Sample records for interactive genetic algorithm

  1. Inferring genetic interactions via a nonlinear model and an optimization algorithm.

    PubMed

    Chen, Chung-Ming; Lee, Chih; Chuang, Cheng-Long; Wang, Chia-Chang; Shieh, Grace S

    2010-02-26

    Biochemical pathways are gradually becoming recognized as central to complex human diseases and recently genetic/transcriptional interactions have been shown to be able to predict partial pathways. With the abundant information made available by microarray gene expression data (MGED), nonlinear modeling of these interactions is now feasible. Two of the latest advances in nonlinear modeling used sigmoid models to depict transcriptional interaction of a transcription factor (TF) for a target gene, but do not model cooperative or competitive interactions of several TFs for a target. An S-shape model and an optimization algorithm (GASA) were developed to infer genetic interactions/transcriptional regulation of several genes simultaneously using MGED. GASA consists of a genetic algorithm (GA) and a simulated annealing (SA) algorithm, which is enhanced by a steepest gradient descent algorithm to avoid being trapped in local minimum. Using simulated data with various degrees of noise, we studied how GASA with two model selection criteria and two search spaces performed. Furthermore, GASA was shown to outperform network component analysis, the time series network inference algorithm (TSNI), GA with regular GA (GAGA) and GA with regular SA. Two applications are demonstrated. First, GASA is applied to infer a subnetwork of human T-cell apoptosis. Several of the predicted interactions are supported by the literature. Second, GASA was applied to infer the transcriptional factors of 34 cell cycle regulated targets in S. cerevisiae, and GASA performed better than one of the latest advances in nonlinear modeling, GAGA and TSNI. Moreover, GASA is able to predict multiple transcription factors for certain targets, and these results coincide with experiments confirmed data in YEASTRACT. GASA is shown to infer both genetic interactions and transcriptional regulatory interactions well. In particular, GASA seems able to characterize the nonlinear mechanism of transcriptional regulatory interactions (TIs) in yeast, and may be applied to infer TIs in other organisms. The predicted genetic interactions of a subnetwork of human T-cell apoptosis coincide with existing partial pathways, suggesting the potential of GASA on inferring biochemical pathways.

  2. The McGill Interactive Pediatric OncoGenetic Guidelines: An approach to identifying pediatric oncology patients most likely to benefit from a genetic evaluation.

    PubMed

    Goudie, Catherine; Coltin, Hallie; Witkowski, Leora; Mourad, Stephanie; Malkin, David; Foulkes, William D

    2017-08-01

    Identifying cancer predisposition syndromes in children with tumors is crucial, yet few clinical guidelines exist to identify children at high risk of having germline mutations. The McGill Interactive Pediatric OncoGenetic Guidelines project aims to create a validated pediatric guideline in the form of a smartphone/tablet application using algorithms to process clinical data and help determine whether to refer a child for genetic assessment. This paper discusses the initial stages of the project, focusing on its overall structure, the methodology underpinning the algorithms, and the upcoming algorithm validation process. © 2017 Wiley Periodicals, Inc.

  3. Assessment of genetic and nongenetic interactions for the prediction of depressive symptomatology: an analysis of the Wisconsin Longitudinal Study using machine learning algorithms.

    PubMed

    Roetker, Nicholas S; Page, C David; Yonker, James A; Chang, Vicky; Roan, Carol L; Herd, Pamela; Hauser, Taissa S; Hauser, Robert M; Atwood, Craig S

    2013-10-01

    We examined depression within a multidimensional framework consisting of genetic, environmental, and sociobehavioral factors and, using machine learning algorithms, explored interactions among these factors that might better explain the etiology of depressive symptoms. We measured current depressive symptoms using the Center for Epidemiologic Studies Depression Scale (n = 6378 participants in the Wisconsin Longitudinal Study). Genetic factors were 78 single nucleotide polymorphisms (SNPs); environmental factors-13 stressful life events (SLEs), plus a composite proportion of SLEs index; and sociobehavioral factors-18 personality, intelligence, and other health or behavioral measures. We performed traditional SNP associations via logistic regression likelihood ratio testing and explored interactions with support vector machines and Bayesian networks. After correction for multiple testing, we found no significant single genotypic associations with depressive symptoms. Machine learning algorithms showed no evidence of interactions. Naïve Bayes produced the best models in both subsets and included only environmental and sociobehavioral factors. We found no single or interactive associations with genetic factors and depressive symptoms. Various environmental and sociobehavioral factors were more predictive of depressive symptoms, yet their impacts were independent of one another. A genome-wide analysis of genetic alterations using machine learning methodologies will provide a framework for identifying genetic-environmental-sociobehavioral interactions in depressive symptoms.

  4. Routine Discovery of Complex Genetic Models using Genetic Algorithms

    PubMed Central

    Moore, Jason H.; Hahn, Lance W.; Ritchie, Marylyn D.; Thornton, Tricia A.; White, Bill C.

    2010-01-01

    Simulation studies are useful in various disciplines for a number of reasons including the development and evaluation of new computational and statistical methods. This is particularly true in human genetics and genetic epidemiology where new analytical methods are needed for the detection and characterization of disease susceptibility genes whose effects are complex, nonlinear, and partially or solely dependent on the effects of other genes (i.e. epistasis or gene-gene interaction). Despite this need, the development of complex genetic models that can be used to simulate data is not always intuitive. In fact, only a few such models have been published. We have previously developed a genetic algorithm approach to discovering complex genetic models in which two single nucleotide polymorphisms (SNPs) influence disease risk solely through nonlinear interactions. In this paper, we extend this approach for the discovery of high-order epistasis models involving three to five SNPs. We demonstrate that the genetic algorithm is capable of routinely discovering interesting high-order epistasis models in which each SNP influences risk of disease only through interactions with the other SNPs in the model. This study opens the door for routine simulation of complex gene-gene interactions among SNPs for the development and evaluation of new statistical and computational approaches for identifying common, complex multifactorial disease susceptibility genes. PMID:20948983

  5. Prioritizing the Components of Vulnerability: A Genetic Algorithm Minimization of Flood Risk

    NASA Astrophysics Data System (ADS)

    Bongolan, Vena Pearl; Ballesteros, Florencio; Baritua, Karessa Alexandra; Junne Santos, Marie

    2013-04-01

    We define a flood resistant city as an optimal arrangement of communities according to their traits, with the goal of minimizing the flooding vulnerability via a genetic algorithm. We prioritize the different components of flooding vulnerability, giving each component a weight, thus expressing vulnerability as a weighted sum. This serves as the fitness function for the genetic algorithm. We also allowed non-linear interactions among related but independent components, viz, poverty and mortality rate, and literacy and radio/ tv penetration. The designs produced reflect the relative importance of the components, and we observed a synchronicity between the interacting components, giving us a more consistent design.

  6. Identification of expression quantitative trait loci by the interaction analysis using genetic algorithm.

    PubMed

    Namkung, Junghyun; Nam, Jin-Wu; Park, Taesung

    2007-01-01

    Many genes with major effects on quantitative traits have been reported to interact with other genes. However, finding a group of interacting genes from thousands of SNPs is challenging. Hence, an efficient and robust algorithm is needed. The genetic algorithm (GA) is useful in searching for the optimal solution from a very large searchable space. In this study, we show that genome-wide interaction analysis using GA and a statistical interaction model can provide a practical method to detect biologically interacting loci. We focus our search on transcriptional regulators by analyzing gene x gene interactions for cancer-related genes. The expression values of three cancer-related genes were selected from the expression data of the Genetic Analysis Workshop 15 Problem 1 data set. We implemented a GA to identify the expression quantitative trait loci that are significantly associated with expression levels of the cancer-related genes. The time complexity of the GA was compared with that of an exhaustive search algorithm. As a result, our GA, which included heuristic methods, such as archive, elitism, and local search, has greatly reduced computational time in a genome-wide search for gene x gene interactions. In general, the GA took one-fifth the computation time of an exhaustive search for the most significant pair of single-nucleotide polymorphisms.

  7. Identification of expression quantitative trait loci by the interaction analysis using genetic algorithm

    PubMed Central

    Namkung, Junghyun; Nam, Jin-Wu; Park, Taesung

    2007-01-01

    Many genes with major effects on quantitative traits have been reported to interact with other genes. However, finding a group of interacting genes from thousands of SNPs is challenging. Hence, an efficient and robust algorithm is needed. The genetic algorithm (GA) is useful in searching for the optimal solution from a very large searchable space. In this study, we show that genome-wide interaction analysis using GA and a statistical interaction model can provide a practical method to detect biologically interacting loci. We focus our search on transcriptional regulators by analyzing gene × gene interactions for cancer-related genes. The expression values of three cancer-related genes were selected from the expression data of the Genetic Analysis Workshop 15 Problem 1 data set. We implemented a GA to identify the expression quantitative trait loci that are significantly associated with expression levels of the cancer-related genes. The time complexity of the GA was compared with that of an exhaustive search algorithm. As a result, our GA, which included heuristic methods, such as archive, elitism, and local search, has greatly reduced computational time in a genome-wide search for gene × gene interactions. In general, the GA took one-fifth the computation time of an exhaustive search for the most significant pair of single-nucleotide polymorphisms. PMID:18466570

  8. Assessment of Genetic and Nongenetic Interactions for the Prediction of Depressive Symptomatology: An Analysis of the Wisconsin Longitudinal Study Using Machine Learning Algorithms

    PubMed Central

    Roetker, Nicholas S.; Yonker, James A.; Chang, Vicky; Roan, Carol L.; Herd, Pamela; Hauser, Taissa S.; Hauser, Robert M.

    2013-01-01

    Objectives. We examined depression within a multidimensional framework consisting of genetic, environmental, and sociobehavioral factors and, using machine learning algorithms, explored interactions among these factors that might better explain the etiology of depressive symptoms. Methods. We measured current depressive symptoms using the Center for Epidemiologic Studies Depression Scale (n = 6378 participants in the Wisconsin Longitudinal Study). Genetic factors were 78 single nucleotide polymorphisms (SNPs); environmental factors—13 stressful life events (SLEs), plus a composite proportion of SLEs index; and sociobehavioral factors—18 personality, intelligence, and other health or behavioral measures. We performed traditional SNP associations via logistic regression likelihood ratio testing and explored interactions with support vector machines and Bayesian networks. Results. After correction for multiple testing, we found no significant single genotypic associations with depressive symptoms. Machine learning algorithms showed no evidence of interactions. Naïve Bayes produced the best models in both subsets and included only environmental and sociobehavioral factors. Conclusions. We found no single or interactive associations with genetic factors and depressive symptoms. Various environmental and sociobehavioral factors were more predictive of depressive symptoms, yet their impacts were independent of one another. A genome-wide analysis of genetic alterations using machine learning methodologies will provide a framework for identifying genetic–environmental–sociobehavioral interactions in depressive symptoms. PMID:23927508

  9. Fashion sketch design by interactive genetic algorithms

    NASA Astrophysics Data System (ADS)

    Mok, P. Y.; Wang, X. X.; Xu, J.; Kwok, Y. L.

    2012-11-01

    Computer aided design is vitally important for the modern industry, particularly for the creative industry. Fashion industry faced intensive challenges to shorten the product development process. In this paper, a methodology is proposed for sketch design based on interactive genetic algorithms. The sketch design system consists of a sketch design model, a database and a multi-stage sketch design engine. First, a sketch design model is developed based on the knowledge of fashion design to describe fashion product characteristics by using parameters. Second, a database is built based on the proposed sketch design model to define general style elements. Third, a multi-stage sketch design engine is used to construct the design. Moreover, an interactive genetic algorithm (IGA) is used to accelerate the sketch design process. The experimental results have demonstrated that the proposed method is effective in helping laypersons achieve satisfied fashion design sketches.

  10. A Parallel Genetic Algorithm to Discover Patterns in Genetic Markers that Indicate Predisposition to Multifactorial Disease

    PubMed Central

    Rausch, Tobias; Thomas, Alun; Camp, Nicola J.; Cannon-Albright, Lisa A.; Facelli, Julio C.

    2008-01-01

    This paper describes a novel algorithm to analyze genetic linkage data using pattern recognition techniques and genetic algorithms (GA). The method allows a search for regions of the chromosome that may contain genetic variations that jointly predispose individuals for a particular disease. The method uses correlation analysis, filtering theory and genetic algorithms (GA) to achieve this goal. Because current genome scans use from hundreds to hundreds of thousands of markers, two versions of the method have been implemented. The first is an exhaustive analysis version that can be used to visualize, explore, and analyze small genetic data sets for two marker correlations; the second is a GA version, which uses a parallel implementation allowing searches of higher-order correlations in large data sets. Results on simulated data sets indicate that the method can be informative in the identification of major disease loci and gene-gene interactions in genome-wide linkage data and that further exploration of these techniques is justified. The results presented for both variants of the method show that it can help genetic epidemiologists to identify promising combinations of genetic factors that might predispose to complex disorders. In particular, the correlation analysis of IBD expression patterns might hint to possible gene-gene interactions and the filtering might be a fruitful approach to distinguish true correlation signals from noise. PMID:18547558

  11. Evolving hard problems: Generating human genetics datasets with a complex etiology.

    PubMed

    Himmelstein, Daniel S; Greene, Casey S; Moore, Jason H

    2011-07-07

    A goal of human genetics is to discover genetic factors that influence individuals' susceptibility to common diseases. Most common diseases are thought to result from the joint failure of two or more interacting components instead of single component failures. This greatly complicates both the task of selecting informative genetic variants and the task of modeling interactions between them. We and others have previously developed algorithms to detect and model the relationships between these genetic factors and disease. Previously these methods have been evaluated with datasets simulated according to pre-defined genetic models. Here we develop and evaluate a model free evolution strategy to generate datasets which display a complex relationship between individual genotype and disease susceptibility. We show that this model free approach is capable of generating a diverse array of datasets with distinct gene-disease relationships for an arbitrary interaction order and sample size. We specifically generate eight-hundred Pareto fronts; one for each independent run of our algorithm. In each run the predictiveness of single genetic variation and pairs of genetic variants have been minimized, while the predictiveness of third, fourth, or fifth-order combinations is maximized. Two hundred runs of the algorithm are further dedicated to creating datasets with predictive four or five order interactions and minimized lower-level effects. This method and the resulting datasets will allow the capabilities of novel methods to be tested without pre-specified genetic models. This allows researchers to evaluate which methods will succeed on human genetics problems where the model is not known in advance. We further make freely available to the community the entire Pareto-optimal front of datasets from each run so that novel methods may be rigorously evaluated. These 76,600 datasets are available from http://discovery.dartmouth.edu/model_free_data/.

  12. ATHENA: A knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait Loci

    PubMed Central

    2010-01-01

    Background Growing interest and burgeoning technology for discovering genetic mechanisms that influence disease processes have ushered in a flood of genetic association studies over the last decade, yet little heritability in highly studied complex traits has been explained by genetic variation. Non-additive gene-gene interactions, which are not often explored, are thought to be one source of this "missing" heritability. Methods Stochastic methods employing evolutionary algorithms have demonstrated promise in being able to detect and model gene-gene and gene-environment interactions that influence human traits. Here we demonstrate modifications to a neural network algorithm in ATHENA (the Analysis Tool for Heritable and Environmental Network Associations) resulting in clear performance improvements for discovering gene-gene interactions that influence human traits. We employed an alternative tree-based crossover, backpropagation for locally fitting neural network weights, and incorporation of domain knowledge obtainable from publicly accessible biological databases for initializing the search for gene-gene interactions. We tested these modifications in silico using simulated datasets. Results We show that the alternative tree-based crossover modification resulted in a modest increase in the sensitivity of the ATHENA algorithm for discovering gene-gene interactions. The performance increase was highly statistically significant when backpropagation was used to locally fit NN weights. We also demonstrate that using domain knowledge to initialize the search for gene-gene interactions results in a large performance increase, especially when the search space is larger than the search coverage. Conclusions We show that a hybrid optimization procedure, alternative crossover strategies, and incorporation of domain knowledge from publicly available biological databases can result in marked increases in sensitivity and performance of the ATHENA algorithm for detecting and modelling gene-gene interactions that influence a complex human trait. PMID:20875103

  13. LEAP: biomarker inference through learning and evaluating association patterns.

    PubMed

    Jiang, Xia; Neapolitan, Richard E

    2015-03-01

    Single nucleotide polymorphism (SNP) high-dimensional datasets are available from Genome Wide Association Studies (GWAS). Such data provide researchers opportunities to investigate the complex genetic basis of diseases. Much of genetic risk might be due to undiscovered epistatic interactions, which are interactions in which combination of several genes affect disease. Research aimed at discovering interacting SNPs from GWAS datasets proceeded in two directions. First, tools were developed to evaluate candidate interactions. Second, algorithms were developed to search over the space of candidate interactions. Another problem when learning interacting SNPs, which has not received much attention, is evaluating how likely it is that the learned SNPs are associated with the disease. A complete system should provide this information as well. We develop such a system. Our system, called LEAP, includes a new heuristic search algorithm for learning interacting SNPs, and a Bayesian network based algorithm for computing the probability of their association. We evaluated the performance of LEAP using 100 1,000-SNP simulated datasets, each of which contains 15 SNPs involved in interactions. When learning interacting SNPs from these datasets, LEAP outperformed seven others methods. Furthermore, only SNPs involved in interactions were found to be probable. We also used LEAP to analyze real Alzheimer's disease and breast cancer GWAS datasets. We obtained interesting and new results from the Alzheimer's dataset, but limited results from the breast cancer dataset. We conclude that our results support that LEAP is a useful tool for extracting candidate interacting SNPs from high-dimensional datasets and determining their probability. © 2015 The Authors. *Genetic Epidemiology published by Wiley Periodicals, Inc.

  14. Interactive Genetic Algorithm - An Adaptive and Interactive Decision Support Framework for Design of Optimal Groundwater Monitoring Plans

    NASA Astrophysics Data System (ADS)

    Babbar-Sebens, M.; Minsker, B. S.

    2006-12-01

    In the water resources management field, decision making encompasses many kinds of engineering, social, and economic constraints and objectives. Representing all of these problem dependant criteria through models (analytical or numerical) and various formulations (e.g., objectives, constraints, etc.) within an optimization- simulation system can be a very non-trivial issue. Most models and formulations utilized for discerning desirable traits in a solution can only approximate the decision maker's (DM) true preference criteria, and they often fail to consider important qualitative and incomputable phenomena related to the management problem. In our research, we have proposed novel decision support frameworks that allow DMs to actively participate in the optimization process. The DMs explicitly indicate their true preferences based on their subjective criteria and the results of various simulation models and formulations. The feedback from the DMs is then used to guide the search process towards solutions that are "all-rounders" from the perspective of the DM. The two main research questions explored in this work are: a) Does interaction between the optimization algorithm and a DM assist the system in searching for groundwater monitoring designs that are robust from the DM's perspective?, and b) How can an interactive search process be made more effective when human factors, such as human fatigue and cognitive learning processes, affect the performance of the algorithm? The application of these frameworks on a real-world groundwater long-term monitoring (LTM) case study in Michigan highlighted the following salient advantages: a) in contrast to the non-interactive optimization methodology, the proposed interactive frameworks were able to identify low cost monitoring designs whose interpolation maps respected the expected spatial distribution of the contaminants, b) for many same-cost designs, the interactive methodologies were able to propose multiple alternatives that met the DM's preference criteria, therefore allowing the expert to select among several strong candidate designs depending on her/his LTM budget, c) two of the methodologies - Case-Based Micro Interactive Genetic Algorithm (CBMIGA) and Interactive Genetic Algorithm with Mixed Initiative Interaction (IGAMII) - were also able to assist in controlling human fatigue and adapt to the DM's learning process.

  15. Automatic page layout using genetic algorithms for electronic albuming

    NASA Astrophysics Data System (ADS)

    Geigel, Joe; Loui, Alexander C. P.

    2000-12-01

    In this paper, we describe a flexible system for automatic page layout that makes use of genetic algorithms for albuming applications. The system is divided into two modules, a page creator module which is responsible for distributing images amongst various album pages, and an image placement module which positions images on individual pages. Final page layouts are specified in a textual form using XML for printing or viewing over the Internet. The system makes use of genetic algorithms, a class of search and optimization algorithms that are based on the concepts of biological evolution, for generating solutions with fitness based on graphic design preferences supplied by the user. The genetic page layout algorithm has been incorporated into a web-based prototype system for interactive page layout over the Internet. The prototype system is built using client-server architecture and is implemented in java. The system described in this paper has demonstrated the feasibility of using genetic algorithms for automated page layout in albuming and web-based imaging applications. We believe that the system adequately proves the validity of the concept, providing creative layouts in a reasonable number of iterations. By optimizing the layout parameters of the fitness function, we hope to further improve the quality of the final layout in terms of user preference and computation speed.

  16. A New Framework for Adptive Sampling and Analysis During Long-Term Monitoring and Remedial Action Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minsker, Barbara

    2005-06-01

    Yonas Demissie, a research assistant supported by the project, has successfully created artificial data and assimilated it into coupled Modflow and artificial neural network models. His initial findings show that the neural networks help correct errors in the Modflow models. Abhishek Singh has used test cases from the literature to show that performing model calibration with an interactive genetic algorithm results in significantly improved parameter values. Meghna Babbar, the third research assistant supported by the project, has found similar results when applying an interactive genetic algorithms to long-term monitoring design. She has also developed new types of interactive genetic algorithmsmore » that significantly improve performance. Gayathri Gopalakrishnan, the last research assistant who is partially supported by the project, has shown that sampling branches of phytoremediation trees is an accurate approach to estimating soil and groundwater contaminations in areas surrounding the trees at the Argonne 317/319 site.« less

  17. The genetic interacting landscape of 63 candidate genes in Major Depressive Disorder: an explorative study.

    PubMed

    Lekman, Magnus; Hössjer, Ola; Andrews, Peter; Källberg, Henrik; Uvehag, Daniel; Charney, Dennis; Manji, Husseini; Rush, John A; McMahon, Francis J; Moore, Jason H; Kockum, Ingrid

    2014-01-01

    Genetic contributions to major depressive disorder (MDD) are thought to result from multiple genes interacting with each other. Different procedures have been proposed to detect such interactions. Which approach is best for explaining the risk of developing disease is unclear. This study sought to elucidate the genetic interaction landscape in candidate genes for MDD by conducting a SNP-SNP interaction analysis using an exhaustive search through 3,704 SNP-markers in 1,732 cases and 1,783 controls provided from the GAIN MDD study. We used three different methods to detect interactions, two logistic regressions models (multiplicative and additive) and one data mining and machine learning (MDR) approach. Although none of the interaction survived correction for multiple comparisons, the results provide important information for future genetic interaction studies in complex disorders. Among the 0.5% most significant observations, none had been reported previously for risk to MDD. Within this group of interactions, less than 0.03% would have been detectable based on main effect approach or an a priori algorithm. We evaluated correlations among the three different models and conclude that all three algorithms detected the same interactions to a low degree. Although the top interactions had a surprisingly large effect size for MDD (e.g. additive dominant model Puncorrected = 9.10E-9 with attributable proportion (AP) value = 0.58 and multiplicative recessive model with Puncorrected = 6.95E-5 with odds ratio (OR estimated from β3) value = 4.99) the area under the curve (AUC) estimates were low (< 0.54). Moreover, the population attributable fraction (PAF) estimates were also low (< 0.15). We conclude that the top interactions on their own did not explain much of the genetic variance of MDD. The different statistical interaction methods we used in the present study did not identify the same pairs of interacting markers. Genetic interaction studies may uncover previously unsuspected effects that could provide novel insights into MDD risk, but much larger sample sizes are needed before this strategy can be powerfully applied.

  18. Inferring Mechanisms of Compensation from E-MAP and SGA Data Using Local Search Algorithms for Max Cut

    NASA Astrophysics Data System (ADS)

    Leiserson, Mark D. M.; Tatar, Diana; Cowen, Lenore J.; Hescott, Benjamin J.

    A new method based on a mathematically natural local search framework for max cut is developed to uncover functionally coherent module and BPM motifs in high-throughput genetic interaction data. Unlike previous methods which also consider physical protein-protein interaction data, our method utilizes genetic interaction data only; this becomes increasingly important as high-throughput genetic interaction data is becoming available in settings where less is known about physical interaction data. We compare modules and BPMs obtained to previous methods and across different datasets. Despite needing no physical interaction information, the BPMs produced by our method are competitive with previous methods. Biological findings include a suggested global role for the prefoldin complex and a SWR subcomplex in pathway buffering in the budding yeast interactome.

  19. Inferring mechanisms of compensation from E-MAP and SGA data using local search algorithms for max cut.

    PubMed

    Leiserson, Mark D M; Tatar, Diana; Cowen, Lenore J; Hescott, Benjamin J

    2011-11-01

    A new method based on a mathematically natural local search framework for max cut is developed to uncover functionally coherent module and BPM motifs in high-throughput genetic interaction data. Unlike previous methods, which also consider physical protein-protein interaction data, our method utilizes genetic interaction data only; this becomes increasingly important as high-throughput genetic interaction data is becoming available in settings where less is known about physical interaction data. We compare modules and BPMs obtained to previous methods and across different datasets. Despite needing no physical interaction information, the BPMs produced by our method are competitive with previous methods. Biological findings include a suggested global role for the prefoldin complex and a SWR subcomplex in pathway buffering in the budding yeast interactome.

  20. Improving the efficiency of a user-driven learning system with reconfigurable hardware. Application to DNA splicing.

    PubMed

    Lemoine, E; Merceron, D; Sallantin, J; Nguifo, E M

    1999-01-01

    This paper describes a new approach to problem solving by splitting up problem component parts between software and hardware. Our main idea arises from the combination of two previously published works. The first one proposed a conceptual environment of concept modelling in which the machine and the human expert interact. The second one reported an algorithm based on reconfigurable hardware system which outperforms any kind of previously published genetic data base scanning hardware or algorithms. Here we show how efficient the interaction between the machine and the expert is when the concept modelling is based on reconfigurable hardware system. Their cooperation is thus achieved with an real time interaction speed. The designed system has been partially applied to the recognition of primate splice junctions sites in genetic sequences.

  1. Inferring Mechanisms of Compensation from E-MAP and SGA Data Using Local Search Algorithms for Max Cut

    PubMed Central

    Leiserson, Mark D.M.; Tatar, Diana; Cowen, Lenore J.

    2011-01-01

    Abstract A new method based on a mathematically natural local search framework for max cut is developed to uncover functionally coherent module and BPM motifs in high-throughput genetic interaction data. Unlike previous methods, which also consider physical protein-protein interaction data, our method utilizes genetic interaction data only; this becomes increasingly important as high-throughput genetic interaction data is becoming available in settings where less is known about physical interaction data. We compare modules and BPMs obtained to previous methods and across different datasets. Despite needing no physical interaction information, the BPMs produced by our method are competitive with previous methods. Biological findings include a suggested global role for the prefoldin complex and a SWR subcomplex in pathway buffering in the budding yeast interactome. PMID:21882903

  2. An evolutionary algorithm that constructs recurrent neural networks.

    PubMed

    Angeline, P J; Saunders, G M; Pollack, J B

    1994-01-01

    Standard methods for simultaneously inducing the structure and weights of recurrent neural networks limit every task to an assumed class of architectures. Such a simplification is necessary since the interactions between network structure and function are not well understood. Evolutionary computations, which include genetic algorithms and evolutionary programming, are population-based search methods that have shown promise in many similarly complex tasks. This paper argues that genetic algorithms are inappropriate for network acquisition and describes an evolutionary program, called GNARL, that simultaneously acquires both the structure and weights for recurrent networks. GNARL's empirical acquisition method allows for the emergence of complex behaviors and topologies that are potentially excluded by the artificial architectural constraints imposed in standard network induction methods.

  3. pulver: an R package for parallel ultra-rapid p-value computation for linear regression interaction terms.

    PubMed

    Molnos, Sophie; Baumbach, Clemens; Wahl, Simone; Müller-Nurasyid, Martina; Strauch, Konstantin; Wang-Sattler, Rui; Waldenberger, Melanie; Meitinger, Thomas; Adamski, Jerzy; Kastenmüller, Gabi; Suhre, Karsten; Peters, Annette; Grallert, Harald; Theis, Fabian J; Gieger, Christian

    2017-09-29

    Genome-wide association studies allow us to understand the genetics of complex diseases. Human metabolism provides information about the disease-causing mechanisms, so it is usual to investigate the associations between genetic variants and metabolite levels. However, only considering genetic variants and their effects on one trait ignores the possible interplay between different "omics" layers. Existing tools only consider single-nucleotide polymorphism (SNP)-SNP interactions, and no practical tool is available for large-scale investigations of the interactions between pairs of arbitrary quantitative variables. We developed an R package called pulver to compute p-values for the interaction term in a very large number of linear regression models. Comparisons based on simulated data showed that pulver is much faster than the existing tools. This is achieved by using the correlation coefficient to test the null-hypothesis, which avoids the costly computation of inversions. Additional tricks are a rearrangement of the order, when iterating through the different "omics" layers, and implementing this algorithm in the fast programming language C++. Furthermore, we applied our algorithm to data from the German KORA study to investigate a real-world problem involving the interplay among DNA methylation, genetic variants, and metabolite levels. The pulver package is a convenient and rapid tool for screening huge numbers of linear regression models for significant interaction terms in arbitrary pairs of quantitative variables. pulver is written in R and C++, and can be downloaded freely from CRAN at https://cran.r-project.org/web/packages/pulver/ .

  4. A Flexible Computational Framework Using R and Map-Reduce for Permutation Tests of Massive Genetic Analysis of Complex Traits.

    PubMed

    Mahjani, Behrang; Toor, Salman; Nettelblad, Carl; Holmgren, Sverker

    2017-01-01

    In quantitative trait locus (QTL) mapping significance of putative QTL is often determined using permutation testing. The computational needs to calculate the significance level are immense, 10 4 up to 10 8 or even more permutations can be needed. We have previously introduced the PruneDIRECT algorithm for multiple QTL scan with epistatic interactions. This algorithm has specific strengths for permutation testing. Here, we present a flexible, parallel computing framework for identifying multiple interacting QTL using the PruneDIRECT algorithm which uses the map-reduce model as implemented in Hadoop. The framework is implemented in R, a widely used software tool among geneticists. This enables users to rearrange algorithmic steps to adapt genetic models, search algorithms, and parallelization steps to their needs in a flexible way. Our work underlines the maturity of accessing distributed parallel computing for computationally demanding bioinformatics applications through building workflows within existing scientific environments. We investigate the PruneDIRECT algorithm, comparing its performance to exhaustive search and DIRECT algorithm using our framework on a public cloud resource. We find that PruneDIRECT is vastly superior for permutation testing, and perform 2 ×10 5 permutations for a 2D QTL problem in 15 hours, using 100 cloud processes. We show that our framework scales out almost linearly for a 3D QTL search.

  5. Inference of genetic network of Xenopus frog egg: improved genetic algorithm.

    PubMed

    Wu, Shinq-Jen; Chou, Chia-Hsien; Wu, Cheng-Tao; Lee, Tsu-Tian

    2006-01-01

    An improved genetic algorithm (IGA) is proposed to achieve S-system gene network modeling of Xenopus frog egg. Via the time-courses training datasets from Michaelis-Menten model, the optimal parameters are learned. The S-system can clearly describe activative and inhibitory interaction between genes as generating and consuming process. We concern the mitotic control in cell-cycle of Xenopus frog egg to realize cyclin-Cdc2 and Cdc25 for MPF activity. The proposed IGA can achieve global search with migration and keep the best chromosome with elitism operation. The generated gene regulatory networks can provide biological researchers for further experiments in Xenopus frog egg cell cycle control.

  6. Demonstrating the suitability of genetic algorithms for driving microbial ecosystems in desirable directions.

    PubMed

    Vandecasteele, Frederik P J; Hess, Thomas F; Crawford, Ronald L

    2007-07-01

    The functioning of natural microbial ecosystems is determined by biotic interactions, which are in turn influenced by abiotic environmental conditions. Direct experimental manipulation of such conditions can be used to purposefully drive ecosystems toward exhibiting desirable functions. When a set of environmental conditions can be manipulated to be present at a discrete number of levels, finding the right combination of conditions to obtain the optimal desired effect becomes a typical combinatorial optimisation problem. Genetic algorithms are a class of robust and flexible search and optimisation techniques from the field of computer science that may be very suitable for such a task. To verify this idea, datasets containing growth levels of the total microbial community of four different natural microbial ecosystems in response to all possible combinations of a set of five chemical supplements were obtained. Subsequently, the ability of a genetic algorithm to search this parameter space for combinations of supplements driving the microbial communities to high levels of growth was compared to that of a random search, a local search, and a hill-climbing algorithm, three intuitive alternative optimisation approaches. The results indicate that a genetic algorithm is very suitable for driving microbial ecosystems in desirable directions, which opens opportunities for both fundamental ecological research and industrial applications.

  7. Artificial neural network - Genetic algorithm to optimize wheat germ fermentation condition: Application to the production of two anti-tumor benzoquinones.

    PubMed

    Zheng, Zi-Yi; Guo, Xiao-Na; Zhu, Ke-Xue; Peng, Wei; Zhou, Hui-Ming

    2017-07-15

    Methoxy-ρ-benzoquinone (MBQ) and 2, 6-dimethoxy-ρ-benzoquinone (DMBQ) are two potential anticancer compounds in fermented wheat germ. In present study, modeling and optimization of added macronutrients, microelements, vitamins for producing MBQ and DMBQ was investigated using artificial neural network (ANN) combined with genetic algorithm (GA). A configuration of 16-11-1 ANN model with Levenberg-Marquardt training algorithm was applied for modeling the complicated nonlinear interactions among 16 nutrients in fermentation process. Under the guidance of optimized scheme, the total contents of MBQ and DMBQ was improved by 117% compared with that in the control group. Further, by evaluating the relative importance of each nutrient in terms of the two benzoquinones' yield, macronutrients and microelements were found to have a greater influence than most of vitamins. It was also observed that a number of interactions between nutrients affected the yield of MBQ and DMBQ remarkably. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A multilevel layout algorithm for visualizing physical and genetic interaction networks, with emphasis on their modular organization.

    PubMed

    Tuikkala, Johannes; Vähämaa, Heidi; Salmela, Pekka; Nevalainen, Olli S; Aittokallio, Tero

    2012-03-26

    Graph drawing is an integral part of many systems biology studies, enabling visual exploration and mining of large-scale biological networks. While a number of layout algorithms are available in popular network analysis platforms, such as Cytoscape, it remains poorly understood how well their solutions reflect the underlying biological processes that give rise to the network connectivity structure. Moreover, visualizations obtained using conventional layout algorithms, such as those based on the force-directed drawing approach, may become uninformative when applied to larger networks with dense or clustered connectivity structure. We implemented a modified layout plug-in, named Multilevel Layout, which applies the conventional layout algorithms within a multilevel optimization framework to better capture the hierarchical modularity of many biological networks. Using a wide variety of real life biological networks, we carried out a systematic evaluation of the method in comparison with other layout algorithms in Cytoscape. The multilevel approach provided both biologically relevant and visually pleasant layout solutions in most network types, hence complementing the layout options available in Cytoscape. In particular, it could improve drawing of large-scale networks of yeast genetic interactions and human physical interactions. In more general terms, the biological evaluation framework developed here enables one to assess the layout solutions from any existing or future graph drawing algorithm as well as to optimize their performance for a given network type or structure. By making use of the multilevel modular organization when visualizing biological networks, together with the biological evaluation of the layout solutions, one can generate convenient visualizations for many network biology applications.

  9. GPU Accelerated Browser for Neuroimaging Genomics.

    PubMed

    Zigon, Bob; Li, Huang; Yao, Xiaohui; Fang, Shiaofen; Hasan, Mohammad Al; Yan, Jingwen; Moore, Jason H; Saykin, Andrew J; Shen, Li

    2018-04-25

    Neuroimaging genomics is an emerging field that provides exciting opportunities to understand the genetic basis of brain structure and function. The unprecedented scale and complexity of the imaging and genomics data, however, have presented critical computational bottlenecks. In this work we present our initial efforts towards building an interactive visual exploratory system for mining big data in neuroimaging genomics. A GPU accelerated browsing tool for neuroimaging genomics is created that implements the ANOVA algorithm for single nucleotide polymorphism (SNP) based analysis and the VEGAS algorithm for gene-based analysis, and executes them at interactive rates. The ANOVA algorithm is 110 times faster than the 4-core OpenMP version, while the VEGAS algorithm is 375 times faster than its 4-core OpenMP counter part. This approach lays a solid foundation for researchers to address the challenges of mining large-scale imaging genomics datasets via interactive visual exploration.

  10. Bio-inspired algorithms applied to molecular docking simulations.

    PubMed

    Heberlé, G; de Azevedo, W F

    2011-01-01

    Nature as a source of inspiration has been shown to have a great beneficial impact on the development of new computational methodologies. In this scenario, analyses of the interactions between a protein target and a ligand can be simulated by biologically inspired algorithms (BIAs). These algorithms mimic biological systems to create new paradigms for computation, such as neural networks, evolutionary computing, and swarm intelligence. This review provides a description of the main concepts behind BIAs applied to molecular docking simulations. Special attention is devoted to evolutionary algorithms, guided-directed evolutionary algorithms, and Lamarckian genetic algorithms. Recent applications of these methodologies to protein targets identified in the Mycobacterium tuberculosis genome are described.

  11. Nutritional habits, lifestyle, and genetic predisposition in cardiovascular and metabolic traits in Turkish population.

    PubMed

    Karaca, Sefayet; Erge, Sema; Cesuroglu, Tomris; Polimanti, Renato

    2016-06-01

    Cardiovascular and metabolic traits (CMT) are influenced by complex interactive processes including diet, lifestyle, and genetic predisposition. The present study investigated the interactions of these risk factors in relation to CMTs in the Turkish population. We applied bootstrap agglomerative hierarchical clustering and Bayesian network learning algorithms to identify the causative relationships among genes involved in different biological mechanisms (i.e., lipid metabolism, hormone metabolism, cellular detoxification, aging, and energy metabolism), lifestyle (i.e., physical activity, smoking behavior, and metropolitan residency), anthropometric traits (i.e., body mass index, body fat ratio, and waist-to-hip ratio), and dietary habits (i.e., daily intakes of macro- and micronutrients) in relation to CMTs (i.e., health conditions and blood parameters). We identified significant correlations between dietary habits (soybean and vitamin B12 intakes) and different cardiometabolic diseases that were confirmed by the Bayesian network-learning algorithm. Genetic factors contributed to these disease risks also through the pleiotropy of some genetic variants (i.e., F5 rs6025 and MTR rs180508). However, we also observed that certain genetic associations are indirect since they are due to the causative relationships among the CMTs (e.g., APOC3 rs5128 is associated with low-density lipoproteins cholesterol and, by extension, total cholesterol). Our study applied a novel approach to integrate various sources of information and dissect the complex interactive processes related to CMTs. Our data indicated that complex causative networks are present: causative relationships exist among CMTs and are affected by genetic factors (with pleiotropic and non-pleiotropic effects) and dietary habits. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Optimised analytical models of the dielectric properties of biological tissue.

    PubMed

    Salahuddin, Saqib; Porter, Emily; Krewer, Finn; O' Halloran, Martin

    2017-05-01

    The interaction of electromagnetic fields with the human body is quantified by the dielectric properties of biological tissues. These properties are incorporated into complex numerical simulations using parametric models such as Debye and Cole-Cole, for the computational investigation of electromagnetic wave propagation within the body. These parameters can be acquired through a variety of optimisation algorithms to achieve an accurate fit to measured data sets. A number of different optimisation techniques have been proposed, but these are often limited by the requirement for initial value estimations or by the large overall error (often up to several percentage points). In this work, a novel two-stage genetic algorithm proposed by the authors is applied to optimise the multi-pole Debye parameters for 54 types of human tissues. The performance of the two-stage genetic algorithm has been examined through a comparison with five other existing algorithms. The experimental results demonstrate that the two-stage genetic algorithm produces an accurate fit to a range of experimental data and efficiently out-performs all other optimisation algorithms under consideration. Accurate values of the three-pole Debye models for 54 types of human tissues, over 500 MHz to 20 GHz, are also presented for reference. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. Application of a single-objective, hybrid genetic algorithm approach to pharmacokinetic model building.

    PubMed

    Sherer, Eric A; Sale, Mark E; Pollock, Bruce G; Belani, Chandra P; Egorin, Merrill J; Ivy, Percy S; Lieberman, Jeffrey A; Manuck, Stephen B; Marder, Stephen R; Muldoon, Matthew F; Scher, Howard I; Solit, David B; Bies, Robert R

    2012-08-01

    A limitation in traditional stepwise population pharmacokinetic model building is the difficulty in handling interactions between model components. To address this issue, a method was previously introduced which couples NONMEM parameter estimation and model fitness evaluation to a single-objective, hybrid genetic algorithm for global optimization of the model structure. In this study, the generalizability of this approach for pharmacokinetic model building is evaluated by comparing (1) correct and spurious covariate relationships in a simulated dataset resulting from automated stepwise covariate modeling, Lasso methods, and single-objective hybrid genetic algorithm approaches to covariate identification and (2) information criteria values, model structures, convergence, and model parameter values resulting from manual stepwise versus single-objective, hybrid genetic algorithm approaches to model building for seven compounds. Both manual stepwise and single-objective, hybrid genetic algorithm approaches to model building were applied, blinded to the results of the other approach, for selection of the compartment structure as well as inclusion and model form of inter-individual and inter-occasion variability, residual error, and covariates from a common set of model options. For the simulated dataset, stepwise covariate modeling identified three of four true covariates and two spurious covariates; Lasso identified two of four true and 0 spurious covariates; and the single-objective, hybrid genetic algorithm identified three of four true covariates and one spurious covariate. For the clinical datasets, the Akaike information criterion was a median of 22.3 points lower (range of 470.5 point decrease to 0.1 point decrease) for the best single-objective hybrid genetic-algorithm candidate model versus the final manual stepwise model: the Akaike information criterion was lower by greater than 10 points for four compounds and differed by less than 10 points for three compounds. The root mean squared error and absolute mean prediction error of the best single-objective hybrid genetic algorithm candidates were a median of 0.2 points higher (range of 38.9 point decrease to 27.3 point increase) and 0.02 points lower (range of 0.98 point decrease to 0.74 point increase), respectively, than that of the final stepwise models. In addition, the best single-objective, hybrid genetic algorithm candidate models had successful convergence and covariance steps for each compound, used the same compartment structure as the manual stepwise approach for 6 of 7 (86 %) compounds, and identified 54 % (7 of 13) of covariates included by the manual stepwise approach and 16 covariate relationships not included by manual stepwise models. The model parameter values between the final manual stepwise and best single-objective, hybrid genetic algorithm models differed by a median of 26.7 % (q₁ = 4.9 % and q₃ = 57.1 %). Finally, the single-objective, hybrid genetic algorithm approach was able to identify models capable of estimating absorption rate parameters for four compounds that the manual stepwise approach did not identify. The single-objective, hybrid genetic algorithm represents a general pharmacokinetic model building methodology whose ability to rapidly search the feasible solution space leads to nearly equivalent or superior model fits to pharmacokinetic data.

  14. A multilevel layout algorithm for visualizing physical and genetic interaction networks, with emphasis on their modular organization

    PubMed Central

    2012-01-01

    Background Graph drawing is an integral part of many systems biology studies, enabling visual exploration and mining of large-scale biological networks. While a number of layout algorithms are available in popular network analysis platforms, such as Cytoscape, it remains poorly understood how well their solutions reflect the underlying biological processes that give rise to the network connectivity structure. Moreover, visualizations obtained using conventional layout algorithms, such as those based on the force-directed drawing approach, may become uninformative when applied to larger networks with dense or clustered connectivity structure. Methods We implemented a modified layout plug-in, named Multilevel Layout, which applies the conventional layout algorithms within a multilevel optimization framework to better capture the hierarchical modularity of many biological networks. Using a wide variety of real life biological networks, we carried out a systematic evaluation of the method in comparison with other layout algorithms in Cytoscape. Results The multilevel approach provided both biologically relevant and visually pleasant layout solutions in most network types, hence complementing the layout options available in Cytoscape. In particular, it could improve drawing of large-scale networks of yeast genetic interactions and human physical interactions. In more general terms, the biological evaluation framework developed here enables one to assess the layout solutions from any existing or future graph drawing algorithm as well as to optimize their performance for a given network type or structure. Conclusions By making use of the multilevel modular organization when visualizing biological networks, together with the biological evaluation of the layout solutions, one can generate convenient visualizations for many network biology applications. PMID:22448851

  15. Interactive genetic algorithm for user-centered design of distributed conservation practices in a watershed: An examination of user preferences in objective space and user behavior

    NASA Astrophysics Data System (ADS)

    Piemonti, Adriana Debora; Babbar-Sebens, Meghna; Mukhopadhyay, Snehasis; Kleinberg, Austin

    2017-05-01

    Interactive Genetic Algorithms (IGA) are advanced human-in-the-loop optimization methods that enable humans to give feedback, based on their subjective and unquantified preferences and knowledge, during the algorithm's search process. While these methods are gaining popularity in multiple fields, there is a critical lack of data and analyses on (a) the nature of interactions of different humans with interfaces of decision support systems (DSS) that employ IGA in water resources planning problems and on (b) the effect of human feedback on the algorithm's ability to search for design alternatives desirable to end-users. In this paper, we present results and analyses of observational experiments in which different human participants (surrogates and stakeholders) interacted with an IGA-based, watershed DSS called WRESTORE to identify plans of conservation practices in a watershed. The main goal of this paper is to evaluate how the IGA adapts its search process in the objective space to a user's feedback, and identify whether any similarities exist in the objective space of plans found by different participants. Some participants focused on the entire watershed, while others focused only on specific local subbasins. Additionally, two different hydrology models were used to identify any potential differences in interactive search outcomes that could arise from differences in the numerical values of benefits displayed to participants. Results indicate that stakeholders, in comparison to their surrogates, were more likely to use multiple features of the DSS interface to collect information before giving feedback, and dissimilarities existed among participants in the objective space of design alternatives.

  16. Modular analysis of the probabilistic genetic interaction network.

    PubMed

    Hou, Lin; Wang, Lin; Qian, Minping; Li, Dong; Tang, Chao; Zhu, Yunping; Deng, Minghua; Li, Fangting

    2011-03-15

    Epistatic Miniarray Profiles (EMAP) has enabled the mapping of large-scale genetic interaction networks; however, the quantitative information gained from EMAP cannot be fully exploited since the data are usually interpreted as a discrete network based on an arbitrary hard threshold. To address such limitations, we adopted a mixture modeling procedure to construct a probabilistic genetic interaction network and then implemented a Bayesian approach to identify densely interacting modules in the probabilistic network. Mixture modeling has been demonstrated as an effective soft-threshold technique of EMAP measures. The Bayesian approach was applied to an EMAP dataset studying the early secretory pathway in Saccharomyces cerevisiae. Twenty-seven modules were identified, and 14 of those were enriched by gold standard functional gene sets. We also conducted a detailed comparison with state-of-the-art algorithms, hierarchical cluster and Markov clustering. The experimental results show that the Bayesian approach outperforms others in efficiently recovering biologically significant modules.

  17. Power of data mining methods to detect genetic associations and interactions.

    PubMed

    Molinaro, Annette M; Carriero, Nicholas; Bjornson, Robert; Hartge, Patricia; Rothman, Nathaniel; Chatterjee, Nilanjan

    2011-01-01

    Genetic association studies, thus far, have focused on the analysis of individual main effects of SNP markers. Nonetheless, there is a clear need for modeling epistasis or gene-gene interactions to better understand the biologic basis of existing associations. Tree-based methods have been widely studied as tools for building prediction models based on complex variable interactions. An understanding of the power of such methods for the discovery of genetic associations in the presence of complex interactions is of great importance. Here, we systematically evaluate the power of three leading algorithms: random forests (RF), Monte Carlo logic regression (MCLR), and multifactor dimensionality reduction (MDR). We use the algorithm-specific variable importance measures (VIMs) as statistics and employ permutation-based resampling to generate the null distribution and associated p values. The power of the three is assessed via simulation studies. Additionally, in a data analysis, we evaluate the associations between individual SNPs in pro-inflammatory and immunoregulatory genes and the risk of non-Hodgkin lymphoma. The power of RF is highest in all simulation models, that of MCLR is similar to RF in half, and that of MDR is consistently the lowest. Our study indicates that the power of RF VIMs is most reliable. However, in addition to tuning parameters, the power of RF is notably influenced by the type of variable (continuous vs. categorical) and the chosen VIM. Copyright © 2011 S. Karger AG, Basel.

  18. Complexity Theory

    USGS Publications Warehouse

    Lee, William H K.

    2016-01-01

    A complex system consists of many interacting parts, generates new collective behavior through self organization, and adaptively evolves through time. Many theories have been developed to study complex systems, including chaos, fractals, cellular automata, self organization, stochastic processes, turbulence, and genetic algorithms.

  19. A Simple and Computationally Efficient Approach to Multifactor Dimensionality Reduction Analysis of Gene-Gene Interactions for Quantitative Traits

    PubMed Central

    Gui, Jiang; Moore, Jason H.; Williams, Scott M.; Andrews, Peter; Hillege, Hans L.; van der Harst, Pim; Navis, Gerjan; Van Gilst, Wiek H.; Asselbergs, Folkert W.; Gilbert-Diamond, Diane

    2013-01-01

    We present an extension of the two-class multifactor dimensionality reduction (MDR) algorithm that enables detection and characterization of epistatic SNP-SNP interactions in the context of a quantitative trait. The proposed Quantitative MDR (QMDR) method handles continuous data by modifying MDR’s constructive induction algorithm to use a T-test. QMDR replaces the balanced accuracy metric with a T-test statistic as the score to determine the best interaction model. We used a simulation to identify the empirical distribution of QMDR’s testing score. We then applied QMDR to genetic data from the ongoing prospective Prevention of Renal and Vascular End-Stage Disease (PREVEND) study. PMID:23805232

  20. Genecentric: a package to uncover graph-theoretic structure in high-throughput epistasis data.

    PubMed

    Gallant, Andrew; Leiserson, Mark D M; Kachalov, Maxim; Cowen, Lenore J; Hescott, Benjamin J

    2013-01-18

    New technology has resulted in high-throughput screens for pairwise genetic interactions in yeast and other model organisms. For each pair in a collection of non-essential genes, an epistasis score is obtained, representing how much sicker (or healthier) the double-knockout organism will be compared to what would be expected from the sickness of the component single knockouts. Recent algorithmic work has identified graph-theoretic patterns in this data that can indicate functional modules, and even sets of genes that may occur in compensatory pathways, such as a BPM-type schema first introduced by Kelley and Ideker. However, to date, any algorithms for finding such patterns in the data were implemented internally, with no software being made publically available. Genecentric is a new package that implements a parallelized version of the Leiserson et al. algorithm (J Comput Biol 18:1399-1409, 2011) for generating generalized BPMs from high-throughput genetic interaction data. Given a matrix of weighted epistasis values for a set of double knock-outs, Genecentric returns a list of generalized BPMs that may represent compensatory pathways. Genecentric also has an extension, GenecentricGO, to query FuncAssociate (Bioinformatics 25:3043-3044, 2009) to retrieve GO enrichment statistics on generated BPMs. Python is the only dependency, and our web site provides working examples and documentation. We find that Genecentric can be used to find coherent functional and perhaps compensatory gene sets from high throughput genetic interaction data. Genecentric is made freely available for download under the GPLv2 from http://bcb.cs.tufts.edu/genecentric.

  1. Genecentric: a package to uncover graph-theoretic structure in high-throughput epistasis data

    PubMed Central

    2013-01-01

    Background New technology has resulted in high-throughput screens for pairwise genetic interactions in yeast and other model organisms. For each pair in a collection of non-essential genes, an epistasis score is obtained, representing how much sicker (or healthier) the double-knockout organism will be compared to what would be expected from the sickness of the component single knockouts. Recent algorithmic work has identified graph-theoretic patterns in this data that can indicate functional modules, and even sets of genes that may occur in compensatory pathways, such as a BPM-type schema first introduced by Kelley and Ideker. However, to date, any algorithms for finding such patterns in the data were implemented internally, with no software being made publically available. Results Genecentric is a new package that implements a parallelized version of the Leiserson et al. algorithm (J Comput Biol 18:1399-1409, 2011) for generating generalized BPMs from high-throughput genetic interaction data. Given a matrix of weighted epistasis values for a set of double knock-outs, Genecentric returns a list of generalized BPMs that may represent compensatory pathways. Genecentric also has an extension, GenecentricGO, to query FuncAssociate (Bioinformatics 25:3043-3044, 2009) to retrieve GO enrichment statistics on generated BPMs. Python is the only dependency, and our web site provides working examples and documentation. Conclusion We find that Genecentric can be used to find coherent functional and perhaps compensatory gene sets from high throughput genetic interaction data. Genecentric is made freely available for download under the GPLv2 from http://bcb.cs.tufts.edu/genecentric. PMID:23331614

  2. Genetic algorithms

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Bayer, Steven E.

    1991-01-01

    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.

  3. Genetic Algorithms and Local Search

    NASA Technical Reports Server (NTRS)

    Whitley, Darrell

    1996-01-01

    The first part of this presentation is a tutorial level introduction to the principles of genetic search and models of simple genetic algorithms. The second half covers the combination of genetic algorithms with local search methods to produce hybrid genetic algorithms. Hybrid algorithms can be modeled within the existing theoretical framework developed for simple genetic algorithms. An application of a hybrid to geometric model matching is given. The hybrid algorithm yields results that improve on the current state-of-the-art for this problem.

  4. Data Imputation in Epistatic MAPs by Network-Guided Matrix Completion

    PubMed Central

    Žitnik, Marinka; Zupan, Blaž

    2015-01-01

    Abstract Epistatic miniarray profile (E-MAP) is a popular large-scale genetic interaction discovery platform. E-MAPs benefit from quantitative output, which makes it possible to detect subtle interactions with greater precision. However, due to the limits of biotechnology, E-MAP studies fail to measure genetic interactions for up to 40% of gene pairs in an assay. Missing measurements can be recovered by computational techniques for data imputation, in this way completing the interaction profiles and enabling downstream analysis algorithms that could otherwise be sensitive to missing data values. We introduce a new interaction data imputation method called network-guided matrix completion (NG-MC). The core part of NG-MC is low-rank probabilistic matrix completion that incorporates prior knowledge presented as a collection of gene networks. NG-MC assumes that interactions are transitive, such that latent gene interaction profiles inferred by NG-MC depend on the profiles of their direct neighbors in gene networks. As the NG-MC inference algorithm progresses, it propagates latent interaction profiles through each of the networks and updates gene network weights toward improved prediction. In a study with four different E-MAP data assays and considered protein–protein interaction and gene ontology similarity networks, NG-MC significantly surpassed existing alternative techniques. Inclusion of information from gene networks also allowed NG-MC to predict interactions for genes that were not included in original E-MAP assays, a task that could not be considered by current imputation approaches. PMID:25658751

  5. P-Finder: Reconstruction of Signaling Networks from Protein-Protein Interactions and GO Annotations.

    PubMed

    Young-Rae Cho; Yanan Xin; Speegle, Greg

    2015-01-01

    Because most complex genetic diseases are caused by defects of cell signaling, illuminating a signaling cascade is essential for understanding their mechanisms. We present three novel computational algorithms to reconstruct signaling networks between a starting protein and an ending protein using genome-wide protein-protein interaction (PPI) networks and gene ontology (GO) annotation data. A signaling network is represented as a directed acyclic graph in a merged form of multiple linear pathways. An advanced semantic similarity metric is applied for weighting PPIs as the preprocessing of all three methods. The first algorithm repeatedly extends the list of nodes based on path frequency towards an ending protein. The second algorithm repeatedly appends edges based on the occurrence of network motifs which indicate the link patterns more frequently appearing in a PPI network than in a random graph. The last algorithm uses the information propagation technique which iteratively updates edge orientations based on the path strength and merges the selected directed edges. Our experimental results demonstrate that the proposed algorithms achieve higher accuracy than previous methods when they are tested on well-studied pathways of S. cerevisiae. Furthermore, we introduce an interactive web application tool, called P-Finder, to visualize reconstructed signaling networks.

  6. Multiobjective genetic algorithm conjunctive use optimization for production, cost, and energy with dynamic return flow

    NASA Astrophysics Data System (ADS)

    Peralta, Richard C.; Forghani, Ali; Fayad, Hala

    2014-04-01

    Many real water resources optimization problems involve conflicting objectives for which the main goal is to find a set of optimal solutions on, or near to the Pareto front. E-constraint and weighting multiobjective optimization techniques have shortcomings, especially as the number of objectives increases. Multiobjective Genetic Algorithms (MGA) have been previously proposed to overcome these difficulties. Here, an MGA derives a set of optimal solutions for multiobjective multiuser conjunctive use of reservoir, stream, and (un)confined groundwater resources. The proposed methodology is applied to a hydraulically and economically nonlinear system in which all significant flows, including stream-aquifer-reservoir-diversion-return flow interactions, are simulated and optimized simultaneously for multiple periods. Neural networks represent constrained state variables. The addressed objectives that can be optimized simultaneously in the coupled simulation-optimization model are: (1) maximizing water provided from sources, (2) maximizing hydropower production, and (3) minimizing operation costs of transporting water from sources to destinations. Results show the efficiency of multiobjective genetic algorithms for generating Pareto optimal sets for complex nonlinear multiobjective optimization problems.

  7. Problem solving with genetic algorithms and Splicer

    NASA Technical Reports Server (NTRS)

    Bayer, Steven E.; Wang, Lui

    1991-01-01

    Genetic algorithms are highly parallel, adaptive search procedures (i.e., problem-solving methods) loosely based on the processes of population genetics and Darwinian survival of the fittest. Genetic algorithms have proven useful in domains where other optimization techniques perform poorly. The main purpose of the paper is to discuss a NASA-sponsored software development project to develop a general-purpose tool for using genetic algorithms. The tool, called Splicer, can be used to solve a wide variety of optimization problems and is currently available from NASA and COSMIC. This discussion is preceded by an introduction to basic genetic algorithm concepts and a discussion of genetic algorithm applications.

  8. Genetic algorithms using SISAL parallel programming language

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tejada, S.

    1994-05-06

    Genetic algorithms are a mathematical optimization technique developed by John Holland at the University of Michigan [1]. The SISAL programming language possesses many of the characteristics desired to implement genetic algorithms. SISAL is a deterministic, functional programming language which is inherently parallel. Because SISAL is functional and based on mathematical concepts, genetic algorithms can be efficiently translated into the language. Several of the steps involved in genetic algorithms, such as mutation, crossover, and fitness evaluation, can be parallelized using SISAL. In this paper I will l discuss the implementation and performance of parallel genetic algorithms in SISAL.

  9. Enhanced Particle Swarm Optimization Algorithm: Efficient Training of ReaxFF Reactive Force Fields.

    PubMed

    Furman, David; Carmeli, Benny; Zeiri, Yehuda; Kosloff, Ronnie

    2018-06-12

    Particle swarm optimization (PSO) is a powerful metaheuristic population-based global optimization algorithm. However, when it is applied to nonseparable objective functions, its performance on multimodal landscapes is significantly degraded. Here we show that a significant improvement in the search quality and efficiency on multimodal functions can be achieved by enhancing the basic rotation-invariant PSO algorithm with isotropic Gaussian mutation operators. The new algorithm demonstrates superior performance across several nonlinear, multimodal benchmark functions compared with the rotation-invariant PSO algorithm and the well-established simulated annealing and sequential one-parameter parabolic interpolation methods. A search for the optimal set of parameters for the dispersion interaction model in the ReaxFF- lg reactive force field was carried out with respect to accurate DFT-TS calculations. The resulting optimized force field accurately describes the equations of state of several high-energy molecular crystals where such interactions are of crucial importance. The improved algorithm also presents better performance compared to a genetic algorithm optimization method in the optimization of the parameters of a ReaxFF- lg correction model. The computational framework is implemented in a stand-alone C++ code that allows the straightforward development of ReaxFF reactive force fields.

  10. Sample size requirements for indirect association studies of gene-environment interactions (G x E).

    PubMed

    Hein, Rebecca; Beckmann, Lars; Chang-Claude, Jenny

    2008-04-01

    Association studies accounting for gene-environment interactions (G x E) may be useful for detecting genetic effects. Although current technology enables very dense marker spacing in genetic association studies, the true disease variants may not be genotyped. Thus, causal genes are searched for by indirect association using genetic markers in linkage disequilibrium (LD) with the true disease variants. Sample sizes needed to detect G x E effects in indirect case-control association studies depend on the true genetic main effects, disease allele frequencies, whether marker and disease allele frequencies match, LD between loci, main effects and prevalence of environmental exposures, and the magnitude of interactions. We explored variables influencing sample sizes needed to detect G x E, compared these sample sizes with those required to detect genetic marginal effects, and provide an algorithm for power and sample size estimations. Required sample sizes may be heavily inflated if LD between marker and disease loci decreases. More than 10,000 case-control pairs may be required to detect G x E. However, given weak true genetic main effects, moderate prevalence of environmental exposures, as well as strong interactions, G x E effects may be detected with smaller sample sizes than those needed for the detection of genetic marginal effects. Moreover, in this scenario, rare disease variants may only be detectable when G x E is included in the analyses. Thus, the analysis of G x E appears to be an attractive option for the detection of weak genetic main effects of rare variants that may not be detectable in the analysis of genetic marginal effects only.

