scenarios designed to stress the SLS's adaptive augmenting control (AAC) algorithm.
Overview of Experimental Capabilities - Supersonics
NASA Technical Reports Server (NTRS)
Banks, Daniel W.
2007-01-01
This viewgraph presentation gives an overview of experimental capabilities applicable to the area of supersonic research. The contents include: 1) EC Objectives; 2) SUP.11: Elements; 3) NRA; 4) Advanced Flight Simulator Flexible Aircraft Simulation Studies; 5) Advanced Flight Simulator Flying Qualities Guideline Development for Flexible Supersonic Transport Aircraft; 6) Advanced Flight Simulator Rigid/Flex Flight Control; 7) Advanced Flight Simulator Rapid Sim Model Exchange; 8) Flight Test Capabilities Advanced In-Flight Infrared (IR) Thermography; 9) Flight Test Capabilities In-Flight Schlieren; 10) Flight Test Capabilities CLIP Flow Calibration; 11) Flight Test Capabilities PFTF Flowfield Survey; 12) Ground Test Capabilities Laser-Induced Thermal Acoustics (LITA); 13) Ground Test Capabilities Doppler Global Velocimetry (DGV); 14) Ground Test Capabilities Doppler Global Velocimetry (DGV); and 15) Ground Test Capabilities EDL Optical Measurement Capability (PIV) for Rigid/Flexible Decelerator Models.
Using a Low Cost Flight Simulation Environment for Interdisciplinary Education
NASA Technical Reports Server (NTRS)
Khan, M. Javed; Rossi, Marcia; ALi, Syed F.
2004-01-01
A multi-disciplinary and inter-disciplinary education is increasingly being emphasized for engineering undergraduates. However, often the focus is on interaction between engineering disciplines. This paper discusses the experience at Tuskegee University in providing interdisciplinary research experiences for undergraduate students in both Aerospace Engineering and Psychology through the utilization of a low cost flight simulation environment. The environment, which is pc-based, runs a low-cost of-the-shelf software and is configured for multiple out-of-the-window views and a synthetic heads down display with joystick, rudder and throttle controls. While the environment is being utilized to investigate and evaluate various strategies for training novice pilots, students were involved to provide them with experience in conducting such interdisciplinary research. On the global inter-disciplinary level these experiences included developing experimental designs and research protocols, consideration of human participant ethical issues, and planning and executing the research studies. During the planning phase students were apprised of the limitations of the software in its basic form and the enhancements desired to investigate human factors issues. A number of enhancements to the flight environment were then undertaken, from creating Excel macros for determining the performance of the 'pilots', to interacting with the software to provide various audio/video cues based on the experimental protocol. These enhancements involved understanding the flight model and performance, stability & control issues. Throughout this process, discussions of data analysis included a focus from a human factors perspective as well as an engineering point of view.
14 CFR 61.163 - Aeronautical experience: Powered-lift category rating.
Code of Federal Regulations, 2013 CFR
2013-01-01
... time in a flight simulator or flight training device. (ii) A maximum of 50 hours of training in a flight simulator or flight training device may be credited toward the instrument flight time requirements... training center certificated under part 142 of this chapter. (iii) Training in a flight simulator or flight...
14 CFR 61.163 - Aeronautical experience: Powered-lift category rating.
Code of Federal Regulations, 2014 CFR
2014-01-01
... time in a flight simulator or flight training device. (ii) A maximum of 50 hours of training in a flight simulator or flight training device may be credited toward the instrument flight time requirements... training center certificated under part 142 of this chapter. (iii) Training in a flight simulator or flight...
14 CFR 61.163 - Aeronautical experience: Powered-lift category rating.
Code of Federal Regulations, 2012 CFR
2012-01-01
... time in a flight simulator or flight training device. (ii) A maximum of 50 hours of training in a flight simulator or flight training device may be credited toward the instrument flight time requirements... training center certificated under part 142 of this chapter. (iii) Training in a flight simulator or flight...
14 CFR 61.51 - Pilot logbooks.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the aircraft departed and arrived, or for lessons in a flight simulator or flight training device, the location where the lesson occurred. (iv) Type and identification of aircraft, flight simulator, flight.... (v) Training received in a flight simulator, flight training device, or aviation training device from...
14 CFR 61.51 - Pilot logbooks.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the aircraft departed and arrived, or for lessons in a flight simulator or flight training device, the location where the lesson occurred. (iv) Type and identification of aircraft, flight simulator, flight.... (v) Training received in a flight simulator, flight training device, or aviation training device from...
14 CFR 61.51 - Pilot logbooks.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the aircraft departed and arrived, or for lessons in a flight simulator or flight training device, the location where the lesson occurred. (iv) Type and identification of aircraft, flight simulator, flight.... (v) Training received in a flight simulator, flight training device, or aviation training device from...
Code of Federal Regulations, 2012 CFR
2012-01-01
... observation check may be accomplished in part or in full in an aircraft, in a flight simulator, or in a flight... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for a check pilot (simulator) must include the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... observation check may be accomplished in part or in full in an aircraft, in a flight simulator, or in a flight... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for a check pilot (simulator) must include the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... observation check may be accomplished in part or in full in an aircraft, in a flight simulator, or in a flight... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for a check pilot (simulator) must include the...
Code of Federal Regulations, 2013 CFR
2013-01-01
... observation check may be accomplished in part or in full in an aircraft, in a flight simulator, or in a flight... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for a check pilot (simulator) must include the...
Code of Federal Regulations, 2014 CFR
2014-01-01
... observation check may be accomplished in part or in full in an aircraft, in a flight simulator, or in a flight... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for a check pilot (simulator) must include the...
48 CFR 237.102-71 - Limitation on service contracts for military flight simulators.
Code of Federal Regulations, 2010 CFR
2010-10-01
... contracts for military flight simulators. 237.102-71 Section 237.102-71 Federal Acquisition Regulations... flight simulators. (a) Definitions. As used in this subsection— (1) Military flight simulator means any... Law 110-181, DoD is prohibited from entering into a service contract to acquire a military flight...
48 CFR 237.102-71 - Limitation on service contracts for military flight simulators.
Code of Federal Regulations, 2011 CFR
2011-10-01
... contracts for military flight simulators. 237.102-71 Section 237.102-71 Federal Acquisition Regulations... flight simulators. (a) Definitions. As used in this subsection— (1) Military flight simulator means any... 110-181, DoD is prohibited from entering into a service contract to acquire a military flight...
48 CFR 237.102-71 - Limitation on service contracts for military flight simulators.
Code of Federal Regulations, 2012 CFR
2012-10-01
... contracts for military flight simulators. 237.102-71 Section 237.102-71 Federal Acquisition Regulations... flight simulators. (a) Definitions. As used in this subsection— (1) Military flight simulator means any... 110-181, DoD is prohibited from entering into a service contract to acquire a military flight...
48 CFR 237.102-71 - Limitation on service contracts for military flight simulators.
Code of Federal Regulations, 2013 CFR
2013-10-01
... contracts for military flight simulators. 237.102-71 Section 237.102-71 Federal Acquisition Regulations... flight simulators. (a) Definitions. As used in this subsection— (1) Military flight simulator means any... 110-181, DoD is prohibited from entering into a service contract to acquire a military flight...
48 CFR 237.102-71 - Limitation on service contracts for military flight simulators.
Code of Federal Regulations, 2014 CFR
2014-10-01
... contracts for military flight simulators. 237.102-71 Section 237.102-71 Federal Acquisition Regulations... flight simulators. (a) Definitions. As used in this subsection— (1) Military flight simulator means any... 110-181, DoD is prohibited from entering into a service contract to acquire a military flight...
Quantified, Interactive Simulation of AMCW ToF Camera Including Multipath Effects
Lambers, Martin; Kolb, Andreas
2017-01-01
In the last decade, Time-of-Flight (ToF) range cameras have gained increasing popularity in robotics, automotive industry, and home entertainment. Despite technological developments, ToF cameras still suffer from error sources such as multipath interference or motion artifacts. Thus, simulation of ToF cameras, including these artifacts, is important to improve camera and algorithm development. This paper presents a physically-based, interactive simulation technique for amplitude modulated continuous wave (AMCW) ToF cameras, which, among other error sources, includes single bounce indirect multipath interference based on an enhanced image-space approach. The simulation accounts for physical units down to the charge level accumulated in sensor pixels. Furthermore, we present the first quantified comparison for ToF camera simulators. We present bidirectional reference distribution function (BRDF) measurements for selected, purchasable materials in the near-infrared (NIR) range, craft real and synthetic scenes out of these materials and quantitatively compare the range sensor data. PMID:29271888
Quantified, Interactive Simulation of AMCW ToF Camera Including Multipath Effects.
Bulczak, David; Lambers, Martin; Kolb, Andreas
2017-12-22
In the last decade, Time-of-Flight (ToF) range cameras have gained increasing popularity in robotics, automotive industry, and home entertainment. Despite technological developments, ToF cameras still suffer from error sources such as multipath interference or motion artifacts. Thus, simulation of ToF cameras, including these artifacts, is important to improve camera and algorithm development. This paper presents a physically-based, interactive simulation technique for amplitude modulated continuous wave (AMCW) ToF cameras, which, among other error sources, includes single bounce indirect multipath interference based on an enhanced image-space approach. The simulation accounts for physical units down to the charge level accumulated in sensor pixels. Furthermore, we present the first quantified comparison for ToF camera simulators. We present bidirectional reference distribution function (BRDF) measurements for selected, purchasable materials in the near-infrared (NIR) range, craft real and synthetic scenes out of these materials and quantitatively compare the range sensor data.
NASA Technical Reports Server (NTRS)
Oman, R. A.; Foreman, K. M.; Leng, J.; Hopkins, H. B.
1975-01-01
A plan and some preliminary analysis for the accurate simulation of pressure distributions on the afterbody/nozzle portions of a hypersonic scramjet vehicle are described. The objectives fulfilled were to establish the standards of similitude for a hydrogen/air scramjet exhaust interacting with a vehicle afterbody, determine an experimental technique for validation of the procedures that will be used in conventional wind tunnel facilities, suggest a program of experiments for proof of the concept, and explore any unresolved problems in the proposed simulation procedures. It is shown that true enthalpy, Reynolds number, and nearly exact chemistry can be provided in the exhaust flow for the flight regime from Mach 4 to 10 by a detonation tube simulation. A detailed discussion of the required similarity parameters leads to the conclusion that substitute gases can be used as the simulated exhaust gas in a wind tunnel to achieve the correct interaction forces and moments.
49 CFR 1552.1 - Scope and definitions.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Definitions. As used in this part: Aircraft simulator means a flight simulator or flight training device, as.... Flight training means instruction received from a flight school in an aircraft or aircraft simulator..., DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY FLIGHT SCHOOLS Flight Training for Aliens and Other...
49 CFR 1552.1 - Scope and definitions.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Definitions. As used in this part: Aircraft simulator means a flight simulator or flight training device, as.... Flight training means instruction received from a flight school in an aircraft or aircraft simulator..., DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY FLIGHT SCHOOLS Flight Training for Aliens and Other...
49 CFR 1552.1 - Scope and definitions.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Definitions. As used in this part: Aircraft simulator means a flight simulator or flight training device, as.... Flight training means instruction received from a flight school in an aircraft or aircraft simulator..., DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY FLIGHT SCHOOLS Flight Training for Aliens and Other...
49 CFR 1552.1 - Scope and definitions.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Definitions. As used in this part: Aircraft simulator means a flight simulator or flight training device, as.... Flight training means instruction received from a flight school in an aircraft or aircraft simulator..., DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY FLIGHT SCHOOLS Flight Training for Aliens and Other...
49 CFR 1552.1 - Scope and definitions.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Definitions. As used in this part: Aircraft simulator means a flight simulator or flight training device, as.... Flight training means instruction received from a flight school in an aircraft or aircraft simulator..., DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY FLIGHT SCHOOLS Flight Training for Aliens and Other...
NASA Technical Reports Server (NTRS)
Hoad, D. R.
1979-01-01
The effect of tip shape modification on blade vortex interaction induced helicopter blade slap noise was investigated. Simulated flight and descent velocities which have been shown to produce blade slap were tested. Aerodynamic performance parameters of the rotor system were monitored to ensure properly matched flight conditions among the tip shapes. The tunnel was operated in the open throat configuration with treatment to improve the acoustic characteristics of the test chamber. Four promising tips were used along with a standard square tip as a baseline configuration. A detailed acoustic evaluation on the same rotor system of the relative applicability of the various tip configurations for blade slap noise reduction is provided.
14 CFR 61.65 - Instrument rating requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... authorized instructor in an aircraft, flight simulator, or flight training device that represents an airplane... appropriate to the rating sought; or (ii) A flight simulator or a flight training device appropriate to the... authorized instructor in an aircraft, or in a flight simulator or flight training device, in accordance with...
14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).
Code of Federal Regulations, 2012 CFR
2012-01-01
... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...
14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).
Code of Federal Regulations, 2013 CFR
2013-01-01
... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...
14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).
Code of Federal Regulations, 2011 CFR
2011-01-01
... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...
14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).
Code of Federal Regulations, 2010 CFR
2010-01-01
... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...
Determining the transferability of flight simulator data
NASA Technical Reports Server (NTRS)
Green, David
1992-01-01
This paper presented a method for collecting and graphically correlating subjective ratings and objective flight test data. The method enables flight-simulation engineers to enhance the simulator characterization of rotor craft flight in order to achieve maximum transferability of simulator experience.
Incorporating Data Link Messaging into a Multi-function Display for General Aviation Aircraft
NASA Technical Reports Server (NTRS)
Adams, Catherine A.; Murdoch, Jennifer L.
2006-01-01
One objective of the Small Aircraft Transportation System (SATS) Project is to increase the capacity and utilization of small non-towered, non-radar equipped airports by transferring traffic management activities to an automated system and separation responsibilities to general aviation (GA) pilots. This paper describes the development of a research multi-function display (MFD) to support the interaction between pilots and an automated Airport Management Module (AMM). Preliminary results of simulation and flight tests indicate that adding the responsibility of monitoring other traffic for self-separation does not increase pilots subjective workload levels. Pilots preferred using the enhanced MFD to execute flight procedures, reporting improved situation awareness over conventional instrument flight rules (IFR) procedures.
ERIC Educational Resources Information Center
Horne, Thomas
1988-01-01
Describes four IBM compatible flight simulator software packages: (1) "Falcon," air to air combat in an F-16 fighter; (2) "Chuck Yeager's Advanced Flight Trainer," test flight 14 different aircraft; (3) "Jet," air to air combat; and (4) "Flight Simulator," a realistic PC flight simulator program. (MVL)
Validated simulator for space debris removal with nets and other flexible tethers applications
NASA Astrophysics Data System (ADS)
Gołębiowski, Wojciech; Michalczyk, Rafał; Dyrek, Michał; Battista, Umberto; Wormnes, Kjetil
2016-12-01
In the context of active debris removal technologies and preparation activities for the e.Deorbit mission, a simulator for net-shaped elastic bodies dynamics and their interactions with rigid bodies, has been developed. Its main application is to aid net design and test scenarios for space debris deorbitation. The simulator can model all the phases of the debris capturing process: net launch, flight and wrapping around the target. It handles coupled simulation of rigid and flexible bodies dynamics. Flexible bodies were implemented using Cosserat rods model. It allows to simulate flexible threads or wires with elasticity and damping for stretching, bending and torsion. Threads may be combined into structures of any topology, so the software is able to simulate nets, pure tethers, tether bundles, cages, trusses, etc. Full contact dynamics was implemented. Programmatic interaction with simulation is possible - i.e. for control implementation. The underlying model has been experimentally validated and due to significant gravity influence, experiment had to be performed in microgravity conditions. Validation experiment for parabolic flight was a downscaled process of Envisat capturing. The prepacked net was launched towards the satellite model, it expanded, hit the model and wrapped around it. The whole process was recorded with 2 fast stereographic camera sets for full 3D trajectory reconstruction. The trajectories were used to compare net dynamics to respective simulations and then to validate the simulation tool. The experiments were performed on board of a Falcon-20 aircraft, operated by National Research Council in Ottawa, Canada. Validation results show that model reflects phenomenon physics accurately enough, so it may be used for scenario evaluation and mission design purposes. The functionalities of the simulator are described in detail in the paper, as well as its underlying model, sample cases and methodology behind validation. Results are presented and typical use cases are discussed showing that the software may be used to design throw nets for space debris capturing, but also to simulate deorbitation process, chaser control system or general interactions between rigid and elastic bodies - all in convenient and efficient way. The presented work was led by SKA Polska under the ESA contract, within the CleanSpace initiative.
Extension of a Kolmogorov Atmospheric Turbulence Model for Time-Based Simulation Implementation
NASA Technical Reports Server (NTRS)
McMinn, John D.
1997-01-01
The development of any super/hypersonic aircraft requires the interaction of a wide variety of technical disciplines to maximize vehicle performance. For flight and engine control system design and development on this class of vehicle, realistic mathematical simulation models of atmospheric turbulence, including winds and the varying thermodynamic properties of the atmosphere, are needed. A model which has been tentatively selected by a government/industry group of flight and engine/inlet controls representatives working on the High Speed Civil Transport is one based on the Kolmogorov spectrum function. This report compares the Dryden and Kolmogorov turbulence forms, and describes enhancements that add functionality to the selected Kolmogorov model. These added features are: an altitude variation of the eddy dissipation rate based on Dryden data, the mapping of the eddy dissipation rate database onto a regular latitude and longitude grid, a method to account for flight at large vehicle attitude angles, and a procedure for transitioning smoothly across turbulence segments.
NASA Technical Reports Server (NTRS)
Takallu, M. A.; Glaab, L. J.; Hughes, M. F.; Wong, D. T.; Bartolone, A. P.
2008-01-01
In support of the NASA Aviation Safety Program's Synthetic Vision Systems Project, a series of piloted simulations were conducted to explore and quantify the relationship between candidate Terrain Portrayal Concepts and Guidance Symbology Concepts, specific to General Aviation. The experiment scenario was based on a low altitude en route flight in Instrument Metrological Conditions in the central mountains of Alaska. A total of 18 general aviation pilots, with three levels of pilot experience, evaluated a test matrix of four terrain portrayal concepts and six guidance symbology concepts. Quantitative measures included various pilot/aircraft performance data, flight technical errors and flight control inputs. The qualitative measures included pilot comments and pilot responses to the structured questionnaires such as perceived workload, subjective situation awareness, pilot preferences, and the rare event recognition. There were statistically significant effects found from guidance symbology concepts and terrain portrayal concepts but no significant interactions between them. Lower flight technical errors and increased situation awareness were achieved using Synthetic Vision Systems displays, as compared to the baseline Pitch/Roll Flight Director and Blue Sky Brown Ground combination. Overall, those guidance symbology concepts that have both path based guidance cue and tunnel display performed better than the other guidance concepts.
Code of Federal Regulations, 2010 CFR
2010-01-01
... may allow flight simulator instructors and evaluators to meet recency of experience requirements through the use of a qualified and approved flight simulator or qualified and approved flight training device if that flight simulator or flight training device is— (a) Used in a course approved in accordance...
Code of Federal Regulations, 2013 CFR
2013-01-01
... may allow flight simulator instructors and evaluators to meet recency of experience requirements through the use of a qualified and approved flight simulator or qualified and approved flight training device if that flight simulator or flight training device is— (a) Used in a course approved in accordance...
Code of Federal Regulations, 2014 CFR
2014-01-01
... may allow flight simulator instructors and evaluators to meet recency of experience requirements through the use of a qualified and approved flight simulator or qualified and approved flight training device if that flight simulator or flight training device is— (a) Used in a course approved in accordance...
Code of Federal Regulations, 2011 CFR
2011-01-01
... may allow flight simulator instructors and evaluators to meet recency of experience requirements through the use of a qualified and approved flight simulator or qualified and approved flight training device if that flight simulator or flight training device is— (a) Used in a course approved in accordance...
Code of Federal Regulations, 2012 CFR
2012-01-01
... may allow flight simulator instructors and evaluators to meet recency of experience requirements through the use of a qualified and approved flight simulator or qualified and approved flight training device if that flight simulator or flight training device is— (a) Used in a course approved in accordance...
Computational Aerothermodynamic Assessment of Space Shuttle Orbiter Tile Damage: Open Cavities
NASA Technical Reports Server (NTRS)
Pulsonetti, Maria; Wood, William
2005-01-01
Computational aerothermodynamic simulations of Orbiter windside tile damage in flight were performed in support of the Space Shuttle Return-to-Flight effort. The simulations were performed for both hypervelocity flight and low-enthalpy wind tunnel conditions and contributed to the Return-to-Flight program by providing information to support a variety of damage scenario analyses. Computations at flight conditions were performed at or very near the peak heating trajectory point for multiple damage scenarios involving damage windside acreage reaction cured glass (RCG) coated silica tile(s). The cavities formed by the missing tile examined in this study were relatively short leading to flow features which indicated open cavity behavior. Results of the computations indicated elevated heating bump factor levels predicted for flight over the predictions for wind tunnel conditions. The peak heating bump factors, defined as the local heating to a reference value upstream of the cavity, on the cavity floor for flight simulation were 67% larger than the peak wind tunnel simulation value. On the downstream face of the cavity the flight simulation values were 60% larger than the wind tunnel simulation values. On the outer mold line (OML) downstream of the cavity, the flight values are about 20% larger than the wind tunnel simulation values. The higher heating bump factors observed in the flight simulations were due to the larger driving potential in terms of energy entering the cavity for the flight simulations. This is evidenced by the larger rate of increase in the total enthalpy through the boundary layer prior to the cavity for the flight simulation.
NASA Technical Reports Server (NTRS)
Buck, Gregory M.; Powers, Michael A.; Nevins, Stephen C.; Griffith, Mark S.; Wainwright, Gary A.
2006-01-01
Methods, materials and equipment are documented for fabricating flat plate test models at NASA Langley Research Center for Shuttle return-to-flight aeroheating experiments simulating open and closed cavity interactions in Langley s hypersonic 20-Inch Mach 6 air wind tunnel. Approximately 96 silica ceramic flat plate cavity phosphor thermography test models have been fabricated using these methods. On one model, an additional slot is machined through the back of the plate and into the cavity and vented into an evacuated plenum chamber to simulate a further opening in the cavity. After sintering ceramic to 2150 F, and mounting support hardware, a ceramic-based two-color thermographic phosphor coating is applied for global temperature and heat transfer measurements, with fiducial markings for image registration.
A simulator study of the interaction of pilot workload with errors, vigilance, and decisions
NASA Technical Reports Server (NTRS)
Smith, H. P. R.
1979-01-01
A full mission simulation of a civil air transport scenario that had two levels of workload was used to observe the actions of the crews and the basic aircraft parameters and to record heart rates. The results showed that the number of errors was very variable among crews but the mean increased in the higher workload case. The increase in errors was not related to rise in heart rate but was associated with vigilance times as well as the days since the last flight. The recorded data also made it possible to investigate decision time and decision order. These also varied among crews and seemed related to the ability of captains to manage the resources available to them on the flight deck.
In-flight simulation studies at the NASA Dryden Flight Research Facility
NASA Technical Reports Server (NTRS)
Shafer, Mary F.
1992-01-01
Since the late 1950's, the National Aeronautics and Space Administration's Dryden Flight Research Facility has found in-flight simulation to be an invaluable tool. In-flight simulation has been used to address a wide variety of flying qualities questions, including low-lift-to-drag ratio approach characteristics for vehicles like the X-15, the lifting bodies, and the Space Shuttle; the effects of time delays on controllability of aircraft with digital flight-control systems, the causes and cures of pilot-induced oscillation in a variety of aircraft, and flight-control systems for such diverse aircraft as the X-15 and the X-29. In-flight simulation has also been used to anticipate problems and to avoid them and to solve problems once they appear. Presented here is an account of the in-flight simulation at the Dryden Flight Research Facility and some discussion. An extensive bibliography is included.
In-flight simulation studies at the NASA Dryden Flight Research Facility
NASA Technical Reports Server (NTRS)
Shafer, Mary F.
1994-01-01
Since the late 1950's the National Aeronautics and Space Administration's Dryden Flight Research Facility has found in-flight simulation to be an invaluable tool. In-flight simulation has been used to address a wide variety of flying qualities questions, including low lift-to-drag ratio approach characteristics for vehicles like the X-15, the lifting bodies, and the space shuttle; the effects of time delays on controllability of aircraft with digital flight control systems; the causes and cures of pilot-induced oscillation in a variety of aircraft; and flight control systems for such diverse aircraft as the X-15 and the X-29. In-flight simulation has also been used to anticipate problems, avoid them, and solve problems once they appear. This paper presents an account of the in-flight simulation at the Dryden Flight Research Facility and some discussion. An extensive bibliography is included.
Code of Federal Regulations, 2014 CFR
2014-04-01
... engines, ground flight simulators, parts, components, and subassemblies. 10.183 Section 10.183 Customs... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and...
Code of Federal Regulations, 2013 CFR
2013-04-01
... engines, ground flight simulators, parts, components, and subassemblies. 10.183 Section 10.183 Customs... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and...
Code of Federal Regulations, 2012 CFR
2012-04-01
... engines, ground flight simulators, parts, components, and subassemblies. 10.183 Section 10.183 Customs... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Quality Management Systems for Flight Simulation Training Devices E Appendix E to Part 60 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION...—Qualification Performance Standards for Quality Management Systems for Flight Simulation Training Devices Begin...
Assessment of simulation fidelity using measurements of piloting technique in flight
NASA Technical Reports Server (NTRS)
Clement, W. F.; Cleveland, W. B.; Key, D. L.
1984-01-01
The U.S. Army and NASA joined together on a project to conduct a systematic investigation and validation of a ground based piloted simulation of the Army/Sikorsky UH-60A helicopter. Flight testing was an integral part of the validation effort. Nap-of-the-Earth (NOE) piloting tasks which were investigated included the bob-up, the hover turn, the dash/quickstop, the sidestep, the dolphin, and the slalom. Results from the simulation indicate that the pilot's NOE task performance in the simulator is noticeably and quantifiably degraded when compared with the task performance results generated in flight test. The results of the flight test and ground based simulation experiments support a unique rationale for the assessment of simulation fidelity: flight simulation fidelity should be judged quantitatively by measuring pilot's control strategy and technique as induced by the simulator. A quantitative comparison is offered between the piloting technique observed in a flight simulator and that observed in flight test for the same tasks performed by the same pilots.
Airborne Simulation of Launch Vehicle Dynamics
NASA Technical Reports Server (NTRS)
Miller, Christopher J.; Orr, Jeb S.; Hanson, Curtis E.; Gilligan, Eric T.
2015-01-01
In this paper we present a technique for approximating the short-period dynamics of an exploration-class launch vehicle during flight test with a high-performance surrogate aircraft in relatively benign endoatmospheric flight conditions. The surrogate vehicle relies upon a nonlinear dynamic inversion scheme with proportional-integral feedback to drive a subset of the aircraft states into coincidence with the states of a time-varying reference model that simulates the unstable rigid body dynamics, servodynamics, and parasitic elastic and sloshing dynamics of the launch vehicle. The surrogate aircraft flies a constant pitch rate trajectory to approximate the boost phase gravity turn ascent, and the aircraft's closed-loop bandwidth is sufficient to simulate the launch vehicle's fundamental lateral bending and sloshing modes by exciting the rigid body dynamics of the aircraft. A novel control allocation scheme is employed to utilize the aircraft's relatively fast control effectors in inducing various failure modes for the purposes of evaluating control system performance. Sufficient dynamic similarity is achieved such that the control system under evaluation is configured for the full-scale vehicle with no changes to its parameters, and pilot-control system interaction studies can be performed to characterize the effects of guidance takeover during boost. High-fidelity simulation and flight-test results are presented that demonstrate the efficacy of the design in simulating the Space Launch System (SLS) launch vehicle dynamics using the National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center Fullscale Advanced Systems Testbed (FAST), a modified F/A-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois), over a range of scenarios designed to stress the SLS's Adaptive Augmenting Control (AAC) algorithm.
Using flight simulators aboard ships: human side effects of an optimal scenario with smooth seas.
Muth, Eric R; Lawson, Ben
2003-05-01
The U.S. Navy is considering placing flight simulators aboard ships. It is known that certain types of flight simulators can elicit motion adaptation syndrome (MAS), and also that certain types of ship motion can cause MAS. The goal of this study was to determine if using a flight simulator during ship motion would cause MAS, even when the simulator stimulus and the ship motion were both very mild. All participants in this study completed three conditions. Condition 1 (Sim) entailed "flying" a personal computer-based flight simulator situated on land. Condition 2 (Ship) involved riding aboard a U.S. Navy Yard Patrol boat. Condition 3 (ShipSim) entailed "flying" a personal computer-based flight simulator while riding aboard a Yard Patrol boat. Before and after each condition, participants' balance and dynamic visual acuity were assessed. After each condition, participants filled out the Nausea Profile and the Simulator Sickness Questionnaire. Following exposure to a flight simulator aboard a ship, participants reported negligible symptoms of nausea and simulator sickness. However, participants exhibited a decrease in dynamic visual acuity after exposure to the flight simulator aboard ship (T[25] = 3.61, p < 0.05). Balance results were confounded by significant learning and, therefore, not interpretable. This study suggests that flight simulators can be used aboard ship. As a minimal safety precaution, these simulators should be used according to current safety practices for land-based simulators. Optimally, these simulators should be designed to minimize MAS, located near the ship's center of rotation and used when ship motion is not provocative.
Rapid Automated Aircraft Simulation Model Updating from Flight Data
NASA Technical Reports Server (NTRS)
Brian, Geoff; Morelli, Eugene A.
2011-01-01
Techniques to identify aircraft aerodynamic characteristics from flight measurements and compute corrections to an existing simulation model of a research aircraft were investigated. The purpose of the research was to develop a process enabling rapid automated updating of aircraft simulation models using flight data and apply this capability to all flight regimes, including flight envelope extremes. The process presented has the potential to improve the efficiency of envelope expansion flight testing, revision of control system properties, and the development of high-fidelity simulators for pilot training.
A review of flight simulation techniques
NASA Astrophysics Data System (ADS)
Baarspul, Max
After a brief historical review of the evolution of flight simulation techniques, this paper first deals with the main areas of flight simulator applications. Next, it describes the main components of a piloted flight simulator. Because of the presence of the pilot-in-the-loop, the digital computer driving the simulator must solve the aircraft equations of motion in ‘real-time’. Solutions to meet the high required computer power of todays modern flight simulator are elaborated. The physical similarity between aircraft and simulator in cockpit layout, flight instruments, flying controls etc., is discussed, based on the equipment and environmental cue fidelity required for training and research simulators. Visual systems play an increasingly important role in piloted flight simulation. The visual systems now available and most widely used are described, where image generators and display devices will be distinguished. The characteristics of out-of-the-window visual simulation systems pertaining to the perceptual capabilities of human vision are discussed. Faithful reproduction of aircraft motion requires large travel, velocity and acceleration capabilities of the motion system. Different types and applications of motion systems in e.g. airline training and research are described. The principles of motion cue generation, based on the characteristics of the non-visual human motion sensors, are described. The complete motion system, consisting of the hardware and the motion drive software, is discussed. The principles of mathematical modelling of the aerodynamic, flight control, propulsion, landing gear and environmental characteristics of the aircraft are reviewed. An example of the identification of an aircraft mathematical model, based on flight and taxi tests, is presented. Finally, the paper deals with the hardware and software integration of the flight simulator components and the testing and acceptance of the complete flight simulator. Examples of the so-called ‘Computer Generated Checkout’ and ‘Proof of Match’ are presented. The concluding remarks briefly summarize the status of flight simulator technology and consider possibilities for future research.
