Beyond Lecture and Non-Lecture Classrooms: LA-student interactions in Active Learning Classrooms
NASA Astrophysics Data System (ADS)
Gonzalez, Dayana; Kornreich, Hagit; Rodriguez, Idaykis; Monslave, Camila; Pena-Flores, Norma
Our expanded multi-site study on active learning classrooms supported by Learning Assistants (LAs) aims to understand the connections between three classroom elements: the activity, student learning, and how LAs support the learning process in the classroom. At FIU, LAs are used in a variety of active learning settings, from large auditorium settings to studio classroom with movable tables. Our study uses the COPUS observation protocol as a way to characterize LAs behaviors in these classrooms. With a focus on LA-student interactions, our analysis of how LAs interact with students during a 'learning session' generated new observational codes for specific new categories of LA roles. Preliminary results show that LAs spend more time interacting with students in some classes, regardless of the classroom setting, while in other classrooms, LA-student interactions are mostly brief. We discuss how LA-student interactions contribute to the dynamics and mechanism of the socially shared learning activity.
Roelle, Julian; Müller, Claudia; Roelle, Detlev; Berthold, Kirsten
2015-01-01
Although instructional explanations are commonly provided when learners are introduced to new content, they often fail because they are not integrated into effective learning activities. The recently introduced active-constructive-interactive framework posits an effectiveness hierarchy in which interactive learning activities are at the top; these are then followed by constructive and active learning activities, respectively. Against this background, we combined instructional explanations with different types of prompts that were designed to elicit these learning activities and tested the central predictions of the active-constructive-interactive framework. In Experiment 1, N = 83 students were randomly assigned to one of four combinations of instructional explanations and prompts. To test the active < constructive learning hypothesis, the learners received either (1) complete explanations and engaging prompts designed to elicit active activities or (2) explanations that were reduced by inferences and inference prompts designed to engage learners in constructing the withheld information. Furthermore, in order to explore how interactive learning activities can be elicited, we gave the learners who had difficulties in constructing the prompted inferences adapted remedial explanations with either (3) unspecific engaging prompts or (4) revision prompts. In support of the active < constructive learning hypothesis, we found that the learners who received reduced explanations and inference prompts outperformed the learners who received complete explanations and engaging prompts. Moreover, revision prompts were more effective in eliciting interactive learning activities than engaging prompts. In Experiment 2, N = 40 students were randomly assigned to either (1) a reduced explanations and inference prompts or (2) a reduced explanations and inference prompts plus adapted remedial explanations and revision prompts condition. In support of the constructive < interactive learning hypothesis, the learners who received adapted remedial explanations and revision prompts as add-ons to reduced explanations and inference prompts acquired more conceptual knowledge.
Roelle, Julian; Müller, Claudia; Roelle, Detlev; Berthold, Kirsten
2015-01-01
Although instructional explanations are commonly provided when learners are introduced to new content, they often fail because they are not integrated into effective learning activities. The recently introduced active-constructive-interactive framework posits an effectiveness hierarchy in which interactive learning activities are at the top; these are then followed by constructive and active learning activities, respectively. Against this background, we combined instructional explanations with different types of prompts that were designed to elicit these learning activities and tested the central predictions of the active-constructive-interactive framework. In Experiment 1, N = 83 students were randomly assigned to one of four combinations of instructional explanations and prompts. To test the active < constructive learning hypothesis, the learners received either (1) complete explanations and engaging prompts designed to elicit active activities or (2) explanations that were reduced by inferences and inference prompts designed to engage learners in constructing the withheld information. Furthermore, in order to explore how interactive learning activities can be elicited, we gave the learners who had difficulties in constructing the prompted inferences adapted remedial explanations with either (3) unspecific engaging prompts or (4) revision prompts. In support of the active < constructive learning hypothesis, we found that the learners who received reduced explanations and inference prompts outperformed the learners who received complete explanations and engaging prompts. Moreover, revision prompts were more effective in eliciting interactive learning activities than engaging prompts. In Experiment 2, N = 40 students were randomly assigned to either (1) a reduced explanations and inference prompts or (2) a reduced explanations and inference prompts plus adapted remedial explanations and revision prompts condition. In support of the constructive < interactive learning hypothesis, the learners who received adapted remedial explanations and revision prompts as add-ons to reduced explanations and inference prompts acquired more conceptual knowledge. PMID:25853629
Discover the pythagorean theorem using interactive multimedia learning
NASA Astrophysics Data System (ADS)
Adhitama, I.; Sujadi, I.; Pramudya, I.
2018-04-01
In learning process students are required to play an active role in learning. They do not just accept the concept directly from teachers, but also build their own knowledge so that the learning process becomes more meaningful. Based on the observation, when learning Pythagorean theorem, students got difficulty on determining hypotenuse. One of the solution to solve this problem is using an interactive multimedia learning. This article aims to discuss the interactive multimedia as learning media for students. This was a Research and Development (R&D) by using ADDIE model of development. The results obtained was multimedia which was developed proper for students as learning media. Besides, on Phytagorian theorem learning activity we also compare Discovery Learning (DL) model with interactive multimedia and DL without interactive multimedia, and obtained that DL with interactive gave positive effect better than DL without interactive multimedia. It was also obtainde that interactive multimedia can attract and increase the interest ot the students on learning math. Therefore, the use of interactive multimedia on DL procees can improve student learning achievement.
ERIC Educational Resources Information Center
Coolahan, Kathleen; Fantuzzo, John; Mendez, Julia; McDermott, Paul
2000-01-01
Examines whether low-income preschool children's peer play interactions relate to learning behaviors and problem behaviors, and differ according to age and gender. Positive interactive play behavior was associated with active engagement in classroom learning activities, whereas disconnection in play related to inattention, passivity, and lack of…
Experiential Learning and Learning Environments: The Case of Active Listening Skills
ERIC Educational Resources Information Center
Huerta-Wong, Juan Enrique; Schoech, Richard
2010-01-01
Social work education research frequently has suggested an interaction between teaching techniques and learning environments. However, this interaction has never been tested. This study compared virtual and face-to-face learning environments and included active listening concepts to test whether the effectiveness of learning environments depends…
Developing Interactive E-Learning Activities
ERIC Educational Resources Information Center
Watkins, Ryan
2005-01-01
Although e-learning can offer interactive and engaging learning experiences, the creative ideas that are necessary to create such environments are not always easy to come up with when designing, developing, or teaching e-learning courses. E-learning activities use online technologies such as chat rooms, discussion boards, or email to facilitate…
Toward a neural basis for peer-interaction: what makes peer-learning tick?
Clark, Ian; Dumas, Guillaume
2015-01-01
Many of the instructional practices that have been advanced as intrinsically motivating are inherent in socio-constructivist learning environments. There is now emerging scientific evidence to explain why interactive learning environments promote the intrinsic motivation to learn. The “two-body” and “second person” approaches have begun to explore the “dark matter” of social neuroscience: the intra- and inter-individual brain dynamics during social interaction. Moreover, studies indicate that when young learners are given expanded opportunities to actively and equitably participate in collaborative learning activities they experienced feelings of well-being, contentment, or even excitement. Neuroscience starts demonstrating how this naturally rewarding aspect is strongly associated with the implication of the mesolimbic dopaminergic pathway during social interaction. The production of dopamine reinforces the desire to continue the interaction, and heightens feelings of anticipation for future peer-learning activities. Here we review how cooperative learning and problem-solving interactions can bring about the “intrinsic” motivation to learn. Overall, the reported theoretical arguments and neuroscientific results have clear implications for school and organization approaches and support social constructivist perspectives. PMID:25713542
NASA Astrophysics Data System (ADS)
Thornton, Ronald
2010-10-01
Physics education research has shown that learning environments that engage students and allow them to take an active part in their learning can lead to large conceptual gains compared to traditional instruction. Examples of successful curricula and methods include Peer Instruction, Just in Time Teaching, RealTime Physics, Workshop Physics, Scale-Up, and Interactive Lecture Demonstrations (ILDs). An active learning environment is often difficult to achieve in lecture sessions. This presentation will demonstrate the use of sequences of Interactive Lecture Demonstrations (ILDs) that use real experiments often involving real-time data collection and display combined with student interaction to create an active learning environment in large or small lecture classes. Interactive lecture demonstrations will be done in the area of mechanics using real-time motion probes and the Visualizer. A video tape of students involved in interactive lecture demonstrations will be shown. The results of a number of research studies at various institutions (including international) to measure the effectiveness of ILDs and guided inquiry conceptual laboratories will be presented.
Interactive computer-assisted instruction in acid-base physiology for mobile computer platforms.
Longmuir, Kenneth J
2014-03-01
In this project, the traditional lecture hall presentation of acid-base physiology in the first-year medical school curriculum was replaced by interactive, computer-assisted instruction designed primarily for the iPad and other mobile computer platforms. Three learning modules were developed, each with ∼20 screens of information, on the subjects of the CO2-bicarbonate buffer system, other body buffer systems, and acid-base disorders. Five clinical case modules were also developed. For the learning modules, the interactive, active learning activities were primarily step-by-step learner control of explanations of complex physiological concepts, usually presented graphically. For the clinical cases, the active learning activities were primarily question-and-answer exercises that related clinical findings to the relevant basic science concepts. The student response was remarkably positive, with the interactive, active learning aspect of the instruction cited as the most important feature. Also, students cited the self-paced instruction, extensive use of interactive graphics, and side-by-side presentation of text and graphics as positive features. Most students reported that it took less time to study the subject matter with this online instruction compared with subject matter presented in the lecture hall. However, the approach to learning was highly examination driven, with most students delaying the study of the subject matter until a few days before the scheduled examination. Wider implementation of active learning computer-assisted instruction will require that instructors present subject matter interactively, that students fully embrace the responsibilities of independent learning, and that institutional administrations measure instructional effort by criteria other than scheduled hours of instruction.
Reading a Story: Different Degrees of Learning in Different Learning Environments.
Giannini, Anna Maria; Cordellieri, Pierluigi; Piccardi, Laura
2017-01-01
The learning environment in which material is acquired may produce differences in delayed recall and in the elements that individuals focus on. These differences may appear even during development. In the present study, we compared three different learning environments in 450 normally developing 7-year-old children subdivided into three groups according to the type of learning environment. Specifically, children were asked to learn the same material shown in three different learning environments: reading illustrated books (TB); interacting with the same text displayed on a PC monitor and enriched with interactive activities (PC-IA); reading the same text on a PC monitor but not enriched with interactive narratives (PC-NoIA). Our results demonstrated that TB and PC-NoIA elicited better verbal memory recall. In contrast, PC-IA and PC-NoIA produced higher scores for visuo-spatial memory, enhancing memory for spatial relations, positions and colors with respect to TB. Interestingly, only TB seemed to produce a deeper comprehension of the story's moral. Our results indicated that PC-IA offered a different type of learning that favored visual details. In this sense, interactive activities demonstrate certain limitations, probably due to information overabundance, emotional mobilization, emphasis on images and effort exerted in interactive activities. Thus, interactive activities, although entertaining, act as disruptive elements which interfere with verbal memory and deep moral comprehension.
Reading a Story: Different Degrees of Learning in Different Learning Environments
Giannini, Anna Maria; Cordellieri, Pierluigi; Piccardi, Laura
2017-01-01
The learning environment in which material is acquired may produce differences in delayed recall and in the elements that individuals focus on. These differences may appear even during development. In the present study, we compared three different learning environments in 450 normally developing 7-year-old children subdivided into three groups according to the type of learning environment. Specifically, children were asked to learn the same material shown in three different learning environments: reading illustrated books (TB); interacting with the same text displayed on a PC monitor and enriched with interactive activities (PC-IA); reading the same text on a PC monitor but not enriched with interactive narratives (PC-NoIA). Our results demonstrated that TB and PC-NoIA elicited better verbal memory recall. In contrast, PC-IA and PC-NoIA produced higher scores for visuo-spatial memory, enhancing memory for spatial relations, positions and colors with respect to TB. Interestingly, only TB seemed to produce a deeper comprehension of the story’s moral. Our results indicated that PC-IA offered a different type of learning that favored visual details. In this sense, interactive activities demonstrate certain limitations, probably due to information overabundance, emotional mobilization, emphasis on images and effort exerted in interactive activities. Thus, interactive activities, although entertaining, act as disruptive elements which interfere with verbal memory and deep moral comprehension. PMID:29085296
Is Peer Interaction Necessary for Optimal Active Learning?
ERIC Educational Resources Information Center
Linton, Debra L.; Farmer, Jan Keith; Peterson, Ernie
2014-01-01
Meta-analyses of active-learning research consistently show that active-learning techniques result in greater student performance than traditional lecture-based courses. However, some individual studies show no effect of active-learning interventions. This may be due to inexperienced implementation of active learning. To minimize the effect of…
Learner-Interface Interaction for Technology-Enhanced Active Learning
ERIC Educational Resources Information Center
Sinha, Neelu; Khreisat, Laila; Sharma, Kiron
2009-01-01
Neelu Sinha, Laila Khreisat, and Kiron Sharma describe how learner-interface interaction promotes active learning in computer science education. In a pilot study using technology that combines DyKnow software with a hardware platform of pen-enabled HP Tablet notebook computers, Sinha, Khreisat, and Sharma created dynamic learning environments by…
ERIC Educational Resources Information Center
Saab, Nadira
2012-01-01
Computer-supported collaborative learning (CSCL) is an approach to learning in which learners can actively and collaboratively construct knowledge by means of interaction and joint problem solving. Regulation of learning is especially important in the domain of CSCL. Next to the regulation of task performance, the interaction between learners who…
Preferred Learning Style and Educational Technology: Linear vs. Interactive Video.
ERIC Educational Resources Information Center
Yoder, Marianne E.
1994-01-01
A study found that learners with reflective-observing learning styles (n=16) tend to learn better with linear video, and those with active experimenting learning styles (n=42) tend to achieve greater learning with computer-assisted interactive video instruction. (JOW)
Sultan, Amber Shamim
2018-04-01
Flipping the classroom is a pedagogical model that employs easy to use, readily accessible technology based resources such as video lectures, reading handouts, and practice problems outside the classroom, whereas interactive group-based, problem-solving activities conducted in the classroom. This strategy permits for an extended range of learning activities during the session. Using class time for active learning provides greater opportunity for mentoring and peer to peer collaboration. Instead of spending too much time on delivering lectures, class time can best be utilized by interacting with students, discussing their concerns related to the particular topic to be taught, providing real life examples relevant to the course content, challenging students to think in a broader aspect about complex process and encouraging different team based learning activities.
Improving Learning with the Critical Thinking Paradigm: MIBOLC Modules A and B
2009-02-06
Model encourages more active learning by requiring much of the learning material to be read prior to classroom instruction, and allotting more time to...for mental interaction with content Rote memorization Multiple Choice exams/quizzes Lower level of intensity in course work Active ... Learning Engaged Lecture Requires mental interaction with content Close reading to understand essential ideas Exams/Quizzes reflective of
Interaction Analysis for Supporting Students' Self-Regulation during Blog-Based CSCL Activities
ERIC Educational Resources Information Center
Michailidis, Nikolaos; Kapravelos, Efstathios; Tsiatsos, Thrasyvoulos
2018-01-01
Self-regulated learning is an important means of supporting students' self-awareness and self-regulation level so as to enhance their motivation and engagement. Interaction Analysis (IA) contributes to this end, and its use in studying learning dynamics involved in asynchronous Computer-Supported Collaborative Learning (CSCL) activities has…
ASPECT: A Survey to Assess Student Perspective of Engagement in an Active-Learning Classroom
ERIC Educational Resources Information Center
Wiggins, Benjamin L.; Eddy, Sarah L.; Wener-Fligner, Leah; Freisem, Karen; Grunspan, Daniel Z.; Theobald, Elli J.; Timbrook, Jerry; Crowe, Alison J.
2017-01-01
The primary measure used to determine relative effectiveness of in-class activities has been student performance on pre/posttests. However, in today's active-learning classrooms, learning is a social activity, requiring students to interact and learn from their peers. To develop effective active-learning exercises that engage students, it is…
NASA Astrophysics Data System (ADS)
Sokoloff, David R.
2005-10-01
Widespread physics education research has shown that most introductory physics students have difficulty learning essential optics concepts - even in the best of traditional courses, and that well-designed active learning approaches can remedy this problem. This mini-workshop and the associated poster session will provide direct experience with methods for promoting students' active involvement in the learning process in lecture and laboratory. Participants will have hands-on experience with activities from RealTime Physics labs and Interactive Lecture Demonstrations - a learning strategy for large (and small) lectures, including specially designed Optics Magic Tricks. The poster will provide more details on these highly effective curricula.
Yusa, Noriaki; Kim, Jungho; Koizumi, Masatoshi; Sugiura, Motoaki; Kawashima, Ryuta
2017-01-01
Children naturally acquire a language in social contexts where they interact with their caregivers. Indeed, research shows that social interaction facilitates lexical and phonological development at the early stages of child language acquisition. It is not clear, however, whether the relationship between social interaction and learning applies to adult second language acquisition of syntactic rules. Does learning second language syntactic rules through social interactions with a native speaker or without such interactions impact behavior and the brain? The current study aims to answer this question. Adult Japanese participants learned a new foreign language, Japanese sign language (JSL), either through a native deaf signer or via DVDs. Neural correlates of acquiring new linguistic knowledge were investigated using functional magnetic resonance imaging (fMRI). The participants in each group were indistinguishable in terms of their behavioral data after the instruction. The fMRI data, however, revealed significant differences in the neural activities between two groups. Significant activations in the left inferior frontal gyrus (IFG) were found for the participants who learned JSL through interactions with the native signer. In contrast, no cortical activation change in the left IFG was found for the group who experienced the same visual input for the same duration via the DVD presentation. Given that the left IFG is involved in the syntactic processing of language, spoken or signed, learning through social interactions resulted in an fMRI signature typical of native speakers: activation of the left IFG. Thus, broadly speaking, availability of communicative interaction is necessary for second language acquisition and this results in observed changes in the brain.
ERIC Educational Resources Information Center
Hwang, Gwo-Jen; Sung, Han-Yu; Chang, Hsuan
2017-01-01
Researchers have pointed out that interactive e-books have rich content and interactive features which can promote students' learning interest. However, researchers have also indicated the need to integrate effective learning supports or tools to help students organize what they have learned so as to increase their learning performance, in…
ERIC Educational Resources Information Center
Buchenroth-Martin, Cynthia; DiMartino, Trevor; Martin, Andrew P.
2017-01-01
Collaborative learning in small groups is commonly implemented as a part of student-centered curricula. In large-enrollment courses, details of the interactions among students as a consequence of working in collaborative groups are often unknown but are important because how students interact influences the effectiveness of peer learning. We…
Formation of readiness for future physics teachers by using interactive learning tools
NASA Astrophysics Data System (ADS)
Kulikova, N. U.; Danilchuk, E. V.; Zhidkova, A. V.
2017-01-01
In this article we give the reviewing of approaches to the preparedness of future physics teachers for the usage of interactive means of education as an important part of their professional activity. We discuss the key concepts such as interactivity, an interactive dialogue, and interactive means of education. The conception of interactive means of education as a tool of teachers' professional activity, which provides a way for the students to intensify their learning in class by using interactive tools and electronic educational resources, is validated. Furthermore, it is proved that interactive means of education allow the students to intensify their learning in the course of an interactive dialogue by means of organization different types of feedback in electronic educational resources (the program behavior depending on a user actions in the form of comments, prompts, elements of arrangement of objects, etc, the control and correction of students' actions by the program, providing with recommendations for further learning, carrying out constant access to reference information, etc), involving in different types of educational activity (modeling, investigation, etc), self-selection of time, speed, content of learning, complexity and priority of the usage of educational information on the screen, etc. By training students - future teachers of physics authors consider technological aspects, methodical features and examples of creation of these resources for physics lesson.
NASA Astrophysics Data System (ADS)
Kuda Malwathumullage, Chamathca Priyanwada
Recent advancements in instructional technology and interactive learning space designs have transformed how undergraduate classrooms are envisioned and conducted today. Large number of research studies have documented the impact of instructional technology and interactive learning spaces on elevated student learning gains, positive attitudes, and increased student engagement in undergraduate classrooms across nation. These research findings combined with the movement towards student-centered instructional strategies have motivated college professors to explore the unfamiliar territories of instructional technology and interactive learning spaces. Only a limited number of research studies that explored college professors' perspective on instructional technology and interactive learning space use in undergraduate classrooms exist in the education research literature. Since college professors are an essential factor in undergraduate students' academic success, investigating how college professors perceive and utilize instructional technology and interactive learning environments can provide insights into designing effective professional development programs for college professors across undergraduate institutions. Therefore, the purpose of this study was to investigate college professors' pedagogical reasoning behind incorporating different types of instructional technologies and teaching strategies to foster student learning in technology-infused interactive learning environments. Furthermore, this study explored the extent to which college professors' instructional decisions and practices are affected by teaching in an interactive learning space along with their overall perception of instructional technology and interactive learning spaces. Four college professors from a large public Midwestern university who taught undergraduate science courses in a classroom based on the 'SCALE-UP model' participated in this study. Major data sources included classroom observations, interviews and questionnaires. An enumerative approach and the constant comparative method were utilized to analyze the data. According to the results obtained, all the participating college professors of this study employed a variety of instructional technologies and learning space features to actively engage their students in classroom activities. Participants were largely influenced by the instructional technology and the learning space features at lesson planning and execution stages whereas this influence was less notable at the student assessment stage. Overall, college professors perceive technology-infused interactive learning environments to be advantageous in terms of enabling flexibility and creativity along with easy facilitation of classroom activities. However, they felt challenged when designing effective classroom activities and preferred continuous professional development support. Overall, college professors' pedagogical decision making process, their perceived benefits and challenges seemed to be interrelated and centered on the learners and the learning process. Primary implication of this study is to implement effective professional development programs for college professors which enable them to familiarize themselves with student-centered pedagogy and effective classroom activity design along with the novel trends in learning space design and instructional technologies. Furthermore, higher education institutions need to devise incentives and recognition measures to appreciate college professors' contributions to advance scholarship of teaching and learning.