  11. An Expanded Lateral Interactive Clonal Selection Algorithm and Its Application

    NASA Astrophysics Data System (ADS)

    Gao, Shangce; Dai, Hongwei; Zhang, Jianchen; Tang, Zheng

    Based on the clonal selection principle proposed by Burnet, in the immune response process there is no crossover of genetic material between members of the repertoire, i. e., there is no knowledge communication during different elite pools in the previous clonal selection models. As a result, the search performance of these models is ineffective. To solve this problem, inspired by the concept of the idiotypic network theory, an expanded lateral interactive clonal selection algorithm (LICS) is put forward. In LICS, an antibody is matured not only through the somatic hypermutation and the receptor editing from the B cell, but also through the stimuli from other antibodies. The stimuli is realized by memorizing some common gene segment on the idiotypes, based on which a lateral interactive receptor editing operator is also introduced. Then, LICS is applied to several benchmark instances of the traveling salesman problem. Simulation results show the efficiency and robustness of LICS when compared to other traditional algorithms.

  12. Machine Learning for Detecting Gene-Gene Interactions

    PubMed Central

    McKinney, Brett A.; Reif, David M.; Ritchie, Marylyn D.; Moore, Jason H.

    2011-01-01

    Complex interactions among genes and environmental factors are known to play a role in common human disease aetiology. There is a growing body of evidence to suggest that complex interactions are ‘the norm’ and, rather than amounting to a small perturbation to classical Mendelian genetics, interactions may be the predominant effect. Traditional statistical methods are not well suited for detecting such interactions, especially when the data are high dimensional (many attributes or independent variables) or when interactions occur between more than two polymorphisms. In this review, we discuss machine-learning models and algorithms for identifying and characterising susceptibility genes in common, complex, multifactorial human diseases. We focus on the following machine-learning methods that have been used to detect gene-gene interactions: neural networks, cellular automata, random forests, and multifactor dimensionality reduction. We conclude with some ideas about how these methods and others can be integrated into a comprehensive and flexible framework for data mining and knowledge discovery in human genetics. PMID:16722772

  13. A genome-wide systems analysis reveals strong link between colorectal cancer and trimethylamine N-oxide (TMAO), a gut microbial metabolite of dietary meat and fat.

    PubMed

    Xu, Rong; Wang, QuanQiu; Li, Li

    2015-01-01

    Dietary intakes of red meat and fat are established risk factors for both colorectal cancer (CRC) and cardiovascular disease (CVDs). Recent studies have shown a mechanistic link between TMAO, an intestinal microbial metabolite of red meat and fat, and risk of CVDs. Data linking TMAO directly to CRC is, however, lacking. Here, we present an unbiased data-driven network-based systems approach to uncover a potential genetic relationship between TMAO and CRC. We constructed two different epigenetic interaction networks (EINs) using chemical-gene, disease-gene and protein-protein interaction data from multiple large-scale data resources. We developed a network-based ranking algorithm to ascertain TMAO-related diseases from EINs. We systematically analyzed disease categories among TMAO-related diseases at different ranking cutoffs. We then determined which genetic pathways were associated with both TMAO and CRC. We show that CVDs and their major risk factors were ranked highly among TMAO-related diseases, confirming the newly discovered mechanistic link between CVDs and TMAO, and thus validating our algorithms. CRC was ranked highly among TMAO-related disease retrieved from both EINs (top 0.02%, #1 out of 4,372 diseases retrieved based on Mendelian genetics and top 10.9% among 882 diseases based on genome-wide association genetics), providing strong supporting evidence for our hypothesis that TMAO is genetically related to CRC. We have also identified putative genetic pathways that may link TMAO to CRC, which warrants further investigation. Through systematic disease enrichment analysis, we also demonstrated that TMAO is related to metabolic syndromes and cancers in general. Our genome-wide analysis demonstrates that systems approaches to studying the epigenetic interactions among diet, microbiome metabolisms, and disease genetics hold promise for understanding disease pathogenesis. Our results show that TMAO is genetically associated with CRC. This study suggests that TMAO may be an important intermediate marker linking dietary meat and fat and gut microbiota metabolism to risk of CRC, underscoring opportunities for the development of new gut microbiome-dependent diagnostic tests and therapeutics for CRC.

  14. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA.

    PubMed

    Deng, Li; Wang, Guohua; Yu, Suihuai

    2016-01-01

    In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method.

  15. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA

    PubMed Central

    Deng, Li; Wang, Guohua; Yu, Suihuai

    2016-01-01

    In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method. PMID:26884745

  16. Optimal Design of Passive Power Filters Based on Pseudo-parallel Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Li, Pei; Li, Hongbo; Gao, Nannan; Niu, Lin; Guo, Liangfeng; Pei, Ying; Zhang, Yanyan; Xu, Minmin; Chen, Kerui

    2017-05-01

    The economic costs together with filter efficiency are taken as targets to optimize the parameter of passive filter. Furthermore, the method of combining pseudo-parallel genetic algorithm with adaptive genetic algorithm is adopted in this paper. In the early stages pseudo-parallel genetic algorithm is introduced to increase the population diversity, and adaptive genetic algorithm is used in the late stages to reduce the workload. At the same time, the migration rate of pseudo-parallel genetic algorithm is improved to change with population diversity adaptively. Simulation results show that the filter designed by the proposed method has better filtering effect with lower economic cost, and can be used in engineering.

  17. Systematic chemical-genetic and chemical-chemical interaction datasets for prediction of compound synergism

    PubMed Central

    Wildenhain, Jan; Spitzer, Michaela; Dolma, Sonam; Jarvik, Nick; White, Rachel; Roy, Marcia; Griffiths, Emma; Bellows, David S.; Wright, Gerard D.; Tyers, Mike

    2016-01-01

    The network structure of biological systems suggests that effective therapeutic intervention may require combinations of agents that act synergistically. However, a dearth of systematic chemical combination datasets have limited the development of predictive algorithms for chemical synergism. Here, we report two large datasets of linked chemical-genetic and chemical-chemical interactions in the budding yeast Saccharomyces cerevisiae. We screened 5,518 unique compounds against 242 diverse yeast gene deletion strains to generate an extended chemical-genetic matrix (CGM) of 492,126 chemical-gene interaction measurements. This CGM dataset contained 1,434 genotype-specific inhibitors, termed cryptagens. We selected 128 structurally diverse cryptagens and tested all pairwise combinations to generate a benchmark dataset of 8,128 pairwise chemical-chemical interaction tests for synergy prediction, termed the cryptagen matrix (CM). An accompanying database resource called ChemGRID was developed to enable analysis, visualisation and downloads of all data. The CGM and CM datasets will facilitate the benchmarking of computational approaches for synergy prediction, as well as chemical structure-activity relationship models for anti-fungal drug discovery. PMID:27874849

  18. Genetic Algorithm Approaches to Prebiobiotic Chemistry Modeling

    NASA Technical Reports Server (NTRS)

    Lohn, Jason; Colombano, Silvano

    1997-01-01

    We model an artificial chemistry comprised of interacting polymers by specifying two initial conditions: a distribution of polymers and a fixed set of reversible catalytic reactions. A genetic algorithm is used to find a set of reactions that exhibit a desired dynamical behavior. Such a technique is useful because it allows an investigator to determine whether a specific pattern of dynamics can be produced, and if it can, the reaction network found can be then analyzed. We present our results in the context of studying simplified chemical dynamics in theorized protocells - hypothesized precursors of the first living organisms. Our results show that given a small sample of plausible protocell reaction dynamics, catalytic reaction sets can be found. We present cases where this is not possible and also analyze the evolved reaction sets.

  19. Highly polygenic architecture of antidepressant treatment response: Comparative analysis of SSRI and NRI treatment in an animal model of depression.

    PubMed

    Malki, Karim; Tosto, Maria Grazia; Mouriño-Talín, Héctor; Rodríguez-Lorenzo, Sabela; Pain, Oliver; Jumhaboy, Irfan; Liu, Tina; Parpas, Panos; Newman, Stuart; Malykh, Artem; Carboni, Lucia; Uher, Rudolf; McGuffin, Peter; Schalkwyk, Leonard C; Bryson, Kevin; Herbster, Mark

    2017-04-01

    Response to antidepressant (AD) treatment may be a more polygenic trait than previously hypothesized, with many genetic variants interacting in yet unclear ways. In this study we used methods that can automatically learn to detect patterns of statistical regularity from a sparsely distributed signal across hippocampal transcriptome measurements in a large-scale animal pharmacogenomic study to uncover genomic variations associated with AD. The study used four inbred mouse strains of both sexes, two drug treatments, and a control group (escitalopram, nortriptyline, and saline). Multi-class and binary classification using Machine Learning (ML) and regularization algorithms using iterative and univariate feature selection methods, including InfoGain, mRMR, ANOVA, and Chi Square, were used to uncover genomic markers associated with AD response. Relevant genes were selected based on Jaccard distance and carried forward for gene-network analysis. Linear association methods uncovered only one gene associated with drug treatment response. The implementation of ML algorithms, together with feature reduction methods, revealed a set of 204 genes associated with SSRI and 241 genes associated with NRI response. Although only 10% of genes overlapped across the two drugs, network analysis shows that both drugs modulated the CREB pathway, through different molecular mechanisms. Through careful implementation and optimisations, the algorithms detected a weak signal used to predict whether an animal was treated with nortriptyline (77%) or escitalopram (67%) on an independent testing set. The results from this study indicate that the molecular signature of AD treatment may include a much broader range of genomic markers than previously hypothesized, suggesting that response to medication may be as complex as the pathology. The search for biomarkers of antidepressant treatment response could therefore consider a higher number of genetic markers and their interactions. Through predominately different molecular targets and mechanisms of action, the two drugs modulate the same Creb1 pathway which plays a key role in neurotrophic responses and in inflammatory processes. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.

  20. G/SPLINES: A hybrid of Friedman's Multivariate Adaptive Regression Splines (MARS) algorithm with Holland's genetic algorithm

    NASA Technical Reports Server (NTRS)

    Rogers, David

    1991-01-01

    G/SPLINES are a hybrid of Friedman's Multivariable Adaptive Regression Splines (MARS) algorithm with Holland's Genetic Algorithm. In this hybrid, the incremental search is replaced by a genetic search. The G/SPLINE algorithm exhibits performance comparable to that of the MARS algorithm, requires fewer least squares computations, and allows significantly larger problems to be considered.

  1. Comparison of genetic algorithms with conjugate gradient methods

    NASA Technical Reports Server (NTRS)

    Bosworth, J. L.; Foo, N. Y.; Zeigler, B. P.

    1972-01-01

    Genetic algorithms for mathematical function optimization are modeled on search strategies employed in natural adaptation. Comparisons of genetic algorithms with conjugate gradient methods, which were made on an IBM 1800 digital computer, show that genetic algorithms display superior performance over gradient methods for functions which are poorly behaved mathematically, for multimodal functions, and for functions obscured by additive random noise. Genetic methods offer performance comparable to gradient methods for many of the standard functions.

  2. Multi-scale genetic dynamic modelling I : an algorithm to compute generators.

    PubMed

    Kirkilionis, Markus; Janus, Ulrich; Sbano, Luca

    2011-09-01

    We present a new approach or framework to model dynamic regulatory genetic activity. The framework is using a multi-scale analysis based upon generic assumptions on the relative time scales attached to the different transitions of molecular states defining the genetic system. At micro-level such systems are regulated by the interaction of two kinds of molecular players: macro-molecules like DNA or polymerases, and smaller molecules acting as transcription factors. The proposed genetic model then represents the larger less abundant molecules with a finite discrete state space, for example describing different conformations of these molecules. This is in contrast to the representations of the transcription factors which are-like in classical reaction kinetics-represented by their particle number only. We illustrate the method by considering the genetic activity associated to certain configurations of interacting genes that are fundamental to modelling (synthetic) genetic clocks. A largely unknown question is how different molecular details incorporated via this more realistic modelling approach lead to different macroscopic regulatory genetic models which dynamical behaviour might-in general-be different for different model choices. The theory will be applied to a real synthetic clock in a second accompanying article (Kirkilioniset al., Theory Biosci, 2011).

  3. Software For Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Bayer, Steve E.

    1992-01-01

    SPLICER computer program is genetic-algorithm software tool used to solve search and optimization problems. Provides underlying framework and structure for building genetic-algorithm application program. Written in Think C.

  4. New knowledge-based genetic algorithm for excavator boom structural optimization

    NASA Astrophysics Data System (ADS)

    Hua, Haiyan; Lin, Shuwen

    2014-03-01

    Due to the insufficiency of utilizing knowledge to guide the complex optimal searching, existing genetic algorithms fail to effectively solve excavator boom structural optimization problem. To improve the optimization efficiency and quality, a new knowledge-based real-coded genetic algorithm is proposed. A dual evolution mechanism combining knowledge evolution with genetic algorithm is established to extract, handle and utilize the shallow and deep implicit constraint knowledge to guide the optimal searching of genetic algorithm circularly. Based on this dual evolution mechanism, knowledge evolution and population evolution can be connected by knowledge influence operators to improve the configurability of knowledge and genetic operators. Then, the new knowledge-based selection operator, crossover operator and mutation operator are proposed to integrate the optimal process knowledge and domain culture to guide the excavator boom structural optimization. Eight kinds of testing algorithms, which include different genetic operators, are taken as examples to solve the structural optimization of a medium-sized excavator boom. By comparing the results of optimization, it is shown that the algorithm including all the new knowledge-based genetic operators can more remarkably improve the evolutionary rate and searching ability than other testing algorithms, which demonstrates the effectiveness of knowledge for guiding optimal searching. The proposed knowledge-based genetic algorithm by combining multi-level knowledge evolution with numerical optimization provides a new effective method for solving the complex engineering optimization problem.

  5. Ensemble of hybrid genetic algorithm for two-dimensional phase unwrapping

    NASA Astrophysics Data System (ADS)

    Balakrishnan, D.; Quan, C.; Tay, C. J.

    2013-06-01

    The phase unwrapping is the final and trickiest step in any phase retrieval technique. Phase unwrapping by artificial intelligence methods (optimization algorithms) such as hybrid genetic algorithm, reverse simulated annealing, particle swarm optimization, minimum cost matching showed better results than conventional phase unwrapping methods. In this paper, Ensemble of hybrid genetic algorithm with parallel populations is proposed to solve the branch-cut phase unwrapping problem. In a single populated hybrid genetic algorithm, the selection, cross-over and mutation operators are applied to obtain new population in every generation. The parameters and choice of operators will affect the performance of the hybrid genetic algorithm. The ensemble of hybrid genetic algorithm will facilitate to have different parameters set and different choice of operators simultaneously. Each population will use different set of parameters and the offspring of each population will compete against the offspring of all other populations, which use different set of parameters. The effectiveness of proposed algorithm is demonstrated by phase unwrapping examples and advantages of the proposed method are discussed.

  6. Mobile robot dynamic path planning based on improved genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Zhou, Heng; Wang, Ying

    2017-08-01

    In dynamic unknown environment, the dynamic path planning of mobile robots is a difficult problem. In this paper, a dynamic path planning method based on genetic algorithm is proposed, and a reward value model is designed to estimate the probability of dynamic obstacles on the path, and the reward value function is applied to the genetic algorithm. Unique coding techniques reduce the computational complexity of the algorithm. The fitness function of the genetic algorithm fully considers three factors: the security of the path, the shortest distance of the path and the reward value of the path. The simulation results show that the proposed genetic algorithm is efficient in all kinds of complex dynamic environments.

  7. An Efficient Rank Based Approach for Closest String and Closest Substring

    PubMed Central

    2012-01-01

    This paper aims to present a new genetic approach that uses rank distance for solving two known NP-hard problems, and to compare rank distance with other distance measures for strings. The two NP-hard problems we are trying to solve are closest string and closest substring. For each problem we build a genetic algorithm and we describe the genetic operations involved. Both genetic algorithms use a fitness function based on rank distance. We compare our algorithms with other genetic algorithms that use different distance measures, such as Hamming distance or Levenshtein distance, on real DNA sequences. Our experiments show that the genetic algorithms based on rank distance have the best results. PMID:22675483

  8. A hybrid genetic algorithm for resolving closely spaced objects

    NASA Technical Reports Server (NTRS)

    Abbott, R. J.; Lillo, W. E.; Schulenburg, N.

    1995-01-01

    A hybrid genetic algorithm is described for performing the difficult optimization task of resolving closely spaced objects appearing in space based and ground based surveillance data. This application of genetic algorithms is unusual in that it uses a powerful domain-specific operation as a genetic operator. Results of applying the algorithm to real data from telescopic observations of a star field are presented.

  9. Genetic Algorithm Tuned Fuzzy Logic for Gliding Return Trajectories

    NASA Technical Reports Server (NTRS)

    Burchett, Bradley T.

    2003-01-01

    The problem of designing and flying a trajectory for successful recovery of a reusable launch vehicle is tackled using fuzzy logic control with genetic algorithm optimization. The plant is approximated by a simplified three degree of freedom non-linear model. A baseline trajectory design and guidance algorithm consisting of several Mamdani type fuzzy controllers is tuned using a simple genetic algorithm. Preliminary results show that the performance of the overall system is shown to improve with genetic algorithm tuning.

  10. Learning Intelligent Genetic Algorithms Using Japanese Nonograms

    ERIC Educational Resources Information Center

    Tsai, Jinn-Tsong; Chou, Ping-Yi; Fang, Jia-Cen

    2012-01-01

    An intelligent genetic algorithm (IGA) is proposed to solve Japanese nonograms and is used as a method in a university course to learn evolutionary algorithms. The IGA combines the global exploration capabilities of a canonical genetic algorithm (CGA) with effective condensed encoding, improved fitness function, and modified crossover and…

  11. Algorithms, complexity, and the sciences

    PubMed Central

    Papadimitriou, Christos

    2014-01-01

    Algorithms, perhaps together with Moore’s law, compose the engine of the information technology revolution, whereas complexity—the antithesis of algorithms—is one of the deepest realms of mathematical investigation. After introducing the basic concepts of algorithms and complexity, and the fundamental complexity classes P (polynomial time) and NP (nondeterministic polynomial time, or search problems), we discuss briefly the P vs. NP problem. We then focus on certain classes between P and NP which capture important phenomena in the social and life sciences, namely the Nash equlibrium and other equilibria in economics and game theory, and certain processes in population genetics and evolution. Finally, an algorithm known as multiplicative weights update (MWU) provides an algorithmic interpretation of the evolution of allele frequencies in a population under sex and weak selection. All three of these equivalences are rife with domain-specific implications: The concept of Nash equilibrium may be less universal—and therefore less compelling—than has been presumed; selection on gene interactions may entail the maintenance of genetic variation for longer periods than selection on single alleles predicts; whereas MWU can be shown to maximize, for each gene, a convex combination of the gene’s cumulative fitness in the population and the entropy of the allele distribution, an insight that may be pertinent to the maintenance of variation in evolution. PMID:25349382

  12. Genetic algorithms with memory- and elitism-based immigrants in dynamic environments.

    PubMed

    Yang, Shengxiang

    2008-01-01

    In recent years the genetic algorithm community has shown a growing interest in studying dynamic optimization problems. Several approaches have been devised. The random immigrants and memory schemes are two major ones. The random immigrants scheme addresses dynamic environments by maintaining the population diversity while the memory scheme aims to adapt genetic algorithms quickly to new environments by reusing historical information. This paper investigates a hybrid memory and random immigrants scheme, called memory-based immigrants, and a hybrid elitism and random immigrants scheme, called elitism-based immigrants, for genetic algorithms in dynamic environments. In these schemes, the best individual from memory or the elite from the previous generation is retrieved as the base to create immigrants into the population by mutation. This way, not only can diversity be maintained but it is done more efficiently to adapt genetic algorithms to the current environment. Based on a series of systematically constructed dynamic problems, experiments are carried out to compare genetic algorithms with the memory-based and elitism-based immigrants schemes against genetic algorithms with traditional memory and random immigrants schemes and a hybrid memory and multi-population scheme. The sensitivity analysis regarding some key parameters is also carried out. Experimental results show that the memory-based and elitism-based immigrants schemes efficiently improve the performance of genetic algorithms in dynamic environments.

  13. Survival dimensionality reduction (SDR): development and clinical application of an innovative approach to detect epistasis in presence of right-censored data.

    PubMed

    Beretta, Lorenzo; Santaniello, Alessandro; van Riel, Piet L C M; Coenen, Marieke J H; Scorza, Raffaella

    2010-08-06

    Epistasis is recognized as a fundamental part of the genetic architecture of individuals. Several computational approaches have been developed to model gene-gene interactions in case-control studies, however, none of them is suitable for time-dependent analysis. Herein we introduce the Survival Dimensionality Reduction (SDR) algorithm, a non-parametric method specifically designed to detect epistasis in lifetime datasets. The algorithm requires neither specification about the underlying survival distribution nor about the underlying interaction model and proved satisfactorily powerful to detect a set of causative genes in synthetic epistatic lifetime datasets with a limited number of samples and high degree of right-censorship (up to 70%). The SDR method was then applied to a series of 386 Dutch patients with active rheumatoid arthritis that were treated with anti-TNF biological agents. Among a set of 39 candidate genes, none of which showed a detectable marginal effect on anti-TNF responses, the SDR algorithm did find that the rs1801274 SNP in the Fc gamma RIIa gene and the rs10954213 SNP in the IRF5 gene non-linearly interact to predict clinical remission after anti-TNF biologicals. Simulation studies and application in a real-world setting support the capability of the SDR algorithm to model epistatic interactions in candidate-genes studies in presence of right-censored data. http://sourceforge.net/projects/sdrproject/.

  14. Boiler-turbine control system design using a genetic algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimeo, R.; Lee, K.Y.

    1995-12-01

    This paper discusses the application of a genetic algorithm to control system design for a boiler-turbine plant. In particular the authors study the ability of the genetic algorithm to develop a proportional-integral (PI) controller and a state feedback controller for a non-linear multi-input/multi-output (MIMO) plant model. The plant model is presented along with a discussion of the inherent difficulties in such controller development. A sketch of the genetic algorithm (GA) is presented and its strategy as a method of control system design is discussed. Results are presented for two different control systems that have been designed with the genetic algorithm.

  15. Applications of genetic algorithms on the structure-activity relationship analysis of some cinnamamides.

    PubMed

    Hou, T J; Wang, J M; Liao, N; Xu, X J

    1999-01-01

    Quantitative structure-activity relationships (QSARs) for 35 cinnamamides were studied. By using a genetic algorithm (GA), a group of multiple regression models with high fitness scores was generated. From the statistical analyses of the descriptors used in the evolution procedure, the principal features affecting the anticonvulsant activity were found. The significant descriptors include the partition coefficient, the molar refraction, the Hammet sigma constant of the substituents on the benzene ring, and the formation energy of the molecules. It could be found that the steric complementarity and the hydrophobic interaction between the inhibitors and the receptor were very important to the biological activity, while the contribution of the electronic effect was not so obvious. Moreover, by construction of the spline models for these four principal descriptors, the effective range for each descriptor was identified.

  16. Method for hyperspectral imagery exploitation and pixel spectral unmixing

    NASA Technical Reports Server (NTRS)

    Lin, Ching-Fang (Inventor)

    2003-01-01

    An efficiently hybrid approach to exploit hyperspectral imagery and unmix spectral pixels. This hybrid approach uses a genetic algorithm to solve the abundance vector for the first pixel of a hyperspectral image cube. This abundance vector is used as initial state in a robust filter to derive the abundance estimate for the next pixel. By using Kalman filter, the abundance estimate for a pixel can be obtained in one iteration procedure which is much fast than genetic algorithm. The output of the robust filter is fed to genetic algorithm again to derive accurate abundance estimate for the current pixel. The using of robust filter solution as starting point of the genetic algorithm speeds up the evolution of the genetic algorithm. After obtaining the accurate abundance estimate, the procedure goes to next pixel, and uses the output of genetic algorithm as the previous state estimate to derive abundance estimate for this pixel using robust filter. And again use the genetic algorithm to derive accurate abundance estimate efficiently based on the robust filter solution. This iteration continues until pixels in a hyperspectral image cube end.

  17. 1/f Noise in the Simple Genetic Algorithm Applied to a Traveling Salesman Problem

    NASA Astrophysics Data System (ADS)

    Yamada, Mitsuhiro

    Complex dynamical systems are observed in physics, biology, and even economics. Such systems in balance are considered to be in a critical state, and 1/f noise is considered to be a footprint. Complex dynamical systems have also been investigated in the field of evolutionary algorithms inspired by biological evolution. The genetic algorithm (GA) is a well-known evolutionary algorithm in which many individuals interact, and the simplest GA is referred to as the simple GA (SGA). However, the GA has not been examined from the viewpoint of the emergence of 1/f noise. In the present paper, the SGA is applied to a traveling salesman problem in order to investigate the SGA from such a viewpoint. The timecourses of the fitness of the candidate solution were examined. As a result, when the mutation and crossover probabilities were optimal, the system evolved toward a critical state in which the average maximum fitness over all trial runs was maximum. In this situation, the fluctuation of the fitness of the candidate solution resulted in the 1/f power spectrum, and the dynamics of the system had no intrinsic time or length scale.

  18. Genetics-based control of a mimo boiler-turbine plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimeo, R.M.; Lee, K.Y.

    1994-12-31

    A genetic algorithm is used to develop an optimal controller for a non-linear, multi-input/multi-output boiler-turbine plant. The algorithm is used to train a control system for the plant over a wide operating range in an effort to obtain better performance. The results of the genetic algorithm`s controller designed from the linearized plant model at a nominal operating point. Because the genetic algorithm is well-suited to solving traditionally difficult optimization problems it is found that the algorithm is capable of developing the controller based on input/output information only. This controller achieves a performance comparable to the standard linear quadratic regulator.

  19. Improved classification accuracy by feature extraction using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Patriarche, Julia; Manduca, Armando; Erickson, Bradley J.

    2003-05-01

    A feature extraction algorithm has been developed for the purposes of improving classification accuracy. The algorithm uses a genetic algorithm / hill-climber hybrid to generate a set of linearly recombined features, which may be of reduced dimensionality compared with the original set. The genetic algorithm performs the global exploration, and a hill climber explores local neighborhoods. Hybridizing the genetic algorithm with a hill climber improves both the rate of convergence, and the final overall cost function value; it also reduces the sensitivity of the genetic algorithm to parameter selection. The genetic algorithm includes the operators: crossover, mutation, and deletion / reactivation - the last of these effects dimensionality reduction. The feature extractor is supervised, and is capable of deriving a separate feature space for each tissue (which are reintegrated during classification). A non-anatomical digital phantom was developed as a gold standard for testing purposes. In tests with the phantom, and with images of multiple sclerosis patients, classification with feature extractor derived features yielded lower error rates than using standard pulse sequences, and with features derived using principal components analysis. Using the multiple sclerosis patient data, the algorithm resulted in a mean 31% reduction in classification error of pure tissues.

  20. iLOCi: a SNP interaction prioritization technique for detecting epistasis in genome-wide association studies

    PubMed Central

    2012-01-01

    Background Genome-wide association studies (GWAS) do not provide a full account of the heritability of genetic diseases since gene-gene interactions, also known as epistasis are not considered in single locus GWAS. To address this problem, a considerable number of methods have been developed for identifying disease-associated gene-gene interactions. However, these methods typically fail to identify interacting markers explaining more of the disease heritability over single locus GWAS, since many of the interactions significant for disease are obscured by uninformative marker interactions e.g., linkage disequilibrium (LD). Results In this study, we present a novel SNP interaction prioritization algorithm, named iLOCi (Interacting Loci). This algorithm accounts for marker dependencies separately in case and control groups. Disease-associated interactions are then prioritized according to a novel ranking score calculated from the difference in marker dependencies for every possible pair between case and control groups. The analysis of a typical GWAS dataset can be completed in less than a day on a standard workstation with parallel processing capability. The proposed framework was validated using simulated data and applied to real GWAS datasets using the Wellcome Trust Case Control Consortium (WTCCC) data. The results from simulated data showed the ability of iLOCi to identify various types of gene-gene interactions, especially for high-order interaction. From the WTCCC data, we found that among the top ranked interacting SNP pairs, several mapped to genes previously known to be associated with disease, and interestingly, other previously unreported genes with biologically related roles. Conclusion iLOCi is a powerful tool for uncovering true disease interacting markers and thus can provide a more complete understanding of the genetic basis underlying complex disease. The program is available for download at http://www4a.biotec.or.th/GI/tools/iloci. PMID:23281813

  1. Modelling and Optimization Studies on a Novel Lipase Production by Staphylococcus arlettae through Submerged Fermentation

    PubMed Central

    Chauhan, Mamta; Chauhan, Rajinder Singh; Garlapati, Vijay Kumar

    2013-01-01

    Microbial enzymes from extremophilic regions such as hot spring serve as an important source of various stable and valuable industrial enzymes. The present paper encompasses the modeling and optimization approach for production of halophilic, solvent, tolerant, and alkaline lipase from Staphylococcus arlettae through response surface methodology integrated nature inspired genetic algorithm. Response surface model based on central composite design has been developed by considering the individual and interaction effects of fermentation conditions on lipase production through submerged fermentation. The validated input space of response surface model (with R 2 value of 96.6%) has been utilized for optimization through genetic algorithm. An optimum lipase yield of 6.5 U/mL has been obtained using binary coded genetic algorithm predicted conditions of 9.39% inoculum with the oil concentration of 10.285% in 2.99 hrs using pH of 7.32 at 38.8°C. This outcome could contribute to introducing this extremophilic lipase (halophilic, solvent, and tolerant) to industrial biotechnology sector and will be a probable choice for different food, detergent, chemical, and pharmaceutical industries. The present work also demonstrated the feasibility of statistical design tools integration with computational tools for optimization of fermentation conditions for maximum lipase production. PMID:24455210

  2. Interactive searching of facial image databases

    NASA Astrophysics Data System (ADS)

    Nicholls, Robert A.; Shepherd, John W.; Shepherd, Jean

    1995-09-01

    A set of psychological facial descriptors has been devised to enable computerized searching of criminal photograph albums. The descriptors have been used to encode image databased of up to twelve thousand images. Using a system called FACES, the databases are searched by translating a witness' verbal description into corresponding facial descriptors. Trials of FACES have shown that this coding scheme is more productive and efficient than searching traditional photograph albums. An alternative method of searching the encoded database using a genetic algorithm is currenly being tested. The genetic search method does not require the witness to verbalize a description of the target but merely to indicate a degree of similarity between the target and a limited selection of images from the database. The major drawback of FACES is that is requires a manual encoding of images. Research is being undertaken to automate the process, however, it will require an algorithm which can predict human descriptive values. Alternatives to human derived coding schemes exist using statistical classifications of images. Since databases encoded using statistical classifiers do not have an obvious direct mapping to human derived descriptors, a search method which does not require the entry of human descriptors is required. A genetic search algorithm is being tested for such a purpose.

  3. Study of parameter identification using hybrid neural-genetic algorithm in electro-hydraulic servo system

    NASA Astrophysics Data System (ADS)

    Moon, Byung-Young

    2005-12-01

    The hybrid neural-genetic multi-model parameter estimation algorithm was demonstrated. This method can be applied to structured system identification of electro-hydraulic servo system. This algorithms consist of a recurrent incremental credit assignment(ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. To evaluate the proposed method, electro-hydraulic servo system was designed and manufactured. The experiment was carried out to figure out the hybrid neural-genetic multi-model parameter estimation algorithm. As a result, the dynamic characteristics were obtained such as the parameters(mass, damping coefficient, bulk modulus, spring coefficient), which minimize total square error. The result of this study can be applied to hydraulic systems in industrial fields.

  4. Genotype-based association models of complex diseases to detect gene-gene and gene-environment interactions.

    PubMed

    Lobach, Iryna; Fan, Ruzong; Manga, Prashiela

    A central problem in genetic epidemiology is to identify and rank genetic markers involved in a disease. Complex diseases, such as cancer, hypertension, diabetes, are thought to be caused by an interaction of a panel of genetic factors, that can be identified by markers, which modulate environmental factors. Moreover, the effect of each genetic marker may be small. Hence, the association signal may be missed unless a large sample is considered, or a priori biomedical data are used. Recent advances generated a vast variety of a priori information, including linkage maps and information about gene regulatory dependence assembled into curated pathway databases. We propose a genotype-based approach that takes into account linkage disequilibrium (LD) information between genetic markers that are in moderate LD while modeling gene-gene and gene-environment interactions. A major advantage of our method is that the observed genetic information enters a model directly thus eliminating the need to estimate haplotype-phase. Our approach results in an algorithm that is inexpensive computationally and does not suffer from bias induced by haplotype-phase ambiguity. We investigated our model in a series of simulation experiments and demonstrated that the proposed approach results in estimates that are nearly unbiased and have small variability. We applied our method to the analysis of data from a melanoma case-control study and investigated interaction between a set of pigmentation genes and environmental factors defined by age and gender. Furthermore, an application of our method is demonstrated using a study of Alcohol Dependence.

  5. Derivation of Optimal Operating Rules for Large-scale Reservoir Systems Considering Multiple Trade-off

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Lei, X.; Liu, P.; Wang, H.; Li, Z.

    2017-12-01

    Flood control operation of multi-reservoir systems such as parallel reservoirs and hybrid reservoirs often suffer from complex interactions and trade-off among tributaries and the mainstream. The optimization of such systems is computationally intensive due to nonlinear storage curves, numerous constraints and complex hydraulic connections. This paper aims to derive the optimal flood control operating rules based on the trade-off among tributaries and the mainstream using a new algorithm known as weighted non-dominated sorting genetic algorithm II (WNSGA II). WNSGA II could locate the Pareto frontier in non-dominated region efficiently due to the directed searching by weighted crowding distance, and the results are compared with those of conventional operating rules (COR) and single objective genetic algorithm (GA). Xijiang river basin in China is selected as a case study, with eight reservoirs and five flood control sections within four tributaries and the mainstream. Furthermore, the effects of inflow uncertainty have been assessed. Results indicate that: (1) WNSGA II could locate the non-dominated solutions faster and provide better Pareto frontier than the traditional non-dominated sorting genetic algorithm II (NSGA II) due to the weighted crowding distance; (2) WNSGA II outperforms COR and GA on flood control in the whole basin; (3) The multi-objective operating rules from WNSGA II deal with the inflow uncertainties better than COR. Therefore, the WNSGA II can be used to derive stable operating rules for large-scale reservoir systems effectively and efficiently.

  6. Comparison of genetic algorithm methods for fuel management optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeChaine, M.D.; Feltus, M.A.

    1995-12-31

    The CIGARO system was developed for genetic algorithm fuel management optimization. Tests are performed to find the best fuel location swap mutation operator probability and to compare genetic algorithm to a truly random search method. Tests showed the fuel swap probability should be between 0% and 10%, and a 50% definitely hampered the optimization. The genetic algorithm performed significantly better than the random search method, which did not even satisfy the peak normalized power constraint.

  7. Training product unit neural networks with genetic algorithms

    NASA Technical Reports Server (NTRS)

    Janson, D. J.; Frenzel, J. F.; Thelen, D. C.

    1991-01-01

    The training of product neural networks using genetic algorithms is discussed. Two unusual neural network techniques are combined; product units are employed instead of the traditional summing units and genetic algorithms train the network rather than backpropagation. As an example, a neural netork is trained to calculate the optimum width of transistors in a CMOS switch. It is shown how local minima affect the performance of a genetic algorithm, and one method of overcoming this is presented.

  8. New Results in Astrodynamics Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Coverstone-Carroll, V.; Hartmann, J. W.; Williams, S. N.; Mason, W. J.

    1998-01-01

    Generic algorithms have gained popularity as an effective procedure for obtaining solutions to traditionally difficult space mission optimization problems. In this paper, a brief survey of the use of genetic algorithms to solve astrodynamics problems is presented and is followed by new results obtained from applying a Pareto genetic algorithm to the optimization of low-thrust interplanetary spacecraft missions.

  9. Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm

    USGS Publications Warehouse

    Chen, C.; Xia, J.; Liu, J.; Feng, G.

    2006-01-01

    Using a genetic algorithm to solve an inverse problem of complex nonlinear geophysical equations is advantageous because it does not require computer gradients of models or "good" initial models. The multi-point search of a genetic algorithm makes it easier to find the globally optimal solution while avoiding falling into a local extremum. As is the case in other optimization approaches, the search efficiency for a genetic algorithm is vital in finding desired solutions successfully in a multi-dimensional model space. A binary-encoding genetic algorithm is hardly ever used to resolve an optimization problem such as a simple geophysical inversion with only three unknowns. The encoding mechanism, genetic operators, and population size of the genetic algorithm greatly affect search processes in the evolution. It is clear that improved operators and proper population size promote the convergence. Nevertheless, not all genetic operations perform perfectly while searching under either a uniform binary or a decimal encoding system. With the binary encoding mechanism, the crossover scheme may produce more new individuals than with the decimal encoding. On the other hand, the mutation scheme in a decimal encoding system will create new genes larger in scope than those in the binary encoding. This paper discusses approaches of exploiting the search potential of genetic operations in the two encoding systems and presents an approach with a hybrid-encoding mechanism, multi-point crossover, and dynamic population size for geophysical inversion. We present a method that is based on the routine in which the mutation operation is conducted in the decimal code and multi-point crossover operation in the binary code. The mix-encoding algorithm is called the hybrid-encoding genetic algorithm (HEGA). HEGA provides better genes with a higher probability by a mutation operator and improves genetic algorithms in resolving complicated geophysical inverse problems. Another significant result is that final solution is determined by the average model derived from multiple trials instead of one computation due to the randomness in a genetic algorithm procedure. These advantages were demonstrated by synthetic and real-world examples of inversion of potential-field data. ?? 2005 Elsevier Ltd. All rights reserved.

  10. Aerodynamic Optimization of a Supersonic Bending Body Projectile by a Vector-Evaluated Genetic Algorithm

    DTIC Science & Technology

    2016-12-01

    Evaluated Genetic Algorithm prepared by Justin L Paul Academy of Applied Science 24 Warren Street Concord, NH 03301 under contract W911SR...Supersonic Bending Body Projectile by a Vector-Evaluated Genetic Algorithm prepared by Justin L Paul Academy of Applied Science 24 Warren Street... Genetic Algorithm 5a. CONTRACT NUMBER W199SR-15-2-001 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Justin L Paul 5d. PROJECT

  11. Nonlinear dynamics optimization with particle swarm and genetic algorithms for SPEAR3 emittance upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xiaobiao; Safranek, James

    2014-09-01

    Nonlinear dynamics optimization is carried out for a low emittance upgrade lattice of SPEAR3 in order to improve its dynamic aperture and Touschek lifetime. Two multi-objective optimization algorithms, a genetic algorithm and a particle swarm algorithm, are used for this study. The performance of the two algorithms are compared. The result shows that the particle swarm algorithm converges significantly faster to similar or better solutions than the genetic algorithm and it does not require seeding of good solutions in the initial population. These advantages of the particle swarm algorithm may make it more suitable for many accelerator optimization applications.

  12. Genetic Algorithm for Initial Orbit Determination with Too Short Arc (Continued)

    NASA Astrophysics Data System (ADS)

    Li, X. R.; Wang, X.

    2016-03-01

    When using the genetic algorithm to solve the problem of too-short-arc (TSA) determination, due to the difference of computing processes between the genetic algorithm and classical method, the methods for outliers editing are no longer applicable. In the genetic algorithm, the robust estimation is acquired by means of using different loss functions in the fitness function, then the outlier problem of TSAs is solved. Compared with the classical method, the application of loss functions in the genetic algorithm is greatly simplified. Through the comparison of results of different loss functions, it is clear that the methods of least median square and least trimmed square can greatly improve the robustness of TSAs, and have a high breakdown point.

  13. Bio-Inspired Genetic Algorithms with Formalized Crossover Operators for Robotic Applications.

    PubMed

    Zhang, Jie; Kang, Man; Li, Xiaojuan; Liu, Geng-Yang

    2017-01-01

    Genetic algorithms are widely adopted to solve optimization problems in robotic applications. In such safety-critical systems, it is vitally important to formally prove the correctness when genetic algorithms are applied. This paper focuses on formal modeling of crossover operations that are one of most important operations in genetic algorithms. Specially, we for the first time formalize crossover operations with higher-order logic based on HOL4 that is easy to be deployed with its user-friendly programing environment. With correctness-guaranteed formalized crossover operations, we can safely apply them in robotic applications. We implement our technique to solve a path planning problem using a genetic algorithm with our formalized crossover operations, and the results show the effectiveness of our technique.

  14. Modeling and optimization of joint quality for laser transmission joint of thermoplastic using an artificial neural network and a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Zhang, Cheng; Li, Pin; Wang, Kai; Hu, Yang; Zhang, Peng; Liu, Huixia

    2012-11-01

    A central composite rotatable experimental design(CCRD) is conducted to design experiments for laser transmission joining of thermoplastic-Polycarbonate (PC). The artificial neural network was used to establish the relationships between laser transmission joining process parameters (the laser power, velocity, clamp pressure, scanning number) and joint strength and joint seam width. The developed mathematical models are tested by analysis of variance (ANOVA) method to check their adequacy and the effects of process parameters on the responses and the interaction effects of key process parameters on the quality are analyzed and discussed. Finally, the desirability function coupled with genetic algorithm is used to carry out the optimization of the joint strength and joint width. The results show that the predicted results of the optimization are in good agreement with the experimental results, so this study provides an effective method to enhance the joint quality.

  15. Genetics and Common Disorders: Implications for Primary Care and Public Health Providers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McInerney, Joseph D.; Greendale, Karen; Peay, Holly L.

    We developed this program for primary care providers (PCPs) and public health professionals (PHPs) who are interested in increasing their understanding of the genetics of common chronic diseases and of the implications of genetics and genomics for their fields. The program differs from virtually all previous educational efforts in genetics for health professionals in that it focuses on the genetics of common chronic disease and on the broad principles that emerge when one views disease from the perspectives of variation and individuality, which are at the heart of thinking genetically. The CD-ROM introduces users to content that will improve theirmore » understanding of topics such as: • A framework for genetics and common disease; • Basic information on genetics, genomics, genetic medicine, and public health genetics, all in the context of common chronic disease; • The status of research on genetic contributions to specific common diseases, including a review of research methods; • Genetic/environmental interaction as the new “central dogma” of public health genetics; • The importance of taking and analyzing a family history; • The likely impact of potential gene discovery and genetic testing on genetic counseling and risk assessment and on the practices of PCPs and PHPs; • Stratification of populations into low-, moderate-, and high-risk categories; • The potential role of PCPs and PHPs in identifying high-risk individuals and families, in providing limited genetics services, and in referring to clinical genetics specialists; the potential for standard referral algorithms; • Implications of genetic insights for diagnosis and treatment; • Ethical, legal, and social issues that arise from genetic testing for common chronic diseases; and • Specific prevention strategies based on understanding of genetics and genetic/ environmental interactions. The interactive content – developed by experts in genetics, primary care, and public health – is organized around two case studies designed to appeal to primary care providers (thrombophilia) and public health professionals (development of a screening grogram for colorectal cancer). NCHPEG has distributed more than 0000 copies of the CD-ROM to NCHPEG member organizations and to other organizations and individuals in response to requests. The program also is available at www.nchpeg.org.« less

  16. Estimating the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm

    NASA Astrophysics Data System (ADS)

    Mehdinejadiani, Behrouz

    2017-08-01

    This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation.

  17. Estimating the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm.

    PubMed

    Mehdinejadiani, Behrouz

    2017-08-01

    This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A Probabilistic Model of Social Working Memory for Information Retrieval in Social Interactions.

    PubMed

    Li, Liyuan; Xu, Qianli; Gan, Tian; Tan, Cheston; Lim, Joo-Hwee

    2018-05-01

    Social working memory (SWM) plays an important role in navigating social interactions. Inspired by studies in psychology, neuroscience, cognitive science, and machine learning, we propose a probabilistic model of SWM to mimic human social intelligence for personal information retrieval (IR) in social interactions. First, we establish a semantic hierarchy as social long-term memory to encode personal information. Next, we propose a semantic Bayesian network as the SWM, which integrates the cognitive functions of accessibility and self-regulation. One subgraphical model implements the accessibility function to learn the social consensus about IR-based on social information concept, clustering, social context, and similarity between persons. Beyond accessibility, one more layer is added to simulate the function of self-regulation to perform the personal adaptation to the consensus based on human personality. Two learning algorithms are proposed to train the probabilistic SWM model on a raw dataset of high uncertainty and incompleteness. One is an efficient learning algorithm of Newton's method, and the other is a genetic algorithm. Systematic evaluations show that the proposed SWM model is able to learn human social intelligence effectively and outperforms the baseline Bayesian cognitive model. Toward real-world applications, we implement our model on Google Glass as a wearable assistant for social interaction.

  19. Exploring the interaction among EPHX1, GSTP1, SERPINE2, and TGFB1 contributing to the quantitative traits of chronic obstructive pulmonary disease in Chinese Han population.

    PubMed

    An, Li; Lin, Yingxiang; Yang, Ting; Hua, Lin

    2016-05-18

    Currently, the majority of genetic association studies on chronic obstructive pulmonary disease (COPD) risk focused on identifying the individual effects of single nucleotide polymorphisms (SNPs) as well as their interaction effects on the disease. However, conventional genetic studies often use binary disease status as the primary phenotype, but for COPD, many quantitative traits have the potential correlation with the disease status and closely reflect pathological changes. Here, we genotyped 44 SNPs from four genes (EPHX1, GSTP1, SERPINE2, and TGFB1) in 310 patients and 203 controls which belonged to the Chinese Han population to test the two-way and three-way genetic interactions with COPD-related quantitative traits using recently developed generalized multifactor dimensionality reduction (GMDR) and quantitative multifactor dimensionality reduction (QMDR) algorithms. Based on the 310 patients and the whole samples of 513 subjects, the best gene-gene interactions models were detected for four lung-function-related quantitative traits. For the forced expiratory volume in 1 s (FEV1), the best interaction was seen from EPHX1, SERPINE2, and GSTP1. For FEV1%pre, the forced vital capacity (FVC), and FEV1/FVC, the best interactions were seen from SERPINE2 and TGFB1. The results of this study provide further evidence for the genotype combinations at risk of developing COPD in Chinese Han population and improve the understanding on the genetic etiology of COPD and COPD-related quantitative traits.

  20. The Hawk-Dove game in phenotypically homogeneous and heterogeneous populations of finite dimension

    NASA Astrophysics Data System (ADS)

    Laruelle, Annick; da Silva Rocha, André Barreira; Escobedo, Ramón

    2018-02-01

    The Hawk-Dove game played between individuals in populations of finite dimension is analyzed by means of a stochastic model. We take into account both cases when all individuals in the population are either phenotypically homogeneous or heterogeneous. A strategy in the model is a gene representing the probability of playing the Hawk strategy. Individual interactions at the microscopic level are described by a genetic algorithm where evolution results from the interplay among selection, mutation, drift and cross-over of genes. We show that the behavioral patterns observed at the macroscopic level can be reproduced as the emergent result of individual interactions governed by the rules of the Hawk-Dove game at the microscopic level. We study how the results of the genetic algorithm compare with those obtained in evolutionary game theory, finding that, although genes continuously change both their presence and frequency in the population over time, the population average behavior always achieves stationarity and, when this happens, the final average strategy played in the population oscillates around the evolutionarily stable strategy in the homogeneous population case or the neutrally stable set in the heterogeneous population case.

  1. A Test of Genetic Algorithms in Relevance Feedback.

    ERIC Educational Resources Information Center

    Lopez-Pujalte, Cristina; Guerrero Bote, Vicente P.; Moya Anegon, Felix de

    2002-01-01

    Discussion of information retrieval, query optimization techniques, and relevance feedback focuses on genetic algorithms, which are derived from artificial intelligence techniques. Describes an evaluation of different genetic algorithms using a residual collection method and compares results with the Ide dec-hi method (Salton and Buckley, 1990…

  2. Transonic Wing Shape Optimization Using a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A method for aerodynamic shape optimization based on a genetic algorithm approach is demonstrated. The algorithm is coupled with a transonic full potential flow solver and is used to optimize the flow about transonic wings including multi-objective solutions that lead to the generation of pareto fronts. The results indicate that the genetic algorithm is easy to implement, flexible in application and extremely reliable.

  3. Portfolio optimization by using linear programing models based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Sukono; Hidayat, Y.; Lesmana, E.; Putra, A. S.; Napitupulu, H.; Supian, S.

    2018-01-01

    In this paper, we discussed the investment portfolio optimization using linear programming model based on genetic algorithms. It is assumed that the portfolio risk is measured by absolute standard deviation, and each investor has a risk tolerance on the investment portfolio. To complete the investment portfolio optimization problem, the issue is arranged into a linear programming model. Furthermore, determination of the optimum solution for linear programming is done by using a genetic algorithm. As a numerical illustration, we analyze some of the stocks traded on the capital market in Indonesia. Based on the analysis, it is shown that the portfolio optimization performed by genetic algorithm approach produces more optimal efficient portfolio, compared to the portfolio optimization performed by a linear programming algorithm approach. Therefore, genetic algorithms can be considered as an alternative on determining the investment portfolio optimization, particularly using linear programming models.

  4. An improved genetic algorithm and its application in the TSP problem

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Qin, Jinlei

    2011-12-01

    Concept and research actuality of genetic algorithm are introduced in detail in the paper. Under this condition, the simple genetic algorithm and an improved algorithm are described and applied in an example of TSP problem, where the advantage of genetic algorithm is adequately shown in solving the NP-hard problem. In addition, based on partial matching crossover operator, the crossover operator method is improved into extended crossover operator in order to advance the efficiency when solving the TSP. In the extended crossover method, crossover operator can be performed between random positions of two random individuals, which will not be restricted by the position of chromosome. Finally, the nine-city TSP is solved using the improved genetic algorithm with extended crossover method, the efficiency of whose solution process is much higher, besides, the solving speed of the optimal solution is much faster.

  5. Solving TSP problem with improved genetic algorithm

    NASA Astrophysics Data System (ADS)

    Fu, Chunhua; Zhang, Lijun; Wang, Xiaojing; Qiao, Liying

    2018-05-01

    The TSP is a typical NP problem. The optimization of vehicle routing problem (VRP) and city pipeline optimization can use TSP to solve; therefore it is very important to the optimization for solving TSP problem. The genetic algorithm (GA) is one of ideal methods in solving it. The standard genetic algorithm has some limitations. Improving the selection operator of genetic algorithm, and importing elite retention strategy can ensure the select operation of quality, In mutation operation, using the adaptive algorithm selection can improve the quality of search results and variation, after the chromosome evolved one-way evolution reverse operation is added which can make the offspring inherit gene of parental quality improvement opportunities, and improve the ability of searching the optimal solution algorithm.

  6. Survival dimensionality reduction (SDR): development and clinical application of an innovative approach to detect epistasis in presence of right-censored data

    PubMed Central

    2010-01-01

    Background Epistasis is recognized as a fundamental part of the genetic architecture of individuals. Several computational approaches have been developed to model gene-gene interactions in case-control studies, however, none of them is suitable for time-dependent analysis. Herein we introduce the Survival Dimensionality Reduction (SDR) algorithm, a non-parametric method specifically designed to detect epistasis in lifetime datasets. Results The algorithm requires neither specification about the underlying survival distribution nor about the underlying interaction model and proved satisfactorily powerful to detect a set of causative genes in synthetic epistatic lifetime datasets with a limited number of samples and high degree of right-censorship (up to 70%). The SDR method was then applied to a series of 386 Dutch patients with active rheumatoid arthritis that were treated with anti-TNF biological agents. Among a set of 39 candidate genes, none of which showed a detectable marginal effect on anti-TNF responses, the SDR algorithm did find that the rs1801274 SNP in the FcγRIIa gene and the rs10954213 SNP in the IRF5 gene non-linearly interact to predict clinical remission after anti-TNF biologicals. Conclusions Simulation studies and application in a real-world setting support the capability of the SDR algorithm to model epistatic interactions in candidate-genes studies in presence of right-censored data. Availability: http://sourceforge.net/projects/sdrproject/ PMID:20691091

  7. Genetic algorithm based fuzzy control of spacecraft autonomous rendezvous

    NASA Technical Reports Server (NTRS)

    Karr, C. L.; Freeman, L. M.; Meredith, D. L.

    1990-01-01

    The U.S. Bureau of Mines is currently investigating ways to combine the control capabilities of fuzzy logic with the learning capabilities of genetic algorithms. Fuzzy logic allows for the uncertainty inherent in most control problems to be incorporated into conventional expert systems. Although fuzzy logic based expert systems have been used successfully for controlling a number of physical systems, the selection of acceptable fuzzy membership functions has generally been a subjective decision. High performance fuzzy membership functions for a fuzzy logic controller that manipulates a mathematical model simulating the autonomous rendezvous of spacecraft are learned using a genetic algorithm, a search technique based on the mechanics of natural genetics. The membership functions learned by the genetic algorithm provide for a more efficient fuzzy logic controller than membership functions selected by the authors for the rendezvous problem. Thus, genetic algorithms are potentially an effective and structured approach for learning fuzzy membership functions.

  8. A "Hands on" Strategy for Teaching Genetic Algorithms to Undergraduates

    ERIC Educational Resources Information Center

    Venables, Anne; Tan, Grace

    2007-01-01

    Genetic algorithms (GAs) are a problem solving strategy that uses stochastic search. Since their introduction (Holland, 1975), GAs have proven to be particularly useful for solving problems that are "intractable" using classical methods. The language of genetic algorithms (GAs) is heavily laced with biological metaphors from evolutionary…

  9. The potential of genetic algorithms for conceptual design of rotor systems

    NASA Technical Reports Server (NTRS)

    Crossley, William A.; Wells, Valana L.; Laananen, David H.

    1993-01-01

    The capabilities of genetic algorithms as a non-calculus based, global search method make them potentially useful in the conceptual design of rotor systems. Coupling reasonably simple analysis tools to the genetic algorithm was accomplished, and the resulting program was used to generate designs for rotor systems to match requirements similar to those of both an existing helicopter and a proposed helicopter design. This provides a comparison with the existing design and also provides insight into the potential of genetic algorithms in design of new rotors.

  10. Genetic Algorithm for Initial Orbit Determination with Too Short Arc (Continued)

    NASA Astrophysics Data System (ADS)

    Li, Xin-ran; Wang, Xin

    2017-04-01

    When the genetic algorithm is used to solve the problem of too short-arc (TSA) orbit determination, due to the difference of computing process between the genetic algorithm and the classical method, the original method for outlier deletion is no longer applicable. In the genetic algorithm, the robust estimation is realized by introducing different loss functions for the fitness function, then the outlier problem of the TSA orbit determination is solved. Compared with the classical method, the genetic algorithm is greatly simplified by introducing in different loss functions. Through the comparison on the calculations of multiple loss functions, it is found that the least median square (LMS) estimation and least trimmed square (LTS) estimation can greatly improve the robustness of the TSA orbit determination, and have a high breakdown point.

  11. A Genetic Algorithm Tool (splicer) for Complex Scheduling Problems and the Space Station Freedom Resupply Problem

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Valenzuela-Rendon, Manuel

    1993-01-01

    The Space Station Freedom will require the supply of items in a regular fashion. A schedule for the delivery of these items is not easy to design due to the large span of time involved and the possibility of cancellations and changes in shuttle flights. This paper presents the basic concepts of a genetic algorithm model, and also presents the results of an effort to apply genetic algorithms to the design of propellant resupply schedules. As part of this effort, a simple simulator and an encoding by which a genetic algorithm can find near optimal schedules have been developed. Additionally, this paper proposes ways in which robust schedules, i.e., schedules that can tolerate small changes, can be found using genetic algorithms.

  12. An Improved Heuristic Method for Subgraph Isomorphism Problem

    NASA Astrophysics Data System (ADS)

    Xiang, Yingzhuo; Han, Jiesi; Xu, Haijiang; Guo, Xin

    2017-09-01

    This paper focus on the subgraph isomorphism (SI) problem. We present an improved genetic algorithm, a heuristic method to search the optimal solution. The contribution of this paper is that we design a dedicated crossover algorithm and a new fitness function to measure the evolution process. Experiments show our improved genetic algorithm performs better than other heuristic methods. For a large graph, such as a subgraph of 40 nodes, our algorithm outperforms the traditional tree search algorithms. We find that the performance of our improved genetic algorithm does not decrease as the number of nodes in prototype graphs.

  13. Genetic algorithms for adaptive real-time control in space systems

    NASA Technical Reports Server (NTRS)

    Vanderzijp, J.; Choudry, A.

    1988-01-01

    Genetic Algorithms that are used for learning as one way to control the combinational explosion associated with the generation of new rules are discussed. The Genetic Algorithm approach tends to work best when it can be applied to a domain independent knowledge representation. Applications to real time control in space systems are discussed.

  14. Cognitive Nonlinear Radar

    DTIC Science & Technology

    2013-01-01

    intelligently selecting waveform parameters using adaptive algorithms. The adaptive algorithms optimize the waveform parameters based on (1) the EM...the environment. 15. SUBJECT TERMS cognitive radar, adaptive sensing, spectrum sensing, multi-objective optimization, genetic algorithms, machine...detection and classification block diagram. .........................................................6 Figure 5. Genetic algorithm block diagram

  15. Construction of regulatory networks using expression time-series data of a genotyped population.

    PubMed

    Yeung, Ka Yee; Dombek, Kenneth M; Lo, Kenneth; Mittler, John E; Zhu, Jun; Schadt, Eric E; Bumgarner, Roger E; Raftery, Adrian E

    2011-11-29

    The inference of regulatory and biochemical networks from large-scale genomics data is a basic problem in molecular biology. The goal is to generate testable hypotheses of gene-to-gene influences and subsequently to design bench experiments to confirm these network predictions. Coexpression of genes in large-scale gene-expression data implies coregulation and potential gene-gene interactions, but provide little information about the direction of influences. Here, we use both time-series data and genetics data to infer directionality of edges in regulatory networks: time-series data contain information about the chronological order of regulatory events and genetics data allow us to map DNA variations to variations at the RNA level. We generate microarray data measuring time-dependent gene-expression levels in 95 genotyped yeast segregants subjected to a drug perturbation. We develop a Bayesian model averaging regression algorithm that incorporates external information from diverse data types to infer regulatory networks from the time-series and genetics data. Our algorithm is capable of generating feedback loops. We show that our inferred network recovers existing and novel regulatory relationships. Following network construction, we generate independent microarray data on selected deletion mutants to prospectively test network predictions. We demonstrate the potential of our network to discover de novo transcription-factor binding sites. Applying our construction method to previously published data demonstrates that our method is competitive with leading network construction algorithms in the literature.

  16. Warehouse stocking optimization based on dynamic ant colony genetic algorithm

    NASA Astrophysics Data System (ADS)

    Xiao, Xiaoxu

    2018-04-01

    In view of the various orders of FAW (First Automotive Works) International Logistics Co., Ltd., the SLP method is used to optimize the layout of the warehousing units in the enterprise, thus the warehouse logistics is optimized and the external processing speed of the order is improved. In addition, the relevant intelligent algorithms for optimizing the stocking route problem are analyzed. The ant colony algorithm and genetic algorithm which have good applicability are emphatically studied. The parameters of ant colony algorithm are optimized by genetic algorithm, which improves the performance of ant colony algorithm. A typical path optimization problem model is taken as an example to prove the effectiveness of parameter optimization.

  17. A controlled genetic algorithm by fuzzy logic and belief functions for job-shop scheduling.

    PubMed

    Hajri, S; Liouane, N; Hammadi, S; Borne, P

    2000-01-01

    Most scheduling problems are highly complex combinatorial problems. However, stochastic methods such as genetic algorithm yield good solutions. In this paper, we present a controlled genetic algorithm (CGA) based on fuzzy logic and belief functions to solve job-shop scheduling problems. For better performance, we propose an efficient representational scheme, heuristic rules for creating the initial population, and a new methodology for mixing and computing genetic operator probabilities.

  18. Experimental Performance of a Genetic Algorithm for Airborne Strategic Conflict Resolution

    NASA Technical Reports Server (NTRS)

    Karr, David A.; Vivona, Robert A.; Roscoe, David A.; DePascale, Stephen M.; Consiglio, Maria

    2009-01-01

    The Autonomous Operations Planner, a research prototype flight-deck decision support tool to enable airborne self-separation, uses a pattern-based genetic algorithm to resolve predicted conflicts between the ownship and traffic aircraft. Conflicts are resolved by modifying the active route within the ownship s flight management system according to a predefined set of maneuver pattern templates. The performance of this pattern-based genetic algorithm was evaluated in the context of batch-mode Monte Carlo simulations running over 3600 flight hours of autonomous aircraft in en-route airspace under conditions ranging from typical current traffic densities to several times that level. Encountering over 8900 conflicts during two simulation experiments, the genetic algorithm was able to resolve all but three conflicts, while maintaining a required time of arrival constraint for most aircraft. Actual elapsed running time for the algorithm was consistent with conflict resolution in real time. The paper presents details of the genetic algorithm s design, along with mathematical models of the algorithm s performance and observations regarding the effectiveness of using complimentary maneuver patterns when multiple resolutions by the same aircraft were required.