The role of simulation in the development and flight test of the HiMAT vehicle
NASA Technical Reports Server (NTRS)
Evans, M. B.; Schilling, L. J.
1984-01-01
Real time simulations have been essential in the flight test program of the highly maneuverable aircraft technology (HiMAT) remotely piloted research vehicle at NASA Ames Research Center's Dryden Flight Research Facility. The HiMAT project makes extensive use of simulations in design, development, and qualification for flight, pilot training, and flight planning. Four distinct simulations, each with varying amounts of hardware in the loop, were developed for the HiMAT project. The use of simulations in detecting anomalous behavior of the flight software and hardware at the various stages of development, verification, and validation has been the key to flight qualification of the HiMAT vehicle.
Code of Federal Regulations, 2012 CFR
2012-01-01
... accomplished in part or in full in an airplane, in a flight simulator, or in a flight training device. This... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for check airmen (simulator) must include the...
Code of Federal Regulations, 2013 CFR
2013-01-01
... accomplished in part or in full in an airplane, in a flight simulator, or in a flight training device. This... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for check airmen (simulator) must include the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... accomplished in part or in full in an airplane, in a flight simulator, or in a flight training device. This... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for check airmen (simulator) must include the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... accomplished in part or in full in an airplane, in a flight simulator, or in a flight training device. This... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for check airmen (simulator) must include the...
NASA Technical Reports Server (NTRS)
Greenisen, M. C.; Bishop, P. A.; Sothmann, M.
2008-01-01
The purpose of this study was to determine the consequences of extended periods of weightlessness during space missions on astronauts f ability to perform a simulated contingency egress while wearing either of the Launch and Entry suits immediately after space flight. In our previous lab-based study of simulated contingency egress, we found only 4 of 12 non-astronauts wearing the Launch and Entry Suit (LES) successfully completed the simulated egress. However, 4 of 4 of the previous failures (when tested wearing the LES), were then successful in completing the test wearing the Advanced Crew Escape Suit (ACES). Therefore, this study tested 21 Astronaut Volunteers wearing either the LES or ACES while performing a simulated egress on a treadmill (TM) onboard the Crew Transportation Vehicle immediately after space flight at either the Kennedy Space Center or Edwards AFB. Astronauts walked for 400 meters at 1.6m/sec with g-suit inflation level set to preflight testing levels, visor down, breathing from the suit emergency O2 supply. Metabolic, heartrate, and perceived exertion data were collected during these post-flight tests. Exactly the same preflight simulated egress tests on a TM were performed in the lab at NASA/JSC by each crewmember at L-60. Preflight testing found 2 of the 21 crewmembers were unable to complete the simulated contingency egress. Postflight, 9 crew (8 ACES, 1 LES) completed the simulated contingency egress of 400 meters at 1.6m/sec. and 12 failed to meet that standard (7 ACES, 5 LES). Preflight physiological response tests failed to identify crew capable of performing the egress vs. those who failed. However, 18 of the 21 crew did make at least 2.67 minutes into the postflight egress testing. At that point in time, heartrate was higher (P <=.20) for the failures compared to the finishers. These findings indicate that NASA fs switch to the ACES for space flight crews should be expedited.
Application of the rapid update cycle (RUC) to aircraft flight simulation.
DOT National Transportation Integrated Search
2008-01-01
An aircraft flight simulation model under development aims : to provide a computer simulation tool to investigate aircraft flight : performance during en route flight and landing under various : atmospherical conditions [1]. Within this model, the ai...
Apollo experience report: Simulation of manned space flight for crew training
NASA Technical Reports Server (NTRS)
Woodling, C. H.; Faber, S.; Vanbockel, J. J.; Olasky, C. C.; Williams, W. K.; Mire, J. L. C.; Homer, J. R.
1973-01-01
Through space-flight experience and the development of simulators to meet the associated training requirements, several factors have been established as fundamental for providing adequate flight simulators for crew training. The development of flight simulators from Project Mercury through the Apollo 15 mission is described. The functional uses, characteristics, and development problems of the various simulators are discussed for the benefit of future programs.
Bayesian Safety Risk Modeling of Human-Flightdeck Automation Interaction
NASA Technical Reports Server (NTRS)
Ancel, Ersin; Shih, Ann T.
2015-01-01
Usage of automatic systems in airliners has increased fuel efficiency, added extra capabilities, enhanced safety and reliability, as well as provide improved passenger comfort since its introduction in the late 80's. However, original automation benefits, including reduced flight crew workload, human errors or training requirements, were not achieved as originally expected. Instead, automation introduced new failure modes, redistributed, and sometimes increased workload, brought in new cognitive and attention demands, and increased training requirements. Modern airliners have numerous flight modes, providing more flexibility (and inherently more complexity) to the flight crew. However, the price to pay for the increased flexibility is the need for increased mode awareness, as well as the need to supervise, understand, and predict automated system behavior. Also, over-reliance on automation is linked to manual flight skill degradation and complacency in commercial pilots. As a result, recent accidents involving human errors are often caused by the interactions between humans and the automated systems (e.g., the breakdown in man-machine coordination), deteriorated manual flying skills, and/or loss of situational awareness due to heavy dependence on automated systems. This paper describes the development of the increased complexity and reliance on automation baseline model, named FLAP for FLightdeck Automation Problems. The model development process starts with a comprehensive literature review followed by the construction of a framework comprised of high-level causal factors leading to an automation-related flight anomaly. The framework was then converted into a Bayesian Belief Network (BBN) using the Hugin Software v7.8. The effects of automation on flight crew are incorporated into the model, including flight skill degradation, increased cognitive demand and training requirements along with their interactions. Besides flight crew deficiencies, automation system failures and anomalies of avionic systems are also incorporated. The resultant model helps simulate the emergence of automation-related issues in today's modern airliners from a top-down, generalized approach, which serves as a platform to evaluate NASA developed technologies
Software for Processing Flight and Simulated Data of the ATIC Experiment
NASA Technical Reports Server (NTRS)
Panov, A. D.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Case, G.; Christl, M.; Chang, J.; Fazely, A. R.; Ganel, O.;
2002-01-01
ATIC (Advanced Thin Ionization Calorimeter) is a balloon borne experiment designed to measure the cosmic ray composition for elements from hydrogen to iron and their energy spectra from approx.50 GeV to near 100 TeV. It consists of a Si-matrix detector to determine the charge of a CR particle, a scintillator hodoscope for tracking, carbon interaction targets and a fully active BGO calorimeter. ATIC had its first flight from McMurdo, Antarctica from 28/12/2000 to 13/01/2001. The ATIC flight collected approximately 25 million events. A C++-class library for building different programs for processing flight and simulated data of the ATIC balloon experiment is described. This library is compatible with the ROOT-system and includes classes and methods for solving a number of problems as the following: Reading data files in different formats (raw-data format, ROOT-format, ASCII-format, different formats for simulated data); Transferring all these formats to the only inner format of the library; Reconstruction of trajectories of primary particles with BGO calorimeter only. The Monte-Carlo simulations with GEANT code were used to obtain the basic tables for computing error corridors and chi(sup 2)-values for the trajectories. Obtaining error corridors for searching for signal of primary particle in the Si-matrix; Searching for hit of primary particle in the Si-matrix with using of error corridor and other criteria (chi(sup 2)-values, agreement between signals in Si-matrix and in the upper layer of scintillator and others); Determination of charge of primary particle; Determination of energy deposit in BGO calorimeter.
Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18
NASA Technical Reports Server (NTRS)
VanZwieten, Tannen S.; Orr, Jeb S.; Wall, John H.; Gilligan, Eric T.
2014-01-01
This paper summarizes the Adaptive Augmenting Control (AAC) flight characterization experiments performed using an F/A-18 (TN 853). AAC was designed and developed specifically for launch vehicles, and is currently part of the baseline autopilot design for NASA's Space Launch System (SLS). The scope covered here includes a brief overview of the algorithm (covered in more detail elsewhere), motivation and benefits of flight testing, top-level SLS flight test objectives, applicability of the F/A-18 as a platform for testing a launch vehicle control design, test cases designed to fully vet the AAC algorithm, flight test results, and conclusions regarding the functionality of AAC. The AAC algorithm developed at Marshall Space Flight Center is a forward loop gain multiplicative adaptive algorithm that modifies the total attitude control system gain in response to sensed model errors or undesirable parasitic mode resonances. The AAC algorithm provides the capability to improve or decrease performance by balancing attitude tracking with the mitigation of parasitic dynamics, such as control-structure interaction or servo-actuator limit cycles. In the case of the latter, if unmodeled or mismodeled parasitic dynamics are present that would otherwise result in a closed-loop instability or near instability, the adaptive controller decreases the total loop gain to reduce the interaction between these dynamics and the controller. This is in contrast to traditional adaptive control logic, which focuses on improving performance by increasing gain. The computationally simple AAC attitude control algorithm has stability properties that are reconcilable in the context of classical frequency-domain criteria (i.e., gain and phase margin). The algorithm assumes that the baseline attitude control design is well-tuned for a nominal trajectory and is designed to adapt only when necessary. Furthermore, the adaptation is attracted to the nominal design and adapts only on an as-needed basis (see Figure 1). The MSFC algorithm design was formulated during the Constellation Program and reached a high maturity level during SLS through simulation-based development and internal and external analytical review. The AAC algorithm design has three summary-level objectives: (1) "Do no harm;" return to baseline control design when not needed, (2) Increase performance; respond to error in ability of vehicle to track command, and (3) Regain stability; respond to undesirable control-structure interaction or other parasitic dynamics. AAC has been successfully implemented as part of the Space Launch System baseline design, including extensive testing in high-fidelity 6-DOF simulations the details of which are described in [1]. The Dryden Flight Research Center's F/A-18 Full-Scale Advanced Systems Testbed (FAST) platform is used to conduct an algorithm flight characterization experiment intended to fully vet the aforementioned design objectives. FAST was specifically designed with this type of test program in mind. The onboard flight control system has full-authority experiment control of ten aerodynamic effectors and two throttles. It has production and research sensor inputs and pilot engage/disengage and real-time configuration of up to eight different experiments on a single flight. It has failure detection and automatic reversion to fail-safe mode. The F/A-18 aircraft has an experiment envelope cleared for full-authority control and maneuvering and exhibits characteristics for robust recovery from unusual attitudes and configurations aided by the presence of a qualified test pilot. The F/A-18 aircraft has relatively high mass and inertia with exceptional performance; the F/A-18 also has a large thrust-to-weight ratio, owing to its military heritage. This enables the simulation of a portion of the ascent trajectory with a high degree of dynamic similarity to a launch vehicle, and the research flight control system can simulate unstable longitudinal dynamics. Parasitic dynamics such as slosh and bending modes, as well as atmospheric disturbances, are being produced by the airframe via modification of bending filters and the use of secondary control surfaces, including leading and trailing edge flaps, symmetric ailerons, and symmetric rudders. The platform also has the ability to inject signals in flight to simulate structural mode resonances or other challenging dynamics. This platform also offers more test maneuvers and longer maneuver times than a single rocket or missile test, which provides ample opportunity to fully and repeatedly exercise all aspects of the algorithm. Prior to testing on an F/A-18, AAC was the only component of the SLS autopilot design that had not been flight tested. The testing described in this paper raises the Technology Readiness Level (TRL) early in the SLS Program and is able to demonstrate its capabilities and robustness in a flight environment.
NASA Technical Reports Server (NTRS)
Wing, David J.; Barhydt, Richard; Barmore, Bryan; Krishnamurthy, Karthik
2003-01-01
Feasibility and safety of autonomous aircraft operations were studied in a multi-piloted simulation of overconstrained traffic conflicts to determine the need for, and utility of, priority flight rules to maintain safety in this extraordinary and potentially hazardous situation. An overconstrained traffic conflict is one in which the separation assurance objective is incompatible with other objectives. In addition, a proposed scheme for implementing priority flight rules by staggering the alerting time between the two aircraft in conflict was tested for effectiveness. The feasibility study was conducted through a simulation in the Air Traffic Operations Laboratory at the NASA Langley Research Center. This research activity is a continuation of the Distributed Air-Ground Traffic Management feasibility analysis reported in the 4th USA/Europe Air Traffic Management R&D Seminar in December 2001 (paper #48). The over-constrained conflict scenario studied here consisted of two piloted aircraft that were assigned an identical en-route waypoint arrival time and altitude crossing restriction. The simulation results indicated that the pilots safely resolved the conflict without the need for a priority flight rule system. Occurrences of unnecessary maneuvering near the common waypoint were traced to false conflict alerts, generated as the result of including waypoint constraint information in the broadcast data link message issued from each aircraft. This result suggests that, in the conservative interests of safety, broadcast intent information should be based on the commanded trajectory and not on the Flight Management System flight plan, to which the aircraft may not actually adhere. The use of priority flight rules had no effect on the percentage of the aircraft population meeting completely predictable which aircraft in a given pair would meet the constraints and which aircraft would make the first maneuver to yield right-of-way. Therefore, the proposed scheme for implementing priority flight rules through staggering the alerting time between the two aircraft was completely effective. The data and observations from this experiment, together with results from the previously reported study, support the feasibility of autonomous aircraft operations.
Convective Weather Avoidance with Uncertain Weather Forecasts
NASA Technical Reports Server (NTRS)
Karahan, Sinan; Windhorst, Robert D.
2009-01-01
Convective weather events have a disruptive impact on air traffic both in terminal area and in en-route airspaces. In order to make sure that the national air transportation system is safe and efficient, it is essential to respond to convective weather events effectively. Traffic flow control initiatives in response to convective weather include ground delay, airborne delay, miles-in-trail restrictions as well as tactical and strategic rerouting. The rerouting initiatives can potentially increase traffic density and complexity in regions neighboring the convective weather activity. There is a need to perform rerouting in an intelligent and efficient way such that the disruptive effects of rerouting are minimized. An important area of research is to study the interaction of in-flight rerouting with traffic congestion or complexity and developing methods that quantitatively measure this interaction. Furthermore, it is necessary to find rerouting solutions that account for uncertainties in weather forecasts. These are important steps toward managing complexity during rerouting operations, and the paper is motivated by these research questions. An automated system is developed for rerouting air traffic in order to avoid convective weather regions during the 20- minute - 2-hour time horizon. Such a system is envisioned to work in concert with separation assurance (0 - 20-minute time horizon), and longer term air traffic management (2-hours and beyond) to provide a more comprehensive solution to complexity and safety management. In this study, weather is dynamic and uncertain; it is represented as regions of airspace that pilots are likely to avoid. Algorithms are implemented in an air traffic simulation environment to support the research study. The algorithms used are deterministic but periodically revise reroutes to account for weather forecast updates. In contrast to previous studies, in this study convective weather is represented as regions of airspace that pilots are likely to avoid. The automated system periodically updates forecasts and reassesses rerouting decisions in order to account for changing weather predictions. The main objectives are to reroute flights to avoid convective weather regions and determine the resulting complexity due to rerouting. The eventual goal is to control and reduce complexity while rerouting flights during the 20 minute - 2 hour planning period. A three-hour simulation is conducted using 4800 flights in the national airspace. The study compares several metrics against a baseline scenario using the same traffic and weather but with rerouting disabled. The results show that rerouting can have a negative impact on congestion in some sectors, as expected. The rerouting system provides accurate measurements of the resulting complexity in the congested sectors. Furthermore, although rerouting is performed only in the 20-minute - 2-hour range, it results in a 30% reduction in encounters with nowcast weather polygons (100% being the ideal for perfectly predictable and accurate weather). In the simulations, rerouting was performed for the 20-minute - 2-hour flight time horizon, and for the en-route segment of air traffic. The implementation uses CWAM, a set of polygons that represent probabilities of pilot deviation around weather. The algorithms were implemented in a software-based air traffic simulation system. Initial results of the system's performance and effectiveness were encouraging. Simulation results showed that when flights were rerouted in the 20-minute - 2-hour flight time horizon of air traffic, there were fewer weather encounters in the first 20 minutes than for flights that were not rerouted. Some preliminary results were also obtained that showed that rerouting will also increase complexity. More simulations will be conducted in order to report conclusive results on the effects of rerouting on complexity. Thus, the use of the 20-minute - 2-hour flight time horizon weather avoidance teniques performed in the simulation is expected to provide benefits for short-term weather avoidance.
Technical evaluation report on the Flight Mechanics Panel Symposium on Flight Simulation
NASA Technical Reports Server (NTRS)
Cook, Anthony M.
1986-01-01
In recent years, important advances were made in technology both for ground-based and in-flight simulators. There was equally a broadening of the use of flight simulators for research, development, and training purposes. An up-to-date description of the state-of-the-art of technology and engineering was provided for both ground-based and in-flight simulators and their respective roles were placed in context within the aerospace scene.
CLVTOPS Liftoff and Separation Analysis Validation Using Ares I-X Flight Data
NASA Technical Reports Server (NTRS)
Burger, Ben; Schwarz, Kristina; Kim, Young
2011-01-01
CLVTOPS is a multi-body time domain flight dynamics simulation tool developed by NASA s Marshall Space Flight Center (MSFC) for a space launch vehicle and is based on the TREETOPS simulation tool. CLVTOPS is currently used to simulate the flight dynamics and separation/jettison events of the Ares I launch vehicle including liftoff and staging separation. In order for CLVTOPS to become an accredited tool, validation against other independent simulations and real world data is needed. The launch of the Ares I-X vehicle (first Ares I test flight) on October 28, 2009 presented a great opportunity to provide validation evidence for CLVTOPS. In order to simulate the Ares I-X flight, specific models were implemented into CLVTOPS. These models include the flight day environment, reconstructed thrust, reconstructed mass properties, aerodynamics, and the Ares I-X guidance, navigation and control models. The resulting simulation output was compared to Ares I-X flight data. During the liftoff region of flight, trajectory states from the simulation and flight data were compared. The CLVTOPS results were used to make a semi-transparent animation of the vehicle that was overlaid directly on top of the flight video to provide a qualitative measure of the agreement between the simulation and the actual flight. During ascent, the trajectory states of the vehicle were compared with flight data. For the stage separation event, the trajectory states of the two stages were compared to available flight data. Since no quantitative rotational state data for the upper stage was available, the CLVTOPS results were used to make an animation of the two stages to show a side-by-side comparison with flight video. All of the comparisons between CLVTOPS and the flight data show good agreement. This paper documents comparisons between CLVTOPS and Ares I-X flight data which serve as validation evidence for the eventual accreditation of CLVTOPS.
The NASA Lewis integrated propulsion and flight control simulator
NASA Technical Reports Server (NTRS)
Bright, Michelle M.; Simon, Donald L.
1991-01-01
A new flight simulation facility was developed at NASA-Lewis. The purpose of this flight simulator is to allow integrated propulsion control and flight control algorithm development and evaluation in real time. As a preliminary check of the simulator facility capabilities and correct integration of its components, the control design and physics models for a short take-off and vertical landing fighter aircraft model were shown, with their associated system integration and architecture, pilot vehicle interfaces, and display symbology. The initial testing and evaluation results show that this fixed based flight simulator can provide real time feedback and display of both airframe and propulsion variables for validation of integrated flight and propulsion control systems. Additionally, through the use of this flight simulator, various control design methodologies and cockpit mechanizations can be tested and evaluated in a real time environment.
MarsSedEx I: feasibility test for sediment settling experiments under Martian gravity
NASA Astrophysics Data System (ADS)
Kuhn, Nikolaus J.
2013-04-01
Gravity has a non-linear effect on the settling velocity of sediment particles in liquids and gases. However, StokeśLaw, the common way of estimating the terminal velocity of a particle moving in a gas of liquid assumes a linear relationship between terminal velocity and gravity. For terrestrial applications, this "error" is not relevant, but it may strongly influence the terminal velocity achieved by settling particles in the Martian atmosphere or water bodies. In principle, the effect of gravity on settling velocity can also be achieved by reducing the difference in density between particle and gas or liquid. However, the use of analogues simulating the lower gravity on Mars on Earth is difficult because the properties and interaction of the liquids and materials differ from those of water and sediment, .i.e. the viscosity of the liquid or the interaction between charges surfaces and liquid molecules. An alternative for measuring the actual settling velocities of particles under Martian gravity, on Earth, is offered by placing a settling tube on a reduced gravity flight and conduct settling tests within the 20 to 25 seconds of Martian gravity that can be simulated during such a flight. In this presentation we report on the feasibility of such a test based on an experiment conducted during a reduced gravity flight in November 2012.
A review of critical in-flight events research methodology
NASA Technical Reports Server (NTRS)
Giffin, W. C.; Rockwell, T. H.; Smith, P. E.
1985-01-01
Pilot's cognitive responses to critical in-flight events (CIFE's) were investigated, using pilots, who had on the average about 2540 flight hours each, in four experiments: (1) full-mission simulation in a general aviation trainer, (2) paper and pencil CIFE tests, (3) interactive computer-aided scenario testing, and (4) verbal protocols in fault diagnosis tasks. The results of both computer and paper and pencil tests showed only 50 percent efficiency in correct diagnosis of critical events. The efficiency in arriving at a diagnosis was also low: over 20 inquiries were made for 21 percent of the scenarios diagnosed. The information-seeking pattern was random, with frequent retracing over old inquiries. The measures for developing improved cognitive skills for CIFE's are discussed.
Response of Flight Nurses in a Simulated Helicopter Environment.
Kaniecki, David M; Hickman, Ronald L; Alfes, Celeste M; Reimer, Andrew P
The purpose of this study was to determine if a helicopter flight simulator could provide a useful educational platform by creating experiences similar to those encountered by actual flight nurses. Flight nurse (FN) and non-FN participants completed a simulated emergency scenario in a flight simulator. Physiologic and psychological stress during the simulation was measured using heart rate and perceived stress scores. A questionnaire was then administered to assess the realism of the flight simulator. Subjects reported that the overall experience in the flight simulator was comparable with a real helicopter. Sounds, communications, vibrations, and movements in the simulator most approximated those of a real-life helicopter environment. Perceived stress levels of all participants increased significantly from 27 (on a 0-100 scale) before simulation to 51 at the peak of the simulation and declined thereafter to 28 (P < .001). Perceived stress levels of FNs increased significantly from 25 before simulation to 54 at the peak of the simulation and declined thereafter to 30 (P < .001). Perceived stress levels of non-FNs increased significantly from 31 before simulation to 49 at the peak of the simulation and declined thereafter to 25 (P < .001). There were no significant differences in perceived stress levels between FNs and non-FNs before (P = .58), during (P = .63), or after (P = .55) simulation. FNs' heart rates increased significantly from 77 before simulation to 100 at the peak of the simulation and declined thereafter to 72 (P < .001). The results of this study suggest that simulation of a critical care scenario in a high-fidelity helicopter flight simulator can provide a realistic helicopter transport experience and create physiologic and psychological stress for participants. Copyright © 2017 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.
14 CFR 91.1073 - Training program: General.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Provide enough flight instructors, check pilots, and simulator instructors to conduct required flight training and flight checks, and simulator training courses allowed under this subpart. (b) Whenever a... ensure that each pilot annually completes at least one flight training session in an approved simulator...
14 CFR 91.1073 - Training program: General.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Provide enough flight instructors, check pilots, and simulator instructors to conduct required flight training and flight checks, and simulator training courses allowed under this subpart. (b) Whenever a... ensure that each pilot annually completes at least one flight training session in an approved simulator...
14 CFR 91.1073 - Training program: General.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Provide enough flight instructors, check pilots, and simulator instructors to conduct required flight training and flight checks, and simulator training courses allowed under this subpart. (b) Whenever a... ensure that each pilot annually completes at least one flight training session in an approved simulator...
14 CFR 91.1073 - Training program: General.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Provide enough flight instructors, check pilots, and simulator instructors to conduct required flight training and flight checks, and simulator training courses allowed under this subpart. (b) Whenever a... ensure that each pilot annually completes at least one flight training session in an approved simulator...
14 CFR 61.64 - Use of a flight simulator and flight training device.
Code of Federal Regulations, 2011 CFR
2011-01-01
... test. (e) Use of a flight simulator for the powered-lift rating. If an applicant uses a flight simulator for training or the practical test for the powered-lift category or type rating— (1) The flight simulator— (i) Must represent the category and type of powered-lift rating (if a type rating is applicable...
14 CFR 61.64 - Use of a flight simulator and flight training device.
Code of Federal Regulations, 2010 CFR
2010-01-01
... test. (e) Use of a flight simulator for the powered-lift rating. If an applicant uses a flight simulator for training or the practical test for the powered-lift category or type rating— (1) The flight simulator— (i) Must represent the category and type of powered-lift rating (if a type rating is applicable...
NASA Technical Reports Server (NTRS)
1979-01-01
The pilot's perception and performance in flight simulators is examined. The areas investigated include: vestibular stimulation, flight management and man cockpit information interfacing, and visual perception in flight simulation. The effects of higher levels of rotary acceleration on response time to constant acceleration, tracking performance, and thresholds for angular acceleration are examined. Areas of flight management examined are cockpit display of traffic information, work load, synthetic speech call outs during the landing phase of flight, perceptual factors in the use of a microwave landing system, automatic speech recognition, automation of aircraft operation, and total simulation of flight training.
Flight simulator fidelity assessment in a rotorcraft lateral translation maneuver
NASA Technical Reports Server (NTRS)
Hess, R. A.; Malsbury, T.; Atencio, A., Jr.
1992-01-01
A model-based methodology for assessing flight simulator fidelity in closed-loop fashion is exercised in analyzing a rotorcraft low-altitude maneuver for which flight test and simulation results were available. The addition of a handling qualities sensitivity function to a previously developed model-based assessment criteria allows an analytical comparison of both performance and handling qualities between simulation and flight test. Model predictions regarding the existence of simulator fidelity problems are corroborated by experiment. The modeling approach is used to assess analytically the effects of modifying simulator characteristics on simulator fidelity.
Simulation of nap-of-the-Earth flight in helicopters
NASA Technical Reports Server (NTRS)
Condon, Gregory W.
1991-01-01
NASA-Ames along with the U.S. Army has conducted extensive simulation studies of rotorcraft in the nap-of-the-Earth (NOE) environment and has developed facility capabilities specifically designed for this flight regime. The experience gained to date in applying these facilities to the NOE flight regime are reported along with the results of specific experimental studies conducted to understand the influence of both motion and visual scene on the fidelity of NOE simulation. Included are comparisons of results from concurrent piloted simulation and flight research studies. The results of a recent simulation experiment to study simulator sickness in this flight regime is also discussed.
Simulation and analyses of the aeroassist flight experiment attitude update method
NASA Technical Reports Server (NTRS)
Carpenter, J. R.
1991-01-01
A method which will be used to update the alignment of the Aeroassist Flight Experiment's Inertial Measuring Unit is simulated and analyzed. This method, the Star Line Maneuver, uses measurements from the Space Shuttle Orbiter star trackers along with an extended Kalman filter to estimate a correction to the attitude quaternion maintained by an Inertial Measuring Unit in the Orbiter's payload bay. This quaternion is corrupted by on-orbit bending of the Orbiter payload bay with respect to the Orbiter navigation base, which is incorporated into the payload quaternion when it is initialized via a direct transfer of the Orbiter attitude state. The method of updating this quaternion is examined through verification of baseline cases and Monte Carlo analysis using a simplified simulation, The simulation uses nominal state dynamics and measurement models from the Kalman filter as its real world models, and is programmed on Microvax minicomputer using Matlab, and interactive matrix analysis tool. Results are presented which confirm and augment previous performance studies, thereby enhancing confidence in the Star Line Maneuver design methodology.
Flight Testing an Iced Business Jet for Flight Simulation Model Validation
NASA Technical Reports Server (NTRS)
Ratvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam; Cooper, Jon
2007-01-01
A flight test of a business jet aircraft with various ice accretions was performed to obtain data to validate flight simulation models developed through wind tunnel tests. Three types of ice accretions were tested: pre-activation roughness, runback shapes that form downstream of the thermal wing ice protection system, and a wing ice protection system failure shape. The high fidelity flight simulation models of this business jet aircraft were validated using a software tool called "Overdrive." Through comparisons of flight-extracted aerodynamic forces and moments to simulation-predicted forces and moments, the simulation models were successfully validated. Only minor adjustments in the simulation database were required to obtain adequate match, signifying the process used to develop the simulation models was successful. The simulation models were implemented in the NASA Ice Contamination Effects Flight Training Device (ICEFTD) to enable company pilots to evaluate flight characteristics of the simulation models. By and large, the pilots confirmed good similarities in the flight characteristics when compared to the real airplane. However, pilots noted pitch up tendencies at stall with the flaps extended that were not representative of the airplane and identified some differences in pilot forces. The elevator hinge moment model and implementation of the control forces on the ICEFTD were identified as a driver in the pitch ups and control force issues, and will be an area for future work.
NASA Technical Reports Server (NTRS)
Heath, Bruce E.; Khan, M. Javed; Rossi, Marcia; Ali, Syed Firasat
2005-01-01
The rising cost of flight training and the low cost of powerful computers have resulted in increasing use of PC-based flight simulators. This has prompted FAA standards regulating such use and allowing aspects of training on simulators meeting these standards to be substituted for flight time. However, the FAA regulations require an authorized flight instructor as part of the training environment. Thus, while costs associated with flight time have been reduced, the cost associated with the need for a flight instructor still remains. The obvious area of research, therefore, has been to develop intelligent simulators. However, the two main challenges of such attempts have been training strategies and assessment. The research reported in this paper was conducted to evaluate various performance metrics of a straight-in landing approach by 33 novice pilots flying a light single engine aircraft simulation. These metrics were compared to assessments of these flights by two flight instructors to establish a correlation between the two techniques in an attempt to determine a composite performance metric for this flight maneuver.
Field of View Evaluation for Flight Simulators Used in Spatial Disorientation Training
2014-01-01
Naval Medical Research Unit Dayton FIELD OF VIEW EVALUATION FOR FLIGHT SIMULATORS USED IN SPATIAL DISORIENTATION TRAINING WILLIAMS, H.P...COVERED (from – to) 2013JUL30 to 2014JUN30 4. TITLE Field of View Evaluation for Flight Simulators Used in Spatial Disorientation Training 5a...simulator systems as well, and implications and recommendations for SD training are discussed. 3 Field of View Evaluation for Flight Simulators
NASA UAS Traffic Management National Campaign Operations across Six UAS Test Sites
NASA Technical Reports Server (NTRS)
Rios, Joseph; Mulfinger, Daniel; Homola, Jeff; Venkatesan, Priya
2016-01-01
NASA's Unmanned Aircraft Systems Traffic Management research aims to develop policies, procedures, requirements, and other artifacts to inform the implementation of a future system that enables small drones to access the low altitude airspace. In this endeavor, NASA conducted a geographically diverse flight test in conjunction with the FAA's six unmanned aircraft systems Test Sites. A control center at NASA Ames Research Center autonomously managed the airspace for all participants in eight states as they flew operations (both real and simulated). The system allowed for common situational awareness across all stakeholders, kept traffic procedurally separated, offered messages to inform the participants of activity relevant to their operations. Over the 3- hour test, 102 flight operations connected to the central research platform with 17 different vehicle types and 8 distinct software client implementations while seamlessly interacting with simulated traffic.