ERIC Educational Resources Information Center
Westberry, Nicola; Franken, Margaret
2015-01-01
This paper provides an Activity Theory analysis of two online student-driven interactive learning activities to interrogate assumptions that such groups can effectively learn in the absence of the teacher. Such an analysis conceptualises learning tasks as constructed objects that drive pedagogical activity. The analysis shows a disconnect between…
ERIC Educational Resources Information Center
Morgan, Anne-Marie; Mercurio, Nives
2011-01-01
In this paper we consider what happens at the "teaching-learning interface" in some Indonesian and Italian examples of classroom interactions within an intercultural orientation to languages teaching and learning. Using activities from textbooks as a starting point, we identify the underlying linguistic, cultural, and intercultural…
Teacher feedback during active learning: current practices in primary schools.
van den Bergh, Linda; Ros, Anje; Beijaard, Douwe
2013-06-01
Feedback is one of the most powerful tools, which teachers can use to enhance student learning. It appears difficult for teachers to give qualitatively good feedback, especially during active learning. In this context, teachers should provide facilitative feedback that is focused on the development of meta-cognition and social learning. The purpose of the present study is to contribute to the existing knowledge about feedback and to give directions to improve teacher feedback in the context of active learning. The participants comprised 32 teachers who practiced active learning in the domain of environmental studies in the sixth, seventh, or eighth grade of 13 Dutch primary schools. A total of 1,465 teacher-student interactions were examined. Video observations were made of active learning lessons in the domain of environmental studies. A category system was developed based on the literature and empirical data. Teacher-student interactions were assessed using this system. Results. About half of the teacher-student interactions contained feedback. This feedback was usually focused on the tasks that were being performed by the students and on the ways in which these tasks were processed. Only 5% of the feedback was explicitly related to a learning goal. In their feedback, the teachers were directing (rather than facilitating) the learning processes. During active learning, feedback on meta-cognition and social learning is important. Feedback should be explicitly related to learning goals. In practice, these kinds of feedback appear to be scarce. Therefore, giving feedback during active learning seems to be an important topic for teachers' professional development. © 2012 The British Psychological Society.
Learning and cognitive styles in web-based learning: theory, evidence, and application.
Cook, David A
2005-03-01
Cognitive and learning styles (CLS) have long been investigated as a basis to adapt instruction and enhance learning. Web-based learning (WBL) can reach large, heterogenous audiences, and adaptation to CLS may increase its effectiveness. Adaptation is only useful if some learners (with a defined trait) do better with one method and other learners (with a complementary trait) do better with another method (aptitude-treatment interaction). A comprehensive search of health professions education literature found 12 articles on CLS in computer-assisted learning and WBL. Because so few reports were found, research from non-medical education was also included. Among all the reports, four CLS predominated. Each CLS construct was used to predict relationships between CLS and WBL. Evidence was then reviewed to support or refute these predictions. The wholist-analytic construct shows consistent aptitude-treatment interactions consonant with predictions (wholists need structure, a broad-before-deep approach, and social interaction, while analytics need less structure and a deep-before-broad approach). Limited evidence for the active-reflective construct suggests aptitude-treatment interaction, with active learners doing better with interactive learning and reflective learners doing better with methods to promote reflection. As predicted, no consistent interaction between the concrete-abstract construct and computer format was found, but one study suggests that there is interaction with instructional method. Contrary to predictions, no interaction was found for the verbal-imager construct. Teachers developing WBL activities should consider assessing and adapting to accommodate learners defined by the wholist-analytic and active-reflective constructs. Other adaptations should be considered experimental. Further WBL research could clarify the feasibility and effectiveness of assessing and adapting to CLS.
Does the Room Matter? Active Learning in Traditional and Enhanced Lecture Spaces
ERIC Educational Resources Information Center
Stoltzfus, Jon R.; Libarkin, Julie
2016-01-01
SCALE-UP-type classrooms, originating with the Student-Centered Active Learning Environment with Upside-down Pedagogies project, are designed to facilitate active learning by maximizing opportunities for interactions between students and embedding technology in the classroom. Positive impacts when active learning replaces lecture are well…
Interactive lecture demonstrations, active learning, and the ALOP project
NASA Astrophysics Data System (ADS)
Lakshminarayanan, Vasudevan
2011-05-01
There is considerable evidence from the physics education literature that traditional approaches are ineffective in teaching physics concepts. A better teaching method is to use the active learning environment, which can be created using interactive lecture demonstrations. Based on the active learning methodology and within the framework of the UNESCO mandate in physics education and introductory physics, the ALOP project (active learning in optics and photonics) was started in 2003, to provide a focus on an experimental area that is adaptable and relevant to research and educational conditions in many developing countries. This project is discussed in this paper.
Activity-Based Introductory Physics Reform *
NASA Astrophysics Data System (ADS)
Thornton, Ronald
2004-05-01
Physics education research has shown that learning environments that engage students and allow them to take an active part in their learning can lead to large conceptual gains compared to those of good traditional instruction. Examples of successful curricula and methods include Peer Instruction, Just in Time Teaching, RealTime Physics, Workshop Physics, Scale-Up, and Interactive Lecture Demonstrations (ILDs). RealTime Physics promotes interaction among students in a laboratory setting and makes use of powerful real-time data logging tools to teach concepts as well as quantitative relationships. An active learning environment is often difficult to achieve in large lecture sessions and Workshop Physics and Scale-Up largely eliminate lectures in favor of collaborative student activities. Peer Instruction, Just in Time Teaching, and Interactive Lecture Demonstrations (ILDs) make lectures more interactive in complementary ways. This presentation will introduce these reforms and use Interactive Lecture Demonstrations (ILDs) with the audience to illustrate the types of curricula and tools used in the curricula above. ILDs make use real experiments, real-time data logging tools and student interaction to create an active learning environment in large lecture classes. A short video of students involved in interactive lecture demonstrations will be shown. The results of research studies at various institutions to measure the effectiveness of these methods will be presented.
Student’s social interaction in mathematics learning
NASA Astrophysics Data System (ADS)
Apriliyanto, B.; Saputro, D. R. S.; Riyadi
2018-03-01
Mathematics learning achievement is influenced by the internal and external factor of the students. One of the influencing external factors is social interaction with friends in learning activities. In modern learning, the learning is student-centered, so the student interaction is needed to learn about certain basic competence. Potential and motivation of students in learning are expected to develop with good social interaction in order to get maximum results. Social interaction is an important aspect of learning Mathematics because students get the opportunity to express their own thoughts in order to encourage a reflection on the knowledge they have. This research uses the correlational descriptive method involving 36 students for the tenth grade, eleventh grade, and twelfth grade of SMA Negeri 1 Wuryantoro and data collecting technique using questionnaire for social interaction and documentation for learning outcome. The result of this research shows that learning achievement and social interaction of students are not good. Based on the result of data analysis, it is shown that the social interaction and Mathematics learning achievement are still in the low level. This research concludes that students’ social interaction influences student learning achievement in Mathematics subjects.
ERIC Educational Resources Information Center
Ioannou, Andri; Vasiliou, Christina; Zaphiris, Panayiotis; Arh, Tanja; Klobucar, Tomaž; Pipan, Matija
2015-01-01
This exploratory case study aims to examine how students benefit from a multimodal learning environment while they engage in collaborative problem-based activity in a Human Computer Interaction (HCI) university course. For 12 weeks, 30 students, in groups of 5-7 each, participated in weekly face-to-face meetings and online interactions.…
Interactive E-learning module in pharmacology: a pilot project at a rural medical college in India.
Gaikwad, Nitin; Tankhiwale, Suresh
2014-01-01
Many medical educators are experimenting with innovative ways of E-learning. E-learning provides opportunities to students for self-directed learning in addition to other advantages. In this study, we designed and evaluated an interactive E-learning module in pharmacology for effectiveness, acceptability and feasibility, with the aim of promoting active learning in this fact-filled subject. A quasi-experimental single-group pre-test/post-test study was conducted with fourth-semester students of the second professionals course (II MBBS), selected using non-probability convenience sampling method. An E-learning module in endocrine pharmacology was designed to comprise three units of interactive PowerPoint presentations. The pre-validated presentations were uploaded on the website according to a predefined schedule and the 42 registered students were encouraged to self-learning using these interactive presentations. Cognitive gain was assessed using an online pre- and post-test for each unit. Students' perceptions were recorded using an online feedback questionnaire on a 5-point Likert scale. Finally, focused group discussion was conducted to further explore students' views on E-learning activity. Significant attrition was observed during the E-learning activity. Of the 42 registered students, only 16 students completed the entire E-learning module. The summed average score of all three units (entire module) was increased significantly from 38.42 % (summed average pre-test score: 11.56/30 ± 2.90) to 66.46 % (summed average post-test score: 19.94/30 ± 6.13). The class-average normalized gain for the entire module was 0.4542 (45.42). The students accepted this E-learning activity well as they perceived it to be innovative, convenient, flexible and useful. The average rating was between 4 (agree) and 5 (strongly agree). The interactive E-learning module in pharmacology was moderately effective and well perceived by the students. The simple, cost-effective and readily available Microsoft PowerPoint tool appealed to medical educators to use this kind of simple E-learning technology blended with traditional teaching to encourage active learning among students especially in a rural setup is attractive.
Authoring and Enactment of Mobile Pyramid-Based Collaborative Learning Activities
ERIC Educational Resources Information Center
Manathunga, Kalpani; Hernández-Leo, Davinia
2018-01-01
Collaborative learning flow patterns (CLFPs) formulate best practices for the orchestration of activity sequences and collaboration mechanisms that can elicit fruitful social interactions. Mobile technology features offer opportunities to support interaction mediation and content accessibility. However, existing mobile collaborative learning…
Ammenwerth, Elske; Hackl, Werner O
2017-01-01
Learning as a constructive process works best in interaction with other learners. Support of social interaction processes is a particular challenge within online learning settings due to the spatial and temporal distribution of participants. It should thus be carefully monitored. We present structural network analysis and related indicators to analyse and visualize interaction patterns of participants in online learning settings. We validate this approach in two online courses and show how the visualization helps to monitor interaction and to identify activity profiles of learners. Structural network analysis is a feasible approach for an analysis of the intensity and direction of interaction in online learning settings.
Nasr, Rihab; Antoun, Jumana; Sabra, Ramzi; Zgheib, Nathalie K
2016-01-01
There has been a pedagogic shift in higher education from the traditional teacher centered to the student centered approach in teaching, necessitating a change in the role of the teacher from a supplier of information to passive receptive students into a more facilitative role. Active learning activities are based on various learning theories such as self-directed learning, cooperative learning and adult learning. There exist many instructional activities that enhance active and collaborative learning. The aim of this manuscript is to describe two methods of interactive and collaborative learning in the classroom, automated response systems (ARS) and team-based learning (TBL), and to list some of their applications and advantages. The success of these innovative teaching and learning methods at a large scale depends on few elements, probably the most important of which is the support of the higher administration and leadership in addition to the availability of “champions” who are committed to lead the change.
Active learning methods for interactive image retrieval.
Gosselin, Philippe Henri; Cord, Matthieu
2008-07-01
Active learning methods have been considered with increased interest in the statistical learning community. Initially developed within a classification framework, a lot of extensions are now being proposed to handle multimedia applications. This paper provides algorithms within a statistical framework to extend active learning for online content-based image retrieval (CBIR). The classification framework is presented with experiments to compare several powerful classification techniques in this information retrieval context. Focusing on interactive methods, active learning strategy is then described. The limitations of this approach for CBIR are emphasized before presenting our new active selection process RETIN. First, as any active method is sensitive to the boundary estimation between classes, the RETIN strategy carries out a boundary correction to make the retrieval process more robust. Second, the criterion of generalization error to optimize the active learning selection is modified to better represent the CBIR objective of database ranking. Third, a batch processing of images is proposed. Our strategy leads to a fast and efficient active learning scheme to retrieve sets of online images (query concept). Experiments on large databases show that the RETIN method performs well in comparison to several other active strategies.
ERIC Educational Resources Information Center
Trempy, Janine E.; Skinner, Monica M.; Siebold, William A.
2002-01-01
Describes the course "The World According to Microbes" which puts science, mathematics, engineering, and technology majors into teams of students charged with problem solving activities that are microbial in origin. Describes the development of learning activities that utilize key components of cooperative learning including positive…
ERIC Educational Resources Information Center
Rantavuori, Juhana; Engeström, Yrjö; Lipponen, Lasse
2016-01-01
The paper analyzes a collaborative learning process among Finnish pre-service teachers planning their own learning in a self-regulated way. The study builds on cultural-historical activity theory and the theory of expansive learning, integrating for the first time an analysis of learning actions and an analysis of types of interaction. We examine…
An Innovative Teaching Method To Promote Active Learning: Team-Based Learning
NASA Astrophysics Data System (ADS)
Balasubramanian, R.
2007-12-01
Traditional teaching practice based on the textbook-whiteboard- lecture-homework-test paradigm is not very effective in helping students with diverse academic backgrounds achieve higher-order critical thinking skills such as analysis, synthesis, and evaluation. Consequently, there is a critical need for developing a new pedagogical approach to create a collaborative and interactive learning environment in which students with complementary academic backgrounds and learning skills can work together to enhance their learning outcomes. In this presentation, I will discuss an innovative teaching method ('Team-Based Learning (TBL)") which I recently developed at National University of Singapore to promote active learning among students in the environmental engineering program with learning abilities. I implemented this new educational activity in a graduate course. Student feedback indicates that this pedagogical approach is appealing to most students, and promotes active & interactive learning in class. Data will be presented to show that the innovative teaching method has contributed to improved student learning and achievement.
A Social-Cognitive Framework for Pedagogical Agents as Learning Companions
ERIC Educational Resources Information Center
Kim, Yanghee; Baylor, Amy L.
2006-01-01
Teaching and learning are highly social activities. Seminal psychologists such as Vygotsky, Piaget, and Bandura have theorized that social interaction is a key mechanism in the process of learning and development. In particular, the benefits of peer interaction for learning and motivation in classrooms have been broadly demonstrated through…
Spicing Up Information Literacy Tutorials: Interactive Class Activities that Worked
ERIC Educational Resources Information Center
Zdravkovic, Neda
2010-01-01
Constructivist learning theories promote students' engagement as one of the key factors in successful learning and knowledge building. Research indicates that the short attention span of adult learners, their need to "learn-by-doing," interact and multitask in the learning process can be accommodated with a positive outcome by…
ERIC Educational Resources Information Center
Niklas, Frank; Cohrssen, Caroline; Tayler, Collette
2016-01-01
Children's cognitive development has a neural basis, yet children's learning is facilitated by interactions with more knowledgeable others. Young children experience such interactions in the context of the home learning environment (HLE), when parents support children's thinking and learning during everyday activities. Consequently, one way to…
NASA Astrophysics Data System (ADS)
Villarreal-Stewart, Irene
The purpose guiding this research has been to learn about and describe the phenomena of interactivity from the learners' perspectives and to learn which of the interactivity affordances and practices were actually used by students and why in the process of learning physics using an interactive multimedia distance learning course system. The bigger purpose behind learning about and describing interactivity has been to gain knowledge and perspective for its instructional design to benefit the learner, the school as curriculum implementer, and instructional media designers to create better products. Qualitative methodology in the interpretivist tradition was used, that is, in-depth interviews and on-site observations, to gain understanding of interactivity from the learners' perspective and to gain understanding of the student learning context impacting and shaping the students' interactivity experiences. NVivo was used to sort, organize and index data. All data were read on three levels: literally, interpretively, and reflexively; and were read comparatively to other perspectives to get descriptions and interpretations that were holistic to the implementation and had potential insight to improve practice for instructional designers, teachers, administrators, specifically to improve the learning experience for students. Site-Specific Findings: Students watched videos, resisted using phone and e-mail, and worked math problems to demonstrate learning, which resulted in very little interactivity, virtually no dialogue about physics, no physical activity, one-way communication, multifaceted dissatisfaction, student need for teacher involvement in the learning enterprise, student appreciation for interactivity, and expressed desire for a real, live teacher. I also found that some students did experience the system as interactive, did experience learner control and self-directed learning, and despite dissatisfaction, liked and appreciated the course. Wider Applications: Interactivity, a design element, requires scaffolding and nurturing in implementation. The variable and changing context of implementation suggests the requirement for its consideration in design work. The study suggests that during implementation the integrity of design as a whole and flexibility within the design are important continuing considerations. Recommendations. (1) implementation supervision by the school district, (2) use of a language and activity-based theory of learning and teaching and (3) dialogic inquiry (Wells, 1999) to continue learning about interactivity.
Interactive Learning Adds Impact to the First Grade.
ERIC Educational Resources Information Center
Pasigna, Aida L.
1979-01-01
By combining interactive learning with active learning, untrained teachers and peer tutors obtain results equal to what trained teachers achieve. Some examples are given based on a successful project in the Philippines and an evolving project in Liberia. (Author/JEG)
Player-Game Interaction: An Ecological Analysis of Foreign Language Gameplay Activities
ERIC Educational Resources Information Center
Ibrahim, Karim
2018-01-01
This article describes how the literature on game-based foreign language (FL) learning has demonstrated that player-game interactions have a strong potential for FL learning. However, little is known about the fine-grained dynamics of these interactions, or how they could facilitate FL learning. To address this gap, the researcher conducted a…
Learning Bridge: Curricular Integration of Didactic and Experiential Education
Arendt, Cassandra S.; Cawley, Pauline; Buhler, Amber V.; Elbarbry, Fawzy; Roberts, Sigrid C.
2010-01-01
Objectives To assess the impact of a program to integrate introductory pharmacy practice experiences with pharmaceutical science topics by promoting active learning, self-directed learning skills, and critical-thinking skills. Design The Learning Bridge, a curriculum program, was created to better integrate the material first-year (P1) students learned in pharmaceutical science courses into their introductory pharmacy practice experiences. Four Learning Bridge assignments required students to interact with their preceptors and answer questions relating to the pharmaceutical science material concurrently covered in their didactic courses. Assessment Surveys of students and preceptors were conducted to measure the effectiveness of the Learning Bridge process. Feedback indicated the Learning Bridge promoted students' interaction with their preceptors as well as development of active learning, self-directed learning, and critical-thinking skills. Students also indicated that the Learning Bridge assignments increased their learning, knowledge of drug information, and comprehension of relevant data in package inserts. Conclusion The Learning Bridge process integrated the didactic and experiential components of the curriculum, enhancing student learning in both areas, and offered students educational opportunities to interact more with their preceptors. PMID:20498741
ERIC Educational Resources Information Center
Lu, Owen H. T.; Huang, Anna Y. Q.; Huang, Jeff C. H.; Lin, Albert J. Q.; Ogata, Hiroaki; Yang, Stephen J. H.
2018-01-01
Blended learning combines online digital resources with traditional classroom activities and enables students to attain higher learning performance through well-defined interactive strategies involving online and traditional learning activities. Learning analytics is a conceptual framework and is a part of our Precision education used to analyze…
ERIC Educational Resources Information Center
Butler, Andrew J.; James, Thomas W.; James, Karin Harman
2011-01-01
Everyday experience affords us many opportunities to learn about objects through multiple senses using physical interaction. Previous work has shown that active motor learning of unisensory items enhances memory and leads to the involvement of motor systems during subsequent perception. However, the impact of active motor learning on subsequent…
Effect of Learning Activity on Students' Motivation, Physical Activity Levels and Effort/Persistence
ERIC Educational Resources Information Center
Gao, Zan; Lee, Amelia M.; Xiang, Ping; Kosma, Maria
2011-01-01
The type of learning activity offered in physical education may influence students' motivational beliefs, physical activity participation and effort/persistence in class. However, most empirical studies have focused on the individual level rather than on the learner-content interactions. Accordingly, the potential effects of learning activities on…
Actively Engaging Students in Asynchronous Online Classes. IDEA Paper #64
ERIC Educational Resources Information Center
Riggs, Shannon A.; Linder, Kathryn E.
2016-01-01
Active learning activities and pedagogical strategies can look different in online learning environments, particularly in asynchronous courses when students are not interacting with the instructor, or with each other, in real time. This paper suggests a three-pronged approach for conceptualizing active learning in the online asynchronous class:…
Bears. Interactive Animal Kit. Grades 1-3.
ERIC Educational Resources Information Center
Bernard, Robin
This kit was created to make learning about bears a fun and meaningful experience for teachers and students. It offers students opportunities to learn about favorite animals through an assortment of fun activities filled with information. The activities interact with science, language arts, critical thinking, music, social studies, math, art, and…
Primary Sources and Inquiry Learning
ERIC Educational Resources Information Center
Pappas, Marjorie L.