  19. Experimental Performance of a Genetic Algorithm for Airborne Strategic Conflict Resolution

    NASA Technical Reports Server (NTRS)

    Karr, David A.; Vivona, Robert A.; Roscoe, David A.; DePascale, Stephen M.; Consiglio, Maria

    2009-01-01

    The Autonomous Operations Planner, a research prototype flight-deck decision support tool to enable airborne self-separation, uses a pattern-based genetic algorithm to resolve predicted conflicts between the ownship and traffic aircraft. Conflicts are resolved by modifying the active route within the ownship's flight management system according to a predefined set of maneuver pattern templates. The performance of this pattern-based genetic algorithm was evaluated in the context of batch-mode Monte Carlo simulations running over 3600 flight hours of autonomous aircraft in en-route airspace under conditions ranging from typical current traffic densities to several times that level. Encountering over 8900 conflicts during two simulation experiments, the genetic algorithm was able to resolve all but three conflicts, while maintaining a required time of arrival constraint for most aircraft. Actual elapsed running time for the algorithm was consistent with conflict resolution in real time. The paper presents details of the genetic algorithm's design, along with mathematical models of the algorithm's performance and observations regarding the effectiveness of using complimentary maneuver patterns when multiple resolutions by the same aircraft were required.

  20. Forecasting Nonlinear Chaotic Time Series with Function Expression Method Based on an Improved Genetic-Simulated Annealing Algorithm

    PubMed Central

    Wang, Jun; Zhou, Bi-hua; Zhou, Shu-dao; Sheng, Zheng

    2015-01-01

    The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior. PMID:26000011

  1. Scalability problems of simple genetic algorithms.

    PubMed

    Thierens, D

    1999-01-01

    Scalable evolutionary computation has become an intensively studied research topic in recent years. The issue of scalability is predominant in any field of algorithmic design, but it became particularly relevant for the design of competent genetic algorithms once the scalability problems of simple genetic algorithms were understood. Here we present some of the work that has aided in getting a clear insight in the scalability problems of simple genetic algorithms. Particularly, we discuss the important issue of building block mixing. We show how the need for mixing places a boundary in the GA parameter space that, together with the boundary from the schema theorem, delimits the region where the GA converges reliably to the optimum in problems of bounded difficulty. This region shrinks rapidly with increasing problem size unless the building blocks are tightly linked in the problem coding structure. In addition, we look at how straightforward extensions of the simple genetic algorithm-namely elitism, niching, and restricted mating are not significantly improving the scalability problems.

  2. Forecasting nonlinear chaotic time series with function expression method based on an improved genetic-simulated annealing algorithm.

    PubMed

    Wang, Jun; Zhou, Bi-hua; Zhou, Shu-dao; Sheng, Zheng

    2015-01-01

    The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior.

  3. An investigation of messy genetic algorithms

    NASA Technical Reports Server (NTRS)

    Goldberg, David E.; Deb, Kalyanmoy; Korb, Bradley

    1990-01-01

    Genetic algorithms (GAs) are search procedures based on the mechanics of natural selection and natural genetics. They combine the use of string codings or artificial chromosomes and populations with the selective and juxtapositional power of reproduction and recombination to motivate a surprisingly powerful search heuristic in many problems. Despite their empirical success, there has been a long standing objection to the use of GAs in arbitrarily difficult problems. A new approach was launched. Results to a 30-bit, order-three-deception problem were obtained using a new type of genetic algorithm called a messy genetic algorithm (mGAs). Messy genetic algorithms combine the use of variable-length strings, a two-phase selection scheme, and messy genetic operators to effect a solution to the fixed-coding problem of standard simple GAs. The results of the study of mGAs in problems with nonuniform subfunction scale and size are presented. The mGA approach is summarized, both its operation and the theory of its use. Experiments on problems of varying scale, varying building-block size, and combined varying scale and size are presented.

  4. Global Optimization of a Periodic System using a Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Stucke, David; Crespi, Vincent

    2001-03-01

    We use a novel application of a genetic algorithm global optimizatin technique to find the lowest energy structures for periodic systems. We apply this technique to colloidal crystals for several different stoichiometries of binary and trinary colloidal crystals. This application of a genetic algorithm is decribed and results of likely candidate structures are presented.

  5. Research and application of multi-agent genetic algorithm in tower defense game

    NASA Astrophysics Data System (ADS)

    Jin, Shaohua

    2018-04-01

    In this paper, a new multi-agent genetic algorithm based on orthogonal experiment is proposed, which is based on multi-agent system, genetic algorithm and orthogonal experimental design. The design of neighborhood competition operator, orthogonal crossover operator, Son and self-learning operator. The new algorithm is applied to mobile tower defense game, according to the characteristics of the game, the establishment of mathematical models, and finally increases the value of the game's monster.

  6. Aerodynamic Shape Optimization Using A Real-Number-Encoded Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Pulliam, Thomas H.

    2001-01-01

    A new method for aerodynamic shape optimization using a genetic algorithm with real number encoding is presented. The algorithm is used to optimize three different problems, a simple hill climbing problem, a quasi-one-dimensional nozzle problem using an Euler equation solver and a three-dimensional transonic wing problem using a nonlinear potential solver. Results indicate that the genetic algorithm is easy to implement and extremely reliable, being relatively insensitive to design space noise.

  7. Genetic algorithms as global random search methods

    NASA Technical Reports Server (NTRS)

    Peck, Charles C.; Dhawan, Atam P.

    1995-01-01

    Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that the schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solutions and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.

  8. Genetic algorithms as global random search methods

    NASA Technical Reports Server (NTRS)

    Peck, Charles C.; Dhawan, Atam P.

    1995-01-01

    Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that that schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solution and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.

  9. Genetic Algorithm Calibration of Probabilistic Cellular Automata for Modeling Mining Permit Activity

    USGS Publications Warehouse

    Louis, S.J.; Raines, G.L.

    2003-01-01

    We use a genetic algorithm to calibrate a spatially and temporally resolved cellular automata to model mining activity on public land in Idaho and western Montana. The genetic algorithm searches through a space of transition rule parameters of a two dimensional cellular automata model to find rule parameters that fit observed mining activity data. Previous work by one of the authors in calibrating the cellular automaton took weeks - the genetic algorithm takes a day and produces rules leading to about the same (or better) fit to observed data. These preliminary results indicate that genetic algorithms are a viable tool in calibrating cellular automata for this application. Experience gained during the calibration of this cellular automata suggests that mineral resource information is a critical factor in the quality of the results. With automated calibration, further refinements of how the mineral-resource information is provided to the cellular automaton will probably improve our model.

  10. Hybrid genetic algorithm in the Hopfield network for maximum 2-satisfiability problem

    NASA Astrophysics Data System (ADS)

    Kasihmuddin, Mohd Shareduwan Mohd; Sathasivam, Saratha; Mansor, Mohd. Asyraf

    2017-08-01

    Heuristic method was designed for finding optimal solution more quickly compared to classical methods which are too complex to comprehend. In this study, a hybrid approach that utilizes Hopfield network and genetic algorithm in doing maximum 2-Satisfiability problem (MAX-2SAT) was proposed. Hopfield neural network was used to minimize logical inconsistency in interpretations of logic clauses or program. Genetic algorithm (GA) has pioneered the implementation of methods that exploit the idea of combination and reproduce a better solution. The simulation incorporated with and without genetic algorithm will be examined by using Microsoft Visual 2013 C++ Express software. The performance of both searching techniques in doing MAX-2SAT was evaluate based on global minima ratio, ratio of satisfied clause and computation time. The result obtained form the computer simulation demonstrates the effectiveness and acceleration features of genetic algorithm in doing MAX-2SAT in Hopfield network.

  11. Genetic Algorithm for Traveling Salesman Problem with Modified Cycle Crossover Operator

    PubMed Central

    Mohamd Shoukry, Alaa; Gani, Showkat

    2017-01-01

    Genetic algorithms are evolutionary techniques used for optimization purposes according to survival of the fittest idea. These methods do not ensure optimal solutions; however, they give good approximation usually in time. The genetic algorithms are useful for NP-hard problems, especially the traveling salesman problem. The genetic algorithm depends on selection criteria, crossover, and mutation operators. To tackle the traveling salesman problem using genetic algorithms, there are various representations such as binary, path, adjacency, ordinal, and matrix representations. In this article, we propose a new crossover operator for traveling salesman problem to minimize the total distance. This approach has been linked with path representation, which is the most natural way to represent a legal tour. Computational results are also reported with some traditional path representation methods like partially mapped and order crossovers along with new cycle crossover operator for some benchmark TSPLIB instances and found improvements. PMID:29209364

  12. Genetic Algorithm for Traveling Salesman Problem with Modified Cycle Crossover Operator.

    PubMed

    Hussain, Abid; Muhammad, Yousaf Shad; Nauman Sajid, M; Hussain, Ijaz; Mohamd Shoukry, Alaa; Gani, Showkat

    2017-01-01

    Genetic algorithms are evolutionary techniques used for optimization purposes according to survival of the fittest idea. These methods do not ensure optimal solutions; however, they give good approximation usually in time. The genetic algorithms are useful for NP-hard problems, especially the traveling salesman problem. The genetic algorithm depends on selection criteria, crossover, and mutation operators. To tackle the traveling salesman problem using genetic algorithms, there are various representations such as binary, path, adjacency, ordinal, and matrix representations. In this article, we propose a new crossover operator for traveling salesman problem to minimize the total distance. This approach has been linked with path representation, which is the most natural way to represent a legal tour. Computational results are also reported with some traditional path representation methods like partially mapped and order crossovers along with new cycle crossover operator for some benchmark TSPLIB instances and found improvements.

  13. An interactive system for computer-aided diagnosis of breast masses.

    PubMed

    Wang, Xingwei; Li, Lihua; Liu, Wei; Xu, Weidong; Lederman, Dror; Zheng, Bin

    2012-10-01

    Although mammography is the only clinically accepted imaging modality for screening the general population to detect breast cancer, interpreting mammograms is difficult with lower sensitivity and specificity. To provide radiologists "a visual aid" in interpreting mammograms, we developed and tested an interactive system for computer-aided detection and diagnosis (CAD) of mass-like cancers. Using this system, an observer can view CAD-cued mass regions depicted on one image and then query any suspicious regions (either cued or not cued by CAD). CAD scheme automatically segments the suspicious region or accepts manually defined region and computes a set of image features. Using content-based image retrieval (CBIR) algorithm, CAD searches for a set of reference images depicting "abnormalities" similar to the queried region. Based on image retrieval results and a decision algorithm, a classification score is assigned to the queried region. In this study, a reference database with 1,800 malignant mass regions and 1,800 benign and CAD-generated false-positive regions was used. A modified CBIR algorithm with a new function of stretching the attributes in the multi-dimensional space and decision scheme was optimized using a genetic algorithm. Using a leave-one-out testing method to classify suspicious mass regions, we compared the classification performance using two CBIR algorithms with either equally weighted or optimally stretched attributes. Using the modified CBIR algorithm, the area under receiver operating characteristic curve was significantly increased from 0.865 ± 0.006 to 0.897 ± 0.005 (p < 0.001). This study demonstrated the feasibility of developing an interactive CAD system with a large reference database and achieving improved performance.

  14. A modified genetic algorithm with fuzzy roulette wheel selection for job-shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Thammano, Arit; Teekeng, Wannaporn

    2015-05-01

    The job-shop scheduling problem is one of the most difficult production planning problems. Since it is in the NP-hard class, a recent trend in solving the job-shop scheduling problem is shifting towards the use of heuristic and metaheuristic algorithms. This paper proposes a novel metaheuristic algorithm, which is a modification of the genetic algorithm. This proposed algorithm introduces two new concepts to the standard genetic algorithm: (1) fuzzy roulette wheel selection and (2) the mutation operation with tabu list. The proposed algorithm has been evaluated and compared with several state-of-the-art algorithms in the literature. The experimental results on 53 JSSPs show that the proposed algorithm is very effective in solving the combinatorial optimization problems. It outperforms all state-of-the-art algorithms on all benchmark problems in terms of the ability to achieve the optimal solution and the computational time.

  15. A New Challenge for Compression Algorithms: Genetic Sequences.

    ERIC Educational Resources Information Center

    Grumbach, Stephane; Tahi, Fariza

    1994-01-01

    Analyzes the properties of genetic sequences that cause the failure of classical algorithms used for data compression. A lossless algorithm, which compresses the information contained in DNA and RNA sequences by detecting regularities such as palindromes, is presented. This algorithm combines substitutional and statistical methods and appears to…

  16. Firefly algorithm versus genetic algorithm as powerful variable selection tools and their effect on different multivariate calibration models in spectroscopy: A comparative study

    NASA Astrophysics Data System (ADS)

    Attia, Khalid A. M.; Nassar, Mohammed W. I.; El-Zeiny, Mohamed B.; Serag, Ahmed

    2017-01-01

    For the first time, a new variable selection method based on swarm intelligence namely firefly algorithm is coupled with three different multivariate calibration models namely, concentration residual augmented classical least squares, artificial neural network and support vector regression in UV spectral data. A comparative study between the firefly algorithm and the well-known genetic algorithm was developed. The discussion revealed the superiority of using this new powerful algorithm over the well-known genetic algorithm. Moreover, different statistical tests were performed and no significant differences were found between all the models regarding their predictabilities. This ensures that simpler and faster models were obtained without any deterioration of the quality of the calibration.

  17. Interaction mining and skill-dependent recommendations for multi-objective team composition

    PubMed Central

    Dorn, Christoph; Skopik, Florian; Schall, Daniel; Dustdar, Schahram

    2011-01-01

    Web-based collaboration and virtual environments supported by various Web 2.0 concepts enable the application of numerous monitoring, mining and analysis tools to study human interactions and team formation processes. The composition of an effective team requires a balance between adequate skill fulfillment and sufficient team connectivity. The underlying interaction structure reflects social behavior and relations of individuals and determines to a large degree how well people can be expected to collaborate. In this paper we address an extended team formation problem that does not only require direct interactions to determine team connectivity but additionally uses implicit recommendations of collaboration partners to support even sparsely connected networks. We provide two heuristics based on Genetic Algorithms and Simulated Annealing for discovering efficient team configurations that yield the best trade-off between skill coverage and team connectivity. Our self-adjusting mechanism aims to discover the best combination of direct interactions and recommendations when deriving connectivity. We evaluate our approach based on multiple configurations of a simulated collaboration network that features close resemblance to real world expert networks. We demonstrate that our algorithm successfully identifies efficient team configurations even when removing up to 40% of experts from various social network configurations. PMID:22298939

  18. Refined genetic algorithm -- Economic dispatch example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheble, G.B.; Brittig, K.

    1995-02-01

    A genetic-based algorithm is used to solve an economic dispatch (ED) problem. The algorithm utilizes payoff information of perspective solutions to evaluate optimality. Thus, the constraints of classical LaGrangian techniques on unit curves are eliminated. Using an economic dispatch problem as a basis for comparison, several different techniques which enhance program efficiency and accuracy, such as mutation prediction, elitism, interval approximation and penalty factors, are explored. Two unique genetic algorithms are also compared. The results are verified for a sample problem using a classical technique.

  19. Immune allied genetic algorithm for Bayesian network structure learning

    NASA Astrophysics Data System (ADS)

    Song, Qin; Lin, Feng; Sun, Wei; Chang, KC

    2012-06-01

    Bayesian network (BN) structure learning is a NP-hard problem. In this paper, we present an improved approach to enhance efficiency of BN structure learning. To avoid premature convergence in traditional single-group genetic algorithm (GA), we propose an immune allied genetic algorithm (IAGA) in which the multiple-population and allied strategy are introduced. Moreover, in the algorithm, we apply prior knowledge by injecting immune operator to individuals which can effectively prevent degeneration. To illustrate the effectiveness of the proposed technique, we present some experimental results.

  20. Flexible Space-Filling Designs for Complex System Simulations

    DTIC Science & Technology

    2013-06-01

    interior of the experimental region and cannot fit higher-order models. We present a genetic algorithm that constructs space-filling designs with...Computer Experiments, Design of Experiments, Genetic Algorithm , Latin Hypercube, Response Surface Methodology, Nearly Orthogonal 15. NUMBER OF PAGES 147...experimental region and cannot fit higher-order models. We present a genetic algorithm that constructs space-filling designs with minimal correlations

  1. Genetic algorithms in conceptual design of a light-weight, low-noise, tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Wells, Valana L.

    1996-01-01

    This report outlines research accomplishments in the area of using genetic algorithms (GA) for the design and optimization of rotorcraft. It discusses the genetic algorithm as a search and optimization tool, outlines a procedure for using the GA in the conceptual design of helicopters, and applies the GA method to the acoustic design of rotors.

  2. Self-calibration of a noisy multiple-sensor system with genetic algorithms

    NASA Astrophysics Data System (ADS)

    Brooks, Richard R.; Iyengar, S. Sitharama; Chen, Jianhua

    1996-01-01

    This paper explores an image processing application of optimization techniques which entails interpreting noisy sensor data. The application is a generalization of image correlation; we attempt to find the optimal gruence which matches two overlapping gray-scale images corrupted with noise. Both taboo search and genetic algorithms are used to find the parameters which match the two images. A genetic algorithm approach using an elitist reproduction scheme is found to provide significantly superior results. The presentation includes a graphic presentation of the paths taken by tabu search and genetic algorithms when trying to find the best possible match between two corrupted images.

  3. Increasing Prediction the Original Final Year Project of Student Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Saragih, Rijois Iboy Erwin; Turnip, Mardi; Sitanggang, Delima; Aritonang, Mendarissan; Harianja, Eva

    2018-04-01

    Final year project is very important forgraduation study of a student. Unfortunately, many students are not seriouslydidtheir final projects. Many of studentsask for someone to do it for them. In this paper, an application of genetic algorithms to predict the original final year project of a studentis proposed. In the simulation, the data of the final project for the last 5 years is collected. The genetic algorithm has several operators namely population, selection, crossover, and mutation. The result suggest that genetic algorithm can do better prediction than other comparable model. Experimental results of predicting showed that 70% was more accurate than the previous researched.

  4. GBOOST: a GPU-based tool for detecting gene-gene interactions in genome-wide case control studies.

    PubMed

    Yung, Ling Sing; Yang, Can; Wan, Xiang; Yu, Weichuan

    2011-05-01

    Collecting millions of genetic variations is feasible with the advanced genotyping technology. With a huge amount of genetic variations data in hand, developing efficient algorithms to carry out the gene-gene interaction analysis in a timely manner has become one of the key problems in genome-wide association studies (GWAS). Boolean operation-based screening and testing (BOOST), a recent work in GWAS, completes gene-gene interaction analysis in 2.5 days on a desktop computer. Compared with central processing units (CPUs), graphic processing units (GPUs) are highly parallel hardware and provide massive computing resources. We are, therefore, motivated to use GPUs to further speed up the analysis of gene-gene interactions. We implement the BOOST method based on a GPU framework and name it GBOOST. GBOOST achieves a 40-fold speedup compared with BOOST. It completes the analysis of Wellcome Trust Case Control Consortium Type 2 Diabetes (WTCCC T2D) genome data within 1.34 h on a desktop computer equipped with Nvidia GeForce GTX 285 display card. GBOOST code is available at http://bioinformatics.ust.hk/BOOST.html#GBOOST.

  5. Prediction of microRNA target genes using an efficient genetic algorithm-based decision tree.

    PubMed

    Rabiee-Ghahfarrokhi, Behzad; Rafiei, Fariba; Niknafs, Ali Akbar; Zamani, Behzad

    2015-01-01

    MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression in almost all plants and animals. They play an important role in key processes, such as proliferation, apoptosis, and pathogen-host interactions. Nevertheless, the mechanisms by which miRNAs act are not fully understood. The first step toward unraveling the function of a particular miRNA is the identification of its direct targets. This step has shown to be quite challenging in animals primarily because of incomplete complementarities between miRNA and target mRNAs. In recent years, the use of machine-learning techniques has greatly increased the prediction of miRNA targets, avoiding the need for costly and time-consuming experiments to achieve miRNA targets experimentally. Among the most important machine-learning algorithms are decision trees, which classify data based on extracted rules. In the present work, we used a genetic algorithm in combination with C4.5 decision tree for prediction of miRNA targets. We applied our proposed method to a validated human datasets. We nearly achieved 93.9% accuracy of classification, which could be related to the selection of best rules.

  6. Prediction of microRNA target genes using an efficient genetic algorithm-based decision tree

    PubMed Central

    Rabiee-Ghahfarrokhi, Behzad; Rafiei, Fariba; Niknafs, Ali Akbar; Zamani, Behzad

    2015-01-01

    MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression in almost all plants and animals. They play an important role in key processes, such as proliferation, apoptosis, and pathogen–host interactions. Nevertheless, the mechanisms by which miRNAs act are not fully understood. The first step toward unraveling the function of a particular miRNA is the identification of its direct targets. This step has shown to be quite challenging in animals primarily because of incomplete complementarities between miRNA and target mRNAs. In recent years, the use of machine-learning techniques has greatly increased the prediction of miRNA targets, avoiding the need for costly and time-consuming experiments to achieve miRNA targets experimentally. Among the most important machine-learning algorithms are decision trees, which classify data based on extracted rules. In the present work, we used a genetic algorithm in combination with C4.5 decision tree for prediction of miRNA targets. We applied our proposed method to a validated human datasets. We nearly achieved 93.9% accuracy of classification, which could be related to the selection of best rules. PMID:26649272

  7. Finding undetected protein associations in cell signaling by belief propagation.

    PubMed

    Bailly-Bechet, M; Borgs, C; Braunstein, A; Chayes, J; Dagkessamanskaia, A; François, J-M; Zecchina, R

    2011-01-11

    External information propagates in the cell mainly through signaling cascades and transcriptional activation, allowing it to react to a wide spectrum of environmental changes. High-throughput experiments identify numerous molecular components of such cascades that may, however, interact through unknown partners. Some of them may be detected using data coming from the integration of a protein-protein interaction network and mRNA expression profiles. This inference problem can be mapped onto the problem of finding appropriate optimal connected subgraphs of a network defined by these datasets. The optimization procedure turns out to be computationally intractable in general. Here we present a new distributed algorithm for this task, inspired from statistical physics, and apply this scheme to alpha factor and drug perturbations data in yeast. We identify the role of the COS8 protein, a member of a gene family of previously unknown function, and validate the results by genetic experiments. The algorithm we present is specially suited for very large datasets, can run in parallel, and can be adapted to other problems in systems biology. On renowned benchmarks it outperforms other algorithms in the field.

  8. 3D Protein structure prediction with genetic tabu search algorithm

    PubMed Central

    2010-01-01

    Background Protein structure prediction (PSP) has important applications in different fields, such as drug design, disease prediction, and so on. In protein structure prediction, there are two important issues. The first one is the design of the structure model and the second one is the design of the optimization technology. Because of the complexity of the realistic protein structure, the structure model adopted in this paper is a simplified model, which is called off-lattice AB model. After the structure model is assumed, optimization technology is needed for searching the best conformation of a protein sequence based on the assumed structure model. However, PSP is an NP-hard problem even if the simplest model is assumed. Thus, many algorithms have been developed to solve the global optimization problem. In this paper, a hybrid algorithm, which combines genetic algorithm (GA) and tabu search (TS) algorithm, is developed to complete this task. Results In order to develop an efficient optimization algorithm, several improved strategies are developed for the proposed genetic tabu search algorithm. The combined use of these strategies can improve the efficiency of the algorithm. In these strategies, tabu search introduced into the crossover and mutation operators can improve the local search capability, the adoption of variable population size strategy can maintain the diversity of the population, and the ranking selection strategy can improve the possibility of an individual with low energy value entering into next generation. Experiments are performed with Fibonacci sequences and real protein sequences. Experimental results show that the lowest energy obtained by the proposed GATS algorithm is lower than that obtained by previous methods. Conclusions The hybrid algorithm has the advantages from both genetic algorithm and tabu search algorithm. It makes use of the advantage of multiple search points in genetic algorithm, and can overcome poor hill-climbing capability in the conventional genetic algorithm by using the flexible memory functions of TS. Compared with some previous algorithms, GATS algorithm has better performance in global optimization and can predict 3D protein structure more effectively. PMID:20522256

  9. Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    2004-01-01

    A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.

  10. Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    2005-01-01

    A genetic algorithm approach suitable for solving multi-objective problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding Pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the Pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide Pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.

  11. Genetic algorithm dynamics on a rugged landscape

    NASA Astrophysics Data System (ADS)

    Bornholdt, Stefan

    1998-04-01

    The genetic algorithm is an optimization procedure motivated by biological evolution and is successfully applied to optimization problems in different areas. A statistical mechanics model for its dynamics is proposed based on the parent-child fitness correlation of the genetic operators, making it applicable to general fitness landscapes. It is compared to a recent model based on a maximum entropy ansatz. Finally it is applied to modeling the dynamics of a genetic algorithm on the rugged fitness landscape of the NK model.

  12. Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

    PubMed Central

    MotieGhader, Habib; Gharaghani, Sajjad; Masoudi-Sobhanzadeh, Yosef; Masoudi-Nejad, Ali

    2017-01-01

    Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as GA, PSO, ACO and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR feature selection are proposed. SGALA algorithm uses advantages of Genetic algorithm and Learning Automata sequentially and the MGALA algorithm uses advantages of Genetic Algorithm and Learning Automata simultaneously. We applied our proposed algorithms to select the minimum possible number of features from three different datasets and also we observed that the MGALA and SGALA algorithms had the best outcome independently and in average compared to other feature selection algorithms. Through comparison of our proposed algorithms, we deduced that the rate of convergence to optimal result in MGALA and SGALA algorithms were better than the rate of GA, ACO, PSO and LA algorithms. In the end, the results of GA, ACO, PSO, LA, SGALA, and MGALA algorithms were applied as the input of LS-SVR model and the results from LS-SVR models showed that the LS-SVR model had more predictive ability with the input from SGALA and MGALA algorithms than the input from all other mentioned algorithms. Therefore, the results have corroborated that not only is the predictive efficiency of proposed algorithms better, but their rate of convergence is also superior to the all other mentioned algorithms. PMID:28979308

  13. Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR.

    PubMed

    MotieGhader, Habib; Gharaghani, Sajjad; Masoudi-Sobhanzadeh, Yosef; Masoudi-Nejad, Ali

    2017-01-01

    Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as GA, PSO, ACO and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR feature selection are proposed. SGALA algorithm uses advantages of Genetic algorithm and Learning Automata sequentially and the MGALA algorithm uses advantages of Genetic Algorithm and Learning Automata simultaneously. We applied our proposed algorithms to select the minimum possible number of features from three different datasets and also we observed that the MGALA and SGALA algorithms had the best outcome independently and in average compared to other feature selection algorithms. Through comparison of our proposed algorithms, we deduced that the rate of convergence to optimal result in MGALA and SGALA algorithms were better than the rate of GA, ACO, PSO and LA algorithms. In the end, the results of GA, ACO, PSO, LA, SGALA, and MGALA algorithms were applied as the input of LS-SVR model and the results from LS-SVR models showed that the LS-SVR model had more predictive ability with the input from SGALA and MGALA algorithms than the input from all other mentioned algorithms. Therefore, the results have corroborated that not only is the predictive efficiency of proposed algorithms better, but their rate of convergence is also superior to the all other mentioned algorithms.

  14. An Improved Hierarchical Genetic Algorithm for Sheet Cutting Scheduling with Process Constraints

    PubMed Central

    Rao, Yunqing; Qi, Dezhong; Li, Jinling

    2013-01-01

    For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony—hierarchical genetic algorithm) is developed for better solution, and a hierarchical coding method is used based on the characteristics of the problem. Furthermore, to speed up convergence rates and resolve local convergence issues, a kind of adaptive crossover probability and mutation probability is used in this algorithm. The computational result and comparison prove that the presented approach is quite effective for the considered problem. PMID:24489491

  15. An improved hierarchical genetic algorithm for sheet cutting scheduling with process constraints.

    PubMed

    Rao, Yunqing; Qi, Dezhong; Li, Jinling

    2013-01-01

    For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony--hierarchical genetic algorithm) is developed for better solution, and a hierarchical coding method is used based on the characteristics of the problem. Furthermore, to speed up convergence rates and resolve local convergence issues, a kind of adaptive crossover probability and mutation probability is used in this algorithm. The computational result and comparison prove that the presented approach is quite effective for the considered problem.

  16. Pose estimation for augmented reality applications using genetic algorithm.

    PubMed

    Yu, Ying Kin; Wong, Kin Hong; Chang, Michael Ming Yuen

    2005-12-01

    This paper describes a genetic algorithm that tackles the pose-estimation problem in computer vision. Our genetic algorithm can find the rotation and translation of an object accurately when the three-dimensional structure of the object is given. In our implementation, each chromosome encodes both the pose and the indexes to the selected point features of the object. Instead of only searching for the pose as in the existing work, our algorithm, at the same time, searches for a set containing the most reliable feature points in the process. This mismatch filtering strategy successfully makes the algorithm more robust under the presence of point mismatches and outliers in the images. Our algorithm has been tested with both synthetic and real data with good results. The accuracy of the recovered pose is compared to the existing algorithms. Our approach outperformed the Lowe's method and the other two genetic algorithms under the presence of point mismatches and outliers. In addition, it has been used to estimate the pose of a real object. It is shown that the proposed method is applicable to augmented reality applications.

  17. Optimization of laminated stacking sequence for buckling load maximization by genetic algorithm

    NASA Technical Reports Server (NTRS)

    Le Riche, Rodolphe; Haftka, Raphael T.

    1992-01-01

    The use of a genetic algorithm to optimize the stacking sequence of a composite laminate for buckling load maximization is studied. Various genetic parameters including the population size, the probability of mutation, and the probability of crossover are optimized by numerical experiments. A new genetic operator - permutation - is proposed and shown to be effective in reducing the cost of the genetic search. Results are obtained for a graphite-epoxy plate, first when only the buckling load is considered, and then when constraints on ply contiguity and strain failure are added. The influence on the genetic search of the penalty parameter enforcing the contiguity constraint is studied. The advantage of the genetic algorithm in producing several near-optimal designs is discussed.

  18. Development of a Tool for an Efficient Calibration of CORSIM Models

    DOT National Transportation Integrated Search

    2014-08-01

    This project proposes a Memetic Algorithm (MA) for the calibration of microscopic traffic flow simulation models. The proposed MA includes a combination of genetic and simulated annealing algorithms. The genetic algorithm performs the exploration of ...

  19. A computational intelligent approach to multi-factor analysis of violent crime information system

    NASA Astrophysics Data System (ADS)

    Liu, Hongbo; Yang, Chao; Zhang, Meng; McLoone, Seán; Sun, Yeqing

    2017-02-01

    Various scientific studies have explored the causes of violent behaviour from different perspectives, with psychological tests, in particular, applied to the analysis of crime factors. The relationship between bi-factors has also been extensively studied including the link between age and crime. In reality, many factors interact to contribute to criminal behaviour and as such there is a need to have a greater level of insight into its complex nature. In this article we analyse violent crime information systems containing data on psychological, environmental and genetic factors. Our approach combines elements of rough set theory with fuzzy logic and particle swarm optimisation to yield an algorithm and methodology that can effectively extract multi-knowledge from information systems. The experimental results show that our approach outperforms alternative genetic algorithm and dynamic reduct-based techniques for reduct identification and has the added advantage of identifying multiple reducts and hence multi-knowledge (rules). Identified rules are consistent with classical statistical analysis of violent crime data and also reveal new insights into the interaction between several factors. As such, the results are helpful in improving our understanding of the factors contributing to violent crime and in highlighting the existence of hidden and intangible relationships between crime factors.

  20. Precise Network Modeling of Systems Genetics Data Using the Bayesian Network Webserver.

    PubMed

    Ziebarth, Jesse D; Cui, Yan

    2017-01-01

    The Bayesian Network Webserver (BNW, http://compbio.uthsc.edu/BNW ) is an integrated platform for Bayesian network modeling of biological datasets. It provides a web-based network modeling environment that seamlessly integrates advanced algorithms for probabilistic causal modeling and reasoning with Bayesian networks. BNW is designed for precise modeling of relatively small networks that contain less than 20 nodes. The structure learning algorithms used by BNW guarantee the discovery of the best (most probable) network structure given the data. To facilitate network modeling across multiple biological levels, BNW provides a very flexible interface that allows users to assign network nodes into different tiers and define the relationships between and within the tiers. This function is particularly useful for modeling systems genetics datasets that often consist of multiscalar heterogeneous genotype-to-phenotype data. BNW enables users to, within seconds or minutes, go from having a simply formatted input file containing a dataset to using a network model to make predictions about the interactions between variables and the potential effects of experimental interventions. In this chapter, we will introduce the functions of BNW and show how to model systems genetics datasets with BNW.

  1. Statistical mechanics of neocortical interactions: A scaling paradigm applied to electroencephalography

    NASA Astrophysics Data System (ADS)

    Ingber, Lester

    1991-09-01

    A series of papers has developed a statistical mechanics of neocortical interactions (SMNI), deriving aggregate behavior of experimentally observed columns of neurons from statistical electrical-chemical properties of synaptic interactions. While not useful to yield insights at the single-neuron level, SMNI has demonstrated its capability in describing large-scale properties of short-term memory and electroencephalographic (EEG) systematics. The necessity of including nonlinear and stochastic structures in this development has been stressed. In this paper, a more stringent test is placed on SMNI: The algebraic and numerical algorithms previously developed in this and similar systems are brought to bear to fit large sets of EEG and evoked-potential data being collected to investigate genetic predispositions to alcoholism and to extract brain ``signatures'' of short-term memory. Using the numerical algorithm of very fast simulated reannealing, it is demonstrated that SMNI can indeed fit these data within experimentally observed ranges of its underlying neuronal-synaptic parameters, and the quantitative modeling results are used to examine physical neocortical mechanisms to discriminate high-risk and low-risk populations genetically predisposed to alcoholism. Since this study is a control to span relatively long time epochs, similar to earlier attempts to establish such correlations, this discrimination is inconclusive because of other neuronal activity which can mask such effects. However, the SMNI model is shown to be consistent with EEG data during selective attention tasks and with neocortical mechanisms describing short-term memory previously published using this approach. This paper explicitly identifies similar nonlinear stochastic mechanisms of interaction at the microscopic-neuronal, mesoscopic-columnar, and macroscopic-regional scales of neocortical interactions. These results give strong quantitative support for an accurate intuitive picture, portraying neocortical interactions as having common algebraic or physics mechanisms that scale across quite disparate spatial scales and functional or behavioral phenomena, i.e., describing interactions among neurons, columns of neurons, and regional masses of neurons.

  2. Engineered Intrinsic Bioremediation of Ammonium Perchlorate in Groundwater

    DTIC Science & Technology

    2010-12-01

    German Collection of Microorganisms and Cell Cultures) GA Genetic Algorithms GA-ANN Genetic Algorithm Artificial Neural Network GMO genetically...for in situ treatment of perchlorate in groundwater. This is accomplished without the addition of genetically engineered microorganisms ( GMOs ) to the...perchlorate, even in the presence of oxygen and without the addition of genetically engineered microorganisms ( GMOs ) to the environment. This approach

  3. [Algorithm of toxigenic genetically altered Vibrio cholerae El Tor biovar strain identification].

    PubMed

    Smirnova, N I; Agafonov, D A; Zadnova, S P; Cherkasov, A V; Kutyrev, V V

    2014-01-01

    Development of an algorithm of genetically altered Vibrio cholerae biovar El Tor strai identification that ensures determination of serogroup, serovar and biovar of the studied isolate based on pheno- and genotypic properties, detection of genetically altered cholera El Tor causative agents, their differentiation by epidemic potential as well as evaluation of variability of key pathogenicity genes. Complex analysis of 28 natural V. cholerae strains was carried out by using traditional microbiological methods, PCR and fragmentary sequencing. An algorithm of toxigenic genetically altered V. cholerae biovar El Tor strain identification was developed that includes 4 stages: determination of serogroup, serovar and biovar based on phenotypic properties, confirmation of serogroup and biovar based on molecular-genetic properties determination of strains as genetically altered, differentiation of genetically altered strains by their epidemic potential and detection of ctxB and tcpA key pathogenicity gene polymorphism. The algorithm is based on the use of traditional microbiological methods, PCR and sequencing of gene fragments. The use of the developed algorithm will increase the effectiveness of detection of genetically altered variants of the cholera El Tor causative agent, their differentiation by epidemic potential and will ensure establishment of polymorphism of genes that code key pathogenicity factors for determination of origins of the strains and possible routes of introduction of the infection.

  4. Training Software in Artificial-Intelligence Computing Techniques

    NASA Technical Reports Server (NTRS)

    Howard, Ayanna; Rogstad, Eric; Chalfant, Eugene

    2005-01-01

    The Artificial Intelligence (AI) Toolkit is a computer program for training scientists, engineers, and university students in three soft-computing techniques (fuzzy logic, neural networks, and genetic algorithms) used in artificial-intelligence applications. The program promotes an easily understandable tutorial interface, including an interactive graphical component through which the user can gain hands-on experience in soft-computing techniques applied to realistic example problems. The tutorial provides step-by-step instructions on the workings of soft-computing technology, whereas the hands-on examples allow interaction and reinforcement of the techniques explained throughout the tutorial. In the fuzzy-logic example, a user can interact with a robot and an obstacle course to verify how fuzzy logic is used to command a rover traverse from an arbitrary start to the goal location. For the genetic algorithm example, the problem is to determine the minimum-length path for visiting a user-chosen set of planets in the solar system. For the neural-network example, the problem is to decide, on the basis of input data on physical characteristics, whether a person is a man, woman, or child. The AI Toolkit is compatible with the Windows 95,98, ME, NT 4.0, 2000, and XP operating systems. A computer having a processor speed of at least 300 MHz, and random-access memory of at least 56MB is recommended for optimal performance. The program can be run on a slower computer having less memory, but some functions may not be executed properly.

  5. TEAM: efficient two-locus epistasis tests in human genome-wide association study.

    PubMed

    Zhang, Xiang; Huang, Shunping; Zou, Fei; Wang, Wei

    2010-06-15

    As a promising tool for identifying genetic markers underlying phenotypic differences, genome-wide association study (GWAS) has been extensively investigated in recent years. In GWAS, detecting epistasis (or gene-gene interaction) is preferable over single locus study since many diseases are known to be complex traits. A brute force search is infeasible for epistasis detection in the genome-wide scale because of the intensive computational burden. Existing epistasis detection algorithms are designed for dataset consisting of homozygous markers and small sample size. In human study, however, the genotype may be heterozygous, and number of individuals can be up to thousands. Thus, existing methods are not readily applicable to human datasets. In this article, we propose an efficient algorithm, TEAM, which significantly speeds up epistasis detection for human GWAS. Our algorithm is exhaustive, i.e. it does not ignore any epistatic interaction. Utilizing the minimum spanning tree structure, the algorithm incrementally updates the contingency tables for epistatic tests without scanning all individuals. Our algorithm has broader applicability and is more efficient than existing methods for large sample study. It supports any statistical test that is based on contingency tables, and enables both family-wise error rate and false discovery rate controlling. Extensive experiments show that our algorithm only needs to examine a small portion of the individuals to update the contingency tables, and it achieves at least an order of magnitude speed up over the brute force approach.

  6. Firefly algorithm versus genetic algorithm as powerful variable selection tools and their effect on different multivariate calibration models in spectroscopy: A comparative study.

    PubMed

    Attia, Khalid A M; Nassar, Mohammed W I; El-Zeiny, Mohamed B; Serag, Ahmed

    2017-01-05

    For the first time, a new variable selection method based on swarm intelligence namely firefly algorithm is coupled with three different multivariate calibration models namely, concentration residual augmented classical least squares, artificial neural network and support vector regression in UV spectral data. A comparative study between the firefly algorithm and the well-known genetic algorithm was developed. The discussion revealed the superiority of using this new powerful algorithm over the well-known genetic algorithm. Moreover, different statistical tests were performed and no significant differences were found between all the models regarding their predictabilities. This ensures that simpler and faster models were obtained without any deterioration of the quality of the calibration. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Central composite design and genetic algorithm applied for the optimization of ultrasonic-assisted removal of malachite green by ZnO Nanorod-loaded activated carbon.

    PubMed

    Ghaedi, M; Azad, F Nasiri; Dashtian, K; Hajati, S; Goudarzi, A; Soylak, M

    2016-10-05

    Maximum malachite green (MG) adsorption onto ZnO Nanorod-loaded activated carbon (ZnO-NR-AC) was achieved following the optimization of conditions, while the mass transfer was accelerated by ultrasonic. The central composite design (CCD) and genetic algorithm (GA) were used to estimate the effect of individual variables and their mutual interactions on the MG adsorption as response and to optimize the adsorption process. The ZnO-NR-AC surface morphology and its properties were identified via FESEM, XRD and FTIR. The adsorption equilibrium isotherm and kinetic models investigation revealed the well fit of the experimental data to Langmuir isotherm and pseudo-second-order kinetic model, respectively. It was shown that a small amount of ZnO-NR-AC (with adsorption capacity of 20mgg(-1)) is sufficient for the rapid removal of high amount of MG dye in short time (3.99min). Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Central composite design and genetic algorithm applied for the optimization of ultrasonic-assisted removal of malachite green by ZnO Nanorod-loaded activated carbon

    NASA Astrophysics Data System (ADS)

    Ghaedi, M.; Azad, F. Nasiri; Dashtian, K.; Hajati, S.; Goudarzi, A.; Soylak, M.

    2016-10-01

    Maximum malachite green (MG) adsorption onto ZnO Nanorod-loaded activated carbon (ZnO-NR-AC) was achieved following the optimization of conditions, while the mass transfer was accelerated by ultrasonic. The central composite design (CCD) and genetic algorithm (GA) were used to estimate the effect of individual variables and their mutual interactions on the MG adsorption as response and to optimize the adsorption process. The ZnO-NR-AC surface morphology and its properties were identified via FESEM, XRD and FTIR. The adsorption equilibrium isotherm and kinetic models investigation revealed the well fit of the experimental data to Langmuir isotherm and pseudo-second-order kinetic model, respectively. It was shown that a small amount of ZnO-NR-AC (with adsorption capacity of 20 mg g- 1) is sufficient for the rapid removal of high amount of MG dye in short time (3.99 min).

  9. Reconstruction of extended Petri nets from time series data and its application to signal transduction and to gene regulatory networks

    PubMed Central

    2011-01-01

    Background Network inference methods reconstruct mathematical models of molecular or genetic networks directly from experimental data sets. We have previously reported a mathematical method which is exclusively data-driven, does not involve any heuristic decisions within the reconstruction process, and deliveres all possible alternative minimal networks in terms of simple place/transition Petri nets that are consistent with a given discrete time series data set. Results We fundamentally extended the previously published algorithm to consider catalysis and inhibition of the reactions that occur in the underlying network. The results of the reconstruction algorithm are encoded in the form of an extended Petri net involving control arcs. This allows the consideration of processes involving mass flow and/or regulatory interactions. As a non-trivial test case, the phosphate regulatory network of enterobacteria was reconstructed using in silico-generated time-series data sets on wild-type and in silico mutants. Conclusions The new exact algorithm reconstructs extended Petri nets from time series data sets by finding all alternative minimal networks that are consistent with the data. It suggested alternative molecular mechanisms for certain reactions in the network. The algorithm is useful to combine data from wild-type and mutant cells and may potentially integrate physiological, biochemical, pharmacological, and genetic data in the form of a single model. PMID:21762503

  10. Distributed genetic algorithms for the floorplan design problem

    NASA Technical Reports Server (NTRS)

    Cohoon, James P.; Hegde, Shailesh U.; Martin, Worthy N.; Richards, Dana S.

    1991-01-01

    Designing a VLSI floorplan calls for arranging a given set of modules in the plane to minimize the weighted sum of area and wire-length measures. A method of solving the floorplan design problem using distributed genetic algorithms is presented. Distributed genetic algorithms, based on the paleontological theory of punctuated equilibria, offer a conceptual modification to the traditional genetic algorithms. Experimental results on several problem instances demonstrate the efficacy of this method and indicate the advantages of this method over other methods, such as simulated annealing. The method has performed better than the simulated annealing approach, both in terms of the average cost of the solutions found and the best-found solution, in almost all the problem instances tried.

  11. Evolving aerodynamic airfoils for wind turbines through a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Hernández, J. J.; Gómez, E.; Grageda, J. I.; Couder, C.; Solís, A.; Hanotel, C. L.; Ledesma, JI

    2017-01-01

    Nowadays, genetic algorithms stand out for airfoil optimisation, due to the virtues of mutation and crossing-over techniques. In this work we propose a genetic algorithm with arithmetic crossover rules. The optimisation criteria are taken to be the maximisation of both aerodynamic efficiency and lift coefficient, while minimising drag coefficient. Such algorithm shows greatly improvements in computational costs, as well as a high performance by obtaining optimised airfoils for Mexico City's specific wind conditions from generic wind turbines designed for higher Reynolds numbers, in few iterations.

  12. An Agent Inspired Reconfigurable Computing Implementation of a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Weir, John M.; Wells, B. Earl

    2003-01-01

    Many software systems have been successfully implemented using an agent paradigm which employs a number of independent entities that communicate with one another to achieve a common goal. The distributed nature of such a paradigm makes it an excellent candidate for use in high speed reconfigurable computing hardware environments such as those present in modem FPGA's. In this paper, a distributed genetic algorithm that can be applied to the agent based reconfigurable hardware model is introduced. The effectiveness of this new algorithm is evaluated by comparing the quality of the solutions found by the new algorithm with those found by traditional genetic algorithms. The performance of a reconfigurable hardware implementation of the new algorithm on an FPGA is compared to traditional single processor implementations.

  13. Predicting the difficulty of pure, strict, epistatic models: metrics for simulated model selection.

    PubMed

    Urbanowicz, Ryan J; Kiralis, Jeff; Fisher, Jonathan M; Moore, Jason H

    2012-09-26

    Algorithms designed to detect complex genetic disease associations are initially evaluated using simulated datasets. Typical evaluations vary constraints that influence the correct detection of underlying models (i.e. number of loci, heritability, and minor allele frequency). Such studies neglect to account for model architecture (i.e. the unique specification and arrangement of penetrance values comprising the genetic model), which alone can influence the detectability of a model. In order to design a simulation study which efficiently takes architecture into account, a reliable metric is needed for model selection. We evaluate three metrics as predictors of relative model detection difficulty derived from previous works: (1) Penetrance table variance (PTV), (2) customized odds ratio (COR), and (3) our own Ease of Detection Measure (EDM), calculated from the penetrance values and respective genotype frequencies of each simulated genetic model. We evaluate the reliability of these metrics across three very different data search algorithms, each with the capacity to detect epistatic interactions. We find that a model's EDM and COR are each stronger predictors of model detection success than heritability. This study formally identifies and evaluates metrics which quantify model detection difficulty. We utilize these metrics to intelligently select models from a population of potential architectures. This allows for an improved simulation study design which accounts for differences in detection difficulty attributed to model architecture. We implement the calculation and utilization of EDM and COR into GAMETES, an algorithm which rapidly and precisely generates pure, strict, n-locus epistatic models.

  14. FitSearch: a robust way to interpret a yeast fitness profile in terms of drug's mode-of-action.

    PubMed

    Lee, Minho; Han, Sangjo; Chang, Hyeshik; Kwak, Youn-Sig; Weller, David M; Kim, Dongsup

    2013-01-01

    Yeast deletion-mutant collections have been successfully used to infer the mode-of-action of drugs especially by profiling chemical-genetic and genetic-genetic interactions on a genome-wide scale. Although tens of thousands of those profiles are publicly available, a lack of an accurate method for mining such data has been a major bottleneck for more widespread use of these useful resources. For general usage of those public resources, we designed FitRankDB as a general repository of fitness profiles, and developed a new search algorithm, FitSearch, for identifying the profiles that have a high similarity score with statistical significance for a given fitness profile. We demonstrated that our new repository and algorithm are highly beneficial to researchers who attempting to make hypotheses based on unknown modes-of-action of bioactive compounds, regardless of the types of experiments that have been performed using yeast deletion-mutant collection in various types of different measurement platforms, especially non-chip-based platforms. We showed that our new database and algorithm are useful when attempting to construct a hypothesis regarding the unknown function of a bioactive compound through small-scale experiments with a yeast deletion collection in a platform independent manner. The FitRankDB and FitSearch enhance the ease of searching public yeast fitness profiles and obtaining insights into unknown mechanisms of action of drugs. FitSearch is freely available at http://fitsearch.kaist.ac.kr.

  15. FitSearch: a robust way to interpret a yeast fitness profile in terms of drug's mode-of-action

    PubMed Central

    2013-01-01

    Background Yeast deletion-mutant collections have been successfully used to infer the mode-of-action of drugs especially by profiling chemical-genetic and genetic-genetic interactions on a genome-wide scale. Although tens of thousands of those profiles are publicly available, a lack of an accurate method for mining such data has been a major bottleneck for more widespread use of these useful resources. Results For general usage of those public resources, we designed FitRankDB as a general repository of fitness profiles, and developed a new search algorithm, FitSearch, for identifying the profiles that have a high similarity score with statistical significance for a given fitness profile. We demonstrated that our new repository and algorithm are highly beneficial to researchers who attempting to make hypotheses based on unknown modes-of-action of bioactive compounds, regardless of the types of experiments that have been performed using yeast deletion-mutant collection in various types of different measurement platforms, especially non-chip-based platforms. Conclusions We showed that our new database and algorithm are useful when attempting to construct a hypothesis regarding the unknown function of a bioactive compound through small-scale experiments with a yeast deletion collection in a platform independent manner. The FitRankDB and FitSearch enhance the ease of searching public yeast fitness profiles and obtaining insights into unknown mechanisms of action of drugs. FitSearch is freely available at http://fitsearch.kaist.ac.kr. PMID:23368702

  16. Phase Reconstruction from FROG Using Genetic Algorithms[Frequency-Resolved Optical Gating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omenetto, F.G.; Nicholson, J.W.; Funk, D.J.

    1999-04-12

    The authors describe a new technique for obtaining the phase and electric field from FROG measurements using genetic algorithms. Frequency-Resolved Optical Gating (FROG) has gained prominence as a technique for characterizing ultrashort pulses. FROG consists of a spectrally resolved autocorrelation of the pulse to be measured. Typically a combination of iterative algorithms is used, applying constraints from experimental data, and alternating between the time and frequency domain, in order to retrieve an optical pulse. The authors have developed a new approach to retrieving the intensity and phase from FROG data using a genetic algorithm (GA). A GA is a generalmore » parallel search technique that operates on a population of potential solutions simultaneously. Operators in a genetic algorithm, such as crossover, selection, and mutation are based on ideas taken from evolution.« less

  17. Petri net modeling of high-order genetic systems using grammatical evolution.

    PubMed

    Moore, Jason H; Hahn, Lance W

    2003-11-01

    Understanding how DNA sequence variations impact human health through a hierarchy of biochemical and physiological systems is expected to improve the diagnosis, prevention, and treatment of common, complex human diseases. We have previously developed a hierarchical dynamic systems approach based on Petri nets for generating biochemical network models that are consistent with genetic models of disease susceptibility. This modeling approach uses an evolutionary computation approach called grammatical evolution as a search strategy for optimal Petri net models. We have previously demonstrated that this approach routinely identifies biochemical network models that are consistent with a variety of genetic models in which disease susceptibility is determined by nonlinear interactions between two DNA sequence variations. In the present study, we evaluate whether the Petri net approach is capable of identifying biochemical networks that are consistent with disease susceptibility due to higher order nonlinear interactions between three DNA sequence variations. The results indicate that our model-building approach is capable of routinely identifying good, but not perfect, Petri net models. Ideas for improving the algorithm for this high-dimensional problem are presented.

  18. Performance Analysis of Combined Methods of Genetic Algorithm and K-Means Clustering in Determining the Value of Centroid

    NASA Astrophysics Data System (ADS)

    Adya Zizwan, Putra; Zarlis, Muhammad; Budhiarti Nababan, Erna

    2017-12-01

    The determination of Centroid on K-Means Algorithm directly affects the quality of the clustering results. Determination of centroid by using random numbers has many weaknesses. The GenClust algorithm that combines the use of Genetic Algorithms and K-Means uses a genetic algorithm to determine the centroid of each cluster. The use of the GenClust algorithm uses 50% chromosomes obtained through deterministic calculations and 50% is obtained from the generation of random numbers. This study will modify the use of the GenClust algorithm in which the chromosomes used are 100% obtained through deterministic calculations. The results of this study resulted in performance comparisons expressed in Mean Square Error influenced by centroid determination on K-Means method by using GenClust method, modified GenClust method and also classic K-Means.

  19. Cloud computing-based TagSNP selection algorithm for human genome data.

    PubMed

    Hung, Che-Lun; Chen, Wen-Pei; Hua, Guan-Jie; Zheng, Huiru; Tsai, Suh-Jen Jane; Lin, Yaw-Ling

    2015-01-05

    Single nucleotide polymorphisms (SNPs) play a fundamental role in human genetic variation and are used in medical diagnostics, phylogeny construction, and drug design. They provide the highest-resolution genetic fingerprint for identifying disease associations and human features. Haplotypes are regions of linked genetic variants that are closely spaced on the genome and tend to be inherited together. Genetics research has revealed SNPs within certain haplotype blocks that introduce few distinct common haplotypes into most of the population. Haplotype block structures are used in association-based methods to map disease genes. In this paper, we propose an efficient algorithm for identifying haplotype blocks in the genome. In chromosomal haplotype data retrieved from the HapMap project website, the proposed algorithm identified longer haplotype blocks than an existing algorithm. To enhance its performance, we extended the proposed algorithm into a parallel algorithm that copies data in parallel via the Hadoop MapReduce framework. The proposed MapReduce-paralleled combinatorial algorithm performed well on real-world data obtained from the HapMap dataset; the improvement in computational efficiency was proportional to the number of processors used.

  20. New optimization model for routing and spectrum assignment with nodes insecurity

    NASA Astrophysics Data System (ADS)

    Xuan, Hejun; Wang, Yuping; Xu, Zhanqi; Hao, Shanshan; Wang, Xiaoli

    2017-04-01

    By adopting the orthogonal frequency division multiplexing technology, elastic optical networks can provide the flexible and variable bandwidth allocation to each connection request and get higher spectrum utilization. The routing and spectrum assignment problem in elastic optical network is a well-known NP-hard problem. In addition, information security has received worldwide attention. We combine these two problems to investigate the routing and spectrum assignment problem with the guaranteed security in elastic optical network, and establish a new optimization model to minimize the maximum index of the used frequency slots, which is used to determine an optimal routing and spectrum assignment schemes. To solve the model effectively, a hybrid genetic algorithm framework integrating a heuristic algorithm into a genetic algorithm is proposed. The heuristic algorithm is first used to sort the connection requests and then the genetic algorithm is designed to look for an optimal routing and spectrum assignment scheme. In the genetic algorithm, tailor-made crossover, mutation and local search operators are designed. Moreover, simulation experiments are conducted with three heuristic strategies, and the experimental results indicate that the effectiveness of the proposed model and algorithm framework.

  1. The Applications of Genetic Algorithms in Medicine.

    PubMed

    Ghaheri, Ali; Shoar, Saeed; Naderan, Mohammad; Hoseini, Sayed Shahabuddin

    2015-11-01

    A great wealth of information is hidden amid medical research data that in some cases cannot be easily analyzed, if at all, using classical statistical methods. Inspired by nature, metaheuristic algorithms have been developed to offer optimal or near-optimal solutions to complex data analysis and decision-making tasks in a reasonable time. Due to their powerful features, metaheuristic algorithms have frequently been used in other fields of sciences. In medicine, however, the use of these algorithms are not known by physicians who may well benefit by applying them to solve complex medical problems. Therefore, in this paper, we introduce the genetic algorithm and its applications in medicine. The use of the genetic algorithm has promising implications in various medical specialties including radiology, radiotherapy, oncology, pediatrics, cardiology, endocrinology, surgery, obstetrics and gynecology, pulmonology, infectious diseases, orthopedics, rehabilitation medicine, neurology, pharmacotherapy, and health care management. This review introduces the applications of the genetic algorithm in disease screening, diagnosis, treatment planning, pharmacovigilance, prognosis, and health care management, and enables physicians to envision possible applications of this metaheuristic method in their medical career.].

  2. The Applications of Genetic Algorithms in Medicine

    PubMed Central

    Ghaheri, Ali; Shoar, Saeed; Naderan, Mohammad; Hoseini, Sayed Shahabuddin

    2015-01-01

    A great wealth of information is hidden amid medical research data that in some cases cannot be easily analyzed, if at all, using classical statistical methods. Inspired by nature, metaheuristic algorithms have been developed to offer optimal or near-optimal solutions to complex data analysis and decision-making tasks in a reasonable time. Due to their powerful features, metaheuristic algorithms have frequently been used in other fields of sciences. In medicine, however, the use of these algorithms are not known by physicians who may well benefit by applying them to solve complex medical problems. Therefore, in this paper, we introduce the genetic algorithm and its applications in medicine. The use of the genetic algorithm has promising implications in various medical specialties including radiology, radiotherapy, oncology, pediatrics, cardiology, endocrinology, surgery, obstetrics and gynecology, pulmonology, infectious diseases, orthopedics, rehabilitation medicine, neurology, pharmacotherapy, and health care management. This review introduces the applications of the genetic algorithm in disease screening, diagnosis, treatment planning, pharmacovigilance, prognosis, and health care management, and enables physicians to envision possible applications of this metaheuristic method in their medical career.] PMID:26676060

  3. Cloud Computing-Based TagSNP Selection Algorithm for Human Genome Data

    PubMed Central

    Hung, Che-Lun; Chen, Wen-Pei; Hua, Guan-Jie; Zheng, Huiru; Tsai, Suh-Jen Jane; Lin, Yaw-Ling

    2015-01-01

    Single nucleotide polymorphisms (SNPs) play a fundamental role in human genetic variation and are used in medical diagnostics, phylogeny construction, and drug design. They provide the highest-resolution genetic fingerprint for identifying disease associations and human features. Haplotypes are regions of linked genetic variants that are closely spaced on the genome and tend to be inherited together. Genetics research has revealed SNPs within certain haplotype blocks that introduce few distinct common haplotypes into most of the population. Haplotype block structures are used in association-based methods to map disease genes. In this paper, we propose an efficient algorithm for identifying haplotype blocks in the genome. In chromosomal haplotype data retrieved from the HapMap project website, the proposed algorithm identified longer haplotype blocks than an existing algorithm. To enhance its performance, we extended the proposed algorithm into a parallel algorithm that copies data in parallel via the Hadoop MapReduce framework. The proposed MapReduce-paralleled combinatorial algorithm performed well on real-world data obtained from the HapMap dataset; the improvement in computational efficiency was proportional to the number of processors used. PMID:25569088

  4. Evaluation of Genetic Algorithm Concepts Using Model Problems. Part 2; Multi-Objective Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Pulliam, Thomas H.

    2003-01-01

    A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of simple model problems. Several new features including a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. Results indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable, providing optimal results for all optimization problems attempted. The binning algorithm generally provides pareto front quality enhancements and moderate convergence efficiency improvements for most of the model problems. The gene-space transformation procedure provides a large convergence efficiency enhancement for problems with non-convoluted pareto fronts and a degradation in efficiency for problems with convoluted pareto fronts. The most difficult problems --multi-mode search spaces with a large number of genes and convoluted pareto fronts-- require a large number of function evaluations for GA convergence, but always converge.

  5. A genetic algorithm for replica server placement

    NASA Astrophysics Data System (ADS)

    Eslami, Ghazaleh; Toroghi Haghighat, Abolfazl

    2012-01-01

    Modern distribution systems use replication to improve communication delay experienced by their clients. Some techniques have been developed for web server replica placement. One of the previous studies was Greedy algorithm proposed by Qiu et al, that needs knowledge about network topology. In This paper, first we introduce a genetic algorithm for web server replica placement. Second, we compare our algorithm with Greedy algorithm proposed by Qiu et al, and Optimum algorithm. We found that our approach can achieve better results than Greedy algorithm proposed by Qiu et al but it's computational time is more than Greedy algorithm.

  6. A genetic algorithm for replica server placement

    NASA Astrophysics Data System (ADS)

    Eslami, Ghazaleh; Toroghi Haghighat, Abolfazl

    2011-12-01

    Modern distribution systems use replication to improve communication delay experienced by their clients. Some techniques have been developed for web server replica placement. One of the previous studies was Greedy algorithm proposed by Qiu et al, that needs knowledge about network topology. In This paper, first we introduce a genetic algorithm for web server replica placement. Second, we compare our algorithm with Greedy algorithm proposed by Qiu et al, and Optimum algorithm. We found that our approach can achieve better results than Greedy algorithm proposed by Qiu et al but it's computational time is more than Greedy algorithm.

  7. MIP models and hybrid algorithms for simultaneous job splitting and scheduling on unrelated parallel machines.

    PubMed

    Eroglu, Duygu Yilmaz; Ozmutlu, H Cenk

    2014-01-01

    We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms.

  8. Truss Optimization for a Manned Nuclear Electric Space Vehicle using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Benford, Andrew; Tinker, Michael L.