14 CFR Appendix M to Part 141 - Combined Private Pilot Certification and Instrument Rating Course
Code of Federal Regulations, 2014 CFR
2014-01-01
... practical test, within 60 days preceding the date of the test. (c) For use of flight simulators or flight training devices: (1) The course may include training in a combination of flight simulators, flight... instructor. (2) Training in a flight simulator that meets the requirements of § 141.41(a) of this part may be...
14 CFR Appendix M to Part 141 - Combined Private Pilot Certification and Instrument Rating Course
Code of Federal Regulations, 2012 CFR
2012-01-01
... practical test, within 60 days preceding the date of the test. (c) For use of flight simulators or flight training devices: (1) The course may include training in a combination of flight simulators, flight... instructor. (2) Training in a flight simulator that meets the requirements of § 141.41(a) of this part may be...
14 CFR Appendix M to Part 141 - Combined Private Pilot Certification and Instrument Rating Course
Code of Federal Regulations, 2013 CFR
2013-01-01
... practical test, within 60 days preceding the date of the test. (c) For use of flight simulators or flight training devices: (1) The course may include training in a combination of flight simulators, flight... instructor. (2) Training in a flight simulator that meets the requirements of § 141.41(a) of this part may be...
Flight simulation for flight control computer S/N 0104-1 (ASTP)
NASA Technical Reports Server (NTRS)
1975-01-01
Flight control computer (FCC) 0104-I has been designated the prime unit for the SA-210 launch vehicle. The results of the final flight simulation for FCC S/N 0104-I are documented. These results verify satisfactory implementation of the design release and proper interfacing of the FCC with flight-type control sensor elements and simulated thrust vector control system.
14 CFR 61.1 - Applicability and definitions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of this part: (1) Aeronautical experience means pilot time obtained in an aircraft, flight simulator... simulator, or flight training device; or (iii) Gives training as an authorized instructor in an aircraft, flight simulator, or flight training device. (16) Practical test means a test on the areas of operations...
14 CFR 61.1 - Applicability and definitions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... of this part: (1) Aeronautical experience means pilot time obtained in an aircraft, flight simulator... simulator, or flight training device; or (iii) Gives training as an authorized instructor in an aircraft, flight simulator, or flight training device. (16) Practical test means a test on the areas of operations...
Flight- and ground-test correlation study of BMDO SDS materials: Phase 1 report
NASA Technical Reports Server (NTRS)
Chung, Shirley Y.; Brinza, David E.; Minton, Timothy K.; Stiegman, Albert E.; Kenny, James T.; Liang, Ranty H.
1993-01-01
The NASA Evaluation of Oxygen Interactions with Materials-3 (EOIM-3) experiment served as a test bed for a variety of materials that are candidates for Ballistic Missile Defense Organization (BMDO) space assets. The materials evaluated on this flight experiment were provided by BMDO contractors and technology laboratories. A parallel ground exposure evaluation was conducted using the FAST atomic-oxygen simulation facility at Physical Sciences, Inc. The EOIM-3 materials were exposed to an atomic oxygen fluence of approximately 2.3 x 10(exp 2) atoms/sq. cm. The ground-exposed materials' fluence of 2.0 - 2.5 x 10(exp 2) atoms/sq. cm permits direct comparison of ground-exposed materials' performance with that of the flight-exposed specimens. The results from the flight test conducted aboard STS-46 and the correlative ground exposure are presented in this publication.
Improvements in flight table dynamic transparency for hardware-in-the-loop facilities
NASA Astrophysics Data System (ADS)
DeMore, Louis A.; Mackin, Rob; Swamp, Michael; Rusterholtz, Roger
2000-07-01
Flight tables are a 'necessary evil' in the Hardware-In-The- Loop (HWIL) simulation. Adding the actual or prototypic flight hardware to the loop, in order to increase the realism of the simulation, forces us to add motion simulation to the process. Flight table motion bases bring unwanted dynamics, non- linearities, transport delays, etc to an already difficult problem sometimes requiring the simulation engineer to compromise the results. We desire that the flight tables be 'dynamically transparent' to the simulation scenario. This paper presents a State Variable Feedback (SVF) control system architecture with feed-forward techniques that improves the flight table's dynamic transparency by significantly reducing the table's low frequency phase lag. We offer some actual results with existing flight tables that demonstrate the improved transparency. These results come from a demonstration conducted on a flight table in the KHILS laboratory at Eglin AFB and during a refurbishment of a flight table for the Boeing Company of St. Charles, Missouri.
Applications of Computer Graphics in Engineering
NASA Technical Reports Server (NTRS)
1975-01-01
Various applications of interactive computer graphics to the following areas of science and engineering were described: design and analysis of structures, configuration geometry, animation, flutter analysis, design and manufacturing, aircraft design and integration, wind tunnel data analysis, architecture and construction, flight simulation, hydrodynamics, curve and surface fitting, gas turbine engine design, analysis, and manufacturing, packaging of printed circuit boards, spacecraft design.
Flight simulator for hypersonic vehicle and a study of NASP handling qualities
NASA Technical Reports Server (NTRS)
Ntuen, Celestine A.; Park, Eui H.; Deeb, Joseph M.; Kim, Jung H.
1992-01-01
The research goal of the Human-Machine Systems Engineering Group was to study the existing handling quality studies in aircraft with sonic to supersonic speeds and power in order to understand information requirements needed for a hypersonic vehicle flight simulator. This goal falls within the NASA task statements: (1) develop flight simulator for hypersonic vehicle; (2) study NASP handling qualities; and (3) study effects of flexibility on handling qualities and on control system performance. Following the above statement of work, the group has developed three research strategies. These are: (1) to study existing handling quality studies and the associated aircraft and develop flight simulation data characterization; (2) to develop a profile for flight simulation data acquisition based on objective statement no. 1 above; and (3) to develop a simulator and an embedded expert system platform which can be used in handling quality experiments for hypersonic aircraft/flight simulation training.
Flight Simulation for the Study of Skill Transfer.
ERIC Educational Resources Information Center
Lintern, Gavan
1992-01-01
Discusses skill transfer as a human performance issue based on experiences with computerized flight simulators. Highlights include the issue of similarity; simulation and the design of training devices; an information theory of transfer; invariants for flight control; and experiments involving the transfer of flight skills. (21 references) (LRW)
NASA Technical Reports Server (NTRS)
Lindsey, Patricia F.
1993-01-01
In its search for higher level computer interfaces and more realistic electronic simulations for measurement and spatial analysis in human factors design, NASA at MSFC is evaluating the functionality of virtual reality (VR) technology. Virtual reality simulation generates a three dimensional environment in which the participant appears to be enveloped. It is a type of interactive simulation in which humans are not only involved, but included. Virtual reality technology is still in the experimental phase, but it appears to be the next logical step after computer aided three-dimensional animation in transferring the viewer from a passive to an active role in experiencing and evaluating an environment. There is great potential for using this new technology when designing environments for more successful interaction, both with the environment and with another participant in a remote location. At the University of North Carolina, a VR simulation of a the planned Sitterson Hall, revealed a flaw in the building's design that had not been observed during examination of the more traditional building plan simulation methods on paper and on computer aided design (CAD) work station. The virtual environment enables multiple participants in remote locations to come together and interact with one another and with the environment. Each participant is capable of seeing herself and the other participants and of interacting with them within the simulated environment.
Effect of Free Jet on Refraction and Noise
NASA Technical Reports Server (NTRS)
Khavaran, Abbas; Georgiadis, Nicholas J.; Bridges, James E.; Dippold, Vance F., III
2005-01-01
This article investigates the role of a free jet on the sound radiated from a jet. In particular, the role of an infinite wind tunnel, which simulates the forward flight condition, is compared to that of a finite wind tunnel. The second configuration is usually used in experiments, where the microphones are located in a static ambient medium far outside the free jet. To study the effect of the free jet on noise, both propagation and source strength need to be addressed. In this work, the exact Green's function in a locally parallel flow is derived for a simulated flight case. Numerical examples are presented that show a reduction in the magnitude of the Green's function in the aft arc and an increase in the forward arc for the simulated flight condition. The effect of finite wind tunnel on refraction is sensitive to the source location and is most pronounced in the aft arc. A Reynolds-averaged Navier-Stokes solution (RANS) yields the required mean flow and turbulence scales that are used in the jet mixing noise spectrum calculations. In addition to the sound/flow interaction, the separate effect of source strength and elongation of the noise-generating region of the jet in a forward flight is studied. Comparisons are made with experiments for the static and finite tunnel cases. Finally, the standard free-jet shear corrections that convert the finite wind tunnel measurements to an ideal wind tunnel arrangement are evaluated.
[Development of fixed-base full task space flight training simulator].
Xue, Liang; Chen, Shan-quang; Chang, Tian-chun; Yang, Hong; Chao, Jian-gang; Li, Zhi-peng
2003-01-01
Fixed-base full task flight training simulator is a very critical and important integrated training facility. It is mostly used in training of integrated skills and tasks, such as running the flight program of manned space flight, dealing with faults, operating and controlling spacecraft flight, communicating information between spacecraft and ground. This simulator was made up of several subentries including spacecraft simulation, simulating cabin, sight image, acoustics, main controlling computer, instructor and assistant support. It has implemented many simulation functions, such as spacecraft environment, spacecraft movement, communicating information between spacecraft and ground, typical faults, manual control and operating training, training control, training monitor, training database management, training data recording, system detecting and so on.
NASA Technical Reports Server (NTRS)
Hoh, Roger H.; Smith, James C.; Hinton, David A.
1987-01-01
An analytical and experimental research program was conducted to develop criteria for pilot interaction with advanced controls and displays in single pilot instrument flight rules (SPIFR) operations. The analytic phase reviewed fundamental considerations for pilot workload taking into account existing data, and using that data to develop a divided attention SPIFR pilot workload model. The pilot model was utilized to interpret the two experimental phases. The first experimental phase was a flight test program that evaluated pilot workload in the presence of current and near-term displays and autopilot functions. The second experiment was conducted on a King Air simulator, investigating the effects of co-pilot functions in the presence of very high SPIFR workload. The results indicate that the simplest displays tested were marginal for SPIFR operations. A moving map display aided the most in mental orientation, but had inherent deficiencies as a stand alone replacement for an HSI. Autopilot functions were highly effective for reducing pilot workload. The simulator tests showed that extremely high workload situations can be adequately handled when co-pilot functions are provided.
Initial Cognitive Performance Predicts Longitudinal Aviator Performance
Jo, Booil; Adamson, Maheen M.; Kennedy, Quinn; Noda, Art; Hernandez, Beatriz; Zeitzer, Jamie M.; Friedman, Leah F.; Fairchild, Kaci; Scanlon, Blake K.; Murphy, Greer M.; Taylor, Joy L.
2011-01-01
Objectives. The goal of the study was to improve prediction of longitudinal flight simulator performance by studying cognitive factors that may moderate the influence of chronological age. Method. We examined age-related change in aviation performance in aircraft pilots in relation to baseline cognitive ability measures and aviation expertise. Participants were aircraft pilots (N = 276) aged 40–77.9. Flight simulator performance and cognition were tested yearly; there were an average of 4.3 (± 2.7; range 1–13) data points per participant. Each participant was classified into one of the three levels of aviation expertise based on Federal Aviation Administration pilot proficiency ratings: least, moderate, or high expertise. Results. Addition of measures of cognitive processing speed and executive function to a model of age-related change in aviation performance significantly improved the model. Processing speed and executive function performance interacted such that the slowest rate of decline in flight simulator performance was found in aviators with the highest scores on tests of these abilities. Expertise was beneficial to pilots across the age range studied; however, expertise did not show evidence of reducing the effect of age. Discussion. These data suggest that longitudinal performance on an important real-world activity can be predicted by initial assessment of relevant cognitive abilities. PMID:21586627
14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).
Code of Federal Regulations, 2014 CFR
2014-01-01
... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors... section and § 121.414: (1) A flight instructor (airplane) is a person who is qualified to instruct in an...
The Utilization of Flight Simulation for Research and Development
NASA Technical Reports Server (NTRS)
Totah, Joseph J.; Snyder, C. Thomas (Technical Monitor)
1994-01-01
The objective of this paper is to review the conventional uses of flight simulation at NASA Ames Research Center for research and development, and to also consider the many new areas that have embraced flight simulation as an effective and economic research tool. Flight simulators have always been a very useful and economic research tool. Component technologies have evolved considerably to meet demands imposed by the aerospace community. In fact, the utilization of flight simulators for research and development has become so widely accepted that non-traditional uses have evolved. Whereas flight dynamics and control, guidance and navigation, vehicle design, mission assessment, and training have been, and perhaps always will be, the most popular research areas associated with simulation, many new areas under the broad categories of human factors and information science have realized significant benefits from the use of flight simulators for research and development. This paper will survey the simulation facilities at NASA Ames Research Center, and discuss selected topics associated with research programs, simulation experiments, and related technology development activities for the purpose of highlighting the expanding role of simulation in aerospace research and development. The information in this paper will in no way provide foreign companies with a competitive advantage over U. S. industry.
In-Orbit Collision Analysis for VEGA Second Flight
NASA Astrophysics Data System (ADS)
Volpi, M.; Fossati, T.; Battie, F.
2013-08-01
ELV, as prime contractor of the VEGA launcher, which operates in the protected LEO zone (up to 2000 km altitude), has to demonstrate that it abides by ESA debris mitigation rules, as well as by those imposed by the French Law on Space Operations (LOS). After the full success of VEGA qualification flight, the second flight(VV02) will extend the qualification domain of the launcher to multi-payload missions, with the release of two satellites (Proba-V and VNRedSat-1) and one Cubesat (ESTCube-1) on different SSO orbits The multi-payload adapter, VESPA, also separates its upper part before the second payload release. This paper will present the results of the long-term analyses on inorbit collision between these different bodies. Typical duration of propagation requested by ELV customer is around 50 orbits, requiring a state-of-the-art simulator able to compute efficiently orbits disturbs, usually neglected in launcher trajectory optimization itself. To address the issue of in-orbit collision, ELV has therefore developed its own simulator, POLPO [1], a FORTRAN code which performs the long-term propagation of the released objects trajectories and computes the mutual distance between them. The first part of the paper shall introduce the simulator itself, explaining the computation method chosen and briefly discussing the perturbing effects and their models taken into account in the tool, namely: - gravity field modeling (zonal and tesseral harmonics) - atmospheric model - solar pressure - third-body interaction A second part will describe the application of the in-orbit collision analysis to the second flight mission. Main characteristics of the second flight will be introduced, as well as the dispersions considered for the Monte-Carlo analysis performed. The results of the long-term collision analysis between all the separated bodies will then be presented and discussed.
NASA Technical Reports Server (NTRS)
Clark, Carl C.; Woodling, C. H.
1959-01-01
With the ever increasing complexity of airplanes and the nearness to reality of manned space vehicles the use of pilot-controlled flight simulators has become imperative. The state of the art in flight simulation has progressed well with the demand. Pilot-controlled flight simulators are finding increasing uses in aeromedical research, airplane and airplane systems design, and preflight training. At the present many flight simulators are in existence with various degrees of sophistication and sundry purposes. These vary from fixed base simulators where the pilot applies control inputs according to visual cues presented to him on an instrument display to moving base simulators where various combinations of angular and linear motions are added in an attempt to improve the flight simulation.
A Coordinated Initialization Process for the Distributed Space Exploration Simulation (DSES)
NASA Technical Reports Server (NTRS)
Phillips, Robert; Dexter, Dan; Hasan, David; Crues, Edwin Z.
2007-01-01
This document describes the federate initialization process that was developed at the NASA Johnson Space Center with the HIIA Transfer Vehicle Flight Controller Trainer (HTV FCT) simulations and refined in the Distributed Space Exploration Simulation (DSES). These simulations use the High Level Architecture (HLA) IEEE 1516 to provide the communication and coordination between the distributed parts of the simulation. The purpose of the paper is to describe a generic initialization sequence that can be used to create a federate that can: 1. Properly initialize all HLA objects, object instances, interactions, and time management 2. Check for the presence of all federates 3. Coordinate startup with other federates 4. Robustly initialize and share initial object instance data with other federates.
The Aircraft Simulation Role in Improving Flight Safety Through Control Room Training
NASA Technical Reports Server (NTRS)
Shy, Karla S.; Hageman, Jacob J.; Le, Jeanette H.; Sitz, Joel (Technical Monitor)
2002-01-01
NASA Dryden Flight Research Center uses its six-degrees-of-freedom (6-DOF) fixed-base simulations for mission control room training to improve flight safety and operations. This concept is applied to numerous flight projects such as the F-18 High Alpha Research Vehicle (HARV), the F-15 Intelligent Flight Control System (IFCS), the X-38 Actuator Control Test (XACT), and X-43A (Hyper-X). The Dryden 6-DOF simulations are typically used through various stages of a project, from design to ground tests. The roles of these simulations have expanded to support control room training, reinforcing flight safety by building control room staff proficiency. Real-time telemetry, radar, and video data are generated from flight vehicle simulation models. These data are used to drive the control room displays. Nominal static values are used to complete information where appropriate. Audio communication is also an integral part of training sessions. This simulation capability is used to train control room personnel and flight crew for nominal missions and emergency situations. Such training sessions are also opportunities to refine flight cards and control room display pages, exercise emergency procedures, and practice control room setup for the day of flight. This paper describes this technology as it is used in the X-43A and F-15 IFCS and XACT projects.
Research on computer aided testing of pilot response to critical in-flight events
NASA Technical Reports Server (NTRS)
Giffin, W. C.; Rockwell, T. H.; Smith, P. J.
1984-01-01
Experiments on pilot decision making are described. The development of models of pilot decision making in critical in flight events (CIFE) are emphasized. The following tests are reported on the development of: (1) a frame system representation describing how pilots use their knowledge in a fault diagnosis task; (2) assessment of script norms, distance measures, and Markov models developed from computer aided testing (CAT) data; and (3) performance ranking of subject data. It is demonstrated that interactive computer aided testing either by touch CRT's or personal computers is a useful research and training device for measuring pilot information management in diagnosing system failures in simulated flight situations. Performance is dictated by knowledge of aircraft sybsystems, initial pilot structuring of the failure symptoms and efficient testing of plausible causal hypotheses.
Adams, Catherine A; Murdoch, Jennifer L; Consiglio, Maria C; Williams, Daniel M
2007-07-01
One objective of the Small Aircraft Transportation System (SATS) Project is to increase the capacity and utilization of small non-towered, non-radar equipped airports by transferring traffic management activities to an automated system and separation responsibilities to general aviation (GA) pilots. This paper describes the development of a research multi-function display (MFD) to support the interaction between pilots and an automated Airport Management Module (AMM). Preliminary results of simulation and flight tests indicate that adding the responsibility of monitoring other traffic for self-separation does not increase pilots' subjective workload levels. Pilots preferred using the enhanced MFD to execute flight procedures, reporting improved situation awareness (SA) over conventional instrument flight rules (IFR) procedures.
The free jet as a simulator of forward velocity effects on jet noise
NASA Technical Reports Server (NTRS)
Ahuja, K. K.; Tester, B. J.; Tanna, H. K.
1978-01-01
A thorough theoretical and experimental study of the effects of the free-jet shear layer on the transmission of sound from a model jet placed within the free jet to the far-field receiver located outside the free-jet flow was conducted. The validity and accuracy of the free-jet flight simulation technique for forward velocity effects on jet noise was evaluated. Transformation charts and a systematic computational procedure for converting measurements from a free-jet simulation to the corresponding results from a wind-tunnel simulation, and, finally, to the flight case were provided. The effects of simulated forward flight on jet mixing noise, internal noise and shock-associated noise from model-scale unheated and heated jets were established experimentally in a free-jet facility. It was illustrated that the existing anomalies between full-scale flight data and model-scale flight simulation data projected to the flight case, could well be due to the contamination of flight data by engine internal noise.
Helicopter mathematical models and control law development for handling qualities research
NASA Technical Reports Server (NTRS)
Chen, Robert T. N.; Lebacqz, J. Victor; Aiken, Edwin W.; Tischler, Mark B.
1988-01-01
Progress made in joint NASA/Army research concerning rotorcraft flight-dynamics modeling, design methodologies for rotorcraft flight-control laws, and rotorcraft parameter identification is reviewed. Research into these interactive disciplines is needed to develop the analytical tools necessary to conduct flying qualities investigations using both the ground-based and in-flight simulators, and to permit an efficient means of performing flight test evaluation of rotorcraft flying qualities for specification compliance. The need for the research is particularly acute for rotorcraft because of their mathematical complexity, high order dynamic characteristics, and demanding mission requirements. The research in rotorcraft flight-dynamics modeling is pursued along two general directions: generic nonlinear models and nonlinear models for specific rotorcraft. In addition, linear models are generated that extend their utilization from 1-g flight to high-g maneuvers and expand their frequency range of validity for the design analysis of high-gain flight control systems. A variety of methods ranging from classical frequency-domain approaches to modern time-domain control methodology that are used in the design of rotorcraft flight control laws is reviewed. Also reviewed is a study conducted to investigate the design details associated with high-gain, digital flight control systems for combat rotorcraft. Parameter identification techniques developed for rotorcraft applications are reviewed.
NASA Technical Reports Server (NTRS)
Horst, Richard L.; Mahaffey, David L.; Munson, Robert C.
1989-01-01
The present Phase 2 small business innovation research study was designed to address issues related to scalp-recorded event-related potential (ERP) indices of mental workload and to transition this technology from the laboratory to cockpit simulator environments for use as a systems engineering tool. The project involved five main tasks: (1) Two laboratory studies confirmed the generality of the ERP indices of workload obtained in the Phase 1 study and revealed two additional ERP components related to workload. (2) A task analysis' of flight scenarios and pilot tasks in the Advanced Concepts Flight Simulator (ACFS) defined cockpit events (i.e., displays, messages, alarms) that would be expected to elicit ERPs related to workload. (3) Software was developed to support ERP data analysis. An existing ARD-proprietary package of ERP data analysis routines was upgraded, new graphics routines were developed to enhance interactive data analysis, and routines were developed to compare alternative single-trial analysis techniques using simulated ERP data. (4) Working in conjunction with NASA Langley research scientists and simulator engineers, preparations were made for an ACFS validation study of ERP measures of workload. (5) A design specification was developed for a general purpose, computerized, workload assessment system that can function in simulators such as the ACFS.
14 CFR 61.167 - Airline transport pilot privileges and limitations.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) In flight simulators, and flight training devices representing the aircraft referenced in paragraph... instruct in aircraft, flight simulators, and flight training devices under this section— (i) For more than... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Airline...
Code of Federal Regulations, 2011 CFR
2011-01-01
... training record of the person to whom training has been given; (2) In flight simulators, and flight... debriefings, an airline transport pilot may not instruct in aircraft, flight simulators, and flight training... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Airline Transport Pilots § 61.167 Privileges...
Code of Federal Regulations, 2012 CFR
2012-01-01
... training record of the person to whom training has been given; (2) In flight simulators, and flight... debriefings, an airline transport pilot may not instruct in aircraft, flight simulators, and flight training... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Airline Transport Pilots § 61.167 Privileges...
Code of Federal Regulations, 2013 CFR
2013-01-01
... training record of the person to whom training has been given; (2) In flight simulators, and flight... debriefings, an airline transport pilot may not instruct in aircraft, flight simulators, and flight training... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Airline Transport Pilots § 61.167 Privileges...
NASA Technical Reports Server (NTRS)
Corker, Kevin M.; Labacqz, J. Victor (Technical Monitor)
1997-01-01
The Man-Machine Interaction Design and Analysis System (MIDAS) under joint U.S. Army and NASA cooperative is intended to assist designers of complex human/automation systems in successfully incorporating human performance capabilities and limitations into decision and action support systems. MIDAS is a computational representation of multiple human operators, selected perceptual, cognitive, and physical functions of those operators, and the physical/functional representation of the equipment with which they operate. MIDAS has been used as an integrated predictive framework for the investigation of human/machine systems, particularly in situations with high demands on the operators. We have extended the human performance models to include representation of both human operators and intelligent aiding systems in flight management, and air traffic service. The focus of this development is to predict human performance in response to aiding system developed to identify aircraft conflict and to assist in the shared authority for resolution. The demands of this application requires representation of many intelligent agents sharing world-models, coordinating action/intention, and cooperative scheduling of goals and action in an somewhat unpredictable world of operations. In recent applications to airborne systems development, MIDAS has demonstrated an ability to predict flight crew decision-making and procedural behavior when interacting with automated flight management systems and Air Traffic Control. In this paper, we describe two enhancements to MIDAS. The first involves the addition of working memory in the form of an articulatory buffer for verbal communication protocols and a visuo-spatial buffer for communications via digital datalink. The second enhancement is a representation of multiple operators working as a team. This enhanced model was used to predict the performance of human flight crews and their level of compliance with commercial aviation communication procedures. We show how the data produced by MIDAS compares with flight crew performance data from full mission simulations. Finally, we discuss the use of these features to study communication issues connected with aircraft-based separation assurance.
LDSD POST2 Simulation and SFDT-1 Pre-Flight Launch Operations Analyses
NASA Technical Reports Server (NTRS)
Bowes, Angela L.; Davis, Jody L.; Dutta, Soumyo; Striepe, Scott A.; Ivanov, Mark C.; Powell, Richard W.; White, Joseph
2015-01-01
The Low-Density Supersonic Decelerator (LDSD) Project's first Supersonic Flight Dynamics Test (SFDT-1) occurred June 28, 2014. Program to Optimize Simulated Trajectories II (POST2) was utilized to develop trajectory simulations characterizing all SFDT-1 flight phases from drop to splashdown. These POST2 simulations were used to validate the targeting parameters developed for SFDT- 1, predict performance and understand the sensitivity of the vehicle and nominal mission designs, and to support flight test operations with trajectory performance and splashdown location predictions for vehicle recovery. This paper provides an overview of the POST2 simulations developed for LDSD and presents the POST2 simulation flight dynamics support during the SFDT-1 launch, operations, and recovery.
NASA Technical Reports Server (NTRS)
Raney, David L.; Mcminn, John D.; Pototzky, Anthony S.; Wooley, Christine L.
1993-01-01
Many air-breathing hypersonic aerospacecraft design concepts incorporate an elongated fuselage forebody acting as the aerodynamic compression surface for a hypersonic combustion module, or scram jet. This highly integrated design approach creates the potential for an unprecedented form of aero-propulsive-elastic interaction in which deflections of the vehicle fuselage give rise to propulsion transients, producing force and moment variations that may adversely impact the rigid body flight dynamics and/or further excite the fuselage bending modes. To investigate the potential for such interactions, a math model was developed which included the longitudinal flight dynamics, propulsion system, and first seven elastic modes of a hypersonic air-breathing vehicle. Perturbation time histories from a simulation incorporating this math model are presented that quantify the propulsive force and moment variations resulting from aeroelastic vehicle deflections. Root locus plots are presented to illustrate the effect of feeding the propulsive perturbations back into the aeroelastic model. A concluding section summarizes the implications of the observed effects for highly integrated hypersonic air-breathing vehicle concepts.
NASA Astrophysics Data System (ADS)
Raney, David L.; McMinn, John D.; Pototzky, Anthony S.; Wooley, Christine L.
1993-04-01
Many air-breathing hypersonic aerospacecraft design concepts incorporate an elongated fuselage forebody acting as the aerodynamic compression surface for a hypersonic combustion module, or scram jet. This highly integrated design approach creates the potential for an unprecedented form of aero-propulsive-elastic interaction in which deflections of the vehicle fuselage give rise to propulsion transients, producing force and moment variations that may adversely impact the rigid body flight dynamics and/or further excite the fuselage bending modes. To investigate the potential for such interactions, a math model was developed which included the longitudinal flight dynamics, propulsion system, and first seven elastic modes of a hypersonic air-breathing vehicle. Perturbation time histories from a simulation incorporating this math model are presented that quantify the propulsive force and moment variations resulting from aeroelastic vehicle deflections. Root locus plots are presented to illustrate the effect of feeding the propulsive perturbations back into the aeroelastic model. A concluding section summarizes the implications of the observed effects for highly integrated hypersonic air-breathing vehicle concepts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roesler, Stefan
2002-09-19
Energy spectra of high-energy neutrons and neutron time-of-flight spectra were calculated for the setup of experiment T-454 performed with a NE213 liquid scintillator at the Final Focus Test Beam (FFTB) facility at the Stanford Linear Accelerator Center. The neutrons were created by the interaction a 28.7 GeV electron beam in the aluminum beam dump of the FFTB which is housed inside a thick steel and concrete shielding. In order to determine the attenuation length of high-energy neutrons additional concrete shielding of various thicknesses was placed outside the existing shielding. The calculations were performed using the FLUKA interaction and transport code.more » The energy and time-of-flight were recorded for the location of the detector allowing a detailed comparison with the experimental data. A generally good description of the data is achieved adding confidence to the use of FLUKA for the design of shielding for high-energy electron accelerators.« less
14 CFR 61.4 - Qualification and approval of flight simulators and flight training devices.
Code of Federal Regulations, 2010 CFR
2010-01-01
... for certain flight training devices. (b) Any device used for flight training, testing, or checking... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Qualification and approval of flight simulators and flight training devices. 61.4 Section 61.4 Aeronautics and Space FEDERAL AVIATION...
14 CFR 61.4 - Qualification and approval of flight simulators and flight training devices.
Code of Federal Regulations, 2013 CFR
2013-01-01
... for certain flight training devices. (b) Any device used for flight training, testing, or checking... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Qualification and approval of flight simulators and flight training devices. 61.4 Section 61.4 Aeronautics and Space FEDERAL AVIATION...
14 CFR 61.4 - Qualification and approval of flight simulators and flight training devices.
Code of Federal Regulations, 2012 CFR
2012-01-01
... for certain flight training devices. (b) Any device used for flight training, testing, or checking... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Qualification and approval of flight simulators and flight training devices. 61.4 Section 61.4 Aeronautics and Space FEDERAL AVIATION...
14 CFR 61.4 - Qualification and approval of flight simulators and flight training devices.
Code of Federal Regulations, 2014 CFR
2014-01-01
... for certain flight training devices. (b) Any device used for flight training, testing, or checking... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Qualification and approval of flight simulators and flight training devices. 61.4 Section 61.4 Aeronautics and Space FEDERAL AVIATION...
14 CFR 61.4 - Qualification and approval of flight simulators and flight training devices.
Code of Federal Regulations, 2011 CFR
2011-01-01
... for certain flight training devices. (b) Any device used for flight training, testing, or checking... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Qualification and approval of flight simulators and flight training devices. 61.4 Section 61.4 Aeronautics and Space FEDERAL AVIATION...
Flight Simulator Fidelity Considerations for Total Airline Pilot Training and Evaluation.
DOT National Transportation Integrated Search
2001-04-01
This paper presents the FAA/Volpe Centers Flight Simulator Fidelity Research Program, which is part of the Federal Aviation Administration's effort to promote the effectiveness, availability and affordability of flight simulators. This initiative ...
Single pilot scanning behavior in simulated instrument flight
NASA Technical Reports Server (NTRS)
Pennington, J. E.
1979-01-01
A simulation of tasks associated with single pilot general aviation flight under instrument flight rules was conducted as a baseline for future research studies on advanced flight controls and avionics. The tasks, ranging from simple climbs and turns to an instrument landing systems approach, were flown on a fixed base simulator. During the simulation the control inputs, state variables, and the pilots visual scan pattern including point of regard were measured and recorded.