2006-01-01
In this article, the author discusses inquiry learning and primary sources. Inquiry learning puts students in the active role of investigators. Questioning, authentic and active learning, and interactivity are a few of the characteristics of inquiry learning that put the teacher and library media specialist in the role of coaches while students…
Khan, Adil G; Poort, Jasper; Chadwick, Angus; Blot, Antonin; Sahani, Maneesh; Mrsic-Flogel, Thomas D; Hofer, Sonja B
2018-06-01
How learning enhances neural representations for behaviorally relevant stimuli via activity changes of cortical cell types remains unclear. We simultaneously imaged responses of pyramidal cells (PYR) along with parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal peptide (VIP) inhibitory interneurons in primary visual cortex while mice learned to discriminate visual patterns. Learning increased selectivity for task-relevant stimuli of PYR, PV and SOM subsets but not VIP cells. Strikingly, PV neurons became as selective as PYR cells, and their functional interactions reorganized, leading to the emergence of stimulus-selective PYR-PV ensembles. Conversely, SOM activity became strongly decorrelated from the network, and PYR-SOM coupling before learning predicted selectivity increases in individual PYR cells. Thus, learning differentially shapes the activity and interactions of multiple cell classes: while SOM inhibition may gate selectivity changes, PV interneurons become recruited into stimulus-specific ensembles and provide more selective inhibition as the network becomes better at discriminating behaviorally relevant stimuli.
Semantic-gap-oriented active learning for multilabel image annotation.
Tang, Jinhui; Zha, Zheng-Jun; Tao, Dacheng; Chua, Tat-Seng
2012-04-01
User interaction is an effective way to handle the semantic gap problem in image annotation. To minimize user effort in the interactions, many active learning methods were proposed. These methods treat the semantic concepts individually or correlatively. However, they still neglect the key motivation of user feedback: to tackle the semantic gap. The size of the semantic gap of each concept is an important factor that affects the performance of user feedback. User should pay more efforts to the concepts with large semantic gaps, and vice versa. In this paper, we propose a semantic-gap-oriented active learning method, which incorporates the semantic gap measure into the information-minimization-based sample selection strategy. The basic learning model used in the active learning framework is an extended multilabel version of the sparse-graph-based semisupervised learning method that incorporates the semantic correlation. Extensive experiments conducted on two benchmark image data sets demonstrated the importance of bringing the semantic gap measure into the active learning process.
NASA Astrophysics Data System (ADS)
Laws, Priscilla W.; Willis, Maxine C.; Jackson, David P.; Koenig, Kathleen; Teese, Robert
2015-02-01
Ever since the first generalized computer-assisted instruction system (PLATO1) was introduced over 50 years ago, educators have been adding computer-based materials to their classes. Today many textbooks have complete online versions that include video lectures and other supplements. In the past 25 years the web has fueled an explosion of online homework and course management systems, both as blended learning and online courses. Meanwhile, introductory physics instructors have been implementing new approaches to teaching based on the outcomes of Physics Education Research (PER). A common theme of PER-based instruction has been the use of active-learning strategies designed to help students overcome alternative conceptions that they often bring to the study of physics.2 Unfortunately, while classrooms have become more active, online learning typically relies on passive lecture videos or Kahn-style3 tablet drawings. To bring active learning online, the LivePhoto Physics Group has been developing Interactive Video Vignettes (IVVs) that add interactivity and PER-based elements to short presentations. These vignettes incorporate web-based video activities that contain interactive elements and typically require students to make predictions and analyze real-world phenomena.
Brown, Tanya L.; Brazeal, Kathleen R.; Couch, Brian A.
2017-01-01
National calls for teaching transformation build on a constructivist learning theory and propose that students learn by actively engaging in course activities and interacting with other students. While interactive pedagogies can improve learning, they also have the potential to challenge traditional norms regarding class participation and learning strategies. To better understand the potential openness of students to interactive teaching practices, we administered a survey during the first week of two sections of an introductory biology course to characterize how students envisioned spending time during class as well as what activities they expected to complete outside of class during non-exam weeks and in preparation for exams. Additionally, we sought to test the hypothesis that the expectations of first-year students differed from those of non-first-year students. Analyses of closed-ended and open-ended questions revealed that students held a wide range of expectations and that most students expressed expectations consistent with some degree of transformed teaching. Furthermore, first-year students expected more active learning in class, more out-of-class coursework during non-exam weeks, and more social learning strategies than non-first-year students. We discuss how instructor awareness of incoming student expectations might be used to promote success in introductory science courses. PMID:28512514
A Development of Game-Based Learning Environment to Activate Interaction among Learners
NASA Astrophysics Data System (ADS)
Takaoka, Ryo; Shimokawa, Masayuki; Okamoto, Toshio
Many studies and systems that incorporate elements such as “pleasure” and “fun” in the game to improve a learner's motivation have been developed in the field of learning environments. However, few are the studies of situations where many learners gather at a single computer and participate in a game-based learning environment (GBLE), and where the GBLE designs the learning process by controlling the interactions between learners such as competition, collaboration, and learning by teaching. Therefore, the purpose of this study is to propose a framework of educational control that induces and activates interaction between learners intentionally to create a learning opportunity that is based on the knowledge understanding model of each learner. In this paper, we explain the design philosophy and the framework of our GBLE called “Who becomes the king in the country of mathematics?” from a game viewpoint and describe the method of learning support control in the learning environment. In addition, we report the results of the learning experiment with our GBLE, which we carried out in a junior high school, and include some comments by a principal and a teacher. From the results of the experiment and some comments, we noticed that a game may play a significant role in weakening the learning relationship among students and creating new relationships in the world of the game. Furthermore, we discovered that learning support control of the GBLE has led to activation of the interaction between learners to some extent.
Characterizing interactive engagement activities in a flipped introductory physics class
NASA Astrophysics Data System (ADS)
Wood, Anna K.; Galloway, Ross K.; Donnelly, Robyn; Hardy, Judy
2016-06-01
Interactive engagement activities are increasingly common in undergraduate physics teaching. As research efforts move beyond simply showing that interactive engagement pedagogies work towards developing an understanding of how they lead to improved learning outcomes, a detailed analysis of the way in which these activities are used in practice is needed. Our aim in this paper is to present a characterization of the type and duration of interactions, as experienced by students, that took place during two introductory physics courses (1A and 1B) at a university in the United Kingdom. Through this work, a simple framework for analyzing lectures—the framework for interactive learning in lectures (FILL), which focuses on student interactions (with the lecturer, with each other, and with the material) is proposed. The pedagogical approach is based on Peer Instruction (PI) and both courses are taught by the same lecturer. We find lecture activities can be categorized into three types: interactive (25%), vicarious interactive (20%) (involving questions to and from the lecturer), and noninteractive (55%). As expected, the majority of both interactive and vicarious interactive activities took place during PI. However, the way that interactive activities were used during non-PI sections of the lecture varied significantly between the two courses. Differences were also found in the average time spent on lecturer-student interactions (28% for 1A and 12% for 1B), although not on student-student interactions (12% and 12%) or on individual learning (10% and 7%). These results are explored in detail and the implications for future research are discussed.
Analysis of Peer Interaction in Learning Activities with Personal Handhelds and Shared Displays
ERIC Educational Resources Information Center
Liu, Chen-Chung; Chung, Chen-Wei; Chen, Nian-Shing; Liu, Baw-Jhiune
2009-01-01
Collaborative learning is extensively applied in classroom activities, but the screens on handheld devices are designed for individual-user mobile applications and may constrain interaction among group learners. The small screen size may lead to fragmented and tete-a-tete communication patterns and frequently obstruct the externalization of the…
ERIC Educational Resources Information Center
Rambe, Patient
2012-01-01
Studies that employed activity theory as a theoretical lens for exploring computer-mediated interaction have not adopted social media as their object of study. However, social media provides lecturers with personalised learning environments for diagnostic and prognostic assessments of student mastery of content and deep learning. The integration…
Collaborative Production of Learning Objects on French Literary Works Using the LOC Software
ERIC Educational Resources Information Center
Penman, Christine
2015-01-01
This case study situates the collaborative design of learning objects (interactive online learning material) using the LOC (Learning Object Creator) software in the context of language activities external to the core learning activities of language students at a UK university. It describes the creative and pedagogical processes leading to the…
Khalil, Mohammed K; Kirkley, Debbie L; Kibble, Jonathan D
2013-01-01
This article describes the development of an interactive computer-based laboratory manual, created to facilitate the teaching and learning of medical histology. The overarching goal of developing the manual is to facilitate self-directed group interactivities that actively engage students during laboratory sessions. The design of the manual includes guided instruction for students to navigate virtual slides, exercises for students to monitor learning, and cases to provide clinical relevance. At the end of the laboratory activities, student groups can generate a laboratory report that may be used to provide formative feedback. The instructional value of the manual was evaluated by a questionnaire containing both closed-ended and open-ended items. Closed-ended items using a five-point Likert-scale assessed the format and navigation, instructional contents, group process, and learning process. Open-ended items assessed student's perception on the effectiveness of the manual in facilitating their learning. After implementation for two consecutive years, student evaluation of the manual was highly positive and indicated that it facilitated their learning by reinforcing and clarifying classroom sessions, improved their understanding, facilitated active and cooperative learning, and supported self-monitoring of their learning. Copyright © 2013 American Association of Anatomists.
Student Perceptions of Active Learning
ERIC Educational Resources Information Center
Lumpkin, Angela; Achen, Rebecca M.; Dodd, Regan K.
2015-01-01
A paradigm shift from lecture-based courses to interactive classes punctuated with engaging, student-centered learning activities has begun to characterize the work of some teachers in higher education. Convinced through the literature of the values of using active learning strategies, we assessed through an action research project in five college…
ERIC Educational Resources Information Center
Kim, Heesung; Ke, Fengfeng
2016-01-01
The pedagogical and design considerations for the use of a virtual reality (VR) learning environment are important for prospective and current teachers. However, empirical research investigating how preservice teachers interact with transformative content representation, facilitation, and learning activities in a VR educational simulation is still…
A hierarchy of effective teaching and learning to acquire competence in evidenced-based medicine
Khan, Khalid S; Coomarasamy, Arri
2006-01-01
Background A variety of methods exists for teaching and learning evidence-based medicine (EBM). However, there is much debate about the effectiveness of various EBM teaching and learning activities, resulting in a lack of consensus as to what methods constitute the best educational practice. There is a need for a clear hierarchy of educational activities to effectively impart and acquire competence in EBM skills. This paper develops such a hierarchy based on current empirical and theoretical evidence. Discussion EBM requires that health care decisions be based on the best available valid and relevant evidence. To achieve this, teachers delivering EBM curricula need to inculcate amongst learners the skills to gain, assess, apply, integrate and communicate new knowledge in clinical decision-making. Empirical and theoretical evidence suggests that there is a hierarchy of teaching and learning activities in terms of their educational effectiveness: Level 1, interactive and clinically integrated activities; Level 2(a), interactive but classroom based activities; Level 2(b), didactic but clinically integrated activities; and Level 3, didactic, classroom or standalone teaching. Summary All health care professionals need to understand and implement the principles of EBM to improve care of their patients. Interactive and clinically integrated teaching and learning activities provide the basis for the best educational practice in this field. PMID:17173690
Distributed Emotions in the Design of Learning Technologies
ERIC Educational Resources Information Center
Kim, Beaumie; Kim, Mi Song
2010-01-01
Learning is a social activity, which requires interactions with the environment, tools, people, and also ourselves (e.g., our previous experiences). Each interaction provides different meanings to learners, and the associated emotion affects their learning and performance. With the premise that emotion and cognition are distributed, the authors…
Learning Is Moving in New Ways: The Ecological Dynamics of Mathematics Education
ERIC Educational Resources Information Center
Abrahamson, Dor; Sánchez-García, Raúl
2016-01-01
Whereas emerging technologies, such as touchscreen tablets, are bringing sensorimotor interaction back into mathematics learning activities, existing educational theory is not geared to inform or analyze passages from action to concept. We present case studies of tutor-student behaviors in an embodied-interaction learning environment, the…
Takeuchi, Naoyuki; Mori, Takayuki; Suzukamo, Yoshimi; Izumi, Shin-Ichi
2017-01-01
Human teaching is a social interaction that supports reciprocal and dynamical feedback between the teacher and the student. The prefrontal cortex (PFC) is a region of particular interest due to its demonstrated role in social interaction. In the present study, we evaluated the PFC activity simultaneously in two individuals playing the role of a teacher and student in a video game teaching–learning task. For that, we used two wearable near-infrared spectroscopy (NIRS) devices in order to elucidate the neural mechanisms underlying cognitive interactions between teachers and students. Fifteen teacher–student pairs in total (N = 30) participated in this study. Each teacher was instructed to teach the video game to their student partner, without speaking. The PFC activity was simultaneously evaluated in both participants using a wearable 16-channel NIRS system during the video game teaching–learning task. Two sessions, each including a triplet of a 30-s teaching–learning task, were performed in order to evaluate changes in PFC activity after advancement of teaching–learning state. Changes in the teachers’ left PFC activity between the first and second session positively correlated with those observed in students (r = 0.694, p = 0.004). Moreover, among teachers, multiple regression analysis revealed a correlation between the left PFC activity and the assessment gap between one’s own teaching and the student’s understanding (β = 0.649, p = 0.009). Activity in the left PFC changed synchronously in both teachers and students after advancement of the teaching–learning state. The left PFC of teachers may be involved in integrating information regarding one’s own teaching process and the student’s learning state. The present observations indicate that simultaneous recording and analysis of brain activity data during teacher–student interactions may be useful in the field of educational neuroscience. PMID:28119650
1998-03-11
Characteristics of Active Learning 24 Vll Vlll The world is facing a paradigm shift as we enter an Information Age characterized by rapid change...general, their teaching philosophy is 22 rapidly moving toward promoting active learning through stimulating student/faculty intellectual interaction...College Teaching, November 1995. Similarly, characteristics of active learning are emphasized (Table 2) .55 These types of active learning strategies
Considering the Activity in Interactivity: A Multimodal Perspective
ERIC Educational Resources Information Center
Schwartz, Ruth N.
2010-01-01
What factors contribute to effective multimedia learning? Increasingly, interactivity is considered a critical component that can foster learning in multimedia environments, including simulations and games. Although a number of recent studies investigate interactivity as a factor in the effective design of multimedia instruction, most examine only…
ERIC Educational Resources Information Center
Chen, Chih-Hung; Liu, Guan-Zhi; Hwang, Gwo-Jen
2016-01-01
In this study, an integrated gaming and multistage guiding approach was proposed for conducting in-field mobile learning activities. A mobile learning system was developed based on the proposed approach. To investigate the interaction between the gaming and guiding strategies on students' learning performance and motivation, a 2 × 2 experiment was…
ERIC Educational Resources Information Center
Kaendler, Celia; Wiedmann, Michael; Leuders, Timo; Rummel, Nikol; Spada, Hans
2016-01-01
The monitoring by teachers of collaborative, cognitive, and meta-cognitive student activities in collaborative learning is crucial for fostering beneficial student interaction. In a quasi-experimental study, we trained pre-service teachers (N = 74) to notice behavioral indicators for these three dimensions of student activities. Video clips of…
ERIC Educational Resources Information Center
Ince, Elif; Kirbaslar, Fatma Gulay; Yolcu, Ergun; Aslan, Ayse Esra; Kayacan, Zeynep Cigdem; Alkan Olsson, Johanna; Akbasli, Ayse Ceylan; Aytekin, Mesut; Bauer, Thomas; Charalambis, Dimitris; Gunes, Zeliha Ozsoy; Kandemir, Ceyhan; Sari, Umit; Turkoglu, Suleyman; Yaman, Yavuz; Yolcu, Ozgu
2014-01-01
The purpose of this study is to develop a 3-dimensional interactive multi-user and multi-admin IUVIRLAB featuring active learning methods and techniques for university students and to introduce the Virtual Laboratory of Istanbul University and to show effects of IUVIRLAB on students' attitudes on communication skills and IUVIRLAB. Although there…
ERIC Educational Resources Information Center
Samsudin, Achmad; Suhandi, Andi; Rusdiana, Dadi; Kaniawati, Ida; Costu, Bayram
2016-01-01
The aim of this study was to develop an Active Learning Based-Interactive Conceptual Instruction (ALBICI) model through PDEODE*E tasks (stands for Predict, Discuss, Explain, Observe, Discuss, Explore, and Explain) for promoting conceptual change and investigating its effectiveness of pre-service physics teachers' understanding on electric field…
ERIC Educational Resources Information Center
Drinkwater, Michael J.; Gannaway, Deanne; Sheppard, Karen; Davis, Matthew J.; Wegener, Margaret J.; Bowen, Warwick P.; Corney, Joel F.
2014-01-01
Turning lectures into interactive, student-led question and answer sessions is known to increase learning, but enabling interaction in a large class seems an insurmountable task. This can discourage adoption of this new approach -- who has time to individualize responses, address questions from over 200 students and encourage active participation…
ERIC Educational Resources Information Center
Smith, Glenn Gordon; Gerretson, Helen; Olkun, Sinan; Yuan, Yuan; Dogbey, James; Erdem, Aliye
2009-01-01
This study investigated how female elementary education pre-service teachers in the United States, Turkey and Taiwan learned spatial skills from structured activities involving discrete, as opposed to continuous, transformations in interactive computer programs, and how these activities transferred to non-related standardized tests of spatial…
ERIC Educational Resources Information Center
Escribano, Begona M.; Aguera, Estrella I.; Tovar, Pura
2011-01-01
In this article, the authors propose an activity which revolves around three elements (interactivity, team learning, and peer-to-peer instruction) and consists of the drafting of a "newspaper." The different characteristics of each of its sections permits the approach to the teaching/learning process, in the context of physiological…
Web-Based Instruction, Learning Effectiveness and Learning Behavior: The Impact of Relatedness
ERIC Educational Resources Information Center
Shieh, Chich-Jen; Liao, Ying; Hu, Ridong
2013-01-01
This study aims to discuss the effects of Web-based Instruction and Learning Behavior on Learning Effectiveness. Web-based Instruction contains the dimensions of Active Learning, Simulation-based Learning, Interactive Learning, and Accumulative Learning; and, Learning Behavior covers Learning Approach, Learning Habit, and Learning Attitude. The…
Interactive Learning System "VisMis" for Scientific Visualization Course
ERIC Educational Resources Information Center
Zhu, Xiaoming; Sun, Bo; Luo, Yanlin
2018-01-01
Now visualization courses have been taught at universities around the world. Keeping students motivated and actively engaged in this course can be a challenging task. In this paper we introduce our developed interactive learning system called VisMis (Visualization and Multi-modal Interaction System) for postgraduate scientific visualization course…
Conceptualising the Socio-Personal Practice of Learning in Work as Negotiation
ERIC Educational Resources Information Center
Smith, Raymond
2014-01-01
The concept of "negotiation" is often used to describe and explain the interactive nature of vocational learning. Such learning is accomplished as workers engage in the joint activities that comprise their occupational practice. In doing so they interact with the material and cultural resources that enable their work to produce and…
ERIC Educational Resources Information Center
Saitta, E. K. H.; Bowdon, M. A.; Geiger, C. L.
2011-01-01
Technology was integrated into service-learning activities to create an interactive teaching method for undergraduate students at a large research institution. Chemistry students at the University of Central Florida partnered with high school students at Crooms Academy of Information Technology in interactive service learning projects. The…
Interactive Learning to Stimulate the Brain's Visual Center and to Enhance Memory Retention
ERIC Educational Resources Information Center
Yun, Yang H.; Allen, Philip A.; Chaumpanich, Kritsakorn; Xiao, Yingcai
2014-01-01
This short paper describes an ongoing NSF-funded project on enhancing science and engineering education using the latest technology. More specifically, the project aims at developing an interactive learning system with Microsoft Kinect™ and Unity3D game engine. This system promotes active, rather than passive, learning by employing embodied…
An Interactive Robotic Fish Exhibit for Designed Settings in Informal Science Learning
ERIC Educational Resources Information Center
Phamduy, Paul; Leou, Mary; Milne, Catherine; Porfiri, Maurizio
2017-01-01
Informal science learning aims to improve public understanding of STEM. Free-choice learners can be engaged in a wide range of experiences, ranging from watching entertaining educational videos to actively participating in hands-on projects. Efforts in informal science learning are often gauged by their ability to elicit interaction, to foster…
The Reading Disc: Learning to Read Using Interactive CD.
ERIC Educational Resources Information Center
Shaw, Simon
1991-01-01
Describes the development of an interactive compact disc on CD-ROM XA that was designed to help adults learn to read. The application of technology to learning is discussed, differences in learner control in computer-based systems are considered, virtual writing is described, and assessment activities available on the disc are explained. (five…
Mattfeld, Aaron T.; Stark, Craig E. L.
2015-01-01
The hippocampus and striatum are thought to have different functional roles in learning and memory. It is unknown under what experimental conditions their contributions are dissimilar or converge, and the extent to which they interact over the course of learning. In order to evaluate both the functional contributions of as well as the interactions between the human hippocampus and striatum, the present study used high-resolution functional magnetic resonance imaging (fMRI) and variations of a conditional visuomotor associative learning task that either taxed arbitrary associative learning (Experiment 1) or stimulus-response learning (Experiment 2). In the first experiment we observed changes in activity in the hippocampus and anterior caudate that reflect differences between the two regions consistent with distinct computational principles. In the second experiment we observed activity in the putamen that reflected content specific representations during the learning of arbitrary conditional visuomotor associations. In both experiments the hippocampus and ventral striatum demonstrated dynamic functional coupling during the learning of new arbitrary associations, but not during retrieval of well-learned arbitrary associations using control variants of the tasks that did not preferentially tax one system versus the other. These findings suggest that both the hippocampus and subregions of the dorsal striatum contribute uniquely to the learning of arbitrary associations while the hippocampus and ventral striatum interact over the course of learning. PMID:25560298
ERIC Educational Resources Information Center
Wright, Laura J.