    2004-01-01

    The purpose of this paper is to utilize the genetic algorithm (GA) optimization method for structural design of a nuclear propulsion vehicle. Genetic algorithms provide a guided, random search technique that mirrors biological adaptation. To verify the GA capabilities, other traditional optimization methods were used to generate results for comparison to the GA results, first for simple two-dimensional structures, and then for full-scale three-dimensional truss designs.

  9. Superscattering of light optimized by a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Mirzaei, Ali; Miroshnichenko, Andrey E.; Shadrivov, Ilya V.; Kivshar, Yuri S.

    2014-07-01

    We analyse scattering of light from multi-layer plasmonic nanowires and employ a genetic algorithm for optimizing the scattering cross section. We apply the mode-expansion method using experimental data for material parameters to demonstrate that our genetic algorithm allows designing realistic core-shell nanostructures with the superscattering effect achieved at any desired wavelength. This approach can be employed for optimizing both superscattering and cloaking at different wavelengths in the visible spectral range.

  10. A High Fuel Consumption Efficiency Management Scheme for PHEVs Using an Adaptive Genetic Algorithm

    PubMed Central

    Lee, Wah Ching; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei; Wu, Chung Kit; Chui, Kwok Tai; Lau, Wing Hong; Leung, Yat Wah

    2015-01-01

    A high fuel efficiency management scheme for plug-in hybrid electric vehicles (PHEVs) has been developed. In order to achieve fuel consumption reduction, an adaptive genetic algorithm scheme has been designed to adaptively manage the energy resource usage. The objective function of the genetic algorithm is implemented by designing a fuzzy logic controller which closely monitors and resembles the driving conditions and environment of PHEVs, thus trading off between petrol versus electricity for optimal driving efficiency. Comparison between calculated results and publicized data shows that the achieved efficiency of the fuzzified genetic algorithm is better by 10% than existing schemes. The developed scheme, if fully adopted, would help reduce over 600 tons of CO2 emissions worldwide every day. PMID:25587974

  11. Neural-network-assisted genetic algorithm applied to silicon clusters

    NASA Astrophysics Data System (ADS)

    Marim, L. R.; Lemes, M. R.; dal Pino, A.

    2003-03-01

    Recently, a new optimization procedure that combines the power of artificial neural-networks with the versatility of the genetic algorithm (GA) was introduced. This method, called neural-network-assisted genetic algorithm (NAGA), uses a neural network to restrict the search space and it is expected to speed up the solution of global optimization problems if some previous information is available. In this paper, we have tested NAGA to determine the ground-state geometry of Sin (10⩽n⩽15) according to a tight-binding total-energy method. Our results indicate that NAGA was able to find the desired global minimum of the potential energy for all the test cases and it was at least ten times faster than pure genetic algorithm.

  12. Multiple Query Evaluation Based on an Enhanced Genetic Algorithm.

    ERIC Educational Resources Information Center

    Tamine, Lynda; Chrisment, Claude; Boughanem, Mohand

    2003-01-01

    Explains the use of genetic algorithms to combine results from multiple query evaluations to improve relevance in information retrieval. Discusses niching techniques, relevance feedback techniques, and evolution heuristics, and compares retrieval results obtained by both genetic multiple query evaluation and classical single query evaluation…

  13. MOESHA: A genetic algorithm for automatic calibration and estimation of parameter uncertainty and sensitivity of hydrologic models

    EPA Science Inventory

    Characterization of uncertainty and sensitivity of model parameters is an essential and often overlooked facet of hydrological modeling. This paper introduces an algorithm called MOESHA that combines input parameter sensitivity analyses with a genetic algorithm calibration routin...

  14. A genetic algorithm for solving supply chain network design model

    NASA Astrophysics Data System (ADS)

    Firoozi, Z.; Ismail, N.; Ariafar, S. H.; Tang, S. H.; Ariffin, M. K. M. A.

    2013-09-01

    Network design is by nature costly and optimization models play significant role in reducing the unnecessary cost components of a distribution network. This study proposes a genetic algorithm to solve a distribution network design model. The structure of the chromosome in the proposed algorithm is defined in a novel way that in addition to producing feasible solutions, it also reduces the computational complexity of the algorithm. Computational results are presented to show the algorithm performance.

  15. The simulation method of chemical composition of vermicular graphite iron on the basis of genetic algorithm

    NASA Astrophysics Data System (ADS)

    Yusupov, L. R.; Klochkova, K. V.; Simonova, L. A.

    2017-09-01

    The paper presents a methodology of modeling the chemical composition of the composite material via genetic algorithm for optimization of the manufacturing process of products. The paper presents algorithms of methods based on intelligent system of vermicular graphite iron design

  16. MULTI-OBJECTIVE OPTIMAL DESIGN OF GROUNDWATER REMEDIATION SYSTEMS: APPLICATION OF THE NICHED PARETO GENETIC ALGORITHM (NPGA). (R826614)

    EPA Science Inventory

    A multiobjective optimization algorithm is applied to a groundwater quality management problem involving remediation by pump-and-treat (PAT). The multiobjective optimization framework uses the niched Pareto genetic algorithm (NPGA) and is applied to simultaneously minimize the...

  17. Multi-Objective Constraint Satisfaction for Mobile Robot Area Defense

    DTIC Science & Technology

    2010-03-01

    17 NSGA-II non-dominated sorting genetic algorithm II . . . . . . . . . . . . . . . . . . . 17 jMetal Metaheuristic Algorithms in...to alert the other agents and ensure trust in the system. This research presents an algorithm that tasks robots to meet the two specific goals of...problem is defined as a constraint satisfaction problem solved using the Non-dominated Sorting Genetic Algorithm II (NSGA-II). Both goals of

  18. Application of genetic algorithm in modeling on-wafer inductors for up to 110 Ghz

    NASA Astrophysics Data System (ADS)

    Liu, Nianhong; Fu, Jun; Liu, Hui; Cui, Wenpu; Liu, Zhihong; Liu, Linlin; Zhou, Wei; Wang, Quan; Guo, Ao

    2018-05-01

    In this work, the genetic algorithm has been introducted into parameter extraction for on-wafer inductors for up to 110 GHz millimeter-wave operations, and nine independent parameters of the equivalent circuit model are optimized together. With the genetic algorithm, the model with the optimized parameters gives a better fitting accuracy than the preliminary parameters without optimization. Especially, the fitting accuracy of the Q value achieves a significant improvement after the optimization.

  19. Combinatorial Multiobjective Optimization Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Crossley, William A.; Martin. Eric T.

    2002-01-01

    The research proposed in this document investigated multiobjective optimization approaches based upon the Genetic Algorithm (GA). Several versions of the GA have been adopted for multiobjective design, but, prior to this research, there had not been significant comparisons of the most popular strategies. The research effort first generalized the two-branch tournament genetic algorithm in to an N-branch genetic algorithm, then the N-branch GA was compared with a version of the popular Multi-Objective Genetic Algorithm (MOGA). Because the genetic algorithm is well suited to combinatorial (mixed discrete / continuous) optimization problems, the GA can be used in the conceptual phase of design to combine selection (discrete variable) and sizing (continuous variable) tasks. Using a multiobjective formulation for the design of a 50-passenger aircraft to meet the competing objectives of minimizing takeoff gross weight and minimizing trip time, the GA generated a range of tradeoff designs that illustrate which aircraft features change from a low-weight, slow trip-time aircraft design to a heavy-weight, short trip-time aircraft design. Given the objective formulation and analysis methods used, the results of this study identify where turboprop-powered aircraft and turbofan-powered aircraft become more desirable for the 50 seat passenger application. This aircraft design application also begins to suggest how a combinatorial multiobjective optimization technique could be used to assist in the design of morphing aircraft.

  20. An Interactive Preliminary Design System of High Speed Forebody and Inlet Flows

    NASA Technical Reports Server (NTRS)

    Liou, May-Fun; Benson, Thomas J.; Trefny, Charles J.

    2010-01-01

    This paper demonstrates a simulation-based aerodynamic design process of high speed inlet. A genetic algorithm is integrated into the design process to facilitate the single objective optimization. The objective function is the total pressure recovery and is obtained by using a PNS solver for its computing efficiency. The system developed uses existing software of geometry definition, mesh generation and CFD analysis. The process which produces increasingly desirable design in each genetic evolution over many generations is automatically carried out. A generic two-dimensional inlet is created as a showcase to demonstrate the capabilities of this tool. A parameterized study of geometric shape and size of the showcase is also presented.

  1. Hybrid artificial bee colony algorithm for parameter optimization of five-parameter bidirectional reflectance distribution function model.

    PubMed

    Wang, Qianqian; Zhao, Jing; Gong, Yong; Hao, Qun; Peng, Zhong

    2017-11-20

    A hybrid artificial bee colony (ABC) algorithm inspired by the best-so-far solution and bacterial chemotaxis was introduced to optimize the parameters of the five-parameter bidirectional reflectance distribution function (BRDF) model. To verify the performance of the hybrid ABC algorithm, we measured BRDF of three kinds of samples and simulated the undetermined parameters of the five-parameter BRDF model using the hybrid ABC algorithm and the genetic algorithm, respectively. The experimental results demonstrate that the hybrid ABC algorithm outperforms the genetic algorithm in convergence speed, accuracy, and time efficiency under the same conditions.

  2. [Application of genetic algorithm in blending technology for extractions of Cortex Fraxini].

    PubMed

    Yang, Ming; Zhou, Yinmin; Chen, Jialei; Yu, Minying; Shi, Xiufeng; Gu, Xijun

    2009-10-01

    To explore the feasibility of genetic algorithm (GA) on multiple objective blending technology for extractions of Cortex Fraxini. According to that the optimization objective was the combination of fingerprint similarity and the root-mean-square error of multiple key constituents, a new multiple objective optimization model of 10 batches extractions of Cortex Fraxini was built. The blending coefficient was obtained by genetic algorithm. The quality of 10 batches extractions of Cortex Fraxini that after blending was evaluated with the finger print similarity and root-mean-square error as indexes. The quality of 10 batches extractions of Cortex Fraxini that after blending was well improved. Comparing with the fingerprint of the control sample, the similarity was up, but the degree of variation is down. The relative deviation of the key constituents was less than 10%. It is proved that genetic algorithm works well on multiple objective blending technology for extractions of Cortex Fraxini. This method can be a reference to control the quality of extractions of Cortex Fraxini. Genetic algorithm in blending technology for extractions of Chinese medicines is advisable.

  3. Improving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth

    PubMed Central

    A., Javadpour; A., Mohammadi

    2016-01-01

    Background Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging. Objective This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regional growth. Methods Among medical imaging methods, brains MRI segmentation is important due to high contrast of non-intrusive soft tissue and high spatial resolution. Size variations of brain tissues are often accompanied by various diseases such as Alzheimer’s disease. As our knowledge about the relation between various brain diseases and deviation of brain anatomy increases, MRI segmentation is exploited as the first step in early diagnosis. In this paper, regional growth method and auto-mate selection of initial points by genetic algorithm is used to introduce a new method for MRI segmentation. Primary pixels and similarity criterion are automatically by genetic algorithms to maximize the accuracy and validity in image segmentation. Results By using genetic algorithms and defining the fixed function of image segmentation, the initial points for the algorithm were found. The proposed algorithms are applied to the images and results are manually selected by regional growth in which the initial points were compared. The results showed that the proposed algorithm could reduce segmentation error effectively. Conclusion The study concluded that the proposed algorithm could reduce segmentation error effectively and help us to diagnose brain diseases. PMID:27672629

  4. Optimizing multiple sequence alignments using a genetic algorithm based on three objectives: structural information, non-gaps percentage and totally conserved columns.

    PubMed

    Ortuño, Francisco M; Valenzuela, Olga; Rojas, Fernando; Pomares, Hector; Florido, Javier P; Urquiza, Jose M; Rojas, Ignacio

    2013-09-01

    Multiple sequence alignments (MSAs) are widely used approaches in bioinformatics to carry out other tasks such as structure predictions, biological function analyses or phylogenetic modeling. However, current tools usually provide partially optimal alignments, as each one is focused on specific biological features. Thus, the same set of sequences can produce different alignments, above all when sequences are less similar. Consequently, researchers and biologists do not agree about which is the most suitable way to evaluate MSAs. Recent evaluations tend to use more complex scores including further biological features. Among them, 3D structures are increasingly being used to evaluate alignments. Because structures are more conserved in proteins than sequences, scores with structural information are better suited to evaluate more distant relationships between sequences. The proposed multiobjective algorithm, based on the non-dominated sorting genetic algorithm, aims to jointly optimize three objectives: STRIKE score, non-gaps percentage and totally conserved columns. It was significantly assessed on the BAliBASE benchmark according to the Kruskal-Wallis test (P < 0.01). This algorithm also outperforms other aligners, such as ClustalW, Multiple Sequence Alignment Genetic Algorithm (MSA-GA), PRRP, DIALIGN, Hidden Markov Model Training (HMMT), Pattern-Induced Multi-sequence Alignment (PIMA), MULTIALIGN, Sequence Alignment Genetic Algorithm (SAGA), PILEUP, Rubber Band Technique Genetic Algorithm (RBT-GA) and Vertical Decomposition Genetic Algorithm (VDGA), according to the Wilcoxon signed-rank test (P < 0.05), whereas it shows results not significantly different to 3D-COFFEE (P > 0.05) with the advantage of being able to use less structures. Structural information is included within the objective function to evaluate more accurately the obtained alignments. The source code is available at http://www.ugr.es/~fortuno/MOSAStrE/MO-SAStrE.zip.

  5. A multiobjective hybrid genetic algorithm for the capacitated multipoint network design problem.

    PubMed

    Lo, C C; Chang, W H

    2000-01-01

    The capacitated multipoint network design problem (CMNDP) is NP-complete. In this paper, a hybrid genetic algorithm for CMNDP is proposed. The multiobjective hybrid genetic algorithm (MOHGA) differs from other genetic algorithms (GAs) mainly in its selection procedure. The concept of subpopulation is used in MOHGA. Four subpopulations are generated according to the elitism reservation strategy, the shifting Prufer vector, the stochastic universal sampling, and the complete random method, respectively. Mixing these four subpopulations produces the next generation population. The MOHGA can effectively search the feasible solution space due to population diversity. The MOHGA has been applied to CMNDP. By examining computational and analytical results, we notice that the MOHGA can find most nondominated solutions and is much more effective and efficient than other multiobjective GAs.

  6. A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2001-01-01

    In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.

  7. Genetic Algorithm Approaches for Actuator Placement

    NASA Technical Reports Server (NTRS)

    Crossley, William A.

    2000-01-01

    This research investigated genetic algorithm approaches for smart actuator placement to provide aircraft maneuverability without requiring hinged flaps or other control surfaces. The effort supported goals of the Multidisciplinary Design Optimization focus efforts in NASA's Aircraft au program. This work helped to properly identify various aspects of the genetic algorithm operators and parameters that allow for placement of discrete control actuators/effectors. An improved problem definition, including better definition of the objective function and constraints, resulted from this research effort. The work conducted for this research used a geometrically simple wing model; however, an increasing number of potential actuator placement locations were incorporated to illustrate the ability of the GA to determine promising actuator placement arrangements. This effort's major result is a useful genetic algorithm-based approach to assist in the discrete actuator/effector placement problem.

  8. A pipelined FPGA implementation of an encryption algorithm based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Thirer, Nonel

    2013-05-01

    With the evolution of digital data storage and exchange, it is essential to protect the confidential information from every unauthorized access. High performance encryption algorithms were developed and implemented by software and hardware. Also many methods to attack the cipher text were developed. In the last years, the genetic algorithm has gained much interest in cryptanalysis of cipher texts and also in encryption ciphers. This paper analyses the possibility to use the genetic algorithm as a multiple key sequence generator for an AES (Advanced Encryption Standard) cryptographic system, and also to use a three stages pipeline (with four main blocks: Input data, AES Core, Key generator, Output data) to provide a fast encryption and storage/transmission of a large amount of data.

  9. Image reconstruction through thin scattering media by simulated annealing algorithm

    NASA Astrophysics Data System (ADS)

    Fang, Longjie; Zuo, Haoyi; Pang, Lin; Yang, Zuogang; Zhang, Xicheng; Zhu, Jianhua

    2018-07-01

    An idea for reconstructing the image of an object behind thin scattering media is proposed by phase modulation. The optimized phase mask is achieved by modulating the scattered light using simulated annealing algorithm. The correlation coefficient is exploited as a fitness function to evaluate the quality of reconstructed image. The reconstructed images optimized from simulated annealing algorithm and genetic algorithm are compared in detail. The experimental results show that our proposed method has better definition and higher speed than genetic algorithm.

  10. Low-thrust orbit transfer optimization with refined Q-law and multi-objective genetic algorithm

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Petropoulos, Anastassios E.; von Allmen, Paul

    2005-01-01

    An optimization method for low-thrust orbit transfers around a central body is developed using the Q-law and a multi-objective genetic algorithm. in the hybrid method, the Q-law generates candidate orbit transfers, and the multi-objective genetic algorithm optimizes the Q-law control parameters in order to simultaneously minimize both the consumed propellant mass and flight time of the orbit tranfer. This paper addresses the problem of finding optimal orbit transfers for low-thrust spacecraft.

  11. Genetic algorithm for neural networks optimization

    NASA Astrophysics Data System (ADS)

    Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta

    2004-11-01

    This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.

  12. Hybrid Architectures for Evolutionary Computing Algorithms

    DTIC Science & Technology

    2008-01-01

    other EC algorithms to FPGA Core Burns P1026/MAPLD 200532 Genetic Algorithm Hardware References S. Scott, A. Samal , and S. Seth, “HGA: A Hardware Based...on Parallel and Distributed Processing (IPPS/SPDP 󈨦), pp. 316-320, Proceedings. IEEE Computer Society 1998. [12] Scott, S. D. , Samal , A., and...Algorithm Hardware References S. Scott, A. Samal , and S. Seth, “HGA: A Hardware Based Genetic Algorithm”, Proceedings of the 1995 ACM Third

  13. MIP Models and Hybrid Algorithms for Simultaneous Job Splitting and Scheduling on Unrelated Parallel Machines

    PubMed Central

    Ozmutlu, H. Cenk

    2014-01-01

    We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms. PMID:24977204

  14. Series Hybrid Electric Vehicle Power System Optimization Based on Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Zhu, Tianjun; Li, Bin; Zong, Changfu; Wu, Yang

    2017-09-01

    Hybrid electric vehicles (HEV), compared with conventional vehicles, have complex structures and more component parameters. If variables optimization designs are carried on all these parameters, it will increase the difficulty and the convergence of algorithm program, so this paper chooses the parameters which has a major influence on the vehicle fuel consumption to make it all work at maximum efficiency. First, HEV powertrain components modelling are built. Second, taking a tandem hybrid structure as an example, genetic algorithm is used in this paper to optimize fuel consumption and emissions. Simulation results in ADVISOR verify the feasibility of the proposed genetic optimization algorithm.

  15. Multiple sequence alignment using multi-objective based bacterial foraging optimization algorithm.

    PubMed

    Rani, R Ranjani; Ramyachitra, D

    2016-12-01

    Multiple sequence alignment (MSA) is a widespread approach in computational biology and bioinformatics. MSA deals with how the sequences of nucleotides and amino acids are sequenced with possible alignment and minimum number of gaps between them, which directs to the functional, evolutionary and structural relationships among the sequences. Still the computation of MSA is a challenging task to provide an efficient accuracy and statistically significant results of alignments. In this work, the Bacterial Foraging Optimization Algorithm was employed to align the biological sequences which resulted in a non-dominated optimal solution. It employs Multi-objective, such as: Maximization of Similarity, Non-gap percentage, Conserved blocks and Minimization of gap penalty. BAliBASE 3.0 benchmark database was utilized to examine the proposed algorithm against other methods In this paper, two algorithms have been proposed: Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC) and Bacterial Foraging Optimization Algorithm. It was found that Hybrid Genetic Algorithm with Artificial Bee Colony performed better than the existing optimization algorithms. But still the conserved blocks were not obtained using GA-ABC. Then BFO was used for the alignment and the conserved blocks were obtained. The proposed Multi-Objective Bacterial Foraging Optimization Algorithm (MO-BFO) was compared with widely used MSA methods Clustal Omega, Kalign, MUSCLE, MAFFT, Genetic Algorithm (GA), Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC). The final results show that the proposed MO-BFO algorithm yields better alignment than most widely used methods. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. A New Framework for Adaptive Sampling and Analysis During Long- Term Monitoring and Remedial Action Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minsker, Barbara

    2003-06-01

    The Argonne team has gathered available data on monitoring wells and measured hydraulic heads from the Argonne 317/319 site and sent it to UIUC. Xiaodong Li, a research assistant supported by the project, has reviewed the data and is beginning to fit spatiotemporal statistical models to it. Another research assistant, Yonas Demissie, has gotten the site's Modflow model working and is developing a transport model that will be used to generate artificial data. Abhishek Singh, a third research assistant supported by the project, has performed a literature review on inverse modeling and is receiving training on the software that willmore » be used in this project (D2K). He has also created two models of user preferences and successfully implemented them with an interactive genetic algorithm on test functions. Meghna Babbar, the fourth research assistant supported by the project, has created an interactive genetic algorithm code and initial user interface in D2K. Gayathri Gopalakrishnan, the last research assistant who is partially supported by the project, has collected and analyzed data from the phytoremediation systems at the 317/319 site. She has found good correlations between concentrations in the ground water and in branches of the trees, which indicates excellent promise for using the trees as cost-effective long-term monitoring of the contaminants.« less

  17. Stochastic optimization of GeantV code by use of genetic algorithms

    DOE PAGES

    Amadio, G.; Apostolakis, J.; Bandieramonte, M.; ...

    2017-10-01

    GeantV is a complex system based on the interaction of different modules needed for detector simulation, which include transport of particles in fields, physics models simulating their interactions with matter and a geometrical modeler library for describing the detector and locating the particles and computing the path length to the current volume boundary. The GeantV project is recasting the classical simulation approach to get maximum benefit from SIMD/MIMD computational architectures and highly massive parallel systems. This involves finding the appropriate balance between several aspects influencing computational performance (floating-point performance, usage of off-chip memory bandwidth, specification of cache hierarchy, etc.) andmore » handling a large number of program parameters that have to be optimized to achieve the best simulation throughput. This optimization task can be treated as a black-box optimization problem, which requires searching the optimum set of parameters using only point-wise function evaluations. Here, the goal of this study is to provide a mechanism for optimizing complex systems (high energy physics particle transport simulations) with the help of genetic algorithms and evolution strategies as tuning procedures for massive parallel simulations. One of the described approaches is based on introducing a specific multivariate analysis operator that could be used in case of resource expensive or time consuming evaluations of fitness functions, in order to speed-up the convergence of the black-box optimization problem.« less

  18. Offspring Generation Method for interactive Genetic Algorithm considering Multimodal Preference

    NASA Astrophysics Data System (ADS)

    Ito, Fuyuko; Hiroyasu, Tomoyuki; Miki, Mitsunori; Yokouchi, Hisatake

    In interactive genetic algorithms (iGAs), computer simulations prepare design candidates that are then evaluated by the user. Therefore, iGA can predict a user's preferences. Conventional iGA problems involve a search for a single optimum solution, and iGA were developed to find this single optimum. On the other hand, our target problems have several peaks in a function and there are small differences among these peaks. For such problems, it is better to show all the peaks to the user. Product recommendation in shopping sites on the web is one example of such problems. Several types of preference trend should be prepared for users in shopping sites. Exploitation and exploration are important mechanisms in GA search. To perform effective exploitation, the offspring generation method (crossover) is very important. Here, we introduced a new offspring generation method for iGA in multimodal problems. In the proposed method, individuals are clustered into subgroups and offspring are generated in each group. The proposed method was applied to an experimental iGA system to examine its effectiveness. In the experimental iGA system, users can decide on preferable t-shirts to buy. The results of the subjective experiment confirmed that the proposed method enables offspring generation with consideration of multimodal preferences, and the proposed mechanism was also shown not to adversely affect the performance of preference prediction.

  19. Stochastic optimization of GeantV code by use of genetic algorithms

    NASA Astrophysics Data System (ADS)

    Amadio, G.; Apostolakis, J.; Bandieramonte, M.; Behera, S. P.; Brun, R.; Canal, P.; Carminati, F.; Cosmo, G.; Duhem, L.; Elvira, D.; Folger, G.; Gheata, A.; Gheata, M.; Goulas, I.; Hariri, F.; Jun, S. Y.; Konstantinov, D.; Kumawat, H.; Ivantchenko, V.; Lima, G.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Seghal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.

    2017-10-01

    GeantV is a complex system based on the interaction of different modules needed for detector simulation, which include transport of particles in fields, physics models simulating their interactions with matter and a geometrical modeler library for describing the detector and locating the particles and computing the path length to the current volume boundary. The GeantV project is recasting the classical simulation approach to get maximum benefit from SIMD/MIMD computational architectures and highly massive parallel systems. This involves finding the appropriate balance between several aspects influencing computational performance (floating-point performance, usage of off-chip memory bandwidth, specification of cache hierarchy, etc.) and handling a large number of program parameters that have to be optimized to achieve the best simulation throughput. This optimization task can be treated as a black-box optimization problem, which requires searching the optimum set of parameters using only point-wise function evaluations. The goal of this study is to provide a mechanism for optimizing complex systems (high energy physics particle transport simulations) with the help of genetic algorithms and evolution strategies as tuning procedures for massive parallel simulations. One of the described approaches is based on introducing a specific multivariate analysis operator that could be used in case of resource expensive or time consuming evaluations of fitness functions, in order to speed-up the convergence of the black-box optimization problem.

  20. Stochastic optimization of GeantV code by use of genetic algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amadio, G.; Apostolakis, J.; Bandieramonte, M.

    GeantV is a complex system based on the interaction of different modules needed for detector simulation, which include transport of particles in fields, physics models simulating their interactions with matter and a geometrical modeler library for describing the detector and locating the particles and computing the path length to the current volume boundary. The GeantV project is recasting the classical simulation approach to get maximum benefit from SIMD/MIMD computational architectures and highly massive parallel systems. This involves finding the appropriate balance between several aspects influencing computational performance (floating-point performance, usage of off-chip memory bandwidth, specification of cache hierarchy, etc.) andmore » handling a large number of program parameters that have to be optimized to achieve the best simulation throughput. This optimization task can be treated as a black-box optimization problem, which requires searching the optimum set of parameters using only point-wise function evaluations. Here, the goal of this study is to provide a mechanism for optimizing complex systems (high energy physics particle transport simulations) with the help of genetic algorithms and evolution strategies as tuning procedures for massive parallel simulations. One of the described approaches is based on introducing a specific multivariate analysis operator that could be used in case of resource expensive or time consuming evaluations of fitness functions, in order to speed-up the convergence of the black-box optimization problem.« less

  1. An application of traveling salesman problem using the improved genetic algorithm on android google maps

    NASA Astrophysics Data System (ADS)

    Narwadi, Teguh; Subiyanto

    2017-03-01

    The Travelling Salesman Problem (TSP) is one of the best known NP-hard problems, which means that no exact algorithm to solve it in polynomial time. This paper present a new variant application genetic algorithm approach with a local search technique has been developed to solve the TSP. For the local search technique, an iterative hill climbing method has been used. The system is implemented on the Android OS because android is now widely used around the world and it is mobile system. It is also integrated with Google API that can to get the geographical location and the distance of the cities, and displays the route. Therefore, we do some experimentation to test the behavior of the application. To test the effectiveness of the application of hybrid genetic algorithm (HGA) is compare with the application of simple GA in 5 sample from the cities in Central Java, Indonesia with different numbers of cities. According to the experiment results obtained that in the average solution HGA shows in 5 tests out of 5 (100%) is better than simple GA. The results have shown that the hybrid genetic algorithm outperforms the genetic algorithm especially in the case with the problem higher complexity.

  2. Including non-additive genetic effects in Bayesian methods for the prediction of genetic values based on genome-wide markers

    PubMed Central

    2011-01-01

    Background Molecular marker information is a common source to draw inferences about the relationship between genetic and phenotypic variation. Genetic effects are often modelled as additively acting marker allele effects. The true mode of biological action can, of course, be different from this plain assumption. One possibility to better understand the genetic architecture of complex traits is to include intra-locus (dominance) and inter-locus (epistasis) interaction of alleles as well as the additive genetic effects when fitting a model to a trait. Several Bayesian MCMC approaches exist for the genome-wide estimation of genetic effects with high accuracy of genetic value prediction. Including pairwise interaction for thousands of loci would probably go beyond the scope of such a sampling algorithm because then millions of effects are to be estimated simultaneously leading to months of computation time. Alternative solving strategies are required when epistasis is studied. Methods We extended a fast Bayesian method (fBayesB), which was previously proposed for a purely additive model, to include non-additive effects. The fBayesB approach was used to estimate genetic effects on the basis of simulated datasets. Different scenarios were simulated to study the loss of accuracy of prediction, if epistatic effects were not simulated but modelled and vice versa. Results If 23 QTL were simulated to cause additive and dominance effects, both fBayesB and a conventional MCMC sampler BayesB yielded similar results in terms of accuracy of genetic value prediction and bias of variance component estimation based on a model including additive and dominance effects. Applying fBayesB to data with epistasis, accuracy could be improved by 5% when all pairwise interactions were modelled as well. The accuracy decreased more than 20% if genetic variation was spread over 230 QTL. In this scenario, accuracy based on modelling only additive and dominance effects was generally superior to that of the complex model including epistatic effects. Conclusions This simulation study showed that the fBayesB approach is convenient for genetic value prediction. Jointly estimating additive and non-additive effects (especially dominance) has reasonable impact on the accuracy of prediction and the proportion of genetic variation assigned to the additive genetic source. PMID:21867519

  3. Pathway-Based Kernel Boosting for the Analysis of Genome-Wide Association Studies

    PubMed Central

    Manitz, Juliane; Burger, Patricia; Amos, Christopher I.; Chang-Claude, Jenny; Wichmann, Heinz-Erich; Kneib, Thomas; Bickeböller, Heike

    2017-01-01

    The analysis of genome-wide association studies (GWAS) benefits from the investigation of biologically meaningful gene sets, such as gene-interaction networks (pathways). We propose an extension to a successful kernel-based pathway analysis approach by integrating kernel functions into a powerful algorithmic framework for variable selection, to enable investigation of multiple pathways simultaneously. We employ genetic similarity kernels from the logistic kernel machine test (LKMT) as base-learners in a boosting algorithm. A model to explain case-control status is created iteratively by selecting pathways that improve its prediction ability. We evaluated our method in simulation studies adopting 50 pathways for different sample sizes and genetic effect strengths. Additionally, we included an exemplary application of kernel boosting to a rheumatoid arthritis and a lung cancer dataset. Simulations indicate that kernel boosting outperforms the LKMT in certain genetic scenarios. Applications to GWAS data on rheumatoid arthritis and lung cancer resulted in sparse models which were based on pathways interpretable in a clinical sense. Kernel boosting is highly flexible in terms of considered variables and overcomes the problem of multiple testing. Additionally, it enables the prediction of clinical outcomes. Thus, kernel boosting constitutes a new, powerful tool in the analysis of GWAS data and towards the understanding of biological processes involved in disease susceptibility. PMID:28785300

  4. Pathway-Based Kernel Boosting for the Analysis of Genome-Wide Association Studies.

    PubMed

    Friedrichs, Stefanie; Manitz, Juliane; Burger, Patricia; Amos, Christopher I; Risch, Angela; Chang-Claude, Jenny; Wichmann, Heinz-Erich; Kneib, Thomas; Bickeböller, Heike; Hofner, Benjamin

    2017-01-01

    The analysis of genome-wide association studies (GWAS) benefits from the investigation of biologically meaningful gene sets, such as gene-interaction networks (pathways). We propose an extension to a successful kernel-based pathway analysis approach by integrating kernel functions into a powerful algorithmic framework for variable selection, to enable investigation of multiple pathways simultaneously. We employ genetic similarity kernels from the logistic kernel machine test (LKMT) as base-learners in a boosting algorithm. A model to explain case-control status is created iteratively by selecting pathways that improve its prediction ability. We evaluated our method in simulation studies adopting 50 pathways for different sample sizes and genetic effect strengths. Additionally, we included an exemplary application of kernel boosting to a rheumatoid arthritis and a lung cancer dataset. Simulations indicate that kernel boosting outperforms the LKMT in certain genetic scenarios. Applications to GWAS data on rheumatoid arthritis and lung cancer resulted in sparse models which were based on pathways interpretable in a clinical sense. Kernel boosting is highly flexible in terms of considered variables and overcomes the problem of multiple testing. Additionally, it enables the prediction of clinical outcomes. Thus, kernel boosting constitutes a new, powerful tool in the analysis of GWAS data and towards the understanding of biological processes involved in disease susceptibility.

  5. Peak-to-average power ratio reduction in orthogonal frequency division multiplexing-based visible light communication systems using a modified partial transmit sequence technique

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Deng, Honggui; Ren, Shuang; Tang, Chengying; Qian, Xuewen

    2018-01-01

    We propose an efficient partial transmit sequence technique based on genetic algorithm and peak-value optimization algorithm (GAPOA) to reduce high peak-to-average power ratio (PAPR) in visible light communication systems based on orthogonal frequency division multiplexing (VLC-OFDM). By analysis of hill-climbing algorithm's pros and cons, we propose the POA with excellent local search ability to further process the signals whose PAPR is still over the threshold after processed by genetic algorithm (GA). To verify the effectiveness of the proposed technique and algorithm, we evaluate the PAPR performance and the bit error rate (BER) performance and compare them with partial transmit sequence (PTS) technique based on GA (GA-PTS), PTS technique based on genetic and hill-climbing algorithm (GH-PTS), and PTS based on shuffled frog leaping algorithm and hill-climbing algorithm (SFLAHC-PTS). The results show that our technique and algorithm have not only better PAPR performance but also lower computational complexity and BER than GA-PTS, GH-PTS, and SFLAHC-PTS technique.

  6. SNPs selection using support vector regression and genetic algorithms in GWAS

    PubMed Central

    2014-01-01

    Introduction This paper proposes a new methodology to simultaneously select the most relevant SNPs markers for the characterization of any measurable phenotype described by a continuous variable using Support Vector Regression with Pearson Universal kernel as fitness function of a binary genetic algorithm. The proposed methodology is multi-attribute towards considering several markers simultaneously to explain the phenotype and is based jointly on statistical tools, machine learning and computational intelligence. Results The suggested method has shown potential in the simulated database 1, with additive effects only, and real database. In this simulated database, with a total of 1,000 markers, and 7 with major effect on the phenotype and the other 993 SNPs representing the noise, the method identified 21 markers. Of this total, 5 are relevant SNPs between the 7 but 16 are false positives. In real database, initially with 50,752 SNPs, we have reduced to 3,073 markers, increasing the accuracy of the model. In the simulated database 2, with additive effects and interactions (epistasis), the proposed method matched to the methodology most commonly used in GWAS. Conclusions The method suggested in this paper demonstrates the effectiveness in explaining the real phenotype (PTA for milk), because with the application of the wrapper based on genetic algorithm and Support Vector Regression with Pearson Universal, many redundant markers were eliminated, increasing the prediction and accuracy of the model on the real database without quality control filters. The PUK demonstrated that it can replicate the performance of linear and RBF kernels. PMID:25573332

  7. Optimization of genomic selection training populations with a genetic algorithm

    USDA-ARS?s Scientific Manuscript database

    In this article, we derive a computationally efficient statistic to measure the reliability of estimates of genetic breeding values for a fixed set of genotypes based on a given training set of genotypes and phenotypes. We adopt a genetic algorithm scheme to find a training set of certain size from ...

  8. A Constrained Genetic Algorithm with Adaptively Defined Fitness Function in MRS Quantification

    NASA Astrophysics Data System (ADS)

    Papakostas, G. A.; Karras, D. A.; Mertzios, B. G.; Graveron-Demilly, D.; van Ormondt, D.

    MRS Signal quantification is a rather involved procedure and has attracted the interest of the medical engineering community, regarding the development of computationally efficient methodologies. Significant contributions based on Computational Intelligence tools, such as Neural Networks (NNs), demonstrated a good performance but not without drawbacks already discussed by the authors. On the other hand preliminary application of Genetic Algorithms (GA) has already been reported in the literature by the authors regarding the peak detection problem encountered in MRS quantification using the Voigt line shape model. This paper investigates a novel constrained genetic algorithm involving a generic and adaptively defined fitness function which extends the simple genetic algorithm methodology in case of noisy signals. The applicability of this new algorithm is scrutinized through experimentation in artificial MRS signals interleaved with noise, regarding its signal fitting capabilities. Although extensive experiments with real world MRS signals are necessary, the herein shown performance illustrates the method's potential to be established as a generic MRS metabolites quantification procedure.

  9. Fireworks algorithm for mean-VaR/CVaR models

    NASA Astrophysics Data System (ADS)

    Zhang, Tingting; Liu, Zhifeng

    2017-10-01

    Intelligent algorithms have been widely applied to portfolio optimization problems. In this paper, we introduce a novel intelligent algorithm, named fireworks algorithm, to solve the mean-VaR/CVaR model for the first time. The results show that, compared with the classical genetic algorithm, fireworks algorithm not only improves the optimization accuracy and the optimization speed, but also makes the optimal solution more stable. We repeat our experiments at different confidence levels and different degrees of risk aversion, and the results are robust. It suggests that fireworks algorithm has more advantages than genetic algorithm in solving the portfolio optimization problem, and it is feasible and promising to apply it into this field.

  10. SEURAT: visual analytics for the integrated analysis of microarray data.

    PubMed

    Gribov, Alexander; Sill, Martin; Lück, Sonja; Rücker, Frank; Döhner, Konstanze; Bullinger, Lars; Benner, Axel; Unwin, Antony

    2010-06-03

    In translational cancer research, gene expression data is collected together with clinical data and genomic data arising from other chip based high throughput technologies. Software tools for the joint analysis of such high dimensional data sets together with clinical data are required. We have developed an open source software tool which provides interactive visualization capability for the integrated analysis of high-dimensional gene expression data together with associated clinical data, array CGH data and SNP array data. The different data types are organized by a comprehensive data manager. Interactive tools are provided for all graphics: heatmaps, dendrograms, barcharts, histograms, eventcharts and a chromosome browser, which displays genetic variations along the genome. All graphics are dynamic and fully linked so that any object selected in a graphic will be highlighted in all other graphics. For exploratory data analysis the software provides unsupervised data analytics like clustering, seriation algorithms and biclustering algorithms. The SEURAT software meets the growing needs of researchers to perform joint analysis of gene expression, genomical and clinical data.

  11. MorphoGraphX: A platform for quantifying morphogenesis in 4D.

    PubMed

    Barbier de Reuille, Pierre; Routier-Kierzkowska, Anne-Lise; Kierzkowski, Daniel; Bassel, George W; Schüpbach, Thierry; Tauriello, Gerardo; Bajpai, Namrata; Strauss, Sören; Weber, Alain; Kiss, Annamaria; Burian, Agata; Hofhuis, Hugo; Sapala, Aleksandra; Lipowczan, Marcin; Heimlicher, Maria B; Robinson, Sarah; Bayer, Emmanuelle M; Basler, Konrad; Koumoutsakos, Petros; Roeder, Adrienne H K; Aegerter-Wilmsen, Tinri; Nakayama, Naomi; Tsiantis, Miltos; Hay, Angela; Kwiatkowska, Dorota; Xenarios, Ioannis; Kuhlemeier, Cris; Smith, Richard S

    2015-05-06

    Morphogenesis emerges from complex multiscale interactions between genetic and mechanical processes. To understand these processes, the evolution of cell shape, proliferation and gene expression must be quantified. This quantification is usually performed either in full 3D, which is computationally expensive and technically challenging, or on 2D planar projections, which introduces geometrical artifacts on highly curved organs. Here we present MorphoGraphX ( www.MorphoGraphX.org), a software that bridges this gap by working directly with curved surface images extracted from 3D data. In addition to traditional 3D image analysis, we have developed algorithms to operate on curved surfaces, such as cell segmentation, lineage tracking and fluorescence signal quantification. The software's modular design makes it easy to include existing libraries, or to implement new algorithms. Cell geometries extracted with MorphoGraphX can be exported and used as templates for simulation models, providing a powerful platform to investigate the interactions between shape, genes and growth.

  12. Dynamic traffic assignment : genetic algorithms approach

    DOT National Transportation Integrated Search

    1997-01-01

    Real-time route guidance is a promising approach to alleviating congestion on the nations highways. A dynamic traffic assignment model is central to the development of guidance strategies. The artificial intelligence technique of genetic algorithm...

  13. Spin systems and Political Districting Problem

    NASA Astrophysics Data System (ADS)

    Chou, Chung-I.; Li, Sai-Ping

    2007-03-01

    The aim of the Political Districting Problem is to partition a territory into electoral districts subject to some constraints such as contiguity, population equality, etc. In this paper, we apply statistical physics methods to Political Districting Problem. We will show how to transform the political problem to a spin system, and how to write down a q-state Potts model-like energy function in which the political constraints can be written as interactions between sites or external fields acting on the system. Districting into q voter districts is equivalent to finding the ground state of this q-state Potts model. Searching for the ground state becomes an optimization problem, where optimization algorithms such as the simulated annealing method and Genetic Algorithm can be employed here.

  14. Genetic algorithm based input selection for a neural network function approximator with applications to SSME health monitoring

    NASA Technical Reports Server (NTRS)

    Peck, Charles C.; Dhawan, Atam P.; Meyer, Claudia M.

    1991-01-01

    A genetic algorithm is used to select the inputs to a neural network function approximator. In the application considered, modeling critical parameters of the space shuttle main engine (SSME), the functional relationship between measured parameters is unknown and complex. Furthermore, the number of possible input parameters is quite large. Many approaches have been used for input selection, but they are either subjective or do not consider the complex multivariate relationships between parameters. Due to the optimization and space searching capabilities of genetic algorithms they were employed to systematize the input selection process. The results suggest that the genetic algorithm can generate parameter lists of high quality without the explicit use of problem domain knowledge. Suggestions for improving the performance of the input selection process are also provided.

  15. Accelerating global optimization of aerodynamic shapes using a new surrogate-assisted parallel genetic algorithm

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Mehdi; Jahangirian, Alireza

    2017-12-01

    An efficient strategy is presented for global shape optimization of wing sections with a parallel genetic algorithm. Several computational techniques are applied to increase the convergence rate and the efficiency of the method. A variable fidelity computational evaluation method is applied in which the expensive Navier-Stokes flow solver is complemented by an inexpensive multi-layer perceptron neural network for the objective function evaluations. A population dispersion method that consists of two phases, of exploration and refinement, is developed to improve the convergence rate and the robustness of the genetic algorithm. Owing to the nature of the optimization problem, a parallel framework based on the master/slave approach is used. The outcomes indicate that the method is able to find the global optimum with significantly lower computational time in comparison to the conventional genetic algorithm.

  16. [Reconstruction of Vehicle-human Crash Accident and Injury Analysis Based on 3D Laser Scanning, Multi-rigid-body Reconstruction and Optimized Genetic Algorithm].

    PubMed

    Sun, J; Wang, T; Li, Z D; Shao, Y; Zhang, Z Y; Feng, H; Zou, D H; Chen, Y J

    2017-12-01

    To reconstruct a vehicle-bicycle-cyclist crash accident and analyse the injuries using 3D laser scanning technology, multi-rigid-body dynamics and optimized genetic algorithm, and to provide biomechanical basis for the forensic identification of death cause. The vehicle was measured by 3D laser scanning technology. The multi-rigid-body models of cyclist, bicycle and vehicle were developed based on the measurements. The value range of optimal variables was set. A multi-objective genetic algorithm and the nondominated sorting genetic algorithm were used to find the optimal solutions, which were compared to the record of the surveillance video around the accident scene. The reconstruction result of laser scanning on vehicle was satisfactory. In the optimal solutions found by optimization method of genetic algorithm, the dynamical behaviours of dummy, bicycle and vehicle corresponded to that recorded by the surveillance video. The injury parameters of dummy were consistent with the situation and position of the real injuries on the cyclist in accident. The motion status before accident, damage process by crash and mechanical analysis on the injury of the victim can be reconstructed using 3D laser scanning technology, multi-rigid-body dynamics and optimized genetic algorithm, which have application value in the identification of injury manner and analysis of death cause in traffic accidents. Copyright© by the Editorial Department of Journal of Forensic Medicine

  17. Performance comparison of genetic algorithms and particle swarm optimization for model integer programming bus timetabling problem

    NASA Astrophysics Data System (ADS)

    Wihartiko, F. D.; Wijayanti, H.; Virgantari, F.

    2018-03-01

    Genetic Algorithm (GA) is a common algorithm used to solve optimization problems with artificial intelligence approach. Similarly, the Particle Swarm Optimization (PSO) algorithm. Both algorithms have different advantages and disadvantages when applied to the case of optimization of the Model Integer Programming for Bus Timetabling Problem (MIPBTP), where in the case of MIPBTP will be found the optimal number of trips confronted with various constraints. The comparison results show that the PSO algorithm is superior in terms of complexity, accuracy, iteration and program simplicity in finding the optimal solution.

  18. Research on laser marking speed optimization by using genetic algorithm.

    PubMed

    Wang, Dongyun; Yu, Qiwei; Zhang, Yu

    2015-01-01

    Laser Marking Machine is the most common coding equipment on product packaging lines. However, the speed of laser marking has become a bottleneck of production. In order to remove this bottleneck, a new method based on a genetic algorithm is designed. On the basis of this algorithm, a controller was designed and simulations and experiments were performed. The results show that using this algorithm could effectively improve laser marking efficiency by 25%.

  19. Tag SNP selection via a genetic algorithm.

    PubMed

    Mahdevar, Ghasem; Zahiri, Javad; Sadeghi, Mehdi; Nowzari-Dalini, Abbas; Ahrabian, Hayedeh

    2010-10-01

    Single Nucleotide Polymorphisms (SNPs) provide valuable information on human evolutionary history and may lead us to identify genetic variants responsible for human complex diseases. Unfortunately, molecular haplotyping methods are costly, laborious, and time consuming; therefore, algorithms for constructing full haplotype patterns from small available data through computational methods, Tag SNP selection problem, are convenient and attractive. This problem is proved to be an NP-hard problem, so heuristic methods may be useful. In this paper we present a heuristic method based on genetic algorithm to find reasonable solution within acceptable time. The algorithm was tested on a variety of simulated and experimental data. In comparison with the exact algorithm, based on brute force approach, results show that our method can obtain optimal solutions in almost all cases and runs much faster than exact algorithm when the number of SNP sites is large. Our software is available upon request to the corresponding author.

  20. Research on rolling element bearing fault diagnosis based on genetic algorithm matching pursuit

    NASA Astrophysics Data System (ADS)

    Rong, R. W.; Ming, T. F.

    2017-12-01

    In order to solve the problem of slow computation speed, matching pursuit algorithm is applied to rolling bearing fault diagnosis, and the improvement are conducted from two aspects that are the construction of dictionary and the way to search for atoms. To be specific, Gabor function which can reflect time-frequency localization characteristic well is used to construct the dictionary, and the genetic algorithm to improve the searching speed. A time-frequency analysis method based on genetic algorithm matching pursuit (GAMP) algorithm is proposed. The way to set property parameters for the improvement of the decomposition results is studied. Simulation and experimental results illustrate that the weak fault feature of rolling bearing can be extracted effectively by this proposed method, at the same time, the computation speed increases obviously.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumuluru, Jaya Shankar; McCulloch, Richard Chet James

    In this work a new hybrid genetic algorithm was developed which combines a rudimentary adaptive steepest ascent hill climbing algorithm with a sophisticated evolutionary algorithm in order to optimize complex multivariate design problems. By combining a highly stochastic algorithm (evolutionary) with a simple deterministic optimization algorithm (adaptive steepest ascent) computational resources are conserved and the solution converges rapidly when compared to either algorithm alone. In genetic algorithms natural selection is mimicked by random events such as breeding and mutation. In the adaptive steepest ascent algorithm each variable is perturbed by a small amount and the variable that caused the mostmore » improvement is incremented by a small step. If the direction of most benefit is exactly opposite of the previous direction with the most benefit then the step size is reduced by a factor of 2, thus the step size adapts to the terrain. A graphical user interface was created in MATLAB to provide an interface between the hybrid genetic algorithm and the user. Additional features such as bounding the solution space and weighting the objective functions individually are also built into the interface. The algorithm developed was tested to optimize the functions developed for a wood pelleting process. Using process variables (such as feedstock moisture content, die speed, and preheating temperature) pellet properties were appropriately optimized. Specifically, variables were found which maximized unit density, bulk density, tapped density, and durability while minimizing pellet moisture content and specific energy consumption. The time and computational resources required for the optimization were dramatically decreased using the hybrid genetic algorithm when compared to MATLAB's native evolutionary optimization tool.« less

  2. Automated Test Assembly for Cognitive Diagnosis Models Using a Genetic Algorithm

    ERIC Educational Resources Information Center

    Finkelman, Matthew; Kim, Wonsuk; Roussos, Louis A.

    2009-01-01

    Much recent psychometric literature has focused on cognitive diagnosis models (CDMs), a promising class of instruments used to measure the strengths and weaknesses of examinees. This article introduces a genetic algorithm to perform automated test assembly alongside CDMs. The algorithm is flexible in that it can be applied whether the goal is to…

  3. Design Genetic Algorithm Optimization Education Software Based Fuzzy Controller for a Tricopter Fly Path Planning

    ERIC Educational Resources Information Center

    Tran, Huu-Khoa; Chiou, Juing -Shian; Peng, Shou-Tao

    2016-01-01

    In this paper, the feasibility of a Genetic Algorithm Optimization (GAO) education software based Fuzzy Logic Controller (GAO-FLC) for simulating the flight motion control of Unmanned Aerial Vehicles (UAVs) is designed. The generated flight trajectories integrate the optimized Scaling Factors (SF) fuzzy controller gains by using GAO algorithm. The…

  4. A Swarm Optimization Genetic Algorithm Based on Quantum-Behaved Particle Swarm Optimization.

    PubMed

    Sun, Tao; Xu, Ming-Hai

    2017-01-01

    Quantum-behaved particle swarm optimization (QPSO) algorithm is a variant of the traditional particle swarm optimization (PSO). The QPSO that was originally developed for continuous search spaces outperforms the traditional PSO in search ability. This paper analyzes the main factors that impact the search ability of QPSO and converts the particle movement formula to the mutation condition by introducing the rejection region, thus proposing a new binary algorithm, named swarm optimization genetic algorithm (SOGA), because it is more like genetic algorithm (GA) than PSO in form. SOGA has crossover and mutation operator as GA but does not need to set the crossover and mutation probability, so it has fewer parameters to control. The proposed algorithm was tested with several nonlinear high-dimension functions in the binary search space, and the results were compared with those from BPSO, BQPSO, and GA. The experimental results show that SOGA is distinctly superior to the other three algorithms in terms of solution accuracy and convergence.

  5. Enhanced α-amylase production by a marine protist, Ulkenia sp. using response surface methodology and genetic algorithm.

    PubMed

    Shirodkar, Priyanka V; Muraleedharan, Usha Devi

    2017-11-26

    Amylases are a group of enzymes with a wide variety of industrial applications. Enhancement of α-amylase production from the marine protists, thraustochytrids has been attempted for the first time by applying statistical-based experimental designs using response surface methodology (RSM) and genetic algorithm (GA) for optimization of the most influencing process variables. A full factorial central composite experimental design was used to study the cumulative interactive effect of nutritional components viz., glucose, corn starch, and yeast extract. RSM was performed on two objectives, that is, growth of Ulkenia sp. AH-2 (ATCC® PRA-296) and α-amylase activity. When GA was conducted for maximization of the enzyme activity, the optimal α-amylase activity was found to be 71.20 U/mL which was close to that obtained by RSM (71.93 U/mL), both of which were in agreement with the predicted value of 72.37 U/mL. Optimal growth at the optimized process variables was found to be 1.89A 660nm . The optimized medium increased α-amylase production by 1.2-fold.

  6. Performance impact of mutation operators of a subpopulation-based genetic algorithm for multi-robot task allocation problems.

    PubMed

    Liu, Chun; Kroll, Andreas

    2016-01-01

    Multi-robot task allocation determines the task sequence and distribution for a group of robots in multi-robot systems, which is one of constrained combinatorial optimization problems and more complex in case of cooperative tasks because they introduce additional spatial and temporal constraints. To solve multi-robot task allocation problems with cooperative tasks efficiently, a subpopulation-based genetic algorithm, a crossover-free genetic algorithm employing mutation operators and elitism selection in each subpopulation, is developed in this paper. Moreover, the impact of mutation operators (swap, insertion, inversion, displacement, and their various combinations) is analyzed when solving several industrial plant inspection problems. The experimental results show that: (1) the proposed genetic algorithm can obtain better solutions than the tested binary tournament genetic algorithm with partially mapped crossover; (2) inversion mutation performs better than other tested mutation operators when solving problems without cooperative tasks, and the swap-inversion combination performs better than other tested mutation operators/combinations when solving problems with cooperative tasks. As it is difficult to produce all desired effects with a single mutation operator, using multiple mutation operators (including both inversion and swap) is suggested when solving similar combinatorial optimization problems.

  7. A Distributed Parallel Genetic Algorithm of Placement Strategy for Virtual Machines Deployment on Cloud Platform

    PubMed Central

    Dong, Yu-Shuang; Xu, Gao-Chao; Fu, Xiao-Dong

    2014-01-01

    The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA) of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform. PMID:25097872

  8. A distributed parallel genetic algorithm of placement strategy for virtual machines deployment on cloud platform.

    PubMed

    Dong, Yu-Shuang; Xu, Gao-Chao; Fu, Xiao-Dong

    2014-01-01

    The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA) of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform.

  9. Determination of nonlinear genetic architecture using compressed sensing.

    PubMed

    Ho, Chiu Man; Hsu, Stephen D H

    2015-01-01

    One of the fundamental problems of modern genomics is to extract the genetic architecture of a complex trait from a data set of individual genotypes and trait values. Establishing this important connection between genotype and phenotype is complicated by the large number of candidate genes, the potentially large number of causal loci, and the likely presence of some nonlinear interactions between different genes. Compressed Sensing methods obtain solutions to under-constrained systems of linear equations. These methods can be applied to the problem of determining the best model relating genotype to phenotype, and generally deliver better performance than simply regressing the phenotype against each genetic variant, one at a time. We introduce a Compressed Sensing method that can reconstruct nonlinear genetic models (i.e., including epistasis, or gene-gene interactions) from phenotype-genotype (GWAS) data. Our method uses L1-penalized regression applied to nonlinear functions of the sensing matrix. The computational and data resource requirements for our method are similar to those necessary for reconstruction of linear genetic models (or identification of gene-trait associations), assuming a condition of generalized sparsity, which limits the total number of gene-gene interactions. An example of a sparse nonlinear model is one in which a typical locus interacts with several or even many others, but only a small subset of all possible interactions exist. It seems plausible that most genetic architectures fall in this category. We give theoretical arguments suggesting that the method is nearly optimal in performance, and demonstrate its effectiveness on broad classes of nonlinear genetic models using simulated human genomes and the small amount of currently available real data. A phase transition (i.e., dramatic and qualitative change) in the behavior of the algorithm indicates when sufficient data is available for its successful application. Our results indicate that predictive models for many complex traits, including a variety of human disease susceptibilities (e.g., with additive heritability h (2)∼0.5), can be extracted from data sets comprised of n ⋆∼100s individuals, where s is the number of distinct causal variants influencing the trait. For example, given a trait controlled by ∼10 k loci, roughly a million individuals would be sufficient for application of the method.

  10. Genetic algorithm for nuclear data evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arthur, Jennifer Ann

    These are slides on genetic algorithm for nuclear data evaluation. The following is covered: initial population, fitness (outer loop), calculate fitness, selection (first part of inner loop), reproduction (second part of inner loop), solution, and examples.

  11. Hybrid Model Based on Genetic Algorithms and SVM Applied to Variable Selection within Fruit Juice Classification

    PubMed Central

    Fernandez-Lozano, C.; Canto, C.; Gestal, M.; Andrade-Garda, J. M.; Rabuñal, J. R.; Dorado, J.; Pazos, A.

    2013-01-01

    Given the background of the use of Neural Networks in problems of apple juice classification, this paper aim at implementing a newly developed method in the field of machine learning: the Support Vector Machines (SVM). Therefore, a hybrid model that combines genetic algorithms and support vector machines is suggested in such a way that, when using SVM as a fitness function of the Genetic Algorithm (GA), the most representative variables for a specific classification problem can be selected. PMID:24453933

  12. Fuel management optimization using genetic algorithms and expert knowledge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeChaine, M.D.; Feltus, M.A.

    1996-09-01

    The CIGARO fuel management optimization code based on genetic algorithms is described and tested. The test problem optimized the core lifetime for a pressurized water reactor with a penalty function constraint on the peak normalized power. A bit-string genotype encoded the loading patterns, and genotype bias was reduced with additional bits. Expert knowledge about fuel management was incorporated into the genetic algorithm. Regional crossover exchanged physically adjacent fuel assemblies and improved the optimization slightly. Biasing the initial population toward a known priority table significantly improved the optimization.

  13. Optimal placement of tuning masses on truss structures by genetic algorithms

    NASA Technical Reports Server (NTRS)

    Ponslet, Eric; Haftka, Raphael T.; Cudney, Harley H.

    1993-01-01

    Optimal placement of tuning masses, actuators and other peripherals on large space structures is a combinatorial optimization problem. This paper surveys several techniques for solving this problem. The genetic algorithm approach to the solution of the placement problem is described in detail. An example of minimizing the difference between the two lowest frequencies of a laboratory truss by adding tuning masses is used for demonstrating some of the advantages of genetic algorithms. The relative efficiencies of different codings are compared using the results of a large number of optimization runs.

  14. Application of a Genetic Algorithm and Multi Agent System to Explore Emergent Patterns of Social Rationality and a Distress-Based Model for Deceit in the Workplace

    DTIC Science & Technology

    2008-06-01

    postponed the fulfillment of her own Masters Degree by at least 18 months so that I would have the opportunity to earn mine. She is smart , lovely...GENETIC ALGORITHM AND MULTI AGENT SYSTEM TO EXPLORE EMERGENT PATTERNS OF SOCIAL RATIONALITY AND A DISTRESS-BASED MODEL FOR DECEIT IN THE WORKPLACE...of a Genetic Algorithm and Mutli Agent System to Explore Emergent Patterns of Social Rationality and a Distress-Based Model for Deceit in the

  15. Multi-objective Optimization Design of Gear Reducer Based on Adaptive Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Li, Rui; Chang, Tian; Wang, Jianwei; Wei, Xiaopeng; Wang, Jinming

    2008-11-01

    An adaptive Genetic Algorithm (GA) is introduced to solve the multi-objective optimized design of the reducer. Firstly, according to the structure, strength, etc. in a reducer, a multi-objective optimized model of the helical gear reducer is established. And then an adaptive GA based on a fuzzy controller is introduced, aiming at the characteristics of multi-objective, multi-parameter, multi-constraint conditions. Finally, a numerical example is illustrated to show the advantages of this approach and the effectiveness of an adaptive genetic algorithm used in optimized design of a reducer.

  16. Investigation on application of genetic algorithms to optimal reactive power dispatch of power systems

    NASA Astrophysics Data System (ADS)

    Wu, Q. H.; Ma, J. T.

    1993-09-01

    A primary investigation into application of genetic algorithms in optimal reactive power dispatch and voltage control is presented. The application was achieved, based on (the United Kingdom) National Grid 48 bus network model, using a novel genetic search approach. Simulation results, compared with that obtained using nonlinear programming methods, are included to show the potential of applications of the genetic search methodology in power system economical and secure operations.

  17. Algorithme intelligent d'optimisation d'un design structurel de grande envergure

    NASA Astrophysics Data System (ADS)

    Dominique, Stephane

    The implementation of an automated decision support system in the field of design and structural optimisation can give a significant advantage to any industry working on mechanical designs. Indeed, by providing solution ideas to a designer or by upgrading existing design solutions while the designer is not at work, the system may reduce the project cycle time, or allow more time to produce a better design. This thesis presents a new approach to automate a design process based on Case-Based Reasoning (CBR), in combination with a new genetic algorithm named Genetic Algorithm with Territorial core Evolution (GATE). This approach was developed in order to reduce the operating cost of the process. However, as the system implementation cost is quite expensive, the approach is better suited for large scale design problem, and particularly for design problems that the designer plans to solve for many different specification sets. First, the CBR process uses a databank filled with every known solution to similar design problems. Then, the closest solutions to the current problem in term of specifications are selected. After this, during the adaptation phase, an artificial neural network (ANN) interpolates amongst known solutions to produce an additional solution to the current problem using the current specifications as inputs. Each solution produced and selected by the CBR is then used to initialize the population of an island of the genetic algorithm. The algorithm will optimise the solution further during the refinement phase. Using progressive refinement, the algorithm starts using only the most important variables for the problem. Then, as the optimisation progress, the remaining variables are gradually introduced, layer by layer. The genetic algorithm that is used is a new algorithm specifically created during this thesis to solve optimisation problems from the field of mechanical device structural design. The algorithm is named GATE, and is essentially a real number genetic algorithm that prevents new individuals to be born too close to previously evaluated solutions. The restricted area becomes smaller or larger during the optimisation to allow global or local search when necessary. Also, a new search operator named Substitution Operator is incorporated in GATE. This operator allows an ANN surrogate model to guide the algorithm toward the most promising areas of the design space. The suggested CBR approach and GATE were tested on several simple test problems, as well as on the industrial problem of designing a gas turbine engine rotor's disc. These results are compared to other results obtained for the same problems by many other popular optimisation algorithms, such as (depending of the problem) gradient algorithms, binary genetic algorithm, real number genetic algorithm, genetic algorithm using multiple parents crossovers, differential evolution genetic algorithm, Hookes & Jeeves generalized pattern search method and POINTER from the software I-SIGHT 3.5. Results show that GATE is quite competitive, giving the best results for 5 of the 6 constrained optimisation problem. GATE also provided the best results of all on problem produced by a Maximum Set Gaussian landscape generator. Finally, GATE provided a disc 4.3% lighter than the best other tested algorithm (POINTER) for the gas turbine engine rotor's disc problem. One drawback of GATE is a lesser efficiency for highly multimodal unconstrained problems, for which he gave quite poor results with respect to its implementation cost. To conclude, according to the preliminary results obtained during this thesis, the suggested CBR process, combined with GATE, seems to be a very good candidate to automate and accelerate the structural design of mechanical devices, potentially reducing significantly the cost of industrial preliminary design processes.