Piloted evaluation of an integrated propulsion and flight control simulator
NASA Technical Reports Server (NTRS)
Bright, Michelle M.; Simon, Donald L.
1992-01-01
This paper describes a piloted evaluation of the integrated flight and propulsion control simulator at NASA Lewis Research Center. The purpose of this evaluation is to demonstrate the suitability and effectiveness of this fixed based simulator for advanced integrated propulsion and airframe control design. The evaluation will cover control effector gains and deadbands, control effectiveness and control authority, and heads up display functionality. For this evaluation the flight simulator is configured for transition flight using an advanced Short Take-Off and vertical Landing fighter aircraft model, a simplified high-bypass turbofan engine model, fighter cockpit, displays, and pilot effectors. The paper describes the piloted tasks used for rating displays and control effector gains. Pilot comments and simulation results confirm that the display symbology and control gains are very adequate for the transition flight task. Additionally, it is demonstrated that this small-scale, fixed base flight simulator facility can adequately perform a real time, piloted control evaluation.
A preliminary investigation of the use of throttles for emergency flight control
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Fullerton, C. Gordon; Gilyard, Glenn B.; Wolf, Thomas D.; Stewart, James F.
1991-01-01
A preliminary investigation was conducted regarding the use of throttles for emergency flight control of a multiengine aircraft. Several airplanes including a light twin-engine piston-powered airplane, jet transports, and a high performance fighter were studied during flight and piloted simulations. Simulation studies used the B-720, B-727, MD-11, and F-15 aircraft. Flight studies used the Lear 24, Piper PA-30, and F-15 airplanes. Based on simulator and flight results, all the airplanes exhibited some control capability with throttles. With piloted simulators, landings using manual throttles-only control were extremely difficult. An augmented control system was developed that converts conventional pilot stick inputs into appropriate throttle commands. With the augmented system, the B-720 and F-15 simulations were evaluated and could be landed successfully. Flight and simulation data were compared for the F-15 airplane.
Piloted evaluation of an integrated propulsion and flight control simulator
NASA Technical Reports Server (NTRS)
Bright, Michelle M.; Simon, Donald L.
1992-01-01
A piloted evaluation of the integrated flight and propulsion control simulator for advanced integrated propulsion and airframe control design is described. The evaluation will cover control effector gains and deadbands, control effectiveness and control authority, and heads up display functionality. For this evaluation the flight simulator is configured for transition flight using an advanced Short Take-Off and Vertical Landing fighter aircraft model, a simplified high-bypass turbofan engine model, fighter cockpit displays, and pilot effectors. The piloted tasks used for rating displays and control effector gains are described. Pilot comments and simulation results confirm that the display symbology and control gains are very adequate for the transition flight task. Additionally, it is demonstrated that this small-scale, fixed base flight simulator facility can adequately perform a real time, piloted control evaluation.
Iced Aircraft Flight Data for Flight Simulator Validation
NASA Technical Reports Server (NTRS)
Ratvasky, Thomas P.; Blankenship, Kurt; Rieke, William; Brinker, David J.
2003-01-01
NASA is developing and validating technology to incorporate aircraft icing effects into a flight training device concept demonstrator. Flight simulation models of a DHC-6 Twin Otter were developed from wind tunnel data using a subscale, complete aircraft model with and without simulated ice, and from previously acquired flight data. The validation of the simulation models required additional aircraft response time histories of the airplane configured with simulated ice similar to the subscale model testing. Therefore, a flight test was conducted using the NASA Twin Otter Icing Research Aircraft. Over 500 maneuvers of various types were conducted in this flight test. The validation data consisted of aircraft state parameters, pilot inputs, propulsion, weight, center of gravity, and moments of inertia with the airplane configured with different amounts of simulated ice. Emphasis was made to acquire data at wing stall and tailplane stall since these events are of primary interest to model accurately in the flight training device. Analyses of several datasets are described regarding wing and tailplane stall. Key findings from these analyses are that the simulated wing ice shapes significantly reduced the C , max, while the simulated tail ice caused elevator control force anomalies and tailplane stall when flaps were deflected 30 deg or greater. This effectively reduced the safe operating margins between iced wing and iced tail stall as flap deflection and thrust were increased. This flight test demonstrated that the critical aspects to be modeled in the icing effects flight training device include: iced wing and tail stall speeds, flap and thrust effects, control forces, and control effectiveness.
The Effects of Ultra-Long-Range Flights on the Alertness and Performance of Aviators
NASA Technical Reports Server (NTRS)
Caldwell, John A.; Mallis, Melissa M.; Colletti, Laura M.; Oyung, Raymond L.; Brandt, Summer L.; Arsintescu, Lucia; DeRoshia, Charlie W.; Reduta-Rojas, Dinah D.; Chapman, Patrick M.
2006-01-01
This investigation assessed the impact of ultra-long-range (ULR) simulator flights, departing either in the morning or late evening, on the alertness and performance of 17 commercial aviators. Immediately prior to and throughout each flight, alertness and performance were assessed via a computerized test of sustained attention, subjective questionnaires, and "hand-flying" tasks. There were fatigue-related effects on the majority of assessments, and the nature of these effects was consistent across the vigilance and self-report measures. However, the operational "hand-flying" manuevers proved insensitive to the impact of fatigue probably due to procedural factors. Regardless, the results of the present study suggest that fatigue associated with prolonged wakefulness in ULR flight operations will interact with flight schedules due to circadian and homeostatic influences. In this study, the pilots departing at night were at a greater initial disadvantage (during cruise) than pilots who departed earlier in the day; whereas those who departed earlier tended to be most impaired towards the end of the flight prior to landing. In real-world operations, airlines should consider the ramifications of flight schedules and what is known about human sleep and circadian rhythms to optimize safety.
14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.
Code of Federal Regulations, 2014 CFR
2014-01-01
... initial flight training that are capable of being performed in an airplane simulator without a visual system; and (ii) A flight check in the simulator or the airplane to the level of proficiency of a pilot... training required by § 121.423 must be performed in a Level C or higher full flight simulator unless the...
The hybrid bio-inspired aerial vehicle: Concept and SIMSCAPE flight simulation.
Tao Zhang; Su, Steven; Nguyen, Hung T
2016-08-01
This paper introduces a Silver Gull-inspired hybrid aerial vehicle, the Super Sydney Silver Gull (SSSG), which is able to vary its structure, under different manoeuvre requirements, to implement three flight modes: the flapping wing flight, the fixed wing flight, and the quadcopter flight (the rotary wing flight of Unmanned Air Vehicle). Specifically, through proper mechanism design and flight mode transition, the SSSG can imitate the Silver Gull's flight gesture during flapping flight, save power consuming by switching to the fixed wing flight mode during long-range cruising, and hover at targeted area when transferring to quadcopter flight mode. Based on the aerodynamic models, the Simscape, a product of MathWorks, is used to simulate and analyse the performance of the SSSG's flight modes. The entity simulation results indicate that the created SSSG's 3D model is feasible and ready to be manufactured for further flight tests.
Aeroelastic-Acoustics Simulation of Flight Systems
NASA Technical Reports Server (NTRS)
Gupta, kajal K.; Choi, S.; Ibrahim, A.
2009-01-01
This paper describes the details of a numerical finite element (FE) based analysis procedure and a resulting code for the simulation of the acoustics phenomenon arising from aeroelastic interactions. Both CFD and structural simulations are based on FE discretization employing unstructured grids. The sound pressure level (SPL) on structural surfaces is calculated from the root mean square (RMS) of the unsteady pressure and the acoustic wave frequencies are computed from a fast Fourier transform (FFT) of the unsteady pressure distribution as a function of time. The resulting tool proves to be unique as it is designed to analyze complex practical problems, involving large scale computations, in a routine fashion.
Developing a Data Set and Processing Methodology for Fluid/Structure Interaction Code Validation
2007-06-01
50 29. 9-Probe Wake Survey Rake Configurations...structural stability and fatigue in test article components and, in general, in facility support structures and rotating machinery blading . Both T&E... blade analysis and simulations. To ensure the accuracy of the U of CO technology, validation using flight-test data and test data from a wind tunnel
Fuel system technology overview
NASA Technical Reports Server (NTRS)
Friedman, R.
1980-01-01
Fuel system research and technology studies are being conducted to investigate the correlations and interactions of aircraft fuel system design and environment with applicable characteristics of the fuel. Topics include: (1) analysis of in-flight fuel temperatures; (2) fuel systems for high freezing point fuels; (3) experimental study of low temperature pumpability; (4) full scale fuel tank simulation; and (5) rapid freezing point measurement.
NASA Astrophysics Data System (ADS)
2006-01-01
WE RECOMMEND GLX Xplorer Datalogger This hand-held device offers great portability and robustness. Theoretical Concepts in Physics A first-rate reference tool for physics teachers. Do Your Ears Pop in Space? This little gem gives a personal insight into space travel. Full Moon A collection of high-quality photographs from the Apollo missions. The Genius of Science A collection of memories from leading 20th-century physicists. The Simple Science of Flight An excellent source of facts and figures about flight. SUREHigherPhysics This simulation-based software complies with Higher physics. Interactive Physics A programme that makes building simulations quick and easy. WORTH A LOOK Astronomical Enigmas This guide to enigmas could be a little shorter. HANDLE WITH CARE Standing-wave machine This is basically a standing-wave generator with a built-in strobe. WEB WATCH Sounds Amazing is a fantastic site, aimed at Key Stage 4 pupils, for learning about sound and waves.
NASA Technical Reports Server (NTRS)
1997-01-01
An AGATE Concepts Demonstration was conducted at the Annual National Air Transportation Association (NATA) Convention in 1997. Following, a 5-minute introductory briefing, an interactive simulation of a single-pilot, single-engine aircraft was conducted. The participant was able to take off, fly a brief enroute segment, fly a Global Positioning System (GPS) approach and landing, and repeat the approach and landing segment. The participant was provided an advanced 'highway-in-the-sky' presentation on both a simulated head-up display and on a large LCD head-down display to follow throughout the flight. A single-lever power control and display concept was also provided for control of the engine throughout the flight. A second head-down, multifunction display in the instrument panel provided a moving map display for navigation purposes and monitoring of the status of the aircraft's systems.
Overview of the Helios Version 2.0 Computational Platform for Rotorcraft Simulations
NASA Technical Reports Server (NTRS)
Sankaran, Venkateswaran; Wissink, Andrew; Datta, Anubhav; Sitaraman, Jayanarayanan; Jayaraman, Buvna; Potsdam, Mark; Katz, Aaron; Kamkar, Sean; Roget, Beatrice; Mavriplis, Dimitri;
2011-01-01
This article summarizes the capabilities and development of the Helios version 2.0, or Shasta, software for rotary wing simulations. Specific capabilities enabled by Shasta include off-body adaptive mesh refinement and the ability to handle multiple interacting rotorcraft components such as the fuselage, rotors, flaps and stores. In addition, a new run-mode to handle maneuvering flight has been added. Fundamental changes of the Helios interfaces have been introduced to streamline the integration of these capabilities. Various modifications have also been carried out in the underlying modules for near-body solution, off-body solution, domain connectivity, rotor fluid structure interface and comprehensive analysis to accommodate these interfaces and to enhance operational robustness and efficiency. Results are presented to demonstrate the mesh adaptation features of the software for the NACA0015 wing, TRAM rotor in hover and the UH-60A in forward flight.
NASA Technical Reports Server (NTRS)
Huntington, J. L.; Schwartz, D. E.; Marshall, J. R.
1991-01-01
The Gas-Grain Simulation Facility (GGSF) will provide a microgravity environment where undesirable environmental effects are reduced, and thus, experiments involving interactions between small particles and grains can be more suitably performed. Slated for flight aboard the Shuttle in 1992, the ESA glovebox will serve as a scientific and technological testbed for GGSF exobiology experiments as well as generating some basic scientific data. Initial glovebox experiments will test a method of generating a stable, mono-dispersed cloud of fine particles using a vibrating sprinkler system. In the absence of gravity and atmospheric turbulence, it will be possible to determine the influence of interparticle forces in controlling the rate and mode of aggregation. The experimental chamber can be purged of suspended matter to enable multiple repetitions of the experiments. Of particular interest will be the number of particles per unit volume of the chamber, because it is suspected that aggregation will occur extremely rapidly if the number exceeds a critical value. All aggregation events will be recorded on high-resolution video film. Changes in the experimental procedure as a result of surprise events will be accompanied by real-time interaction with the mission specialist during the Shuttle flight.
1979-02-02
R2 = 1.8 nmi (10,940 ft). An analysis of a CAS employing range and range rate indicated that the form of the equation used in ANTC-117 was valid ...interrogations persecond. Preliminary analysis of flight data indicated the system is capable of tracking successfully through garbled situations...ATC simulation, Monte-Carlo simulation of 12 mid-airs and analysis of ARTS III data for ATC interaction. The results of the effort points to the need
Pilot interaction with automated airborne decision making systems
NASA Technical Reports Server (NTRS)
Rouse, W. B.; Hammer, J. M.; Mitchell, C. M.; Morris, N. M.; Lewis, C. M.; Yoon, W. C.
1985-01-01
Progress was made in the three following areas. In the rule-based modeling area, two papers related to identification and significane testing of rule-based models were presented. In the area of operator aiding, research focused on aiding operators in novel failure situations; a discrete control modeling approach to aiding PLANT operators was developed; and a set of guidelines were developed for implementing automation. In the area of flight simulator hardware and software, the hardware will be completed within two months and initial simulation software will then be integrated and tested.
Multi-Exciter Vibroacoustic Simulation of Hypersonic Flight Vibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
GREGORY,DANNY LYNN; CAP,JEROME S.; TOGAMI,THOMAS C.
1999-11-11
Many aerospace structures must survive severe high frequency, hypersonic, random vibration during their flights. The random vibrations are generated by the turbulent boundary layer developed along the exterior of the structures during flight. These environments have not been simulated very well in the past using a fixed-based, single exciter input with an upper frequency range of 2 kHz. This study investigates the possibility of using acoustic ardor independently controlled multiple exciters to more accurately simulate hypersonic flight vibration. The test configuration, equipment, and methodology are described. Comparisons with actual flight measurements and previous single exciter simulations are also presented.
Time Domain Tool Validation Using ARES I-X Flight Data
NASA Technical Reports Server (NTRS)
Hough, Steven; Compton, James; Hannan, Mike; Brandon, Jay
2011-01-01
The ARES I-X vehicle was launched from NASA's Kennedy Space Center (KSC) on October 28, 2009 at approximately 11:30 EDT. ARES I-X was the first test flight for NASA s ARES I launch vehicle, and it was the first non-Shuttle launch vehicle designed and flown by NASA since Saturn. The ARES I-X had a 4-segment solid rocket booster (SRB) first stage and a dummy upper stage (US) to emulate the properties of the ARES I US. During ARES I-X pre-flight modeling and analysis, six (6) independent time domain simulation tools were developed and cross validated. Each tool represents an independent implementation of a common set of models and parameters in a different simulation framework and architecture. Post flight data and reconstructed models provide the means to validate a subset of the simulations against actual flight data and to assess the accuracy of pre-flight dispersion analysis. Post flight data consists of telemetered Operational Flight Instrumentation (OFI) data primarily focused on flight computer outputs and sensor measurements as well as Best Estimated Trajectory (BET) data that estimates vehicle state information from all available measurement sources. While pre-flight models were found to provide a reasonable prediction of the vehicle flight, reconstructed models were generated to better represent and simulate the ARES I-X flight. Post flight reconstructed models include: SRB propulsion model, thrust vector bias models, mass properties, base aerodynamics, and Meteorological Estimated Trajectory (wind and atmospheric data). The result of the effort is a set of independently developed, high fidelity, time-domain simulation tools that have been cross validated and validated against flight data. This paper presents the process and results of high fidelity aerospace modeling, simulation, analysis and tool validation in the time domain.
Simulation of the Physics of Flight
ERIC Educational Resources Information Center
Lane, W. Brian
2013-01-01
Computer simulations continue to prove to be a valuable tool in physics education. Based on the needs of an Aviation Physics course, we developed the PHYSics of FLIght Simulator (PhysFliS), which numerically solves Newton's second law for an airplane in flight based on standard aerodynamics relationships. The simulation can be used to pique…
Advanced aeroservoelastic stabilization techniques for hypersonic flight vehicles
NASA Technical Reports Server (NTRS)
Chan, Samuel Y.; Cheng, Peter Y.; Myers, Thomas T.; Klyde, David H.; Magdaleno, Raymond E.; Mcruer, Duane T.
1992-01-01
Advanced high performance vehicles, including Single-Stage-To-Orbit (SSTO) hypersonic flight vehicles, that are statically unstable, require higher bandwidth flight control systems to compensate for the instability resulting in interactions between the flight control system, the engine/propulsion dynamics, and the low frequency structural modes. Military specifications, such as MIL-F-9490D and MIL-F-87242, tend to limit treatment of structural modes to conventional gain stabilization techniques. The conventional gain stabilization techniques, however, introduce low frequency effective time delays which can be troublesome from a flying qualities standpoint. These time delays can be alleviated by appropriate blending of gain and phase stabilization techniques (referred to as Hybrid Phase Stabilization or HPS) for the low frequency structural modes. The potential of using HPS for compensating structural mode interaction was previously explored. It was shown that effective time delay was significantly reduced with the use of HPS; however, the HPS design was seen to have greater residual response than a conventional gain stablized design. Additional work performed to advance and refine the HPS design procedure, to further develop residual response metrics as a basis for alternative structural stability specifications, and to develop strategies for validating HPS design and specification concepts in manned simulation is presented. Stabilization design sensitivity to structural uncertainties and aircraft-centered requirements are also assessed.
Simulation of MEMS for the Next Generation Space Telescope
NASA Technical Reports Server (NTRS)
Mott, Brent; Kuhn, Jonathan; Broduer, Steve (Technical Monitor)
2001-01-01
The NASA Goddard Space Flight Center (GSFC) is developing optical micro-electromechanical system (MEMS) components for potential application in Next Generation Space Telescope (NGST) science instruments. In this work, we present an overview of the electro-mechanical simulation of three MEMS components for NGST, which include a reflective micro-mirror array and transmissive microshutter array for aperture control for a near infrared (NIR) multi-object spectrometer and a large aperture MEMS Fabry-Perot tunable filter for a NIR wide field camera. In all cases the device must operate at cryogenic temperatures with low power consumption and low, complementary metal oxide semiconductor (CMOS) compatible, voltages. The goal of our simulation efforts is to adequately predict both the performance and the reliability of the devices during ground handling, launch, and operation to prevent failures late in the development process and during flight. This goal requires detailed modeling and validation of complex electro-thermal-mechanical interactions and very large non-linear deformations, often involving surface contact. Various parameters such as spatial dimensions and device response are often difficult to measure reliably at these small scales. In addition, these devices are fabricated from a wide variety of materials including surface micro-machined aluminum, reactive ion etched (RIE) silicon nitride, and deep reactive ion etched (DRIE) bulk single crystal silicon. The above broad set of conditions combine to be a formidable challenge for space flight qualification analysis. These simulations represent NASA/GSFC's first attempts at implementing a comprehensive strategy to address complex MEMS structures.
NASA Technical Reports Server (NTRS)
Koontz, Steve; Suggs, Robb; Schneider, Todd; Minow, Joe; Alred, John; Cooke, Bill; Mikatarian, Ron; Kramer, Leonard; Boeder, paul; Soares, Carlos
2007-01-01
The set of spacecraft interactions with the space flight environment that have produced the largest impacts on the design, verification, and operation of the International Space Station (ISS) Program during the May 2000 to May 2007 time frame are the focus of this paper. In-flight data, flight crew observations, and the results of ground-based test and analysis directly supporting programmatic and operational decision-making are reported as are the analysis and simulation efforts that have led to new knowledge and capabilities supporting current and future space explorations programs. The specific spacecraft-environment interactions that have had the greatest impact on ISS Program activities during the first several years of flight are: 1) spacecraft charging, 2) micrometeoroids and orbital debris effects, 3) ionizing radiation (both total dose to materials and single event effects [SEE] on avionics), 4) hypergolic rocket engine plume impingement effects, 5) venting/dumping of liquids, 6) spacecraft contamination effects, 7) neutral atmosphere and atomic oxygen effects, 8) satellite drag effects, and 9) solar ultraviolet effects. Orbital inclination (51.6deg) and altitude (nominally between 350 km and 460 km) determine the set of natural environment factors affecting the performance and reliability of materials and systems on ISS. ISS operates in the F2 region of Earth s ionosphere in well-defined fluxes of atomic oxygen, other ionospheric plasma species, solar UV, VUV, and x-ray radiation as well as galactic cosmic rays, trapped radiation, and solar cosmic rays. The micrometeoroid and orbital debris environment is an important determinant of spacecraft design and operations in any orbital inclination. The induced environment results from ISS interactions with the natural environment as well as environmental factors produced by ISS itself and visiting vehicles. Examples include ram-wake effects, hypergolic thruster plume impingement, materials out-gassing, venting and dumping of fluids, and specific photovoltaic (PV) power system interactions with the ionospheric plasma. Vehicle size (L) and velocity (v), combined with the magnitude and direction of the geomagnetic field (B) produce operationally significant magnetic induction voltages (VxB.L) in ISS conducting structure during high latitude flight (>+/- 45deg) during each orbit. In addition, ISS is a large vehicle and produces a deep wake structure from which both ionospheric plasma and neutrals species are largely excluded. ISS must fly in a very limited number of approved flight attitudes, so that exposure of a particular material or system to environmental factors depends upon: 1) location on ISS, 2) ISS flight configuration, 3) ISS flight attitude, and 4) variation of solar exposure (Beta angle), and hence thermal environment, with time. Finally, an induced ionizing radiation environment is produced by trapped radiation and solar/cosmic ray interactions with the relatively massive ISS structural shielding.
Computational Models of the Cardiovascular System and Its Response to Microgravity
NASA Technical Reports Server (NTRS)
Kamm, Roger D.
1999-01-01
Computational models of the cardiovascular system are powerful adjuncts to ground-based and in-flight experiments. We will provide NSBRI with a model capable of simulating the short-term effects of gravity on cardiovascular function. The model from this project will: (1) provide a rational framework which quantitatively defines interactions among complex cardiovascular parameters and which supports the critical interpretation of experimental results and testing of hypotheses. (2) permit predictions of the impact of specific countermeasures in the context of various hypothetical cardiovascular abnormalities induced by microgravity. Major progress has been made during the first 18 months of the program: (1) We have developed an operational first-order computer model capable of simulating the cardiovascular response to orthostatic stress. The model consists of a lumped parameter hemodynamic model and a complete reflex control system. The latter includes cardiopulmonary and carotid sinus reflex limbs and interactions between the two. (2) We have modeled the physiologic stress of tilt table experiments and lower body negative pressure procedures (LBNP). We have verified our model's predictions by comparing them with experimental findings from the literature. (3) We have established collaborative efforts with leading investigators interested in experimental studies of orthostatic intolerance, cardiovascular control, and physiologic responses to space flight. (4) We have established a standardized method of transferring data to our laboratory from the ongoing NSBRI bedrest studies. We use this data to estimate input parameters to our model and compare our model predictions to actual data to further verify our model. (5) We are in the process of systematically simulating current hypotheses concerning the mechanism underlying orthostatic intolerance by matching our simulations to stand test data from astronauts pre- and post-flight. (6) We are in the process of developing a JAVA version of the simulator which will be distributed amongst the cardiovascular team members. Future work on this project involves modifications of the model to represent a rodent (rat) model, further evaluation of the bedrest astronaut and animal data, and systematic investigation of specific countermeasures.
CERT: Center of Excellence in Rotorcraft Technology
NASA Technical Reports Server (NTRS)
2002-01-01
The research objectives of this effort are to understand the physical processes that influence the formation of the tip vortex of a rotor in advancing flight, and to develop active and passive means of weakening the tip vortex during conditions when strong blade-vortex-interaction effects are expected. A combined experimental, analytical, and computational effort is being employed. Specifically, the following efforts are being pursued: 1. Analytical evaluation and design of combined elastic tailoring and active material actuators applicable to rotor blade tips. 2. Numerical simulations of active and passive tip devices. 3. LDV Measurement of the near and far wake behind rotors in forward flight.
Workshop on Solar Electric Propulsion
NASA Technical Reports Server (NTRS)
Bents, David; Marvin, Dean
1993-01-01
A summary of the discussion at the workshop on solar electric propulsion (SEP) is presented. The purpose of ELITE SEP flight experiment is to demonstrate operation of solar array powered electric thrusters for raising spacecraft from parking orbit to higher altitudes, leading to definition of an operational SEP orbit transfer vehicles (OTV) for Air Force missions. Many of the problems or potential problems that may be associated with SEP are not well understood nor clearly identified, and system level phenomena such as interaction of thruster plume with the solar arrays cannot be simulated in a ground test. Therefore, an end-to-end system flight test is required to demonstrate solar electric propulsion.
Workshop on Solar Electric Propulsion
NASA Astrophysics Data System (ADS)
Bents, David; Marvin, Dean
1993-05-01
A summary of the discussion at the workshop on solar electric propulsion (SEP) is presented. The purpose of ELITE SEP flight experiment is to demonstrate operation of solar array powered electric thrusters for raising spacecraft from parking orbit to higher altitudes, leading to definition of an operational SEP orbit transfer vehicles (OTV) for Air Force missions. Many of the problems or potential problems that may be associated with SEP are not well understood nor clearly identified, and system level phenomena such as interaction of thruster plume with the solar arrays cannot be simulated in a ground test. Therefore, an end-to-end system flight test is required to demonstrate solar electric propulsion.
Flight Test of an Adaptive Controller and Simulated Failure/Damage on the NASA NF-15B
NASA Technical Reports Server (NTRS)
Buschbacher, Mark; Maliska, Heather
2006-01-01
The method of flight-testing the Intelligent Flight Control System (IFCS) Second Generation (Gen-2) project on the NASA NF-15B is herein described. The Gen-2 project objective includes flight-testing a dynamic inversion controller augmented by a direct adaptive neural network to demonstrate performance improvements in the presence of simulated failure/damage. The Gen-2 objectives as implemented on the NASA NF-15B created challenges for software design, structural loading limitations, and flight test operations. Simulated failure/damage is introduced by modifying control surface commands, therefore requiring structural loads measurements. Flight-testing began with the validation of a structural loads model. Flight-testing of the Gen-2 controller continued, using test maneuvers designed in a sequenced approach. Success would clear the new controller with respect to dynamic response, simulated failure/damage, and with adaptation on and off. A handling qualities evaluation was conducted on the capability of the Gen-2 controller to restore aircraft response in the presence of a simulated failure/damage. Control room monitoring of loads sensors, flight dynamics, and controller adaptation, in addition to postflight data comparison to the simulation, ensured a safe methodology of buildup testing. Flight-testing continued without major incident to accomplish the project objectives, successfully uncovering strengths and weaknesses of the Gen-2 control approach in flight.
The C-17 simulator at NASA's Dryden Flight Research Center, Edwards, California
2004-10-04
The C-17 simulator at NASA's Dryden Flight Research Center, Edwards, California. Simulators offer a safe and economical alternative to actual flights to gather data, as well as being excellent facilities for pilot practice and training.
Effect of caffeine on simulator flight performance in sleep-deprived military pilot students.
Lohi, Jouni J; Huttunen, Kerttu H; Lahtinen, Taija M M; Kilpeläinen, Airi A; Muhli, Arto A; Leino, Tuomo K
2007-09-01
Caffeine has been suggested to act as a countermeasure against fatigue in military operations. In this randomized, double-blind, placebo-controlled study, the effect of caffeine on simulator flight performance was examined in 13 military pilots during 37 hours of sleep deprivation. Each subject performed a flight mission in simulator four times. The subjects received either a placebo (six subjects) or 200 mg of caffeine (seven subjects) 1 hour before the simulated flights. A moderate 200 mg intake of caffeine was associated with higher axillary temperatures, but it did not affect subjectively assessed sleepiness. Flight performance was similar in both groups during the four rounds flown under sleep deprivation. However, subjective evaluation of overall flight performance in the caffeine group tended to be too optimistic, indicating a potential flight safety problem. Based on our results, we do not recommend using caffeine pills in military flight operations.
Pre-Flight Testing of Spaceborne GPS Receivers using a GPS Constellation Simulator
NASA Technical Reports Server (NTRS)
Kizhner, Semion; Davis, Edward; Alonso, R.
1999-01-01
The NASA Goddard Space Flight Center (GSFC) Global Positioning System (GPS) applications test facility has been established within the GSFC Guidance Navigation and Control Center. The GPS test facility is currently housing the Global Simulation Systems Inc. (GSSI) STR2760 GPS satellite 40-channel attitude simulator and a STR4760 12-channel navigation simulator. The facility also contains a few other resources such as an atomic time standard test bed, a rooftop antenna platform and a radome. It provides a new capability for high dynamics GPS simulations of space flight that is unique within the aerospace community. The GPS facility provides a critical element for the development and testing of GPS based technologies i.e. position, attitude and precise time determination used on-board a spacecraft, suborbital rocket balloon. The GPS simulation system is configured in a transportable rack and is available for GPS component development as well as for component, spacecraft subsystem and system level testing at spacecraft integration and tests sites. The GPS facility has been operational since early 1996 and has utilized by space flight projects carrying GPS experiments, such as the OrbView-2 and the Argentine SAC-A spacecrafts. The SAC-A pre-flight test data obtained by using the STR2760 simulator and the comparison with preliminary analysis of the GPS data from SAC-A telemetry are summarized. This paper describes pre-flight tests and simulations used to support a unique spaceborne GPS experiment. The GPS experiment mission objectives and the test program are described, as well as the GPS test facility configuration needed to verify experiment feasibility. Some operational and critical issues inherent in GPS receiver pre-flight tests and simulations using this GPS simulation, and test methodology are described. Simulation and flight data are presented. A complete program of pre-flight testing of spaceborne GPS receivers using a GPS constellation simulator is detailed.
Pre-Flight Testing of Spaceborne GPS Receivers Using a GPS Constellation Simulator
NASA Technical Reports Server (NTRS)
Kizhner, Semion; Davis, Edward; Alonso, Roberto
1999-01-01
The NASA Goddard Space Flight Center (GSFC) Global Positioning System (GPS) applications test facility has been established within the GSFC Guidance Navigation and Control Center. The GPS test facility is currently housing the Global Simulation Systems Inc. (GSSI) STR2760 GPS satellite 40-channel attitude simulator and a STR4760 12-channel navigation simulator. The facility also contains a few other resources such as an atomic time standard test bed, a rooftop antenna platform and a radome. It provides a new capability for high dynamics GPS simulations of space flight that is unique within the aerospace community. The GPS facility provides a critical element for the development and testing of GPS based technologies i.e. position, attitude and precise time determination used on-board a spacecraft, suborbital rocket or balloon. The GPS simulator system is configured in a transportable rack and is available for GPS component development as well as for component, spacecraft subsystem and system level testing at spacecraft integration and test sites. The GPS facility has been operational since early 1996 and has been utilized by space flight projects carrying GPS experiments, such as the OrbView-2 and the Argentine SAC-A spacecrafts. The SAC-A pre-flight test data obtained by using the STR2760 simulator and the comparison with preliminary analysis of the GPS data from SAC-A telemetry are summarized. This paper describes pre-flight tests and simulations used to support a unique spaceborne GPS experiment. The GPS experiment mission objectives and the test program are described, as well as the GPS test facility configuration needed to verify experiment feasibility. Some operational and critical issues inherent in GPS receiver pre-flight tests and simulations using this GPS simulator, and test methodology are described. Simulation and flight data are presented. A complete program of pre-flight testing of spaceborne GPS receivers using a GPS constellation simulator is detailed.