2008-01-01
This analysis follows students' action and interaction with a single scientific phenomenon (bubbling/gas) over the course of a curriculum unit in a middle school science classroom to examine how and what they learn when doing laboratory activities. Taking a situated approach to interaction, I place the process of objectification in its multimodal…
Interaction with Machine Improvisation
NASA Astrophysics Data System (ADS)
Assayag, Gerard; Bloch, George; Cont, Arshia; Dubnov, Shlomo
We describe two multi-agent architectures for an improvisation oriented musician-machine interaction systems that learn in real time from human performers. The improvisation kernel is based on sequence modeling and statistical learning. We present two frameworks of interaction with this kernel. In the first, the stylistic interaction is guided by a human operator in front of an interactive computer environment. In the second framework, the stylistic interaction is delegated to machine intelligence and therefore, knowledge propagation and decision are taken care of by the computer alone. The first framework involves a hybrid architecture using two popular composition/performance environments, Max and OpenMusic, that are put to work and communicate together, each one handling the process at a different time/memory scale. The second framework shares the same representational schemes with the first but uses an Active Learning architecture based on collaborative, competitive and memory-based learning to handle stylistic interactions. Both systems are capable of processing real-time audio/video as well as MIDI. After discussing the general cognitive background of improvisation practices, the statistical modelling tools and the concurrent agent architecture are presented. Then, an Active Learning scheme is described and considered in terms of using different improvisation regimes for improvisation planning. Finally, we provide more details about the different system implementations and describe several performances with the system.
Social coordination in toddler's word learning: interacting systems of perception and action
NASA Astrophysics Data System (ADS)
Pereira, Alfredo; Smith, Linda; Yu, Chen
2008-06-01
We measured turn-taking in terms of hand and head movements and asked if the global rhythm of the participants' body activity relates to word learning. Six dyads composed of parents and toddlers (M=18 months) interacted in a tabletop task wearing motion-tracking sensors on their hands and head. Parents were instructed to teach the labels of 10 novel objects and the child was later tested on a name-comprehension task. Using dynamic time warping, we compared the motion data of all body-part pairs, within and between partners. For every dyad, we also computed an overall measure of the quality of the interaction, that takes into consideration the state of interaction when the parent uttered an object label and the overall smoothness of the turn-taking. The overall interaction quality measure was correlated with the total number of words learned. In particular, head movements were inversely related to other partner's hand movements, and the degree of bodily coupling of parent and toddler predicted the words that children learned during the interaction. The implications of joint body dynamics to understanding joint coordination of activity in a social interaction, its scaffolding effect on the child's learning and its use in the development of artificial systems are discussed.
Community Garden: A Bridging Program between Formal and Informal Learning
ERIC Educational Resources Information Center
Datta, Ranjan
2016-01-01
Community garden activities can play a significant role in bridging formal and informal learning, particularly in urban children's science and environmental education. It promotes relational methods of learning, discussing, and practicing that will integrate food security, social interactions, community development, environmental activism, and…
Enhancing Student-Student Online Interaction: Exploring the Study Buddy Peer Review Activity
ERIC Educational Resources Information Center
Madland, Colin; Richards, Griff
2016-01-01
The study buddy is a learning strategy employed in a graduate distance course to promote informal peer reviewing of assignments before submission. This strategy promotes student-student interaction and helps break the social isolation of distance learning. Given the concern by Arum and Roksa (2011) that student-student interaction may be…
ERIC Educational Resources Information Center
Khalil, Mohammed K.; Kirkley, Debbie L.; Kibble, Jonathan D.
2013-01-01
This article describes the development of an interactive computer-based laboratory manual, created to facilitate the teaching and learning of medical histology. The overarching goal of developing the manual is to facilitate self-directed group interactivities that actively engage students during laboratory sessions. The design of the manual…
Empowering Students in Science through Active Learning: Voices From Inside the Classroom
NASA Astrophysics Data System (ADS)
Erickson, Sabrina Ann
Preparing students for success in the 21st century has shifted the focus of science education from acquiring information and knowledge to mastery of critical thinking and problem-solving skills. The purpose of this qualitative case study was to examine teacher and student perspectives of the relationship between (a) active learning, problem solving, and achievement in science and (b) the conditions that help facilitate this environment. Adapting a social constructivist theoretical framework, high school science teachers and students were interviewed, school records analyzed, curriculum documents studied, and classes observed. The findings revealed that students were engaged with the material in an active learning environment, which led to a sense of involvement, interest, and meaningful learning. Students felt empowered to take ownership of their learning, developed the critical thinking skills necessary to solve problems independently and became aware of how they learn best, which students reported as interactive learning. Moreover, student reflections revealed that an active environment contributed to deeper understanding and higher skills through interaction and discussion, including questioning, explaining, arguing, and contemplating scientific concepts with their peers. Recommendations are for science teachers to provide opportunities for students to work actively, collaborate in groups, and discuss their ideas to develop the necessary skills for achievement and for administrators to facilitate the conditions needed for active learning to occur.
NASA Astrophysics Data System (ADS)
Ciavarella, Veronica C.
This exploratory qualitative case study investigated the use of lab-type activities in an online graduate geoscience course. Constructivism is the theoretical framework used to explain how learning happens in lab-type activity, and provided the goals to which successful learning in lab-type activity is compared. This study focused on the learner-instructor, learner-learner, and perceptions of the learner-content interactions that occurred related to lab-type activities in an online graduate geoscience course to determine: if the instructor appeared as a facilitator of the learning process in the interactions over the activities; if students engaged in discussion and reflection about the activities; if students perceived the activities as meaningful and authentic; and if students perceived using higher order thinking and prior knowledge while interacting with the content. Ten graduate students from three offerings of the course participated in this study, as well as the instructor and designer of the course content and lab-type activities. Data were collected through interviews, and observation and analysis of the lab-type activities, instructor feedback to students in their graded activities, and discussion that occurred between the instructor and students and among students about the lab-type activities in discussion forums. The nature of the instructor's interactions in discussion forums, in feedback to students on graded activities, and reported by students' in interviews supported that, in the learner-instructor interactions, the instructor of this course was a facilitator who guided and scaffolded the students towards successfully completing the activities. Students engaged in discussion and reflected on the activities, but most learner-learner interactions in discussion forums about the lab-type activities appeared to occur for the purpose of comparison of results, support, and empathy. Students' success at higher order thinking type questions in lab-type activities and their perceptions reported in interviews of using higher order thinking in their interactions with the lab-type activities supported that the learner-content interactions involved higher order thinking. Students also reported finding the activities realistic, meaningful and authentic, and this increased their interest with the activities, and the activities aided their understanding of the content.
Characterizing Interactive Engagement Activities in a Flipped Introductory Physics Class
ERIC Educational Resources Information Center
Wood, Anna K.; Galloway, Ross K.; Donnelly, Robyn; Hardy, Judy
2016-01-01
Interactive engagement activities are increasingly common in undergraduate physics teaching. As research efforts move beyond simply showing that interactive engagement pedagogies work towards developing an understanding of "how" they lead to improved learning outcomes, a detailed analysis of the way in which these activities are used in…
Interactive Distance Learning in Connecticut.
ERIC Educational Resources Information Center
Pietras, Jesse John; Murphy, Robert J.
This paper provides an overview of distance learning activities in Connecticut and addresses the feasibility of such activities. Distance education programs have evolved from the one dimensional electronic mail systems to the use of sophisticated digital fiber networks. The Middlesex Distance Learning Consortium has developed a long-range plan to…
Desselle, Bonnie C; English, Robin; Hescock, George; Hauser, Andrea; Roy, Melissa; Yang, Tong; Chauvin, Sheila W
2012-12-01
Active engagement in the learning process is important to enhance learners' knowledge acquisition and retention and the development of their thinking skills. This study evaluated whether a 1-hour faculty development workshop increased the use of active teaching strategies and enhanced residents' active learning and thinking. Faculty teaching in a pediatrics residency participated in a 1-hour workshop (intervention) approximately 1 month before a scheduled lecture. Participants' responses to a preworkshop/postworkshop questionnaire targeted self-efficacy (confidence) for facilitating active learning and thinking and providing feedback about workshop quality. Trained observers assessed each lecture (3-month baseline phase and 3-month intervention phase) using an 8-item scale for use of active learning strategies and a 7-item scale for residents' engagement in active learning. Observers also assessed lecturer-resident interactions and the extent to which residents were asked to justify their answers. Responses to the workshop questionnaire (n = 32/34; 94%) demonstrated effectiveness and increased confidence. Faculty in the intervention phase demonstrated increased use of interactive teaching strategies for 6 items, with 5 reaching statistical significance (P ≤ .01). Residents' active learning behaviors in lectures were higher in the intervention arm for all 7 items, with 5 reaching statistical significance. Faculty in the intervention group demonstrated increased use of higher-order questioning (P = .02) and solicited justifications for answers (P = .01). A 1-hour faculty development program increased faculty use of active learning strategies and residents' engagement in active learning during resident core curriculum lectures.
ERIC Educational Resources Information Center
Schaffer, Scott P.; Reyes, Lisette; Kim, Hannah; Collins, Bart
2010-01-01
Learning designs aimed at supporting transformational change could significantly benefit from the adoption of socio-historical and socio-cultural analysis approaches. Such systemic perspectives are gaining more importance in education as they facilitate understanding of complex interactions between learning environments and human activity. The…
Semantic-Aware Components and Services of ActiveMath
ERIC Educational Resources Information Center
Melis, Erica; Goguadze, Giorgi; Homik, Martin; Libbrecht, Paul; Ullrich, Carsten; Winterstein, Stefan
2006-01-01
ActiveMath is a complex web-based adaptive learning environment with a number of components and interactive learning tools. The basis for handling semantics of learning content is provided by its semantic (mathematics) content markup, which is additionally annotated with educational metadata. Several components, tools and external services can…
Baby Boy Jones Interactive Case-Based Learning Activity: A Web-Delivered Teaching Strategy.
Cleveland, Lisa M; Carmona, Elenice Valentim; Paper, Bruce; Solis, Linda; Taylor, Bonnie
2015-01-01
Faced with limited resources, nurse educators are challenged with transforming nursing education while preparing enough qualified nurses to meet future demand; therefore, innovative approaches to teaching are needed. In this article, we describe the development of an innovative teaching activity. Baby Boy Jones is a Web-delivered, case-based learning activity focused on neonatal infection. It was created using e-learning authoring software and delivered through a learning management system.
Motivating At-Risk Students through Computer-based Cooperative Learning Activities.
ERIC Educational Resources Information Center
Gan, Siowck-Lee
1999-01-01
Malaysian at-risk students trained in information-technology skills were appointed to lead cooperative-learning groups engaged in computer-search activities. Activities were structured to incorporate individual accountability, positive interdependence and interaction, collaborative skills, and group processing. Motivation, self-confidence,…
Interactive TV: An Effective Instructional Mode for Adult Learners
ERIC Educational Resources Information Center
Chen, Li-Ling; Iris, Carole
2004-01-01
The inclusion of interactive television (iTV) programs for learning is an emerging genre in education. Literature has concluded that any aspect of learning requires some form of interaction or feedback to be most effective. As television (TV) evolves from being a passive to an active medium, it has the potential to engage learners and reach a mass…
Battista, Alexis
2017-01-01
The dominant frameworks for describing how simulations support learning emphasize increasing access to structured practice and the provision of feedback which are commonly associated with skills-based simulations. By contrast, studies examining student participants' experiences during scenario-based simulations suggest that learning may also occur through participation. However, studies directly examining student participation during scenario-based simulations are limited. This study examined the types of activities student participants engaged in during scenario-based simulations and then analyzed their patterns of activity to consider how participation may support learning. Drawing from Engeström's first-, second-, and third-generation activity systems analysis, an in-depth descriptive analysis was conducted. The study drew from multiple qualitative methods, namely narrative, video, and activity systems analysis, to examine student participants' activities and interaction patterns across four video-recorded simulations depicting common motivations for using scenario-based simulations (e.g., communication, critical patient management). The activity systems analysis revealed that student participants' activities encompassed three clinically relevant categories, including (a) use of physical clinical tools and artifacts, (b) social interactions, and (c) performance of structured interventions. Role assignment influenced participants' activities and the complexity of their engagement. Importantly, participants made sense of the clinical situation presented in the scenario by reflexively linking these three activities together. Specifically, student participants performed structured interventions, relying upon the use of physical tools, clinical artifacts, and social interactions together with interactions between students, standardized patients, and other simulated participants to achieve their goals. When multiple student participants were present, such as in a team-based scenario, they distributed the workload to achieve their goals. The findings suggest that student participants learned as they engaged in these scenario-based simulations when they worked to make sense of the patient's clinical presentation. The findings may provide insight into how student participants' meaning-making efforts are mediated by the cultural artifacts (e.g., physical clinical tools) they access, the social interactions they engage in, the structured interventions they perform, and the roles they are assigned. The findings also highlight the complex and emergent properties of scenario-based simulations as well as how activities are nested. Implications for learning, instructional design, and assessment are discussed.
Foods and Families Learning Package: An Educational Supplement to Early Childhood News.
ERIC Educational Resources Information Center
General Mills, Inc., Minneapolis, Minn.
This resource guide for the early childhood professional contains creative art activities, active learning experiences, interactive bulletin boards, teacher-made materials, simple cooking projects, inviting fingerplays, songs, and music. The activities are planned to stimulate children's curiosity and senses. Through experiencing these activities,…
ERIC Educational Resources Information Center
Hemard, Dominique
2006-01-01
If web-based technology is increasingly becoming the central plank of contemporary teaching and learning processes, there is still too little evidence to suggest that it is delivering purposeful learning activities beyond its widely perceived potential as a learning resource providing content and learning objects. This is due in part to the…
ERIC Educational Resources Information Center
Hardman, Jan
2016-01-01
This paper places classroom discourse and interaction right at the heart of the teaching and learning process. It is built on the argument that high quality talk between the teacher and student(s) provides a fertile ground for an active, highly collaborative and cognitively stimulating learning process leading to improved learning outcomes. High…
Saylor, Catherine D; Keselyak, Nancy T; Simmer-Beck, Melanie; Tira, Daniel
2011-02-01
The purpose of this study was to evaluate the impact of collaborative learning on the development of social interaction, task management, and trust in dental hygiene students. These three traits were assessed with the Teamwork Assessment Scale in two different learning environments (traditional lecture/lab and collaborative learning environment). A convenience sample of fifty-six entry-level dental hygiene students taking an introductory/preclinic course at two metropolitan area dental hygiene programs provided comparable experimental and control groups. Factor scores were computed for the three traits, and comparisons were conducted using the Ryan-Einot-Gabriel-Welsh multiple comparison procedure among specific cell comparisons generated from a two-factor repeated measures ANOVA. The results indicate that the collaborative learning environment influenced dental hygiene students positively regarding the traits of social interaction, task management, and trust. However, comparing dental hygiene students to undergraduate students overall indicates that dental hygiene students already possess somewhat higher levels of these traits. Future studies on active learning strategies should examine factors such as student achievement and explore other possible active learning methodologies.
Lyons, Rebecca; Johnson, Teresa R.; Khalil, Mohammed K.
2014-01-01
Interactive virtual human (IVH) simulations offer a novel method for training skills involving person-to-person interactions. This article examines the effectiveness of an IVH simulation for teaching medical students to assess rare cranial nerve abnormalities in both individual and small-group learning contexts. Individual (n = 26) and small-group (n = 30) interaction with the IVH system was manipulated to examine the influence on learning, learner engagement, perceived cognitive demands of the learning task, and instructional efficiency. Results suggested the IVH activity was an equally effective and engaging instructional tool in both learning structures, despite learners in the group learning contexts having to share hands-on access to the simulation interface. Participants in both conditions demonstrated a significant increase in declarative knowledge post-training. Operation of the IVH simulation technology imposed moderate cognitive demand but did not exceed the demands of the task content or appear to impede learning. PMID:24883241
ERIC Educational Resources Information Center
Kupetz, Rita; Ziegenmeyer, Brigit
2005-01-01
The paper discusses a blended learning concept for a university teacher training course for prospective teachers of English. The concept aims at purposeful learning using different methods and activities, various traditional and electronic media, learning spaces covering contact and distance learning, and task-based learning modules that begin…
ERIC Educational Resources Information Center
Chang, Hsin-Yi; Hsu, Ying-Shao; Wu, Hsin-Kai
2016-01-01
We investigated the impact of an augmented reality (AR) versus interactive simulation (IS) activity incorporated in a computer learning environment to facilitate students' learning of a socio-scientific issue (SSI) on nuclear power plants and radiation pollution. We employed a quasi-experimental research design. Two classes (a total of 45…
ERIC Educational Resources Information Center
Li, Kam Cheong; Lee, Linda Yin-King; Wong, Suet-Lai; Yau, Ivy Sui-Yu; Wong, Billy Tak-Ming
2018-01-01
This study examined the effects of mobile apps on the learning motivation, social interaction and study performance of nursing students. A total of 20 students participated in focus group interviews to collect feedback on their use of mobile apps for learning and communicative activities. Two consecutive cohorts of students in a nursing programme,…
The Use of Flexible, Interactive, Situation-Focused Software for the E-Learning of Mathematics.
ERIC Educational Resources Information Center
Farnsworth, Ralph Edward
This paper discusses the classroom, home, and distance use of new, flexible, interactive, application-oriented software known as Active Learning Suite. The actual use of the software, not just a controlled experiment, is reported on. Designed for the e-learning of university mathematics, the program was developed by a joint U.S.-Russia team and…
ERIC Educational Resources Information Center
Tsai, I-Chun
2011-01-01
This study investigates how pre-service and in-service teachers participate in an online community for learning to teach. Members' levels and patterns of participation and social interaction were examined via social network analysis of activity logs and content analysis of interviews. The results of the analyses show that (a) members' levels and…
"It's on the Tip of My Google": Intra-Active Performance and the Non-Totalising Learning Environment
ERIC Educational Resources Information Center
Snake-Beings, Emit
2017-01-01
Technologies that expand the learning environment to include interactions outside of the physical space of the classroom, such as the use of Google as an aid to memory, represent one aspect of learning that occurs within several seemingly decentralised spaces. On the other hand, it can be argued that such interactive technologies are enclosed in…
Baby and Toddler Learning Fun: 50 Interactive and Developmental Activities To Enjoy with Your Child.
ERIC Educational Resources Information Center
Goldberg, Sally
Based on the view that almost every interaction a parent has with an infant is an opportunity to help the baby learn more about the world, this book provides parents with simple and effective ways to enrich their infant's environment and to boost their childs language, motor, and social skills. Introductory remarks describe the learning areas…
Web-Based Assessment Tool for Communication and Active Listening Skill Development
ERIC Educational Resources Information Center
Cheon, Jongpil; Grant, Michael
2009-01-01
The website "Active Listening" was developed within a larger project--"Interactive Web-based training in the subtleties of communication and active listening skill development." The Active Listening site aims to provide beginning counseling psychology students with didactic and experimental learning activities and interactive tests so that…
Tangible User Interfaces and Contrasting Cases as a Preparation for Future Learning
NASA Astrophysics Data System (ADS)
Schneider, Bertrand; Blikstein, Paulo
2018-04-01
In this paper, we describe an experiment that compared the use of a Tangible User Interface (physical objects augmented with digital information) and a set of Contrasting Cases as a preparation for future learning. We carried out an experiment (N = 40) with a 2 × 2 design: the first factor compared traditional instruction ("Tell & Practice") with a constructivist activity designed using the Preparation for Future Learning framework (PFL). The second factor contrasted state-of-the-art PFL learning activity (i.e., students studying Contrasting Cases) with an interactive tabletop featuring digitally enhanced manipulatives. In agreement with prior work, we found that dyads of students who followed the PFL activity achieved significantly higher learning gains compared to their peers who followed a traditional "Tell & Practice" instruction (large effect size). A similar effect was found in favor of the interactive tabletop compared to the Contrasting Cases (small-to-moderate effect size). We discuss implications for designing socio-constructivist activities using new computer interfaces.
"ELIP-MARC" Activities via TPS of Cooperative Learning to Improve Student's Mathematical Reasoning
ERIC Educational Resources Information Center
Ulya, Wisulah Titah; Purwanto; Parta, I. Nengah; Mulyati, Sri
2017-01-01
The purpose of this study is to describe and generate interaction model of learning through "Elip-Marc" activity via "TPS" cooperative learning in order to improve student's mathematical reasoning who have valid, practical and effective criteria. "Elip-Marc" is an acronym of eliciting, inserting, pressing,…
A Contextualized System for Supporting Active Learning
ERIC Educational Resources Information Center
Gomez, Jorge E.; Huete, Juan F.; Hernandez, Velssy L.