  18. Routing design and fleet allocation optimization of freeway service patrol: Improved results using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Xiuqiao; Wang, Jian

    2018-07-01

    Freeway service patrol (FSP), is considered to be an effective method for incident management and can help transportation agency decision-makers alter existing route coverage and fleet allocation. This paper investigates the FSP problem of patrol routing design and fleet allocation, with the objective of minimizing the overall average incident response time. While the simulated annealing (SA) algorithm and its improvements have been applied to solve this problem, they often become trapped in local optimal solution. Moreover, the issue of searching efficiency remains to be further addressed. In this paper, we employ the genetic algorithm (GA) and SA to solve the FSP problem. To maintain population diversity and avoid premature convergence, niche strategy is incorporated into the traditional genetic algorithm. We also employ elitist strategy to speed up the convergence. Numerical experiments have been conducted with the help of the Sioux Falls network. Results show that the GA slightly outperforms the dual-based greedy (DBG) algorithm, the very large-scale neighborhood searching (VLNS) algorithm, the SA algorithm and the scenario algorithm.

  19. Identifying Interacting Genetic Variations by Fish-Swarm Logic Regression

    PubMed Central

    Yang, Aiyuan; Yan, Chunxia; Zhu, Feng; Zhao, Zhongmeng; Cao, Zhi

    2013-01-01

    Understanding associations between genotypes and complex traits is a fundamental problem in human genetics. A major open problem in mapping phenotypes is that of identifying a set of interacting genetic variants, which might contribute to complex traits. Logic regression (LR) is a powerful multivariant association tool. Several LR-based approaches have been successfully applied to different datasets. However, these approaches are not adequate with regard to accuracy and efficiency. In this paper, we propose a new LR-based approach, called fish-swarm logic regression (FSLR), which improves the logic regression process by incorporating swarm optimization. In our approach, a school of fish agents are conducted in parallel. Each fish agent holds a regression model, while the school searches for better models through various preset behaviors. A swarm algorithm improves the accuracy and the efficiency by speeding up the convergence and preventing it from dropping into local optimums. We apply our approach on a real screening dataset and a series of simulation scenarios. Compared to three existing LR-based approaches, our approach outperforms them by having lower type I and type II error rates, being able to identify more preset causal sites, and performing at faster speeds. PMID:23984382

  20. Research on Laser Marking Speed Optimization by Using Genetic Algorithm

    PubMed Central

    Wang, Dongyun; Yu, Qiwei; Zhang, Yu

    2015-01-01

    Laser Marking Machine is the most common coding equipment on product packaging lines. However, the speed of laser marking has become a bottleneck of production. In order to remove this bottleneck, a new method based on a genetic algorithm is designed. On the basis of this algorithm, a controller was designed and simulations and experiments were performed. The results show that using this algorithm could effectively improve laser marking efficiency by 25%. PMID:25955831

  1. Parana Basin Structure from Multi-Objective Inversion of Surface Wave and Receiver Function by Competent Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    An, M.; Assumpcao, M.

    2003-12-01

    The joint inversion of receiver function and surface wave is an effective way to diminish the influences of the strong tradeoff among parameters and the different sensitivity to the model parameters in their respective inversions, but the inversion problem becomes more complex. Multi-objective problems can be much more complicated than single-objective inversion in the model selection and optimization. If objectives are involved and conflicting, models can be ordered only partially. In this case, Pareto-optimal preference should be used to select solutions. On the other hand, the inversion to get only a few optimal solutions can not deal properly with the strong tradeoff between parameters, the uncertainties in the observation, the geophysical complexities and even the incompetency of the inversion technique. The effective way is to retrieve the geophysical information statistically from many acceptable solutions, which requires more competent global algorithms. Competent genetic algorithms recently proposed are far superior to the conventional genetic algorithm and can solve hard problems quickly, reliably and accurately. In this work we used one of competent genetic algorithms, Bayesian Optimization Algorithm as the main inverse procedure. This algorithm uses Bayesian networks to draw out inherited information and can use Pareto-optimal preference in the inversion. With this algorithm, the lithospheric structure of Paran"› basin is inverted to fit both the observations of inter-station surface wave dispersion and receiver function.

  2. Lithium cluster anions: photoelectron spectroscopy and ab initio calculations.

    PubMed

    Alexandrova, Anastassia N; Boldyrev, Alexander I; Li, Xiang; Sarkas, Harry W; Hendricks, Jay H; Arnold, Susan T; Bowen, Kit H

    2011-01-28

    Structural and energetic properties of small, deceptively simple anionic clusters of lithium, Li(n)(-), n = 3-7, were determined using a combination of anion photoelectron spectroscopy and ab initio calculations. The most stable isomers of each of these anions, the ones most likely to contribute to the photoelectron spectra, were found using the gradient embedded genetic algorithm program. Subsequently, state-of-the-art ab initio techniques, including time-dependent density functional theory, coupled cluster, and multireference configurational interactions methods, were employed to interpret the experimental spectra.

  3. A Genetic-Based Scheduling Algorithm to Minimize the Makespan of the Grid Applications

    NASA Astrophysics Data System (ADS)

    Entezari-Maleki, Reza; Movaghar, Ali

    Task scheduling algorithms in grid environments strive to maximize the overall throughput of the grid. In order to maximize the throughput of the grid environments, the makespan of the grid tasks should be minimized. In this paper, a new task scheduling algorithm is proposed to assign tasks to the grid resources with goal of minimizing the total makespan of the tasks. The algorithm uses the genetic approach to find the suitable assignment within grid resources. The experimental results obtained from applying the proposed algorithm to schedule independent tasks within grid environments demonstrate the applicability of the algorithm in achieving schedules with comparatively lower makespan in comparison with other well-known scheduling algorithms such as, Min-min, Max-min, RASA and Sufferage algorithms.

  4. Genetic Algorithms to Optimizatize Lecturer Assessment's Criteria

    NASA Astrophysics Data System (ADS)

    Jollyta, Deny; Johan; Hajjah, Alyauma

    2017-12-01

    The lecturer assessment criteria is used as a measurement of the lecturer's performance in a college environment. To determine the value for a criteriais complicated and often leads to doubt. The absence of a standard valuefor each assessment criteria will affect the final results of the assessment and become less presentational data for the leader of college in taking various policies relate to reward and punishment. The Genetic Algorithm comes as an algorithm capable of solving non-linear problems. Using chromosomes in the random initial population, one of the presentations is binary, evaluates the fitness function and uses crossover genetic operator and mutation to obtain the desired crossbreed. It aims to obtain the most optimum criteria values in terms of the fitness function of each chromosome. The training results show that Genetic Algorithm able to produce the optimal values of lecturer assessment criteria so that can be usedby the college as a standard value for lecturer assessment criteria.

  5. A theoretical comparison of evolutionary algorithms and simulated annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, W.E.

    1995-08-28

    This paper theoretically compares the performance of simulated annealing and evolutionary algorithms. Our main result is that under mild conditions a wide variety of evolutionary algorithms can be shown to have greater performance than simulated annealing after a sufficiently large number of function evaluations. This class of EAs includes variants of evolutionary strategie and evolutionary programming, the canonical genetic algorithm, as well as a variety of genetic algorithms that have been applied to combinatorial optimization problems. The proof of this result is based on a performance analysis of a very general class of stochastic optimization algorithms, which has implications formore » the performance of a variety of other optimization algorithm.« less

  6. Design of Genetic Algorithms for Topology Control of Unmanned Vehicles

    DTIC Science & Technology

    2010-01-01

    decentralised topology control mechanism distributed among active running software agents to achieve a uniform spread of terrestrial unmanned vehicles...14. ABSTRACT We present genetic algorithms (GAs) as a decentralised topology control mechanism distributed among active running software agents to...inspired topology control algorithm. The topology control of UVs using a decentralised solution over an unknown geographical terrain is a challenging

  7. Combinatorial optimization problem solution based on improved genetic algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Peng

    2017-08-01

    Traveling salesman problem (TSP) is a classic combinatorial optimization problem. It is a simplified form of many complex problems. In the process of study and research, it is understood that the parameters that affect the performance of genetic algorithm mainly include the quality of initial population, the population size, and crossover probability and mutation probability values. As a result, an improved genetic algorithm for solving TSP problems is put forward. The population is graded according to individual similarity, and different operations are performed to different levels of individuals. In addition, elitist retention strategy is adopted at each level, and the crossover operator and mutation operator are improved. Several experiments are designed to verify the feasibility of the algorithm. Through the experimental results analysis, it is proved that the improved algorithm can improve the accuracy and efficiency of the solution.

  8. Multi-heuristic dynamic task allocation using genetic algorithms in a heterogeneous distributed system

    PubMed Central

    Page, Andrew J.; Keane, Thomas M.; Naughton, Thomas J.

    2010-01-01

    We present a multi-heuristic evolutionary task allocation algorithm to dynamically map tasks to processors in a heterogeneous distributed system. It utilizes a genetic algorithm, combined with eight common heuristics, in an effort to minimize the total execution time. It operates on batches of unmapped tasks and can preemptively remap tasks to processors. The algorithm has been implemented on a Java distributed system and evaluated with a set of six problems from the areas of bioinformatics, biomedical engineering, computer science and cryptography. Experiments using up to 150 heterogeneous processors show that the algorithm achieves better efficiency than other state-of-the-art heuristic algorithms. PMID:20862190

  9. Using an improved association rules mining optimization algorithm in web-based mobile-learning system

    NASA Astrophysics Data System (ADS)

    Huang, Yin; Chen, Jianhua; Xiong, Shaojun

    2009-07-01

    Mobile-Learning (M-learning) makes many learners get the advantages of both traditional learning and E-learning. Currently, Web-based Mobile-Learning Systems have created many new ways and defined new relationships between educators and learners. Association rule mining is one of the most important fields in data mining and knowledge discovery in databases. Rules explosion is a serious problem which causes great concerns, as conventional mining algorithms often produce too many rules for decision makers to digest. Since Web-based Mobile-Learning System collects vast amounts of student profile data, data mining and knowledge discovery techniques can be applied to find interesting relationships between attributes of learners, assessments, the solution strategies adopted by learners and so on. Therefore ,this paper focus on a new data-mining algorithm, combined with the advantages of genetic algorithm and simulated annealing algorithm , called ARGSA(Association rules based on an improved Genetic Simulated Annealing Algorithm), to mine the association rules. This paper first takes advantage of the Parallel Genetic Algorithm and Simulated Algorithm designed specifically for discovering association rules. Moreover, the analysis and experiment are also made to show the proposed method is superior to the Apriori algorithm in this Mobile-Learning system.

  10. Light-extraction enhancement for light-emitting diodes: a firefly-inspired structure refined by the genetic algorithm

    NASA Astrophysics Data System (ADS)

    Bay, Annick; Mayer, Alexandre

    2014-09-01

    The efficiency of light-emitting diodes (LED) has increased significantly over the past few years, but the overall efficiency is still limited by total internal reflections due to the high dielectric-constant contrast between the incident and emergent media. The bioluminescent organ of fireflies gave incentive for light-extraction enhance-ment studies. A specific factory-roof shaped structure was shown, by means of light-propagation simulations and measurements, to enhance light extraction significantly. In order to achieve a similar effect for light-emitting diodes, the structure needs to be adapted to the specific set-up of LEDs. In this context simulations were carried out to determine the best geometrical parameters. In the present work, the search for a geometry that maximizes the extraction of light has been conducted by using a genetic algorithm. The idealized structure considered previously was generalized to a broader variety of shapes. The genetic algorithm makes it possible to search simultaneously over a wider range of parameters. It is also significantly less time-consuming than the previous approach that was based on a systematic scan on parameters. The results of the genetic algorithm show that (1) the calculations can be performed in a smaller amount of time and (2) the light extraction can be enhanced even more significantly by using optimal parameters determined by the genetic algorithm for the generalized structure. The combination of the genetic algorithm with the Rigorous Coupled Waves Analysis method constitutes a strong simulation tool, which provides us with adapted designs for enhancing light extraction from light-emitting diodes.

  11. Optimal Integration of Departures and Arrivals in Terminal Airspace

    NASA Technical Reports Server (NTRS)

    Xue, Min; Zelinski, Shannon Jean

    2013-01-01

    Coordination of operations with spatially and temporally shared resources, such as route segments, fixes, and runways, improves the efficiency of terminal airspace management. Problems in this category are, in general, computationally difficult compared to conventional scheduling problems. This paper presents a fast time algorithm formulation using a non-dominated sorting genetic algorithm (NSGA). It was first applied to a test problem introduced in existing literature. An experiment with a test problem showed that new methods can solve the 20 aircraft problem in fast time with a 65% or 440 second delay reduction using shared departure fixes. In order to test its application in a more realistic and complicated problem, the NSGA algorithm was applied to a problem in LAX terminal airspace, where interactions between 28% of LAX arrivals and 10% of LAX departures are resolved by spatial separation in current operations, which may introduce unnecessary delays. In this work, three types of separations - spatial, temporal, and hybrid separations - were formulated using the new algorithm. The hybrid separation combines both temporal and spatial separations. Results showed that although temporal separation achieved less delay than spatial separation with a small uncertainty buffer, spatial separation outperformed temporal separation when the uncertainty buffer was increased. Hybrid separation introduced much less delay than both spatial and temporal approaches. For a total of 15 interacting departures and arrivals, when compared to spatial separation, the delay reduction of hybrid separation varied between 11% or 3.1 minutes and 64% or 10.7 minutes corresponding to an uncertainty buffer from 0 to 60 seconds. Furthermore, as a comparison with the NSGA algorithm, a First-Come-First-Serve based heuristic method was implemented for the hybrid separation. Experiments showed that the results from the NSGA algorithm have 9% to 42% less delay than the heuristic method with varied uncertainty buffer sizes.

  12. Empirical valence bond models for reactive potential energy surfaces: a parallel multilevel genetic program approach.

    PubMed

    Bellucci, Michael A; Coker, David F

    2011-07-28

    We describe a new method for constructing empirical valence bond potential energy surfaces using a parallel multilevel genetic program (PMLGP). Genetic programs can be used to perform an efficient search through function space and parameter space to find the best functions and sets of parameters that fit energies obtained by ab initio electronic structure calculations. Building on the traditional genetic program approach, the PMLGP utilizes a hierarchy of genetic programming on two different levels. The lower level genetic programs are used to optimize coevolving populations in parallel while the higher level genetic program (HLGP) is used to optimize the genetic operator probabilities of the lower level genetic programs. The HLGP allows the algorithm to dynamically learn the mutation or combination of mutations that most effectively increase the fitness of the populations, causing a significant increase in the algorithm's accuracy and efficiency. The algorithm's accuracy and efficiency is tested against a standard parallel genetic program with a variety of one-dimensional test cases. Subsequently, the PMLGP is utilized to obtain an accurate empirical valence bond model for proton transfer in 3-hydroxy-gamma-pyrone in gas phase and protic solvent. © 2011 American Institute of Physics

  13. MULTIOBJECTIVE PARALLEL GENETIC ALGORITHM FOR WASTE MINIMIZATION

    EPA Science Inventory

    In this research we have developed an efficient multiobjective parallel genetic algorithm (MOPGA) for waste minimization problems. This MOPGA integrates PGAPack (Levine, 1996) and NSGA-II (Deb, 2000) with novel modifications. PGAPack is a master-slave parallel implementation of a...

  14. Computational intelligence techniques for biological data mining: An overview

    NASA Astrophysics Data System (ADS)

    Faye, Ibrahima; Iqbal, Muhammad Javed; Said, Abas Md; Samir, Brahim Belhaouari

    2014-10-01

    Computational techniques have been successfully utilized for a highly accurate analysis and modeling of multifaceted and raw biological data gathered from various genome sequencing projects. These techniques are proving much more effective to overcome the limitations of the traditional in-vitro experiments on the constantly increasing sequence data. However, most critical problems that caught the attention of the researchers may include, but not limited to these: accurate structure and function prediction of unknown proteins, protein subcellular localization prediction, finding protein-protein interactions, protein fold recognition, analysis of microarray gene expression data, etc. To solve these problems, various classification and clustering techniques using machine learning have been extensively used in the published literature. These techniques include neural network algorithms, genetic algorithms, fuzzy ARTMAP, K-Means, K-NN, SVM, Rough set classifiers, decision tree and HMM based algorithms. Major difficulties in applying the above algorithms include the limitations found in the previous feature encoding and selection methods while extracting the best features, increasing classification accuracy and decreasing the running time overheads of the learning algorithms. The application of this research would be potentially useful in the drug design and in the diagnosis of some diseases. This paper presents a concise overview of the well-known protein classification techniques.

  15. Strain gage selection in loads equations using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Traditionally, structural loads are measured using strain gages. A loads calibration test must be done before loads can be accurately measured. In one measurement method, a series of point loads is applied to the structure, and loads equations are derived via the least squares curve fitting algorithm using the strain gage responses to the applied point loads. However, many research structures are highly instrumented with strain gages, and the number and selection of gages used in a loads equation can be problematic. This paper presents an improved technique using a genetic algorithm to choose the strain gages used in the loads equations. Also presented are a comparison of the genetic algorithm performance with the current T-value technique and a variant known as the Best Step-down technique. Examples are shown using aerospace vehicle wings of high and low aspect ratio. In addition, a significant limitation in the current methods is revealed. The genetic algorithm arrived at a comparable or superior set of gages with significantly less human effort, and could be applied in instances when the current methods could not.

  16. A hybrid genetic algorithm for solving bi-objective traveling salesman problems

    NASA Astrophysics Data System (ADS)

    Ma, Mei; Li, Hecheng

    2017-08-01

    The traveling salesman problem (TSP) is a typical combinatorial optimization problem, in a traditional TSP only tour distance is taken as a unique objective to be minimized. When more than one optimization objective arises, the problem is known as a multi-objective TSP. In the present paper, a bi-objective traveling salesman problem (BOTSP) is taken into account, where both the distance and the cost are taken as optimization objectives. In order to efficiently solve the problem, a hybrid genetic algorithm is proposed. Firstly, two satisfaction degree indices are provided for each edge by considering the influences of the distance and the cost weight. The first satisfaction degree is used to select edges in a “rough” way, while the second satisfaction degree is executed for a more “refined” choice. Secondly, two satisfaction degrees are also applied to generate new individuals in the iteration process. Finally, based on genetic algorithm framework as well as 2-opt selection strategy, a hybrid genetic algorithm is proposed. The simulation illustrates the efficiency of the proposed algorithm.

  17. Integration of biological networks and gene expression data using Cytoscape

    PubMed Central

    Cline, Melissa S; Smoot, Michael; Cerami, Ethan; Kuchinsky, Allan; Landys, Nerius; Workman, Chris; Christmas, Rowan; Avila-Campilo, Iliana; Creech, Michael; Gross, Benjamin; Hanspers, Kristina; Isserlin, Ruth; Kelley, Ryan; Killcoyne, Sarah; Lotia, Samad; Maere, Steven; Morris, John; Ono, Keiichiro; Pavlovic, Vuk; Pico, Alexander R; Vailaya, Aditya; Wang, Peng-Liang; Adler, Annette; Conklin, Bruce R; Hood, Leroy; Kuiper, Martin; Sander, Chris; Schmulevich, Ilya; Schwikowski, Benno; Warner, Guy J; Ideker, Trey; Bader, Gary D

    2013-01-01

    Cytoscape is a free software package for visualizing, modeling and analyzing molecular and genetic interaction networks. This protocol explains how to use Cytoscape to analyze the results of mRNA expression profiling, and other functional genomics and proteomics experiments, in the context of an interaction network obtained for genes of interest. Five major steps are described: (i) obtaining a gene or protein network, (ii) displaying the network using layout algorithms, (iii) integrating with gene expression and other functional attributes, (iv) identifying putative complexes and functional modules and (v) identifying enriched Gene Ontology annotations in the network. These steps provide a broad sample of the types of analyses performed by Cytoscape. PMID:17947979

  18. Multi-scale genetic dynamic modelling II: application to synthetic biology: an algorithmic Markov chain based approach.

    PubMed

    Kirkilionis, Markus; Janus, Ulrich; Sbano, Luca

    2011-09-01

    We model in detail a simple synthetic genetic clock that was engineered in Atkinson et al. (Cell 113(5):597-607, 2003) using Escherichia coli as a host organism. Based on this engineered clock its theoretical description uses the modelling framework presented in Kirkilionis et al. (Theory Biosci. doi: 10.1007/s12064-011-0125-0 , 2011, this volume). The main goal of this accompanying article was to illustrate that parts of the modelling process can be algorithmically automatised once the model framework we called 'average dynamics' is accepted (Sbano and Kirkilionis, WMI Preprint 7/2007, 2008c; Kirkilionis and Sbano, Adv Complex Syst 13(3):293-326, 2010). The advantage of the 'average dynamics' framework is that system components (especially in genetics) can be easier represented in the model. In particular, if once discovered and characterised, specific molecular players together with their function can be incorporated. This means that, for example, the 'gene' concept becomes more clear, for example, in the way the genetic component would react under different regulatory conditions. Using the framework it has become a realistic aim to link mathematical modelling to novel tools of bioinformatics in the future, at least if the number of regulatory units can be estimated. This should hold in any case in synthetic environments due to the fact that the different synthetic genetic components are simply known (Elowitz and Leibler, Nature 403(6767):335-338, 2000; Gardner et al., Nature 403(6767):339-342, 2000; Hasty et al., Nature 420(6912):224-230, 2002). The paper illustrates therefore as a necessary first step how a detailed modelling of molecular interactions with known molecular components leads to a dynamic mathematical model that can be compared to experimental results on various levels or scales. The different genetic modules or components are represented in different detail by model variants. We explain how the framework can be used for investigating other more complex genetic systems in terms of regulation and feedback.

  19. Using a genetic algorithm as an optimal band selector in the mid and thermal infrared (2.5-14 μm) to discriminate vegetation species.

    PubMed

    Ullah, Saleem; Groen, Thomas A; Schlerf, Martin; Skidmore, Andrew K; Nieuwenhuis, Willem; Vaiphasa, Chaichoke

    2012-01-01

    Genetic variation between various plant species determines differences in their physio-chemical makeup and ultimately in their hyperspectral emissivity signatures. The hyperspectral emissivity signatures, on the one hand, account for the subtle physio-chemical changes in the vegetation, but on the other hand, highlight the problem of high dimensionality. The aim of this paper is to investigate the performance of genetic algorithms coupled with the spectral angle mapper (SAM) to identify a meaningful subset of wavebands sensitive enough to discriminate thirteen broadleaved vegetation species from the laboratory measured hyperspectral emissivities. The performance was evaluated using an overall classification accuracy and Jeffries Matusita distance. For the multiple plant species, the targeted bands based on genetic algorithms resulted in a high overall classification accuracy (90%). Concentrating on the pairwise comparison results, the selected wavebands based on genetic algorithms resulted in higher Jeffries Matusita (J-M) distances than randomly selected wavebands did. This study concludes that targeted wavebands from leaf emissivity spectra are able to discriminate vegetation species.

  20. Improved genetic algorithm for the protein folding problem by use of a Cartesian combination operator.

    PubMed Central

    Rabow, A. A.; Scheraga, H. A.

    1996-01-01

    We have devised a Cartesian combination operator and coding scheme for improving the performance of genetic algorithms applied to the protein folding problem. The genetic coding consists of the C alpha Cartesian coordinates of the protein chain. The recombination of the genes of the parents is accomplished by: (1) a rigid superposition of one parent chain on the other, to make the relation of Cartesian coordinates meaningful, then, (2) the chains of the children are formed through a linear combination of the coordinates of their parents. The children produced with this Cartesian combination operator scheme have similar topology and retain the long-range contacts of their parents. The new scheme is significantly more efficient than the standard genetic algorithm methods for locating low-energy conformations of proteins. The considerable superiority of genetic algorithms over Monte Carlo optimization methods is also demonstrated. We have also devised a new dynamic programming lattice fitting procedure for use with the Cartesian combination operator method. The procedure finds excellent fits of real-space chains to the lattice while satisfying bond-length, bond-angle, and overlap constraints. PMID:8880904

  1. Automated global structure extraction for effective local building block processing in XCS.

    PubMed

    Butz, Martin V; Pelikan, Martin; Llorà, Xavier; Goldberg, David E

    2006-01-01

    Learning Classifier Systems (LCSs), such as the accuracy-based XCS, evolve distributed problem solutions represented by a population of rules. During evolution, features are specialized, propagated, and recombined to provide increasingly accurate subsolutions. Recently, it was shown that, as in conventional genetic algorithms (GAs), some problems require efficient processing of subsets of features to find problem solutions efficiently. In such problems, standard variation operators of genetic and evolutionary algorithms used in LCSs suffer from potential disruption of groups of interacting features, resulting in poor performance. This paper introduces efficient crossover operators to XCS by incorporating techniques derived from competent GAs: the extended compact GA (ECGA) and the Bayesian optimization algorithm (BOA). Instead of simple crossover operators such as uniform crossover or one-point crossover, ECGA or BOA-derived mechanisms are used to build a probabilistic model of the global population and to generate offspring classifiers locally using the model. Several offspring generation variations are introduced and evaluated. The results show that it is possible to achieve performance similar to runs with an informed crossover operator that is specifically designed to yield ideal problem-dependent exploration, exploiting provided problem structure information. Thus, we create the first competent LCSs, XCS/ECGA and XCS/BOA, that detect dependency structures online and propagate corresponding lower-level dependency structures effectively without any information about these structures given in advance.

  2. A Fast Multiple-Kernel Method With Applications to Detect Gene-Environment Interaction.

    PubMed

    Marceau, Rachel; Lu, Wenbin; Holloway, Shannon; Sale, Michèle M; Worrall, Bradford B; Williams, Stephen R; Hsu, Fang-Chi; Tzeng, Jung-Ying

    2015-09-01

    Kernel machine (KM) models are a powerful tool for exploring associations between sets of genetic variants and complex traits. Although most KM methods use a single kernel function to assess the marginal effect of a variable set, KM analyses involving multiple kernels have become increasingly popular. Multikernel analysis allows researchers to study more complex problems, such as assessing gene-gene or gene-environment interactions, incorporating variance-component based methods for population substructure into rare-variant association testing, and assessing the conditional effects of a variable set adjusting for other variable sets. The KM framework is robust, powerful, and provides efficient dimension reduction for multifactor analyses, but requires the estimation of high dimensional nuisance parameters. Traditional estimation techniques, including regularization and the "expectation-maximization (EM)" algorithm, have a large computational cost and are not scalable to large sample sizes needed for rare variant analysis. Therefore, under the context of gene-environment interaction, we propose a computationally efficient and statistically rigorous "fastKM" algorithm for multikernel analysis that is based on a low-rank approximation to the nuisance effect kernel matrices. Our algorithm is applicable to various trait types (e.g., continuous, binary, and survival traits) and can be implemented using any existing single-kernel analysis software. Through extensive simulation studies, we show that our algorithm has similar performance to an EM-based KM approach for quantitative traits while running much faster. We also apply our method to the Vitamin Intervention for Stroke Prevention (VISP) clinical trial, examining gene-by-vitamin effects on recurrent stroke risk and gene-by-age effects on change in homocysteine level. © 2015 WILEY PERIODICALS, INC.

  3. The genetic algorithm: A robust method for stress inversion

    NASA Astrophysics Data System (ADS)

    Thakur, Prithvi; Srivastava, Deepak C.; Gupta, Pravin K.

    2017-01-01

    The stress inversion of geological or geophysical observations is a nonlinear problem. In most existing methods, it is solved by linearization, under certain assumptions. These linear algorithms not only oversimplify the problem but also are vulnerable to entrapment of the solution in a local optimum. We propose the use of a nonlinear heuristic technique, the genetic algorithm, which searches the global optimum without making any linearizing assumption or simplification. The algorithm mimics the natural evolutionary processes of selection, crossover and mutation and, minimizes a composite misfit function for searching the global optimum, the fittest stress tensor. The validity and efficacy of the algorithm are demonstrated by a series of tests on synthetic and natural fault-slip observations in different tectonic settings and also in situations where the observations are noisy. It is shown that the genetic algorithm is superior to other commonly practised methods, in particular, in those tectonic settings where none of the principal stresses is directed vertically and/or the given data set is noisy.

  4. USING GENETIC ALGORITHMS TO DESIGN ENVIRONMENTALLY FRIENDLY PROCESSES

    EPA Science Inventory

    Genetic algorithm calculations are applied to the design of chemical processes to achieve improvements in environmental and economic performance. By finding the set of Pareto (i.e., non-dominated) solutions one can see how different objectives, such as environmental and economic ...

  5. The application of immune genetic algorithm in main steam temperature of PID control of BP network

    NASA Astrophysics Data System (ADS)

    Li, Han; Zhen-yu, Zhang

    In order to overcome the uncertainties, large delay, large inertia and nonlinear property of the main steam temperature controlled object in the power plant, a neural network intelligent PID control system based on immune genetic algorithm and BP neural network is designed. Using the immune genetic algorithm global search optimization ability and good convergence, optimize the weights of the neural network, meanwhile adjusting PID parameters using BP network. The simulation result shows that the system is superior to conventional PID control system in the control of quality and robustness.

  6. Optimization of multicast optical networks with genetic algorithm

    NASA Astrophysics Data System (ADS)

    Lv, Bo; Mao, Xiangqiao; Zhang, Feng; Qin, Xi; Lu, Dan; Chen, Ming; Chen, Yong; Cao, Jihong; Jian, Shuisheng

    2007-11-01

    In this letter, aiming to obtain the best multicast performance of optical network in which the video conference information is carried by specified wavelength, we extend the solutions of matrix games with the network coding theory and devise a new method to solve the complex problems of multicast network switching. In addition, an experimental optical network has been testified with best switching strategies by employing the novel numerical solution designed with an effective way of genetic algorithm. The result shows that optimal solutions with genetic algorithm are accordance with the ones with the traditional fictitious play method.

  7. Real coded genetic algorithm for fuzzy time series prediction

    NASA Astrophysics Data System (ADS)

    Jain, Shilpa; Bisht, Dinesh C. S.; Singh, Phool; Mathpal, Prakash C.

    2017-10-01

    Genetic Algorithm (GA) forms a subset of evolutionary computing, rapidly growing area of Artificial Intelligence (A.I.). Some variants of GA are binary GA, real GA, messy GA, micro GA, saw tooth GA, differential evolution GA. This research article presents a real coded GA for predicting enrollments of University of Alabama. Data of Alabama University is a fuzzy time series. Here, fuzzy logic is used to predict enrollments of Alabama University and genetic algorithm optimizes fuzzy intervals. Results are compared to other eminent author works and found satisfactory, and states that real coded GA are fast and accurate.

  8. Air data system optimization using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    Deshpande, Samir M.; Kumar, Renjith R.; Seywald, Hans; Siemers, Paul M., III

    1992-01-01

    An optimization method for flush-orifice air data system design has been developed using the Genetic Algorithm approach. The optimization of the orifice array minimizes the effect of normally distributed random noise in the pressure readings on the calculation of air data parameters, namely, angle of attack, sideslip angle and freestream dynamic pressure. The optimization method is applied to the design of Pressure Distribution/Air Data System experiment (PD/ADS) proposed for inclusion in the Aeroassist Flight Experiment (AFE). Results obtained by the Genetic Algorithm method are compared to the results obtained by conventional gradient search method.

  9. Simultaneous optimization of the cavity heat load and trip rates in linacs using a genetic algorithm

    DOE PAGES

    Terzić, Balša; Hofler, Alicia S.; Reeves, Cody J.; ...

    2014-10-15

    In this paper, a genetic algorithm-based optimization is used to simultaneously minimize two competing objectives guiding the operation of the Jefferson Lab's Continuous Electron Beam Accelerator Facility linacs: cavity heat load and radio frequency cavity trip rates. The results represent a significant improvement to the standard linac energy management tool and thereby could lead to a more efficient Continuous Electron Beam Accelerator Facility configuration. This study also serves as a proof of principle of how a genetic algorithm can be used for optimizing other linac-based machines.

  10. A novel hybrid genetic algorithm for optimal design of IPM machines for electric vehicle

    NASA Astrophysics Data System (ADS)

    Wang, Aimeng; Guo, Jiayu

    2017-12-01

    A novel hybrid genetic algorithm (HGA) is proposed to optimize the rotor structure of an IPM machine which is used in EV application. The finite element (FE) simulation results of the HGA design is compared with the genetic algorithm (GA) design and those before optimized. It is shown that the performance of the IPMSM is effectively improved by employing the GA and HGA, especially by HGA. Moreover, higher flux-weakening capability and less magnet usage are also obtained. Therefore, the validity of HGA method in IPMSM optimization design is verified.

  11. A Genetic Algorithm and Fuzzy Logic Approach for Video Shot Boundary Detection

    PubMed Central

    Thounaojam, Dalton Meitei; Khelchandra, Thongam; Singh, Kh. Manglem; Roy, Sudipta

    2016-01-01

    This paper proposed a shot boundary detection approach using Genetic Algorithm and Fuzzy Logic. In this, the membership functions of the fuzzy system are calculated using Genetic Algorithm by taking preobserved actual values for shot boundaries. The classification of the types of shot transitions is done by the fuzzy system. Experimental results show that the accuracy of the shot boundary detection increases with the increase in iterations or generations of the GA optimization process. The proposed system is compared to latest techniques and yields better result in terms of F1score parameter. PMID:27127500

  12. Abdomen disease diagnosis in CT images using flexiscale curvelet transform and improved genetic algorithm.

    PubMed

    Sethi, Gaurav; Saini, B S

    2015-12-01

    This paper presents an abdomen disease diagnostic system based on the flexi-scale curvelet transform, which uses different optimal scales for extracting features from computed tomography (CT) images. To optimize the scale of the flexi-scale curvelet transform, we propose an improved genetic algorithm. The conventional genetic algorithm assumes that fit parents will likely produce the healthiest offspring that leads to the least fit parents accumulating at the bottom of the population, reducing the fitness of subsequent populations and delaying the optimal solution search. In our improved genetic algorithm, combining the chromosomes of a low-fitness and a high-fitness individual increases the probability of producing high-fitness offspring. Thereby, all of the least fit parent chromosomes are combined with high fit parent to produce offspring for the next population. In this way, the leftover weak chromosomes cannot damage the fitness of subsequent populations. To further facilitate the search for the optimal solution, our improved genetic algorithm adopts modified elitism. The proposed method was applied to 120 CT abdominal images; 30 images each of normal subjects, cysts, tumors and stones. The features extracted by the flexi-scale curvelet transform were more discriminative than conventional methods, demonstrating the potential of our method as a diagnostic tool for abdomen diseases.

  13. Genetic Bee Colony (GBC) algorithm: A new gene selection method for microarray cancer classification.

    PubMed

    Alshamlan, Hala M; Badr, Ghada H; Alohali, Yousef A

    2015-06-01

    Naturally inspired evolutionary algorithms prove effectiveness when used for solving feature selection and classification problems. Artificial Bee Colony (ABC) is a relatively new swarm intelligence method. In this paper, we propose a new hybrid gene selection method, namely Genetic Bee Colony (GBC) algorithm. The proposed algorithm combines the used of a Genetic Algorithm (GA) along with Artificial Bee Colony (ABC) algorithm. The goal is to integrate the advantages of both algorithms. The proposed algorithm is applied to a microarray gene expression profile in order to select the most predictive and informative genes for cancer classification. In order to test the accuracy performance of the proposed algorithm, extensive experiments were conducted. Three binary microarray datasets are use, which include: colon, leukemia, and lung. In addition, another three multi-class microarray datasets are used, which are: SRBCT, lymphoma, and leukemia. Results of the GBC algorithm are compared with our recently proposed technique: mRMR when combined with the Artificial Bee Colony algorithm (mRMR-ABC). We also compared the combination of mRMR with GA (mRMR-GA) and Particle Swarm Optimization (mRMR-PSO) algorithms. In addition, we compared the GBC algorithm with other related algorithms that have been recently published in the literature, using all benchmark datasets. The GBC algorithm shows superior performance as it achieved the highest classification accuracy along with the lowest average number of selected genes. This proves that the GBC algorithm is a promising approach for solving the gene selection problem in both binary and multi-class cancer classification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Image processing meta-algorithm development via genetic manipulation of existing algorithm graphs

    NASA Astrophysics Data System (ADS)

    Schalkoff, Robert J.; Shaaban, Khaled M.

    1999-07-01

    Automatic algorithm generation for image processing applications is not a new idea, however previous work is either restricted to morphological operates or impractical. In this paper, we show recent research result in the development and use of meta-algorithms, i.e. algorithms which lead to new algorithms. Although the concept is generally applicable, the application domain in this work is restricted to image processing. The meta-algorithm concept described in this paper is based upon out work in dynamic algorithm. The paper first present the concept of dynamic algorithms which, on the basis of training and archived algorithmic experience embedded in an algorithm graph (AG), dynamically adjust the sequence of operations applied to the input image data. Each node in the tree-based representation of a dynamic algorithm with out degree greater than 2 is a decision node. At these nodes, the algorithm examines the input data and determines which path will most likely achieve the desired results. This is currently done using nearest-neighbor classification. The details of this implementation are shown. The constrained perturbation of existing algorithm graphs, coupled with a suitable search strategy, is one mechanism to achieve meta-algorithm an doffers rich potential for the discovery of new algorithms. In our work, a meta-algorithm autonomously generates new dynamic algorithm graphs via genetic recombination of existing algorithm graphs. The AG representation is well suited to this genetic-like perturbation, using a commonly- employed technique in artificial neural network synthesis, namely the blueprint representation of graphs. A number of exam. One of the principal limitations of our current approach is the need for significant human input in the learning phase. Efforts to overcome this limitation are discussed. Future research directions are indicated.

  15. A global optimization algorithm inspired in the behavior of selfish herds.

    PubMed

    Fausto, Fernando; Cuevas, Erik; Valdivia, Arturo; González, Adrián

    2017-10-01

    In this paper, a novel swarm optimization algorithm called the Selfish Herd Optimizer (SHO) is proposed for solving global optimization problems. SHO is based on the simulation of the widely observed selfish herd behavior manifested by individuals within a herd of animals subjected to some form of predation risk. In SHO, individuals emulate the predatory interactions between groups of prey and predators by two types of search agents: the members of a selfish herd (the prey) and a pack of hungry predators. Depending on their classification as either a prey or a predator, each individual is conducted by a set of unique evolutionary operators inspired by such prey-predator relationship. These unique traits allow SHO to improve the balance between exploration and exploitation without altering the population size. To illustrate the proficiency and robustness of the proposed method, it is compared to other well-known evolutionary optimization approaches such as Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Firefly Algorithm (FA), Differential Evolution (DE), Genetic Algorithms (GA), Crow Search Algorithm (CSA), Dragonfly Algorithm (DA), Moth-flame Optimization Algorithm (MOA) and Sine Cosine Algorithm (SCA). The comparison examines several standard benchmark functions, commonly considered within the literature of evolutionary algorithms. The experimental results show the remarkable performance of our proposed approach against those of the other compared methods, and as such SHO is proven to be an excellent alternative to solve global optimization problems. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Finite element analysis and genetic algorithm optimization design for the actuator placement on a large adaptive structure

    NASA Astrophysics Data System (ADS)

    Sheng, Lizeng

    The dissertation focuses on one of the major research needs in the area of adaptive/intelligent/smart structures, the development and application of finite element analysis and genetic algorithms for optimal design of large-scale adaptive structures. We first review some basic concepts in finite element method and genetic algorithms, along with the research on smart structures. Then we propose a solution methodology for solving a critical problem in the design of a next generation of large-scale adaptive structures---optimal placements of a large number of actuators to control thermal deformations. After briefly reviewing the three most frequently used general approaches to derive a finite element formulation, the dissertation presents techniques associated with general shell finite element analysis using flat triangular laminated composite elements. The element used here has three nodes and eighteen degrees of freedom and is obtained by combining a triangular membrane element and a triangular plate bending element. The element includes the coupling effect between membrane deformation and bending deformation. The membrane element is derived from the linear strain triangular element using Cook's transformation. The discrete Kirchhoff triangular (DKT) element is used as the plate bending element. For completeness, a complete derivation of the DKT is presented. Geometrically nonlinear finite element formulation is derived for the analysis of adaptive structures under the combined thermal and electrical loads. Next, we solve the optimization problems of placing a large number of piezoelectric actuators to control thermal distortions in a large mirror in the presence of four different thermal loads. We then extend this to a multi-objective optimization problem of determining only one set of piezoelectric actuator locations that can be used to control the deformation in the same mirror under the action of any one of the four thermal loads. A series of genetic algorithms, GA Version 1, 2 and 3, were developed to find the optimal locations of piezoelectric actuators from the order of 1021 ˜ 1056 candidate placements. Introducing a variable population approach, we improve the flexibility of selection operation in genetic algorithms. Incorporating mutation and hill climbing into micro-genetic algorithms, we are able to develop a more efficient genetic algorithm. Through extensive numerical experiments, we find that the design search space for the optimal placements of a large number of actuators is highly multi-modal and that the most distinct nature of genetic algorithms is their robustness. They give results that are random but with only a slight variability. The genetic algorithms can be used to get adequate solution using a limited number of evaluations. To get the highest quality solution, multiple runs including different random seed generators are necessary. The investigation time can be significantly reduced using a very coarse grain parallel computing. Overall, the methodology of using finite element analysis and genetic algorithm optimization provides a robust solution approach for the challenging problem of optimal placements of a large number of actuators in the design of next generation of adaptive structures.

  17. Selecting materialized views using random algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Lijuan; Hao, Zhongxiao; Liu, Chi

    2007-04-01

    The data warehouse is a repository of information collected from multiple possibly heterogeneous autonomous distributed databases. The information stored at the data warehouse is in form of views referred to as materialized views. The selection of the materialized views is one of the most important decisions in designing a data warehouse. Materialized views are stored in the data warehouse for the purpose of efficiently implementing on-line analytical processing queries. The first issue for the user to consider is query response time. So in this paper, we develop algorithms to select a set of views to materialize in data warehouse in order to minimize the total view maintenance cost under the constraint of a given query response time. We call it query_cost view_ selection problem. First, cost graph and cost model of query_cost view_ selection problem are presented. Second, the methods for selecting materialized views by using random algorithms are presented. The genetic algorithm is applied to the materialized views selection problem. But with the development of genetic process, the legal solution produced become more and more difficult, so a lot of solutions are eliminated and producing time of the solutions is lengthened in genetic algorithm. Therefore, improved algorithm has been presented in this paper, which is the combination of simulated annealing algorithm and genetic algorithm for the purpose of solving the query cost view selection problem. Finally, in order to test the function and efficiency of our algorithms experiment simulation is adopted. The experiments show that the given methods can provide near-optimal solutions in limited time and works better in practical cases. Randomized algorithms will become invaluable tools for data warehouse evolution.

  18. Ortho Image and DTM Generation with Intelligent Methods

    NASA Astrophysics Data System (ADS)

    Bagheri, H.; Sadeghian, S.

    2013-10-01

    Nowadays the artificial intelligent algorithms has considered in GIS and remote sensing. Genetic algorithm and artificial neural network are two intelligent methods that are used for optimizing of image processing programs such as edge extraction and etc. these algorithms are very useful for solving of complex program. In this paper, the ability and application of genetic algorithm and artificial neural network in geospatial production process like geometric modelling of satellite images for ortho photo generation and height interpolation in raster Digital Terrain Model production process is discussed. In first, the geometric potential of Ikonos-2 and Worldview-2 with rational functions, 2D & 3D polynomials were tested. Also comprehensive experiments have been carried out to evaluate the viability of the genetic algorithm for optimization of rational function, 2D & 3D polynomials. Considering the quality of Ground Control Points, the accuracy (RMSE) with genetic algorithm and 3D polynomials method for Ikonos-2 Geo image was 0.508 pixel sizes and the accuracy (RMSE) with GA algorithm and rational function method for Worldview-2 image was 0.930 pixel sizes. For more another optimization artificial intelligent methods, neural networks were used. With the use of perceptron network in Worldview-2 image, a result of 0.84 pixel sizes with 4 neurons in middle layer was gained. The final conclusion was that with artificial intelligent algorithms it is possible to optimize the existing models and have better results than usual ones. Finally the artificial intelligence methods, like genetic algorithms as well as neural networks, were examined on sample data for optimizing interpolation and for generating Digital Terrain Models. The results then were compared with existing conventional methods and it appeared that these methods have a high capacity in heights interpolation and that using these networks for interpolating and optimizing the weighting methods based on inverse distance leads to a high accurate estimation of heights.

  19. Enumeration and extension of non-equivalent deterministic update schedules in Boolean networks.

    PubMed

    Palma, Eduardo; Salinas, Lilian; Aracena, Julio

    2016-03-01

    Boolean networks (BNs) are commonly used to model genetic regulatory networks (GRNs). Due to the sensibility of the dynamical behavior to changes in the updating scheme (order in which the nodes of a network update their state values), it is increasingly common to use different updating rules in the modeling of GRNs to better capture an observed biological phenomenon and thus to obtain more realistic models.In Aracena et al. equivalence classes of deterministic update schedules in BNs, that yield exactly the same dynamical behavior of the network, were defined according to a certain label function on the arcs of the interaction digraph defined for each scheme. Thus, the interaction digraph so labeled (update digraphs) encode the non-equivalent schemes. We address the problem of enumerating all non-equivalent deterministic update schedules of a given BN. First, we show that it is an intractable problem in general. To solve it, we first construct an algorithm that determines the set of update digraphs of a BN. For that, we use divide and conquer methodology based on the structural characteristics of the interaction digraph. Next, for each update digraph we determine a scheme associated. This algorithm also works in the case where there is a partial knowledge about the relative order of the updating of the states of the nodes. We exhibit some examples of how the algorithm works on some GRNs published in the literature. An executable file of the UpdateLabel algorithm made in Java and the files with the outputs of the algorithms used with the GRNs are available at: www.inf.udec.cl/ ∼lilian/UDE/ CONTACT: lilisalinas@udec.cl Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Sensitivity Analysis of Genetic Algorithm Parameters for Optimal Groundwater Monitoring Network Design

    NASA Astrophysics Data System (ADS)

    Abdeh-Kolahchi, A.; Satish, M.; Datta, B.

    2004-05-01

    A state art groundwater monitoring network design is introduced. The method combines groundwater flow and transport results with optimization Genetic Algorithm (GA) to identify optimal monitoring well locations. Optimization theory uses different techniques to find a set of parameter values that minimize or maximize objective functions. The suggested groundwater optimal monitoring network design is based on the objective of maximizing the probability of tracking a transient contamination plume by determining sequential monitoring locations. The MODFLOW and MT3DMS models included as separate modules within the Groundwater Modeling System (GMS) are used to develop three dimensional groundwater flow and contamination transport simulation. The groundwater flow and contamination simulation results are introduced as input to the optimization model, using Genetic Algorithm (GA) to identify the groundwater optimal monitoring network design, based on several candidate monitoring locations. The groundwater monitoring network design model is used Genetic Algorithms with binary variables representing potential monitoring location. As the number of decision variables and constraints increase, the non-linearity of the objective function also increases which make difficulty to obtain optimal solutions. The genetic algorithm is an evolutionary global optimization technique, which is capable of finding the optimal solution for many complex problems. In this study, the GA approach capable of finding the global optimal solution to a groundwater monitoring network design problem involving 18.4X 1018 feasible solutions will be discussed. However, to ensure the efficiency of the solution process and global optimality of the solution obtained using GA, it is necessary that appropriate GA parameter values be specified. The sensitivity analysis of genetic algorithms parameters such as random number, crossover probability, mutation probability, and elitism are discussed for solution of monitoring network design.

  1. JavaGenes and Condor: Cycle-Scavenging Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Globus, Al; Langhirt, Eric; Livny, Miron; Ramamurthy, Ravishankar; Soloman, Marvin; Traugott, Steve

    2000-01-01

    A genetic algorithm code, JavaGenes, was written in Java and used to evolve pharmaceutical drug molecules and digital circuits. JavaGenes was run under the Condor cycle-scavenging batch system managing 100-170 desktop SGI workstations. Genetic algorithms mimic biological evolution by evolving solutions to problems using crossover and mutation. While most genetic algorithms evolve strings or trees, JavaGenes evolves graphs representing (currently) molecules and circuits. Java was chosen as the implementation language because the genetic algorithm requires random splitting and recombining of graphs, a complex data structure manipulation with ample opportunities for memory leaks, loose pointers, out-of-bound indices, and other hard to find bugs. Java garbage-collection memory management, lack of pointer arithmetic, and array-bounds index checking prevents these bugs from occurring, substantially reducing development time. While a run-time performance penalty must be paid, the only unacceptable performance we encountered was using standard Java serialization to checkpoint and restart the code. This was fixed by a two-day implementation of custom checkpointing. JavaGenes is minimally integrated with Condor; in other words, JavaGenes must do its own checkpointing and I/O redirection. A prototype Java-aware version of Condor was developed using standard Java serialization for checkpointing. For the prototype to be useful, standard Java serialization must be significantly optimized. JavaGenes is approximately 8700 lines of code and a few thousand JavaGenes jobs have been run. Most jobs ran for a few days. Results include proof that genetic algorithms can evolve directed and undirected graphs, development of a novel crossover operator for graphs, a paper in the journal Nanotechnology, and another paper in preparation.

  2. Incremental cost-effectiveness of algorithm-driven genetic testing versus no testing for Maturity Onset Diabetes of the Young (MODY) in Singapore.

    PubMed

    Nguyen, Hai Van; Finkelstein, Eric Andrew; Mital, Shweta; Gardner, Daphne Su-Lyn

    2017-11-01

    Offering genetic testing for Maturity Onset Diabetes of the Young (MODY) to all young patients with type 2 diabetes has been shown to be not cost-effective. This study tests whether a novel algorithm-driven genetic testing strategy for MODY is incrementally cost-effective relative to the setting of no testing. A decision tree was constructed to estimate the costs and effectiveness of the algorithm-driven MODY testing strategy and a strategy of no genetic testing over a 30-year time horizon from a payer's perspective. The algorithm uses glutamic acid decarboxylase (GAD) antibody testing (negative antibodies), age of onset of diabetes (<45 years) and body mass index (<25 kg/m 2 if diagnosed >30 years) to stratify the population of patients with diabetes into three subgroups, and testing for MODY only among the subgroup most likely to have the mutation. Singapore-specific costs and prevalence of MODY obtained from local studies and utility values sourced from the literature are used to populate the model. The algorithm-driven MODY testing strategy has an incremental cost-effectiveness ratio of US$93 663 per quality-adjusted life year relative to the no testing strategy. If the price of genetic testing falls from US$1050 to US$530 (a 50% decrease), it will become cost-effective. Our proposed algorithm-driven testing strategy for MODY is not yet cost-effective based on established benchmarks. However, as genetic testing prices continue to fall, this strategy is likely to become cost-effective in the near future. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Genetic Algorithms for Multiple-Choice Problems

    NASA Astrophysics Data System (ADS)

    Aickelin, Uwe

    2010-04-01

    This thesis investigates the use of problem-specific knowledge to enhance a genetic algorithm approach to multiple-choice optimisation problems.It shows that such information can significantly enhance performance, but that the choice of information and the way it is included are important factors for success.Two multiple-choice problems are considered.The first is constructing a feasible nurse roster that considers as many requests as possible.In the second problem, shops are allocated to locations in a mall subject to constraints and maximising the overall income.Genetic algorithms are chosen for their well-known robustness and ability to solve large and complex discrete optimisation problems.However, a survey of the literature reveals room for further research into generic ways to include constraints into a genetic algorithm framework.Hence, the main theme of this work is to balance feasibility and cost of solutions.In particular, co-operative co-evolution with hierarchical sub-populations, problem structure exploiting repair schemes and indirect genetic algorithms with self-adjusting decoder functions are identified as promising approaches.The research starts by applying standard genetic algorithms to the problems and explaining the failure of such approaches due to epistasis.To overcome this, problem-specific information is added in a variety of ways, some of which are designed to increase the number of feasible solutions found whilst others are intended to improve the quality of such solutions.As well as a theoretical discussion as to the underlying reasons for using each operator,extensive computational experiments are carried out on a variety of data.These show that the indirect approach relies less on problem structure and hence is easier to implement and superior in solution quality.

  4. A synthetic genetic edge detection program.

    PubMed

    Tabor, Jeffrey J; Salis, Howard M; Simpson, Zachary Booth; Chevalier, Aaron A; Levskaya, Anselm; Marcotte, Edward M; Voigt, Christopher A; Ellington, Andrew D

    2009-06-26

    Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E. coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks.

  5. A Synthetic Genetic Edge Detection Program

    PubMed Central

    Tabor, Jeffrey J.; Salis, Howard; Simpson, Zachary B.; Chevalier, Aaron A.; Levskaya, Anselm; Marcotte, Edward M.; Voigt, Christopher A.; Ellington, Andrew D.

    2009-01-01

    Summary Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E.coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks. PMID:19563759

  6. Constrained minimization of smooth functions using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    Moerder, Daniel D.; Pamadi, Bandu N.

    1994-01-01

    The use of genetic algorithms for minimization of differentiable functions that are subject to differentiable constraints is considered. A technique is demonstrated for converting the solution of the necessary conditions for a constrained minimum into an unconstrained function minimization. This technique is extended as a global constrained optimization algorithm. The theory is applied to calculating minimum-fuel ascent control settings for an energy state model of an aerospace plane.

  7. Optimal Integration of Departure and Arrivals in Terminal Airspace

    NASA Technical Reports Server (NTRS)

    Xue, Min; Zelinski, Shannon Jean

    2012-01-01

    Coordination of operations with spatially and temporally shared resources such as route segments, fixes, and runways improves the efficiency of terminal airspace management. Problems in this category include scheduling and routing, thus they are normally difficult to solve compared with pure scheduling problems. In order to reduce the computational time, a fast time algorithm formulation using a non-dominated sorting genetic algorithm (NSGA) was introduced in this work and applied to a test case based on existing literature. The experiment showed that new method can solve the whole problem in fast time instead of solving sub-problems sequentially with a window technique. The results showed a 60% or 406 second delay reduction was achieved by sharing departure fixes (more details on the comparison with MILP results will be presented in the final paper). Furthermore, the NSGA algorithm was applied to a problem in LAX terminal airspace, where interactions between 28% of LAX arrivals and 10% of LAX departures are resolved by spatial segregation, which may introduce unnecessary delays. In this work, spatial segregation, temporal segregation, and hybrid segregation were formulated using the new algorithm. Results showed that spatial and temporal segregation approaches achieved similar delay. Hybrid segregation introduced much less delay than the other two approaches. For a total of 9 interacting departures and arrivals, delay reduction varied from 4 minutes to 6.4 minutes corresponding flight time uncertainty from 0 to 60 seconds. Considering the amount of flights that could be affected, total annual savings with hybrid segregation would be significant.

  8. Real Time Optima Tracking Using Harvesting Models of the Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Baskaran, Subbiah; Noever, D.

    1999-01-01

    Tracking optima in real time propulsion control, particularly for non-stationary optimization problems is a challenging task. Several approaches have been put forward for such a study including the numerical method called the genetic algorithm. In brief, this approach is built upon Darwinian-style competition between numerical alternatives displayed in the form of binary strings, or by analogy to 'pseudogenes'. Breeding of improved solution is an often cited parallel to natural selection in.evolutionary or soft computing. In this report we present our results of applying a novel model of a genetic algorithm for tracking optima in propulsion engineering and in real time control. We specialize the algorithm to mission profiling and planning optimizations, both to select reduced propulsion needs through trajectory planning and to explore time or fuel conservation strategies.

  9. Study of genetic direct search algorithms for function optimization

    NASA Technical Reports Server (NTRS)

    Zeigler, B. P.

    1974-01-01

    The results are presented of a study to determine the performance of genetic direct search algorithms in solving function optimization problems arising in the optimal and adaptive control areas. The findings indicate that: (1) genetic algorithms can outperform standard algorithms in multimodal and/or noisy optimization situations, but suffer from lack of gradient exploitation facilities when gradient information can be utilized to guide the search. (2) For large populations, or low dimensional function spaces, mutation is a sufficient operator. However for small populations or high dimensional functions, crossover applied in about equal frequency with mutation is an optimum combination. (3) Complexity, in terms of storage space and running time, is significantly increased when population size is increased or the inversion operator, or the second level adaptation routine is added to the basic structure.

  10. An Adaptive Immune Genetic Algorithm for Edge Detection

    NASA Astrophysics Data System (ADS)

    Li, Ying; Bai, Bendu; Zhang, Yanning

    An adaptive immune genetic algorithm (AIGA) based on cost minimization technique method for edge detection is proposed. The proposed AIGA recommends the use of adaptive probabilities of crossover, mutation and immune operation, and a geometric annealing schedule in immune operator to realize the twin goals of maintaining diversity in the population and sustaining the fast convergence rate in solving the complex problems such as edge detection. Furthermore, AIGA can effectively exploit some prior knowledge and information of the local edge structure in the edge image to make vaccines, which results in much better local search ability of AIGA than that of the canonical genetic algorithm. Experimental results on gray-scale images show the proposed algorithm perform well in terms of quality of the final edge image, rate of convergence and robustness to noise.

  11. Experimental setup for evaluating an adaptive user interface for teleoperation control

    NASA Astrophysics Data System (ADS)

    Wijayasinghe, Indika B.; Peetha, Srikanth; Abubakar, Shamsudeen; Saadatzi, Mohammad Nasser; Cremer, Sven; Popa, Dan O.

    2017-05-01

    A vital part of human interactions with a machine is the control interface, which single-handedly could define the user satisfaction and the efficiency of performing a task. This paper elaborates the implementation of an experimental setup to study an adaptive algorithm that can help the user better tele-operate the robot. The formulation of the adaptive interface and associate learning algorithms are general enough to apply when the mapping between the user controls and the robot actuators is complex and/or ambiguous. The method uses a genetic algorithm to find the optimal parameters that produce the input-output mapping for teleoperation control. In this paper, we describe the experimental setup and associated results that was used to validate the adaptive interface to a differential drive robot from two different input devices; a joystick, and a Myo gesture control armband. Results show that after the learning phase, the interface converges to an intuitive mapping that can help even inexperienced users drive the system to a goal location.

  12. Convergence properties of simple genetic algorithms

    NASA Technical Reports Server (NTRS)

    Bethke, A. D.; Zeigler, B. P.; Strauss, D. M.

    1974-01-01

    The essential parameters determining the behaviour of genetic algorithms were investigated. Computer runs were made while systematically varying the parameter values. Results based on the progress curves obtained from these runs are presented along with results based on the variability of the population as the run progresses.

  13. A genetic algorithm approach in interface and surface structure optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jian

    The thesis is divided into two parts. In the first part a global optimization method is developed for the interface and surface structures optimization. Two prototype systems are chosen to be studied. One is Si[001] symmetric tilted grain boundaries and the other is Ag/Au induced Si(111) surface. It is found that Genetic Algorithm is very efficient in finding lowest energy structures in both cases. Not only existing structures in the experiments can be reproduced, but also many new structures can be predicted using Genetic Algorithm. Thus it is shown that Genetic Algorithm is a extremely powerful tool for the materialmore » structures predictions. The second part of the thesis is devoted to the explanation of an experimental observation of thermal radiation from three-dimensional tungsten photonic crystal structures. The experimental results seems astounding and confusing, yet the theoretical models in the paper revealed the physics insight behind the phenomena and can well reproduced the experimental results.« less

  14. Estimation of radiative and conductive properties of a semitransparent medium using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Braiek, A.; Adili, A.; Albouchi, F.; Karkri, M.; Ben Nasrallah, S.