1986-09-01
TECHNICAL EVALUATION REPORT OF THE SYMPOSIUM ON "FLIGHT SIMULATION" A. M. Cook. NASA -Ames Research Center 1. INTRODUCILN This report evaluates the 67th...John C. Ousterberry* NASA Ames Research Center Moffett Field, California 94035, U.S.A. SUMMARY Early AGARD papers on manned flight simulation...and developffent simulators. VISUAL AND MOTION CUEING IN HELICOPTER SIMULATION Nichard S. Bray NASA Ames Research Center Moffett Field, California
High-voltage plasma interactions calculations using NASCAP/LEO
NASA Technical Reports Server (NTRS)
Mandell, M. J.; Katz, I.
1990-01-01
This paper reviews four previous simulations (two laboratory and two space-flight) of interactions of a high-voltage spacecraft with a plasma under low-earth orbit conditions, performed using a three-dimensional computer code NASCAP/LEO. Results show that NASCAP/LEO can perform meaningful simulations of high-voltage plasma interactions taking into account three-dimensional effects of geometry, spacecraft motion, and magnetic field. Two new calculations are presented: (1) for current collection by 1-mm pinholes in wires (showing that a pinhole in a wire can collect far more current than a similar pinhole in a flat plate); and (2) current collection by Charge-2 mother vehicle launched in December 1985. It is shown that the Charge-2 calculations predicted successfully ion collection at negative bias, the floating potential of a probe outside or inside the sheath under negative bias conditions, and magnetically limited electron collection under electron beam operation at high altitude.
NASA Astrophysics Data System (ADS)
Streltsov, A. V.; Lynch, K. A.; Fernandes, P. A.; Miceli, R.; Hampton, D. L.; Michell, R. G.; Samara, M.
2012-12-01
The MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) sounding rocket was launched from Poker Flat on February 19, 2012. The rocket was aimed into the system of discrete auroral arcs and during its flight it detected small-scale electromagnetic disturbances with characteristic features of dispersive Alfvén waves. We report results from numerical modeling of these observations. Our simulations are based on a two-fluid MHD model describing multi-scale interactions between magnetic field-aligned currents carried by shear Alfven waves and the ionosphere. The results from our simulations suggest that the small-scale electromagnetic structures measured by MICA indeed can be interpreted as dispersive Alfvén waves generated by the active ionospheric response (ionopspheric feedback instability) inside the large-scale downward magnetic field-aligned current interacting with the ionosphere.
Ground-to-Flight Handling Qualities Comparisons for a High Performance Airplane
NASA Technical Reports Server (NTRS)
Brandon, Jay M.; Glaab, Louis J.; Brown, Philip W.; Phillips, Michael R.
1995-01-01
A flight test program was conducted in conjunction with a ground-based piloted simulation study to enable a comparison of handling qualities ratings for a variety of maneuvers between flight and simulation of a modern high performance airplane. Specific objectives included an evaluation of pilot-induced oscillation (PIO) tendencies and a determination of maneuver types which result in either good or poor ground-to-flight pilot handling qualities ratings. A General Dynamics F-16XL aircraft was used for the flight evaluations, and the NASA Langley Differential Maneuvering Simulator was employed for the ground based evaluations. Two NASA research pilots evaluated both the airplane and simulator characteristics using tasks developed in the simulator. Simulator and flight tests were all conducted within approximately a one month time frame. Maneuvers included numerous fine tracking evaluations at various angles of attack, load factors and speed ranges, gross acquisitions involving longitudinal and lateral maneuvering, roll angle captures, and an ILS task with a sidestep to landing. Overall results showed generally good correlation between ground and flight for PIO tendencies and general handling qualities comments. Differences in pilot technique used in simulator evaluations and effects of airplane accelerations and motions are illustrated.
Simulation System Fidelity Assessment at the Vertical Motion Simulator
NASA Technical Reports Server (NTRS)
Beard, Steven D.; Reardon, Scott E.; Tobias, Eric L.; Aponso, Bimal L.
2013-01-01
Fidelity is a word that is often used but rarely understood when talking about groundbased simulation. Assessing the cueing fidelity of a ground based flight simulator requires a comparison to actual flight data either directly or indirectly. Two experiments were conducted at the Vertical Motion Simulator using the GenHel UH-60A Black Hawk helicopter math model that was directly compared to flight data. Prior to the experiment the simulator s motion and visual system frequency responses were measured, the aircraft math model was adjusted to account for the simulator motion system delays, and the motion system gains and washouts were tuned for the individual tasks. The tuned motion system fidelity was then assessed against the modified Sinacori criteria. The first experiments showed similar handling qualities ratings (HQRs) to actual flight for a bob-up and sidestep maneuvers. The second experiment showed equivalent HQRs between flight and simulation for the ADS33 slalom maneuver for the two pilot participants. The ADS33 vertical maneuver HQRs were mixed with one pilot rating the flight and simulation the same while the second pilot rated the simulation worse. In addition to recording HQRs on the second experiment, an experimental Simulation Fidelity Rating (SFR) scale developed by the University of Liverpool was tested for applicability to engineering simulators. A discussion of the SFR scale for use on the Vertical Motion Simulator is included in this paper.
Software for Engineering Simulations of a Spacecraft
NASA Technical Reports Server (NTRS)
Shireman, Kirk; McSwain, Gene; McCormick, Bernell; Fardelos, Panayiotis
2005-01-01
Spacecraft Engineering Simulation II (SES II) is a C-language computer program for simulating diverse aspects of operation of a spacecraft characterized by either three or six degrees of freedom. A functional model in SES can include a trajectory flight plan; a submodel of a flight computer running navigational and flight-control software; and submodels of the environment, the dynamics of the spacecraft, and sensor inputs and outputs. SES II features a modular, object-oriented programming style. SES II supports event-based simulations, which, in turn, create an easily adaptable simulation environment in which many different types of trajectories can be simulated by use of the same software. The simulation output consists largely of flight data. SES II can be used to perform optimization and Monte Carlo dispersion simulations. It can also be used to perform simulations for multiple spacecraft. In addition to its generic simulation capabilities, SES offers special capabilities for space-shuttle simulations: for this purpose, it incorporates submodels of the space-shuttle dynamics and a C-language version of the guidance, navigation, and control components of the space-shuttle flight software.
NASA Technical Reports Server (NTRS)
Shelton, Kevin J.; Kramer, Lynda J.; Ellis,Kyle K.; Rehfeld, Sherri A.
2012-01-01
The Synthetic and Enhanced Vision Systems for NextGen (SEVS) simulation and flight tests are jointly sponsored by NASA's Aviation Safety Program, Vehicle Systems Safety Technology project and the Federal Aviation Administration (FAA). The flight tests were conducted by a team of Honeywell, Gulfstream Aerospace Corporation and NASA personnel with the goal of obtaining pilot-in-the-loop test data for flight validation, verification, and demonstration of selected SEVS operational and system-level performance capabilities. Nine test flights (38 flight hours) were conducted over the summer and fall of 2011. The evaluations were flown in Gulfstream.s G450 flight test aircraft outfitted with the SEVS technology under very low visibility instrument meteorological conditions. Evaluation pilots flew 108 approaches in low visibility weather conditions (600 ft to 2400 ft visibility) into various airports from Louisiana to Maine. In-situ flight performance and subjective workload and acceptability data were collected in collaboration with ground simulation studies at LaRC.s Research Flight Deck simulator.
Use of off-the-shelf PC-based flight simulators for aviation human factors research.
DOT National Transportation Integrated Search
1996-04-01
Flight simulation has historically been an expensive proposition, particularly if out-the-window views were desired. Advances in computer technology have allowed a modular, off-the-shelf flight simulation (based on 80486 processors or Pentiums) to be...
1986-12-26
NAVAL TRAINING SYSTEMS CENTER ORLANDO. FLORIDA IT FILE COPY THE EFFECTS OF ASYNCHRONOUS VISUAL DELAYS ON SIMULATOR FLIGHT PERFORMANCE AND THE...ASYNCHRONOUS VISUAL. DELAYS ON SI.WLATOR FLIGHT PERF OMANCE AND THE DEVELOPMENT OF SIMLATOR SICKNESS SYMPTOMATOLOGY K. C. Uliano, E. Y. Lambert, R. S. Kennedy...ACCESSION NO. N63733N SP-01 0785-7P6 I. 4780 11. TITLE (Include Security Classification) The Effects of Asynchronous Visual Delays on Simulator Flight
NASA Technical Reports Server (NTRS)
Kiteley, G. W.; Harris, R. L., Sr.
1978-01-01
Ten student pilots were given a 1 hour training session in the NASA Langley Research Center's General Aviation Simulator by a certified flight instructor and a follow-up flight evaluation was performed by the student's own flight instructor, who has also flown the simulator. The students and instructors generally felt that the simulator session had a positive effect on the students. They recommended that a simulator with a visual scene and a motion base would be useful in performing such maneuvers as: landing approaches, level flight, climbs, dives, turns, instrument work, and radio navigation, recommending that the simulator would be an efficient means of introducing the student to new maneuvers before doing them in flight. The students and instructors estimated that about 8 hours of simulator time could be profitably devoted to the private pilot training.
Flight simulation software at NASA Dryden Flight Research Center
NASA Technical Reports Server (NTRS)
Norlin, Ken A.
1995-01-01
The NASA Dryden Flight Research Center has developed a versatile simulation software package that is applicable to a broad range of fixed-wing aircraft. This package has evolved in support of a variety of flight research programs. The structure is designed to be flexible enough for use in batch-mode, real-time pilot-in-the-loop, and flight hardware-in-the-loop simulation. Current simulations operate on UNIX-based platforms and are coded with a FORTRAN shell and C support routines. This paper discusses the features of the simulation software design and some basic model development techniques. The key capabilities that have been included in the simulation are described. The NASA Dryden simulation software is in use at other NASA centers, within industry, and at several universities. The straightforward but flexible design of this well-validated package makes it especially useful in an engineering environment.
Code of Federal Regulations, 2012 CFR
2012-01-01
... used during line operational simulation for evaluation and line-oriented flight training only to...) When flight testing, flight checking, or line operational simulation is being conducted, the...
Code of Federal Regulations, 2013 CFR
2013-01-01
... used during line operational simulation for evaluation and line-oriented flight training only to...) When flight testing, flight checking, or line operational simulation is being conducted, the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... used during line operational simulation for evaluation and line-oriented flight training only to...) When flight testing, flight checking, or line operational simulation is being conducted, the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... used during line operational simulation for evaluation and line-oriented flight training only to...) When flight testing, flight checking, or line operational simulation is being conducted, the...
Code of Federal Regulations, 2014 CFR
2014-01-01
... used during line operational simulation for evaluation and line-oriented flight training only to...) When flight testing, flight checking, or line operational simulation is being conducted, the...
Flight code validation simulator
NASA Astrophysics Data System (ADS)
Sims, Brent A.
1996-05-01
An End-To-End Simulation capability for software development and validation of missile flight software on the actual embedded computer has been developed utilizing a 486 PC, i860 DSP coprocessor, embedded flight computer and custom dual port memory interface hardware. This system allows real-time interrupt driven embedded flight software development and checkout. The flight software runs in a Sandia Digital Airborne Computer and reads and writes actual hardware sensor locations in which Inertial Measurement Unit data resides. The simulator provides six degree of freedom real-time dynamic simulation, accurate real-time discrete sensor data and acts on commands and discretes from the flight computer. This system was utilized in the development and validation of the successful premier flight of the Digital Miniature Attitude Reference System in January of 1995 at the White Sands Missile Range on a two stage attitude controlled sounding rocket.
Man-vehicle systems research facility advanced aircraft flight simulator throttle mechanism
NASA Technical Reports Server (NTRS)
Kurasaki, S. S.; Vallotton, W. C.
1985-01-01
The Advanced Aircraft Flight Simulator is equipped with a motorized mechanism that simulates a two engine throttle control system that can be operated via a computer driven performance management system or manually by the pilots. The throttle control system incorporates features to simulate normal engine operations and thrust reverse and vary the force feel to meet a variety of research needs. While additional testing to integrate the work required is principally now in software design, since the mechanical aspects function correctly. The mechanism is an important part of the flight control system and provides the capability to conduct human factors research of flight crews with advanced aircraft systems under various flight conditions such as go arounds, coupled instrument flight rule approaches, normal and ground operations and emergencies that would or would not normally be experienced in actual flight.
A Laboratory Glass-Cockpit Flight Simulator for Automation and Communications Research
NASA Technical Reports Server (NTRS)
Pisanich, Gregory M.; Heers, Susan T.; Shafto, Michael G. (Technical Monitor)
1995-01-01
A laboratory glass-cockpit flight simulator supporting research on advanced commercial flight deck and Air Traffic Control (ATC) automation and communication interfaces has been developed at the Aviation Operations Branch at the NASA Ames Research Center. This system provides independent and integrated flight and ATC simulator stations, party line voice and datalink communications, along with video and audio monitoring and recording capabilities. Over the last several years, it has been used to support the investigation of flight human factors research issues involving: communication modality; message content and length; graphical versus textual presentation of information, and human accountability for automation. This paper updates the status of this simulator, describing new functionality in the areas of flight management system, EICAS display, and electronic checklist integration. It also provides an overview of several experiments performed using this simulator, including their application areas and results. Finally future enhancements to its ATC (integration of CTAS software) and flight deck (full crew operations) functionality are described.
NASA Technical Reports Server (NTRS)
Williams, Daniel M.; Consiglio, Maria C.; Murdoch, Jennifer L.; Adams, Catherine H.
2005-01-01
This paper provides an analysis of Flight Technical Error (FTE) from recent SATS experiments, called the Higher Volume Operations (HVO) Simulation and Flight experiments, which NASA conducted to determine pilot acceptability of the HVO concept for normal operating conditions. Reported are FTE results from simulation and flight experiment data indicating the SATS HVO concept is viable and acceptable to low-time instrument rated pilots when compared with today s system (baseline). Described is the comparative FTE analysis of lateral, vertical, and airspeed deviations from the baseline and SATS HVO experimental flight procedures. Based on FTE analysis, all evaluation subjects, low-time instrument-rated pilots, flew the HVO procedures safely and proficiently in comparison to today s system. In all cases, the results of the flight experiment validated the results of the simulation experiment and confirm the utility of the simulation platform for comparative Human in the Loop (HITL) studies of SATS HVO and Baseline operations.
Kennedy, Quinn; Taylor, Joy; Heraldez, Daniel; Noda, Art; Lazzeroni, Laura C; Yesavage, Jerome
2013-07-01
Intraindividual variability (IIV) is negatively associated with cognitive test performance and is positively associated with age and some neurological disorders. We aimed to extend these findings to a real-world task, flight simulator performance. We hypothesized that IIV predicts poorer initial flight performance and increased rate of decline in performance among middle-aged and older pilots. Two-hundred and thirty-six pilots (40-69 years) completed annual assessments comprising a cognitive battery and two 75-min simulated flights in a flight simulator. Basic and complex IIV composite variables were created from measures of basic reaction time and shifting and divided attention tasks. Flight simulator performance was characterized by an overall summary score and scores on communication, emergencies, approach, and traffic avoidance components. Although basic IIV did not predict rate of decline in flight performance, it had a negative association with initial performance for most flight measures. After taking into account processing speed, basic IIV explained an additional 8%-12% of the negative age effect on initial flight performance. IIV plays an important role in real-world tasks and is another aspect of cognition that underlies age-related differences in cognitive performance.
2013-01-01
Objectives. Intraindividual variability (IIV) is negatively associated with cognitive test performance and is positively associated with age and some neurological disorders. We aimed to extend these findings to a real-world task, flight simulator performance. We hypothesized that IIV predicts poorer initial flight performance and increased rate of decline in performance among middle-aged and older pilots. Method. Two-hundred and thirty-six pilots (40–69 years) completed annual assessments comprising a cognitive battery and two 75-min simulated flights in a flight simulator. Basic and complex IIV composite variables were created from measures of basic reaction time and shifting and divided attention tasks. Flight simulator performance was characterized by an overall summary score and scores on communication, emergencies, approach, and traffic avoidance components. Results. Although basic IIV did not predict rate of decline in flight performance, it had a negative association with initial performance for most flight measures. After taking into account processing speed, basic IIV explained an additional 8%–12% of the negative age effect on initial flight performance. Discussion. IIV plays an important role in real-world tasks and is another aspect of cognition that underlies age-related differences in cognitive performance. PMID:23052365
The performance of the standard rate turn (SRT) by student naval helicopter pilots.
Chapman, F; Temme, L A; Still, D L
2001-04-01
During flight training, student naval helicopter pilots learn the use of flight instruments through a prescribed series of simulator training events. The training simulator is a 6-degrees-of-freedom, motion-based, high-fidelity instrument trainer. From the final basic instrument simulator flights of student pilots, we selected for evaluation and analysis their performance of the Standard Rate Turn (SRT), a routine flight maneuver. The performance of the SRT was scored with air speed, altitude and heading average error from target values and standard deviations. These average errors and standard deviations were used in a Multiple Analysis of Variance (MANOVA) to evaluate the effects of three independent variables: 1) direction of turn (left vs. right), 2) degree of turn (180 vs. 360 degrees); and 3) segment of turn (roll-in, first 30 s, last 30 s, and roll-out of turn). Only the main effects of the three independent variables were significant; there were no significant interactions. This result greatly reduces the number of different conditions that should be scored separately for the evaluation of SRT performance. The results also showed that the magnitude of the heading and altitude errors at the beginning of the SRT correlated with the magnitude of the heading and altitude errors throughout the turn. This result suggests that for the turn to be well executed, it is important for it to begin with little error in these two response parameters. The observations reported here should be considered when establishing SRT performance norms and comparing student scores. Furthermore, it seems easier for pilots to maintain good performance than to correct poor performance.
EEG and ECG changes during simulator operation reflect mental workload and vigilance.
Dussault, Caroline; Jouanin, Jean-Claude; Philippe, Matthieu; Guezennec, Charles-Yannick
2005-04-01
Performing mission tasks in a simulator influences many neurophysiological measures. Quantitative assessments of electroencephalography (EEG) and electrocardiography (ECG) have made it possible to develop indicators of mental workload and to estimate relative physiological responses to cognitive requirements. To evaluate the effects of mental workload without actual physical risk, we studied the cortical and cardiovascular changes that occurred during simulated flight. There were 12 pilots (8 novices and 4 experts) who simulated a flight composed of 10 sequences that induced several different mental workload levels. EEG was recorded at 12 electrode sites during rest and flight sequences; ECG activity was also recorded. Subjective tests were used to evaluate anxiety and vigilance levels. Theta band activity was lower during the two simulated flight rest sequences than during visual and instrument flight sequences at central, parietal, and occipital sites (p < 0.05). On the other hand, rest sequences resulted in higher beta (at the C4 site; p < 0.05) and gamma (at the central, parietal, and occipital sites; p < 0.05) power than active segments. The mean heart rate (HR) was not significantly different during any simulated flight sequence, but HR was lower for expert subjects than for novices. The subjective tests revealed no significant anxiety and high values for vigilance levels before and during flight. The different flight sequences performed on the simulator resulted in electrophysiological changes that expressed variations in mental workload. These results corroborate those found during study of real flights, particularly during sequences requiring the heaviest mental workload.
DOT National Transportation Integrated Search
2010-08-02
This paper summarizes the most recent study conducted by the Federal Administration Administration/Volpe Center Flight Simulator Fidelity Requirements Program. For many smaller airlines, access to qualified simulators is limited due to the availabili...
1967-02-06
Aerial Survey of Ames Research Center - Flight Simulation Complex' Flight simulators create an authentic aircraft environment by generating the appropriate physical cues that provide the sensations of flight.
If You've Got It, Use It (Simulation, That Is...)
NASA Technical Reports Server (NTRS)
Frost, Chad; Tucker, George
2006-01-01
This viewgraph presentation reviews the Rotorcraft Aircrew Systems Concept Airborne Laboratory (RASCAL) UH-60 in-flight simulator, the use of simulation in support of safety monitor design specification development, the development of a failure/recovery (F/R) rating scale, the use of F/R Rating Scale as a common element between simulation and flight evaluation, and the expansion of the flight envelope without benefit of simulation.
NASA Technical Reports Server (NTRS)
Imig, L. A.; Garrett, L. E.
1973-01-01
Possibilities for reducing fatigue-test time for supersonic-transport materials and structures were studied in tests with simulated flight-by-flight loading. In order to determine whether short-time tests were feasible, the results of accelerated tests (2 sec per flight) were compared with the results of real-time tests (96 min per flight). The effects of design mean stress, the stress range for ground-air-ground cycles, simulated thermal stress, the number of stress cycles in each flight, and salt corrosion were studied. The flight-by-flight stress sequences were applied to notched sheet specimens of Ti-8Al-1Mo-1V and Ti-6Al-4V titanium alloys. A linear cumulative-damage analysis accounted for large changes in stress range of the simulated flights but did not account for the differences between real-time and accelerated tests. The fatigue lives from accelerated tests were generally within a factor of two of the lives from real-time tests; thus, within the scope of the investigation, accelerated testing seems feasible.
Space-flight simulations of calcium metabolism using a mathematical model of calcium regulation
NASA Technical Reports Server (NTRS)
Brand, S. N.
1985-01-01
The results of a series of simulation studies of calcium matabolic changes which have been recorded during human exposure to bed rest and space flight are presented. Space flight and bed rest data demonstrate losses of total body calcium during exposure to hypogravic environments. These losses are evidenced by higher than normal rates of urine calcium excretion and by negative calcium balances. In addition, intestinal absorption rates and bone mineral content are assumed to decrease. The bed rest and space flight simulations were executed on a mathematical model of the calcium metabolic system. The purpose of the simulations is to theoretically test hypotheses and predict system responses which are occurring during given experimental stresses. In this case, hypogravity occurs through the comparison of simulation and experimental data and through the analysis of model structure and system responses. The model reliably simulates the responses of selected bed rest and space flight parameters. When experimental data are available, the simulated skeletal responses and regulatory factors involved in the responses agree with space flight data collected on rodents. In addition, areas within the model that need improvement are identified.
Demographic and psychological variables affecting test subject evaluations of ride quality
NASA Technical Reports Server (NTRS)
Duncan, N. C.; Conley, H. W.
1975-01-01
Ride-quality experiments similar in objectives, design, and procedure were conducted, one using the U.S. Air Force Total In-Flight Simulator and the other using the Langley Passenger Ride Quality Apparatus to provide the motion environments. Large samples (80 or more per experiment) of test subjects were recruited from the Tidewater Virginia area and asked to rate the comfort (on a 7-point scale) of random aircraft motion typical of that encountered during STOL flights. Test subject characteristics of age, sex, and previous flying history (number of previous airplane flights) were studied in a two by three by three factorial design. Correlations were computed between one dependent measure, the subject's mean comfort rating, and various demographic characteristics, attitudinal variables, and the scores on Spielberger's State-Trait Anxiety Inventory. An effect of sex was found in one of the studies. Males made higher (more uncomfortable) ratings of the ride than females. Age and number of previous flights were not significantly related to comfort ratings. No significant interactions between the variables of age, sex, or previous number of flights were observed.
Earth Adventure: Virtual Globe-based Suborbital Atmospheric Greenhouse Gases Exploration
NASA Astrophysics Data System (ADS)
Wei, Y.; Landolt, K.; Boyer, A.; Santhana Vannan, S. K.; Wei, Z.; Wang, E.
2016-12-01
The Earth Venture Suborbital (EVS) mission is an important component of NASA's Earth System Science Pathfinder program that aims at making substantial advances in Earth system science through measurements from suborbital platforms and modeling researches. For example, the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) project of EVS-1 collected measurements of greenhouse gases (GHG) on local to regional scales in the Alaskan Arctic. The Atmospheric Carbon and Transport - America (ACT-America) project of EVS-2 will provide advanced, high-resolution measurements of atmospheric profiles and horizontal gradients of CO2 and CH4.As the long-term archival center for CARVE and the future ACT-America data, the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) has been developing a versatile data management system for CARVE data to maximize their usability. One of these efforts is the virtual globe-based Suborbital Atmospheric GHG Exploration application. It leverages Google Earth to simulate the 185 flights flew by the C-23 Sherpa aircraft in 2012-2015 for the CARVE project. Based on Google Earth's 3D modeling capability and the precise coordinates, altitude, pitch, roll, and heading info of the aircraft recorded in every second during each flight, the application provides users accurate and vivid simulation of flight experiences, with an active 3D visualization of a C-23 Sherpa aircraft in view. This application provides dynamic visualization of GHG, including CO2, CO, H2O, and CH4 captured during the flights, at the same pace of the flight simulation in Google Earth. Photos taken during those flights are also properly displayed along the flight paths. In the future, this application will be extended to incorporate more complicated GHG measurements (e.g. vertical profiles) from the ACT-America project. This application leverages virtual globe technology to provide users an integrated framework to interactively explore information about GHG measurements and to link scientific measurements to the rich virtual planet environment provided by Google Earth. Positive feedbacks have been received from users. It provides a good example of extending basic data visualization into a knowledge discovery experience and maximizing the usability of Earth science observations.
Human Machine Interfaces for Teleoperators and Virtual Environments Conference
NASA Technical Reports Server (NTRS)
1990-01-01
In a teleoperator system the human operator senses, moves within, and operates upon a remote or hazardous environment by means of a slave mechanism (a mechanism often referred to as a teleoperator). In a virtual environment system the interactive human machine interface is retained but the slave mechanism and its environment are replaced by a computer simulation. Video is replaced by computer graphics. The auditory and force sensations imparted to the human operator are similarly computer generated. In contrast to a teleoperator system, where the purpose is to extend the operator's sensorimotor system in a manner that facilitates exploration and manipulation of the physical environment, in a virtual environment system, the purpose is to train, inform, alter, or study the human operator to modify the state of the computer and the information environment. A major application in which the human operator is the target is that of flight simulation. Although flight simulators have been around for more than a decade, they had little impact outside aviation presumably because the application was so specialized and so expensive.
Simulations of High Speed Fragment Trajectories
NASA Astrophysics Data System (ADS)
Yeh, Peter; Attaway, Stephen; Arunajatesan, Srinivasan; Fisher, Travis
2017-11-01
Flying shrapnel from an explosion are capable of traveling at supersonic speeds and distances much farther than expected due to aerodynamic interactions. Predicting the trajectories and stable tumbling modes of arbitrary shaped fragments is a fundamental problem applicable to range safety calculations, damage assessment, and military technology. Traditional approaches rely on characterizing fragment flight using a single drag coefficient, which may be inaccurate for fragments with large aspect ratios. In our work we develop a procedure to simulate trajectories of arbitrary shaped fragments with higher fidelity using high performance computing. We employ a two-step approach in which the force and moment coefficients are first computed as a function of orientation using compressible computational fluid dynamics. The force and moment data are then input into a six-degree-of-freedom rigid body dynamics solver to integrate trajectories in time. Results of these high fidelity simulations allow us to further understand the flight dynamics and tumbling modes of a single fragment. Furthermore, we use these results to determine the validity and uncertainty of inexpensive methods such as the single drag coefficient model.
14 CFR 121.917 - Other requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... technical (piloting or other) skills in an actual or simulated operations scenario. For flight crewmembers this training and evaluation must be conducted in an approved flight training device, flight simulator... Dispatcher Resource Management (DRM) ground and if appropriate flight training applicable to each position...
14 CFR 121.917 - Other requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... technical (piloting or other) skills in an actual or simulated operations scenario. For flight crewmembers this training and evaluation must be conducted in an approved flight training device, flight simulator... Dispatcher Resource Management (DRM) ground and if appropriate flight training applicable to each position...
14 CFR 121.917 - Other requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... technical (piloting or other) skills in an actual or simulated operations scenario. For flight crewmembers this training and evaluation must be conducted in an approved flight training device, flight simulator... Dispatcher Resource Management (DRM) ground and if appropriate flight training applicable to each position...
14 CFR 121.917 - Other requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... technical (piloting or other) skills in an actual or simulated operations scenario. For flight crewmembers this training and evaluation must be conducted in an approved flight training device, flight simulator... Dispatcher Resource Management (DRM) ground and if appropriate flight training applicable to each position...
Simulation Study of Flap Effects on a Commercial Transport Airplane in Upset Conditions
NASA Technical Reports Server (NTRS)
Cunningham, Kevin; Foster, John V.; Shah, Gautam H.; Stewart, Eric C.; Ventura, Robin N.; Rivers, Robert A.; Wilborn, James E.; Gato, William
2005-01-01
As part of NASA's Aviation Safety and Security Program, a simulation study of a twinjet transport airplane crew training simulation was conducted to address fidelity for upset or loss of control conditions and to study the effect of flap configuration in those regimes. Piloted and desktop simulations were used to compare the baseline crew training simulation model with an enhanced aerodynamic model that was developed for high-angle-of-attack conditions. These studies were conducted with various flap configurations and addressed the approach-to-stall, stall, and post-stall flight regimes. The enhanced simulation model showed that flap configuration had a significant effect on the character of departures that occurred during post-stall flight. Preliminary comparisons with flight test data indicate that the enhanced model is a significant improvement over the baseline. Some of the unrepresentative characteristics that are predicted by the baseline crew training simulation for flight in the post-stall regime have been identified. This paper presents preliminary results of this simulation study and discusses key issues regarding predicted flight dynamics characteristics during extreme upset and loss-of-control flight conditions with different flap configurations.
Investigating Cooperative Behavior in Ecological Settings: An EEG Hyperscanning Study.
Toppi, Jlenia; Borghini, Gianluca; Petti, Manuela; He, Eric J; De Giusti, Vittorio; He, Bin; Astolfi, Laura; Babiloni, Fabio
2016-01-01
The coordinated interactions between individuals are fundamental for the success of the activities in some professional categories. We reported on brain-to-brain cooperative interactions between civil pilots during a simulated flight. We demonstrated for the first time how the combination of neuroelectrical hyperscanning and intersubject connectivity could provide indicators sensitive to the humans' degree of synchronization under a highly demanding task performed in an ecological environment. Our results showed how intersubject connectivity was able to i) characterize the degree of cooperation between pilots in different phases of the flight, and ii) to highlight the role of specific brain macro areas in cooperative behavior. During the most cooperative flight phases pilots showed, in fact, dense patterns of interbrain connectivity, mainly linking frontal and parietal brain areas. On the contrary, the amount of interbrain connections went close to zero in the non-cooperative phase. The reliability of the interbrain connectivity patterns was verified by means of a baseline condition represented by formal couples, i.e. pilots paired offline for the connectivity analysis but not simultaneously recorded during the flight. Interbrain density was, in fact, significantly higher in real couples with respect to formal couples in the cooperative flight phases. All the achieved results demonstrated how the description of brain networks at the basis of cooperation could effectively benefit from a hyperscanning approach. Interbrain connectivity was, in fact, more informative in the investigation of cooperative behavior with respect to established EEG signal processing methodologies applied at a single subject level.