2016-01-01
The dynamics of the world today demands a change in traditional education paradigms to enable the creation of more efficient learning environments, where students will learn more effectively and will play a more active role in their education. They should interact with the knowledge at anytime-anywhere. In order to tackle this problem we should…
ERIC Educational Resources Information Center
Caceffo, Ricardo; Azevedo, Rodolfo
2014-01-01
The constructivist theory indicates that knowledge is not something finished and complete. However, the individuals must construct it through the interaction with the physical and social environment. The Active Learning is a methodology designed to support the constructivism through the involvement of students in their learning process, allowing…
Agriculture Education SimFarm(TM). Technology Learning Activity. Teacher Edition.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This Technology Learning Activity (TLA) for agriculture education in grades 6-10 is designed to help students learn the basic terminology of a farm system while they experience the responsibility of keeping a profitable farm in operation through use of the interactive SimFarm software. Introductory materials provide an overview of technology…
"Drawing in the Sand" as a Tool for Teaching Coastal Geography
ERIC Educational Resources Information Center
Fagan, Joseph B.; Sturm, Sean
2015-01-01
Field trips are recognized as an essential component of the study of geography. They are popular with learners and teachers, but their value as learning experiences is largely assumed. What is needed are interactive and relevant learning activities like "drawing in the sand," a participatory learning activity that has been introduced…
Cuyvers, Katrien; Donche, Vincent; Van den Bossche, Piet
2016-05-01
The entrance of newly qualified medical specialists into daily practice is considered to be a stressful period in which curriculum support is absent. Although engaging in both personal and professional learning and development activities is recognized fundamental for lifelong professional competence, research on medical professionals' entrance into practice is scarce. This research aims to contribute to the framework of medical professionals' informal learning and outlines the results of an exploratory study on the nature of learning in daily practice beyond postgraduate training. Eleven newly qualified physicians from different specialized backgrounds participated in a phenomenographic study, using a critical incident method and a grounded theory approach. Results demonstrated that learning in the workplace is, to a large extent, informal and associated with a variety of learning experiences. Analysis shows that experiences related to diagnostics and treatments are important sources for learning. Furthermore, incidents related to communication, changing roles, policy and organization offer learning opportunities, and therefore categorized as learning experiences. A broad range of learning activities are identified in dealing with these learning experiences. More specifically, actively engaging in actions and interactions, especially with colleagues of the same specialty, are the most mentioned. Observing others, consulting written sources, and recognizing uncertainties, are also referred to as learning activities. In the study, interaction, solely or combined with other learning activities, are deemed as very important by specialists in the initial entrance into practice. These insights can be used to develop workplace structures to support the entrance into practice following postgraduate training.
Distributing vs. Blocking Learning Questions in a Web-Based Learning Environment
ERIC Educational Resources Information Center
Kapp, Felix; Proske, Antje; Narciss, Susanne; Körndle, Hermann
2015-01-01
Effective studying in web-based learning environments (web-LEs) requires cognitive engagement and demands learners to regulate their learning activities. One way to support learners in web-LEs is to provide interactive learning questions within the learning environment. Even though research on learning questions has a long tradition, there are…
ERIC Educational Resources Information Center
Wright, L. Kate; Newman, Dina L.; Cardinale, Jean A.; Teese, Robert
2016-01-01
The typical "flipped classroom" delivers lecture material in video format to students outside of class in order to make space for active learning in class. But why give students passive material at all? We are developing a set of high-quality online educational materials that promote active, hands-on science learning to aid in teaching…
Bridge, Donna J.; Cohen, Neal J.; Voss, Joel L.
2017-01-01
Memory can profoundly influence new learning, presumably because memory optimizes exploration of to-be-learned material. Although hippocampus and frontoparietal networks have been implicated in memory-guided exploration, their specific and interactive roles have not been identified. We examined eye movements during fMRI scanning to identify neural correlates of the influences of memory retrieval on exploration and learning. Following retrieval of one object in a multi-object array, viewing was strategically directed away from the retrieved object toward non-retrieved objects, such that exploration was directed towards to-be-learned content. Retrieved objects later served as optimal reminder cues, indicating that exploration caused memory to become structured around the retrieved content. Hippocampal activity was associated with memory retrieval whereas frontoparietal activity varied with strategic viewing patterns deployed following retrieval, thus providing spatiotemporal dissociation of memory retrieval from memory-guided learning strategies. Time-lagged fMRI connectivity analyses indicated that hippocampal activity predicted frontoparietal activity to a greater extent for a condition in which retrieval guided exploration than for a passive control condition in which exploration was not influenced by retrieval. This demonstrates network-level interaction effects specific to influences of memory on strategic exploration. These findings show how memory guides behavior during learning and demonstrate distinct yet interactive hippocampal-frontoparietal roles in implementing strategic exploration behaviors that determine the fate of evolving memory representations. PMID:28471729
Bridge, Donna J; Cohen, Neal J; Voss, Joel L
2017-08-01
Memory can profoundly influence new learning, presumably because memory optimizes exploration of to-be-learned material. Although hippocampus and frontoparietal networks have been implicated in memory-guided exploration, their specific and interactive roles have not been identified. We examined eye movements during fMRI scanning to identify neural correlates of the influences of memory retrieval on exploration and learning. After retrieval of one object in a multiobject array, viewing was strategically directed away from the retrieved object toward nonretrieved objects, such that exploration was directed toward to-be-learned content. Retrieved objects later served as optimal reminder cues, indicating that exploration caused memory to become structured around the retrieved content. Hippocampal activity was associated with memory retrieval, whereas frontoparietal activity varied with strategic viewing patterns deployed after retrieval, thus providing spatiotemporal dissociation of memory retrieval from memory-guided learning strategies. Time-lagged fMRI connectivity analyses indicated that hippocampal activity predicted frontoparietal activity to a greater extent for a condition in which retrieval guided exploration occurred than for a passive control condition in which exploration was not influenced by retrieval. This demonstrates network-level interaction effects specific to influences of memory on strategic exploration. These findings show how memory guides behavior during learning and demonstrate distinct yet interactive hippocampal-frontoparietal roles in implementing strategic exploration behaviors that determine the fate of evolving memory representations.
Is Free Recall Active: The Testing Effect through the ICAP Lens
ERIC Educational Resources Information Center
Bruchok, Christiana; Mar, Christopher; Craig, Scotty D.
2017-01-01
Amidst evidence in favor of "active learning," online instruction widely implements passive design and tests learners' retrieval performance as opposed to learners' understanding. Literature reporting the testing effect promotes recall as a learning tool. The Interactive>Constructive>Active>Passive taxonomy would place quizzing…
Active and Interactive Discovery of Goal Selection Knowledge
2011-01-01
Generator retrieves the goal ct.g of the most similar case ct and outputs it to the Goal Manager. 5.3 Retention and Maintenance: Active Learning Figure...pp. 202-206). Seattle, WA: AAAI Press. Hu, R., Delaney, S.J., & Mac Namee, B. (2010). EGAL: Exploration guided active learning for TCBR. Proceedings...Sculley, D. (2007). Online active learning methods for fast label- efficient spam filtering. In Proceedings of the Fourth Conference on Email and Anti
Forum: The Lecture and Student Learning. Lecture and Active Learning as a Dialectical Tension
ERIC Educational Resources Information Center
Mallin, Irwin
2017-01-01
Lecture remains a valuable tool in the student learning toolbox--one that at its best helps students unpack what they read for class, place course material in context, and see how a subject matter expert solves problems. It may be useful to think of lecture and active learning as a dialectical tension satisfied by the interactive lecture. Just as…
Ezeonwu, Mabel; Berkowitz, Bobbie; Vlasses, Frances R
2014-01-01
This article describes a model of teaching community health nursing that evolved from a long-term partnership with a community with limited existing health programs. The partnership supported RN-BSN students' integration in the community and resulted in reciprocal gains for faculty, students and community members. Community clients accessed public health services as a result of the partnership. A blended learning approach that combines face-to-face interactions, service learning and online activities was utilized to enhance students' learning. Following classroom sessions, students actively participated in community-based educational process through comprehensive health needs assessments, planning and implementation of disease prevention and health promotion activities for community clients. Such active involvement in an underserved community deepened students' awareness of the fundamentals of community health practice. Students were challenged to view public health from a broader perspective while analyzing the impacts of social determinants of health on underserved populations. Through asynchronous online interactions, students synthesized classroom and community activities through critical thinking. This paper describes a model for teaching community health nursing that informs students' learning through blended learning, and meets the demands for community health nursing services delivery. © 2013 Wiley Periodicals, Inc.
Responsibility and Reciprocity: Social Organization of Mazahua Learning Practices
ERIC Educational Resources Information Center
Paradise, Ruth; de Haan, Mariette
2009-01-01
This article describes Mazahua children's participation in learning interactions that take place when they collaborate with more knowledgeable others in everyday activities in family and community settings. During these interactions they coordinate their actions with those of other participants, switching between the roles of "knowledgeable…
ERIC Educational Resources Information Center
Hwang, Gwo-Jen; Lai, Chiu-Lin; Liang, Jyh-Chong; Chu, Hui-Chun; Tsai, Chin-Chung
2018-01-01
In this study, a one-year program was conducted to investigate the relationships between students' perceptions of mobile learning and their tendencies of peer interaction and higher-order thinking in issue-based mobile learning activities. To achieve the research objective, a survey consisting of eight scales, namely, usability, continuity,…
Two spatiotemporally distinct value systems shape reward-based learning in the human brain.
Fouragnan, Elsa; Retzler, Chris; Mullinger, Karen; Philiastides, Marios G
2015-09-08
Avoiding repeated mistakes and learning to reinforce rewarding decisions is critical for human survival and adaptive actions. Yet, the neural underpinnings of the value systems that encode different decision-outcomes remain elusive. Here coupling single-trial electroencephalography with simultaneously acquired functional magnetic resonance imaging, we uncover the spatiotemporal dynamics of two separate but interacting value systems encoding decision-outcomes. Consistent with a role in regulating alertness and switching behaviours, an early system is activated only by negative outcomes and engages arousal-related and motor-preparatory brain structures. Consistent with a role in reward-based learning, a later system differentially suppresses or activates regions of the human reward network in response to negative and positive outcomes, respectively. Following negative outcomes, the early system interacts and downregulates the late system, through a thalamic interaction with the ventral striatum. Critically, the strength of this coupling predicts participants' switching behaviour and avoidance learning, directly implicating the thalamostriatal pathway in reward-based learning.
Development of active learning modules in pharmacology for small group teaching.
Tripathi, Raakhi K; Sarkate, Pankaj V; Jalgaonkar, Sharmila V; Rege, Nirmala N
2015-01-01
Current teaching in pharmacology in undergraduate medical curriculum in India is primarily drug centered and stresses imparting factual knowledge rather than on pharmacotherapeutic skills. These skills would be better developed through active learning by the students. Hence modules that will encourage active learning were developed and compared with traditional methods within the Seth GS Medical College, Mumbai. After Institutional Review Board approval, 90 second year undergraduate medical students who consented were randomized into six sub-groups, each with 15 students. Pre-test was administered. The three sub-groups were taught a topic using active learning modules (active learning groups), which included problems on case scenarios, critical appraisal of prescriptions and drug identification. The remaining three sub-groups were taught the same topic in a conventional tutorial mode (tutorial learning groups). There was crossover for the second topic. Performance was assessed using post-test. Questionnaires with Likert-scaled items were used to assess feedback on teaching technique, student interaction and group dynamics. The active and tutorial learning groups differed significantly in their post-test scores (11.3 ± 1.9 and 15.9 ± 2.7, respectively, P < 0.05). In students' feedback, 69/90 students had perceived the active learning session as interactive (vs. 37/90 students in tutorial group) and enhanced their understanding vs. 56/90 in tutorial group), aroused intellectual curiosity (47/90 students of active learning group vs. 30/90 in tutorial group) and provoked self-learning (41/90 active learning group vs. 14/90 in tutorial group). Sixty-four students in the active learning group felt that questioning each other helped in understanding the topic, which was the experience of 25/90 students in tutorial group. Nevertheless, students (55/90) preferred tutorial mode of learning to help them score better in their examinations. In this study, students preferred an active learning environment, though to pass examinations, they preferred the tutorial mode of teaching. Further efforts are required to explore the effects on learning of introducing similar modules for other topics.
Active Learning Strategies for Introductory Light and Optics
ERIC Educational Resources Information Center
Sokoloff, David R.
2016-01-01
There is considerable evidence that traditional approaches are ineffective in teaching physics concepts, including light and optics concepts. A major focus of the work of the Activity Based Physics Group has been on the development of active learning curricula like RealTime Physics (RTP) labs and Interactive Lecture Demonstrations (ILDs). Among…
Measurement of Usability for Multimedia Interactive Learning Based on Website in Mathematics for SMK
NASA Astrophysics Data System (ADS)
Sukardjo, Moch.; Sugiyanta, Lipur
2018-04-01
Web usability, if evaluation done correctly, can significantly improve the quality of the website. Website containing multimedia for education shoud apply user interfaces that are both easy to learn and easy to use. Multimedia has big role in changing the mindset of a person in learning. Using multimedia, learners get easy to obtain information, adjust information and empower information. Therefore, multimedia is utilized by teachers in developing learning techniques to improve student learning outcomes. For students with self-directed learning, multimedia provides the ease and completeness of the courses in such a way that students can complete the learning independently both at school and at home without the guidance of teachers. The learning independence takes place in how students choose, absorb information, and follow the evaluation quickly and efficiently. The 2013 Curriculum 2013 for Vocational High School (SMK) requires teachers to create engaging teaching and learning activities that students enjoy in the classroom (also called invitation learning environment). The creation of learning activity environment is still problem for most teachers. Various researches reveal that teaching and learning activities will be more effective and easy when assisted by visual tools. Using multimedia, learning material can be presented more attractively that help students understand the material easily. The opposite is found in the learning activity environment who only rely on ordinary lectures. Usability is a quality level of multimedia with easy to learn, easy to use and encourages users to use it. The website Multimedia Interactive Learning for Mathematics SMK Class X is targeted object. Usability website in Multimedia Interactive Learning for Mathematics SMK Class X is important indicators to measure effectiveness, efficiency, and student satisfaction to access the functionality of website. This usability measurement should be done carefully before the design is implemented thoroughly. The only way to get test with high quality results is to start testing at the beginning of the design process and continuously testing each of the next steps. This research performs usability testing on of website by using WAMMI criterion (Website Analysis and Measurement Inventory) and will be focused on how convenience using the website application. Components of Attractiveness, Controllability, Efficiency, Helpfulness, and Learnability are applied. The website in Multimedia Interactive Learning for Mathematics SMK Class X can be in accordance with the purpose to be accepted by student to improve student learning outcomes. The results show that WAMMI method show the usability value of Multimedia Mathematics SMK Class X is about from 70% to 90%.
Challenges of Using Learning Analytics Techniques to Support Mobile Learning
ERIC Educational Resources Information Center
Arrigo, Marco; Fulantelli, Giovanni; Taibi, Davide
2015-01-01
Evaluation of Mobile Learning remains an open research issue, especially as regards the activities that take place outside the classroom. In this context, Learning Analytics can provide answers, and offer the appropriate tools to enhance Mobile Learning experiences. In this poster we introduce a task-interaction framework, using learning analytics…
The Relationship Between Consciousness, Interaction, and Language Learning.
ERIC Educational Resources Information Center
van Lier, Leo
1998-01-01
Examines the relationship between consciousness, language learning, and social interaction from an ecological perspective. Argues that consciousness and language are integral parts of the human ecology, that is, they can be defined in terms of social activity and relationships among people, as well as in terms of mental operations or cerebral…
Useful Expressions for Implementing Cooperative Learning in English
ERIC Educational Resources Information Center
Asakawa, Machiko; Kanamaru, Ayako; Plaza, Taron; Shiramizu, Chie
2016-01-01
With the Ministry of Education, Sports, Science and Technology calling for junior and senior high school English classes in Japan to be more communicative and taught in English, teachers need effective tools to help make their classrooms more interactive. Cooperative learning activities have the potential to increase interaction among students and…
Success and Interactive Learning: Sailing toward Student Achievement
ERIC Educational Resources Information Center
Midcap, Richard; Seitzer, Joan; Holliday, Randy; Childs, Amy; Bowser, Dana
2008-01-01
Success and Interactive Learning's (SAIL) front-loaded retention activities and unique financial incentives have combined to improve retention, persistence, and success of first-time college students. Its effectiveness has been validated through a comparison of retention rates and aggregate quality-point averages of SAIL cohorts with those rates…
Play Behaviors of Parents and Their Young Children with Disabilities
ERIC Educational Resources Information Center
Childress, Dana C.
2011-01-01
Learning to explore, communicate, and interact with others and the environment through play can be problematic for young children with disabilities, but with parental support, children can learn and interact successfully during play activities. To determine how parents engage their preschool children with disabilities in play and what behaviors…
Haraldseid, Cecilie; Friberg, Febe; Aase, Karina
2016-01-01
Policy initiatives and an increasing amount of the literature within higher education both call for students to become more involved in creating their own learning. However, there is a lack of studies in undergraduate nursing education that actively involve students in developing such learning material with descriptions of the students' roles in these interactive processes. Explorative qualitative study, using data from focus group interviews, field notes and student notes. The data has been subjected to qualitative content analysis. Active student involvement through an iterative process identified five different learning needs that are especially important to the students: clarification of learning expectations, help to recognize the bigger picture, stimulation of interaction, creation of structure, and receiving context- specific content. The iterative process involvement of students during the development of new technological learning material will enhance the identification of important learning needs for students. The use of student and teacher knowledge through an adapted co-design process is the most optimal level of that involvement.
The Particular Aspects of Science Museum Exhibits That Encourage Students' Engagement
NASA Astrophysics Data System (ADS)
Shaby, Neta; Assaraf, Orit Ben-Zvi; Tal, Tali
2017-06-01
This research explores learning in science museums through the most common activity in a science museum—interaction with exhibits. The goal of this study was to characterize the learning behaviors exhibited by students as they engage with interactive exhibits in order to draw insight regarding the design of the exhibits. In order to do so, we used a qualitative method of observation as well as the Visitor Engagement Framework (VEF) model, a visitor-based framework for assessing visitors' learning experiences with exhibits in a science center setting. The combined method produced a framework of nine learning behaviors exhibited during the visitors' interaction with the exhibits, grouped into three categories that reflect increasing levels of engagement and depth of the learning experience. Our research participants consisted of a total 1800 students aged 10-12 (4th, 5th, and 6th graders) who came to the museum with their class for a day visit. We observed nine exhibits, each visited by 200 students. Our observations revealed several design elements that contribute to engagement with exhibits in science museums. For example, exhibits that have familiar activation encourage visitors' interaction, exhibits that facilitate social interaction are more likely to increase engagement, and the highest levels of engagement can be found in exhibits that support large groups.
Reducing Labeling Effort for Structured Prediction Tasks
2005-01-01
correctly annotated for the instance to be of use to the learner. Traditional active learning addresses this problem by optimizing the order in which the...than for others. We propose a new active learning paradigm which reduces not only how many instances the annotator must label, but also how difficult...We validate this active learning framework in an interactive information extraction system, reducing the total number of annotation actions by 22%.
Peer Evaluation in Blended Team Project-Based Learning: What Do Students Find Important?
ERIC Educational Resources Information Center
Lee, Hye-Jung; Lim, Cheolil
2012-01-01
Team project-based learning is reputed to be an appropriate way to activate interactions among students and to encourage knowledge building through collaborative learning. Peer evaluation is an effective way for each student to participate actively in a team project. This article investigates the issues that are important to students when…
ERIC Educational Resources Information Center
Kasuma, Shaidatul Akma Adi
2017-01-01
This paper identifies Malaysian university students' needs and preferences for online English language activities on a Facebook group that supports their formal learning. Two methods of data collection were employed; content analysis of the Facebook interactions, and semi structured interviews. Four main learning preferences or characteristics of…
Jadhav, Shantanu P.; Rothschild, Gideon; Roumis, Demetris K.; Frank, Loren M.
2016-01-01
SUMMARY Interactions between the hippocampus and prefrontal cortex (PFC) are critical for learning and memory. Hippocampal activity during awake sharp wave ripple (SWR) events is important for spatial learning, and hippocampal SWR activity often represents past or potential future experiences. Whether or how this reactivation engages the PFC, and how reactivation might interact with ongoing patterns of PFC activity remains unclear. We recorded hippocampal CA1 and PFC activity in animals learning spatial tasks and found that many PFC cells showed spiking modulation during SWRs. Unlike in CA1, SWR-related activity in PFC comprised both excitation and inhibition of distinct populations. Within individual SWRs, excitation activated PFC cells with representations related to the concurrently reactivated hippocampal representation, while inhibition suppressed PFC cells with unrelated representations. Thus, awake SWRs mark times of strong coordination between hippocampus and PFC that reflects structured reactivation of representations related to ongoing experience. PMID:26971950
Interface Metaphors for Interactive Machine Learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jasper, Robert J.; Blaha, Leslie M.
To promote more interactive and dynamic machine learn- ing, we revisit the notion of user-interface metaphors. User-interface metaphors provide intuitive constructs for supporting user needs through interface design elements. A user-interface metaphor provides a visual or action pattern that leverages a user’s knowledge of another domain. Metaphors suggest both the visual representations that should be used in a display as well as the interactions that should be afforded to the user. We argue that user-interface metaphors can also offer a method of extracting interaction-based user feedback for use in machine learning. Metaphors offer indirect, context-based information that can be usedmore » in addition to explicit user inputs, such as user-provided labels. Implicit information from user interactions with metaphors can augment explicit user input for active learning paradigms. Or it might be leveraged in systems where explicit user inputs are more challenging to obtain. Each interaction with the metaphor provides an opportunity to gather data and learn. We argue this approach is especially important in streaming applications, where we desire machine learning systems that can adapt to dynamic, changing data.« less
Environmental Education Activities & Programs 1998-1999.