    2016-06-01

    The aim of this work is to simultaneously identify the conductive and radiative parameters of a semitransparent sample using a photothermal method associated with an inverse problem. The identification of the conductive and radiative proprieties is performed by the minimization of an objective function that represents the errors between calculated temperature and measured signal. The calculated temperature is obtained from a theoretical model built with the thermal quadrupole formalism. Measurement is obtained in the rear face of the sample whose front face is excited by a crenel of heat flux. For identification procedure, a genetic algorithm is developed and used. The genetic algorithm is a useful tool in the simultaneous estimation of correlated or nearly correlated parameters, which can be a limiting factor for the gradient-based methods. The results of the identification procedure show the efficiency and the stability of the genetic algorithm to simultaneously estimate the conductive and radiative properties of clear glass.

  15. An application of CART algorithm in genetics: IGFs and cGH polymorphisms in Japanese quail

    NASA Astrophysics Data System (ADS)

    Kaplan, Selçuk

    2017-04-01

    The avian insulin-like growth factor-1 (IGFs) and avian growth hormone (cGH) genes are the most important genes that can affect bird performance traits because of its important function in growth and metabolism. Understanding the molecular genetic basis of variation in growth-related traits is of importance for continued improvement and increased rates of genetic gain. The objective of the present study was to identify polymorphisms of cGH and IGFs genes in Japanese quail using conventional least square method (LSM) and CART algorithm. Therefore, this study was aimed to demonstrate at determining the polymorphisms of two genes related growth characteristics via CART algorithm. A simulated data set was generated to analyze by adhering the results of some poultry genetic studies which it includes live weights at 5 weeks of age, 3 alleles and 6 genotypes of cGH and 2 alleles and 3 genotypes of IGFs. As a result, it has been determined that the CART algorithm has some advantages as for that LSM.

  16. Application of artificial intelligence to search ground-state geometry of clusters

    NASA Astrophysics Data System (ADS)

    Lemes, Maurício Ruv; Marim, L. R.; dal Pino, A.

    2002-08-01

    We introduce a global optimization procedure, the neural-assisted genetic algorithm (NAGA). It combines the power of an artificial neural network (ANN) with the versatility of the genetic algorithm. This method is suitable to solve optimization problems that depend on some kind of heuristics to limit the search space. If a reasonable amount of data is available, the ANN can ``understand'' the problem and provide the genetic algorithm with a selected population of elements that will speed up the search for the optimum solution. We tested the method in a search for the ground-state geometry of silicon clusters. We trained the ANN with information about the geometry and energetics of small silicon clusters. Next, the ANN learned how to restrict the configurational space for larger silicon clusters. For Si10 and Si20, we noticed that the NAGA is at least three times faster than the ``pure'' genetic algorithm. As the size of the cluster increases, it is expected that the gain in terms of time will increase as well.

  17. Application of genetic algorithms to focal mechanism determination

    NASA Astrophysics Data System (ADS)

    Kobayashi, Reiji; Nakanishi, Ichiro

    1994-04-01

    Genetic algorithms are a new class of methods for global optimization. They resemble Monte Carlo techniques, but search for solutions more efficiently than uniform Monte Carlo sampling. In the field of geophysics, genetic algorithms have recently been used to solve some non-linear inverse problems (e.g., earthquake location, waveform inversion, migration velocity estimation). We present an application of genetic algorithms to focal mechanism determination from first-motion polarities of P-waves and apply our method to two recent large events, the Kushiro-oki earthquake of January 15, 1993 and the SW Hokkaido (Japan Sea) earthquake of July 12, 1993. Initial solution and curvature information of the objective function that gradient methods need are not required in our approach. Moreover globally optimal solutions can be efficiently obtained. Calculation of polarities based on double-couple models is the most time-consuming part of the source mechanism determination. The amount of calculations required by the method designed in this study is much less than that of previous grid search methods.

  18. Optimized design on condensing tubes high-speed TIG welding technology magnetic control based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Lu, Lin; Chang, Yunlong; Li, Yingmin; Lu, Ming

    2013-05-01

    An orthogonal experiment was conducted by the means of multivariate nonlinear regression equation to adjust the influence of external transverse magnetic field and Ar flow rate on welding quality in the process of welding condenser pipe by high-speed argon tungsten-arc welding (TIG for short). The magnetic induction and flow rate of Ar gas were used as optimum variables, and tensile strength of weld was set to objective function on the base of genetic algorithm theory, and then an optimal design was conducted. According to the request of physical production, the optimum variables were restrained. The genetic algorithm in the MATLAB was used for computing. A comparison between optimum results and experiment parameters was made. The results showed that the optimum technologic parameters could be chosen by the means of genetic algorithm with the conditions of excessive optimum variables in the process of high-speed welding. And optimum technologic parameters of welding coincided with experiment results.

  19. Optimal sensor placement for spatial lattice structure based on genetic algorithms

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Gao, Wei-cheng; Sun, Yi; Xu, Min-jian

    2008-10-01

    Optimal sensor placement technique plays a key role in structural health monitoring of spatial lattice structures. This paper considers the problem of locating sensors on a spatial lattice structure with the aim of maximizing the data information so that structural dynamic behavior can be fully characterized. Based on the criterion of optimal sensor placement for modal test, an improved genetic algorithm is introduced to find the optimal placement of sensors. The modal strain energy (MSE) and the modal assurance criterion (MAC) have been taken as the fitness function, respectively, so that three placement designs were produced. The decimal two-dimension array coding method instead of binary coding method is proposed to code the solution. Forced mutation operator is introduced when the identical genes appear via the crossover procedure. A computational simulation of a 12-bay plain truss model has been implemented to demonstrate the feasibility of the three optimal algorithms above. The obtained optimal sensor placements using the improved genetic algorithm are compared with those gained by exiting genetic algorithm using the binary coding method. Further the comparison criterion based on the mean square error between the finite element method (FEM) mode shapes and the Guyan expansion mode shapes identified by data-driven stochastic subspace identification (SSI-DATA) method are employed to demonstrate the advantage of the different fitness function. The results showed that some innovations in genetic algorithm proposed in this paper can enlarge the genes storage and improve the convergence of the algorithm. More importantly, the three optimal sensor placement methods can all provide the reliable results and identify the vibration characteristics of the 12-bay plain truss model accurately.

  20. Neural system for heartbeats recognition using genetically integrated ensemble of classifiers.

    PubMed

    Osowski, Stanislaw; Siwek, Krzysztof; Siroic, Robert

    2011-03-01

    This paper presents the application of genetic algorithm for the integration of neural classifiers combined in the ensemble for the accurate recognition of heartbeat types on the basis of ECG registration. The idea presented in this paper is that using many classifiers arranged in the form of ensemble leads to the increased accuracy of the recognition. In such ensemble the important problem is the integration of all classifiers into one effective classification system. This paper proposes the use of genetic algorithm. It was shown that application of the genetic algorithm is very efficient and allows to reduce significantly the total error of heartbeat recognition. This was confirmed by the numerical experiments performed on the MIT BIH Arrhythmia Database. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Astrophysical data mining with GPU. A case study: Genetic classification of globular clusters

    NASA Astrophysics Data System (ADS)

    Cavuoti, S.; Garofalo, M.; Brescia, M.; Paolillo, M.; Pescape', A.; Longo, G.; Ventre, G.

    2014-01-01

    We present a multi-purpose genetic algorithm, designed and implemented with GPGPU/CUDA parallel computing technology. The model was derived from our CPU serial implementation, named GAME (Genetic Algorithm Model Experiment). It was successfully tested and validated on the detection of candidate Globular Clusters in deep, wide-field, single band HST images. The GPU version of GAME will be made available to the community by integrating it into the web application DAMEWARE (DAta Mining Web Application REsource, http://dame.dsf.unina.it/beta_info.html), a public data mining service specialized on massive astrophysical data. Since genetic algorithms are inherently parallel, the GPGPU computing paradigm leads to a speedup of a factor of 200× in the training phase with respect to the CPU based version.

  2. Interactive evolution of camouflage.

    PubMed

    Reynolds, Craig

    2011-01-01

    This article presents an abstract computation model of the evolution of camouflage in nature. The 2D model uses evolved textures for prey, a background texture representing the environment, and a visual predator. A human observer, acting as the predator, is shown a cohort of 10 evolved textures overlaid on the background texture. The observer clicks on the five most conspicuous prey to remove ("eat") them. These lower-fitness textures are removed from the population and replaced with newly bred textures. Biological morphogenesis is represented in this model by procedural texture synthesis. Nested expressions of generators and operators form a texture description language. Natural evolution is represented by genetic programming (GP), a variant of the genetic algorithm. GP searches the space of texture description programs for those that appear least conspicuous to the predator.

  3. Algorithmic Trading with Developmental and Linear Genetic Programming

    NASA Astrophysics Data System (ADS)

    Wilson, Garnett; Banzhaf, Wolfgang

    A developmental co-evolutionary genetic programming approach (PAM DGP) and a standard linear genetic programming (LGP) stock trading systemare applied to a number of stocks across market sectors. Both GP techniques were found to be robust to market fluctuations and reactive to opportunities associated with stock price rise and fall, with PAMDGP generating notably greater profit in some stock trend scenarios. Both algorithms were very accurate at buying to achieve profit and selling to protect assets, while exhibiting bothmoderate trading activity and the ability to maximize or minimize investment as appropriate. The content of the trading rules produced by both algorithms are also examined in relation to stock price trend scenarios.

  4. Supervised chaos genetic algorithm based state of charge determination for LiFePO4 batteries in electric vehicles

    NASA Astrophysics Data System (ADS)

    Shen, Yanqing

    2018-04-01

    LiFePO4 battery is developed rapidly in electric vehicle, whose safety and functional capabilities are influenced greatly by the evaluation of available cell capacity. Added with adaptive switch mechanism, this paper advances a supervised chaos genetic algorithm based state of charge determination method, where a combined state space model is employed to simulate battery dynamics. The method is validated by the experiment data collected from battery test system. Results indicate that the supervised chaos genetic algorithm based state of charge determination method shows great performance with less computation complexity and is little influenced by the unknown initial cell state.

  5. Artificial intelligence programming with LabVIEW: genetic algorithms for instrumentation control and optimization.

    PubMed

    Moore, J H

    1995-06-01

    A genetic algorithm for instrumentation control and optimization was developed using the LabVIEW graphical programming environment. The usefulness of this methodology for the optimization of a closed loop control instrument is demonstrated with minimal complexity and the programming is presented in detail to facilitate its adaptation to other LabVIEW applications. Closed loop control instruments have variety of applications in the biomedical sciences including the regulation of physiological processes such as blood pressure. The program presented here should provide a useful starting point for those wishing to incorporate genetic algorithm approaches to LabVIEW mediated optimization of closed loop control instruments.

  6. An Efficient Functional Test Generation Method For Processors Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Hudec, Ján; Gramatová, Elena

    2015-07-01

    The paper presents a new functional test generation method for processors testing based on genetic algorithms and evolutionary strategies. The tests are generated over an instruction set architecture and a processor description. Such functional tests belong to the software-oriented testing. Quality of the tests is evaluated by code coverage of the processor description using simulation. The presented test generation method uses VHDL models of processors and the professional simulator ModelSim. The rules, parameters and fitness functions were defined for various genetic algorithms used in automatic test generation. Functionality and effectiveness were evaluated using the RISC type processor DP32.

  7. Particle swarm optimization - Genetic algorithm (PSOGA) on linear transportation problem

    NASA Astrophysics Data System (ADS)

    Rahmalia, Dinita

    2017-08-01

    Linear Transportation Problem (LTP) is the case of constrained optimization where we want to minimize cost subject to the balance of the number of supply and the number of demand. The exact method such as northwest corner, vogel, russel, minimal cost have been applied at approaching optimal solution. In this paper, we use heurisitic like Particle Swarm Optimization (PSO) for solving linear transportation problem at any size of decision variable. In addition, we combine mutation operator of Genetic Algorithm (GA) at PSO to improve optimal solution. This method is called Particle Swarm Optimization - Genetic Algorithm (PSOGA). The simulations show that PSOGA can improve optimal solution resulted by PSO.

  8. Fast optimization of glide vehicle reentry trajectory based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Jia, Jun; Dong, Ruixing; Yuan, Xuejun; Wang, Chuangwei

    2018-02-01

    An optimization method of reentry trajectory based on genetic algorithm is presented to meet the need of reentry trajectory optimization for glide vehicle. The dynamic model for the glide vehicle during reentry period is established. Considering the constraints of heat flux, dynamic pressure, overload etc., the optimization of reentry trajectory is investigated by utilizing genetic algorithm. The simulation shows that the method presented by this paper is effective for the optimization of reentry trajectory of glide vehicle. The efficiency and speed of this method is comparative with the references. Optimization results meet all constraints, and the on-line fast optimization is potential by pre-processing the offline samples.

  9. On Directly Solving SCHRÖDINGER Equation for H+2 Ion by Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Saha, Rajendra; Bhattacharyya, S. P.

    Schrödinger equation (SE) is sought to be solved directly for the ground state of H+2 ion by invoking genetic algorithm (GA). In one approach the internuclear distance (R) is kept fixed, the corresponding electronic SE for H+2 is solved by GA at each R and the full potential energy curve (PEC) is constructed. The minimum of the PEC is then located giving Ve and Re. Alternatively, Ve and Re are located in a single run by allowing R to vary simultaneously while solving the electronic SE by genetic algorithm. The performance patterns of the two strategies are compared.

  10. Applying a Genetic Algorithm to Reconfigurable Hardware

    NASA Technical Reports Server (NTRS)

    Wells, B. Earl; Weir, John; Trevino, Luis; Patrick, Clint; Steincamp, Jim

    2004-01-01

    This paper investigates the feasibility of applying genetic algorithms to solve optimization problems that are implemented entirely in reconfgurable hardware. The paper highlights the pe$ormance/design space trade-offs that must be understood to effectively implement a standard genetic algorithm within a modem Field Programmable Gate Array, FPGA, reconfgurable hardware environment and presents a case-study where this stochastic search technique is applied to standard test-case problems taken from the technical literature. In this research, the targeted FPGA-based platform and high-level design environment was the Starbridge Hypercomputing platform, which incorporates multiple Xilinx Virtex II FPGAs, and the Viva TM graphical hardware description language.

  11. Mobile transporter path planning

    NASA Technical Reports Server (NTRS)

    Baffes, Paul; Wang, Lui

    1990-01-01

    The use of a genetic algorithm (GA) for solving the mobile transporter path planning problem is investigated. The mobile transporter is a traveling robotic vehicle proposed for the space station which must be able to reach any point of the structure autonomously. Elements of the genetic algorithm are explored in both a theoretical and experimental sense. Specifically, double crossover, greedy crossover, and tournament selection techniques are examined. Additionally, the use of local optimization techniques working in concert with the GA are also explored. Recent developments in genetic algorithm theory are shown to be particularly effective in a path planning problem domain, though problem areas can be cited which require more research.

  12. Genetic algorithms and their use in Geophysical Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Paul B.

    1999-04-01

    Genetic algorithms (GAs), global optimization methods that mimic Darwinian evolution are well suited to the nonlinear inverse problems of geophysics. A standard genetic algorithm selects the best or ''fittest'' models from a ''population'' and then applies operators such as crossover and mutation in order to combine the most successful characteristics of each model and produce fitter models. More sophisticated operators have been developed, but the standard GA usually provides a robust and efficient search. Although the choice of parameter settings such as crossover and mutation rate may depend largely on the type of problem being solved, numerous results show thatmore » certain parameter settings produce optimal performance for a wide range of problems and difficulties. In particular, a low (about half of the inverse of the population size) mutation rate is crucial for optimal results, but the choice of crossover method and rate do not seem to affect performance appreciably. Optimal efficiency is usually achieved with smaller (< 50) populations. Lastly, tournament selection appears to be the best choice of selection methods due to its simplicity and its autoscaling properties. However, if a proportional selection method is used such as roulette wheel selection, fitness scaling is a necessity, and a high scaling factor (> 2.0) should be used for the best performance. Three case studies are presented in which genetic algorithms are used to invert for crustal parameters. The first is an inversion for basement depth at Yucca mountain using gravity data, the second an inversion for velocity structure in the crust of the south island of New Zealand using receiver functions derived from teleseismic events, and the third is a similar receiver function inversion for crustal velocities beneath the Mendocino Triple Junction region of Northern California. The inversions demonstrate that genetic algorithms are effective in solving problems with reasonably large numbers of free parameters and with computationally expensive objective function calculations. More sophisticated techniques are presented for special problems. Niching and island model algorithms are introduced as methods to find multiple, distinct solutions to the nonunique problems that are typically seen in geophysics. Finally, hybrid algorithms are investigated as a way to improve the efficiency of the standard genetic algorithm.« less

  13. Genetic algorithms and their use in geophysical problems

    NASA Astrophysics Data System (ADS)

    Parker, Paul Bradley

    Genetic algorithms (GAs), global optimization methods that mimic Darwinian evolution are well suited to the nonlinear inverse problems of geophysics. A standard genetic algorithm selects the best or "fittest" models from a "population" and then applies operators such as crossover and mutation in order to combine the most successful characteristics of each model and produce fitter models. More sophisticated operators have been developed, but the standard GA usually provides a robust and efficient search. Although the choice of parameter settings such as crossover and mutation rate may depend largely on the type of problem being solved, numerous results show that certain parameter settings produce optimal performance for a wide range of problems and difficulties. In particular, a low (about half of the inverse of the population size) mutation rate is crucial for optimal results, but the choice of crossover method and rate do not seem to affect performance appreciably. Also, optimal efficiency is usually achieved with smaller (<50) populations. Lastly, tournament selection appears to be the best choice of selection methods due to its simplicity and its autoscaling properties. However, if a proportional selection method is used such as roulette wheel selection, fitness scaling is a necessity, and a high scaling factor (>2.0) should be used for the best performance. Three case studies are presented in which genetic algorithms are used to invert for crustal parameters. The first is an inversion for basement depth at Yucca mountain using gravity data, the second an inversion for velocity structure in the crust of the south island of New Zealand using receiver functions derived from teleseismic events, and the third is a similar receiver function inversion for crustal velocities beneath the Mendocino Triple Junction region of Northern California. The inversions demonstrate that genetic algorithms are effective in solving problems with reasonably large numbers of free parameters and with computationally expensive objective function calculations. More sophisticated techniques are presented for special problems. Niching and island model algorithms are introduced as methods to find multiple, distinct solutions to the nonunique problems that are typically seen in geophysics. Finally, hybrid algorithms are investigated as a way to improve the efficiency of the standard genetic algorithm.

  14. Using Genetic Algorithm and MODFLOW to Characterize Aquifer System of Northwest Florida

    EPA Science Inventory

    By integrating Genetic Algorithm and MODFLOW2005, an optimizing tool is developed to characterize the aquifer system of Region II, Northwest Florida. The history and the newest available observation data of the aquifer system is fitted automatically by using the numerical model c...

  15. Longest jobs first algorithm in solving job shop scheduling using adaptive genetic algorithm (GA)

    NASA Astrophysics Data System (ADS)

    Alizadeh Sahzabi, Vahid; Karimi, Iman; Alizadeh Sahzabi, Navid; Mamaani Barnaghi, Peiman

    2012-01-01

    In this paper, genetic algorithm was used to solve job shop scheduling problems. One example discussed in JSSP (Job Shop Scheduling Problem) and I described how we can solve such these problems by genetic algorithm. The goal in JSSP is to gain the shortest process time. Furthermore I proposed a method to obtain best performance on performing all jobs in shortest time. The method mainly, is according to Genetic algorithm (GA) and crossing over between parents always follows the rule which the longest process is at the first in the job queue. In the other word chromosomes is suggested to sorts based on the longest processes to shortest i.e. "longest job first" says firstly look which machine contains most processing time during its performing all its jobs and that is the bottleneck. Secondly, start sort those jobs which are belonging to that specific machine descending. Based on the achieved results," longest jobs first" is the optimized status in job shop scheduling problems. In our results the accuracy would grow up to 94.7% for total processing time and the method improved 4% the accuracy of performing all jobs in the presented example.

  16. Efficient computation of the joint probability of multiple inherited risk alleles from pedigree data.

    PubMed

    Madsen, Thomas; Braun, Danielle; Peng, Gang; Parmigiani, Giovanni; Trippa, Lorenzo

    2018-06-25

    The Elston-Stewart peeling algorithm enables estimation of an individual's probability of harboring germline risk alleles based on pedigree data, and serves as the computational backbone of important genetic counseling tools. However, it remains limited to the analysis of risk alleles at a small number of genetic loci because its computing time grows exponentially with the number of loci considered. We propose a novel, approximate version of this algorithm, dubbed the peeling and paring algorithm, which scales polynomially in the number of loci. This allows extending peeling-based models to include many genetic loci. The algorithm creates a trade-off between accuracy and speed, and allows the user to control this trade-off. We provide exact bounds on the approximation error and evaluate it in realistic simulations. Results show that the loss of accuracy due to the approximation is negligible in important applications. This algorithm will improve genetic counseling tools by increasing the number of pathogenic risk alleles that can be addressed. To illustrate we create an extended five genes version of BRCAPRO, a widely used model for estimating the carrier probabilities of BRCA1 and BRCA2 risk alleles and assess its computational properties. © 2018 WILEY PERIODICALS, INC.

  17. Optimization of beam orientation in radiotherapy using planar geometry

    NASA Astrophysics Data System (ADS)

    Haas, O. C. L.; Burnham, K. J.; Mills, J. A.

    1998-08-01

    This paper proposes a new geometrical formulation of the coplanar beam orientation problem combined with a hybrid multiobjective genetic algorithm. The approach is demonstrated by optimizing the beam orientation in two dimensions, with the objectives being formulated using planar geometry. The traditional formulation of the objectives associated with the organs at risk has been modified to account for the use of complex dose delivery techniques such as beam intensity modulation. The new algorithm attempts to replicate the approach of a treatment planner whilst reducing the amount of computation required. Hybrid genetic search operators have been developed to improve the performance of the genetic algorithm by exploiting problem-specific features. The multiobjective genetic algorithm is formulated around the concept of Pareto optimality which enables the algorithm to search in parallel for different objectives. When the approach is applied without constraining the number of beams, the solution produces an indication of the minimum number of beams required. It is also possible to obtain non-dominated solutions for various numbers of beams, thereby giving the clinicians a choice in terms of the number of beams as well as in the orientation of these beams.

  18. Distributed query plan generation using multiobjective genetic algorithm.

    PubMed

    Panicker, Shina; Kumar, T V Vijay

    2014-01-01

    A distributed query processing strategy, which is a key performance determinant in accessing distributed databases, aims to minimize the total query processing cost. One way to achieve this is by generating efficient distributed query plans that involve fewer sites for processing a query. In the case of distributed relational databases, the number of possible query plans increases exponentially with respect to the number of relations accessed by the query and the number of sites where these relations reside. Consequently, computing optimal distributed query plans becomes a complex problem. This distributed query plan generation (DQPG) problem has already been addressed using single objective genetic algorithm, where the objective is to minimize the total query processing cost comprising the local processing cost (LPC) and the site-to-site communication cost (CC). In this paper, this DQPG problem is formulated and solved as a biobjective optimization problem with the two objectives being minimize total LPC and minimize total CC. These objectives are simultaneously optimized using a multiobjective genetic algorithm NSGA-II. Experimental comparison of the proposed NSGA-II based DQPG algorithm with the single objective genetic algorithm shows that the former performs comparatively better and converges quickly towards optimal solutions for an observed crossover and mutation probability.

  19. Acoustic Impedance Inversion of Seismic Data Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Eladj, Said; Djarfour, Noureddine; Ferahtia, Djalal; Ouadfeul, Sid-Ali

    2013-04-01

    The inversion of seismic data can be used to constrain estimates of the Earth's acoustic impedance structure. This kind of problem is usually known to be non-linear, high-dimensional, with a complex search space which may be riddled with many local minima, and results in irregular objective functions. We investigate here the performance and the application of a genetic algorithm, in the inversion of seismic data. The proposed algorithm has the advantage of being easily implemented without getting stuck in local minima. The effects of population size, Elitism strategy, uniform cross-over and lower mutation are examined. The optimum solution parameters and performance were decided as a function of the testing error convergence with respect to the generation number. To calculate the fitness function, we used L2 norm of the sample-to-sample difference between the reference and the inverted trace. The cross-over probability is of 0.9-0.95 and mutation has been tested at 0.01 probability. The application of such a genetic algorithm to synthetic data shows that the inverted acoustic impedance section was efficient. Keywords: Seismic, Inversion, acoustic impedance, genetic algorithm, fitness functions, cross-over, mutation.

  20. Distributed Query Plan Generation Using Multiobjective Genetic Algorithm

    PubMed Central

    Panicker, Shina; Vijay Kumar, T. V.

    2014-01-01

    A distributed query processing strategy, which is a key performance determinant in accessing distributed databases, aims to minimize the total query processing cost. One way to achieve this is by generating efficient distributed query plans that involve fewer sites for processing a query. In the case of distributed relational databases, the number of possible query plans increases exponentially with respect to the number of relations accessed by the query and the number of sites where these relations reside. Consequently, computing optimal distributed query plans becomes a complex problem. This distributed query plan generation (DQPG) problem has already been addressed using single objective genetic algorithm, where the objective is to minimize the total query processing cost comprising the local processing cost (LPC) and the site-to-site communication cost (CC). In this paper, this DQPG problem is formulated and solved as a biobjective optimization problem with the two objectives being minimize total LPC and minimize total CC. These objectives are simultaneously optimized using a multiobjective genetic algorithm NSGA-II. Experimental comparison of the proposed NSGA-II based DQPG algorithm with the single objective genetic algorithm shows that the former performs comparatively better and converges quickly towards optimal solutions for an observed crossover and mutation probability. PMID:24963513

  1. Genetic algorithm enhanced by machine learning in dynamic aperture optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yongjun; Cheng, Weixing; Yu, Li Hua

    With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given “elite” status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitnessmore » of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. Furthermore, the machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.« less

  2. Genetic algorithm enhanced by machine learning in dynamic aperture optimization

    NASA Astrophysics Data System (ADS)

    Li, Yongjun; Cheng, Weixing; Yu, Li Hua; Rainer, Robert

    2018-05-01

    With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given "elite" status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitness of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. The machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.

  3. Genetic algorithm enhanced by machine learning in dynamic aperture optimization

    DOE PAGES

    Li, Yongjun; Cheng, Weixing; Yu, Li Hua; ...

    2018-05-29

    With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given “elite” status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitnessmore » of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. Furthermore, the machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.« less

  4. Hybrid algorithms for fuzzy reverse supply chain network design.

    PubMed

    Che, Z H; Chiang, Tzu-An; Kuo, Y C; Cui, Zhihua

    2014-01-01

    In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods.

  5. Hybrid Algorithms for Fuzzy Reverse Supply Chain Network Design

    PubMed Central

    Che, Z. H.; Chiang, Tzu-An; Kuo, Y. C.

    2014-01-01

    In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods. PMID:24892057

  6. An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks.

    PubMed

    Yoon, Yourim; Kim, Yong-Hyuk

    2013-10-01

    Sensor networks have a lot of applications such as battlefield surveillance, environmental monitoring, and industrial diagnostics. Coverage is one of the most important performance metrics for sensor networks since it reflects how well a sensor field is monitored. In this paper, we introduce the maximum coverage deployment problem in wireless sensor networks and analyze the properties of the problem and its solution space. Random deployment is the simplest way to deploy sensor nodes but may cause unbalanced deployment and therefore, we need a more intelligent way for sensor deployment. We found that the phenotype space of the problem is a quotient space of the genotype space in a mathematical view. Based on this property, we propose an efficient genetic algorithm using a novel normalization method. A Monte Carlo method is adopted to design an efficient evaluation function, and its computation time is decreased without loss of solution quality using a method that starts from a small number of random samples and gradually increases the number for subsequent generations. The proposed genetic algorithms could be further improved by combining with a well-designed local search. The performance of the proposed genetic algorithm is shown by a comparative experimental study. When compared with random deployment and existing methods, our genetic algorithm was not only about twice faster, but also showed significant performance improvement in quality.

  7. Comparison of Genetic Algorithm and Hill Climbing for Shortest Path Optimization Mapping

    NASA Astrophysics Data System (ADS)

    Fronita, Mona; Gernowo, Rahmat; Gunawan, Vincencius

    2018-02-01

    Traveling Salesman Problem (TSP) is an optimization to find the shortest path to reach several destinations in one trip without passing through the same city and back again to the early departure city, the process is applied to the delivery systems. This comparison is done using two methods, namely optimization genetic algorithm and hill climbing. Hill Climbing works by directly selecting a new path that is exchanged with the neighbour's to get the track distance smaller than the previous track, without testing. Genetic algorithms depend on the input parameters, they are the number of population, the probability of crossover, mutation probability and the number of generations. To simplify the process of determining the shortest path supported by the development of software that uses the google map API. Tests carried out as much as 20 times with the number of city 8, 16, 24 and 32 to see which method is optimal in terms of distance and time computation. Based on experiments conducted with a number of cities 3, 4, 5 and 6 producing the same value and optimal distance for the genetic algorithm and hill climbing, the value of this distance begins to differ with the number of city 7. The overall results shows that these tests, hill climbing are more optimal to number of small cities and the number of cities over 30 optimized using genetic algorithms.

  8. Parallel computing of physical maps--a comparative study in SIMD and MIMD parallelism.

    PubMed

    Bhandarkar, S M; Chirravuri, S; Arnold, J

    1996-01-01

    Ordering clones from a genomic library into physical maps of whole chromosomes presents a central computational problem in genetics. Chromosome reconstruction via clone ordering is usually isomorphic to the NP-complete Optimal Linear Arrangement problem. Parallel SIMD and MIMD algorithms for simulated annealing based on Markov chain distribution are proposed and applied to the problem of chromosome reconstruction via clone ordering. Perturbation methods and problem-specific annealing heuristics are proposed and described. The SIMD algorithms are implemented on a 2048 processor MasPar MP-2 system which is an SIMD 2-D toroidal mesh architecture whereas the MIMD algorithms are implemented on an 8 processor Intel iPSC/860 which is an MIMD hypercube architecture. A comparative analysis of the various SIMD and MIMD algorithms is presented in which the convergence, speedup, and scalability characteristics of the various algorithms are analyzed and discussed. On a fine-grained, massively parallel SIMD architecture with a low synchronization overhead such as the MasPar MP-2, a parallel simulated annealing algorithm based on multiple periodically interacting searches performs the best. For a coarse-grained MIMD architecture with high synchronization overhead such as the Intel iPSC/860, a parallel simulated annealing algorithm based on multiple independent searches yields the best results. In either case, distribution of clonal data across multiple processors is shown to exacerbate the tendency of the parallel simulated annealing algorithm to get trapped in a local optimum.

  9. Weather prediction using a genetic memory

    NASA Technical Reports Server (NTRS)

    Rogers, David

    1990-01-01

    Kanaerva's sparse distributed memory (SDM) is an associative memory model based on the mathematical properties of high dimensional binary address spaces. Holland's genetic algorithms are a search technique for high dimensional spaces inspired by evolutional processes of DNA. Genetic Memory is a hybrid of the above two systems, in which the memory uses a genetic algorithm to dynamically reconfigure its physical storage locations to reflect correlations between the stored addresses and data. This architecture is designed to maximize the ability of the system to scale-up to handle real world problems.

  10. SEURAT: Visual analytics for the integrated analysis of microarray data

    PubMed Central

    2010-01-01

    Background In translational cancer research, gene expression data is collected together with clinical data and genomic data arising from other chip based high throughput technologies. Software tools for the joint analysis of such high dimensional data sets together with clinical data are required. Results We have developed an open source software tool which provides interactive visualization capability for the integrated analysis of high-dimensional gene expression data together with associated clinical data, array CGH data and SNP array data. The different data types are organized by a comprehensive data manager. Interactive tools are provided for all graphics: heatmaps, dendrograms, barcharts, histograms, eventcharts and a chromosome browser, which displays genetic variations along the genome. All graphics are dynamic and fully linked so that any object selected in a graphic will be highlighted in all other graphics. For exploratory data analysis the software provides unsupervised data analytics like clustering, seriation algorithms and biclustering algorithms. Conclusions The SEURAT software meets the growing needs of researchers to perform joint analysis of gene expression, genomical and clinical data. PMID:20525257

  11. MorphoGraphX: A platform for quantifying morphogenesis in 4D

    PubMed Central

    Barbier de Reuille, Pierre; Routier-Kierzkowska, Anne-Lise; Kierzkowski, Daniel; Bassel, George W; Schüpbach, Thierry; Tauriello, Gerardo; Bajpai, Namrata; Strauss, Sören; Weber, Alain; Kiss, Annamaria; Burian, Agata; Hofhuis, Hugo; Sapala, Aleksandra; Lipowczan, Marcin; Heimlicher, Maria B; Robinson, Sarah; Bayer, Emmanuelle M; Basler, Konrad; Koumoutsakos, Petros; Roeder, Adrienne HK; Aegerter-Wilmsen, Tinri; Nakayama, Naomi; Tsiantis, Miltos; Hay, Angela; Kwiatkowska, Dorota; Xenarios, Ioannis; Kuhlemeier, Cris; Smith, Richard S

    2015-01-01

    Morphogenesis emerges from complex multiscale interactions between genetic and mechanical processes. To understand these processes, the evolution of cell shape, proliferation and gene expression must be quantified. This quantification is usually performed either in full 3D, which is computationally expensive and technically challenging, or on 2D planar projections, which introduces geometrical artifacts on highly curved organs. Here we present MorphoGraphX (www.MorphoGraphX.org), a software that bridges this gap by working directly with curved surface images extracted from 3D data. In addition to traditional 3D image analysis, we have developed algorithms to operate on curved surfaces, such as cell segmentation, lineage tracking and fluorescence signal quantification. The software's modular design makes it easy to include existing libraries, or to implement new algorithms. Cell geometries extracted with MorphoGraphX can be exported and used as templates for simulation models, providing a powerful platform to investigate the interactions between shape, genes and growth. DOI: http://dx.doi.org/10.7554/eLife.05864.001 PMID:25946108

  12. iNJclust: Iterative Neighbor-Joining Tree Clustering Framework for Inferring Population Structure.

    PubMed

    Limpiti, Tulaya; Amornbunchornvej, Chainarong; Intarapanich, Apichart; Assawamakin, Anunchai; Tongsima, Sissades

    2014-01-01

    Understanding genetic differences among populations is one of the most important issues in population genetics. Genetic variations, e.g., single nucleotide polymorphisms, are used to characterize commonality and difference of individuals from various populations. This paper presents an efficient graph-based clustering framework which operates iteratively on the Neighbor-Joining (NJ) tree called the iNJclust algorithm. The framework uses well-known genetic measurements, namely the allele-sharing distance, the neighbor-joining tree, and the fixation index. The behavior of the fixation index is utilized in the algorithm's stopping criterion. The algorithm provides an estimated number of populations, individual assignments, and relationships between populations as outputs. The clustering result is reported in the form of a binary tree, whose terminal nodes represent the final inferred populations and the tree structure preserves the genetic relationships among them. The clustering performance and the robustness of the proposed algorithm are tested extensively using simulated and real data sets from bovine, sheep, and human populations. The result indicates that the number of populations within each data set is reasonably estimated, the individual assignment is robust, and the structure of the inferred population tree corresponds to the intrinsic relationships among populations within the data.

  13. Efficient experimental design of high-fidelity three-qubit quantum gates via genetic programming

    NASA Astrophysics Data System (ADS)

    Devra, Amit; Prabhu, Prithviraj; Singh, Harpreet; Arvind; Dorai, Kavita

    2018-03-01

    We have designed efficient quantum circuits for the three-qubit Toffoli (controlled-controlled-NOT) and the Fredkin (controlled-SWAP) gate, optimized via genetic programming methods. The gates thus obtained were experimentally implemented on a three-qubit NMR quantum information processor, with a high fidelity. Toffoli and Fredkin gates in conjunction with the single-qubit Hadamard gates form a universal gate set for quantum computing and are an essential component of several quantum algorithms. Genetic algorithms are stochastic search algorithms based on the logic of natural selection and biological genetics and have been widely used for quantum information processing applications. We devised a new selection mechanism within the genetic algorithm framework to select individuals from a population. We call this mechanism the "Luck-Choose" mechanism and were able to achieve faster convergence to a solution using this mechanism, as compared to existing selection mechanisms. The optimization was performed under the constraint that the experimentally implemented pulses are of short duration and can be implemented with high fidelity. We demonstrate the advantage of our pulse sequences by comparing our results with existing experimental schemes and other numerical optimization methods.

  14. Application of Genetic Algorithm for Discovery of Core Effective Formulae in TCM Clinical Data

    PubMed Central

    Yang, Ming; Poon, Josiah; Wang, Shaomo; Jiao, Lijing; Poon, Simon; Cui, Lizhi; Chen, Peiqi; Sze, Daniel Man-Yuen; Xu, Ling

    2013-01-01

    Research on core and effective formulae (CEF) does not only summarize traditional Chinese medicine (TCM) treatment experience, it also helps to reveal the underlying knowledge in the formulation of a TCM prescription. In this paper, CEF discovery from tumor clinical data is discussed. The concepts of confidence, support, and effectiveness of the CEF are defined. Genetic algorithm (GA) is applied to find the CEF from a lung cancer dataset with 595 records from 161 patients. The results had 9 CEF with positive fitness values with 15 distinct herbs. The CEF have all had relative high average confidence and support. A herb-herb network was constructed and it shows that all the herbs in CEF are core herbs. The dataset was divided into CEF group and non-CEF group. The effective proportions of former group are significantly greater than those of latter group. A Synergy index (SI) was defined to evaluate the interaction between two herbs. There were 4 pairs of herbs with high SI values to indicate the synergy between the herbs. All the results agreed with the TCM theory, which demonstrates the feasibility of our approach. PMID:24288577

  15. Optimisation of Ferrochrome Addition Using Multi-Objective Evolutionary and Genetic Algorithms for Stainless Steel Making via AOD Converter

    NASA Astrophysics Data System (ADS)

    Behera, Kishore Kumar; Pal, Snehanshu

    2018-03-01

    This paper describes a new approach towards optimum utilisation of ferrochrome added during stainless steel making in AOD converter. The objective of optimisation is to enhance end blow chromium content of steel and reduce the ferrochrome addition during refining. By developing a thermodynamic based mathematical model, a study has been conducted to compute the optimum trade-off between ferrochrome addition and end blow chromium content of stainless steel using a predator prey genetic algorithm through training of 100 dataset considering different input and output variables such as oxygen, argon, nitrogen blowing rate, duration of blowing, initial bath temperature, chromium and carbon content, weight of ferrochrome added during refining. Optimisation is performed within constrained imposed on the input parameters whose values fall within certain ranges. The analysis of pareto fronts is observed to generate a set of feasible optimal solution between the two conflicting objectives that provides an effective guideline for better ferrochrome utilisation. It is found out that after a certain critical range, further addition of ferrochrome does not affect the chromium percentage of steel. Single variable response analysis is performed to study the variation and interaction of all individual input parameters on output variables.

  16. In silico modelling of directed evolution: Implications for experimental design and stepwise evolution.

    PubMed

    Wedge, David C; Rowe, William; Kell, Douglas B; Knowles, Joshua

    2009-03-07

    We model the process of directed evolution (DE) in silico using genetic algorithms. Making use of the NK fitness landscape model, we analyse the effects of mutation rate, crossover and selection pressure on the performance of DE. A range of values of K, the epistatic interaction of the landscape, are considered, and high- and low-throughput modes of evolution are compared. Our findings suggest that for runs of or around ten generations' duration-as is typical in DE-there is little difference between the way in which DE needs to be configured in the high- and low-throughput regimes, nor across different degrees of landscape epistasis. In all cases, a high selection pressure (but not an extreme one) combined with a moderately high mutation rate works best, while crossover provides some benefit but only on the less rugged landscapes. These genetic algorithms were also compared with a "model-based approach" from the literature, which uses sequential fixing of the problem parameters based on fitting a linear model. Overall, we find that purely evolutionary techniques fare better than do model-based approaches across all but the smoothest landscapes.

  17. Pd n Ag (4-n) and Pd n Pt (4-n) clusters on MgO (100): a density functional surface genetic algorithm investigation

    DOE PAGES

    Heard, Christopher J.; Heiles, Sven; Vajda, Stefan; ...

    2014-08-07

    We employed the novel surface mode of the Birmingham Cluster Genetic Algorithm (S-BCGA) for the global optimisation of noble metal tetramers upon an MgO(100) substrate at the GGA-DFT level of theory. The effect of element identity and alloying in surface-bound neutral subnanometre clusters is determined by energetic comparison between all compositions of Pd nAg (4-n) and Pd nPt (4-n). And while the binding strengths to the surface increase in the order Pt > Pd > Ag, the excess energy profiles suggest a preference for mixed clusters for both cases. The binding of CO is also modelled, showing that the adsorptionmore » site can be predicted solely by electrophilicity. Comparison to CO binding on a single metal atom shows a reversal of the 5s-d activation process for clusters, weakening the cluster surface interaction on CO adsorption. Charge localisation determines homotop, CO binding and surface site preferences. Furthermore, the electronic behaviour, which is intermediate between molecular and metallic particles allows for tunable features in the subnanometre size range.« less

  18. Instruction-matrix-based genetic programming.

    PubMed

    Li, Gang; Wang, Jin Feng; Lee, Kin Hong; Leung, Kwong-Sak

    2008-08-01

    In genetic programming (GP), evolving tree nodes separately would reduce the huge solution space. However, tree nodes are highly interdependent with respect to their fitness. In this paper, we propose a new GP framework, namely, instruction-matrix (IM)-based GP (IMGP), to handle their interactions. IMGP maintains an IM to evolve tree nodes and subtrees separately. IMGP extracts program trees from an IM and updates the IM with the information of the extracted program trees. As the IM actually keeps most of the information of the schemata of GP and evolves the schemata directly, IMGP is effective and efficient. Our experimental results on benchmark problems have verified that IMGP is not only better than those of canonical GP in terms of the qualities of the solutions and the number of program evaluations, but they are also better than some of the related GP algorithms. IMGP can also be used to evolve programs for classification problems. The classifiers obtained have higher classification accuracies than four other GP classification algorithms on four benchmark classification problems. The testing errors are also comparable to or better than those obtained with well-known classifiers. Furthermore, an extended version, called condition matrix for rule learning, has been used successfully to handle multiclass classification problems.

  19. On the suitability of different representations of solid catalysts for combinatorial library design by genetic algorithms.

    PubMed

    Gobin, Oliver C; Schüth, Ferdi

    2008-01-01

    Genetic algorithms are widely used to solve and optimize combinatorial problems and are more often applied for library design in combinatorial chemistry. Because of their flexibility, however, their implementation can be challenging. In this study, the influence of the representation of solid catalysts on the performance of genetic algorithms was systematically investigated on the basis of a new, constrained, multiobjective, combinatorial test problem with properties common to problems in combinatorial materials science. Constraints were satisfied by penalty functions, repair algorithms, or special representations. The tests were performed using three state-of-the-art evolutionary multiobjective algorithms by performing 100 optimization runs for each algorithm and test case. Experimental data obtained during the optimization of a noble metal-free solid catalyst system active in the selective catalytic reduction of nitric oxide with propene was used to build up a predictive model to validate the results of the theoretical test problem. A significant influence of the representation on the optimization performance was observed. Binary encodings were found to be the preferred encoding in most of the cases, and depending on the experimental test unit, repair algorithms or penalty functions performed best.

  20. Improved adaptive genetic algorithm with sparsity constraint applied to thermal neutron CT reconstruction of two-phase flow

    NASA Astrophysics Data System (ADS)

    Yan, Mingfei; Hu, Huasi; Otake, Yoshie; Taketani, Atsushi; Wakabayashi, Yasuo; Yanagimachi, Shinzo; Wang, Sheng; Pan, Ziheng; Hu, Guang

    2018-05-01

    Thermal neutron computer tomography (CT) is a useful tool for visualizing two-phase flow due to its high imaging contrast and strong penetrability of neutrons for tube walls constructed with metallic material. A novel approach for two-phase flow CT reconstruction based on an improved adaptive genetic algorithm with sparsity constraint (IAGA-SC) is proposed in this paper. In the algorithm, the neighborhood mutation operator is used to ensure the continuity of the reconstructed object. The adaptive crossover probability P c and mutation probability P m are improved to help the adaptive genetic algorithm (AGA) achieve the global optimum. The reconstructed results for projection data, obtained from Monte Carlo simulation, indicate that the comprehensive performance of the IAGA-SC algorithm exceeds the adaptive steepest descent-projection onto convex sets (ASD-POCS) algorithm in restoring typical and complex flow regimes. It especially shows great advantages in restoring the simply connected flow regimes and the shape of object. In addition, the CT experiment for two-phase flow phantoms was conducted on the accelerator-driven neutron source to verify the performance of the developed IAGA-SC algorithm.

  1. Using imputed genotype data in the joint score tests for genetic association and gene-environment interactions in case-control studies.

    PubMed

    Song, Minsun; Wheeler, William; Caporaso, Neil E; Landi, Maria Teresa; Chatterjee, Nilanjan

    2018-03-01

    Genome-wide association studies (GWAS) are now routinely imputed for untyped single nucleotide polymorphisms (SNPs) based on various powerful statistical algorithms for imputation trained on reference datasets. The use of predicted allele counts for imputed SNPs as the dosage variable is known to produce valid score test for genetic association. In this paper, we investigate how to best handle imputed SNPs in various modern complex tests for genetic associations incorporating gene-environment interactions. We focus on case-control association studies where inference for an underlying logistic regression model can be performed using alternative methods that rely on varying degree on an assumption of gene-environment independence in the underlying population. As increasingly large-scale GWAS are being performed through consortia effort where it is preferable to share only summary-level information across studies, we also describe simple mechanisms for implementing score tests based on standard meta-analysis of "one-step" maximum-likelihood estimates across studies. Applications of the methods in simulation studies and a dataset from GWAS of lung cancer illustrate ability of the proposed methods to maintain type-I error rates for the underlying testing procedures. For analysis of imputed SNPs, similar to typed SNPs, the retrospective methods can lead to considerable efficiency gain for modeling of gene-environment interactions under the assumption of gene-environment independence. Methods are made available for public use through CGEN R software package. © 2017 WILEY PERIODICALS, INC.

  2. Creating IRT-Based Parallel Test Forms Using the Genetic Algorithm Method

    ERIC Educational Resources Information Center

    Sun, Koun-Tem; Chen, Yu-Jen; Tsai, Shu-Yen; Cheng, Chien-Fen

    2008-01-01

    In educational measurement, the construction of parallel test forms is often a combinatorial optimization problem that involves the time-consuming selection of items to construct tests having approximately the same test information functions (TIFs) and constraints. This article proposes a novel method, genetic algorithm (GA), to construct parallel…

  3. Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Steincamp, James; Taylor, Jaime

    2003-01-01

    A reduced surrogate, one point crossover genetic algorithm with random rank-based selection was used successfully to estimate the multiple phases of a segmented optical system modeled on the seven-mirror Systematic Image-Based Optical Alignment testbed located at NASA's Marshall Space Flight Center.

  4. Using Genetic Algorithm and MODFLOW to Characterize Aquifer System of Northwest Florida (Published Proceedings)

    EPA Science Inventory

    By integrating Genetic Algorithm and MODFLOW2005, an optimizing tool is developed to characterize the aquifer system of Region II, Northwest Florida. The history and the newest available observation data of the aquifer system is fitted automatically by using the numerical model c...

  5. Genetic algorithm to solve the problems of lectures and practicums scheduling

    NASA Astrophysics Data System (ADS)

    Syahputra, M. F.; Apriani, R.; Sawaluddin; Abdullah, D.; Albra, W.; Heikal, M.; Abdurrahman, A.; Khaddafi, M.

    2018-02-01

    Generally, the scheduling process is done manually. However, this method has a low accuracy level, along with possibilities that a scheduled process collides with another scheduled process. When doing theory class and practicum timetable scheduling process, there are numerous problems, such as lecturer teaching schedule collision, schedule collision with another schedule, practicum lesson schedules that collides with theory class, and the number of classrooms available. In this research, genetic algorithm is implemented to perform theory class and practicum timetable scheduling process. The algorithm will be used to process the data containing lists of lecturers, courses, and class rooms, obtained from information technology department at University of Sumatera Utara. The result of scheduling process using genetic algorithm is the most optimal timetable that conforms to available time slots, class rooms, courses, and lecturer schedules.

  6. Multiple feature fusion via covariance matrix for visual tracking

    NASA Astrophysics Data System (ADS)

    Jin, Zefenfen; Hou, Zhiqiang; Yu, Wangsheng; Wang, Xin; Sun, Hui

    2018-04-01

    Aiming at the problem of complicated dynamic scenes in visual target tracking, a multi-feature fusion tracking algorithm based on covariance matrix is proposed to improve the robustness of the tracking algorithm. In the frame-work of quantum genetic algorithm, this paper uses the region covariance descriptor to fuse the color, edge and texture features. It also uses a fast covariance intersection algorithm to update the model. The low dimension of region covariance descriptor, the fast convergence speed and strong global optimization ability of quantum genetic algorithm, and the fast computation of fast covariance intersection algorithm are used to improve the computational efficiency of fusion, matching, and updating process, so that the algorithm achieves a fast and effective multi-feature fusion tracking. The experiments prove that the proposed algorithm can not only achieve fast and robust tracking but also effectively handle interference of occlusion, rotation, deformation, motion blur and so on.

  7. A Modified Decision Tree Algorithm Based on Genetic Algorithm for Mobile User Classification Problem

    PubMed Central

    Liu, Dong-sheng; Fan, Shu-jiang

    2014-01-01

    In order to offer mobile customers better service, we should classify the mobile user firstly. Aimed at the limitations of previous classification methods, this paper puts forward a modified decision tree algorithm for mobile user classification, which introduced genetic algorithm to optimize the results of the decision tree algorithm. We also take the context information as a classification attributes for the mobile user and we classify the context into public context and private context classes. Then we analyze the processes and operators of the algorithm. At last, we make an experiment on the mobile user with the algorithm, we can classify the mobile user into Basic service user, E-service user, Plus service user, and Total service user classes and we can also get some rules about the mobile user. Compared to C4.5 decision tree algorithm and SVM algorithm, the algorithm we proposed in this paper has higher accuracy and more simplicity. PMID:24688389

  8. An improved self-adaptive ant colony algorithm based on genetic strategy for the traveling salesman problem

    NASA Astrophysics Data System (ADS)

    Wang, Pan; Zhang, Yi; Yan, Dong

    2018-05-01

    Ant Colony Algorithm (ACA) is a powerful and effective algorithm for solving the combination optimization problem. Moreover, it was successfully used in traveling salesman problem (TSP). But it is easy to prematurely converge to the non-global optimal solution and the calculation time is too long. To overcome those shortcomings, a new method is presented-An improved self-adaptive Ant Colony Algorithm based on genetic strategy. The proposed method adopts adaptive strategy to adjust the parameters dynamically. And new crossover operation and inversion operation in genetic strategy was used in this method. We also make an experiment using the well-known data in TSPLIB. The experiment results show that the performance of the proposed method is better than the basic Ant Colony Algorithm and some improved ACA in both the result and the convergence time. The numerical results obtained also show that the proposed optimization method can achieve results close to the theoretical best known solutions at present.

  9. A Solution Method of Job-shop Scheduling Problems by the Idle Time Shortening Type Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Ida, Kenichi; Osawa, Akira

    In this paper, we propose a new idle time shortening method for Job-shop scheduling problems (JSPs). We insert its method into a genetic algorithm (GA). The purpose of JSP is to find a schedule with the minimum makespan. We suppose that it is effective to reduce idle time of a machine in order to improve the makespan. The left shift is a famous algorithm in existing algorithms for shortening idle time. The left shift can not arrange the work to idle time. For that reason, some idle times are not shortened by the left shift. We propose two kinds of algorithms which shorten such idle time. Next, we combine these algorithms and the reversal of a schedule. We apply GA with its algorithm to benchmark problems and we show its effectiveness.

  10. Packing Boxes into Multiple Containers Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Menghani, Deepak; Guha, Anirban

    2016-07-01

    Container loading problems have been studied extensively in the literature and various analytical, heuristic and metaheuristic methods have been proposed. This paper presents two different variants of a genetic algorithm framework for the three-dimensional container loading problem for optimally loading boxes into multiple containers with constraints. The algorithms are designed so that it is easy to incorporate various constraints found in real life problems. The algorithms are tested on data of standard test cases from literature and are found to compare well with the benchmark algorithms in terms of utilization of containers. This, along with the ability to easily incorporate a wide range of practical constraints, makes them attractive for implementation in real life scenarios.

  11. Airport Flight Departure Delay Model on Improved BN Structure Learning

    NASA Astrophysics Data System (ADS)

    Cao, Weidong; Fang, Xiangnong

    An high score prior genetic simulated annealing Bayesian network structure learning algorithm (HSPGSA) by combining genetic algorithm(GA) with simulated annealing algorithm(SAA) is developed. The new algorithm provides not only with strong global search capability of GA, but also with strong local hill climb search capability of SAA. The structure with the highest score is prior selected. In the mean time, structures with lower score are also could be choice. It can avoid efficiently prematurity problem by higher score individual wrong direct growing population. Algorithm is applied to flight departure delays analysis in a large hub airport. Based on the flight data a BN model is created. Experiments show that parameters learning can reflect departure delay.

  12. Fuzzy Mixed Assembly Line Sequencing and Scheduling Optimization Model Using Multiobjective Dynamic Fuzzy GA

    PubMed Central

    Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari

    2014-01-01

    A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model. PMID:24982962

  13. Deadlock-free genetic scheduling algorithm for automated manufacturing systems based on deadlock control policy.

    PubMed

    Xing, KeYi; Han, LiBin; Zhou, MengChu; Wang, Feng

    2012-06-01

    Deadlock-free control and scheduling are vital for optimizing the performance of automated manufacturing systems (AMSs) with shared resources and route flexibility. Based on the Petri net models of AMSs, this paper embeds the optimal deadlock avoidance policy into the genetic algorithm and develops a novel deadlock-free genetic scheduling algorithm for AMSs. A possible solution of the scheduling problem is coded as a chromosome representation that is a permutation with repetition of parts. By using the one-step look-ahead method in the optimal deadlock control policy, the feasibility of a chromosome is checked, and infeasible chromosomes are amended into feasible ones, which can be easily decoded into a feasible deadlock-free schedule. The chromosome representation and polynomial complexity of checking and amending procedures together support the cooperative aspect of genetic search for scheduling problems strongly.

  14. Application of the gravity search algorithm to multi-reservoir operation optimization

    NASA Astrophysics Data System (ADS)

    Bozorg-Haddad, Omid; Janbaz, Mahdieh; Loáiciga, Hugo A.

    2016-12-01

    Complexities in river discharge, variable rainfall regime, and drought severity merit the use of advanced optimization tools in multi-reservoir operation. The gravity search algorithm (GSA) is an evolutionary optimization algorithm based on the law of gravity and mass interactions. This paper explores the GSA's efficacy for solving benchmark functions, single reservoir, and four-reservoir operation optimization problems. The GSA's solutions are compared with those of the well-known genetic algorithm (GA) in three optimization problems. The results show that the GSA's results are closer to the optimal solutions than the GA's results in minimizing the benchmark functions. The average values of the objective function equal 1.218 and 1.746 with the GSA and GA, respectively, in solving the single-reservoir hydropower operation problem. The global solution equals 1.213 for this same problem. The GSA converged to 99.97% of the global solution in its average-performing history, while the GA converged to 97% of the global solution of the four-reservoir problem. Requiring fewer parameters for algorithmic implementation and reaching the optimal solution in fewer number of functional evaluations are additional advantages of the GSA over the GA. The results of the three optimization problems demonstrate a superior performance of the GSA for optimizing general mathematical problems and the operation of reservoir systems.

  15. Nuclear fuel management optimization using genetic algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeChaine, M.D.; Feltus, M.A.

    1995-07-01

    The code independent genetic algorithm reactor optimization (CIGARO) system has been developed to optimize nuclear reactor loading patterns. It uses genetic algorithms (GAs) and a code-independent interface, so any reactor physics code (e.g., CASMO-3/SIMULATE-3) can be used to evaluate the loading patterns. The system is compared to other GA-based loading pattern optimizers. Tests were carried out to maximize the beginning of cycle k{sub eff} for a pressurized water reactor core loading with a penalty function to limit power peaking. The CIGARO system performed well, increasing the k{sub eff} after lowering the peak power. Tests of a prototype parallel evaluation methodmore » showed the potential for a significant speedup.« less

  16. Medical image segmentation using genetic algorithms.

    PubMed

    Maulik, Ujjwal

    2009-03-01

    Genetic algorithms (GAs) have been found to be effective in the domain of medical image segmentation, since the problem can often be mapped to one of search in a complex and multimodal landscape. The challenges in medical image segmentation arise due to poor image contrast and artifacts that result in missing or diffuse organ/tissue boundaries. The resulting search space is therefore often noisy with a multitude of local optima. Not only does the genetic algorithmic framework prove to be effective in coming out of local optima, it also brings considerable flexibility into the segmentation procedure. In this paper, an attempt has been made to review the major applications of GAs to the domain of medical image segmentation.

  17. Naturally selecting solutions: the use of genetic algorithms in bioinformatics.

    PubMed

    Manning, Timmy; Sleator, Roy D; Walsh, Paul

    2013-01-01

    For decades, computer scientists have looked to nature for biologically inspired solutions to computational problems; ranging from robotic control to scheduling optimization. Paradoxically, as we move deeper into the post-genomics era, the reverse is occurring, as biologists and bioinformaticians look to computational techniques, to solve a variety of biological problems. One of the most common biologically inspired techniques are genetic algorithms (GAs), which take the Darwinian concept of natural selection as the driving force behind systems for solving real world problems, including those in the bioinformatics domain. Herein, we provide an overview of genetic algorithms and survey some of the most recent applications of this approach to bioinformatics based problems.

  18. Determination of thiamine HCl and pyridoxine HCl in pharmaceutical preparations using UV-visible spectrophotometry and genetic algorithm based multivariate calibration methods.

    PubMed

    Ozdemir, Durmus; Dinc, Erdal

    2004-07-01

    Simultaneous determination of binary mixtures pyridoxine hydrochloride and thiamine hydrochloride in a vitamin combination using UV-visible spectrophotometry and classical least squares (CLS) and three newly developed genetic algorithm (GA) based multivariate calibration methods was demonstrated. The three genetic multivariate calibration methods are Genetic Classical Least Squares (GCLS), Genetic Inverse Least Squares (GILS) and Genetic Regression (GR). The sample data set contains the UV-visible spectra of 30 synthetic mixtures (8 to 40 microg/ml) of these vitamins and 10 tablets containing 250 mg from each vitamin. The spectra cover the range from 200 to 330 nm in 0.1 nm intervals. Several calibration models were built with the four methods for the two components. Overall, the standard error of calibration (SEC) and the standard error of prediction (SEP) for the synthetic data were in the range of <0.01 and 0.43 microg/ml for all the four methods. The SEP values for the tablets were in the range of 2.91 and 11.51 mg/tablets. A comparison of genetic algorithm selected wavelengths for each component using GR method was also included.

  19. Stochastic search in structural optimization - Genetic algorithms and simulated annealing

    NASA Technical Reports Server (NTRS)

    Hajela, Prabhat

    1993-01-01

    An account is given of illustrative applications of genetic algorithms and simulated annealing methods in structural optimization. The advantages of such stochastic search methods over traditional mathematical programming strategies are emphasized; it is noted that these methods offer a significantly higher probability of locating the global optimum in a multimodal design space. Both genetic-search and simulated annealing can be effectively used in problems with a mix of continuous, discrete, and integer design variables.

  20. Unscented Sampling Techniques For Evolutionary Computation With Applications To Astrodynamic Optimization

    DTIC Science & Technology

    2016-09-01

    to both genetic algorithms and evolution strategies to achieve these goals. The results of this research offer a promising new set of modified ...abs_all.jsp?arnumber=203904 [163] Z. Michalewicz, C. Z. Janikow, and J. B. Krawczyk, “A modified genetic algo- rithm for optimal control problems...Available: http://arc.aiaa.org/doi/abs/10.2514/ 2.7053 375 [166] N. Yokoyama and S. Suzuki, “ Modified genetic algorithm for constrained trajectory

  1. A novel structure-aware sparse learning algorithm for brain imaging genetics.

    PubMed

    Du, Lei; Jingwen, Yan; Kim, Sungeun; Risacher, Shannon L; Huang, Heng; Inlow, Mark; Moore, Jason H; Saykin, Andrew J; Shen, Li

    2014-01-01

    Brain imaging genetics is an emergent research field where the association between genetic variations such as single nucleotide polymorphisms (SNPs) and neuroimaging quantitative traits (QTs) is evaluated. Sparse canonical correlation analysis (SCCA) is a bi-multivariate analysis method that has the potential to reveal complex multi-SNP-multi-QT associations. Most existing SCCA algorithms are designed using the soft threshold strategy, which assumes that the features in the data are independent from each other. This independence assumption usually does not hold in imaging genetic data, and thus inevitably limits the capability of yielding optimal solutions. We propose a novel structure-aware SCCA (denoted as S2CCA) algorithm to not only eliminate the independence assumption for the input data, but also incorporate group-like structure in the model. Empirical comparison with a widely used SCCA implementation, on both simulated and real imaging genetic data, demonstrated that S2CCA could yield improved prediction performance and biologically meaningful findings.