Investigating Cooperative Behavior in Ecological Settings: An EEG Hyperscanning Study
Petti, Manuela; He, Eric J.; De Giusti, Vittorio; He, Bin; Astolfi, Laura; Babiloni, Fabio
2016-01-01
The coordinated interactions between individuals are fundamental for the success of the activities in some professional categories. We reported on brain-to-brain cooperative interactions between civil pilots during a simulated flight. We demonstrated for the first time how the combination of neuroelectrical hyperscanning and intersubject connectivity could provide indicators sensitive to the humans’ degree of synchronization under a highly demanding task performed in an ecological environment. Our results showed how intersubject connectivity was able to i) characterize the degree of cooperation between pilots in different phases of the flight, and ii) to highlight the role of specific brain macro areas in cooperative behavior. During the most cooperative flight phases pilots showed, in fact, dense patterns of interbrain connectivity, mainly linking frontal and parietal brain areas. On the contrary, the amount of interbrain connections went close to zero in the non-cooperative phase. The reliability of the interbrain connectivity patterns was verified by means of a baseline condition represented by formal couples, i.e. pilots paired offline for the connectivity analysis but not simultaneously recorded during the flight. Interbrain density was, in fact, significantly higher in real couples with respect to formal couples in the cooperative flight phases. All the achieved results demonstrated how the description of brain networks at the basis of cooperation could effectively benefit from a hyperscanning approach. Interbrain connectivity was, in fact, more informative in the investigation of cooperative behavior with respect to established EEG signal processing methodologies applied at a single subject level. PMID:27124558
Sample Analysis at Mars Instrument Simulator
NASA Technical Reports Server (NTRS)
Benna, Mehdi; Nolan, Tom
2013-01-01
The Sample Analysis at Mars Instrument Simulator (SAMSIM) is a numerical model dedicated to plan and validate operations of the Sample Analysis at Mars (SAM) instrument on the surface of Mars. The SAM instrument suite, currently operating on the Mars Science Laboratory (MSL), is an analytical laboratory designed to investigate the chemical and isotopic composition of the atmosphere and volatiles extracted from solid samples. SAMSIM was developed using Matlab and Simulink libraries of MathWorks Inc. to provide MSL mission planners with accurate predictions of the instrument electrical, thermal, mechanical, and fluid responses to scripted commands. This tool is a first example of a multi-purpose, full-scale numerical modeling of a flight instrument with the purpose of supplementing or even eliminating entirely the need for a hardware engineer model during instrument development and operation. SAMSIM simulates the complex interactions that occur between the instrument Command and Data Handling unit (C&DH) and all subsystems during the execution of experiment sequences. A typical SAM experiment takes many hours to complete and involves hundreds of components. During the simulation, the electrical, mechanical, thermal, and gas dynamics states of each hardware component are accurately modeled and propagated within the simulation environment at faster than real time. This allows the simulation, in just a few minutes, of experiment sequences that takes many hours to execute on the real instrument. The SAMSIM model is divided into five distinct but interacting modules: software, mechanical, thermal, gas flow, and electrical modules. The software module simulates the instrument C&DH by executing a customized version of the instrument flight software in a Matlab environment. The inputs and outputs to this synthetic C&DH are mapped to virtual sensors and command lines that mimic in their structure and connectivity the layout of the instrument harnesses. This module executes, and thus validates, complex command scripts prior to their up-linking to the SAM instrument. As an output, this module generates synthetic data and message logs at a rate that is similar to the actual instrument.
NASA Technical Reports Server (NTRS)
Foushee, H. C.
1981-01-01
The influence of group dynamics on the capability of aircraft crew members to make full use of the resources available on the flight deck in order to maintain flight safety is discussed. Instances of crewmembers withholding altimeter or heading information from the captain are cited as examples of domineering attitudes from command pilots and overconscientiousness on the parts of copilots, who may refuse to relay information forcefully enough or to take control of the aircraft in the case of pilot incapacitation. NASA studies of crew performance in controlled, simulator settings, concentrating on communication, decision making, crew interaction, and integration showed that efficient communication reduced errors. Acknowledgements served to encourage correct communication. The best crew performance is suggested to occur with personnel who are capable of both goal and group orientation. Finally, one bad effect of computer controlled flight is cited to be the tendency of the flight crew to think that someone else is taking care of difficulties in threatening situations.
The NASA Human Space Flight Supply Chain, Current and Future
NASA Technical Reports Server (NTRS)
Zapata, Edgar
2007-01-01
The current NASA Human Space Flight transportation system, the Space Shuttle, is scheduled for final flight in 2010. The Exploration initiative will create a new capability with a combination of existing systems and new flight and ground elements. To fully understand and act on the implications of such change it is necessary to understand what, how, when and where such changes occur and more importantly, how all these interact. This paper presents Human Space Flight, with an emphasis on KSC Launch and Landing, as a Supply Chain of both information and materials. A supply chain methodology for understanding the flow of information and materials is presented. Further, modeling and simulation projects funded by the Exploration initiative to understand the NASA Exploration Supply Chain are explained. Key concepts and their purpose, including the Enterprise, Locations, Physical and Organizational Functional Units, Products, and Resources, are explained. It is shown that the art, science and perspective of Supply Chain Management is not only applicable to such a government & contractor operation, it is also an invaluable approach for understanding, focusing improvement and growth. It is shown that such commercial practice applies to Human Space Flight and is invaluable towards one day creating routine, affordable access to and from space.
NASA Technical Reports Server (NTRS)
Daileda, J. J.; Marroquin, J.
1974-01-01
An experimental investigation was conducted to obtain detailed effects on supersonic vehicle hypersonic aerodynamic and stability and control characteristics of reaction control system jet flow field interactions with the local vehicle flow field. A 0.010-scale model was used. Six-component force data and wing, elevon, and body flap surface pressure data were obtained through an angle-of-attack range of -10 to +35 degrees with 0 deg angle of sideslip. The test was conducted with yaw, pitch and roll jet simulation at a free-stream Mach number of 10.3 and reaction control system plume simulation of flight dynamic pressures of 5, 10 and 20 PSF.
14 CFR 142.54 - Airline transport pilot certification training program.
Code of Federal Regulations, 2014 CFR
2014-01-01
... training in a flight simulation training device— (1) Holds an aircraft type rating for the aircraft represented by the flight simulation training device utilized in the training program and have received... will be demonstrated in the flight simulation training device; and (2) Satisfies the requirements of...
14 CFR 121.408 - Training equipment other than flight simulation training devices.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Training equipment other than flight simulation training devices. 121.408 Section 121.408 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.408 Training equipment other than flight simulation training devices. (a) The Administrator must...
Code of Federal Regulations, 2011 CFR
2011-04-01
... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States (HTSUS) by meeting the following requirements: (1) The aircraft, aircraft engines, ground...
Code of Federal Regulations, 2010 CFR
2010-04-01
... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States (HTSUS) by meeting the following requirements: (1) The aircraft, aircraft engines, ground...
Fatigue Tests with Random Flight Simulation Loading
NASA Technical Reports Server (NTRS)
Schijve, J.
1972-01-01
Crack propagation was studied in a full-scale wing structure under different simulated flight conditions. Omission of low-amplitude gust cycles had a small effect on the crack rate. Truncation of the infrequently occurring high-amplitude gust cycles to a lower level had a noticeably accelerating effect on crack growth. The application of fail-safe load (100 percent limit load) effectively stopped subsequent crack growth under resumed flight-simulation loading. In another flight-simulation test series on sheet specimens, the variables studied are the design stress level and the cyclic frequency of the random gust loading. Inflight mean stresses vary from 5.5 to 10.0 kg/sq mm. The effect of the stress level is larger for the 2024 alloy than for the 7075 alloy. Three frequencies were employed: namely, 10 cps, 1 cps, and 0.1 cps. The frequency effect was small. The advantages and limitations of flight-simulation tests are compared with those of alternative test procedures such as constant-amplitude tests, program tests, and random-load tests. Various testing purposes are considered. The variables of flight-simulation tests are listed and their effects are discussed. A proposal is made for performing systematic flight-simulation tests in such a way that the compiled data may be used as a source of reference.
Piloted Evaluation of an Integrated Methodology for Propulsion and Airframe Control Design
NASA Technical Reports Server (NTRS)
Bright, Michelle M.; Simon, Donald L.; Garg, Sanjay; Mattern, Duane L.; Ranaudo, Richard J.; Odonoghue, Dennis P.
1994-01-01
An integrated methodology for propulsion and airframe control has been developed and evaluated for a Short Take-Off Vertical Landing (STOVL) aircraft using a fixed base flight simulator at NASA Lewis Research Center. For this evaluation the flight simulator is configured for transition flight using a STOVL aircraft model, a full nonlinear turbofan engine model, simulated cockpit and displays, and pilot effectors. The paper provides a brief description of the simulation models, the flight simulation environment, the displays and symbology, the integrated control design, and the piloted tasks used for control design evaluation. In the simulation, the pilots successfully completed typical transition phase tasks such as combined constant deceleration with flight path tracking, and constant acceleration wave-off maneuvers. The pilot comments of the integrated system performance and the display symbology are discussed and analyzed to identify potential areas of improvement.
Navier-Stokes computations with finite-rate chemistry for LO2/LH2 rocket engine plume flow studies
NASA Technical Reports Server (NTRS)
Dougherty, N. Sam; Liu, Baw-Lin
1991-01-01
Computational fluid dynamics methods have been developed and applied to Space Shuttle Main Engine LO2/LH2 plume flow simulation/analysis of airloading and convective base heating effects on the vehicle at high flight velocities and altitudes. New methods are described which were applied to the simulation of a Return-to-Launch-Site abort where the vehicle would fly briefly at negative angles of attack into its own plume. A simplified two-perfect-gases-mixing approach is used where one gas is the plume and the other is air at 180-deg and 135-deg flight angle of attack. Related research has resulted in real gas multiple-plume interaction methods with finite-rate chemistry described herein which are applied to the same high-altitude-flight conditions of 0 deg angle of attack. Continuing research plans are to study Orbiter wake/plume flows at several Mach numbers and altitudes during ascent and then to merge this model with the Shuttle 'nose-to-tail' aerodynamic and SRB plume models for an overall 'nose-to-plume' capability. These new methods are also applicable to future launch vehicles using clustered-engine LO2/LH2 propulsion.
The flights before the flight - An overview of shuttle astronaut training
NASA Technical Reports Server (NTRS)
Sims, John T.; Sterling, Michael R.
1989-01-01
Space shuttle astronaut training is centered at NASA's Johnson Space Center in Houston, Texas. Each astronaut receives many different types of training from many sources. This training includes simulator training in the Shuttle Mission Simulator, in-flight simulator training in the Shuttle Training Aircraft, Extravehicular Activity training in the Weightless Environment Training Facility and a variety of lectures and briefings. Once the training program is completed each shuttle flight crew is well-prepared to perform the normal operations required for their flight and deal with any shuttle system malfunctions that might occur.
2013-08-15
DRYDEN FLIGHT RESEARCH CENTER, Calif. - Simulation technicians Brent Bieber, left, and Dennis Pitts install a boilerplate Dream Chaser canopy structure over the cockpit of a flight simulator in the simulation laboratory at NASA's Dryden Flight Research Center in California. The modification will give Dream Chaser pilot-astronauts a more representative view of the actual flight profiles the spacecraft would fly during piloted approach and landing tests. Sierra Nevada Corporation's Space Systems division is conducting uncrewed captive- and free-flight approach and landing tests of its Dream Chaser at Dryden during the summer and fall. Photo credit: NASA/Ken Ulbrich
NASA Technical Reports Server (NTRS)
Grantham, William D.; Williams, Robert H.
1987-01-01
For the case of an approach-and-landing piloting task emphasizing response to the landing flare, pilot opinion and performance parameters derived from jet transport aircraft six-degree-of-freedom ground-based and in-flight simulators were compared in order to derive data for the flight-controls/flying-qualities engineers. The data thus obtained indicate that ground simulation results tend to be conservative, and that the effect of control sensitivity is more pronounced for ground simulation. The pilot also has a greater tendency to generate pilot-induced oscillation in ground-based simulation than in flight.
Efficient Numerical Simulation of Aerothermoelastic Hypersonic Vehicles
NASA Astrophysics Data System (ADS)
Klock, Ryan J.
Hypersonic vehicles operate in a high-energy flight environment characterized by high dynamic pressures, high thermal loads, and non-equilibrium flow dynamics. This environment induces strong fluid, thermal, and structural dynamics interactions that are unique to this flight regime. If these vehicles are to be effectively designed and controlled, then a robust and intuitive understanding of each of these disciplines must be developed not only in isolation, but also when coupled. Limitations on scaling and the availability of adequate test facilities mean that physical investigation is infeasible. Ever growing computational power offers the ability to perform elaborate numerical simulations, but also has its own limitations. The state of the art in numerical simulation is either to create ever more high-fidelity physics models that do not couple well and require too much processing power to consider more than a few seconds of flight, or to use low-fidelity analytical models that can be tightly coupled and processed quickly, but do not represent realistic systems due to their simplifying assumptions. Reduced-order models offer a middle ground by distilling the dominant trends of high-fidelity training solutions into a form that can be quickly processed and more tightly coupled. This thesis presents a variably coupled, variable-fidelity, aerothermoelastic framework for the simulation and analysis of high-speed vehicle systems using analytical, reduced-order, and surrogate modeling techniques. Full launch-to-landing flights of complete vehicles are considered and used to define flight envelopes with aeroelastic, aerothermal, and thermoelastic limits, tune in-the-loop flight controllers, and inform future design considerations. A partitioned approach to vehicle simulation is considered in which regions dominated by particular combinations of processes are made separate from the overall solution and simulated by a specialized set of models to improve overall processing speed and overall solution fidelity. A number of enhancements to this framework are made through 1. the implementation of a publish-subscribe code architecture for rapid prototyping of physics and process models. 2. the implementation of a selection of linearization and model identification methods including high-order pseudo-time forward difference, complex-step, and direct identification from ordinary differential equation inspection. 3. improvements to the aeroheating and thermal models with non-equilibrium gas dynamics and generalized temperature dependent material thermal properties. A variety of model reduction and surrogate model techniques are applied to a representative hypersonic vehicle on a terminal trajectory to enable complete aerothermoelastic flight simulations. Multiple terminal trajectories of various starting altitudes and Mach numbers are optimized to maximize final kinetic energy of the vehicle upon reaching the surface. Surrogate models are compared to represent the variation of material thermal properties with temperature. A new method is developed and shown to be both accurate and computationally efficient. While the numerically efficient simulation of high-speed vehicles is developed within the presented framework, the goal of real time simulation is hampered by the necessity of multiple nested convergence loops. An alternative all-in-one surrogate model method is developed based on singular-value decomposition and regression that is near real time. Finally, the aeroelastic stability of pressurized cylindrical shells is investigated in the context of a maneuvering axisymmetric high-speed vehicle. Moderate internal pressurization is numerically shown to decrease stability, as showed experimentally in the literature, yet not well reproduced analytically. Insights are drawn from time simulation results and used to inform approaches for future vehicle model development.
A Low Cost Simulation System to Demonstrate Pilot Induced Oscillation Phenomenon
NASA Technical Reports Server (NTRS)
Ali, Syed Firasat
1997-01-01
A flight simulation system with graphics and software on Silicon Graphics computer workstations has been installed in the Flight Vehicle Design Laboratory at Tuskegee University. The system has F-15E flight simulation software from NASA Dryden which uses the graphics of SGI flight simulation demos. On the system, thus installed, a study of pilot induced oscillations is planned for future work. Preliminary research is conducted by obtaining two sets of straight level flights with pilot in the loop. In one set of flights no additional delay is used between the stick input and the appearance of airplane response on the computer monitor. In another set of flights, a 500 ms additional delay is used. The flight data is analyzed to find cross correlations between deflections of control surfaces and response of the airplane. The pilot dynamics features depicted from cross correlations of straight level flights are discussed in this report. The correlations presented here will serve as reference material for the corresponding correlations in a future study of pitch attitude tracking tasks involving pilot induced oscillations.
Stability of simulated flight path control at +3 Gz in a human centrifuge.
Guardiera, Simon; Dalecki, Marc; Bock, Otmar
2010-04-01
Earlier studies have shown that naïve subjects and experienced jet pilots produce exaggerated manual forces when exposed to increased acceleration (+Gz). This study was designed to evaluate whether this exaggeration affects the stability of simulated flight path control. We evaluated naïve subjects' performance in a flight simulator which either remained stationary (+1 Gz), or rotated to induce an acceleration in accordance to the simulated flight path with a mean acceleration of about +3 Gz. In either case, subjects were requested to produce a series of altitude changes in pursuit of a visual target airplane. Resulting flight paths were analyzed to determine the largest oscillation after an altitude change (Oscillation) and the mean deviation between subject and target flight path (Tracking Error). Flight stability after an altitude change was degraded in +3 Gz compared to +1 Gz, as evidenced by larger Oscillations (+11%) and increased Tracking Errors (+80%). These deficits correlated significantly with subjects' +3 Gz deficits in a manual-force production task. We conclude that force exaggeration in +3 Gz may impair flight stability during simulated jet maneuvers in naïve subjects, most likely as a consequence of vestibular stimulation.
14 CFR 142.11 - Application for issuance or amendment.
Code of Federal Regulations, 2012 CFR
2012-01-01
... flight simulator or flight training device, the make, model, and series of airplane or the set of... simulator and flight training device subject to qualification evaluation by the Administrator, the... Flight Standards District Office that has jurisdiction over the area in which the applicant's principal...
14 CFR 142.11 - Application for issuance or amendment.
Code of Federal Regulations, 2014 CFR
2014-01-01
... flight simulator or flight training device, the make, model, and series of airplane or the set of... simulator and flight training device subject to qualification evaluation by the Administrator, the... Flight Standards District Office that has jurisdiction over the area in which the applicant's principal...
14 CFR 142.11 - Application for issuance or amendment.
Code of Federal Regulations, 2013 CFR
2013-01-01
... flight simulator or flight training device, the make, model, and series of airplane or the set of... simulator and flight training device subject to qualification evaluation by the Administrator, the... Flight Standards District Office that has jurisdiction over the area in which the applicant's principal...
Evaluation of the Malcolm horizon in a moving-base flight simulator
NASA Technical Reports Server (NTRS)
Gillingham, K. K.
1984-01-01
The efficacy of the Malcolm Horizon (MH) in a controlled, simulated, instrument flight environment was examined. Eight flight parameters were used to compare performance under experimental and control conditions. The parameters studied were pitch attitude, roll attitude, turn rate, airspeed, vertical velocity, heading, altitude, and course deviation. Testing of a commercial realization of the MH concept in a flight simulator revealed strengths and weaknesses of the currently available MH hardware.
NASA Technical Reports Server (NTRS)
Burgin, G. H.; Fogel, L. J.; Phelps, J. P.
1975-01-01
A technique for computer simulation of air combat is described. Volume 1 decribes the computer program and its development in general terms. Two versions of the program exist. Both incorporate a logic for selecting and executing air combat maneuvers with performance models of specific fighter aircraft. In the batch processing version the flight paths of two aircraft engaged in interactive aerial combat and controlled by the same logic are computed. The realtime version permits human pilots to fly air-to-air combat against the adaptive maneuvering logic (AML) in Langley Differential Maneuvering Simulator (DMS). Volume 2 consists of a detailed description of the computer programs.
NASA Astrophysics Data System (ADS)
Christian, Paul M.
2002-07-01
This paper presents a demonstrated approach to significantly reduce the cost and schedule of non real-time modeling and simulation, real-time HWIL simulation, and embedded code development. The tool and the methodology presented capitalize on a paradigm that has become a standard operating procedure in the automotive industry. The tool described is known as the Aerospace Toolbox, and it is based on the MathWorks Matlab/Simulink framework, which is a COTS application. Extrapolation of automotive industry data and initial applications in the aerospace industry show that the use of the Aerospace Toolbox can make significant contributions in the quest by NASA and other government agencies to meet aggressive cost reduction goals in development programs. The part I of this paper provided a detailed description of the GUI based Aerospace Toolbox and how it is used in every step of a development program; from quick prototyping of concept developments that leverage built-in point of departure simulations through to detailed design, analysis, and testing. Some of the attributes addressed included its versatility in modeling 3 to 6 degrees of freedom, its library of flight test validated library of models (including physics, environments, hardware, and error sources), and its built-in Monte Carlo capability. Other topics that were covered in part I included flight vehicle models and algorithms, and the covariance analysis package, Navigation System Covariance Analysis Tools (NavSCAT). Part II of this series will cover a more in-depth look at the analysis and simulation capability and provide an update on the toolbox enhancements. It will also address how the Toolbox can be used as a design hub for Internet based collaborative engineering tools such as NASA's Intelligent Synthesis Environment (ISE) and Lockheed Martin's Interactive Missile Design Environment (IMD).
Validation Of The Airspace Concept Evaluation System Using Real World Data
NASA Technical Reports Server (NTRS)
Zelinski, Shannon
2005-01-01
This paper discusses the process of performing a validation of the Airspace Concept Evaluation System (ACES) using real world historical flight operational data. ACES inputs are generated from select real world data and processed to create a realistic reproduction of a single day of operations within the National Airspace System (NAS). ACES outputs are then compared to real world operational metrics and delay statistics for the reproduced day. Preliminary results indicate that ACES produces delays and airport operational metrics similar to the real world with minor variations of delay by phase of flight. ACES is a nation-wide fast-time simulation tool developed at NASA Ames Research Center. ACES models and simulates the NAS using interacting agents representing center control, terminal flow management, airports, individual flights, and other NAS elements. These agents pass messages between one another similar to real world communications. This distributed agent based system is designed to emulate the highly unpredictable nature of the NAS, making it a suitable tool to evaluate current and envisioned airspace concepts. To ensure that ACES produces the most realistic results, the system must be validated. There is no way to validate future concepts scenarios using real world historical data, but current day scenario validations increase confidence in the validity of future scenario results. Each operational day has unique weather and traffic demand schedules. The more a simulation utilizes the unique characteristic of a specific day, the more realistic the results should be. ACES is able to simulate the full scale demand traffic necessary to perform a validation using real world data. Through direct comparison with the real world, models may continuee to be improved and unusual trends and biases may be filtered out of the system or used to normalize the results of future concept simulations.
Rover Attitude and Pointing System Simulation Testbed
NASA Technical Reports Server (NTRS)
Vanelli, Charles A.; Grinblat, Jonathan F.; Sirlin, Samuel W.; Pfister, Sam
2009-01-01
The MER (Mars Exploration Rover) Attitude and Pointing System Simulation Testbed Environment (RAPSSTER) provides a simulation platform used for the development and test of GNC (guidance, navigation, and control) flight algorithm designs for the Mars rovers, which was specifically tailored to the MERs, but has since been used in the development of rover algorithms for the Mars Science Laboratory (MSL) as well. The software provides an integrated simulation and software testbed environment for the development of Mars rover attitude and pointing flight software. It provides an environment that is able to run the MER GNC flight software directly (as opposed to running an algorithmic model of the MER GNC flight code). This improves simulation fidelity and confidence in the results. Further more, the simulation environment allows the user to single step through its execution, pausing, and restarting at will. The system also provides for the introduction of simulated faults specific to Mars rover environments that cannot be replicated in other testbed platforms, to stress test the GNC flight algorithms under examination. The software provides facilities to do these stress tests in ways that cannot be done in the real-time flight system testbeds, such as time-jumping (both forwards and backwards), and introduction of simulated actuator faults that would be difficult, expensive, and/or destructive to implement in the real-time testbeds. Actual flight-quality codes can be incorporated back into the development-test suite of GNC developers, closing the loop between the GNC developers and the flight software developers. The software provides fully automated scripting, allowing multiple tests to be run with varying parameters, without human supervision.
Extending a Flight Management Computer for Simulation and Flight Experiments
NASA Technical Reports Server (NTRS)
Madden, Michael M.; Sugden, Paul C.
2005-01-01
In modern transport aircraft, the flight management computer (FMC) has evolved from a flight planning aid to an important hub for pilot information and origin-to-destination optimization of flight performance. Current trends indicate increasing roles of the FMC in aviation safety, aviation security, increasing airport capacity, and improving environmental impact from aircraft. Related research conducted at the Langley Research Center (LaRC) often requires functional extension of a modern, full-featured FMC. Ideally, transport simulations would include an FMC simulation that could be tailored and extended for experiments. However, due to the complexity of a modern FMC, a large investment (millions of dollars over several years) and scarce domain knowledge are needed to create such a simulation for transport aircraft. As an intermediate alternative, the Flight Research Services Directorate (FRSD) at LaRC created a set of reusable software products to extend flight management functionality upstream of a Boeing-757 FMC, transparently simulating or sharing its operator interfaces. The paper details the design of these products and highlights their use on NASA projects.
NASA Technical Reports Server (NTRS)
Kibbee, G. W.
1978-01-01
The development, evaluation, and evaluation results of a DC-9-10 runway directional control simulator are described. An existing wide bodied flight simulator was modified to this aircraft configuration. The simulator was structured to use either two of antiskid simulations; (1) an analog mechanization that used aircraft hardware; or (2) a digital software simulation. After the simulation was developed it was evaluated by 14 pilots who made 818 simulated flights. These evaluations involved landings, rejected takeoffs, and various ground maneuvers. Qualitatively most pilots evaluated the simulator as realistic with good potential especially for pilot training for adverse runway conditions.
Characterizing Observed Limit Cycles in the Cassini Main Engine Guidance Control System
NASA Technical Reports Server (NTRS)
Rizvi, Farheen; Weitl, Raquel M.
2011-01-01
The Cassini spacecraft dynamics-related telemetry during long Main Engine (ME) burns has indicated the presence of stable limit cycles between 0.03-0.04 Hz frequencies. These stable limit cycles cause the spacecraft to possess non-zero oscillating rates for extended periods of time. This indicates that the linear ME guidance control system does not model the complete dynamics of the spacecraft. In this study, we propose that the observed limit cycles in the spacecraft dynamics telemetry appear from a stable interaction between the unmodeled nonlinear elements in the ME guidance control system. Many nonlinearities in the control system emerge from translating the linear engine gimbal actuator (EGA) motion into a spacecraft rotation. One such nonlinearity comes from the gear backlash in the EGA system, which is the focus of this paper. The limit cycle characteristics and behavior can be predicted by modeling this gear backlash nonlinear element via a describing function and studying the interaction of this describing function with the overall dynamics of the spacecraft. The linear ME guidance controller and gear backlash nonlinearity are modeled analytically. The frequency, magnitude, and nature of the limit cycle are obtained from the frequency response of the ME guidance controller and nonlinear element. In addition, the ME guidance controller along with the nonlinearity is simulated. The simulation response contains a limit cycle with similar characterstics as predicted analytically: 0.03-0.04 Hz frequency and stable, sustained oscillations. The analytical and simulated limit cycle responses are compared to the flight telemetry for long burns such as the Saturn Orbit Insertion and Main Engine Orbit Trim Maneuvers. The analytical and simulated limit cycle characteristics compare well with the actual observed limit cycles in the flight telemetry. Both have frequencies between 0.03-0.04 Hz and stable oscillations. This work shows that the stable limit cycles occur due to the interaction between the unmodeled nonlinear elements and linear ME guidance controller.
Full Motion Flight Simulator in the Classroom
ERIC Educational Resources Information Center
Christensen, Brad
2005-01-01
Virtual flight can be very entertaining, and computer-based simulators can also be educational, if organized and used correctly. When Berea College decided to find a flight simulator suited to the school's educational goals, the faculty settled on an ANT-18 Link trainer. This article begins with a discussion of Link trainers' history, and then…
USAARL NUH-60FS Acoustic Characterization
2016-11-01
Performance Division (APPD) previously acoustically characterized the Black Hawk flight simulator (NUH-60FS). Since that characterization, the NUH-60FS...greater than one for higher-level speakers. Black Hawk flight simulator, noise level, third octave band level UNCLAS UNCLAS UNCLAS SAR 52 Loraine St. Onge...Research Laboratory NUH-60FS Black Hawk Flight Simulator
14 CFR 141.41 - Flight simulators, flight training devices, and training aids.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., and training aids. 141.41 Section 141.41 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... aids. An applicant for a pilot school certificate or a provisional pilot school certificate must show that its flight simulators, flight training devices, training aids, and equipment meet the following...
14 CFR 141.41 - Flight simulators, flight training devices, and training aids.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., and training aids. 141.41 Section 141.41 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... aids. An applicant for a pilot school certificate or a provisional pilot school certificate must show that its flight simulators, flight training devices, training aids, and equipment meet the following...
14 CFR 141.41 - Flight simulators, flight training devices, and training aids.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., and training aids. 141.41 Section 141.41 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... aids. An applicant for a pilot school certificate or a provisional pilot school certificate must show that its flight simulators, flight training devices, training aids, and equipment meet the following...
14 CFR 141.41 - Flight simulators, flight training devices, and training aids.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., and training aids. 141.41 Section 141.41 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... aids. An applicant for a pilot school certificate or a provisional pilot school certificate must show that its flight simulators, flight training devices, training aids, and equipment meet the following...
NASA Technical Reports Server (NTRS)
Jones, Denise R.
1990-01-01
A piloted simulation study was conducted comparing three different input methods for interfacing to a large-screen, multiwindow, whole-flight-deck display for management of transport aircraft systems. The thumball concept utilized a miniature trackball embedded in a conventional side-arm controller. The touch screen concept provided data entry through a capacitive touch screen. The voice concept utilized a speech recognition system with input through a head-worn microphone. No single input concept emerged as the most desirable method of interacting with the display. Subjective results, however, indicate that the voice concept was the most preferred method of data entry and had the most potential for future applications. The objective results indicate that, overall, the touch screen concept was the most effective input method. There was also significant differences between the time required to perform specific tasks and the input concept employed, with each concept providing better performance relative to a specific task. These results suggest that a system combining all three input concepts might provide the most effective method of interaction.
An Inexpensive Real-Time Interactive Three Dimensional Flight Simulation System.
1987-06-01
irh ’.etp. the 4i, n. he Ii~ Pi~op 4’ WV o cl d m od 0 V d 0 i c IV 1 M A,.. wq li . .. . . . " VII. TARGET INTEGRATION A. GENERAL The primary ...kts 200 kts Direction 359.9 degrees 0 degrees From prelaunch 99 5* 0 0 4 5 @ G 2 3 00 ALT 01 Figure 9.6 IRIS Dial Box Fuctions 100 summary box for a...Description: The primary purpose of get tgt pos is to move the targets in the simulation. If the networking capability is in lise, the target positions for
Contrail Formation in Aircraft Wakes Using Large-Eddy Simulations
NASA Technical Reports Server (NTRS)
Paoli, R.; Helie, J.; Poinsot, T. J.; Ghosal, S.
2002-01-01
In this work we analyze the issue of the formation of condensation trails ("contrails") in the near-field of an aircraft wake. The basic configuration consists in an exhaust engine jet interacting with a wing-tip training vortex. The procedure adopted relies on a mixed Eulerian/Lagrangian two-phase flow approach; a simple micro-physics model for ice growth has been used to couple ice and vapor phases. Large eddy simulations have carried out at a realistic flight Reynolds number to evaluate the effects of turbulent mixing and wake vortex dynamics on ice-growth characteristics and vapor thermodynamic properties.