ERIC Educational Resources Information Center
Bureau of Reclamation (Dept. of Interior), Denver, CO.
This document features descriptions of interactive learning models and presentations in environmental education concerning groundwater, geology, the environment, weather, water activities, and interactive games. Activities include: (1) GW-Standard; (2) GW-w/no Leaky Underground Storage Tank (No UST); (3) GW-Karst; (4) GW-Landfill Models--Standard…
ERIC Educational Resources Information Center
Tanner, Howard; Beauchamp, Gary; Jones, Sonia; Kennewell, Steve
2010-01-01
The term "orchestration", has been used to describe the teacher's role in activity settings incorporating interactive technologies. This musical analogy suggests pre-planned manipulation of events to generate "performance" leading to learning. However, in two recent projects we have observed how effective teaching and learning…
Coaching the exploration and exploitation in active learning for interactive video retrieval.
Wei, Xiao-Yong; Yang, Zhen-Qun
2013-03-01
Conventional active learning approaches for interactive video/image retrieval usually assume the query distribution is unknown, as it is difficult to estimate with only a limited number of labeled instances available. Thus, it is easy to put the system in a dilemma whether to explore the feature space in uncertain areas for a better understanding of the query distribution or to harvest in certain areas for more relevant instances. In this paper, we propose a novel approach called coached active learning that makes the query distribution predictable through training and, therefore, avoids the risk of searching on a completely unknown space. The estimated distribution, which provides a more global view of the feature space, can be used to schedule not only the timing but also the step sizes of the exploration and the exploitation in a principled way. The results of the experiments on a large-scale data set from TRECVID 2005-2009 validate the efficiency and effectiveness of our approach, which demonstrates an encouraging performance when facing domain-shift, outperforms eight conventional active learning methods, and shows superiority to six state-of-the-art interactive video retrieval systems.
Luscombe, Ciara; Montgomery, Julia
2016-07-19
Lectures continue to be an efficient and standardised way to deliver information to large groups of students. It has been well documented that students prefer interactive lectures, based on active learning principles, to didactic teaching in the large group setting. Despite this, it is often the case than many students do not engage with active learning tasks and attempts at interaction. By exploring student experiences, expectations and how they use lectures in their learning we will provide recommendations for faculty to support student learning both in the lecture theatre and during personal study time. This research employed a hermeneutic phenomenological approach. Three focus groups, consisting of 19 students in total, were used to explore the experiences of second year medical students in large group teaching sessions. Using generic thematic data analysis, these accounts have been developed into a meaningful account of experience. This study found there to be a well-established learning culture amongst students and with it, expectations as to the format of teaching sessions. Furthermore, there were set perceptions about the student role within the learning environment which had many implications, including the way that innovative teaching methods were received. Student learning was perceived to take place outside the lecture theatre, with a large emphasis placed on creating resources that can be taken away to use in personal study time. Presented here is a constructive review of reasons for student participation, interaction and engagement in large group teaching sessions. Based on this are recommendations constructed with the view to aid educators in engaging students within this setting. Short term, educators can implement strategies that monopolise on the established learning culture of students to encourage engagement with active learning strategies. Long term, it would be beneficial for educators to consider ways to shift the current student learning culture to one that embraces an active learning curriculum.
Li, Xin; Verspoor, Karin; Gray, Kathleen; Barnett, Stephen
2016-01-01
This paper summarises a longitudinal analysis of learning interactions occurring over three years among health professionals in an online social network. The study employs the techniques of Social Network Analysis (SNA) and statistical modeling to identify the changes in patterns of interaction over time and test associated structural network effects. SNA results indicate overall low participation in the network, although some participants became active over time and even led discussions. In particular, the analysis has shown that a change of lead contributor results in a change in learning interaction and network structure. The analysis of structural network effects demonstrates that the interaction dynamics slow down over time, indicating that interactions in the network are more stable. The health professionals may be reluctant to share knowledge and collaborate in groups but were interested in building personal learning networks or simply seeking information.
Hall, Susan; Grant, Gary; Arora, Devinder; Karaksha, Abdullah; McFarland, Amelia; Lohning, Anna; Anoopkumar-Dukie, Shailendra
2017-07-01
Medicinal chemistry and pharmacology are difficult topics to both teach and learn given the complex nature of drug mechanisms and drug-receptor interactions. This highlights the need for innovative teaching methods to deliver this information to students. One such method is through three-dimensional (3D) printing of enzymes and ligands in the teaching of molecular modelling concepts relating to drug-receptor and enzyme interactions be ligands. This type of printing has been shown to be beneficial in several educational settings; however, to our knowledge, its effectiveness in pharmacy, medicinal chemistry and pharmacology learning and teaching is largely unknown. Therefore, the aim of this study was to evaluate pharmacy student perceptions and the educational benefits of 3D printed molecules in molecular modelling with regards to engagement and learning outcomes when used in a drug-target interaction topic. This aim was achieved through administering students a short questionnaire designed to evaluate their engagement and learning outcomes with students also free to provide comments. This study found that nearly all (>90%) students found the activity was useful in improving both student engagement and learning outcomes. In conclusion, 3D printing may provide an alternative learning activity to help pharmacy students understand the drug-target interaction. Copyright © 2017 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Hooper, Jeff
2002-01-01
A study examined the response of two adults who attended a music activity therapy program in which music activities encouraged peer interaction. Music activity therapy was compared with a control condition (i.e., ball and target games). Both conditions increased the level of positive interaction, however, music therapy was least effective.…
Amadi, Ugwechi; Allman, Claire; Johansen-Berg, Heidi; Stagg, Charlotte J
2015-01-01
The relative timing of plasticity-induction protocols is known to be crucial. For example, anodal transcranial direct current stimulation (tDCS), which increases cortical excitability and typically enhances plasticity, can impair performance if it is applied before a motor learning task. Such timing-dependent effects have been ascribed to homeostatic plasticity, but the specific synaptic site of this interaction remains unknown. We wished to investigate the synaptic substrate, and in particular the role of inhibitory signaling, underpinning the behavioral effects of anodal tDCS in homeostatic interactions between anodal tDCS and motor learning. We used transcranial magnetic stimulation (TMS) to investigate cortical excitability and inhibitory signaling following tDCS and motor learning. Each subject participated in four experimental sessions and data were analyzed using repeated measures ANOVAs and post-hoc t-tests as appropriate. As predicted, we found that anodal tDCS prior to the motor task decreased learning rates. This worsening of learning after tDCS was accompanied by a correlated increase in GABAA activity, as measured by TMS-assessed short interval intra-cortical inhibition (SICI). This provides the first direct demonstration in humans that inhibitory synapses are the likely site for the interaction between anodal tDCS and motor learning, and further, that homeostatic plasticity at GABAA synapses has behavioral relevance in humans. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
[Which learning methods are expected for ultrasound training? Blended learning on trial].
Röhrig, S; Hempel, D; Stenger, T; Armbruster, W; Seibel, A; Walcher, F; Breitkreutz, R
2014-10-01
Current teaching methods in graduate and postgraduate training often include frontal presentations. Especially in ultrasound education not only knowledge but also sensomotory and visual skills need to be taught. This requires new learning methods. This study examined which types of teaching methods are preferred by participants in ultrasound training courses before, during and after the course by analyzing a blended learning concept. It also investigated how much time trainees are willing to spend on such activities. A survey was conducted at the end of a certified ultrasound training course. Participants were asked to complete a questionnaire based on a visual analogue scale (VAS) in which three categories were defined: category (1) vote for acceptance with a two thirds majority (VAS 67-100%), category (2) simple acceptance (50-67%) and category (3) rejection (< 50%). A total of 176 trainees participated in this survey. Participants preferred an e-learning program with interactive elements, short presentations (less than 20 min), incorporating interaction with the audience, hands-on sessions in small groups, an alternation between presentations and hands-on-sessions, live demonstrations and quizzes. For post-course learning, interactive and media-assisted approaches were preferred, such as e-learning, films of the presentations and the possibility to stay in contact with instructors in order to discuss the results. Participants also voted for maintaining a logbook for documentation of results. The results of this study indicate the need for interactive learning concepts and blended learning activities. Directors of ultrasound courses may consider these aspects and are encouraged to develop sustainable learning pathways.
Educational interactive multimedia software: The impact of interactivity on learning
NASA Astrophysics Data System (ADS)
Reamon, Derek Trent
This dissertation discusses the design, development, deployment and testing of two versions of educational interactive multimedia software. Both versions of the software are focused on teaching mechanical engineering undergraduates about the fundamentals of direct-current (DC) motor physics and selection. The two versions of Motor Workshop software cover the same basic materials on motors, but differ in the level of interactivity between the students and the software. Here, the level of interactivity refers to the particular role of the computer in the interaction between the user and the software. In one version, the students navigate through information that is organized by topic, reading text, and viewing embedded video clips; this is referred to as "low-level interactivity" software because the computer simply presents the content. In the other version, the students are given a task to accomplish---they must design a small motor-driven 'virtual' vehicle that competes against computer-generated opponents. The interaction is guided by the software which offers advice from 'experts' and provides contextual information; we refer to this as "high-level interactivity" software because the computer is actively participating in the interaction. The software was used in two sets of experiments, where students using the low-level interactivity software served as the 'control group,' and students using the highly interactive software were the 'treatment group.' Data, including pre- and post-performance tests, questionnaire responses, learning style characterizations, activity tracking logs and videotapes were collected for analysis. Statistical and observational research methods were applied to the various data to test the hypothesis that the level of interactivity effects the learning situation, with higher levels of interactivity being more effective for learning. The results show that both the low-level and high-level interactive versions of the software were effective in promoting learning about the subject of motors. The focus of learning varied between users of the two versions, however. The low-level version was more effective for teaching concepts and terminology, while the high-level version seemed to be more effective for teaching engineering applications.
ERIC Educational Resources Information Center
McCorkle, Sarapage; Meszaros, Bonnie T.; Odorzynski, Sandra J.; Schug, Mark C.; Watts, Michael
The "Focus" series, part of the National Council on Economic Education's (NCEE) EconomicsAmerica program, uses economics to enhance learning in subjects such as history, geography, civics, and personal finance, as well as economics. Activities are interactive, reflecting the belief that students learn best through active, highly personalized…
Focus: International Economics.
ERIC Educational Resources Information Center
Lynch, Gerald J.; Watts, Michael W.; Wentworth, Donald R.
The "Focus" series, part of the National Council on Economic Education's (NCEE) EconomicsAmerica program, uses economics to enhance learning in subjects such as history, geography, civics, and personal finance, as well as economics. Activities are interactive, reflecting the belief that students learn best through active, highly…
Measuring Student Engagement in a Flipped Athletic Training Classroom
ERIC Educational Resources Information Center
Thompson, Gayle A.; Ayers, Suzan F.
2015-01-01
Context: "Active learning" describes any instructional approach that fosters student engagement in the content and is believed to promote critical thinking more fully than do traditional lecture formats. Objective: Investigate student engagement, specifically professional relevance and peer interaction, with active learning techniques…
ERIC Educational Resources Information Center
Cheng, Kun-Hung; Hou, Huei-Tse; Wu, Sheng-Yi
2014-01-01
In the social interactions among individuals of learning communities, including those individuals engaged in peer assessment activities, emotion may be a key factor in learning. However, research regarding the emotional response of learners in online peer assessment activities is relatively scarce. Detecting learners' emotion when they make…
"SimChemistry" as an Active Learning Tool in Chemical Education
ERIC Educational Resources Information Center
Bolton, Kim; Saalman, Elisabeth; Christie, Michael; Ingerman, Ake; Linder, Cedric
2008-01-01
The publicly available free computer program, "SimChemistry," was used as an active learning tool in the chemical engineering curriculum at the University College of Boras, Sweden. The activity involved students writing their own simulation programs on topics in the area of molecular structure and interactions. Evaluation of the learning…
Relation between Academic Performance and Students' Engagement in Digital Learning Activities
ERIC Educational Resources Information Center
Bertheussen, Bernt Arne; Myrland, Øystein
2016-01-01
This study reports on the effect of student engagement in digital learning activities on academic performance for 120 students enrolled in an undergraduate finance course. Interactive practice and exam problem files were available to each student, and individual download activity was automatically recorded during the first 50 days of the course.…
"Prey Play": Learning about Predators and Prey through an Interactive, Role-Play Game
ERIC Educational Resources Information Center
Deaton, Cynthia C. M.; Dodd, Kristen; Drennon, Katherine; Nagle, Jack
2012-01-01
"Prey Play" is an interactive role-play activity that provides fifth-grade students with opportunities to examine predator-prey interactions. This four-part, role-play activity allows students to take on the role of a predator and prey as they reflect on the behaviors animals exhibit as they collect food and interact with one another, as well as…
Engaging Focus Group Methodology: The 4-H Middle School-Aged Youth Learning and Leading Study
ERIC Educational Resources Information Center
Scott, Siri; Grant, Samantha; Nippolt, Pamela Larson
2015-01-01
With young people, discussing complex issues such as learning and leading in a focus group can be a challenge. To help prime youth for the discussion, we created a focus group approach that featured a fun, interactive activity. This article includes a description of the focus group activity, lessons learned, and suggestions for additional…
ERIC Educational Resources Information Center
Sun, Daner; Looi, Chee-Kit
2018-01-01
This paper explores the crossover between formal learning and learning in informal spaces supported by mobile technology, and proposes design principles for educators to carry out a science curriculum, namely Boundary Activity-based Science Curriculum (BAbSC). The conceptualization of the boundary object, and the principles of boundary activity as…
Learning Processes and Learning Outcomes
1992-06-01
establish and maintain activation levels) may process information faster because the relevant traces in long - term memory are already activated...drill and practice, and discovery. Finally, implications for the design of computerized instructional environments are indicated. 14. SUBJECT TERMS lI...outcome. This impact may be direct, or may interact with characteristics of the learner to effect learning outcome. INITIAL STATES Conative and cognitive
ERIC Educational Resources Information Center
Shadiev, Rustam; Wu, Ting-Ting; Sun, Ai; Huang, Yueh-Min
2018-01-01
In this study, 21 university students, who represented thirteen nationalities, participated in an online cross-cultural learning activity. The participants were engaged in interactions and exchanges carried out on Facebook® and Skype® platforms, and their multilingual communications were supported by speech-to-text recognition (STR) and…
Using Low-Tech Interactions in the Chemistry Classroom to Engage Students in Active Learning
ERIC Educational Resources Information Center
Shaver, Michael P.
2010-01-01
Two complementary techniques to gauge student understanding and inspire interactive learning in the chemistry classroom are presented. Specifically, this article explores the use of student responses with their thumbs as an alternative to electronic-response systems and complementing these experiences with longer, task-based questions in an…
Using Interactive "Shiny" Applications to Facilitate Research-Informed Learning and Teaching
ERIC Educational Resources Information Center
Fawcett, Lee
2018-01-01
In this article we discuss our attempt to incorporate research-informed learning and teaching activities into a final year undergraduate Statistics course. We make use of the Shiny web-based application framework for R to develop "Shiny apps" designed to help facilitate student interaction with methods from recently published papers in…
ERIC Educational Resources Information Center
Chen, Hong-Ren; Chiang, Chih-Hao; Lin, Wen-Shan
2013-01-01
With the rapid progress in information technology, interactive whiteboards have become IT-integrated in teaching activities. The theory of multiple intelligences argues that every person possesses multiple intelligences, emphasizing learners' cognitive richness and the possible role of these differences in enhanced learning. This study is the…
ERIC Educational Resources Information Center
Wingard, Crystal Burroughs
2017-01-01
The present action research study describes an Interactive Mathematics Review Program (IMRP) developed by the participant-researcher to enable remedial algebra students to learn in a cooperative classroom with pedagogy that promoted collaboration and hands-on, active learning. Data are comprised of surveys, field notes, semi-structured interviews,…
ERIC Educational Resources Information Center
Rueda, Robert; Mehan, Hugh
1986-01-01
Students with learning disabilities work to avoid difficult tasks while trying to appear competent ("passing"). They also check, monitor, and evaluate their actions, a form of "metacognition." These are flip sides of the same coin of strategic interaction and are context-bound, not context-free activities. (Author/LHW)
Analysing Students' Interactions through Social Presence and Social Network Metrics
ERIC Educational Resources Information Center
Martins da Silva, Vanessa Cristina; Siqueira, Sean Wolfgand Matsui
2016-01-01
In online learning environments, tutors have several problems to carry out their activities, such as evaluating the student, knowing the right way to guide each student, promoting discussions, and knowing the right time to interact or let students build knowledge alone. We consider scenarios in which teaching and learning occurs in online social…
Perceptions of the IWB for Second Language Teaching and Learning: The iTILT Project
ERIC Educational Resources Information Center
Whyte, Shona; Beauchamp, Gary; Hillier, Emily
2012-01-01
Recent emphasis on target language interaction in task-based, technologymediated language classrooms makes the interactive whiteboard (IWB) an attractive tool: it constitutes a "digital hub" particularly suited to younger learners who require greater visual support and active learning. However, recent research in UK and French primary…
E-Learning as an Emerging Technology in India
ERIC Educational Resources Information Center
Grover, Pooja; Gupta, Nehta
2010-01-01
E-learning is a combination of learning services and technology that allow us to provide high value integrated learning any time, any place. It is about a new blend of resources, interactivity, performance support and structured learning activities. This methodology makes use of various types of technologies in order to enhance or transform the…
ERIC Educational Resources Information Center
Washington, Christopher
2015-01-01
Digitally delivered learning shows the promise of enhancing learner motivation and engagement, advancing critical thinking skills, encouraging reflection and knowledge sharing, and improving professional self-efficacy. Digital learning objects take many forms including interactive media, apps and games, video and other e-learning activities and…
ERIC Educational Resources Information Center
Wu, Po-Han; Hwang, Gwo-Jen; Tsai, Wen-Hung
2013-01-01
Context-aware ubiquitous learning has been recognized as being a promising approach that enables students to interact with real-world learning targets with supports from the digital world. Several researchers have indicated the importance of providing learning guidance or hints to individual students during the context-aware ubiquitous learning…
ERIC Educational Resources Information Center
Lee, Young-Jin
2011-01-01
In the last decades, many education researchers have been trying to use computerized learning environments to enhance student learning. Without proper instructional supports and guidance, however, students often failed to acquire knowledge from computer-based learning activities. The objective of this study was to demonstrate how research-based…
ERIC Educational Resources Information Center
Fratamico, Lauren; Conati, Cristina; Kardan, Samad; Roll, Ido
2017-01-01
Interactive simulations can facilitate inquiry learning. However, similarly to other Exploratory Learning Environments, students may not always learn effectively in these unstructured environments. Thus, providing adaptive support has great potential to help improve student learning with these rich activities. Providing adaptive support requires a…
Maximize the Mobile Learning Interaction through Project-Based Learning Activities
ERIC Educational Resources Information Center
Sulisworo, Dwi; Santyasa, I. Wayan
2018-01-01
Mobile learning implementation at school is a must and meets what students currently need. To facilitate those conditions, teachers also need to have competencies in managing online learning. This research is a descriptive research to find out the experience of students who are prospective teachers when attending the mobile learning course…
Development of an Instructional Design Model for Flipped Learning in Higher Education
ERIC Educational Resources Information Center
Lee, Jihyun; Lim, Cheolil; Kim, Hyeonsu
2017-01-01
In response to pedagogical challenges in higher education, blended learning has become a prevalent practice in colleges and universities. Flipped learning (FL) represents a newly emerging form of blended learning, where students individually watch online lectures prior to class and then engage in classroom learning activities interacting with…
ERIC Educational Resources Information Center
Fenwick, John; McMillan, Rod
In a conventional teaching situation, a lecturer may use a wide range of questioning techniques aimed at helping students to become active learners. In distance learning, students are often isolated and have limited opportunities for interaction in a social learning environment. Hence, learning strategies in distance learning need to be structured…
NASA Astrophysics Data System (ADS)
Zuhrie, M. S.; Basuki, I.; Asto B, I. G. P.; Anifah, L.
2018-01-01
The focus of the research is the teaching module which incorporates manufacturing, planning mechanical designing, controlling system through microprocessor technology and maneuverability of the robot. Computer interactive and computer-assisted learning is strategies that emphasize the use of computers and learning aids (computer assisted learning) in teaching and learning activity. This research applied the 4-D model research and development. The model is suggested by Thiagarajan, et.al (1974). 4-D Model consists of four stages: Define Stage, Design Stage, Develop Stage, and Disseminate Stage. This research was conducted by applying the research design development with an objective to produce a tool of learning in the form of intelligent robot modules and kit based on Computer Interactive Learning and Computer Assisted Learning. From the data of the Indonesia Robot Contest during the period of 2009-2015, it can be seen that the modules that have been developed confirm the fourth stage of the research methods of development; disseminate method. The modules which have been developed for students guide students to produce Intelligent Robot Tool for Teaching Based on Computer Interactive Learning and Computer Assisted Learning. Results of students’ responses also showed a positive feedback to relate to the module of robotics and computer-based interactive learning.