  2. Hessian-based quantitative image analysis of host-pathogen confrontation assays.

    PubMed

    Cseresnyes, Zoltan; Kraibooj, Kaswara; Figge, Marc Thilo

    2018-03-01

    Host-fungus interactions have gained a lot of interest in the past few decades, mainly due to an increasing number of fungal infections that are often associated with a high mortality rate in the absence of effective therapies. These interactions can be studied at the genetic level or at the functional level via imaging. Here, we introduce a new image processing method that quantifies the interaction between host cells and fungal invaders, for example, alveolar macrophages and the conidia of Aspergillus fumigatus. The new technique relies on the information content of transmitted light bright field microscopy images, utilizing the Hessian matrix eigenvalues to distinguish between unstained macrophages and the background, as well as between macrophages and fungal conidia. The performance of the new algorithm was measured by comparing the results of our method with that of an alternative approach that was based on fluorescence images from the same dataset. The comparison shows that the new algorithm performs very similarly to the fluorescence-based version. Consequently, the new algorithm is able to segment and characterize unlabeled cells, thus reducing the time and expense that would be spent on the fluorescent labeling in preparation for phagocytosis assays. By extending the proposed method to the label-free segmentation of fungal conidia, we will be able to reduce the need for fluorescence-based imaging even further. Our approach should thus help to minimize the possible side effects of fluorescence labeling on biological functions. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  3. A Smart Itsy Bitsy Spider for the Web.

    ERIC Educational Resources Information Center

    Chen, Hsinchun; Chung, Yi-Ming; Ramsey, Marshall; Yang, Christopher C.

    1998-01-01

    This study tested two Web personal spiders (i.e., agents that take users' requests and perform real-time customized searches) based on best first-search and genetic-algorithm techniques. Both results were comparable and complementary, although the genetic algorithm obtained higher recall value. The Java-based interface was found to be necessary…

  4. Genetic algorithm driven spectral shaping of supercontinuum radiation in a photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Michaeli, Linor; Bahabad, Alon

    2018-05-01

    We employ a genetic algorithm to control a pulse-shaping system pumping a nonlinear photonic crystal with ultrashort pulses. With this system, we are able to modify the spectrum of the generated supercontinuum (SC) radiation to yield narrow Gaussian-like features around pre-selected wavelengths over the whole SC spectrum.

  5. MAC Protocol for Ad Hoc Networks Using a Genetic Algorithm

    PubMed Central

    Elizarraras, Omar; Panduro, Marco; Méndez, Aldo L.

    2014-01-01

    The problem of obtaining the transmission rate in an ad hoc network consists in adjusting the power of each node to ensure the signal to interference ratio (SIR) and the energy required to transmit from one node to another is obtained at the same time. Therefore, an optimal transmission rate for each node in a medium access control (MAC) protocol based on CSMA-CDMA (carrier sense multiple access-code division multiple access) for ad hoc networks can be obtained using evolutionary optimization. This work proposes a genetic algorithm for the transmission rate election considering a perfect power control, and our proposition achieves improvement of 10% compared with the scheme that handles the handshaking phase to adjust the transmission rate. Furthermore, this paper proposes a genetic algorithm that solves the problem of power combining, interference, data rate, and energy ensuring the signal to interference ratio in an ad hoc network. The result of the proposed genetic algorithm has a better performance (15%) compared to the CSMA-CDMA protocol without optimizing. Therefore, we show by simulation the effectiveness of the proposed protocol in terms of the throughput. PMID:25140339

  6. A genetic-algorithm approach for assessing the liquefaction potential of sandy soils

    NASA Astrophysics Data System (ADS)

    Sen, G.; Akyol, E.

    2010-04-01

    The determination of liquefaction potential is required to take into account a large number of parameters, which creates a complex nonlinear structure of the liquefaction phenomenon. The conventional methods rely on simple statistical and empirical relations or charts. However, they cannot characterise these complexities. Genetic algorithms are suited to solve these types of problems. A genetic algorithm-based model has been developed to determine the liquefaction potential by confirming Cone Penetration Test datasets derived from case studies of sandy soils. Software has been developed that uses genetic algorithms for the parameter selection and assessment of liquefaction potential. Then several estimation functions for the assessment of a Liquefaction Index have been generated from the dataset. The generated Liquefaction Index estimation functions were evaluated by assessing the training and test data. The suggested formulation estimates the liquefaction occurrence with significant accuracy. Besides, the parametric study on the liquefaction index curves shows a good relation with the physical behaviour. The total number of misestimated cases was only 7.8% for the proposed method, which is quite low when compared to another commonly used method.

  7. Complex motion measurement using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Shen, Jianjun; Tu, Dan; Shen, Zhenkang

    1997-12-01

    Genetic algorithm (GA) is an optimization technique that provides an untraditional approach to deal with many nonlinear, complicated problems. The notion of motion measurement using genetic algorithm arises from the fact that the motion measurement is virtually an optimization process based on some criterions. In the paper, we propose a complex motion measurement method using genetic algorithm based on block-matching criterion. The following three problems are mainly discussed and solved in the paper: (1) apply an adaptive method to modify the control parameters of GA that are critical to itself, and offer an elitism strategy at the same time (2) derive an evaluate function of motion measurement for GA based on block-matching technique (3) employ hill-climbing (HC) method hybridly to assist GA's search for the global optimal solution. Some other related problems are also discussed. At the end of paper, experiments result is listed. We employ six motion parameters for measurement in our experiments. Experiments result shows that the performance of our GA is good. The GA can find the object motion accurately and rapidly.

  8. Optimization of fuels from waste composition with application of genetic algorithm.

    PubMed

    Małgorzata, Wzorek

    2014-05-01

    The objective of this article is to elaborate a method to optimize the composition of the fuels from sewage sludge (PBS fuel - fuel based on sewage sludge and coal slime, PBM fuel - fuel based on sewage sludge and meat and bone meal, PBT fuel - fuel based on sewage sludge and sawdust). As a tool for an optimization procedure, the use of a genetic algorithm is proposed. The optimization task involves the maximization of mass fraction of sewage sludge in a fuel developed on the basis of quality-based criteria for the use as an alternative fuel used by the cement industry. The selection criteria of fuels composition concerned such parameters as: calorific value, content of chlorine, sulphur and heavy metals. Mathematical descriptions of fuel compositions and general forms of the genetic algorithm, as well as the obtained optimization results are presented. The results of this study indicate that the proposed genetic algorithm offers an optimization tool, which could be useful in the determination of the composition of fuels that are produced from waste.

  9. Research on prediction of agricultural machinery total power based on grey model optimized by genetic algorithm

    NASA Astrophysics Data System (ADS)

    Xie, Yan; Li, Mu; Zhou, Jin; Zheng, Chang-zheng

    2009-07-01

    Agricultural machinery total power is an important index to reflex and evaluate the level of agricultural mechanization. It is the power source of agricultural production, and is the main factors to enhance the comprehensive agricultural production capacity expand production scale and increase the income of the farmers. Its demand is affected by natural, economic, technological and social and other "grey" factors. Therefore, grey system theory can be used to analyze the development of agricultural machinery total power. A method based on genetic algorithm optimizing grey modeling process is introduced in this paper. This method makes full use of the advantages of the grey prediction model and characteristics of genetic algorithm to find global optimization. So the prediction model is more accurate. According to data from a province, the GM (1, 1) model for predicting agricultural machinery total power was given based on the grey system theories and genetic algorithm. The result indicates that the model can be used as agricultural machinery total power an effective tool for prediction.

  10. Logistic regression trees for initial selection of interesting loci in case-control studies

    PubMed Central

    Nickolov, Radoslav Z; Milanov, Valentin B

    2007-01-01

    Modern genetic epidemiology faces the challenge of dealing with hundreds of thousands of genetic markers. The selection of a small initial subset of interesting markers for further investigation can greatly facilitate genetic studies. In this contribution we suggest the use of a logistic regression tree algorithm known as logistic tree with unbiased selection. Using the simulated data provided for Genetic Analysis Workshop 15, we show how this algorithm, with incorporation of multifactor dimensionality reduction method, can reduce an initial large pool of markers to a small set that includes the interesting markers with high probability. PMID:18466557

  11. A Genetic Algorithm That Exchanges Neighboring Centers for Fuzzy c-Means Clustering

    ERIC Educational Resources Information Center

    Chahine, Firas Safwan

    2012-01-01

    Clustering algorithms are widely used in pattern recognition and data mining applications. Due to their computational efficiency, partitional clustering algorithms are better suited for applications with large datasets than hierarchical clustering algorithms. K-means is among the most popular partitional clustering algorithm, but has a major…

  12. HEURISTIC OPTIMIZATION AND ALGORITHM TUNING APPLIED TO SORPTIVE BARRIER DESIGN

    EPA Science Inventory

    While heuristic optimization is applied in environmental applications, ad-hoc algorithm configuration is typical. We use a multi-layer sorptive barrier design problem as a benchmark for an algorithm-tuning procedure, as applied to three heuristics (genetic algorithms, simulated ...

  13. Quantitative Assessment of CYP2C9 Genetic Polymorphisms Effect on the Oral Clearance of S-Warfarin in Healthy Subjects.

    PubMed

    Shaul, Chanan; Blotnick, Simcha; Muszkat, Mordechai; Bialer, Meir; Caraco, Yoseph

    2017-02-01

    Genetic polymorphisms in CYP2C9 account for 10-20% of the variability in warfarin dose requirement. As such CYP2C9 genetic polymorphisms are commonly included in algorithms aimed to optimize warfarin therapy as a way to account for variability in warfarin responsiveness that is due to altered pharmacokinetics. However, most of the currently available pharmacokinetic data were derived from studies among patients on chronic warfarin therapy and therefore suffer from the confounding effects of disease states and drug interactions. The purpose of the present study was to provide an accurate quantitative estimate of S-warfarin oral clearance (CL S ) among healthy subjects carrying different CYP2C9 genotypes. Single dose of warfarin was administered to 150 non-smokers, age (mean ± SD) 23.3 ± 4.5 years, 60% male, non-obese, healthy subjects. Blood samples were taken for up to 168 h and urine was collected over the entire study period. Compared with carriers of the wild-type CYP2C9*1/*1 genotype (n = 69), CL S was reduced by 25, 39 and 47% among heterozygote for CYP2C9*2 (n = 41) CYP2C9*3 (n = 26) and carriers of 2 variant alleles (n = 14), respectively (p < 0.001). The corresponding decrease in the formation clearance of 6 and 7 S-hydroxy-warfarin was 45, 65 and 75%, respectively (p < 0.001). The current study provides an estimate concerning the effect of CYP2C9 polymorphisms on S-warfarin pharmacokinetics among healthy subjects. As such it is free of the confounding effects of disease states and drug interactions. Further research is needed to evaluate whether the incorporation of quantitative data obtained in the present study into pharmacogenetic warfarin algorithm may enhance its precision. Clinicaltrials.gov Identifier NCT00162474.

  14. Genetic algorithms for multicriteria shape optimization of induction furnace

    NASA Astrophysics Data System (ADS)

    Kůs, Pavel; Mach, František; Karban, Pavel; Doležel, Ivo

    2012-09-01

    In this contribution we deal with a multi-criteria shape optimization of an induction furnace. We want to find shape parameters of the furnace in such a way, that two different criteria are optimized. Since they cannot be optimized simultaneously, instead of one optimum we find set of partially optimal designs, so called Pareto front. We compare two different approaches to the optimization, one using nonlinear conjugate gradient method and second using variation of genetic algorithm. As can be seen from the numerical results, genetic algorithm seems to be the right choice for this problem. Solution of direct problem (coupled problem consisting of magnetic and heat field) is done using our own code Agros2D. It uses finite elements of higher order leading to fast and accurate solution of relatively complicated coupled problem. It also provides advanced scripting support, allowing us to prepare parametric model of the furnace and simply incorporate various types of optimization algorithms.

  15. Design of synthetic biological logic circuits based on evolutionary algorithm.

    PubMed

    Chuang, Chia-Hua; Lin, Chun-Liang; Chang, Yen-Chang; Jennawasin, Tanagorn; Chen, Po-Kuei

    2013-08-01

    The construction of an artificial biological logic circuit using systematic strategy is recognised as one of the most important topics for the development of synthetic biology. In this study, a real-structured genetic algorithm (RSGA), which combines general advantages of the traditional real genetic algorithm with those of the structured genetic algorithm, is proposed to deal with the biological logic circuit design problem. A general model with the cis-regulatory input function and appropriate promoter activity functions is proposed to synthesise a wide variety of fundamental logic gates such as NOT, Buffer, AND, OR, NAND, NOR and XOR. The results obtained can be extended to synthesise advanced combinational and sequential logic circuits by topologically distinct connections. The resulting optimal design of these logic gates and circuits are established via the RSGA. The in silico computer-based modelling technology has been verified showing its great advantages in the purpose.

  16. Preliminary Structural Design Using Topology Optimization with a Comparison of Results from Gradient and Genetic Algorithm Methods

    NASA Technical Reports Server (NTRS)

    Burt, Adam O.; Tinker, Michael L.

    2014-01-01

    In this paper, genetic algorithm based and gradient-based topology optimization is presented in application to a real hardware design problem. Preliminary design of a planetary lander mockup structure is accomplished using these methods that prove to provide major weight savings by addressing the structural efficiency during the design cycle. This paper presents two alternative formulations of the topology optimization problem. The first is the widely-used gradient-based implementation using commercially available algorithms. The second is formulated using genetic algorithms and internally developed capabilities. These two approaches are applied to a practical design problem for hardware that has been built, tested and proven to be functional. Both formulations converged on similar solutions and therefore were proven to be equally valid implementations of the process. This paper discusses both of these formulations at a high level.

  17. Inverting the parameters of an earthquake-ruptured fault with a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Ting-To; Fernàndez, Josè; Rundle, John B.

    1998-03-01

    Natural selection is the spirit of the genetic algorithm (GA): by keeping the good genes in the current generation, thereby producing better offspring during evolution. The crossover function ensures the heritage of good genes from parent to offspring. Meanwhile, the process of mutation creates a special gene, the character of which does not exist in the parent generation. A program based on genetic algorithms using C language is constructed to invert the parameters of an earthquake-ruptured fault. The verification and application of this code is shown to demonstrate its capabilities. It is determined that this code is able to find the global extreme and can be used to solve more practical problems with constraints gathered from other sources. It is shown that GA is superior to other inverting schema in many aspects. This easy handling and yet powerful algorithm should have many suitable applications in the field of geosciences.

  18. Optimization of Straight Cylindrical Turning Using Artificial Bee Colony (ABC) Algorithm

    NASA Astrophysics Data System (ADS)

    Prasanth, Rajanampalli Seshasai Srinivasa; Hans Raj, Kandikonda

    2017-04-01

    Artificial bee colony (ABC) algorithm, that mimics the intelligent foraging behavior of honey bees, is increasingly gaining acceptance in the field of process optimization, as it is capable of handling nonlinearity, complexity and uncertainty. Straight cylindrical turning is a complex and nonlinear machining process which involves the selection of appropriate cutting parameters that affect the quality of the workpiece. This paper presents the estimation of optimal cutting parameters of the straight cylindrical turning process using the ABC algorithm. The ABC algorithm is first tested on four benchmark problems of numerical optimization and its performance is compared with genetic algorithm (GA) and ant colony optimization (ACO) algorithm. Results indicate that, the rate of convergence of ABC algorithm is better than GA and ACO. Then, the ABC algorithm is used to predict optimal cutting parameters such as cutting speed, feed rate, depth of cut and tool nose radius to achieve good surface finish. Results indicate that, the ABC algorithm estimated a comparable surface finish when compared with real coded genetic algorithm and differential evolution algorithm.

  19. An Improved SoC Test Scheduling Method Based on Simulated Annealing Algorithm

    NASA Astrophysics Data System (ADS)

    Zheng, Jingjing; Shen, Zhihang; Gao, Huaien; Chen, Bianna; Zheng, Weida; Xiong, Xiaoming

    2017-02-01

    In this paper, we propose an improved SoC test scheduling method based on simulated annealing algorithm (SA). It is our first to disorganize IP core assignment for each TAM to produce a new solution for SA, allocate TAM width for each TAM using greedy algorithm and calculate corresponding testing time. And accepting the core assignment according to the principle of simulated annealing algorithm and finally attain the optimum solution. Simultaneously, we run the test scheduling experiment with the international reference circuits provided by International Test Conference 2002(ITC’02) and the result shows that our algorithm is superior to the conventional integer linear programming algorithm (ILP), simulated annealing algorithm (SA) and genetic algorithm(GA). When TAM width reaches to 48,56 and 64, the testing time based on our algorithm is lesser than the classic methods and the optimization rates are 30.74%, 3.32%, 16.13% respectively. Moreover, the testing time based on our algorithm is very close to that of improved genetic algorithm (IGA), which is state-of-the-art at present.

  20. Exploiting Genomic Knowledge in Optimising Molecular Breeding Programmes: Algorithms from Evolutionary Computing

    PubMed Central

    O'Hagan, Steve; Knowles, Joshua; Kell, Douglas B.

    2012-01-01

    Comparatively few studies have addressed directly the question of quantifying the benefits to be had from using molecular genetic markers in experimental breeding programmes (e.g. for improved crops and livestock), nor the question of which organisms should be mated with each other to best effect. We argue that this requires in silico modelling, an approach for which there is a large literature in the field of evolutionary computation (EC), but which has not really been applied in this way to experimental breeding programmes. EC seeks to optimise measurable outcomes (phenotypic fitnesses) by optimising in silico the mutation, recombination and selection regimes that are used. We review some of the approaches from EC, and compare experimentally, using a biologically relevant in silico landscape, some algorithms that have knowledge of where they are in the (genotypic) search space (G-algorithms) with some (albeit well-tuned ones) that do not (F-algorithms). For the present kinds of landscapes, F- and G-algorithms were broadly comparable in quality and effectiveness, although we recognise that the G-algorithms were not equipped with any ‘prior knowledge’ of epistatic pathway interactions. This use of algorithms based on machine learning has important implications for the optimisation of experimental breeding programmes in the post-genomic era when we shall potentially have access to the full genome sequence of every organism in a breeding population. The non-proprietary code that we have used is made freely available (via Supplementary information). PMID:23185279

  1. A new compound arithmetic crossover-based genetic algorithm for constrained optimisation in enterprise systems

    NASA Astrophysics Data System (ADS)

    Jin, Chenxia; Li, Fachao; Tsang, Eric C. C.; Bulysheva, Larissa; Kataev, Mikhail Yu

    2017-01-01

    In many real industrial applications, the integration of raw data with a methodology can support economically sound decision-making. Furthermore, most of these tasks involve complex optimisation problems. Seeking better solutions is critical. As an intelligent search optimisation algorithm, genetic algorithm (GA) is an important technique for complex system optimisation, but it has internal drawbacks such as low computation efficiency and prematurity. Improving the performance of GA is a vital topic in academic and applications research. In this paper, a new real-coded crossover operator, called compound arithmetic crossover operator (CAC), is proposed. CAC is used in conjunction with a uniform mutation operator to define a new genetic algorithm CAC10-GA. This GA is compared with an existing genetic algorithm (AC10-GA) that comprises an arithmetic crossover operator and a uniform mutation operator. To judge the performance of CAC10-GA, two kinds of analysis are performed. First the analysis of the convergence of CAC10-GA is performed by the Markov chain theory; second, a pair-wise comparison is carried out between CAC10-GA and AC10-GA through two test problems available in the global optimisation literature. The overall comparative study shows that the CAC performs quite well and the CAC10-GA defined outperforms the AC10-GA.

  2. Comparative Analysis of Soft Computing Models in Prediction of Bending Rigidity of Cotton Woven Fabrics

    NASA Astrophysics Data System (ADS)

    Guruprasad, R.; Behera, B. K.

    2015-10-01

    Quantitative prediction of fabric mechanical properties is an essential requirement for design engineering of textile and apparel products. In this work, the possibility of prediction of bending rigidity of cotton woven fabrics has been explored with the application of Artificial Neural Network (ANN) and two hybrid methodologies, namely Neuro-genetic modeling and Adaptive Neuro-Fuzzy Inference System (ANFIS) modeling. For this purpose, a set of cotton woven grey fabrics was desized, scoured and relaxed. The fabrics were then conditioned and tested for bending properties. With the database thus created, a neural network model was first developed using back propagation as the learning algorithm. The second model was developed by applying a hybrid learning strategy, in which genetic algorithm was first used as a learning algorithm to optimize the number of neurons and connection weights of the neural network. The Genetic algorithm optimized network structure was further allowed to learn using back propagation algorithm. In the third model, an ANFIS modeling approach was attempted to map the input-output data. The prediction performances of the models were compared and a sensitivity analysis was reported. The results show that the prediction by neuro-genetic and ANFIS models were better in comparison with that of back propagation neural network model.

  3. The mGA1.0: A common LISP implementation of a messy genetic algorithm

    NASA Technical Reports Server (NTRS)

    Goldberg, David E.; Kerzic, Travis

    1990-01-01

    Genetic algorithms (GAs) are finding increased application in difficult search, optimization, and machine learning problems in science and engineering. Increasing demands are being placed on algorithm performance, and the remaining challenges of genetic algorithm theory and practice are becoming increasingly unavoidable. Perhaps the most difficult of these challenges is the so-called linkage problem. Messy GAs were created to overcome the linkage problem of simple genetic algorithms by combining variable-length strings, gene expression, messy operators, and a nonhomogeneous phasing of evolutionary processing. Results on a number of difficult deceptive test functions are encouraging with the mGA always finding global optima in a polynomial number of function evaluations. Theoretical and empirical studies are continuing, and a first version of a messy GA is ready for testing by others. A Common LISP implementation called mGA1.0 is documented and related to the basic principles and operators developed by Goldberg et. al. (1989, 1990). Although the code was prepared with care, it is not a general-purpose code, only a research version. Important data structures and global variations are described. Thereafter brief function descriptions are given, and sample input data are presented together with sample program output. A source listing with comments is also included.

  4. A New Framework for Adaptive Sampling and Analysis During Long-Term Monitoring and Remedial Action Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minsker, Barbara

    2004-12-01

    The Argonne team has gathered available data on monitoring wells and measured hydraulic heads from the Argonne 317/319 site and sent it to UIUC. Xiaodong Li, a research assistant supported by the project, has reviewed the data and has fit initial spatiotemporal statistical models to it. Another research assistant, Yonas Demissie, has completed generation of the artificial data that will be used for model development and testing. In order to generate the artificial data a detailed groundwater flow and contaminant transport model was developed based upon characteristics of the 317/319 site. The model covers a multi-year time horizon that includesmore » both before and after planting of the trees. As described in the proposal, the artificial data is created by adding ''measurement'' error to the ''true'' value from the numerical model. To date, only simple white noise error models have been considered. He is now reviewing the literature and beginning to develop a hierarchical modeling approach for the artificial data. Abhishek Singh, a third research assistant supported by the project, is implementing learning models for learning users preferences in an interactive genetic algorithm for solving the inverse problem. Meghna Babbar, the fourth research assistant supported by the project, has been improving the user interface for the interactive genetic algorithm and preparing a long-term monitoring design problem for testing the approach. Gayathri Gopalakrishnan, the last research assistant who is partially supported by the project, has collected substantial data from the 317/319 phytoremediation site at Argonne and has begun learning approaches for modeling these data.« less

  5. Ethanol mediated As(III) adsorption onto Zn-loaded pinecone biochar: Experimental investigation, modeling, and optimization using hybrid artificial neural network-genetic algorithm approach.

    PubMed

    Zafar, Mohd; Van Vinh, N; Behera, Shishir Kumar; Park, Hung-Suck

    2017-04-01

    Organic matters (OMs) and their oxidization products often influence the fate and transport of heavy metals in the subsurface aqueous systems through interaction with the mineral surfaces. This study investigates the ethanol (EtOH)-mediated As(III) adsorption onto Zn-loaded pinecone (PC) biochar through batch experiments conducted under Box-Behnken design. The effect of EtOH on As(III) adsorption mechanism was quantitatively elucidated by fitting the experimental data using artificial neural network and quadratic modeling approaches. The quadratic model could describe the limiting nature of EtOH and pH on As(III) adsorption, whereas neural network revealed the stronger influence of EtOH (64.5%) followed by pH (20.75%) and As(III) concentration (14.75%) on the adsorption phenomena. Besides, the interaction among process variables indicated that EtOH enhances As(III) adsorption over a pH range of 2 to 7, possibly due to facilitation of ligand-metal(Zn) binding complexation mechanism. Eventually, hybrid response surface model-genetic algorithm (RSM-GA) approach predicted a better optimal solution than RSM, i.e., the adsorptive removal of As(III) (10.47μg/g) is facilitated at 30.22mg C/L of EtOH with initial As(III) concentration of 196.77μg/L at pH5.8. The implication of this investigation might help in understanding the application of biochar for removal of various As(III) species in the presence of OM. Copyright © 2016. Published by Elsevier B.V.

  6. CamOptimus: a tool for exploiting complex adaptive evolution to optimize experiments and processes in biotechnology.

    PubMed

    Cankorur-Cetinkaya, Ayca; Dias, Joao M L; Kludas, Jana; Slater, Nigel K H; Rousu, Juho; Oliver, Stephen G; Dikicioglu, Duygu

    2017-06-01

    Multiple interacting factors affect the performance of engineered biological systems in synthetic biology projects. The complexity of these biological systems means that experimental design should often be treated as a multiparametric optimization problem. However, the available methodologies are either impractical, due to a combinatorial explosion in the number of experiments to be performed, or are inaccessible to most experimentalists due to the lack of publicly available, user-friendly software. Although evolutionary algorithms may be employed as alternative approaches to optimize experimental design, the lack of simple-to-use software again restricts their use to specialist practitioners. In addition, the lack of subsidiary approaches to further investigate critical factors and their interactions prevents the full analysis and exploitation of the biotechnological system. We have addressed these problems and, here, provide a simple-to-use and freely available graphical user interface to empower a broad range of experimental biologists to employ complex evolutionary algorithms to optimize their experimental designs. Our approach exploits a Genetic Algorithm to discover the subspace containing the optimal combination of parameters, and Symbolic Regression to construct a model to evaluate the sensitivity of the experiment to each parameter under investigation. We demonstrate the utility of this method using an example in which the culture conditions for the microbial production of a bioactive human protein are optimized. CamOptimus is available through: (https://doi.org/10.17863/CAM.10257).

  7. Genetic algorithms for protein threading.

    PubMed

    Yadgari, J; Amir, A; Unger, R

    1998-01-01

    Despite many years of efforts, a direct prediction of protein structure from sequence is still not possible. As a result, in the last few years researchers have started to address the "inverse folding problem": Identifying and aligning a sequence to the fold with which it is most compatible, a process known as "threading". In two meetings in which protein folding predictions were objectively evaluated, it became clear that threading as a concept promises a real breakthrough, but that much improvement is still needed in the technique itself. Threading is a NP-hard problem, and thus no general polynomial solution can be expected. Still a practical approach with demonstrated ability to find optimal solutions in many cases, and acceptable solutions in other cases, is needed. We applied the technique of Genetic Algorithms in order to significantly improve the ability of threading algorithms to find the optimal alignment of a sequence to a structure, i.e. the alignment with the minimum free energy. A major progress reported here is the design of a representation of the threading alignment as a string of fixed length. With this representation validation of alignments and genetic operators are effectively implemented. Appropriate data structure and parameters have been selected. It is shown that Genetic Algorithm threading is effective and is able to find the optimal alignment in a few test cases. Furthermore, the described algorithm is shown to perform well even without pre-definition of core elements. Existing threading methods are dependent on such constraints to make their calculations feasible. But the concept of core elements is inherently arbitrary and should be avoided if possible. While a rigorous proof is hard to submit yet an, we present indications that indeed Genetic Algorithm threading is capable of finding consistently good solutions of full alignments in search spaces of size up to 10(70).

  8. A hybrid intelligent algorithm for portfolio selection problem with fuzzy returns

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Zhang, Yang; Wong, Hau-San; Qin, Zhongfeng

    2009-11-01

    Portfolio selection theory with fuzzy returns has been well developed and widely applied. Within the framework of credibility theory, several fuzzy portfolio selection models have been proposed such as mean-variance model, entropy optimization model, chance constrained programming model and so on. In order to solve these nonlinear optimization models, a hybrid intelligent algorithm is designed by integrating simulated annealing algorithm, neural network and fuzzy simulation techniques, where the neural network is used to approximate the expected value and variance for fuzzy returns and the fuzzy simulation is used to generate the training data for neural network. Since these models are used to be solved by genetic algorithm, some comparisons between the hybrid intelligent algorithm and genetic algorithm are given in terms of numerical examples, which imply that the hybrid intelligent algorithm is robust and more effective. In particular, it reduces the running time significantly for large size problems.

  9. Clustering for Binary Data Sets by Using Genetic Algorithm-Incremental K-means

    NASA Astrophysics Data System (ADS)

    Saharan, S.; Baragona, R.; Nor, M. E.; Salleh, R. M.; Asrah, N. M.

    2018-04-01

    This research was initially driven by the lack of clustering algorithms that specifically focus in binary data. To overcome this gap in knowledge, a promising technique for analysing this type of data became the main subject in this research, namely Genetic Algorithms (GA). For the purpose of this research, GA was combined with the Incremental K-means (IKM) algorithm to cluster the binary data streams. In GAIKM, the objective function was based on a few sufficient statistics that may be easily and quickly calculated on binary numbers. The implementation of IKM will give an advantage in terms of fast convergence. The results show that GAIKM is an efficient and effective new clustering algorithm compared to the clustering algorithms and to the IKM itself. In conclusion, the GAIKM outperformed other clustering algorithms such as GCUK, IKM, Scalable K-means (SKM) and K-means clustering and paves the way for future research involving missing data and outliers.

  10. A High-Performance Genetic Algorithm: Using Traveling Salesman Problem as a Case

    PubMed Central

    Tsai, Chun-Wei; Tseng, Shih-Pang; Yang, Chu-Sing

    2014-01-01

    This paper presents a simple but efficient algorithm for reducing the computation time of genetic algorithm (GA) and its variants. The proposed algorithm is motivated by the observation that genes common to all the individuals of a GA have a high probability of surviving the evolution and ending up being part of the final solution; as such, they can be saved away to eliminate the redundant computations at the later generations of a GA. To evaluate the performance of the proposed algorithm, we use it not only to solve the traveling salesman problem but also to provide an extensive analysis on the impact it may have on the quality of the end result. Our experimental results indicate that the proposed algorithm can significantly reduce the computation time of GA and GA-based algorithms while limiting the degradation of the quality of the end result to a very small percentage compared to traditional GA. PMID:24892038

  11. A high-performance genetic algorithm: using traveling salesman problem as a case.

    PubMed

    Tsai, Chun-Wei; Tseng, Shih-Pang; Chiang, Ming-Chao; Yang, Chu-Sing; Hong, Tzung-Pei

    2014-01-01

    This paper presents a simple but efficient algorithm for reducing the computation time of genetic algorithm (GA) and its variants. The proposed algorithm is motivated by the observation that genes common to all the individuals of a GA have a high probability of surviving the evolution and ending up being part of the final solution; as such, they can be saved away to eliminate the redundant computations at the later generations of a GA. To evaluate the performance of the proposed algorithm, we use it not only to solve the traveling salesman problem but also to provide an extensive analysis on the impact it may have on the quality of the end result. Our experimental results indicate that the proposed algorithm can significantly reduce the computation time of GA and GA-based algorithms while limiting the degradation of the quality of the end result to a very small percentage compared to traditional GA.

  12. Evaluation of Residual Static Corrections by Hybrid Genetic Algorithm Steepest Ascent Autostatics Inversion.Application southern Algerian fields

    NASA Astrophysics Data System (ADS)

    Eladj, Said; bansir, fateh; ouadfeul, sid Ali

    2016-04-01

    The application of genetic algorithm starts with an initial population of chromosomes representing a "model space". Chromosome chains are preferentially Reproduced based on Their fitness Compared to the total population. However, a good chromosome has a Greater opportunity to Produce offspring Compared To other chromosomes in the population. The advantage of the combination HGA / SAA is the use of a global search approach on a large population of local maxima to Improve Significantly the performance of the method. To define the parameters of the Hybrid Genetic Algorithm Steepest Ascent Auto Statics (HGA / SAA) job, we Evaluated by testing in the first stage of "Steepest Ascent," the optimal parameters related to the data used. 1- The number of iterations "Number of hill climbing iteration" is equal to 40 iterations. This parameter defines the participation of the algorithm "SA", in this hybrid approach. 2- The minimum eigenvalue for SA '= 0.8. This is linked to the quality of data and S / N ratio. To find an implementation performance of hybrid genetic algorithms in the inversion for estimating of the residual static corrections, tests Were Performed to determine the number of generation of HGA / SAA. Using the values of residual static corrections already calculated by the Approaches "SAA and CSAA" learning has Proved very effective in the building of the cross-correlation table. To determine the optimal number of generation, we Conducted a series of tests ranging from [10 to 200] generations. The application on real seismic data in southern Algeria allowed us to judge the performance and capacity of the inversion with this hybrid method "HGA / SAA". This experience Clarified the influence of the corrections quality estimated from "SAA / CSAA" and the optimum number of generation hybrid genetic algorithm "HGA" required to have a satisfactory performance. Twenty (20) generations Were enough to Improve continuity and resolution of seismic horizons. This Will allow us to achieve a more accurate structural interpretation Key words: Hybrid Genetic Algorithm, number of generations, model space, local maxima, Number of hill climbing iteration, Minimum eigenvalue, cross-correlation table

  13. GAtor: A First-Principles Genetic Algorithm for Molecular Crystal Structure Prediction.

    PubMed

    Curtis, Farren; Li, Xiayue; Rose, Timothy; Vázquez-Mayagoitia, Álvaro; Bhattacharya, Saswata; Ghiringhelli, Luca M; Marom, Noa

    2018-04-10

    We present the implementation of GAtor, a massively parallel, first-principles genetic algorithm (GA) for molecular crystal structure prediction. GAtor is written in Python and currently interfaces with the FHI-aims code to perform local optimizations and energy evaluations using dispersion-inclusive density functional theory (DFT). GAtor offers a variety of fitness evaluation, selection, crossover, and mutation schemes. Breeding operators designed specifically for molecular crystals provide a balance between exploration and exploitation. Evolutionary niching is implemented in GAtor by using machine learning to cluster the dynamically updated population by structural similarity and then employing a cluster-based fitness function. Evolutionary niching promotes uniform sampling of the potential energy surface by evolving several subpopulations, which helps overcome initial pool biases and selection biases (genetic drift). The various settings offered by GAtor increase the likelihood of locating numerous low-energy minima, including those located in disconnected, hard to reach regions of the potential energy landscape. The best structures generated are re-relaxed and re-ranked using a hierarchy of increasingly accurate DFT functionals and dispersion methods. GAtor is applied to a chemically diverse set of four past blind test targets, characterized by different types of intermolecular interactions. The experimentally observed structures and other low-energy structures are found for all four targets. In particular, for Target II, 5-cyano-3-hydroxythiophene, the top ranked putative crystal structure is a Z' = 2 structure with P1̅ symmetry and a scaffold packing motif, which has not been reported previously.

  14. Genetic algorithm with maximum-minimum crossover (GA-MMC) applied in optimization of radiation pattern control of phased-array radars for rocket tracking systems.

    PubMed

    Silva, Leonardo W T; Barros, Vitor F; Silva, Sandro G

    2014-08-18

    In launching operations, Rocket Tracking Systems (RTS) process the trajectory data obtained by radar sensors. In order to improve functionality and maintenance, radars can be upgraded by replacing antennas with parabolic reflectors (PRs) with phased arrays (PAs). These arrays enable the electronic control of the radiation pattern by adjusting the signal supplied to each radiating element. However, in projects of phased array radars (PARs), the modeling of the problem is subject to various combinations of excitation signals producing a complex optimization problem. In this case, it is possible to calculate the problem solutions with optimization methods such as genetic algorithms (GAs). For this, the Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) method was developed to control the radiation pattern of PAs. The GA-MMC uses a reconfigurable algorithm with multiple objectives, differentiated coding and a new crossover genetic operator. This operator has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, GA-MMC was successful in more than 90% of the tests for each application, increased the fitness of the final population by more than 20% and reduced the premature convergence.

  15. Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) Applied in Optimization of Radiation Pattern Control of Phased-Array Radars for Rocket Tracking Systems

    PubMed Central

    Silva, Leonardo W. T.; Barros, Vitor F.; Silva, Sandro G.

    2014-01-01

    In launching operations, Rocket Tracking Systems (RTS) process the trajectory data obtained by radar sensors. In order to improve functionality and maintenance, radars can be upgraded by replacing antennas with parabolic reflectors (PRs) with phased arrays (PAs). These arrays enable the electronic control of the radiation pattern by adjusting the signal supplied to each radiating element. However, in projects of phased array radars (PARs), the modeling of the problem is subject to various combinations of excitation signals producing a complex optimization problem. In this case, it is possible to calculate the problem solutions with optimization methods such as genetic algorithms (GAs). For this, the Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) method was developed to control the radiation pattern of PAs. The GA-MMC uses a reconfigurable algorithm with multiple objectives, differentiated coding and a new crossover genetic operator. This operator has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, GA-MMC was successful in more than 90% of the tests for each application, increased the fitness of the final population by more than 20% and reduced the premature convergence. PMID:25196013

  16. Threshold matrix for digital halftoning by genetic algorithm optimization

    NASA Astrophysics Data System (ADS)

    Alander, Jarmo T.; Mantere, Timo J.; Pyylampi, Tero

    1998-10-01

    Digital halftoning is used both in low and high resolution high quality printing technologies. Our method is designed to be mainly used for low resolution ink jet marking machines to produce both gray tone and color images. The main problem with digital halftoning is pink noise caused by the human eye's visual transfer function. To compensate for this the random dot patterns used are optimized to contain more blue than pink noise. Several such dot pattern generator threshold matrices have been created automatically by using genetic algorithm optimization, a non-deterministic global optimization method imitating natural evolution and genetics. A hybrid of genetic algorithm with a search method based on local backtracking was developed together with several fitness functions evaluating dot patterns for rectangular grids. By modifying the fitness function, a family of dot generators results, each with its particular statistical features. Several versions of genetic algorithms, backtracking and fitness functions were tested to find a reasonable combination. The generated threshold matrices have been tested by simulating a set of test images using the Khoros image processing system. Even though the work was focused on developing low resolution marking technology, the resulting family of dot generators can be applied also in other halftoning application areas including high resolution printing technology.

  17. Efficient conformational space exploration in ab initio protein folding simulation.

    PubMed

    Ullah, Ahammed; Ahmed, Nasif; Pappu, Subrata Dey; Shatabda, Swakkhar; Ullah, A Z M Dayem; Rahman, M Sohel

    2015-08-01

    Ab initio protein folding simulation largely depends on knowledge-based energy functions that are derived from known protein structures using statistical methods. These knowledge-based energy functions provide us with a good approximation of real protein energetics. However, these energy functions are not very informative for search algorithms and fail to distinguish the types of amino acid interactions that contribute largely to the energy function from those that do not. As a result, search algorithms frequently get trapped into the local minima. On the other hand, the hydrophobic-polar (HP) model considers hydrophobic interactions only. The simplified nature of HP energy function makes it limited only to a low-resolution model. In this paper, we present a strategy to derive a non-uniform scaled version of the real 20×20 pairwise energy function. The non-uniform scaling helps tackle the difficulty faced by a real energy function, whereas the integration of 20×20 pairwise information overcomes the limitations faced by the HP energy function. Here, we have applied a derived energy function with a genetic algorithm on discrete lattices. On a standard set of benchmark protein sequences, our approach significantly outperforms the state-of-the-art methods for similar models. Our approach has been able to explore regions of the conformational space which all the previous methods have failed to explore. Effectiveness of the derived energy function is presented by showing qualitative differences and similarities of the sampled structures to the native structures. Number of objective function evaluation in a single run of the algorithm is used as a comparison metric to demonstrate efficiency.

  18. Refined Genetic Algorithms for Polypeptide Structure Prediction.

    DTIC Science & Technology

    1996-12-01

    16 I I I. Algorithm Analysis, Design , and Implemen tation : : : : : : : : : : : : : : : : : : : : : : : : : 18 3.1 Analysis...21 3.2 Algorithm Design and Implemen tation : : : : : : : : : : : : : : : : : : : : : : : : : 22 3.2.1...26 IV. Exp erimen t Design

  19. Comparing genetic algorithm and particle swarm optimization for solving capacitated vehicle routing problem

    NASA Astrophysics Data System (ADS)

    Iswari, T.; Asih, A. M. S.

    2018-04-01

    In the logistics system, transportation plays an important role to connect every element in the supply chain, but it can produces the greatest cost. Therefore, it is important to make the transportation costs as minimum as possible. Reducing the transportation cost can be done in several ways. One of the ways to minimizing the transportation cost is by optimizing the routing of its vehicles. It refers to Vehicle Routing Problem (VRP). The most common type of VRP is Capacitated Vehicle Routing Problem (CVRP). In CVRP, the vehicles have their own capacity and the total demands from the customer should not exceed the capacity of the vehicle. CVRP belongs to the class of NP-hard problems. These NP-hard problems make it more complex to solve such that exact algorithms become highly time-consuming with the increases in problem sizes. Thus, for large-scale problem instances, as typically found in industrial applications, finding an optimal solution is not practicable. Therefore, this paper uses two kinds of metaheuristics approach to solving CVRP. Those are Genetic Algorithm and Particle Swarm Optimization. This paper compares the results of both algorithms and see the performance of each algorithm. The results show that both algorithms perform well in solving CVRP but still needs to be improved. From algorithm testing and numerical example, Genetic Algorithm yields a better solution than Particle Swarm Optimization in total distance travelled.

  20. Panmictic and Clonal Evolution on a Single Patchy Resource Produces Polymorphic Foraging Guilds

    PubMed Central

    Getz, Wayne M.; Salter, Richard; Lyons, Andrew J.; Sippl-Swezey, Nicolas

    2015-01-01

    We develop a stochastic, agent-based model to study how genetic traits and experiential changes in the state of agents and available resources influence individuals’ foraging and movement behaviors. These behaviors are manifest as decisions on when to stay and exploit a current resource patch or move to a particular neighboring patch, based on information of the resource qualities of the patches and the anticipated level of intraspecific competition within patches. We use a genetic algorithm approach and an individual’s biomass as a fitness surrogate to explore the foraging strategy diversity of evolving guilds under clonal versus hermaphroditic sexual reproduction. We first present the resource exploitation processes, movement on cellular arrays, and genetic algorithm components of the model. We then discuss their implementation on the Nova software platform. This platform seamlessly combines the dynamical systems modeling of consumer-resource interactions with agent-based modeling of individuals moving over a landscapes, using an architecture that lays transparent the following four hierarchical simulation levels: 1.) within-patch consumer-resource dynamics, 2.) within-generation movement and competition mitigation processes, 3.) across-generation evolutionary processes, and 4.) multiple runs to generate the statistics needed for comparative analyses. The focus of our analysis is on the question of how the biomass production efficiency and the diversity of guilds of foraging strategy types, exploiting resources over a patchy landscape, evolve under clonal versus random hermaphroditic sexual reproduction. Our results indicate greater biomass production efficiency under clonal reproduction only at higher population densities, and demonstrate that polymorphisms evolve and are maintained under random mating systems. The latter result questions the notion that some type of associative mating structure is needed to maintain genetic polymorphisms among individuals exploiting a common patchy resource on an otherwise spatially homogeneous landscape. PMID:26274613

  1. Collective interaction effects associated with mammalian behavioral traits reveal genetic factors connecting fear and hemostasis.

    PubMed

    Woo, Hyung Jun; Reifman, Jaques

    2018-06-05

    Investigation of the genetic architectures that influence the behavioral traits of animals can provide important insights into human neuropsychiatric phenotypes. These traits, however, are often highly polygenic, with individual loci contributing only small effects to the overall association. The polygenicity makes it challenging to explain, for example, the widely observed comorbidity between stress and cardiac disease. We present an algorithm for inferring the collective association of a large number of interacting gene variants with a quantitative trait. Using simulated data, we demonstrate that by taking into account the non-uniform distribution of genotypes within a cohort, we can achieve greater power than regression-based methods for high-dimensional inference. We analyzed genome-wide data sets of outbred mice and pet dogs, and found neurobiological pathways whose associations with behavioral traits arose primarily from interaction effects: γ-carboxylated coagulation factors and downstream neuronal signaling were highly associated with conditioned fear, consistent with our previous finding in human post-traumatic stress disorder (PTSD) data. Prepulse inhibition in mice was associated with serotonin transporter and platelet homeostasis, and noise-induced fear in dogs with hemostasis. Our findings suggest a novel explanation for the observed comorbidity between PTSD/anxiety and cardiovascular diseases: key coagulation factors modulating hemostasis also regulate synaptic plasticity affecting the learning and extinction of fear.

  2. A Study of Penalty Function Methods for Constraint Handling with Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Ortiz, Francisco

    2004-01-01

    COMETBOARDS (Comparative Evaluation Testbed of Optimization and Analysis Routines for Design of Structures) is a design optimization test bed that can evaluate the performance of several different optimization algorithms. A few of these optimization algorithms are the sequence of unconstrained minimization techniques (SUMT), sequential linear programming (SLP) and the sequential quadratic programming techniques (SQP). A genetic algorithm (GA) is a search technique that is based on the principles of natural selection or "survival of the fittest". Instead of using gradient information, the GA uses the objective function directly in the search. The GA searches the solution space by maintaining a population of potential solutions. Then, using evolving operations such as recombination, mutation and selection, the GA creates successive generations of solutions that will evolve and take on the positive characteristics of their parents and thus gradually approach optimal or near-optimal solutions. By using the objective function directly in the search, genetic algorithms can be effectively applied in non-convex, highly nonlinear, complex problems. The genetic algorithm is not guaranteed to find the global optimum, but it is less likely to get trapped at a local optimum than traditional gradient-based search methods when the objective function is not smooth and generally well behaved. The purpose of this research is to assist in the integration of genetic algorithm (GA) into COMETBOARDS. COMETBOARDS cast the design of structures as a constrained nonlinear optimization problem. One method used to solve constrained optimization problem with a GA to convert the constrained optimization problem into an unconstrained optimization problem by developing a penalty function that penalizes infeasible solutions. There have been several suggested penalty function in the literature each with there own strengths and weaknesses. A statistical analysis of some suggested penalty functions is performed in this study. Also, a response surface approach to robust design is used to develop a new penalty function approach. This new penalty function approach is then compared with the other existing penalty functions.

  3. A review of estimation of distribution algorithms in bioinformatics

    PubMed Central

    Armañanzas, Rubén; Inza, Iñaki; Santana, Roberto; Saeys, Yvan; Flores, Jose Luis; Lozano, Jose Antonio; Peer, Yves Van de; Blanco, Rosa; Robles, Víctor; Bielza, Concha; Larrañaga, Pedro

    2008-01-01

    Evolutionary search algorithms have become an essential asset in the algorithmic toolbox for solving high-dimensional optimization problems in across a broad range of bioinformatics problems. Genetic algorithms, the most well-known and representative evolutionary search technique, have been the subject of the major part of such applications. Estimation of distribution algorithms (EDAs) offer a novel evolutionary paradigm that constitutes a natural and attractive alternative to genetic algorithms. They make use of a probabilistic model, learnt from the promising solutions, to guide the search process. In this paper, we set out a basic taxonomy of EDA techniques, underlining the nature and complexity of the probabilistic model of each EDA variant. We review a set of innovative works that make use of EDA techniques to solve challenging bioinformatics problems, emphasizing the EDA paradigm's potential for further research in this domain. PMID:18822112

  4. A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems

    PubMed Central

    Cao, Leilei; Xu, Lihong; Goodman, Erik D.

    2016-01-01

    A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared. PMID:27293421

  5. A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems.

    PubMed

    Cao, Leilei; Xu, Lihong; Goodman, Erik D

    2016-01-01

    A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared.

  6. Optimizing Support Vector Machine Parameters with Genetic Algorithm for Credit Risk Assessment

    NASA Astrophysics Data System (ADS)

    Manurung, Jonson; Mawengkang, Herman; Zamzami, Elviawaty

    2017-12-01

    Support vector machine (SVM) is a popular classification method known to have strong generalization capabilities. SVM can solve the problem of classification and linear regression or nonlinear kernel which can be a learning algorithm for the ability of classification and regression. However, SVM also has a weakness that is difficult to determine the optimal parameter value. SVM calculates the best linear separator on the input feature space according to the training data. To classify data which are non-linearly separable, SVM uses kernel tricks to transform the data into a linearly separable data on a higher dimension feature space. The kernel trick using various kinds of kernel functions, such as : linear kernel, polynomial, radial base function (RBF) and sigmoid. Each function has parameters which affect the accuracy of SVM classification. To solve the problem genetic algorithms are proposed to be applied as the optimal parameter value search algorithm thus increasing the best classification accuracy on SVM. Data taken from UCI repository of machine learning database: Australian Credit Approval. The results show that the combination of SVM and genetic algorithms is effective in improving classification accuracy. Genetic algorithms has been shown to be effective in systematically finding optimal kernel parameters for SVM, instead of randomly selected kernel parameters. The best accuracy for data has been upgraded from kernel Linear: 85.12%, polynomial: 81.76%, RBF: 77.22% Sigmoid: 78.70%. However, for bigger data sizes, this method is not practical because it takes a lot of time.

  7. GAGA: a new algorithm for genomic inference of geographic ancestry reveals fine level population substructure in Europeans.

    PubMed

    Lao, Oscar; Liu, Fan; Wollstein, Andreas; Kayser, Manfred

    2014-02-01

    Attempts to detect genetic population substructure in humans are troubled by the fact that the vast majority of the total amount of observed genetic variation is present within populations rather than between populations. Here we introduce a new algorithm for transforming a genetic distance matrix that reduces the within-population variation considerably. Extensive computer simulations revealed that the transformed matrix captured the genetic population differentiation better than the original one which was based on the T1 statistic. In an empirical genomic data set comprising 2,457 individuals from 23 different European subpopulations, the proportion of individuals that were determined as a genetic neighbour to another individual from the same sampling location increased from 25% with the original matrix to 52% with the transformed matrix. Similarly, the percentage of genetic variation explained between populations by means of Analysis of Molecular Variance (AMOVA) increased from 1.62% to 7.98%. Furthermore, the first two dimensions of a classical multidimensional scaling (MDS) using the transformed matrix explained 15% of the variance, compared to 0.7% obtained with the original matrix. Application of MDS with Mclust, SPA with Mclust, and GemTools algorithms to the same dataset also showed that the transformed matrix gave a better association of the genetic clusters with the sampling locations, and particularly so when it was used in the AMOVA framework with a genetic algorithm. Overall, the new matrix transformation introduced here substantially reduces the within population genetic differentiation, and can be broadly applied to methods such as AMOVA to enhance their sensitivity to reveal population substructure. We herewith provide a publically available (http://www.erasmusmc.nl/fmb/resources/GAGA) model-free method for improved genetic population substructure detection that can be applied to human as well as any other species data in future studies relevant to evolutionary biology, behavioural ecology, medicine, and forensics.

  8. Comparative Analysis of Rank Aggregation Techniques for Metasearch Using Genetic Algorithm

    ERIC Educational Resources Information Center

    Kaur, Parneet; Singh, Manpreet; Singh Josan, Gurpreet

    2017-01-01

    Rank Aggregation techniques have found wide applications for metasearch along with other streams such as Sports, Voting System, Stock Markets, and Reduction in Spam. This paper presents the optimization of rank lists for web queries put by the user on different MetaSearch engines. A metaheuristic approach such as Genetic algorithm based rank…

  9. Finding Patterns of Emergence in Science and Technology

    DTIC Science & Technology

    2012-09-24

    formal evaluation scheduled – Case Studies, Eight Examples: Tissue Engineering, Cold Fusion, RF Metamaterials, DNA Microarrays, Genetic Algorithms, RNAi...emerging capabilities Case Studies, Eight Examples: • Tissue Engineering, Cold Fusion, RF Metamaterials, DNA Microarrays, Genetic Algorithms...Evidence Quality (i.e., the rubric ) and deliver comprehensible evidential support for nomination • Demonstrate proof-of-concept nomination for Chinese

  10. Validation Test Report for a Genetic Algorithm in the Glider Observation STrategies (GOST 1.0) Project: Sensitivity Studies

    DTIC Science & Technology

    2012-08-15

    Environmental Model ( GDEM ) 72 levels) was conserved in the interpolated profiles and small variations in the vertical field may have lead to large...Planner ETKF Ensemble Transform Kalman Filter G8NCOM 1/8⁰ Global NCOM GA Genetic Algorithm GDEM Generalized Digital Environmental Model GOST

  11. Fuzzy Logic, Neural Networks, Genetic Algorithms: Views of Three Artificial Intelligence Concepts Used in Modeling Scientific Systems

    ERIC Educational Resources Information Center

    Sunal, Cynthia Szymanski; Karr, Charles L.; Sunal, Dennis W.

    2003-01-01

    Students' conceptions of three major artificial intelligence concepts used in the modeling of systems in science, fuzzy logic, neural networks, and genetic algorithms were investigated before and after a higher education science course. Students initially explored their prior ideas related to the three concepts through active tasks. Then,…

  12. Process optimization of rolling for zincked sheet technology using response surface methodology and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Ji, Liang-Bo; Chen, Fang

    2017-07-01

    Numerical simulation and intelligent optimization technology were adopted for rolling and extrusion of zincked sheet. By response surface methodology (RSM), genetic algorithm (GA) and data processing technology, an efficient optimization of process parameters for rolling of zincked sheet was investigated. The influence trend of roller gap, rolling speed and friction factor effects on reduction rate and plate shortening rate were analyzed firstly. Then a predictive response surface model for comprehensive quality index of part was created using RSM. Simulated and predicted values were compared. Through genetic algorithm method, the optimal process parameters for the forming of rolling were solved. They were verified and the optimum process parameters of rolling were obtained. It is feasible and effective.

  13. Genetic Algorithm Design of a 3D Printed Heat Sink

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Tong; Ozpineci, Burak; Ayers, Curtis William

    2016-01-01

    In this paper, a genetic algorithm- (GA-) based approach is discussed for designing heat sinks based on total heat generation and dissipation for a pre-specified size andshape. This approach combines random iteration processesand genetic algorithms with finite element analysis (FEA) to design the optimized heat sink. With an approach that prefers survival of the fittest , a more powerful heat sink can bedesigned which can cool power electronics more efficiently. Some of the resulting designs can only be 3D printed due totheir complexity. In addition to describing the methodology, this paper also includes comparisons of different cases to evaluate themore » performance of the newly designed heat sinkcompared to commercially available heat sinks.« less

  14. Logistics Distribution Center Location Evaluation Based on Genetic Algorithm and Fuzzy Neural Network

    NASA Astrophysics Data System (ADS)

    Shao, Yuxiang; Chen, Qing; Wei, Zhenhua

    Logistics distribution center location evaluation is a dynamic, fuzzy, open and complicated nonlinear system, which makes it difficult to evaluate the distribution center location by the traditional analysis method. The paper proposes a distribution center location evaluation system which uses the fuzzy neural network combined with the genetic algorithm. In this model, the neural network is adopted to construct the fuzzy system. By using the genetic algorithm, the parameters of the neural network are optimized and trained so as to improve the fuzzy system’s abilities of self-study and self-adaptation. At last, the sampled data are trained and tested by Matlab software. The simulation results indicate that the proposed identification model has very small errors.

  15. A genetic algorithm solution to the unit commitment problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazarlis, S.A.; Bakirtzis, A.G.; Petridis, V.

    1996-02-01

    This paper presents a Genetic Algorithm (GA) solution to the Unit Commitment problem. GAs are general purpose optimization techniques based on principles inspired from the biological evolution using metaphors of mechanisms such as natural selection, genetic recombination and survival of the fittest. A simple Ga algorithm implementation using the standard crossover and mutation operators could locate near optimal solutions but in most cases failed to converge to the optimal solution. However, using the Varying Quality Function technique and adding problem specific operators, satisfactory solutions to the Unit Commitment problem were obtained. Test results for systems of up to 100 unitsmore » and comparisons with results obtained using Lagrangian Relaxation and Dynamic Programming are also reported.« less

  16. On the Optimization of Aerospace Plane Ascent Trajectory

    NASA Astrophysics Data System (ADS)

    Al-Garni, Ahmed; Kassem, Ayman Hamdy

    A hybrid heuristic optimization technique based on genetic algorithms and particle swarm optimization has been developed and tested for trajectory optimization problems with multi-constraints and a multi-objective cost function. The technique is used to calculate control settings for two types for ascending trajectories (constant dynamic pressure and minimum-fuel-minimum-heat) for a two-dimensional model of an aerospace plane. A thorough statistical analysis is done on the hybrid technique to make comparisons with both basic genetic algorithms and particle swarm optimization techniques with respect to convergence and execution time. Genetic algorithm optimization showed better execution time performance while particle swarm optimization showed better convergence performance. The hybrid optimization technique, benefiting from both techniques, showed superior robust performance compromising convergence trends and execution time.

  17. Preliminary Design of a Manned Nuclear Electric Propulsion Vehicle Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Irwin, Ryan W.; Tinker, Michael L.

    2005-01-01

    Nuclear electric propulsion (NEP) vehicles will be needed for future manned missions to Mars and beyond. Candidate designs must be identified for further detailed design from a large array of possibilities. Genetic algorithms have proven their utility in conceptual design studies by effectively searching a large design space to pinpoint unique optimal designs. This research combined analysis codes for NEP subsystems with a genetic algorithm. The use of penalty functions with scaling ratios was investigated to increase computational efficiency. Also, the selection of design variables for optimization was considered to reduce computation time without losing beneficial design search space. Finally, trend analysis of a reference mission to the asteroids yielded a group of candidate designs for further analysis.

  18. Evaluation of Genetic Algorithm Concepts using Model Problems. Part 1; Single-Objective Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Pulliam, Thomas H.

    2003-01-01

    A genetic-algorithm-based optimization approach is described and evaluated using a simple hill-climbing model problem. The model problem utilized herein allows for the broad specification of a large number of search spaces including spaces with an arbitrary number of genes or decision variables and an arbitrary number hills or modes. In the present study, only single objective problems are considered. Results indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable, providing optimal results for all problems attempted. The most difficult problems - those with large hyper-volumes and multi-mode search spaces containing a large number of genes - require a large number of function evaluations for GA convergence, but they always converge.

  19. Network-based study reveals potential infection pathways of hepatitis-C leading to various diseases.

    PubMed

    Mukhopadhyay, Anirban; Maulik, Ujjwal

    2014-01-01

    Protein-protein interaction network-based study of viral pathogenesis has been gaining popularity among computational biologists in recent days. In the present study we attempt to investigate the possible pathways of hepatitis-C virus (HCV) infection by integrating the HCV-human interaction network, human protein interactome and human genetic disease association network. We have proposed quasi-biclique and quasi-clique mining algorithms to integrate these three networks to identify infection gateway host proteins and possible pathways of HCV pathogenesis leading to various diseases. Integrated study of three networks, namely HCV-human interaction network, human protein interaction network, and human proteins-disease association network reveals potential pathways of infection by the HCV that lead to various diseases including cancers. The gateway proteins have been found to be biologically coherent and have high degrees in human interactome compared to the other virus-targeted proteins. The analyses done in this study provide possible targets for more effective anti-hepatitis-C therapeutic involvement.

  20. Network-Based Study Reveals Potential Infection Pathways of Hepatitis-C Leading to Various Diseases

    PubMed Central

    Mukhopadhyay, Anirban; Maulik, Ujjwal

    2014-01-01

    Protein-protein interaction network-based study of viral pathogenesis has been gaining popularity among computational biologists in recent days. In the present study we attempt to investigate the possible pathways of hepatitis-C virus (HCV) infection by integrating the HCV-human interaction network, human protein interactome and human genetic disease association network. We have proposed quasi-biclique and quasi-clique mining algorithms to integrate these three networks to identify infection gateway host proteins and possible pathways of HCV pathogenesis leading to various diseases. Integrated study of three networks, namely HCV-human interaction network, human protein interaction network, and human proteins-disease association network reveals potential pathways of infection by the HCV that lead to various diseases including cancers. The gateway proteins have been found to be biologically coherent and have high degrees in human interactome compared to the other virus-targeted proteins. The analyses done in this study provide possible targets for more effective anti-hepatitis-C therapeutic involvement. PMID:24743187

  1. Golden Ratio Genetic Algorithm Based Approach for Modelling and Analysis of the Capacity Expansion of Urban Road Traffic Network

    PubMed Central

    Zhang, Lun; Zhang, Meng; Yang, Wenchen; Dong, Decun

    2015-01-01

    This paper presents the modelling and analysis of the capacity expansion of urban road traffic network (ICURTN). Thebilevel programming model is first employed to model the ICURTN, in which the utility of the entire network is maximized with the optimal utility of travelers' route choice. Then, an improved hybrid genetic algorithm integrated with golden ratio (HGAGR) is developed to enhance the local search of simple genetic algorithms, and the proposed capacity expansion model is solved by the combination of the HGAGR and the Frank-Wolfe algorithm. Taking the traditional one-way network and bidirectional network as the study case, three numerical calculations are conducted to validate the presented model and algorithm, and the primary influencing factors on extended capacity model are analyzed. The calculation results indicate that capacity expansion of road network is an effective measure to enlarge the capacity of urban road network, especially on the condition of limited construction budget; the average computation time of the HGAGR is 122 seconds, which meets the real-time demand in the evaluation of the road network capacity. PMID:25802512

  2. New application of intelligent agents in sporadic amyotrophic lateral sclerosis identifies unexpected specific genetic background.