NASA Technical Reports Server (NTRS)
Wiener, Earl L. (Editor); Nagel, David C. (Editor)
1988-01-01
The fundamental principles of human-factors (HF) analysis for aviation applications are examined in a collection of reviews by leading experts, with an emphasis on recent developments. The aim is to provide information and guidance to the aviation community outside the HF field itself. Topics addressed include the systems approach to HF, system safety considerations, the human senses in flight, information processing, aviation workloads, group interaction and crew performance, flight training and simulation, human error in aviation operations, and aircrew fatigue and circadian rhythms. Also discussed are pilot control; aviation displays; cockpit automation; HF aspects of software interfaces; the design and integration of cockpit-crew systems; and HF issues for airline pilots, general aviation, helicopters, and ATC.
The Life Sciences program at the NASA Ames Research Center - An overview
NASA Technical Reports Server (NTRS)
Vernikos-Danellis, Joan; Sharp, Joseph C.
1989-01-01
The research projects planned for the Life Sciences program have a goal of answering basic questions concerning the nature of life itself and its evolution in the universe from basic elements, as well as the search for extraterrestrial intelligence. The program also includes studies of the evolution and development of life on the planet earth, and the global changes occurring today that affect life on the earth. The paper describes the simulation models developed to study the effects of space, the flight projects of the program, and the biomedical program, which currently focuses on the physiological changes in the human body that are associated with space flights and the interactions among these changes.
NASA Technical Reports Server (NTRS)
Martinez, Debbie; Davidson, Paul C.; Kenney, P. Sean; Hutchinson, Brian K.
2004-01-01
The Flight Simulation and Software Branch (FSSB) at NASA Langley Research Center (LaRC) maintains the unique national asset identified as the Transport Research Facility (TRF). The TRF is a group of facilities and integration laboratories utilized to support the LaRC's simulation-to-flight concept. This concept incorporates common software, hardware, and processes for both groundbased flight simulators and LaRC s B-757-200 flying laboratory identified as the Airborne Research Integrated Experiments System (ARIES). These assets provide Government, industry, and academia with an efficient way to develop and test new technology concepts to enhance the capacity, safety, and operational needs of the ever-changing national airspace system. The integration of the TRF enables a smooth continuous flow of the research from simulation to actual flight test.
Interactions between Flight Dynamics and Propulsion Systems of Air-Breathing Hypersonic Vehicles
NASA Astrophysics Data System (ADS)
Dalle, Derek J.
The development and application of a first-principles-derived reduced-order model called MASIV (Michigan/AFRL Scramjet In Vehicle) for an air-breathing hypersonic vehicle is discussed. Several significant and previously unreported aspects of hypersonic flight are investigated. A fortunate coupling between increasing Mach number and decreasing angle of attack is shown to extend the range of operating conditions for a class of supersonic inlets. Detailed maps of isolator unstart and ram-to-scram transition are shown on the flight corridor map for the first time. In scram mode the airflow remains supersonic throughout the engine, while in ram mode there is a region of subsonic flow. Accurately predicting the transition between these two modes requires models for complex shock interactions, finite-rate chemistry, fuel-air mixing, pre-combustion shock trains, and thermal choking, which are incorporated into a unified framework here. Isolator unstart occurs when the pre-combustion shock train is longer than the isolator, which blocks airflow from entering the engine. Finally, cooptimization of the vehicle design and trajectory is discussed. An optimal control technique is introduced that greatly reduces the number of computations required to optimize the simulated trajectory.
Helicopter flight dynamics simulation with a time-accurate free-vortex wake model
NASA Astrophysics Data System (ADS)
Ribera, Maria
This dissertation describes the implementation and validation of a coupled rotor-fuselage simulation model with a time-accurate free-vortex wake model capable of capturing the response to maneuvers of arbitrary amplitude. The resulting model has been used to analyze different flight conditions, including both steady and transient maneuvers. The flight dynamics model is based on a system of coupled nonlinear rotor-fuselage differential equations in first-order, state-space form. The rotor model includes flexible blades, with coupled flap-lag-torsion dynamics and swept tips; the rigid body dynamics are modeled with the non-linear Euler equations. The free wake models the rotor flow field by tracking the vortices released at the blade tips. Their behavior is described by the equations of vorticity transport, which is approximated using finite differences, and solved using a time-accurate numerical scheme. The flight dynamics model can be solved as a system of non-linear algebraic trim equations to determine the steady state solution, or integrated in time in response to pilot-applied controls. This study also implements new approaches to reduce the prohibitive computational costs associated with such complex models without losing accuracy. The mathematical model was validated for trim conditions in level flight, turns, climbs and descents. The results obtained correlate well with flight test data, both in level flight as well as turning and climbing and descending flight. The swept tip model was also found to improve the trim predictions, particularly at high speed. The behavior of the rigid body and the rotor blade dynamics were also studied and related to the aerodynamic load distributions obtained with the free wake induced velocities. The model was also validated in a lateral maneuver from hover. The results show improvements in the on-axis prediction, and indicate a possible relation between the off-axis prediction and the lack of rotor-body interaction aerodynamics. The swept blade model improves both the on-axis and off-axis response. An axial descent though the vortex ring state was simulated. As theǒrtex ring" goes through the rotor, the unsteady loads produce large attitude changes, unsteady flapping, fluctuating thrust and an increase in power required. A roll reversal maneuver was found useful in understanding the cross-couplings effects found in rotorcraft, specifically the effect of the aerodynamic loading on the rotor orientation and the off-axis response.
STS-26 long duration simulation in JSC Mission Control Center (MCC) Bldg 30
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 long duration simulation is conducted in JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR). Director of Mission Operations Directorate (MOD) Eugene F. Kranz (left) and Chief of the Flight Directors Office Tommy W. Holloway monitor activity during the simulation. The two are at their normal stations on the rear row of consoles. The integrated simulation involves MCC flight controllers communicating with crewmembers stationed in the fixed based (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.
A Generic Multibody Parachute Simulation Model
NASA Technical Reports Server (NTRS)
Neuhaus, Jason Richard; Kenney, Patrick Sean
2006-01-01
Flight simulation of dynamic atmospheric vehicles with parachute systems is a complex task that is not easily modeled in many simulation frameworks. In the past, the performance of vehicles with parachutes was analyzed by simulations dedicated to parachute operations and were generally not used for any other portion of the vehicle flight trajectory. This approach required multiple simulation resources to completely analyze the performance of the vehicle. Recently, improved software engineering practices and increased computational power have allowed a single simulation to model the entire flight profile of a vehicle employing a parachute.
Application of technology developed for flight simulation at NASA. Langley Research Center
NASA Technical Reports Server (NTRS)
Cleveland, Jeff I., II
1991-01-01
In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations including mathematical model computation and data input/output to the simulators must be deterministic and be completed in as short a time as possible. Personnel at NASA's Langley Research Center are currently developing the use of supercomputers for simulation mathematical model computation for real-time simulation. This, coupled with the use of an open systems software architecture, will advance the state-of-the-art in real-time flight simulation.
Control structural interaction testbed: A model for multiple flexible body verification
NASA Technical Reports Server (NTRS)
Chory, M. A.; Cohen, A. L.; Manning, R. A.; Narigon, M. L.; Spector, V. A.
1993-01-01
Conventional end-to-end ground tests for verification of control system performance become increasingly complicated with the development of large, multiple flexible body spacecraft structures. The expense of accurately reproducing the on-orbit dynamic environment and the attendant difficulties in reducing and accounting for ground test effects limits the value of these tests. TRW has developed a building block approach whereby a combination of analysis, simulation, and test has replaced end-to-end performance verification by ground test. Tests are performed at the component, subsystem, and system level on engineering testbeds. These tests are aimed at authenticating models to be used in end-to-end performance verification simulations: component and subassembly engineering tests and analyses establish models and critical parameters, unit level engineering and acceptance tests refine models, and subsystem level tests confirm the models' overall behavior. The Precision Control of Agile Spacecraft (PCAS) project has developed a control structural interaction testbed with a multibody flexible structure to investigate new methods of precision control. This testbed is a model for TRW's approach to verifying control system performance. This approach has several advantages: (1) no allocation for test measurement errors is required, increasing flight hardware design allocations; (2) the approach permits greater latitude in investigating off-nominal conditions and parametric sensitivities; and (3) the simulation approach is cost effective, because the investment is in understanding the root behavior of the flight hardware and not in the ground test equipment and environment.
Aviation Safety Simulation Model
NASA Technical Reports Server (NTRS)
Houser, Scott; Yackovetsky, Robert (Technical Monitor)
2001-01-01
The Aviation Safety Simulation Model is a software tool that enables users to configure a terrain, a flight path, and an aircraft and simulate the aircraft's flight along the path. The simulation monitors the aircraft's proximity to terrain obstructions, and reports when the aircraft violates accepted minimum distances from an obstruction. This model design facilitates future enhancements to address other flight safety issues, particularly air and runway traffic scenarios. This report shows the user how to build a simulation scenario and run it. It also explains the model's output.
Ground Contact Model for Mars Science Laboratory Mission Simulations
NASA Technical Reports Server (NTRS)
Raiszadeh, Behzad; Way, David
2012-01-01
The Program to Optimize Simulated Trajectories II (POST 2) has been successful in simulating the flight of launch vehicles and entry bodies on earth and other planets. POST 2 has been the primary simulation tool for the Entry Descent, and Landing (EDL) phase of numerous Mars lander missions such as Mars Pathfinder in 1997, the twin Mars Exploration Rovers (MER-A and MER-B) in 2004, Mars Phoenix lander in 2007, and it is now the main trajectory simulation tool for Mars Science Laboratory (MSL) in 2012. In all previous missions, the POST 2 simulation ended before ground impact, and a tool other than POST 2 simulated landing dynamics. It would be ideal for one tool to simulate the entire EDL sequence, thus avoiding errors that could be introduced by handing off position, velocity, or other fight parameters from one simulation to the other. The desire to have one continuous end-to-end simulation was the motivation for developing the ground interaction model in POST 2. Rover landing, including the detection of the postlanding state, is a very critical part of the MSL mission, as the EDL landing sequence continues for a few seconds after landing. The method explained in this paper illustrates how a simple ground force interaction model has been added to POST 2, which allows simulation of the entire EDL from atmospheric entry through touchdown.
Adenoviruses as a model in the study of the effect of space flight factors
NASA Astrophysics Data System (ADS)
Nosach, L. M.; Povnitsa, O. Yu.; Zhovnovata, V. L.
Simulated microgravity conditions, independently of multiplicity of infection, does not influence the reproduction of adenoviruses in cells which were clinorotated for 48 hours after adsorption of virus. The incubation of infected cells before clinorotation under static conditions at a temperature of 4 °C for three days (the conditions for keeping cells before the flight) does not change the number of infected cells relatively to control, but some changes of cell morphology are revealed, namely round off and aggregation of cells. The adenoviruses which were exposed in the medium keep infectivity under the conditions of clinorotation at 4 and 20-22 °C over prolonged periods (90 and 60 days, respectively). A model is elaborated for investigation of the influence of space flight factors on the interaction of the adenovirus and Epstein-Barr virus genomes at combined infection of limphoblastoid cells.
Check-Cases for Verification of 6-Degree-of-Freedom Flight Vehicle Simulations
NASA Technical Reports Server (NTRS)
Murri, Daniel G.; Jackson, E. Bruce; Shelton, Robert O.
2015-01-01
The rise of innovative unmanned aeronautical systems and the emergence of commercial space activities have resulted in a number of relatively new aerospace organizations that are designing innovative systems and solutions. These organizations use a variety of commercial off-the-shelf and in-house-developed simulation and analysis tools including 6-degree-of-freedom (6-DOF) flight simulation tools. The increased affordability of computing capability has made highfidelity flight simulation practical for all participants. Verification of the tools' equations-of-motion and environment models (e.g., atmosphere, gravitation, and geodesy) is desirable to assure accuracy of results. However, aside from simple textbook examples, minimal verification data exists in open literature for 6-DOF flight simulation problems. This assessment compared multiple solution trajectories to a set of verification check-cases that covered atmospheric and exo-atmospheric (i.e., orbital) flight. Each scenario consisted of predefined flight vehicles, initial conditions, and maneuvers. These scenarios were implemented and executed in a variety of analytical and real-time simulation tools. This tool-set included simulation tools in a variety of programming languages based on modified flat-Earth, round- Earth, and rotating oblate spheroidal Earth geodesy and gravitation models, and independently derived equations-of-motion and propagation techniques. The resulting simulated parameter trajectories were compared by over-plotting and difference-plotting to yield a family of solutions. In total, seven simulation tools were exercised.
Practical aspects of modeling aircraft dynamics from flight data
NASA Technical Reports Server (NTRS)
Iliff, K. W.; Maine, R. E.
1984-01-01
The purpose of parameter estimation, a subset of system identification, is to estimate the coefficients (such as stability and control derivatives) of the aircraft differential equations of motion from sampled measured dynamic responses. In the past, the primary reason for estimating stability and control derivatives from flight tests was to make comparisons with wind tunnel estimates. As aircraft became more complex, and as flight envelopes were expanded to include flight regimes that were not well understood, new requirements for the derivative estimates evolved. For many years, the flight determined derivatives were used in simulations to aid in flight planning and in pilot training. The simulations were particularly important in research flight test programs in which an envelope expansion into new flight regimes was required. Parameter estimation techniques for estimating stability and control derivatives from flight data became more sophisticated to support the flight test programs. As knowledge of these new flight regimes increased, more complex aircraft were flown. Much of this increased complexity was in sophisticated flight control systems. The design and refinement of the control system required higher fidelity simulations than were previously required.
Piloted Evaluation of the H-Mode, a Variable Autonomy Control System, in Motion-Based Simulation
NASA Technical Reports Server (NTRS)
Goodrich, Kenneth H.; Schutte, Paul C.; Williams, Ralph A.
2008-01-01
As aircraft become able to autonomously respond to a range of situations with performance surpassing human operators, we are compelled to look for new methods that help understand their use and guide the design of new, more effective forms of automation and interaction. The "H-mode" is one such method and is based on the metaphor of a well-trained horse. The concept allows the pilot to manage a broad range of control automation functionality, from augmented manual control to FMS-like coupling and automation initiated actions, using a common interface system and easily learned set of interaction skills. The interface leverages familiar manual control interfaces (e.g., the control stick) and flight displays through the addition of contextually dependent haptic-multimodal elements. The concept is relevant to manned and remotely piloted vehicles. This paper provides an overview of the H-mode concept followed by a presentation of the results from a recent evaluation conducted in a motion-based simulator. The evaluation focused on assessing the overall usability and flying qualities of the concept with an emphasis on the effects of turbulence and cockpit motion. Because the H-mode results in interactions between traditional flying qualities and management of higher-level flight path automation, these effects are of particular interest. The results indicate that the concept may provide a useful complement or replacement to conventional interfaces, and retains the usefulness in the presence of turbulence and motion.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Qualification Performance Standards for Helicopter Full Flight Simulators C Appendix C to Part 60 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE Pt. 60, App....
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Qualification Performance Standards for Helicopter Full Flight Simulators C Appendix C to Part 60 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE Pt. 60, App....
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Qualification Performance Standards for Helicopter Full Flight Simulators C Appendix C to Part 60 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE Pt. 60, App....
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Qualification Performance Standards for Helicopter Full Flight Simulators C Appendix C to Part 60 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE Pt. 60, App....
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Qualification Performance Standards for Helicopter Full Flight Simulators C Appendix C to Part 60 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE Pt. 60, App....
Interaction Between Strategic and Local Traffic Flow Controls
NASA Technical Reports Server (NTRS)
Grabbe, Son; Sridhar, Banavar; Mukherjee, Avijit; Morando, Alexander
2010-01-01
The loosely coordinated sets of traffic flow management initiatives that are operationally implemented at the national- and local-levels have the potential to under, over, and inconsistently control flights. This study is designed to explore these interactions through fast-time simulations with an emphasis on identifying inequitable situations in which flights receive multiple uncoordinated delays. Two operationally derived scenarios were considered in which flights arriving into the Dallas/Fort Worth International Airport were first controlled at the national-level, either with a Ground Delay Program or a playbook reroute. These flights were subsequently controlled at the local level. The Traffic Management Advisor assigned them arrival scheduling delays. For the Ground Delay Program scenarios, between 51% and 53% of all arrivals experience both pre-departure delays from the Ground Delay Program and arrival scheduling delays from the Traffic Management Advisor. Of the subset of flights that received multiple delays, between 5.7% and 6.4% of the internal departures were first assigned a pre-departure delay by the Ground Delay Program, followed by a second pre-departure delay as a result of the arrival scheduling. For the playbook reroute scenario, Dallas/Fort Worth International Airport arrivals were first assigned pre-departure reroutes based on the MW_2_DALLAS playbook plan, and were subsequently assigned arrival scheduling delays by the Traffic Management Advisor. Since the airport was operating well below capacity when the playbook reroute was in effect, only 7% of the arrivals were observed to receive both rerouting and arrival scheduling delays. Findings from these initial experiments confirm field observations that Ground Delay Programs operated in conjunction with arrival scheduling can result in inequitable situations in which flights receive multiple uncoordinated delays.
Code of Federal Regulations, 2013 CFR
2013-01-01
... simulator or training device; and (2) A flight check in the aircraft or a check in the simulator or training..., requalification, and differences flight training. 91.1103 Section 91.1103 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1103 Pilots: Initial...
Code of Federal Regulations, 2014 CFR
2014-01-01
... simulator or training device; and (2) A flight check in the aircraft or a check in the simulator or training..., requalification, and differences flight training. 91.1103 Section 91.1103 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1103 Pilots: Initial...
Code of Federal Regulations, 2011 CFR
2011-01-01
... simulator or training device; and (2) A flight check in the aircraft or a check in the simulator or training..., requalification, and differences flight training. 91.1103 Section 91.1103 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1103 Pilots: Initial...
Code of Federal Regulations, 2012 CFR
2012-01-01
... simulator or training device; and (2) A flight check in the aircraft or a check in the simulator or training..., requalification, and differences flight training. 91.1103 Section 91.1103 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1103 Pilots: Initial...
Code of Federal Regulations, 2010 CFR
2010-01-01
... simulator or training device; and (2) A flight check in the aircraft or a check in the simulator or training..., requalification, and differences flight training. 91.1103 Section 91.1103 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1103 Pilots: Initial...
14 CFR 91.1091 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).
Code of Federal Regulations, 2010 CFR
2010-01-01
... or 135 of this chapter; (2) Has satisfactorily completed the training phases for the aircraft... appropriate training phases for the aircraft, including recurrent training, that are required to serve as a... aircraft, in a flight simulator, or in a flight training device for a particular type, class, or category...
NASA Technical Reports Server (NTRS)
Mccutcheon, E. P.; Miranda, R.; Fryer, T. B.; Hodges, G.; Newson, B. D.; Pace, N.
1977-01-01
The utility of a multichannel implantable telemetry system for obtaining cardiovascular data was tested in a monkey with a CV-990 aircraft flight simulation of a space flight experiment. Valuable data were obtained to aid planning and execution of flight experiments using chronically instrumented animals.
NASA Technical Reports Server (NTRS)
Bosworth, John T.; Williams-Hayes, Peggy S.
2007-01-01
Adaptive flight control systems have the potential to be more resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane and subjected to an inflight simulation of a failed (frozen) (unmovable) stabilator. Formation flight handling qualities evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to decouple the roll and pitch response and reestablish good onboard model tracking. Flight evaluation with the simulated stabilator failure and adaptation engaged showed that there was generally improvement in the pitch response; however, a tendency for roll pilot-induced oscillation was experienced. A detailed discussion of the cause of the mixed results is presented.
NASA Technical Reports Server (NTRS)
Bosworth, John T.; Williams-Hayes, Peggy S.
2010-01-01
Adaptive flight control systems have the potential to be more resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane and subjected to an inflight simulation of a failed (frozen) (unmovable) stabilator. Formation flight handling qualities evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to decouple the roll and pitch response and reestablish good onboard model tracking. Flight evaluation with the simulated stabilator failure and adaptation engaged showed that there was generally improvement in the pitch response; however, a tendency for roll pilot-induced oscillation was experienced. A detailed discussion of the cause of the mixed results is presented.
NASA Technical Reports Server (NTRS)
Beaumier, P.; Prieur, J.; Rahier, G.; Spiegel, P.; Demargne, A.; Tung, C.; Gallman, J. M.; Yu, Y. H.; Kube, R.; Vanderwall, B. G.
1995-01-01
The paper presents a status of theoretical tools of AFDD, DLR, NASA and ONERA for prediction of the effect of HHC on helicopter main rotor BVI noise. Aeroacoustic predictions from the four research centers, concerning a wind tunnel simulation of a typical descent flight case without and with HHC are presented and compared. The results include blade deformation, geometry of interacting vortices, sectional loads and noise. Acoustic predictions are compared to experimental data. An analysis of the results provides a first insight of the mechanisms by which HHC may affect BVI noise.
Spacecraft Trajectory Analysis and Mission Planning Simulation (STAMPS) Software
NASA Technical Reports Server (NTRS)
Puckett, Nancy; Pettinger, Kris; Hallstrom,John; Brownfield, Dana; Blinn, Eric; Williams, Frank; Wiuff, Kelli; McCarty, Steve; Ramirez, Daniel; Lamotte, Nicole;
2014-01-01
STAMPS simulates either three- or six-degree-of-freedom cases for all spacecraft flight phases using translated HAL flight software or generic GN&C models. Single or multiple trajectories can be simulated for use in optimization and dispersion analysis. It includes math models for the vehicle and environment, and currently features a "C" version of shuttle onboard flight software. The STAMPS software is used for mission planning and analysis within ascent/descent, rendezvous, proximity operations, and navigation flight design areas.
The F-18 simulator at NASA's Dryden Flight Research Center, Edwards, California
2004-10-04
The F-18 simulator at NASA's Dryden Flight Research Center, Edwards, California. Simulators offer a safe and economical alternative to actual flights to gather data, as well as being excellent facilities for pilot practice and training. The F-18 Hornet is used primarily as a safety chase and mission support aircraft at NASA's Dryden Flight Research Center, Edwards, California. As support aircraft, the F-18's are used for safety chase, pilot proficiency, aerial photography and other mission support functions.
Simulation test results for lift/cruise fan research and technology aircraft
NASA Technical Reports Server (NTRS)
Bland, M. P.; Konsewicz, R. K.
1976-01-01
A flight simulation program was conducted on the flight simulator for advanced aircraft (FSAA). The flight simulation was a part of a contracted effort to provide a lift/cruise fan V/STOL aircraft mathematical model for flight simulation. The simulated aircraft is a configuration of the Lift/Cruise Fan V/STOL research technology aircraft (RTA). The aircraft was powered by three gas generators driving three fans. One lift fan was installed in the nose of the aircraft, and two lift/cruise fans at the wing root. The thrust of these fans was modulated to provide pitch and roll control, and vectored to provide yaw, side force control, and longitudinal translation. Two versions of the RTA were defined. One was powered by the GE J97/LF460 propulsion system which was gas-coupled for power transfer between fans for control. The other version was powered by DDA XT701 gas generators driving 62 inch variable pitch fans. The flight control system in both versions of the RTA was the same.
Man-rated flight software for the F-8 DFBW program
NASA Technical Reports Server (NTRS)
Bairnsfather, R. R.
1975-01-01
The design, implementation, and verification of the flight control software used in the F-8 DFBW program are discussed. Since the DFBW utilizes an Apollo computer and hardware, the procedures, controls, and basic management techniques employed are based on those developed for the Apollo software system. Program Assembly Control, simulator configuration control, erasable-memory load generation, change procedures and anomaly reporting are discussed. The primary verification tools--the all-digital simulator, the hybrid simulator, and the Iron Bird simulator--are described, as well as the program test plans and their implementation on the various simulators. Failure-effects analysis and the creation of special failure-generating software for testing purposes are described. The quality of the end product is evidenced by the F-8 DFBW flight test program in which 42 flights, totaling 58 hours of flight time, were successfully made without any DFCS inflight software, or hardware, failures.
A testbed for the evaluation of computer aids for enroute flight path planning
NASA Technical Reports Server (NTRS)
Smith, Philip J.; Layton, Chuck; Galdes, Deb; Mccoy, C. E.
1990-01-01
A simulator study of the five airline flight crews engaged in various enroute planning activities has been conducted. Based on a cognitive task analysis of this data, a flight planning workstation has been developed on a Mac II controlling three color monitors. This workstation is being used to study design concepts to support the flight planning activities of dispatchers and flight crews in part-task simulators.
Development and evaluation of a prototype in-flight instrument flight rules (IFR) procedures trainer
NASA Technical Reports Server (NTRS)
Aaron, J. B., Jr.; Morris, G. G.
1981-01-01
An in-flight instrument flight rules (IFR) procedures trainer capable of providing simulated indications of instrument flight in a typical general aviation aircraft independent of ground based navigation aids was developed. The IFR navaid related instruments and circuits from an ATC 610J table top simulator were installed in a Cessna 172 aircraft and connected to its electrical power and pitot static systems. The benefits expected from this hybridization concept include increased safety by reducing the number of general aviation aircraft conducting IFR training flights in congested terminal areas, and reduced fuel use and instruction costs by lessening the need to fly to and from navaid equipped airports and by increased efficiency of the required in-flight training. Technical feasibility was demonstrated and the operational feasibility of the concept was evaluated. Results indicated that the in-flight simulator is an effective training device for teaching IFR procedural skills.
Comparison of Different Methods of Grading a Level Turn Task on a Flight Simulator
NASA Technical Reports Server (NTRS)
Heath, Bruce E.; Crier, tomyka
2003-01-01
With the advancements in the computing power of personal computers, pc-based flight simulators and trainers have opened new avenues in the training of airplane pilots. It may be desirable to have the flight simulator make a quantitative evaluation of the progress of a pilot's training thereby reducing the physical requirement of the flight instructor who must, in turn, watch every flight. In an experiment, University students conducted six different flights, each consisting of two level turns. The flights were three minutes in duration. By evaluating videotapes, two certified flight instructors provided separate letter grades for each turn. These level turns were also evaluated using two other computer based grading methods. One method determined automated grades based on prescribed tolerances in bank angle, airspeed and altitude. The other method used was deviations in altitude and bank angle for performance index and performance grades.
Mars Exploration Rover Terminal Descent Mission Modeling and Simulation
NASA Technical Reports Server (NTRS)
Raiszadeh, Behzad; Queen, Eric M.
2004-01-01
Because of NASA's added reliance on simulation for successful interplanetary missions, the MER mission has developed a detailed EDL trajectory modeling and simulation. This paper summarizes how the MER EDL sequence of events are modeled, verification of the methods used, and the inputs. This simulation is built upon a multibody parachute trajectory simulation tool that has been developed in POST I1 that accurately simulates the trajectory of multiple vehicles in flight with interacting forces. In this model the parachute and the suspended bodies are treated as 6 Degree-of-Freedom (6 DOF) bodies. The terminal descent phase of the mission consists of several Entry, Descent, Landing (EDL) events, such as parachute deployment, heatshield separation, deployment of the lander from the backshell, deployment of the airbags, RAD firings, TIRS firings, etc. For an accurate, reliable simulation these events need to be modeled seamlessly and robustly so that the simulations will remain numerically stable during Monte-Carlo simulations. This paper also summarizes how the events have been modeled, the numerical issues, and modeling challenges.
Status of the AIAA Modeling and Simulation Format Standard
NASA Technical Reports Server (NTRS)
Jackson, E. Bruce; Hildreth, Bruce L.
2008-01-01
The current draft AIAA Standard for flight simulation models represents an on-going effort to improve the productivity of practitioners of the art of digital flight simulation (one of the original digital computer applications). This initial release provides the capability for the efficient representation and exchange of an aerodynamic model in full fidelity; the DAVE-ML format can be easily imported (with development of site-specific import tools) in an unambiguous way with automatic verification. An attractive feature of the standard is the ability to coexist with existing legacy software or tools. The draft Standard is currently limited in scope to static elements of dynamic flight simulations; however, these static elements represent the bulk of typical flight simulation mathematical models. It is already seeing application within U.S. and Australian government agencies in an effort to improve productivity and reduce model rehosting overhead. An existing tool allows import of DAVE-ML models into a popular simulation modeling and analysis tool, and other community-contributed tools and libraries can simplify the use of DAVE-ML compliant models at compile- or run-time of high-fidelity flight simulation.
Free-jet testing at Mach 3.44 in GASL's aero/thermo test facility
NASA Technical Reports Server (NTRS)
Cresci, D.; Koontz, S.; Tsai, C. Y.
1993-01-01
A supersonic blow-down tunnel has been used to conduct tests of a hydrogen burning ramjet engine at simulated Mach 3.44 conditions. A pebble-bed type storage heater, a free standing test cabin, and a 48 foot diameter vacuum sphere are used to simulate the flight conditions at nearly matched enthalpy and dynamic pressure. A two dimensional nozzle with a nominal 13.26 inch square exit provides a free-jet test environment. The facility used for these tests is described as are the results of a flow calibration performed on the M = 3.44 nozzle. Some facility/model interactions are discussed as are the eventual hardware modifications and operational procedures required to alleviate the interactions. Some engine test results are discussed briefly to document the success of the test program.
Intelligent Robotic Systems Study (IRSS), phase 3
NASA Technical Reports Server (NTRS)
1991-01-01
This phase of the Intelligent Robotic Systems Study (IRSS) examines some basic dynamics and control issues for a space manipulator attached to its worksite through a compliant base. One example of this scenario is depicted, which is a simplified, planar representation of the Flight Telerobotic Servicer (FTS) Development Test Flight 2 (DTF-2) experiment. The system consists of 4 major components: (1) dual FTS arms to perform dextrous tasks; (2) the main body to house power and electronics; (3) an Attachment Stabilization and Positioning Subsystem (ASPS) to provide coarse positioning and stabilization of the arms, and (4) the Worksite Attachment Mechanism (WAM) which anchors the system to its worksite, such as a Space Station truss node or Shuttle bay platform. The analysis is limited to the DTF-2 scenario. The goal is to understand the basic interaction dynamics between the arm, the positioner and/or stabilizer, and the worksite. The dynamics and controls simulation model are described. Analysis and simulation results are presented.
NASA Technical Reports Server (NTRS)
Anderson, Frederick; Biezad, Daniel J.
1994-01-01
This paper describes the Rapid Aircraft DynamIcs AssessmeNt (RADIAN) project - an integration of the Aircraft SYNThesis (ACSTNT) design code with the USAD DATCOM code that estimates stability derivatives. Both of these codes are available to universities. These programs are then linked to flight simulation and flight controller synthesis tools and resulting design is evaluated on a graphics workstation. The entire process reduces the preliminary design time by an order of magnitude and provides an initial handling qualities evaluation of the design coupled to a control law. The integrated design process is applicable to both conventional aircraft taken from current textbooks and to unconventional designs emphasizing agility and propulsive control of attitude. The interactive and concurrent nature of the design process has been well received by industry and by design engineers at NASA. The process is being implemented into the design curriculum and is being used by students who view it as a significant advance over prior methods.
NASA Astrophysics Data System (ADS)
David, A.; Brousseau, C.; Bourdillon, A.
2003-08-01
HF and VHF low frequency bands provide a promising way to perform radar target recognition. At these frequencies, Radar Cross Section (RCS) behavior is not well known because the scattered field is due to a complex phenomenon where the interactions between the different parts of the structure have a significant contribution, which makes the prediction difficult. A wire model of a commercial Boeing 747-200 aircraft, developed to be used with the Numerical Electromagnetic Code (NEC), is presented. The reliability of this model has been assessed by comparing the results given by NEC with the measurements made in an anechoïc chamber with a scaled aircraft, and a relatively good agreement was observed between simulations and measurements. The RCS variations of an aircraft along different flight routes have been investigated, and it is shown that it is necessary to know the flight route of the airplane to envisage target identification in spite of the use of the low frequency band.