A review of active learning approaches to experimental design for uncovering biological networks
2017-01-01
Various types of biological knowledge describe networks of interactions among elementary entities. For example, transcriptional regulatory networks consist of interactions among proteins and genes. Current knowledge about the exact structure of such networks is highly incomplete, and laboratory experiments that manipulate the entities involved are conducted to test hypotheses about these networks. In recent years, various automated approaches to experiment selection have been proposed. Many of these approaches can be characterized as active machine learning algorithms. Active learning is an iterative process in which a model is learned from data, hypotheses are generated from the model to propose informative experiments, and the experiments yield new data that is used to update the model. This review describes the various models, experiment selection strategies, validation techniques, and successful applications described in the literature; highlights common themes and notable distinctions among methods; and identifies likely directions of future research and open problems in the area. PMID:28570593
Schlesselman, Lauren; Borrego, Matthew; Mehta, Bella; Drobitch, Robert K.; Smith, Thomas
2015-01-01
Objective. To determine if the service-learning components used at a convenience sample of schools and colleges of pharmacy meet the intent of the 2001 AACP Professional Affairs Committee (PAC) report. Methods. An online questionnaire was used to survey faculty members or staff involved with service-learning education at their school of pharmacy. Questions addressed aspects of service-learning including types of activities used, duration of student involvement with community partners, and association of learning objectives with service-learning activities. Results. The majority (85.3%) of respondents reported their institution used service-learning. Activities reported as part of service-learning ranged from working at health fairs to involvement with pharmacy school recruitment. More than half (64.3%) of service-learning activities involved long-term interactions with one community partner, and 74.1% of respondents indicated there was always an opportunity for student reflection on the service-learning activity. Conclusion. There is increasing though inconsistent application of PAC guidelines regarding service-learning. PMID:26688584
Role of Interaction in Enhancing the Epistemic Utility of 3D Mathematical Visualizations
ERIC Educational Resources Information Center
Liang, Hai-Ning; Sedig, Kamran
2010-01-01
Many epistemic activities, such as spatial reasoning, sense-making, problem solving, and learning, are information-based. In the context of epistemic activities involving mathematical information, learners often use interactive 3D mathematical visualizations (MVs). However, performing such activities is not always easy. Although it is generally…
`Not hard to sway': a case study of student engagement in two large engineering classes
NASA Astrophysics Data System (ADS)
Shekhar, Prateek; Borrego, Maura
2018-07-01
Although engineering education research has empirically validated the effectiveness of active learning in improving student learning over traditional lecture-based methods, the adoption of active learning in classrooms has been slow. One of the greatest reported barriers is student resistance towards engagement in active learning exercises. This paper argues that the level of student engagement in active learning classrooms is an interplay of social and physical classroom characteristics. Using classroom observations and instructor interviews, this study describes the influence of the interaction of student response systems and classroom layout on student engagement in two large active-learning-based engineering classrooms. The findings suggest that the use of different student response systems in combination with cluster-style seating arrangements can increase student engagement in large classrooms.
Monitoring Collaborative Activities in Computer Supported Collaborative Learning
ERIC Educational Resources Information Center
Persico, Donatella; Pozzi, Francesca; Sarti, Luigi
2010-01-01
Monitoring the learning process in computer supported collaborative learning (CSCL) environments is a key element for supporting the efficacy of tutor actions. This article proposes an approach for analysing learning processes in a CSCL environment to support tutors in their monitoring tasks. The approach entails tracking the interactions within…
Learning in Early Childhood: Experiences, Relationships and "Learning to Be"
ERIC Educational Resources Information Center
Tayler, Collette
2015-01-01
Learning in the earliest stage of life--the infancy, toddlerhood and preschool period--is relational and rapid. Child-initiated and adult-mediated conversations, playful interactions and learning through active involvement are integral to young children making sense of their environments and to their development over time. The child's experience…
Users' Behavior towards Ubiquitous M-Learning
ERIC Educational Resources Information Center
Suki, Norazah Mohd; Suki, Norbayah Mohd
2011-01-01
Mobile technologies have enabled a new way of communicating, for whom mobile communications are part of normal daily interaction. This paper explores the proposed and verified Technology Acceptance Model (TAM) that can be employed to explain the acceptance of Mobile Learning (M-learning), an activity in which users access learning material with…
Changing How and What Children Learn in School with Computer-based Technologies.
ERIC Educational Resources Information Center
Roschelle, Jeremy M.; Pea, Roy D.; Hoadley, Christopher M.; Gordin, Douglas N.; Means, Barbara
2000-01-01
Explores how computer technology can help improve how and what children learn in school. Highlights several ways technology can enhance how children learn by supporting four fundamental characteristics of learning (active engagement, group participation, frequent interaction and feedback, and connections to real-world contexts). Additional…
An Exploratory Study Comparing the Effectiveness of Lecturing versus Team-Based Learning
ERIC Educational Resources Information Center
Huggins, Christopher M.; Stamatel, Janet P.
2015-01-01
Lecturing has been criticized for fostering a passive learning environment, emphasizing a one-way flow of information, and not adequately engaging students. In contrast, active-learning approaches, such as team-based learning (TBL), prioritize student interaction and engagement and create multidirectional flows of information. This paper presents…
Action Research to Improve the Learning Space for Diagnostic Techniques.
Ariel, Ellen; Owens, Leigh
2015-12-01
The module described and evaluated here was created in response to perceived learning difficulties in diagnostic test design and interpretation for students in third-year Clinical Microbiology. Previously, the activities in lectures and laboratory classes in the module fell into the lower cognitive operations of "knowledge" and "understanding." The new approach was to exchange part of the traditional activities with elements of interactive learning, where students had the opportunity to engage in deep learning using a variety of learning styles. The effectiveness of the new curriculum was assessed by means of on-course student assessment throughout the module, a final exam, an anonymous questionnaire on student evaluation of the different activities and a focus group of volunteers. Although the new curriculum enabled a major part of the student cohort to achieve higher pass grades (p < 0.001), it did not meet the requirements of the weaker students, and the proportion of the students failing the module remained at 34%. The action research applied here provided a number of valuable suggestions from students on how to improve future curricula from their perspective. Most importantly, an interactive online program that facilitated flexibility in the learning space for the different reagents and their interaction in diagnostic tests was proposed. The methods applied to improve and assess a curriculum refresh by involving students as partners in the process, as well as the outcomes, are discussed. Journal of Microbiology & Biology Education.
NASA Astrophysics Data System (ADS)
Verstraeten, Gert; Steegen, An; Martens, Lotte
2016-04-01
The increasing number of geospatial datasets and free online geo-ICT tools offers new opportunities for education in Earth Sciences. Geospatial technology indeed provides an environment through which interactive learning can be introduced in Earth Sciences curricula. However, the effectiveness of such e-learning approaches in terms of learning outcomes has rarely been addressed. Here, we present our experience with the implementation of digital interactive learning activities within an introductory Physical Geography course attended by 90 undergraduate students in Geography, Geology, Biology and Archaeology. Two traditional lectures were replaced by interactive sessions (each 2 h) in a flexible classroom where students had to work both in team and individually in order to explore some key concepts through the integrated use of geospatial data within Google EarthTM. A first interactive lesson dealt with the classification of river systems and aimed to examine the conditions under which rivers tend to meander or to develop a braided pattern. Students were required to collect properties of rivers (river channel pattern, channel slope, climate, discharge, lithology, vegetation, etc). All these data are available on a global scale and have been added as separate map layers in Google EarthTM. Each student collected data for at least two rivers and added this information to a Google Drive Spreadsheet accessible to the entire group. This resulted in a database of more than one hundred rivers spread over various environments worldwide. In a second phase small groups of students discussed the potential relationships between river channel pattern and its controlling factors. Afterwards, the findings of each discussion group were presented to the entire audience. The same set-up was followed in a second interactive session to explore spatial variations in ecosystem properties such as net primary production and soil carbon content. The qualitative evaluation of both interactive sessions showed that the majority of students perceive these as very useful and inspiring. Students were more capable in exploring the spatial linkages between various environmental variables and processes compared to traditional lectures. Furthermore, the format of the sessions offered a forum in which undergraduate students from a variety of disciplines discussed the learning content in mixed groups. The success of interactive learning activities, however, strongly depends on the quality of the educational infrastructure (flexible spaces, wireless connections with sufficient broadband capacity).
Evaluating Web-Based Learning Systems
ERIC Educational Resources Information Center
Pergola, Teresa M.; Walters, L. Melissa
2011-01-01
Accounting educators continuously seek ways to effectively integrate instructional technology into accounting coursework as a means to facilitate active learning environments and address the technology-driven learning preferences of the current generation of students. Most accounting textbook publishers now provide interactive, web-based learning…
ERIC Educational Resources Information Center
Hwang, Gwo-Jen; Lai, Chiu-Lin
2017-01-01
Flipped learning is a well-recognized learning mode that reverses the traditional in-class instruction arrangement by delivering learning content outside of the classroom and engaging students in more activities in class. However, it remains a challenge for students to comprehend the learning material by themselves, particularly when learning…
Study of a Multigenerational Learning Program in Taiwan
ERIC Educational Resources Information Center
Chien, Hung-Ju; Tann, D. B.
2017-01-01
The aim of the Multigenerational Learning Program (MLP) is to increase multigenerational interactions through activities, which will help all learners including middle aged to older adults, university students, and children to improve multigenerational understanding, and increase their positive attitudes toward each other. The MLP activities were…
NASA Astrophysics Data System (ADS)
Tobin, Kenneth
2012-03-01
I have been involved in research on collaborative activities for improving the quality of teaching and learning high school science. Initially the collaborative activities we researched involved the uses of coteaching and cogenerative dialogue in urban middle and high schools in Philadelphia and New York (currently I have active research sites in New York and Brisbane, Australia). The research not only transformed practices but also produced theories that informed the development of additional collaborative activities and served as interventions for research and creation of heuristics for professional development programs and teacher certification courses. The presentation describes a collage of collaborative approaches to teaching and learning science, including coteaching, cogenerative dialogue, radical listening, critical reflection, and mindful action. For each activity in the collage I provide theoretical frameworks and empirical support, ongoing research, and priorities for the road ahead. I also address methodologies used in the research, illustrating how teachers and students collaborated as researchers in multilevel investigations of teaching and learning and learning to teach that included ethnography, video analysis, and sophisticated analyses of the voice, facial expression of emotion, eye gaze, and movement of the body during classroom interactions. I trace the evolution of studies of face-to-face interactions in science classes to the current focus on emotions and physiological aspects of teaching and learning (e.g., pulse rate, pulse strength, breathing patterns) that relate to science participation and achievement.
Understanding the optimal learning environment in palliative care.
Connell, Shirley E; Yates, Patsy; Barrett, Linda
2011-07-01
The learning experiences of student nurses undertaking clinical placement are reported widely, however little is known about the learning experiences of health professionals undertaking continuing professional development (CPD) in a clinical setting, especially in palliative care. The aim of this study, which was conducted as part of the national evaluation of a professional development program involving clinical attachments with palliative care services (The Program of Experience in the Palliative Approach [PEPA]), was to explore factors influencing the learning experiences of participants over time. Thirteen semi-structured, one-to-one telephone interviews were conducted with five participants throughout their PEPA experience. The analysis was informed by the traditions of adult, social and psychological learning theories and relevant literature. The participants' learning was enhanced by engaging interactively with host site staff and patients, and by the validation of their personal and professional life experiences together with the reciprocation of their knowledge with host site staff. Self-directed learning strategies maximised the participants' learning outcomes. Inclusion in team activities aided the participants to feel accepted within the host site. Personal interactions with host site staff and patients shaped this social/cultural environment of the host site. Optimal learning was promoted when participants were actively engaged, felt accepted and supported by, and experienced positive interpersonal interactions with, the host site staff. Copyright © 2010 Elsevier Ltd. All rights reserved.
Talk-in-Interaction: Multilingual Perspectives
ERIC Educational Resources Information Center
Nguyen, Hanh thi, Ed.; Kasper, Gabriele, Ed.
2009-01-01
"Talk-in-interaction: Multilingual perspectives" offers original studies of interaction in a range of languages and language varieties, including Chinese, English, Japanese, Korean, Spanish, Swahili, Thai, and Vietnamese; monolingual and bilingual interactions; and activities designed for second or foreign language learning. Conducted from the…
Thompson, Marilyn E; Ford, Ruth; Webster, Andrew
2011-01-01
Neurological concepts applicable to a doctorate in occupational therapy are often challenging to comprehend, and students are required to demonstrate critical reasoning skills beyond simply recalling the information. To achieve this, various learning and teaching strategies are used, including the use of technology in the classroom. The availability of technology in academic settings has allowed for diverse and active teaching approaches. This includes videos, web-based instruction, and interactive online games. In this quantitative pre-experimental analysis, the learning and retention of neuroscience concepts by 30 occupational therapy doctoral students, who participated in an interactive online learning experience, were assessed. The results suggest that student use of these tools may enhance their learning of neuroscience. Furthermore, the students felt that the sites were appropriate, beneficial to them, and easy to use. Thus, the use of online, interactive neuroscience games may be effective in reinforcing lecture materials. This needs to be further assessed in a larger sample size.
Attentional control of associative learning--a possible role of the central cholinergic system.
Pauli, Wolfgang M; O'Reilly, Randall C
2008-04-02
How does attention interact with learning? Kruschke [Kruschke, J.K. (2001). Toward a unified Model of Attention in Associative Learning. J. Math. Psychol. 45, 812-863.] proposed a model (EXIT) that captures Mackintosh's [Mackintosh, N.J. (1975). A theory of attention: Variations in the associability of stimuli with reinforcement. Psychological Review, 82(4), 276-298.] framework for attentional modulation of associative learning. We developed a computational model that showed analogous interactions between selective attention and associative learning, but is significantly simplified and, in contrast to EXIT, is motivated by neurophysiological findings. Competition among input representations in the internal representation layer, which increases the contrast between stimuli, is critical for simulating these interactions in human behavior. Furthermore, this competition is modulated in a way that might be consistent with the phasic activation of the central cholinergic system, which modulates activity in sensory cortices. Specifically, phasic increases in acetylcholine can cause increased excitability of both pyramidal excitatory neurons in cortical layers II/III and cortical GABAergic inhibitory interneurons targeting the same pyramidal neurons. These effects result in increased attentional contrast in our model. This model thus represents an initial attempt to link human attentional learning data with underlying neural substrates.
Bidirectional Active Learning: A Two-Way Exploration Into Unlabeled and Labeled Data Set.
Zhang, Xiao-Yu; Wang, Shupeng; Yun, Xiaochun
2015-12-01
In practical machine learning applications, human instruction is indispensable for model construction. To utilize the precious labeling effort effectively, active learning queries the user with selective sampling in an interactive way. Traditional active learning techniques merely focus on the unlabeled data set under a unidirectional exploration framework and suffer from model deterioration in the presence of noise. To address this problem, this paper proposes a novel bidirectional active learning algorithm that explores into both unlabeled and labeled data sets simultaneously in a two-way process. For the acquisition of new knowledge, forward learning queries the most informative instances from unlabeled data set. For the introspection of learned knowledge, backward learning detects the most suspiciously unreliable instances within the labeled data set. Under the two-way exploration framework, the generalization ability of the learning model can be greatly improved, which is demonstrated by the encouraging experimental results.
ERIC Educational Resources Information Center
Cowley, B.; Heikura, T.; Ravaja, N.
2013-01-01
In a study on experience-based learning in serious games, 45 players were tested for topic comprehension by a questionnaire administered before and after playing the single-player serious game Peacemaker (Impact Games 2007). Players were divided into two activity conditions: 20 played a 1-h game with a 3-min half-time break to complete an affect…
Co-Regulation and Knowledge Construction in an Online Synchronous Problem Based Learning Setting
ERIC Educational Resources Information Center
Lee, Lila; Lajoie, Susanne P.; Poitras, Eric G.; Nkangu, Miriam; Doleck, Tenzin
2017-01-01
Learning to monitor and regulate one's learning in an academic setting is a task that all students must engage in. Learning in "group" situations requires both self- and co-regulation. This research examines a case study of a small group of medical student interactions during an on-line problem based learning activity (PBL) where…
ERIC Educational Resources Information Center
Ball, Sarah
2010-01-01
Learning is about discovery and change. As schools and universities look to the future, it is fundamental that they provide environments that facilitate collaborative learning and act as points for interaction and social activity. The redevelopment of the existing Engineering Library into a Student Learning Centre (SLC) embraces the new Melbourne…
Effects of Self-Explanation and Game-Reward on Sixth Graders' Algebra Variable Learning
ERIC Educational Resources Information Center
Sun-Lin, Hong-Zheng; Chiou, Guey-Fa
2017-01-01
This study examined the interaction effects of self-explanation and game-reward strategies on sixth graders' algebra variable learning achievement, learning attitude, and meta-cognitive awareness. A learning system was developed to support the learning activity, and a 2×2 quasi-experiment was conducted. Ninety-seven students were invited to…
ERIC Educational Resources Information Center
Yang, Jie Chi; Lin, Yi Lung
2010-01-01
When using mobile devices in support of learning activities, students gain mobility, but problems arise when group members share information. The small size of the mobile device screen becomes problematic when it is being used by two or more students to share and exchange information. This problem affects interactions among group members. To…
ERIC Educational Resources Information Center
Trevitt, Chris
This paper addresses criteria in the design and development of computer-based courseware. The term "interactive multimedia" describes both the technology and the demands placed on the user. It implies that the user becomes actively engaged with the subject, thereby improving the likelihood that net learning takes place. However, nothing…
ERIC Educational Resources Information Center
Thomas, W. Randall; Macgregor, S. Kim
2005-01-01
The goal of this study was to gain insights into the interactions that occur in online communications in a project-based learning activity implemented in an undergraduate course. A multi-case study was conducted of six collaborative groups, focusing on the types and frequencies of interactions that occurred within each group and the perceptions…
ERIC Educational Resources Information Center
Van Daele, Tom; Frijns, Carolien; Lievens, Jeroen
2017-01-01
Although constructivist theories have shown learning is accelerated by involvement and meaningful lecturer-student and student-student interaction, these ingredients are mostly absent from large attendance lectures. A number of studies have already focused on more active ways of learning in large lecture classrooms, most often by using student…
ERIC Educational Resources Information Center
Mpiladeri, Magda; Palaigeorgiou, George; Lemonidis, Charalampos
2016-01-01
Tangible user interfaces (TUIs) are frequently used to teach children abstract concepts, in science and mathematics. TUIs offer a natural and immediate form of interaction that promotes active and hands-on engagement and allows for exploration and reflection. Tangible objects are representational artifacts in their essence, and they increase the…
ERIC Educational Resources Information Center
Epp, Carrie Demmans; Phirangee, Krystle; Hewitt, Jim
2017-01-01
Identifying which online behaviours and interactions are associated with student perceptions of being supported will enable a deeper understanding of how those activities contribute to learning experiences. Student language is one aspect of their interaction in need of greater exploration within discourse-based online learning environments. As a…
Predicting Student Satisfaction and Outcomes in Online Courses Using Learning Activity Indicators
ERIC Educational Resources Information Center
Strang, Kenneth David
2017-01-01
The premise for this study was that learner interaction in an online web-based course could be assessed in relation to academic performance, or in other words, e-learning. Although some studies reveal that learner interaction with online content is related to student academic performance, it remains unproven whether this is casual, or even if…
ERIC Educational Resources Information Center
Lantz-Andersson, Annika; Vigmo, Sylvi; Bowen, Rhonwen
2013-01-01
Young people's interaction online is rapidly increasing, which enables new spaces for communication; the impact on learning, however, is not yet acknowledged in education. The aim of this exploratory case study is to scrutinize how students frame their interaction in social networking sites (SNS) in school practices and what that implies for…
Improving semi-automated segmentation by integrating learning with active sampling
NASA Astrophysics Data System (ADS)
Huo, Jing; Okada, Kazunori; Brown, Matthew
2012-02-01
Interactive segmentation algorithms such as GrowCut usually require quite a few user interactions to perform well, and have poor repeatability. In this study, we developed a novel technique to boost the performance of the interactive segmentation method GrowCut involving: 1) a novel "focused sampling" approach for supervised learning, as opposed to conventional random sampling; 2) boosting GrowCut using the machine learned results. We applied the proposed technique to the glioblastoma multiforme (GBM) brain tumor segmentation, and evaluated on a dataset of ten cases from a multiple center pharmaceutical drug trial. The results showed that the proposed system has the potential to reduce user interaction while maintaining similar segmentation accuracy.
Integration of evidence-based practice in bedside teaching paediatrics supported by e-learning.
Potomkova, Jarmila; Mihal, Vladimir; Zapletalova, Jirina; Subova, Dana
2010-03-01
Bedside teaching with evidence-based practice elements, supported by e-learning activities, can play an important role in modern medical education. Teachers have to incorporate evidence from the medical literature to increase student motivation and interactivity. An integral part of the medical curricula at Palacky University Olomouc (Czech Republic) are real paediatric scenarios supplemented with a review of current literature to enhance evidence-based bedside teaching & learning. Searching for evidence is taught through librarian-guided interactive hands-on sessions and/or web-based tutorials followed by clinical case presentations and feedback. Innovated EBM paediatric clerkship demonstrated students' preferences towards web-based interactive bedside teaching & learning. In two academic years (2007/2008, 2008/2009), learning-focused feedback from 106 and 131 students, resp. was obtained about their attitudes towards evidence-based bedside teaching. The assessment included among others the overall level of instruction, quality of practical evidence-based training, teacher willingness and impact of instruction on increased interest in the specialty. There was some criticism about excessive workload. A parallel survey was carried out on the perceived values of different forms of information skills training (i.e. demonstration, online tutorials, and librarian-guided interactive search sessions) and post-training self-reported level of search skills. The new teaching/learning paediatric portfolio is a challenge for further activities, including effective knowledge translation, continuing medical & professional development of teachers, and didactic, clinically integrated teaching approaches.