    PubMed

    Penco, Silvana; Buscema, Massimo; Patrosso, Maria Cristina; Marocchi, Alessandro; Grossi, Enzo

    2008-05-30

    Few genetic factors predisposing to the sporadic form of amyotrophic lateral sclerosis (ALS) have been identified, but the pathology itself seems to be a true multifactorial disease in which complex interactions between environmental and genetic susceptibility factors take place. The purpose of this study was to approach genetic data with an innovative statistical method such as artificial neural networks to identify a possible genetic background predisposing to the disease. A DNA multiarray panel was applied to genotype more than 60 polymorphisms within 35 genes selected from pathways of lipid and homocysteine metabolism, regulation of blood pressure, coagulation, inflammation, cellular adhesion and matrix integrity, in 54 sporadic ALS patients and 208 controls. Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis. An unexpected discovery of a strong genetic background in sporadic ALS using a DNA multiarray panel and analytical processing of the data with advanced artificial neural networks was found. The predictive accuracy obtained with Linear Discriminant Analysis and Standard Artificial Neural Networks ranged from 70% to 79% (average 75.31%) and from 69.1 to 86.2% (average 76.6%) respectively. The corresponding value obtained with Advanced Intelligent Systems reached an average of 96.0% (range 94.4 to 97.6%). This latter approach allowed the identification of seven genetic variants essential to differentiate cases from controls: apolipoprotein E arg158cys; hepatic lipase -480 C/T; endothelial nitric oxide synthase 690 C/T and glu298asp; vitamin K-dependent coagulation factor seven arg353glu, glycoprotein Ia/IIa 873 G/A and E-selectin ser128arg. This study provides an alternative and reliable method to approach complex diseases. Indeed, the application of a novel artificial intelligence-based method offers a new insight into genetic markers of sporadic ALS pointing out the existence of a strong genetic background.

  3. Data mining in soft computing framework: a survey.

    PubMed

    Mitra, S; Pal, S K; Mitra, P

    2002-01-01

    The present article provides a survey of the available literature on data mining using soft computing. A categorization has been provided based on the different soft computing tools and their hybridizations used, the data mining function implemented, and the preference criterion selected by the model. The utility of the different soft computing methodologies is highlighted. Generally fuzzy sets are suitable for handling the issues related to understandability of patterns, incomplete/noisy data, mixed media information and human interaction, and can provide approximate solutions faster. Neural networks are nonparametric, robust, and exhibit good learning and generalization capabilities in data-rich environments. Genetic algorithms provide efficient search algorithms to select a model, from mixed media data, based on some preference criterion/objective function. Rough sets are suitable for handling different types of uncertainty in data. Some challenges to data mining and the application of soft computing methodologies are indicated. An extensive bibliography is also included.

  4. Glucose Oxidase Biosensor Modeling and Predictors Optimization by Machine Learning Methods.

    PubMed

    Gonzalez-Navarro, Felix F; Stilianova-Stoytcheva, Margarita; Renteria-Gutierrez, Livier; Belanche-Muñoz, Lluís A; Flores-Rios, Brenda L; Ibarra-Esquer, Jorge E

    2016-10-26

    Biosensors are small analytical devices incorporating a biological recognition element and a physico-chemical transducer to convert a biological signal into an electrical reading. Nowadays, their technological appeal resides in their fast performance, high sensitivity and continuous measuring capabilities; however, a full understanding is still under research. This paper aims to contribute to this growing field of biotechnology, with a focus on Glucose-Oxidase Biosensor (GOB) modeling through statistical learning methods from a regression perspective. We model the amperometric response of a GOB with dependent variables under different conditions, such as temperature, benzoquinone, pH and glucose concentrations, by means of several machine learning algorithms. Since the sensitivity of a GOB response is strongly related to these dependent variables, their interactions should be optimized to maximize the output signal, for which a genetic algorithm and simulated annealing are used. We report a model that shows a good generalization error and is consistent with the optimization.

  5. Method for identifying known materials within a mixture of unknowns

    DOEpatents

    Wagner, John S.

    2000-01-01

    One or both of two methods and systems are used to determine concentration of a known material in an unknown mixture on the basis of the measured interaction of electromagnetic waves upon the mixture. One technique is to utilize a multivariate analysis patch technique to develop a library of optimized patches of spectral signatures of known materials containing only those pixels most descriptive of the known materials by an evolutionary algorithm. Identity and concentration of the known materials within the unknown mixture is then determined by minimizing the residuals between the measurements from the library of optimized patches and the measurements from the same pixels from the unknown mixture. Another technique is to train a neural network by the genetic algorithm to determine the identity and concentration of known materials in the unknown mixture. The two techniques may be combined into an expert system providing cross checks for accuracy.

  6. System for identifying known materials within a mixture of unknowns

    DOEpatents

    Wagner, John S.

    1999-01-01

    One or both of two methods and systems are used to determine concentration of a known material in an unknown mixture on the basis of the measured interaction of electromagnetic waves upon the mixture. One technique is to utilize a multivariate analysis patch technique to develop a library of optimized patches of spectral signatures of known materials containing only those pixels most descriptive of the known materials by an evolutionary algorithm. Identity and concentration of the known materials within the unknown mixture is then determined by minimizing the residuals between the measurements from the library of optimized patches and the measurements from the same pixels from the unknown mixture. Another technique is to train a neural network by the genetic algorithm to determine the identity and concentration of known materials in the unknown mixture. The two techniques may be combined into an expert system providing cross checks for accuracy.

  7. Hybrid grammar-based approach to nonlinear dynamical system identification from biological time series

    NASA Astrophysics Data System (ADS)

    McKinney, B. A.; Crowe, J. E., Jr.; Voss, H. U.; Crooke, P. S.; Barney, N.; Moore, J. H.

    2006-02-01

    We introduce a grammar-based hybrid approach to reverse engineering nonlinear ordinary differential equation models from observed time series. This hybrid approach combines a genetic algorithm to search the space of model architectures with a Kalman filter to estimate the model parameters. Domain-specific knowledge is used in a context-free grammar to restrict the search space for the functional form of the target model. We find that the hybrid approach outperforms a pure evolutionary algorithm method, and we observe features in the evolution of the dynamical models that correspond with the emergence of favorable model components. We apply the hybrid method to both artificially generated time series and experimentally observed protein levels from subjects who received the smallpox vaccine. From the observed data, we infer a cytokine protein interaction network for an individual’s response to the smallpox vaccine.

  8. System for identifying known materials within a mixture of unknowns

    DOEpatents

    Wagner, J.S.

    1999-07-20

    One or both of two methods and systems are used to determine concentration of a known material in an unknown mixture on the basis of the measured interaction of electromagnetic waves upon the mixture. One technique is to utilize a multivariate analysis patch technique to develop a library of optimized patches of spectral signatures of known materials containing only those pixels most descriptive of the known materials by an evolutionary algorithm. Identity and concentration of the known materials within the unknown mixture is then determined by minimizing the residuals between the measurements from the library of optimized patches and the measurements from the same pixels from the unknown mixture. Another technique is to train a neural network by the genetic algorithm to determine the identity and concentration of known materials in the unknown mixture. The two techniques may be combined into an expert system providing cross checks for accuracy. 37 figs.

  9. Evidence for the involvement of genetic variation in the oxytocin receptor gene (OXTR) in the etiology of autistic disorders on high-functioning level.

    PubMed

    Wermter, Anne-Kathrin; Kamp-Becker, Inge; Hesse, Philipp; Schulte-Körne, Gerd; Strauch, Konstantin; Remschmidt, Helmut

    2010-03-05

    An increasing number of animal studies advert to a substantial role of the neuropeptide oxytocin in the regulation of social attachment and affiliation. Furthermore, animal studies showed anxiety and stress-reduced effects of oxytocin. First human studies confirm these findings in animal studies and implicate a crucial role of oxytocin in human social attachment behavior and in social interactions. Thus, the oxytocin system might be involved in the impairment of social interaction and attachment in autism spectrum disorders (ASD). The human oxytocin receptor gene (OXTR) represents a plausible candidate gene for the etiology of ASD. To analyze whether genetic variants in the OXTR gene are associated with ASD we performed family-based single-marker and haplotype association analyses with 22 single nucleotide polymorphisms (SNPs) in the OXTR and its 5' region in 100 families with autistic disorders on high-functioning level (Asperger syndrome (AS), high-functioning autism (HFA), and atypical autism (AA)). Single-marker and haplotype association analyses revealed nominally significant associations of one single SNP and one haplotype with autism, respectively. Furthermore, employing a "reverse phenotyping" approach, patients carrying the haplotype associated with autism showed nominally significant impairments in comparison to noncarriers of the haplotype in items of the Autism Diagnostic Interview-Revised algorithm describing aspects of social interaction and communication. In conclusion, our results implicate that genetic variation in the OXTR gene might be relevant in the etiology of autism on high-functioning level. (c) 2009 Wiley-Liss, Inc.

  10. Genetics in the art and art in genetics.

    PubMed

    Bukvic, Nenad; Elling, John W

    2015-01-15

    "Healing is best accomplished when art and science are conjoined, when body and spirit are probed together", says Bernard Lown, in his book "The Lost Art of Healing". Art has long been a witness to disease either through diseases which affected artists or diseases afflicting objects of their art. In particular, artists have often portrayed genetic disorders and malformations in their work. Sometimes genetic disorders have mystical significance; other times simply have intrinsic interest. Recognizing genetic disorders is also an art form. From the very beginning of my work as a Medical Geneticist I have composed personal "algorithms" to piece together evidence of genetics syndromes and diseases from the observable signs and symptoms. In this paper we apply some 'gestalt' Genetic Syndrome Diagnostic algorithms to virtual patients found in some art masterpieces. In some the diagnosis is clear and in others the artists' depiction only supports a speculative differential diagnosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Production scheduling and rescheduling with genetic algorithms.

    PubMed

    Bierwirth, C; Mattfeld, D C

    1999-01-01

    A general model for job shop scheduling is described which applies to static, dynamic and non-deterministic production environments. Next, a Genetic Algorithm is presented which solves the job shop scheduling problem. This algorithm is tested in a dynamic environment under different workload situations. Thereby, a highly efficient decoding procedure is proposed which strongly improves the quality of schedules. Finally, this technique is tested for scheduling and rescheduling in a non-deterministic environment. It is shown by experiment that conventional methods of production control are clearly outperformed at reasonable run-time costs.

  12. Automatic inference of multicellular regulatory networks using informative priors.

    PubMed

    Sun, Xiaoyun; Hong, Pengyu

    2009-01-01

    To fully understand the mechanisms governing animal development, computational models and algorithms are needed to enable quantitative studies of the underlying regulatory networks. We developed a mathematical model based on dynamic Bayesian networks to model multicellular regulatory networks that govern cell differentiation processes. A machine-learning method was developed to automatically infer such a model from heterogeneous data. We show that the model inference procedure can be greatly improved by incorporating interaction data across species. The proposed approach was applied to C. elegans vulval induction to reconstruct a model capable of simulating C. elegans vulval induction under 73 different genetic conditions.

  13. A platform for evolving intelligently interactive adversaries.

    PubMed

    Fogel, David B; Hays, Timothy J; Johnson, Douglas R

    2006-07-01

    Entertainment software developers face significant challenges in designing games with broad appeal. One of the challenges concerns creating nonplayer (computer-controlled) characters that can adapt their behavior in light of the current and prospective situation, possibly emulating human behaviors. This adaptation should be inherently novel, unrepeatable, yet within the bounds of realism. Evolutionary algorithms provide a suitable method for generating such behaviors. This paper provides background on the entertainment software industry, and details a prior and current effort to create a platform for evolving nonplayer characters with genetic and behavioral traits within a World War I combat flight simulator.

  14. GA(M)E-QSAR: a novel, fully automatic genetic-algorithm-(meta)-ensembles approach for binary classification in ligand-based drug design.

    PubMed

    Pérez-Castillo, Yunierkis; Lazar, Cosmin; Taminau, Jonatan; Froeyen, Mathy; Cabrera-Pérez, Miguel Ángel; Nowé, Ann

    2012-09-24

    Computer-aided drug design has become an important component of the drug discovery process. Despite the advances in this field, there is not a unique modeling approach that can be successfully applied to solve the whole range of problems faced during QSAR modeling. Feature selection and ensemble modeling are active areas of research in ligand-based drug design. Here we introduce the GA(M)E-QSAR algorithm that combines the search and optimization capabilities of Genetic Algorithms with the simplicity of the Adaboost ensemble-based classification algorithm to solve binary classification problems. We also explore the usefulness of Meta-Ensembles trained with Adaboost and Voting schemes to further improve the accuracy, generalization, and robustness of the optimal Adaboost Single Ensemble derived from the Genetic Algorithm optimization. We evaluated the performance of our algorithm using five data sets from the literature and found that it is capable of yielding similar or better classification results to what has been reported for these data sets with a higher enrichment of active compounds relative to the whole actives subset when only the most active chemicals are considered. More important, we compared our methodology with state of the art feature selection and classification approaches and found that it can provide highly accurate, robust, and generalizable models. In the case of the Adaboost Ensembles derived from the Genetic Algorithm search, the final models are quite simple since they consist of a weighted sum of the output of single feature classifiers. Furthermore, the Adaboost scores can be used as ranking criterion to prioritize chemicals for synthesis and biological evaluation after virtual screening experiments.

  15. Genetic algorithms for the vehicle routing problem

    NASA Astrophysics Data System (ADS)

    Volna, Eva

    2016-06-01

    The Vehicle Routing Problem (VRP) is one of the most challenging combinatorial optimization tasks. This problem consists in designing the optimal set of routes for fleet of vehicles in order to serve a given set of customers. Evolutionary algorithms are general iterative algorithms for combinatorial optimization. These algorithms have been found to be very effective and robust in solving numerous problems from a wide range of application domains. This problem is known to be NP-hard; hence many heuristic procedures for its solution have been suggested. For such problems it is often desirable to obtain approximate solutions, so they can be found fast enough and are sufficiently accurate for the purpose. In this paper we have performed an experimental study that indicates the suitable use of genetic algorithms for the vehicle routing problem.

  16. Commensurate distances and similar motifs in genetic congruence and protein interaction networks in yeast

    PubMed Central

    Ye, Ping; Peyser, Brian D; Spencer, Forrest A; Bader, Joel S

    2005-01-01

    Background In a genetic interaction, the phenotype of a double mutant differs from the combined phenotypes of the underlying single mutants. When the single mutants have no growth defect, but the double mutant is lethal or exhibits slow growth, the interaction is termed synthetic lethality or synthetic fitness. These genetic interactions reveal gene redundancy and compensating pathways. Recently available large-scale data sets of genetic interactions and protein interactions in Saccharomyces cerevisiae provide a unique opportunity to elucidate the topological structure of biological pathways and how genes function in these pathways. Results We have defined congruent genes as pairs of genes with similar sets of genetic interaction partners and constructed a genetic congruence network by linking congruent genes. By comparing path lengths in three types of networks (genetic interaction, genetic congruence, and protein interaction), we discovered that high genetic congruence not only exhibits correlation with direct protein interaction linkage but also exhibits commensurate distance with the protein interaction network. However, consistent distances were not observed between genetic and protein interaction networks. We also demonstrated that congruence and protein networks are enriched with motifs that indicate network transitivity, while the genetic network has both transitive (triangle) and intransitive (square) types of motifs. These results suggest that robustness of yeast cells to gene deletions is due in part to two complementary pathways (square motif) or three complementary pathways, any two of which are required for viability (triangle motif). Conclusion Genetic congruence is superior to genetic interaction in prediction of protein interactions and function associations. Genetically interacting pairs usually belong to parallel compensatory pathways, which can generate transitive motifs (any two of three pathways needed) or intransitive motifs (either of two pathways needed). PMID:16283923

  17. Social Media: Menagerie of Metrics

    DTIC Science & Technology

    2010-01-27

    intelligence, an evolutionary algorithm (EA) is a subset of evolutionary computation, a generic population-based metaheuristic optimization algorithm . An EA...Cloning - 22 Animals were cloned to date; genetic algorithms can help prediction (e.g. “elitism” - attempts to ensure selection by including performers...28, 2010 Evolutionary Algorithm • Evolutionary algorithm From Wikipedia, the free encyclopedia Artificial intelligence portal In artificial

  18. A Parallel Genetic Algorithm for Automated Electronic Circuit Design

    NASA Technical Reports Server (NTRS)

    Lohn, Jason D.; Colombano, Silvano P.; Haith, Gary L.; Stassinopoulos, Dimitris; Norvig, Peter (Technical Monitor)

    2000-01-01

    We describe a parallel genetic algorithm (GA) that automatically generates circuit designs using evolutionary search. A circuit-construction programming language is introduced and we show how evolution can generate practical analog circuit designs. Our system allows circuit size (number of devices), circuit topology, and device values to be evolved. We present experimental results as applied to analog filter and amplifier design tasks.

  19. Optimizing simulated fertilizer additions using a genetic algorithm with a nutrient uptake model

    Treesearch

    Wendell P. Cropper; N.B. Comerford

    2005-01-01

    Intensive management of pine plantations in the southeastern coastal plain typically involves weed and pest control, and the addition of fertilizer to meet the high nutrient demand of rapidly growing pines. In this study we coupled a mechanistic nutrient uptake model (SSAND, soil supply and nutrient demand) with a genetic algorithm (GA) in order to estimate the minimum...

  20. Automatic Mexico Gulf Oil Spill Detection from Radarsat-2 SAR Satellite Data Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Marghany, Maged

    2016-10-01

    In this work, a genetic algorithm is exploited for automatic detection of oil spills of small and large size. The route is achieved using arrays of RADARSAT-2 SAR ScanSAR Narrow single beam data obtained in the Gulf of Mexico. The study shows that genetic algorithm has automatically segmented the dark spot patches related to small and large oil spill pixels. This conclusion is confirmed by the receiveroperating characteristic (ROC) curve and ground data which have been documented. The ROC curve indicates that the existence of oil slick footprints can be identified with the area under the curve between the ROC curve and the no-discrimination line of 90%, which is greater than that of other surrounding environmental features. The small oil spill sizes represented 30% of the discriminated oil spill pixels in ROC curve. In conclusion, the genetic algorithm can be used as a tool for the automatic detection of oil spills of either small or large size and the ScanSAR Narrow single beam mode serves as an excellent sensor for oil spill patterns detection and surveying in the Gulf of Mexico.

  1. Improved Cost-Base Design of Water Distribution Networks using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Moradzadeh Azar, Foad; Abghari, Hirad; Taghi Alami, Mohammad; Weijs, Steven

    2010-05-01

    Population growth and progressive extension of urbanization in different places of Iran cause an increasing demand for primary needs. The water, this vital liquid is the most important natural need for human life. Providing this natural need is requires the design and construction of water distribution networks, that incur enormous costs on the country's budget. Any reduction in these costs enable more people from society to access extreme profit least cost. Therefore, investment of Municipal councils need to maximize benefits or minimize expenditures. To achieve this purpose, the engineering design depends on the cost optimization techniques. This paper, presents optimization models based on genetic algorithm(GA) to find out the minimum design cost Mahabad City's (North West, Iran) water distribution network. By designing two models and comparing the resulting costs, the abilities of GA were determined. the GA based model could find optimum pipe diameters to reduce the design costs of network. Results show that the water distribution network design using Genetic Algorithm could lead to reduction of at least 7% in project costs in comparison to the classic model. Keywords: Genetic Algorithm, Optimum Design of Water Distribution Network, Mahabad City, Iran.

  2. A Genetic Algorithm for the Bi-Level Topological Design of Local Area Networks

    PubMed Central

    Camacho-Vallejo, José-Fernando; Mar-Ortiz, Julio; López-Ramos, Francisco; Rodríguez, Ricardo Pedraza

    2015-01-01

    Local access networks (LAN) are commonly used as communication infrastructures which meet the demand of a set of users in the local environment. Usually these networks consist of several LAN segments connected by bridges. The topological LAN design bi-level problem consists on assigning users to clusters and the union of clusters by bridges in order to obtain a minimum response time network with minimum connection cost. Therefore, the decision of optimally assigning users to clusters will be made by the leader and the follower will make the decision of connecting all the clusters while forming a spanning tree. In this paper, we propose a genetic algorithm for solving the bi-level topological design of a Local Access Network. Our solution method considers the Stackelberg equilibrium to solve the bi-level problem. The Stackelberg-Genetic algorithm procedure deals with the fact that the follower’s problem cannot be optimally solved in a straightforward manner. The computational results obtained from two different sets of instances show that the performance of the developed algorithm is efficient and that it is more suitable for solving the bi-level problem than a previous Nash-Genetic approach. PMID:26102502

  3. Prediction of road traffic death rate using neural networks optimised by genetic algorithm.

    PubMed

    Jafari, Seyed Ali; Jahandideh, Sepideh; Jahandideh, Mina; Asadabadi, Ebrahim Barzegari

    2015-01-01

    Road traffic injuries (RTIs) are realised as a main cause of public health problems at global, regional and national levels. Therefore, prediction of road traffic death rate will be helpful in its management. Based on this fact, we used an artificial neural network model optimised through Genetic algorithm to predict mortality. In this study, a five-fold cross-validation procedure on a data set containing total of 178 countries was used to verify the performance of models. The best-fit model was selected according to the root mean square errors (RMSE). Genetic algorithm, as a powerful model which has not been introduced in prediction of mortality to this extent in previous studies, showed high performance. The lowest RMSE obtained was 0.0808. Such satisfactory results could be attributed to the use of Genetic algorithm as a powerful optimiser which selects the best input feature set to be fed into the neural networks. Seven factors have been known as the most effective factors on the road traffic mortality rate by high accuracy. The gained results displayed that our model is very promising and may play a useful role in developing a better method for assessing the influence of road traffic mortality risk factors.

  4. Genetic Algorithm Optimizes Q-LAW Control Parameters

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard

    2008-01-01

    A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.

  5. Genetic algorithms used for the optimization of light-emitting diodes and solar thermal collectors

    NASA Astrophysics Data System (ADS)

    Mayer, Alexandre; Bay, Annick; Gaouyat, Lucie; Nicolay, Delphine; Carletti, Timoteo; Deparis, Olivier

    2014-09-01

    We present a genetic algorithm (GA) we developed for the optimization of light-emitting diodes (LED) and solar thermal collectors. The surface of a LED can be covered by periodic structures whose geometrical and material parameters must be adjusted in order to maximize the extraction of light. The optimization of these parameters by the GA enabled us to get a light-extraction efficiency η of 11.0% from a GaN LED (for comparison, the flat material has a light-extraction efficiency η of only 3.7%). The solar thermal collector we considered consists of a waffle-shaped Al substrate with NiCrOx and SnO2 conformal coatings. We must in this case maximize the solar absorption α while minimizing the thermal emissivity ɛ in the infrared. A multi-objective genetic algorithm has to be implemented in this case in order to determine optimal geometrical parameters. The parameters we obtained using the multi-objective GA enable α~97.8% and ɛ~4.8%, which improves results achieved previously when considering a flat substrate. These two applications demonstrate the interest of genetic algorithms for addressing complex problems in physics.

  6. Locating Critical Circular and Unconstrained Failure Surface in Slope Stability Analysis with Tailored Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Pasik, Tomasz; van der Meij, Raymond

    2017-12-01

    This article presents an efficient search method for representative circular and unconstrained slip surfaces with the use of the tailored genetic algorithm. Searches for unconstrained slip planes with rigid equilibrium methods are yet uncommon in engineering practice, and little publications regarding truly free slip planes exist. The proposed method presents an effective procedure being the result of the right combination of initial population type, selection, crossover and mutation method. The procedure needs little computational effort to find the optimum, unconstrained slip plane. The methodology described in this paper is implemented using Mathematica. The implementation, along with further explanations, is fully presented so the results can be reproduced. Sample slope stability calculations are performed for four cases, along with a detailed result interpretation. Two cases are compared with analyses described in earlier publications. The remaining two are practical cases of slope stability analyses of dikes in Netherlands. These four cases show the benefits of analyzing slope stability with a rigid equilibrium method combined with a genetic algorithm. The paper concludes by describing possibilities and limitations of using the genetic algorithm in the context of the slope stability problem.

  7. Optimization of HAART with genetic algorithms and agent-based models of HIV infection.

    PubMed

    Castiglione, F; Pappalardo, F; Bernaschi, M; Motta, S

    2007-12-15

    Highly Active AntiRetroviral Therapies (HAART) can prolong life significantly to people infected by HIV since, although unable to eradicate the virus, they are quite effective in maintaining control of the infection. However, since HAART have several undesirable side effects, it is considered useful to suspend the therapy according to a suitable schedule of Structured Therapeutic Interruptions (STI). In the present article we describe an application of genetic algorithms (GA) aimed at finding the optimal schedule for a HAART simulated with an agent-based model (ABM) of the immune system that reproduces the most significant features of the response of an organism to the HIV-1 infection. The genetic algorithm helps in finding an optimal therapeutic schedule that maximizes immune restoration, minimizes the viral count and, through appropriate interruptions of the therapy, minimizes the dose of drug administered to the simulated patient. To validate the efficacy of the therapy that the genetic algorithm indicates as optimal, we ran simulations of opportunistic diseases and found that the selected therapy shows the best survival curve among the different simulated control groups. A version of the C-ImmSim simulator is available at http://www.iac.cnr.it/~filippo/c-ImmSim.html

  8. Design of thrust vectoring exhaust nozzles for real-time applications using neural networks

    NASA Technical Reports Server (NTRS)

    Prasanth, Ravi K.; Markin, Robert E.; Whitaker, Kevin W.

    1991-01-01

    Thrust vectoring continues to be an important issue in military aircraft system designs. A recently developed concept of vectoring aircraft thrust makes use of flexible exhaust nozzles. Subtle modifications in the nozzle wall contours produce a non-uniform flow field containing a complex pattern of shock and expansion waves. The end result, due to the asymmetric velocity and pressure distributions, is vectored thrust. Specification of the nozzle contours required for a desired thrust vector angle (an inverse design problem) has been achieved with genetic algorithms. This approach is computationally intensive and prevents the nozzles from being designed in real-time, which is necessary for an operational aircraft system. An investigation was conducted into using genetic algorithms to train a neural network in an attempt to obtain, in real-time, two-dimensional nozzle contours. Results show that genetic algorithm trained neural networks provide a viable, real-time alternative for designing thrust vectoring nozzles contours. Thrust vector angles up to 20 deg were obtained within an average error of 0.0914 deg. The error surfaces encountered were highly degenerate and thus the robustness of genetic algorithms was well suited for minimizing global errors.

  9. Flexible Job-Shop Scheduling with Dual-Resource Constraints to Minimize Tardiness Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Paksi, A. B. N.; Ma'ruf, A.

    2016-02-01

    In general, both machines and human resources are needed for processing a job on production floor. However, most classical scheduling problems have ignored the possible constraint caused by availability of workers and have considered only machines as a limited resource. In addition, along with production technology development, routing flexibility appears as a consequence of high product variety and medium demand for each product. Routing flexibility is caused by capability of machines that offers more than one machining process. This paper presents a method to address scheduling problem constrained by both machines and workers, considering routing flexibility. Scheduling in a Dual-Resource Constrained shop is categorized as NP-hard problem that needs long computational time. Meta-heuristic approach, based on Genetic Algorithm, is used due to its practical implementation in industry. Developed Genetic Algorithm uses indirect chromosome representative and procedure to transform chromosome into Gantt chart. Genetic operators, namely selection, elitism, crossover, and mutation are developed to search the best fitness value until steady state condition is achieved. A case study in a manufacturing SME is used to minimize tardiness as objective function. The algorithm has shown 25.6% reduction of tardiness, equal to 43.5 hours.

  10. A new optimized GA-RBF neural network algorithm.

    PubMed

    Jia, Weikuan; Zhao, Dean; Shen, Tian; Su, Chunyang; Hu, Chanli; Zhao, Yuyan

    2014-01-01

    When confronting the complex problems, radial basis function (RBF) neural network has the advantages of adaptive and self-learning ability, but it is difficult to determine the number of hidden layer neurons, and the weights learning ability from hidden layer to the output layer is low; these deficiencies easily lead to decreasing learning ability and recognition precision. Aiming at this problem, we propose a new optimized RBF neural network algorithm based on genetic algorithm (GA-RBF algorithm), which uses genetic algorithm to optimize the weights and structure of RBF neural network; it chooses new ways of hybrid encoding and optimizing simultaneously. Using the binary encoding encodes the number of the hidden layer's neurons and using real encoding encodes the connection weights. Hidden layer neurons number and connection weights are optimized simultaneously in the new algorithm. However, the connection weights optimization is not complete; we need to use least mean square (LMS) algorithm for further leaning, and finally get a new algorithm model. Using two UCI standard data sets to test the new algorithm, the results show that the new algorithm improves the operating efficiency in dealing with complex problems and also improves the recognition precision, which proves that the new algorithm is valid.

  11. A novel hybrid algorithm for the design of the phase diffractive optical elements for beam shaping

    NASA Astrophysics Data System (ADS)

    Jiang, Wenbo; Wang, Jun; Dong, Xiucheng

    2013-02-01

    In this paper, a novel hybrid algorithm for the design of a phase diffractive optical elements (PDOE) is proposed. It combines the genetic algorithm (GA) with the transformable scale BFGS (Broyden, Fletcher, Goldfarb, Shanno) algorithm, the penalty function was used in the cost function definition. The novel hybrid algorithm has the global merits of the genetic algorithm as well as the local improvement capabilities of the transformable scale BFGS algorithm. We designed the PDOE using the conventional simulated annealing algorithm and the novel hybrid algorithm. To compare the performance of two algorithms, three indexes of the diffractive efficiency, uniformity error and the signal-to-noise ratio are considered in numerical simulation. The results show that the novel hybrid algorithm has good convergence property and good stability. As an application example, the PDOE was used for the Gaussian beam shaping; high diffractive efficiency, low uniformity error and high signal-to-noise were obtained. The PDOE can be used for high quality beam shaping such as inertial confinement fusion (ICF), excimer laser lithography, fiber coupling laser diode array, laser welding, etc. It shows wide application value.

  12. Application of artificial neural networks and genetic algorithms to modeling molecular electronic spectra in solution

    NASA Astrophysics Data System (ADS)

    Lilichenko, Mark; Kelley, Anne Myers

    2001-04-01

    A novel approach is presented for finding the vibrational frequencies, Franck-Condon factors, and vibronic linewidths that best reproduce typical, poorly resolved electronic absorption (or fluorescence) spectra of molecules in condensed phases. While calculation of the theoretical spectrum from the molecular parameters is straightforward within the harmonic oscillator approximation for the vibrations, "inversion" of an experimental spectrum to deduce these parameters is not. Standard nonlinear least-squares fitting methods such as Levenberg-Marquardt are highly susceptible to becoming trapped in local minima in the error function unless very good initial guesses for the molecular parameters are made. Here we employ a genetic algorithm to force a broad search through parameter space and couple it with the Levenberg-Marquardt method to speed convergence to each local minimum. In addition, a neural network trained on a large set of synthetic spectra is used to provide an initial guess for the fitting parameters and to narrow the range searched by the genetic algorithm. The combined algorithm provides excellent fits to a variety of single-mode absorption spectra with experimentally negligible errors in the parameters. It converges more rapidly than the genetic algorithm alone and more reliably than the Levenberg-Marquardt method alone, and is robust in the presence of spectral noise. Extensions to multimode systems, and/or to include other spectroscopic data such as resonance Raman intensities, are straightforward.

  13. A novel pipeline based FPGA implementation of a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Thirer, Nonel

    2014-05-01

    To solve problems when an analytical solution is not available, more and more bio-inspired computation techniques have been applied in the last years. Thus, an efficient algorithm is the Genetic Algorithm (GA), which imitates the biological evolution process, finding the solution by the mechanism of "natural selection", where the strong has higher chances to survive. A genetic algorithm is an iterative procedure which operates on a population of individuals called "chromosomes" or "possible solutions" (usually represented by a binary code). GA performs several processes with the population individuals to produce a new population, like in the biological evolution. To provide a high speed solution, pipelined based FPGA hardware implementations are used, with a nstages pipeline for a n-phases genetic algorithm. The FPGA pipeline implementations are constraints by the different execution time of each stage and by the FPGA chip resources. To minimize these difficulties, we propose a bio-inspired technique to modify the crossover step by using non identical twins. Thus two of the chosen chromosomes (parents) will build up two new chromosomes (children) not only one as in classical GA. We analyze the contribution of this method to reduce the execution time in the asynchronous and synchronous pipelines and also the possibility to a cheaper FPGA implementation, by using smaller populations. The full hardware architecture for a FPGA implementation to our target ALTERA development card is presented and analyzed.

  14. Advancing X-ray scattering metrology using inverse genetic algorithms.

    PubMed

    Hannon, Adam F; Sunday, Daniel F; Windover, Donald; Kline, R Joseph

    2016-01-01

    We compare the speed and effectiveness of two genetic optimization algorithms to the results of statistical sampling via a Markov chain Monte Carlo algorithm to find which is the most robust method for determining real space structure in periodic gratings measured using critical dimension small angle X-ray scattering. Both a covariance matrix adaptation evolutionary strategy and differential evolution algorithm are implemented and compared using various objective functions. The algorithms and objective functions are used to minimize differences between diffraction simulations and measured diffraction data. These simulations are parameterized with an electron density model known to roughly correspond to the real space structure of our nanogratings. The study shows that for X-ray scattering data, the covariance matrix adaptation coupled with a mean-absolute error log objective function is the most efficient combination of algorithm and goodness of fit criterion for finding structures with little foreknowledge about the underlying fine scale structure features of the nanograting.

  15. Learning Cue Phrase Patterns from Radiology Reports Using a Genetic Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, Robert M; Beckerman, Barbara G; Potok, Thomas E

    2009-01-01

    Various computer-assisted technologies have been developed to assist radiologists in detecting cancer; however, the algorithms still lack high degrees of sensitivity and specificity, and must undergo machine learning against a training set with known pathologies in order to further refine the algorithms with higher validity of truth. This work describes an approach to learning cue phrase patterns in radiology reports that utilizes a genetic algorithm (GA) as the learning method. The approach described here successfully learned cue phrase patterns for two distinct classes of radiology reports. These patterns can then be used as a basis for automatically categorizing, clustering, ormore » retrieving relevant data for the user.« less

  16. CrowdPhase: crowdsourcing the phase problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorda, Julien; Sawaya, Michael R.; Yeates, Todd O., E-mail: yeates@mbi.ucla.edu

    The idea of attacking the phase problem by crowdsourcing is introduced. Using an interactive, multi-player, web-based system, participants work simultaneously to select phase sets that correspond to better electron-density maps in order to solve low-resolution phasing problems. The human mind innately excels at some complex tasks that are difficult to solve using computers alone. For complex problems amenable to parallelization, strategies can be developed to exploit human intelligence in a collective form: such approaches are sometimes referred to as ‘crowdsourcing’. Here, a first attempt at a crowdsourced approach for low-resolution ab initio phasing in macromolecular crystallography is proposed. A collaborativemore » online game named CrowdPhase was designed, which relies on a human-powered genetic algorithm, where players control the selection mechanism during the evolutionary process. The algorithm starts from a population of ‘individuals’, each with a random genetic makeup, in this case a map prepared from a random set of phases, and tries to cause the population to evolve towards individuals with better phases based on Darwinian survival of the fittest. Players apply their pattern-recognition capabilities to evaluate the electron-density maps generated from these sets of phases and to select the fittest individuals. A user-friendly interface, a training stage and a competitive scoring system foster a network of well trained players who can guide the genetic algorithm towards better solutions from generation to generation via gameplay. CrowdPhase was applied to two synthetic low-resolution phasing puzzles and it was shown that players could successfully obtain phase sets in the 30° phase error range and corresponding molecular envelopes showing agreement with the low-resolution models. The successful preliminary studies suggest that with further development the crowdsourcing approach could fill a gap in current crystallographic methods by making it possible to extract meaningful information in cases where limited resolution might otherwise prevent initial phasing.« less

  17. Trace determination of safranin O dye using ultrasound assisted dispersive solid-phase micro extraction: Artificial neural network-genetic algorithm and response surface methodology.

    PubMed

    Dil, Ebrahim Alipanahpour; Ghaedi, Mehrorang; Asfaram, Arash; Mehrabi, Fatemeh; Bazrafshan, Ali Akbar; Ghaedi, Abdol Mohammad

    2016-11-01

    In this study, ultrasound assisted dispersive solid-phase micro extraction combined with spectrophotometry (USA-DSPME-UV) method based on activated carbon modified with Fe2O3 nanoparticles (Fe2O3-NPs-AC) was developed for pre-concentration and determination of safranin O (SO). It is known that the efficiency of USA-DSPME-UV method may be affected by pH, amount of adsorbent, ultrasound time and eluent volume and the extent and magnitude of their contribution on response (in term of main and interaction part) was studied by using central composite design (CCD) and artificial neural network-genetic algorithms (ANN-GA). Accordingly by adjustment of experimental conditions suggested by ANN-GA at pH 6.5, 1.1mg of adsorbent, 10min ultrasound and 150μL of eluent volume led to achievement of best operation performance like low LOD (6.3ngmL(-1)) and LOQ (17.5ngmL(-1)) in the range of 25-3500ngmL(-1). In following stage, the SO content in real water and wastewater samples with recoveries between 93.27-99.41% with RSD lower than 3% was successfully determined. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Branch-pipe-routing approach for ships using improved genetic algorithm

    NASA Astrophysics Data System (ADS)

    Sui, Haiteng; Niu, Wentie

    2016-09-01

    Branch-pipe routing plays fundamental and critical roles in ship-pipe design. The branch-pipe-routing problem is a complex combinatorial optimization problem and is thus difficult to solve when depending only on human experts. A modified genetic-algorithm-based approach is proposed in this paper to solve this problem. The simplified layout space is first divided into threedimensional (3D) grids to build its mathematical model. Branch pipes in layout space are regarded as a combination of several two-point pipes, and the pipe route between two connection points is generated using an improved maze algorithm. The coding of branch pipes is then defined, and the genetic operators are devised, especially the complete crossover strategy that greatly accelerates the convergence speed. Finally, simulation tests demonstrate the performance of proposed method.

  19. A sustainable genetic algorithm for satellite resource allocation

    NASA Technical Reports Server (NTRS)

    Abbott, R. J.; Campbell, M. L.; Krenz, W. C.

    1995-01-01

    A hybrid genetic algorithm is used to schedule tasks for 8 satellites, which can be modelled as a robot whose task is to retrieve objects from a two dimensional field. The objective is to find a schedule that maximizes the value of objects retrieved. Typical of the real-world tasks to which this corresponds is the scheduling of ground contacts for a communications satellite. An important feature of our application is that the amount of time available for running the scheduler is not necessarily known in advance. This requires that the scheduler produce reasonably good results after a short period but that it also continue to improve its results if allowed to run for a longer period. We satisfy this requirement by developing what we call a sustainable genetic algorithm.

  20. Modeling the Volcanic Source at Long Valley, CA, Using a Genetic Algorithm Technique

    NASA Technical Reports Server (NTRS)

    Tiampo, Kristy F.

    1999-01-01

    In this project, we attempted to model the deformation pattern due to the magmatic source at Long Valley caldera using a real-value coded genetic algorithm (GA) inversion similar to that found in Michalewicz, 1992. The project has been both successful and rewarding. The genetic algorithm, coded in the C programming language, performs stable inversions over repeated trials, with varying initial and boundary conditions. The original model used a GA in which the geophysical information was coded into the fitness function through the computation of surface displacements for a Mogi point source in an elastic half-space. The program was designed to invert for a spherical magmatic source - its depth, horizontal location and volume - using the known surface deformations. It also included the capability of inverting for multiple sources.

  1. Evolutionary Optimization of Yagi-Uda Antennas

    NASA Technical Reports Server (NTRS)

    Lohn, Jason D.; Kraus, William F.; Linden, Derek S.; Colombano, Silvano P.

    2001-01-01

    Yagi-Uda antennas are known to be difficult to design and optimize due to their sensitivity at high gain, and the inclusion of numerous parasitic elements. We present a genetic algorithm-based automated antenna optimization system that uses a fixed Yagi-Uda topology and a byte-encoded antenna representation. The fitness calculation allows the implicit relationship between power gain and sidelobe/backlobe loss to emerge naturally, a technique that is less complex than previous approaches. The genetic operators used are also simpler. Our results include Yagi-Uda antennas that have excellent bandwidth and gain properties with very good impedance characteristics. Results exceeded previous Yagi-Uda antennas produced via evolutionary algorithms by at least 7.8% in mainlobe gain. We also present encouraging preliminary results where a coevolutionary genetic algorithm is used.

  2. Road screening and distribution route multi-objective robust optimization for hazardous materials based on neural network and genetic algorithm.

    PubMed

    Ma, Changxi; Hao, Wei; Pan, Fuquan; Xiang, Wang

    2018-01-01

    Route optimization of hazardous materials transportation is one of the basic steps in ensuring the safety of hazardous materials transportation. The optimization scheme may be a security risk if road screening is not completed before the distribution route is optimized. For road screening issues of hazardous materials transportation, a road screening algorithm of hazardous materials transportation is built based on genetic algorithm and Levenberg-Marquardt neural network (GA-LM-NN) by analyzing 15 attributes data of each road network section. A multi-objective robust optimization model with adjustable robustness is constructed for the hazardous materials transportation problem of single distribution center to minimize transportation risk and time. A multi-objective genetic algorithm is designed to solve the problem according to the characteristics of the model. The algorithm uses an improved strategy to complete the selection operation, applies partial matching cross shift and single ortho swap methods to complete the crossover and mutation operation, and employs an exclusive method to construct Pareto optimal solutions. Studies show that the sets of hazardous materials transportation road can be found quickly through the proposed road screening algorithm based on GA-LM-NN, whereas the distribution route Pareto solutions with different levels of robustness can be found rapidly through the proposed multi-objective robust optimization model and algorithm.

  3. Evolving neural networks with genetic algorithms to study the string landscape

    NASA Astrophysics Data System (ADS)

    Ruehle, Fabian

    2017-08-01

    We study possible applications of artificial neural networks to examine the string landscape. Since the field of application is rather versatile, we propose to dynamically evolve these networks via genetic algorithms. This means that we start from basic building blocks and combine them such that the neural network performs best for the application we are interested in. We study three areas in which neural networks can be applied: to classify models according to a fixed set of (physically) appealing features, to find a concrete realization for a computation for which the precise algorithm is known in principle but very tedious to actually implement, and to predict or approximate the outcome of some involved mathematical computation which performs too inefficient to apply it, e.g. in model scans within the string landscape. We present simple examples that arise in string phenomenology for all three types of problems and discuss how they can be addressed by evolving neural networks from genetic algorithms.

  4. Design optimization of cold-formed steel portal frames taking into account the effect of building topology

    NASA Astrophysics Data System (ADS)

    Phan, Duoc T.; Lim, James B. P.; Sha, Wei; Siew, Calvin Y. M.; Tanyimboh, Tiku T.; Issa, Honar K.; Mohammad, Fouad A.

    2013-04-01

    Cold-formed steel portal frames are a popular form of construction for low-rise commercial, light industrial and agricultural buildings with spans of up to 20 m. In this article, a real-coded genetic algorithm is described that is used to minimize the cost of the main frame of such buildings. The key decision variables considered in this proposed algorithm consist of both the spacing and pitch of the frame as continuous variables, as well as the discrete section sizes. A routine taking the structural analysis and frame design for cold-formed steel sections is embedded into a genetic algorithm. The results show that the real-coded genetic algorithm handles effectively the mixture of design variables, with high robustness and consistency in achieving the optimum solution. All wind load combinations according to Australian code are considered in this research. Results for frames with knee braces are also included, for which the optimization achieved even larger savings in cost.

  5. Optimizing management of the condensing heat and cooling of gases compression in oxy block using of a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Brzęczek, Mateusz; Bartela, Łukasz

    2013-12-01

    This paper presents the parameters of the reference oxy combustion block operating with supercritical steam parameters, equipped with an air separation unit and a carbon dioxide capture and compression installation. The possibility to recover the heat in the analyzed power plant is discussed. The decision variables and the thermodynamic functions for the optimization algorithm were identified. The principles of operation of genetic algorithm and methodology of conducted calculations are presented. The sensitivity analysis was performed for the best solutions to determine the effects of the selected variables on the power and efficiency of the unit. Optimization of the heat recovery from the air separation unit, flue gas condition and CO2 capture and compression installation using genetic algorithm was designed to replace the low-pressure section of the regenerative water heaters of steam cycle in analyzed unit. The result was to increase the power and efficiency of the entire power plant.

  6. A Novel Algorithm Combining Finite State Method and Genetic Algorithm for Solving Crude Oil Scheduling Problem

    PubMed Central

    Duan, Qian-Qian; Yang, Gen-Ke; Pan, Chang-Chun

    2014-01-01

    A hybrid optimization algorithm combining finite state method (FSM) and genetic algorithm (GA) is proposed to solve the crude oil scheduling problem. The FSM and GA are combined to take the advantage of each method and compensate deficiencies of individual methods. In the proposed algorithm, the finite state method makes up for the weakness of GA which is poor at local searching ability. The heuristic returned by the FSM can guide the GA algorithm towards good solutions. The idea behind this is that we can generate promising substructure or partial solution by using FSM. Furthermore, the FSM can guarantee that the entire solution space is uniformly covered. Therefore, the combination of the two algorithms has better global performance than the existing GA or FSM which is operated individually. Finally, a real-life crude oil scheduling problem from the literature is used for conducting simulation. The experimental results validate that the proposed method outperforms the state-of-art GA method. PMID:24772031

  7. Modeling Selection and Extinction Mechanisms of Biological Systems

    NASA Astrophysics Data System (ADS)

    Amirjanov, Adil

    In this paper, the behavior of a genetic algorithm is modeled to enhance its applicability as a modeling tool of biological systems. A new description model for selection mechanism is introduced which operates on a portion of individuals of population. The extinction and recolonization mechanism is modeled, and solving the dynamics analytically shows that the genetic drift in the population with extinction/recolonization is doubled. The mathematical analysis of the interaction between selection and extinction/recolonization processes is carried out to assess the dynamics of motion of the macroscopic statistical properties of population. Computer simulations confirm that the theoretical predictions of described models are in good approximations. A mathematical model of GA dynamics was also examined, which describes the anti-predator vigilance in an animal group with respect to a known analytical solution of the problem, and showed a good agreement between them to find the evolutionarily stable strategies.

  8. CoGAPS matrix factorization algorithm identifies transcriptional changes in AP-2alpha target genes in feedback from therapeutic inhibition of the EGFR network

    PubMed Central

    Thakar, Manjusha; Howard, Jason D.; Kagohara, Luciane T.; Krigsfeld, Gabriel; Ranaweera, Ruchira S.; Hughes, Robert M.; Perez, Jimena; Jones, Siân; Favorov, Alexander V.; Carey, Jacob; Stein-O'Brien, Genevieve; Gaykalova, Daria A.; Ochs, Michael F.; Chung, Christine H.

    2016-01-01

    Patients with oncogene driven tumors are treated with targeted therapeutics including EGFR inhibitors. Genomic data from The Cancer Genome Atlas (TCGA) demonstrates molecular alterations to EGFR, MAPK, and PI3K pathways in previously untreated tumors. Therefore, this study uses bioinformatics algorithms to delineate interactions resulting from EGFR inhibitor use in cancer cells with these genetic alterations. We modify the HaCaT keratinocyte cell line model to simulate cancer cells with constitutive activation of EGFR, HRAS, and PI3K in a controlled genetic background. We then measure gene expression after treating modified HaCaT cells with gefitinib, afatinib, and cetuximab. The CoGAPS algorithm distinguishes a gene expression signature associated with the anticipated silencing of the EGFR network. It also infers a feedback signature with EGFR gene expression itself increasing in cells that are responsive to EGFR inhibitors. This feedback signature has increased expression of several growth factor receptors regulated by the AP-2 family of transcription factors. The gene expression signatures for AP-2alpha are further correlated with sensitivity to cetuximab treatment in HNSCC cell lines and changes in EGFR expression in HNSCC tumors with low CDKN2A gene expression. In addition, the AP-2alpha gene expression signatures are also associated with inhibition of MEK, PI3K, and mTOR pathways in the Library of Integrated Network-Based Cellular Signatures (LINCS) data. These results suggest that AP-2 transcription factors are activated as feedback from EGFR network inhibition and may mediate EGFR inhibitor resistance. PMID:27650546

  9. An experimental-computational platform for investigating microbial interactions and dynamics in communities with two codependent species

    NASA Astrophysics Data System (ADS)

    Fuentes-Cabrera, Miguel; Anderson, John D.; Wilmoth, Jared; Ginovart, Marta; Prats, Clara; Portell-Canal, Xavier; Retterer, Scott

    Microbial interactions are critical for governing community behavior and structure in natural environments. Examination of microbial interactions in the lab involves growth under ideal conditions in batch culture; conditions that occur in nature are, however, characterized by disequilibrium. Of particular interest is the role that system variables play in shaping cell-to-cell interactions and organization at ultrafine spatial scales. We seek to use experiments and agent-based modeling to help discover mechanisms relevant to microbial dynamics and interactions in the environment. Currently, we are using an agent-based model to simulate microbial growth, dynamics and interactions that occur on a microwell-array device developed in our lab. Bacterial cells growing in the microwells of this platform can be studied with high-throughput and high-content image analyses using brightfield and fluorescence microscopy. The agent-based model is written in the language Netlogo, which in turn is ''plugged into'' a computational framework that allows submitting many calculations in parallel for different initial parameters; visualizing the outcomes in an interactive phase-like diagram; and searching, with a genetic algorithm, for the parameters that lead to the most optimal simulation outcome.

  10. A Food Chain Algorithm for Capacitated Vehicle Routing Problem with Recycling in Reverse Logistics

    NASA Astrophysics Data System (ADS)

    Song, Qiang; Gao, Xuexia; Santos, Emmanuel T.

    2015-12-01

    This paper introduces the capacitated vehicle routing problem with recycling in reverse logistics, and designs a food chain algorithm for it. Some illustrative examples are selected to conduct simulation and comparison. Numerical results show that the performance of the food chain algorithm is better than the genetic algorithm, particle swarm optimization as well as quantum evolutionary algorithm.

  11. Data-Driven Property Estimation for Protective Clothing

    DTIC Science & Technology

    2014-09-01

    reliable predictions falls under the rubric “machine learning”. Inspired by the applications of machine learning in pharmaceutical drug design and...using genetic algorithms, for instance— descriptor selection can be automated as well. A well-known structured learning technique—Artificial Neural...descriptors automatically, by iteration, e.g., using a genetic algorithm [49]. 4.2.4 Avoiding Overfitting A peril of all regression—least squares as

  12. Genetic Algorithm Optimization of Phononic Bandgap Structures

    DTIC Science & Technology

    2006-09-01

    a GA with a computational finite element method for solving the acoustic wave equation, and find optimal designs for both metal-matrix composite...systems consisting of Ti/SiC, and H2O-filled porous ceramic media, by maximizing the relative acoustic bandgap for these media. The term acoustic here...stress minimization, global optimization, phonon bandgap, genetic algorithm, periodic elastic media, inhomogeneity, inclusion, porous media, acoustic

  13. A parallel adaptive quantum genetic algorithm for the controllability of arbitrary networks.

    PubMed

    Li, Yuhong; Gong, Guanghong; Li, Ni

    2018-01-01

    In this paper, we propose a novel algorithm-parallel adaptive quantum genetic algorithm-which can rapidly determine the minimum control nodes of arbitrary networks with both control nodes and state nodes. The corresponding network can be fully controlled with the obtained control scheme. We transformed the network controllability issue into a combinational optimization problem based on the Popov-Belevitch-Hautus rank condition. A set of canonical networks and a list of real-world networks were experimented. Comparison results demonstrated that the algorithm was more ideal to optimize the controllability of networks, especially those larger-size networks. We demonstrated subsequently that there were links between the optimal control nodes and some network statistical characteristics. The proposed algorithm provides an effective approach to improve the controllability optimization of large networks or even extra-large networks with hundreds of thousands nodes.

  14. A comparison between metaheuristics as strategies for minimizing cyclic instability in Ambient Intelligence.

    PubMed

    Romero, Leoncio A; Zamudio, Victor; Baltazar, Rosario; Mezura, Efren; Sotelo, Marco; Callaghan, Vic

    2012-01-01

    In this paper we present a comparison between six novel approaches to the fundamental problem of cyclic instability in Ambient Intelligence. These approaches are based on different optimization algorithms, Particle Swarm Optimization (PSO), Bee Swarm Optimization (BSO), micro Particle Swarm Optimization (μ-PSO), Artificial Immune System (AIS), Genetic Algorithm (GA) and Mutual Information Maximization for Input Clustering (MIMIC). In order to be able to use these algorithms, we introduced the concept of Average Cumulative Oscillation (ACO), which enabled us to measure the average behavior of the system. This approach has the advantage that it does not need to analyze the topological properties of the system, in particular the loops, which can be computationally expensive. In order to test these algorithms we used the well-known discrete system called the Game of Life for 9, 25, 49 and 289 agents. It was found that PSO and μ-PSO have the best performance in terms of the number of agents locked. These results were confirmed using the Wilcoxon Signed Rank Test. This novel and successful approach is very promising and can be used to remove instabilities in real scenarios with a large number of agents (including nomadic agents) and complex interactions and dependencies among them.

  15. A Comparison between Metaheuristics as Strategies for Minimizing Cyclic Instability in Ambient Intelligence

    PubMed Central

    Romero, Leoncio A.; Zamudio, Victor; Baltazar, Rosario; Mezura, Efren; Sotelo, Marco; Callaghan, Vic

    2012-01-01

    In this paper we present a comparison between six novel approaches to the fundamental problem of cyclic instability in Ambient Intelligence. These approaches are based on different optimization algorithms, Particle Swarm Optimization (PSO), Bee Swarm Optimization (BSO), micro Particle Swarm Optimization (μ-PSO), Artificial Immune System (AIS), Genetic Algorithm (GA) and Mutual Information Maximization for Input Clustering (MIMIC). In order to be able to use these algorithms, we introduced the concept of Average Cumulative Oscillation (ACO), which enabled us to measure the average behavior of the system. This approach has the advantage that it does not need to analyze the topological properties of the system, in particular the loops, which can be computationally expensive. In order to test these algorithms we used the well-known discrete system called the Game of Life for 9, 25, 49 and 289 agents. It was found that PSO and μ-PSO have the best performance in terms of the number of agents locked. These results were confirmed using the Wilcoxon Signed Rank Test. This novel and successful approach is very promising and can be used to remove instabilities in real scenarios with a large number of agents (including nomadic agents) and complex interactions and dependencies among them. PMID:23112643

  16. Inferring anatomical therapeutic chemical (ATC) class of drugs using shortest path and random walk with restart algorithms.

    PubMed

    Chen, Lei; Liu, Tao; Zhao, Xian

    2018-06-01

    The anatomical therapeutic chemical (ATC) classification system is a widely accepted drug classification scheme. This system comprises five levels and includes several classes in each level. Drugs are classified into classes according to their therapeutic effects and characteristics. The first level includes 14 main classes. In this study, we proposed two network-based models to infer novel potential chemicals deemed to belong in the first level of ATC classification. To build these models, two large chemical networks were constructed using the chemical-chemical interaction information retrieved from the Search Tool for Interactions of Chemicals (STITCH). Two classic network algorithms, shortest path (SP) and random walk with restart (RWR) algorithms, were executed on the corresponding network to mine novel chemicals for each ATC class using the validated drugs in a class as seed nodes. Then, the obtained chemicals yielded by these two algorithms were further evaluated by a permutation test and an association test. The former can exclude chemicals produced by the structure of the network, i.e., false positive discoveries. By contrast, the latter identifies the most important chemicals that have strong associations with the ATC class. Comparisons indicated that the two models can provide quite dissimilar results, suggesting that the results yielded by one model can be essential supplements for those obtained by the other model. In addition, several representative inferred chemicals were analyzed to confirm the reliability of the results generated by the two models. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Interpreting the cross-sectional flow field in a river bank based on a genetic-algorithm two-dimensional heat-transport method (GA-VS2DH)

    NASA Astrophysics Data System (ADS)

    Su, Xiaoru; Shu, Longcang; Chen, Xunhong; Lu, Chengpeng; Wen, Zhonghui

    2016-12-01

    Interactions between surface waters and groundwater are of great significance for evaluating water resources and protecting ecosystem health. Heat as a tracer method is widely used in determination of the interactive exchange with high precision, low cost and great convenience. The flow in a river-bank cross-section occurs in vertical and lateral directions. In order to depict the flow path and its spatial distribution in bank areas, a genetic algorithm (GA) two-dimensional (2-D) heat-transport nested-loop method for variably saturated sediments, GA-VS2DH, was developed based on Microsoft Visual Basic 6.0. VS2DH was applied to model a 2-D bank-water flow field and GA was used to calibrate the model automatically by minimizing the difference between observed and simulated temperatures in bank areas. A hypothetical model was developed to assess the reliability of GA-VS2DH in inverse modeling in a river-bank system. Some benchmark tests were conducted to recognize the capability of GA-VS2DH. The results indicated that the simulated seepage velocity and parameters associated with GA-VS2DH were acceptable and reliable. Then GA-VS2DH was applied to two field sites in China with different sedimentary materials, to verify the reliability of the method. GA-VS2DH could be applied in interpreting the cross-sectional 2-D water flow field. The estimates of horizontal hydraulic conductivity at the Dawen River and Qinhuai River sites are 1.317 and 0.015 m/day, which correspond to sand and clay sediment in the two sites, respectively.

  18. Physics-Based Image Segmentation Using First Order Statistical Properties and Genetic Algorithm for Inductive Thermography Imaging.

    PubMed

    Gao, Bin; Li, Xiaoqing; Woo, Wai Lok; Tian, Gui Yun

    2018-05-01

    Thermographic inspection has been widely applied to non-destructive testing and evaluation with the capabilities of rapid, contactless, and large surface area detection. Image segmentation is considered essential for identifying and sizing defects. To attain a high-level performance, specific physics-based models that describe defects generation and enable the precise extraction of target region are of crucial importance. In this paper, an effective genetic first-order statistical image segmentation algorithm is proposed for quantitative crack detection. The proposed method automatically extracts valuable spatial-temporal patterns from unsupervised feature extraction algorithm and avoids a range of issues associated with human intervention in laborious manual selection of specific thermal video frames for processing. An internal genetic functionality is built into the proposed algorithm to automatically control the segmentation threshold to render enhanced accuracy in sizing the cracks. Eddy current pulsed thermography will be implemented as a platform to demonstrate surface crack detection. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. In addition, a global quantitative assessment index F-score has been adopted to objectively evaluate the performance of different segmentation algorithms.

  19. Threshold-selecting strategy for best possible ground state detection with genetic algorithms

    NASA Astrophysics Data System (ADS)

    Lässig, Jörg; Hoffmann, Karl Heinz

    2009-04-01

    Genetic algorithms are a standard heuristic to find states of low energy in complex state spaces as given by physical systems such as spin glasses but also in combinatorial optimization. The paper considers the problem of selecting individuals in the current population in genetic algorithms for crossover. Many schemes have been considered in literature as possible crossover selection strategies. We show for a large class of quality measures that the best possible probability distribution for selecting individuals in each generation of the algorithm execution is a rectangular distribution over the individuals sorted by their energy values. This means uniform probabilities have to be assigned to a group of the individuals with lowest energy in the population but probabilities equal to zero to individuals which are corresponding to energy values higher than a fixed cutoff, which is equal to a certain rank in the vector sorted by the energy of the states in the current population. The considered strategy is dubbed threshold selecting. The proof applies basic arguments of Markov chains and linear optimization and makes only a few assumptions on the underlying principles and hence applies to a large class of algorithms.

  20. Biological engineering applications of feedforward neural networks designed and parameterized by genetic algorithms.

    PubMed

    Ferentinos, Konstantinos P

    2005-09-01

    Two neural network (NN) applications in the field of biological engineering are developed, designed and parameterized by an evolutionary method based on the evolutionary process of genetic algorithms. The developed systems are a fault detection NN model and a predictive modeling NN system. An indirect or 'weak specification' representation was used for the encoding of NN topologies and training parameters into genes of the genetic algorithm (GA). Some a priori knowledge of the demands in network topology for specific application cases is required by this approach, so that the infinite search space of the problem is limited to some reasonable degree. Both one-hidden-layer and two-hidden-layer network architectures were explored by the GA. Except for the network architecture, each gene of the GA also encoded the type of activation functions in both hidden and output nodes of the NN and the type of minimization algorithm that was used by the backpropagation algorithm for the training of the NN. Both models achieved satisfactory performance, while the GA system proved to be a powerful tool that can successfully replace the problematic trial-and-error approach that is usually used for these tasks.

Top