Closed-Loop HIRF Experiments Performed on a Fault Tolerant Flight Control Computer
NASA Technical Reports Server (NTRS)
Belcastro, Celeste M.
1997-01-01
ABSTRACT Closed-loop HIRF experiments were performed on a fault tolerant flight control computer (FCC) at the NASA Langley Research Center. The FCC used in the experiments was a quad-redundant flight control computer executing B737 Autoland control laws. The FCC was placed in one of the mode-stirred reverberation chambers in the HIRF Laboratory and interfaced to a computer simulation of the B737 flight dynamics, engines, sensors, actuators, and atmosphere in the Closed-Loop Systems Laboratory. Disturbances to the aircraft associated with wind gusts and turbulence were simulated during tests. Electrical isolation between the FCC under test and the simulation computer was achieved via a fiber optic interface for the analog and discrete signals. Closed-loop operation of the FCC enabled flight dynamics and atmospheric disturbances affecting the aircraft to be represented during tests. Upset was induced in the FCC as a result of exposure to HIRF, and the effect of upset on the simulated flight of the aircraft was observed and recorded. This paper presents a description of these closed- loop HIRF experiments, upset data obtained from the FCC during these experiments, and closed-loop effects on the simulated flight of the aircraft.
14 CFR 60.35 - Specific full flight simulator compliance requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE... the extent necessary for the training, testing, and/or checking that comprise the simulation portion...
14 CFR 60.35 - Specific full flight simulator compliance requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE... the extent necessary for the training, testing, and/or checking that comprise the simulation portion...
14 CFR 60.35 - Specific full flight simulator compliance requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE... the extent necessary for the training, testing, and/or checking that comprise the simulation portion...
14 CFR 60.35 - Specific full flight simulator compliance requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE... the extent necessary for the training, testing, and/or checking that comprise the simulation portion...
14 CFR 60.35 - Specific full flight simulator compliance requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE... the extent necessary for the training, testing, and/or checking that comprise the simulation portion...
Use of high performance networks and supercomputers for real-time flight simulation
NASA Technical Reports Server (NTRS)
Cleveland, Jeff I., II
1993-01-01
In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be consistent in processing time and be completed in as short a time as possible. These operations include simulation mathematical model computation and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to the Computer Automated Measurement and Control (CAMAC) technology which resulted in a factor of ten increase in the effective bandwidth and reduced latency of modules necessary for simulator communication. This technology extension is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC are completing the development of the use of supercomputers for mathematical model computation to support real-time flight simulation. This includes the development of a real-time operating system and development of specialized software and hardware for the simulator network. This paper describes the data acquisition technology and the development of supercomputing for flight simulation.
A Handbook of Flight Simulation Fidelity Required for Human Factors Research
DOT National Transportation Integrated Search
1995-12-01
This report examines relevant literature for guidelines relative to the use of : flight simulators, ranging from full mission to part-task trainers, in addition : to requirements for flight crew experience and qualifications. Both sets of : guideline...
Apollo oxygen tank stratification analysis, volume 2
NASA Technical Reports Server (NTRS)
Barton, J. E.; Patterson, H. W.
1972-01-01
An analysis of flight performance of the Apollo 15 cryogenic oxygen tanks was conducted with the variable grid stratification math model developed earlier in the program. Flight conditions investigated were the CMP-EVA and one passive thermal control period which exhibited heater temperature characteristics not previously observed. Heater temperatures for these periods were simulated with the math model using flight acceleration data. Simulation results (heater temperature and tank pressure) compared favorably with the Apollo 15 flight data, and it was concluded that tank performance was nominal. Math model modifications were also made to improve the simulation accuracy. The modifications included the addition of the effects of the tank wall thermal mass and an improved system flow distribution model. The modifications improved the accuracy of simulated pressure response based on comparisons with flight data.
The NASA Lewis integrated propulsion and flight control simulator
NASA Technical Reports Server (NTRS)
Bright, Michelle M.; Simon, Donald L.
1991-01-01
A new flight simulation facility has been developed at NASA Lewis to allow integrated propulsion-control and flight-control algorithm development and evaluation in real time. As a preliminary check of the simulator facility and the correct integration of its components, the control design and physics models for an STOVL fighter aircraft model have been demonstrated, with their associated system integration and architecture, pilot vehicle interfaces, and display symbology. The results show that this fixed-based flight simulator can provide real-time feedback and display of both airframe and propulsion variables for validation of integrated systems and testing of control design methodologies and cockpit mechanizations.
LDSD POST2 Modeling Enhancements in Support of SFDT-2 Flight Operations
NASA Technical Reports Server (NTRS)
White, Joseph; Bowes, Angela L.; Dutta, Soumyo; Ivanov, Mark C.; Queen, Eric M.
2016-01-01
Program to Optimize Simulated Trajectories II (POST2) was utilized to develop trajectory simulations characterizing all flight phases from drop to splashdown for the Low-Density Supersonic Decelerator (LDSD) project's first and second Supersonic Flight Dynamics Tests (SFDT-1 and SFDT-2) which took place June 28, 2014 and June 8, 2015, respectively. This paper describes the modeling improvements incorporated into the LDSD POST2 simulations since SFDT-1 and presents how these modeling updates affected the predicted SFDT-2 performance and sensitivity to the mission design. The POST2 simulation flight dynamics support during the SFDT-2 launch, operations, and recovery is also provided.
Effects of long and short simulated flights on the saccadic eye movement velocity of aviators.
Di Stasi, Leandro L; McCamy, Michael B; Martinez-Conde, Susana; Gayles, Ellis; Hoare, Chad; Foster, Michael; Catena, Andrés; Macknik, Stephen L
2016-01-01
Aircrew fatigue is a major contributor to operational errors in civil and military aviation. Objective detection of pilot fatigue is thus critical to prevent aviation catastrophes. Previous work has linked fatigue to changes in oculomotor dynamics, but few studies have studied this relationship in critical safety environments. Here we measured the eye movements of US Marine Corps combat helicopter pilots before and after simulated flight missions of different durations.We found a decrease in saccadic velocities after long simulated flights compared to short simulated flights. These results suggest that saccadic velocity could serve as a biomarker of aviator fatigue.
NASA Technical Reports Server (NTRS)
Shields, W. E.
1973-01-01
Tests were conducted to provide flight conditions for qualifying the Viking Decelerator System in a simulated Mars environment. A balloon launched decelerator test (BLDT) vehicle which has an external shape similar to the actual Mars Viking Lander Capsule was used so that the decelerator would be deployed in the wake of a blunt body. An effort was made to simulate the BLDT vehicle flights from the time they were dropped from the balloon, through decelerator deployment, until stable decelerator conditions were reached. The procedure used to simulate these flights using the Statistical Trajectory Estimation Program (STEP) is discussed. Using primarily ground-based position radar and vehicle onboard rate gyro and accelerometer data, the STEP produces a minimum variance solution of the vehicle trajectory and calculates vehicle attitude histories. Using film from cameras in the vehicle along with a computer program, attitude histories for portions of the flight before and after decelerator deployment were calculated independent of the STEP simulation. With the assumption that the vehicle motions derived from camera data are accurate, a comparison reveals that STEP was able to simulate vehicle motions for all flights both before and after decelerator deployment.
In-flight simulation investigation of rotorcraft pitch-roll cross coupling
NASA Technical Reports Server (NTRS)
Watson, Douglas C.; Hindson, William S.
1988-01-01
An in-flight simulation experiment investigating the handling qualities effects of the pitch-roll cross-coupling characteristic of single-main-rotor helicopters is described. The experiment was conducted using the NASA/Army CH-47B variable stability helicopter with an explicit-model-following control system. The research is an extension of an earlier ground-based investigation conducted on the NASA Ames Research Center's Vertical Motion Simulator. The model developed for the experiment is for an unaugmented helicopter with cross-coupling implemented using physical rotor parameters. The details of converting the model from the simulation to use in flight are described. A frequency-domain comparison of the model and actual aircraft responses showing the fidelity of the in-flight simulation is described. The evaluation task was representative of nap-of-the-Earth maneuvering flight. The results indicate that task demands are important in determining allowable levels of coupling. In addition, on-axis damping characteristics influence the frequency-dependent characteristics of coupling and affect the handling qualities. Pilot technique, in terms of learned control crossfeeds, can improve performance and lower workload for particular types of coupling. The results obtained in flight corroborated the simulation results.
14 CFR 121.921 - Training devices and simulators.
Code of Federal Regulations, 2013 CFR
2013-01-01
... devices and simulators. (a) Each flight training device or airplane simulator that will be used in an AQP... device or flight simulator qualification level: (1) Required evaluation of individual or crew proficiency... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Training devices and simulators. 121.921...
14 CFR 121.921 - Training devices and simulators.
Code of Federal Regulations, 2011 CFR
2011-01-01
... devices and simulators. (a) Each flight training device or airplane simulator that will be used in an AQP... device or flight simulator qualification level: (1) Required evaluation of individual or crew proficiency... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Training devices and simulators. 121.921...
14 CFR 121.921 - Training devices and simulators.
Code of Federal Regulations, 2014 CFR
2014-01-01
... devices and simulators. (a) Each flight training device or airplane simulator that will be used in an AQP... device or flight simulator qualification level: (1) Required evaluation of individual or crew proficiency... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Training devices and simulators. 121.921...
14 CFR 121.921 - Training devices and simulators.
Code of Federal Regulations, 2012 CFR
2012-01-01
... devices and simulators. (a) Each flight training device or airplane simulator that will be used in an AQP... device or flight simulator qualification level: (1) Required evaluation of individual or crew proficiency... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Training devices and simulators. 121.921...
NASA Technical Reports Server (NTRS)
Macdonald, G.
1983-01-01
A prototype Air Traffic Control facility and multiman flight simulator facility was designed and one of the component simulators fabricated as a proof of concept. The facility was designed to provide a number of independent simple simulator cabs that would have the capability of some local, stand alone processing that would in turn interface with a larger host computer. The system can accommodate up to eight flight simulators (commercially available instrument trainers) which could be operated stand alone if no graphics were required or could operate in a common simulated airspace if connected to the host computer. A proposed addition to the original design is the capability of inputing pilot inputs and quantities displayed on the flight and navigation instruments to the microcomputer when the simulator operates in the stand alone mode to allow independent use of these commercially available instrument trainers for research. The conceptual design of the system and progress made to date on its implementation are described.
STS-27 Atlantis - OV-104, Commander Gibson on SMS forward flight deck
1988-02-03
STS-27 Atlantis, Orbiter Vehicle (OV) 104, Commander Robert L. Gibson, wearing flight coveralls and communications kit assembly, sits at commanders station controls on JSC shuttle mission simulator (SMS) forward flight deck during training session. Gibson looks at crewmember on aft flight deck. SMS is located in the Mission Simulation and Training Facility Bldg 5.
NASA Technical Reports Server (NTRS)
1979-01-01
The requirements for a new research aircraft to provide in-flight V/STOL simulation were reviewed. The required capabilities were based on known limitations of ground based simulation and past/current experience with V/STOL inflight simulation. Results indicate that V/STOL inflight simulation capability is needed to aid in the design and development of high performance V/STOL aircraft. Although a new research V/STOL aircraft is preferred, an interim solution can be provided by use of the X-22A, the CH-47B, or the 4AV-8B aircraft modified for control/display flight research.
Low Gravity Freefall Facilities
NASA Technical Reports Server (NTRS)
1981-01-01
Composite of Marshall Space Flight Center's Low-Gravity Free Fall Facilities.These facilities include a 100-meter drop tower and a 100-meter drop tube. The drop tower simulates in-flight microgravity conditions for up to 4.2 seconds for containerless processing experiments, immiscible fluids and materials research, pre-flight hardware design test and flight experiment simulation. The drop tube simulates in-flight microgravity conditions for up to 4.6 seconds and is used extensively for ground-based microgravity convection research in which extremely small samples are studied. The facility can provide deep undercooling for containerless processing experiments that require materials to remain in a liquid phase when cooled below the normal solidification temperature.
1981-03-30
Composite of Marshall Space Flight Center's Low-Gravity Free Fall Facilities.These facilities include a 100-meter drop tower and a 100-meter drop tube. The drop tower simulates in-flight microgravity conditions for up to 4.2 seconds for containerless processing experiments, immiscible fluids and materials research, pre-flight hardware design test and flight experiment simulation. The drop tube simulates in-flight microgravity conditions for up to 4.6 seconds and is used extensively for ground-based microgravity convection research in which extremely small samples are studied. The facility can provide deep undercooling for containerless processing experiments that require materials to remain in a liquid phase when cooled below the normal solidification temperature.
Hybrid adaptive ascent flight control for a flexible launch vehicle
NASA Astrophysics Data System (ADS)
Lefevre, Brian D.
For the purpose of maintaining dynamic stability and improving guidance command tracking performance under off-nominal flight conditions, a hybrid adaptive control scheme is selected and modified for use as a launch vehicle flight controller. This architecture merges a model reference adaptive approach, which utilizes both direct and indirect adaptive elements, with a classical dynamic inversion controller. This structure is chosen for a number of reasons: the properties of the reference model can be easily adjusted to tune the desired handling qualities of the spacecraft, the indirect adaptive element (which consists of an online parameter identification algorithm) continually refines the estimates of the evolving characteristic parameters utilized in the dynamic inversion, and the direct adaptive element (which consists of a neural network) augments the linear feedback signal to compensate for any nonlinearities in the vehicle dynamics. The combination of these elements enables the control system to retain the nonlinear capabilities of an adaptive network while relying heavily on the linear portion of the feedback signal to dictate the dynamic response under most operating conditions. To begin the analysis, the ascent dynamics of a launch vehicle with a single 1st stage rocket motor (typical of the Ares 1 spacecraft) are characterized. The dynamics are then linearized with assumptions that are appropriate for a launch vehicle, so that the resulting equations may be inverted by the flight controller in order to compute the control signals necessary to generate the desired response from the vehicle. Next, the development of the hybrid adaptive launch vehicle ascent flight control architecture is discussed in detail. Alterations of the generic hybrid adaptive control architecture include the incorporation of a command conversion operation which transforms guidance input from quaternion form (as provided by NASA) to the body-fixed angular rate commands needed by the hybrid adaptive flight controller, development of a Newton's method based online parameter update that is modified to include a step size which regulates the rate of change in the parameter estimates, comparison of the modified Newton's method and recursive least squares online parameter update algorithms, modification of the neural network's input structure to accommodate for the nature of the nonlinearities present in a launch vehicle's ascent flight, examination of both tracking error based and modeling error based neural network weight update laws, and integration of feedback filters for the purpose of preventing harmful interaction between the flight control system and flexible structural modes. To validate the hybrid adaptive controller, a high-fidelity Ares I ascent flight simulator and a classical gain-scheduled proportional-integral-derivative (PID) ascent flight controller were obtained from the NASA Marshall Space Flight Center. The classical PID flight controller is used as a benchmark when analyzing the performance of the hybrid adaptive flight controller. Simulations are conducted which model both nominal and off-nominal flight conditions with structural flexibility of the vehicle either enabled or disabled. First, rigid body ascent simulations are performed with the hybrid adaptive controller under nominal flight conditions for the purpose of selecting the update laws which drive the indirect and direct adaptive components. With the neural network disabled, the results revealed that the recursive least squares online parameter update caused high frequency oscillations to appear in the engine gimbal commands. This is highly undesirable for long and slender launch vehicles, such as the Ares I, because such oscillation of the rocket nozzle could excite unstable structural flex modes. In contrast, the modified Newton's method online parameter update produced smooth control signals and was thus selected for use in the hybrid adaptive launch vehicle flight controller. In the simulations where the online parameter identification algorithm was disabled, the tracking error based neural network weight update law forced the network's output to diverge despite repeated reductions of the adaptive learning rate. As a result, the modeling error based neural network weight update law (which generated bounded signals) is utilized by the hybrid adaptive controller in all subsequent simulations. Comparing the PID and hybrid adaptive flight controllers under nominal flight conditions in rigid body ascent simulations showed that their tracking error magnitudes are similar for a period of time during the middle of the ascent phase. Though the PID controller performs better for a short interval around the 20 second mark, the hybrid adaptive controller performs far better from roughly 70 to 120 seconds. Elevating the aerodynamic loads by increasing the force and moment coefficients produced results very similar to the nominal case. However, applying a 5% or 10% thrust reduction to the first stage rocket motor causes the tracking error magnitude observed by the PID controller to be significantly elevated and diverge rapidly as the simulation concludes. In contrast, the hybrid adaptive controller steadily maintains smaller errors (often less than 50% of the corresponding PID value). Under the same sets of flight conditions with flexibility enabled, the results exhibit similar trends with the hybrid adaptive controller performing even better in each case. Again, the reduction of the first stage rocket motor's thrust clearly illustrated the superior robustness of the hybrid adaptive flight controller.
Marescaux, J; Clément, J M; Nord, M; Russier, Y; Tassetti, V; Mutter, D; Cotin, S; Ayache, N
1997-11-01
Surgical simulation increasingly appears to be an essential aspect of tomorrow's surgery. The development of a hepatic surgery simulator is an advanced concept calling for a new writing system which will transform the medical world: virtual reality. Virtual reality extends the perception of our five senses by representing more than the real state of things by the means of computer sciences and robotics. It consists of three concepts: immersion, navigation and interaction. Three reasons have led us to develop this simulator: the first is to provide the surgeon with a comprehensive visualisation of the organ. The second reason is to allow for planning and surgical simulation that could be compared with the detailed flight-plan for a commercial jet pilot. The third lies in the fact that virtual reality is an integrated part of the concept of computer assisted surgical procedure. The project consists of a sophisticated simulator which has to include five requirements: visual fidelity, interactivity, physical properties, physiological properties, sensory input and output. In this report we will describe how to get a realistic 3D model of the liver from bi-dimensional 2D medical images for anatomical and surgical training. The introduction of a tumor and the consequent planning and virtual resection is also described, as are force feedback and real-time interaction.
Comparison of Measured and Simulated Albedo Signals in the ATIC Experiment
NASA Technical Reports Server (NTRS)
Zatsepin, V. I.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.
2003-01-01
Albedo, radiation backscattered from an interaction and from the subsequent shower development, provides a 'background' for calorimeter experiments. In ATIC (Advanced Thin Ionization Calorimeter), a balloon borne instrument to measure cosmic ray composition and energy spectra for elements from hydrogen to iron from 30 GeV to near 100 TeV, a fully active BGO calorimeter follows a carbon interaction target and scintillator holdoscopes. The first detector is a silicon matrix constructed of 4480 individual silicon pixels, each 2 cm x 1.5 cm, that provide a measurement of the charge of the primary particle in the presence of albedo. ATIC had two successful balloon flights in Antarctica: from 28 Dec 2000 to 13 Jan 2001 (ATIC-1) and from 29 Dec 2002 to 18 Jan 2003 (ATIC-2). A comparison of albedo signals in the silicon matri:x in ATIC-1 experiment with simulations performed using the GEANT 3.21 code and the QGSM event generator for nucleus-nucleus interactions is presented.
Medical Operations Console Procedure Evaluation: BME Response to Crew Call Down for an Emergency
NASA Technical Reports Server (NTRS)
Johnson-Troop; Pettys, Marianne; Hurst, Victor, IV; Smaka, Todd; Paul, Bonnie; Rosenquist, Kevin; Gast, Karin; Gillis, David; McCulley, Phyllis
2006-01-01
International Space Station (ISS) Mission Operations are managed by multiple flight control disciplines located at the lead Mission Control Center (MCC) at NASA-Johnson Space Center (JSC). ISS Medical Operations are supported by the complementary roles of Flight Surgeons (Surgeon) and Biomedical Engineer (BME) flight controllers. The Surgeon, a board certified physician, oversees all medical concerns of the crew and the BME provides operational and engineering support for Medical Operations Crew Health Care System. ISS Medical Operations is currently addressing the coordinated response to a crew call down for an emergent medical event, in particular when the BME is the only Medical Operations representative in MCC. In this case, the console procedure BME Response to Crew Call Down for an Emergency will be used. The procedure instructs the BME to contact a Surgeon as soon as possible, coordinate with other flight disciplines to establish a Private Medical Conference (PMC) for the crew and Surgeon, gather information from the crew if time permits, and provide Surgeon with pertinent console resources. It is paramount that this procedure is clearly written and easily navigated to assist the BME to respond consistently and efficiently. A total of five BME flight controllers participated in the study. Each BME participant sat in a simulated MCC environment at a console configured with resources specific to the BME MCC console and was presented with two scripted emergency call downs from an ISS crew member. Each participant used the procedure while interacting with analog MCC disciplines to respond to the crew call down. Audio and video recordings of the simulations were analyzed and each BME participant's actions were compared to the procedure. Structured debriefs were conducted at the conclusion of both simulations. The procedure was evaluated for its ability to elicit consistent responses from each BME participant. Trials were examined for deviations in procedure task completion and/or navigation, in particular the execution of the Surgeon call sequence. Debrief comments were used to analyze unclear procedural steps and to discern any discrepancies between the procedure and generally accepted BME actions. The sequence followed by BME participants differed considerably from the sequence intended by the procedure. Common deviations included the call sequence used to contact Surgeon, the content of BME and crew interaction and the gathering of pertinent console resources. Differing perceptions of task priority and imprecise language seem to have caused multiple deviations from the procedure s intended sequence. The study generated 40 recommendations for the procedure, of which 34 are being implemented. These recommendations address improving the clarity of the instructions, identifying training considerations, expediting Surgeon contact, improving cues for anticipated flight control team communication and identifying missing console tools.
NASA Technical Reports Server (NTRS)
Mason, M. G.
1975-01-01
A simulator is described, which was designed for testing and evaluating inertial measuring units, and flight platforms. Mechanical and electrical specifications for the outer, middle, and inner axis are presented. Test results are included.
Overheating Anomalies during Flight Test Due to the Base Bleeding
NASA Technical Reports Server (NTRS)
Luchinsky, Dmitry; Hafiychuck, Halyna; Osipov, Slava; Ponizhovskaya, Ekaterina; Smelyanskiy, Vadim; Dagostino, Mark; Canabal, Francisco; Mobley, Brandon L.
2012-01-01
In this paper we present the results of the analytical and numerical studies of the plume interaction with the base flow in the presence of base out-gassing. The physics-based analysis and CFD modeling of the base heating for single solid rocket motor performed in this research addressed the following questions: what are the key factors making base flow so different from that in the Shuttle [1]; why CFD analysis of this problem reveals small plume recirculation; what major factors influence base temperature; and why overheating was initiated at a given time in the flight. To answer these questions topological analysis of the base flow was performed and Korst theory was used to estimate relative contributions of radiation, plume recirculation, and chemically reactive out-gassing to the base heating. It was shown that base bleeding and small base volume are the key factors contributing to the overheating, while plume recirculation is effectively suppressed by asymmetric configuration of the flow formed earlier in the flight. These findings are further verified using CFD simulations that include multi-species gas environment both in the plume and in the base. Solid particles in the exhaust plume (Al2O3) and char particles in the base bleeding were also included into the simulations and their relative contributions into the base temperature rise were estimated. The results of simulations are in good agreement with the temperature and pressure in the base measured during the test.
NASA Technical Reports Server (NTRS)
Dill, Evan T.; Young, Steven D.
2015-01-01
In the constant drive to further the safety and efficiency of air travel, the complexity of avionics-related systems, and the procedures for interacting with these systems, appear to be on an ever-increasing trend. While this growing complexity often yields productive results with respect to system capabilities and flight efficiency, it can place a larger burden on pilots to manage increasing amounts of information and to understand intricate system designs. Evidence supporting this observation is becoming widespread, yet has been largely anecdotal or the result of subjective analysis. One way to gain more insight into this issue is through experimentation using more objective measures or indicators. This study utilizes and analyzes eye-tracking data obtained during a high-fidelity flight simulation study wherein many of the complexities of current flight decks, as well as those planned for the next generation air transportation system (NextGen), were emulated. The following paper presents the findings of this study with a focus on electronic flight bag (EFB) usage, system state awareness (SSA) and events involving suspected inattentional blindness (IB).
NASA Technical Reports Server (NTRS)
Trept, Ted
1984-01-01
Hover and forward flight tests were conducted to investigate the mutual aerodynamic interaction between the main motor and fuselage of a conventional helicopter configuration. A 0.15-scale Model 222 two-bladed teetering rotor was combined with a 0.15-scale model of the NASA Ames 40x80-foot wind tunnel 1500 horsepower test stand fairing. Configuration effects were studied by modifying the fairing to simulate a typical helicopter forebody. Separation distance between rotor and body were also investigated. Rotor and fuselage force and moment as well as pressure data are presented in graphical and tabular format. Data was taken over a range of thrust coefficients from 0.002 to 0.007. In forward flight speed ratio was varied from 0.1 to 0.3 with shaft angle varying from +4 to -12 deg. The data show that the rotors effect on the fuselage may be considerably more important to total aircraft performance than the effect of the fuselage on the rotor.
Use of the flight simulator in the design of a STOL research aircraft.
NASA Technical Reports Server (NTRS)
Spitzer, R. E.; Rumsey, P. C.; Quigley, H. C.
1972-01-01
Piloted simulator tests on the NASA-Ames Flight Simulator for Advanced Aircraft motion base played a major role in guiding the design of the Modified C-8A 'Buffalo' augmentor wing jet flap STOL research airplane. Design results are presented for the flight control systems, lateral-directional SAS, hydraulic systems, and engine and thrust vector controls. Emphasis is given to lateral control characteristics on STOL landing approach, engine-out control and recovery techniques in the powered-lift regime, and operational flight procedures which affected airplane design.
First Integrated Flight Simulation For STS 114
2004-10-13
JSC2004-E-45138 (13 October 2004) --- Astronaut Stephen N. Frick monitors communications at the spacecraft communicator (CAPCOM) console in the Shuttle Flight Control Room (WFCR) in Johnson Space Centers (JSC) Mission Control Center (MCC) with the STS-114 crewmembers during a fully-integrated simulation on October 13. The seven member crew was in a JSC-based simulator during the sims. The dress rehearsal of Discovery's rendezvous and docking with the International Space Station (ISS) was the first flight-specific training for the Space Shuttle's return to flight.
Spatial Disorientation Training in the Rotor Wing Flight Simulator.
Powell-Dunford, Nicole; Bushby, Alaistair; Leland, Richard A
This study is intended to identify efficacy, evolving applications, best practices, and challenges of spatial disorientation (SD) training in flight simulators for rotor wing pilots. Queries of a UK Ministry of Defense research database and Pub Med were undertaken using the search terms 'spatial disorientation,' 'rotor wing,' and 'flight simulator.' Efficacy, evolving applications, best practices, and challenges of SD simulation for rotor wing pilots were also ascertained through discussion with subject matter experts and industrial partners. Expert opinions were solicited at the aeromedical physiologist, aeromedical psychologist, instructor pilot, aeromedical examiner, and corporate executive levels. Peer review literature search yielded 129 articles, with 5 relevant to the use of flight simulators for the spatial disorientation training of rotor wing pilots. Efficacy of such training was measured subjectively and objectively. A preponderance of anecdotal reports endorse the benefits of rotor wing simulator SD training, with a small trial substantiating performance improvement. Advancing technologies enable novel training applications. The mobile nature of flight students and concurrent anticollision technologies can make long-range assessment of SD training efficacy challenging. Costs of advanced technologies could limit the extent to which the most advanced simulators can be employed across the rotor wing community. Evidence suggests the excellent training value of rotor wing simulators for SD training. Objective data from further research, particularly with regards to evolving technologies, may justify further usage of advanced simulator platforms for SD training and research. Powell-Dunford N, Bushby A, Leland RA. Spatial disorientation training in the rotor wing flight simulator. Aerosp Med Hum Perform. 2016; 87(10):890-893.
Results of a Flight Simulation Software Methods Survey
NASA Technical Reports Server (NTRS)
Jackson, E. Bruce
1995-01-01
A ten-page questionnaire was mailed to members of the AIAA Flight Simulation Technical Committee in the spring of 1994. The survey inquired about various aspects of developing and maintaining flight simulation software, as well as a few questions dealing with characterization of each facility. As of this report, 19 completed surveys (out of 74 sent out) have been received. This paper summarizes those responses.
Simulation at Dryden Flight Research Facility from 1957 to 1982
NASA Technical Reports Server (NTRS)
Smith, John P.; Schilling, Lawrence J.; Wagner, Charles A.
1989-01-01
The Dryden Flight Research Facility has been a leader in developing simulation as an integral part of flight test research. The history of that effort is reviewed, starting in 1957 and continuing to the present time. The contributions of the major program activities conducted at Dryden during this 25-year period to the development of a simulation philosophy and capability is explained.
STS-26 simulation activities in JSC Mission Control Center (MCC)
NASA Technical Reports Server (NTRS)
1987-01-01
Overall view of JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR) during Flight Day 1 of STS-26 integrated simulations in progress between MCC and JSC Mission Simulation and Training Facility Bldg 5 fixed-base (FB) shuttle mission simulator (SMS).
STS-26 simulation activities in JSC Mission Control Center (MCC)
NASA Technical Reports Server (NTRS)
1987-01-01
In JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR), flight controller Granvil A. Pennington, leaning on console, listens to communications during the STS-26 integrated simulations in progress between MCC and JSC Mission Simulation and Training Facility Bldg 5 fixed-base (FB) shuttle mission simulator (SMS). MCC FCR visual displays are seen in background. Five veteran astronauts were in the FB-SMS rehearsing their roles for the scheduled June 1988 flight aboard Discovery, Orbiter Vehicle (OV) 103.
Modeling human response errors in synthetic flight simulator domain
NASA Technical Reports Server (NTRS)
Ntuen, Celestine A.
1992-01-01
This paper presents a control theoretic approach to modeling human response errors (HRE) in the flight simulation domain. The human pilot is modeled as a supervisor of a highly automated system. The synthesis uses the theory of optimal control pilot modeling for integrating the pilot's observation error and the error due to the simulation model (experimental error). Methods for solving the HRE problem are suggested. Experimental verification of the models will be tested in a flight quality handling simulation.
NASA Astrophysics Data System (ADS)
Glazkov, Yury; Artjuchin, Yury; Astakhov, Alexander; Vas'kov, Alexander; Malyshev, Veniamin; Mitroshin, Edward; Glinsky, Valery; Moiseenko, Vasily; Makovlev, Vyacheslav
The development of aircraft-type reusable space vehicles (RSV) involves the problem of complete compatibility of automatic, director and manual control. Task decision is complicated, in particular, due to considerable quantitative and qualitative changes of vehicle dynamic characteristics, little stability margins (and even of unstability) of the RSV, and stringent requirements to control accuracy at some flight phases. Besides, during control a pilot is affected by g-loads which hamper motor activity and deteriorate its accuracy, alter the functional status of the visual analyser, and influence higher nervous activity. A study of g-load effects on the control efficiency, especially in manual and director modes, is of primary importance. The main tools for study of a rational selection of manual and director vehicle control systems and as an aid in formulating recommendations for optimum crew-automatic control system interactions are special complex and functional flight simulator test stands. The proposed simulator stand includes a powerful digital computer complex combined with the control system of the centrifuge. The interior of a pilot's vehicle cabin is imitated. A situation image system, pyscho-physical monitoring system, physician, centrifuge operator, and instructor stations are linked with the test stand.