An Activity Theoretical Approach to Social Interaction during Study Abroad
ERIC Educational Resources Information Center
Shively, Rachel L.
2016-01-01
This case study examines how one study abroad student oriented to social interaction during a semester in Spain. Using an activity theoretical approach, the findings indicate that the student not only viewed social interaction with his Spanish host family and an expert-Spanish-speaking age peer as an opportunity for second language (L2) learning,…
NASA Astrophysics Data System (ADS)
Nakamura, Christopher M.; Murphy, Sytil K.; Christel, Michael G.; Stevens, Scott M.; Zollman, Dean A.
2016-06-01
Computer-automated assessment of students' text responses to short-answer questions represents an important enabling technology for online learning environments. We have investigated the use of machine learning to train computer models capable of automatically classifying short-answer responses and assessed the results. Our investigations are part of a project to develop and test an interactive learning environment designed to help students learn introductory physics concepts. The system is designed around an interactive video tutoring interface. We have analyzed 9 with about 150 responses or less. We observe for 4 of the 9 automated assessment with interrater agreement of 70% or better with the human rater. This level of agreement may represent a baseline for practical utility in instruction and indicates that the method warrants further investigation for use in this type of application. Our results also suggest strategies that may be useful for writing activities and questions that are more appropriate for automated assessment. These strategies include building activities that have relatively few conceptually distinct ways of perceiving the physical behavior of relatively few physical objects. Further success in this direction may allow us to promote interactivity and better provide feedback in online learning systems. These capabilities could enable our system to function more like a real tutor.
Managing Investment in Teaching and Learning Technologies
ERIC Educational Resources Information Center
Coen, Michael; Nicol, David
2007-01-01
Information and communications technologies are radically changing the way that teaching and learning activities are organised and delivered within higher education (HE) institutions. A wide range of technologies is being deployed in quite complex and interactive ways, including virtual learning environments (VLEs), mobile communication…
ERIC Educational Resources Information Center
Huzieff, Nicholas
2017-01-01
This article defines rapport in a teaching context as knowing your students, their different learning styles, and using that relationship with them to teach on a personal level. The author describes an activity using playdough. While giving learners opportunities to interact with others it naturally appeals to a variety of learning styles,…
The International Pencil: Elementary Level Unit on Global Interdependence.
ERIC Educational Resources Information Center
Wolken, Lawrence C.
1984-01-01
The production of an American pencil is the result of complex interactions involving many people, places, and resources. Learning activities dealing with the making of a pencil that will help students learn about global interdependence are described. The activities can be adapted to fit any elementary grade level. (RM)
Construction of a VISUAL (VIdeo-SUpported Active Learning) Resource.
ERIC Educational Resources Information Center
Nicolson, Roderick I.; And Others
1994-01-01
Discussion of interactive video for educational purposes focuses on the development of a video-supported active learning (VISUAL) resource on voice disorders that used digitized video and an Apple Macintosh computer. User evaluations are reported, and potential applications for VISUAL resources are suggested. (Contains five references.) (LRW)
Factors Influencing Teachers' Engagement in Informal Learning Activities
ERIC Educational Resources Information Center
Lohman, Margaret C.
2006-01-01
Purpose: The purpose of this study is to examine factors influencing the engagement of public school teachers in informal learning activities. Design/methodology/approach: This study used a survey research design. Findings: Analysis of the data found that teachers rely to a greater degree on interactive than on independent informal learning…
ERIC Educational Resources Information Center
Armstrong, Chandler
2010-01-01
Collaborative learning must prompt collaborative behavior among students. Once initiated, collaboration then must facilitate awareness between students of each other's activities and knowledge. Collaborative scripts provide explicit framework and guidance for roles and activities within student interactions, and are one method of fulfilling the…
[Supporting an Academic Society with the Active Learning Tool Clica].
Arai, Kensuke; Mitsubori, Masahiro
2018-01-01
Within school classrooms, Active Learning has been receiving unprecedented attention. Indeed, Active Learning's popularity does not stop in the classroom. As more and more people argue that the Japanese government needs to renew guidelines for education, Active Learning has surfaced as a method capable of providing the necessary knowledge and training for people in all areas of society, helping them reach their full potential. It has become accepted that Active Learning is more effective over the passive listening of lectures, where there is little to no interaction. Active Learning emphasizes that learners explain their thoughts, ask questions, and express their opinions, resulting in a better retention rate of the subject at hand. In this review, I introduce an Active Learning support tool developed at Digital Knowledge, "Clica". This tool is currently being used at many educational institutions. I will also introduce an online questionnaire that Digital Knowledge provided at the 10th Annual Meeting of the Japanese Society for Pharmaceutical Palliative Care and Sciences.
Development of Interactive Learning Media on Kinetic Gas Theory at SMAN 2 Takalar
NASA Astrophysics Data System (ADS)
Yanti, M.; Ihsan, N.; Subaer
2017-02-01
Learning media is the one of the most factor in supporting successfully in the learning process. The purpose of this interactive media is preparing students to improve skills in laboratory practice without need for assistance and are not bound by time and place. The subject of this study was 30 students grade XI IPA SMAN 2 Takalar. This paper discuss about the development of learning media based in theory of gas kinetic. This media designed to assist students in learning independently. This media made using four software, they are Microsoft word, Snagit Editor, Macromedia Flash Player and Lectora. This media are interactive, dynamic and could support the users desires to learn and understand course of gas theory. The development produce followed the four D models. Consisted of definition phase, design phase, development phase and disseminate phase. The results showed 1) the media were valid and reliable, 2) learning tools as well as hardcopy and softcopy which links to website 3) activity learners above 80% and 4) according to the test results, the concept of comprehension of student was improved than before given interactive media.
Creating learning momentum through overt teaching interactions during real acute care episodes.
Piquette, Dominique; Moulton, Carol-Anne; LeBlanc, Vicki R
2015-10-01
Clinical supervisors fulfill a dual responsibility towards patient care and learning during clinical activities. Assuming such roles in today's clinical environments may be challenging. Acute care environments present unique learning opportunities for medical trainees, as well as specific challenges. The goal of this paper was to better understand the specific contexts in which overt teaching interactions occurred in acute care environments. We conducted a naturalistic observational study based on constructivist grounded theory methodology. Using participant observation, we collected data on the teaching interactions occurring between clinical supervisors and medical trainees during 74 acute care episodes in the critical care unit of two academic centers, in Toronto, Canada. Three themes contributed to a better understanding of the conditions in which overt teaching interactions among trainees and clinical supervisors occurred during acute care episodes: seizing emergent learning opportunities, coming up against challenging conditions, and creating learning momentum. Our findings illustrate how overt learning opportunities emerged from certain clinical situations and how clinical supervisors and trainees could purposefully modify unfavorable learning conditions. None of the acute care episodes encountered in the critical care environment represented ideal conditions for learning. Yet, clinical supervisors and trainees succeeded in engaging in overt teaching interactions during many episodes. The educational value of these overt teaching interactions should be further explored, as well as the impact of interventions aimed at increasing their use in acute care environments.
Nomura, Emi M.; Reber, Paul J.
2012-01-01
Considerable evidence has argued in favor of multiple neural systems supporting human category learning, one based on conscious rule inference and one based on implicit information integration. However, there have been few attempts to study potential system interactions during category learning. The PINNACLE (Parallel Interactive Neural Networks Active in Category Learning) model incorporates multiple categorization systems that compete to provide categorization judgments about visual stimuli. Incorporating competing systems requires inclusion of cognitive mechanisms associated with resolving this competition and creates a potential credit assignment problem in handling feedback. The hypothesized mechanisms make predictions about internal mental states that are not always reflected in choice behavior, but may be reflected in neural activity. Two prior functional magnetic resonance imaging (fMRI) studies of category learning were re-analyzed using PINNACLE to identify neural correlates of internal cognitive states on each trial. These analyses identified additional brain regions supporting the two types of category learning, regions particularly active when the systems are hypothesized to be in maximal competition, and found evidence of covert learning activity in the “off system” (the category learning system not currently driving behavior). These results suggest that PINNACLE provides a plausible framework for how competing multiple category learning systems are organized in the brain and shows how computational modeling approaches and fMRI can be used synergistically to gain access to cognitive processes that support complex decision-making machinery. PMID:24962771
De Grasset, Jehanne; Audetat, Marie-Claude; Bajwa, Nadia; Jastrow, Nicole; Richard-Lepouriel, Hélène; Nendaz, Mathieu; Junod Perron, Noelle
2018-04-22
Medical students develop professional identity through structured activities and impromptu interactions in various settings. We explored if contributing to an Objective Structured Teaching Exercise (OSTE) influenced students' professional identity development. University clinical faculty members participated in a faculty development program on clinical supervision. Medical students who participated in OSTEs as simulated residents were interviewed in focus groups about what they learnt from the experience and how the experience influenced their vision of learning and teaching. Transcripts were analyzed using the Goldie's personality and social structure perspective model. Twenty-five medical students out of 32 students involved in OSTEs participated. On an institutional level, students developed a feeling of belonging to the institution. At an interactional level, students realized they could influence the teaching interaction by actively seeking or giving feedback. On the personal level, students realized that errors could become sources of learning and felt better prepared to receive faculty feedback. Taking part in OSTEs as a simulated resident has a positive impact on students' vision regarding the institution as a learning environment and their own role by actively seeking or giving feedback. OSTEs support their professional identity development regarding learning and teaching while sustaining faculty development.
A Collaborative 20 Questions Model for Target Search with Human-Machine Interaction
2013-05-01
optimal policies for entropy loss,” Journal of Applied Probability, vol. 49, pp. 114–136, 2012. [2] R. Castro and R. Nowak, “ Active learning and...vol. 10, pp. 223231, 1974. [8] R. Castro, Active Learning and Adaptive Sampling for Non- parametric Inference, Ph.D. thesis, Rice University, August...2007. [9] R. Castro and R. D. Nowak, “Upper and lower bounds for active learning ,” in 44th Annual Allerton Conference on Communica- tion, Control and Computing, 2006.
ERIC Educational Resources Information Center
Andrade, Alejandro; Danish, Joshua A.; Maltese, Adam V.
2017-01-01
Interactive learning environments with body-centric technologies lie at the intersection of the design of embodied learning activities and multimodal learning analytics. Sensing technologies can generate large amounts of fine-grained data automatically captured from student movements. Researchers can use these fine-grained data to create a…
Mining Learning Behavioral Patterns of Students by Sequence Analysis in Cloud Classroom
ERIC Educational Resources Information Center
Liu, Sanya; Hu, Zhenfan; Peng, Xian; Liu, Zhi; Cheng, H. N. H.; Sun, Jianwen
2017-01-01
In a MOOC environment, each student's interaction with the course content is a crucial clue for learning analytics, which offers an opportunity to record learner activity of unprecedented scale. In online learning, the educators and the administrators need to get informed with students' learning states since the performance of unsupervised…
Ocean Drilling Program: Public Information: Promotional Materials
Learning web site) "From Mountains to Monsoons" interactive CD-ROM and Teacher's Guide (August 1997; JOI Learning web site) "Blast from the Past" poster with classroom activities (August 1997; JOI Learning web site) Slides "The ODP in Film" DVD (JOI Learning web site) B-roll
NASA Astrophysics Data System (ADS)
Stecklein, Jason Jeffrey
The utilization of interactive technologies will affect learning in science classrooms of the future. And although these technologies have improved in form and function, their effective employment in university science classrooms has lagged behind the rapid development of new constructivist pedagogies and means of instruction. This dissertation examines the enlistment of instructional technologies, in particular tablet PCs and DyKnow Interactive Software, in a technologically enhanced, university-level, introductory physics course. Results of this qualitative case study of three university students indicate that (1) the use of interactive technology positively affects both student learning within force and motion and self-reported beliefs about physics, (2) ad hoc use of instructional technologies may not sufficient for effective learning in introductory physics, (3) student learners dictate the leveraging of technology in any classroom, and (4) that purposeful teacher structuring of classroom activities with technologies are essential for student construction of knowledge. This includes designing activities to elicit attention and make knowledge visible for low-level content, while augmenting student interactions and modelling procedural steps for higher-level content.
Activities Contributing a Great Deal to the Students' Interactive Skills in Foreign Language Classes
ERIC Educational Resources Information Center
Asatryan, Susanna
2016-01-01
While teaching speaking it is desired to provide a rich environment in class for meaningful communication to take place. With this aim, various speaking activities can contribute a great deal to students in developing their interactive skills necessary for life. These activities make students active in the learning process and at the same time…
34 CFR 464.3 - What kinds of activities may be assisted?
Code of Federal Regulations, 2010 CFR
2010-07-01
... instruction; (B) Video tapes; (C) Interactive systems; and (D) Data link systems; or (ii) Assessing learning style, screening for learning disabilities, and providing individualized remedial reading instruction...
ANALYTiC: An Active Learning System for Trajectory Classification.
Soares Junior, Amilcar; Renso, Chiara; Matwin, Stan
2017-01-01
The increasing availability and use of positioning devices has resulted in large volumes of trajectory data. However, semantic annotations for such data are typically added by domain experts, which is a time-consuming task. Machine-learning algorithms can help infer semantic annotations from trajectory data by learning from sets of labeled data. Specifically, active learning approaches can minimize the set of trajectories to be annotated while preserving good performance measures. The ANALYTiC web-based interactive tool visually guides users through this annotation process.
ERIC Educational Resources Information Center
Bucknall, Ruary
1996-01-01
Overview of the interactive technologies used by the Northern Territory Secondary Correspondence School in Australia: print media utilizing desktop publishing and electronic transfer; telephone or H-F radio; interactive television; and interactive computing. More fully describes its interactive CD-ROM courses. Emphasizes that the programs are…
Active Learning with Ubiquitous Presenter and Tablet PCs
NASA Astrophysics Data System (ADS)
Price, Edward; Simon, B.
2006-12-01
Ubiquitous Presenter (UP)* is a digital presentation system that facilitates spontaneity and interactivity in the classroom. Using the system, an instructor with a Tablet PC can spontaneously modify prepared slides. Furthermore, students with web-enabled devices can add digital 'ink' or text to the instructor's slides and submit them to the instructor during class. We have used this system to facilitate interactive engagement techniques in an introductory physics class where approximately one-third of the students had access to a Tablet PC during class. Class time was used for Interactive Lecture Demonstrations, Peer Instruction, and group problem solving. We describe the implementation of these active learning activities with UP and Tablet PCs, show examples of student contributions, and describe the impact on the classroom setting. *http://up.ucsd.edu/about/
Suksudaj, N; Lekkas, D; Kaidonis, J; Townsend, G C; Winning, T A
2015-02-01
Students' perceptions of their learning environment influence the quality of outcomes they achieve. Learning dental operative techniques in a simulated clinic environment is characterised by reciprocal interactions between skills training, staff- and student-related factors. However, few studies have examined how students perceive their operative learning environments and whether there is a relationship between their perceptions and subsequent performance. Therefore, this study aimed to clarify which learning activities and interactions students perceived as supporting their operative skills learning and to examine relationships with their outcomes. Longitudinal data about examples of operative laboratory sessions that were perceived as effective or ineffective for learning were collected twice a semester, using written critical incidents and interviews. Emergent themes from these data were identified using thematic analysis. Associations between perceptions of learning effectiveness and performance were analysed using chi-square tests. Students indicated that an effective learning environment involved interactions with tutors and peers. This included tutors arranging group discussions to clarify processes and outcomes, providing demonstrations and constructive feedback. Feedback focused on mistakes, and not improvement, was reported as being ineffective for learning. However, there was no significant association between students' perceptions of the effectiveness of their learning experiences and subsequent performance. It was clear that learning in an operative technique setting involved various factors related not only to social interactions and observational aspects of learning but also to cognitive, motivational and affective processes. Consistent with studies that have demonstrated complex interactions between students, their learning environment and outcomes, other factors need investigation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
[Integration of the Internet into medical education].
Taradi, Suncana Kukolja
2002-01-01
The Internet promises dramatic changes in the way we learn and teach, the way we interact as a society. Networked technologies introduce interactivity and multimedia into the educational process. The student of the 21st century will use his/her PC as a learning station, as a tutoring system, as an information provider and as a communication center. Therefore the passive classroom (teacher-centered teaching) will evolve into active studio learning (student-centered learning). This will be achieved by new teaching techniques and standards of quality. The role of the new generation of educators is to create exploratory learning environments that offer a wide range of views on many subject areas and encourage active lifelong learning. This will be achieved by 1) placing courseware on the web where it can be accessed by remote students and by 2) finding and reviewing teaching materials obtained from www for possible integration into the local lecture material. The paper suggests strategies for introducing medical educators to networked teaching.
ERIC Educational Resources Information Center
Webb, Alexandra Louise; Choi, Sunhea
2014-01-01
A technology enhanced learning and teaching (TELT) solution, radiological anatomy (RA) eLearning, composed of a range of identification-based and guided learning activities related to normal and pathological X-ray images, was devised for the Year 1 nervous and locomotor course at the Faculty of Medicine, University of Southampton. Its…
ERIC Educational Resources Information Center
Narciss, Susanne
2013-01-01
This paper describes the interactive tutoring feedback model (ITF-model; Narciss, 2006; 2008), and how it can be applied to the design and evaluation of feedback strategies for digital learning environments. The ITF-model conceptualizes formative tutoring feedback as a multidimensional instructional activity that aims at contributing to the…
ERIC Educational Resources Information Center
Heo, Heeok; Lim, Kyu Yon; Kim, Youngsoo
2010-01-01
This study aims to investigate the patterns and the quality of online interaction during project-based learning (PjBL) on both micro and macro levels. To achieve this purpose, PjBL was implemented with online group activities in an undergraduate course. Social network analysis (SNA) and content analysis were employed to analyze online interaction…
ERIC Educational Resources Information Center
Brown, Dwight
Biogeography examines questions of organism inventory and pattern, organisms' interactions with the environment, and the processes that create and change inventory, pattern, and interactions. This learning module uses time series maps and simple simulation models to illustrate how human actions alter biological productivity patterns at local and…
NASA Astrophysics Data System (ADS)
Arthurs, Leilani A.; Kreager, Bailey Zo
2017-10-01
Engaging students in active learning is linked to positive learning outcomes. This study aims to synthesise the peer-reviewed literature about 'active learning' in college science classroom settings. Using the methodology of an integrative literature review, 337 articles archived in the Educational Resources Information Center (ERIC) are examined. Four categories of in-class activities emerge: (i) individual non-polling activities, (ii) in-class polling activities, (iii) whole-class discussion or activities, and (iv) in-class group activities. Examining the collection of identified in-class activities through the lens of a theoretical framework informed by constructivism and social interdependence theory, we synthesise the reviewed literature to propose the active learning strategies (ALSs) model and the instructional decisions to enable active learning (IDEAL) theory. The ALS model characterises in-class activities in terms of the degrees to which they are designed to promote (i) peer interaction and (ii) social interdependence. The IDEAL theory includes the ALS model and provides a framework for conceptualising different levels of the general concept 'active learning' and how these levels connect to instructional decision-making about using in-class activities. The proposed ALS model and IDEAL theory can be utilised to inform instructional decision-making and future research about active learning in college science courses.
Miller, Paulette J
2012-01-01
Online discussion activities are designed for computer-mediated learning activities in face-to-face, hybrid, and totally online courses. The use of asynchronous computer-mediated communication (A-CMC) coupled with authentic workplace case studies provides students in the protected learning environment with opportunities to practice workplace decision making and communication. In this study, communication behaviors of transmitter and receiver were analyzed to determine participation and interactivity in communication among small-group participants in a health information management capstone management course.
Hamaguchi, Kosuke; Mooney, Richard
2012-01-01
Complex brain functions, such as the capacity to learn and modulate vocal sequences, depend on activity propagation in highly distributed neural networks. To explore the synaptic basis of activity propagation in such networks, we made dual in vivo intracellular recordings in anesthetized zebra finches from the input (nucleus HVC) and output (lateral magnocellular nucleus of the anterior nidopallium (LMAN)) neurons of a songbird cortico-basal ganglia (BG) pathway necessary to the learning and modulation of vocal motor sequences. These recordings reveal evidence of bidirectional interactions, rather than only feedforward propagation of activity from HVC to LMAN, as had been previously supposed. A combination of dual and triple recording configurations and pharmacological manipulations was used to map out circuitry by which activity propagates from LMAN to HVC. These experiments indicate that activity travels to HVC through at least two independent ipsilateral pathways, one of which involves fast signaling through a midbrain dopaminergic cell group, reminiscent of recurrent mesocortical loops described in mammals. We then used in vivo pharmacological manipulations to establish that augmented LMAN activity is sufficient to restore high levels of sequence variability in adult birds, suggesting that recurrent interactions through highly distributed forebrain – midbrain pathways can modulate learned vocal sequences. PMID:22915110
Action Research to Improve the Learning Space for Diagnostic Techniques†
Ariel, Ellen; Owens, Leigh
2015-01-01
The module described and evaluated here was created in response to perceived learning difficulties in diagnostic test design and interpretation for students in third-year Clinical Microbiology. Previously, the activities in lectures and laboratory classes in the module fell into the lower cognitive operations of “knowledge” and “understanding.” The new approach was to exchange part of the traditional activities with elements of interactive learning, where students had the opportunity to engage in deep learning using a variety of learning styles. The effectiveness of the new curriculum was assessed by means of on-course student assessment throughout the module, a final exam, an anonymous questionnaire on student evaluation of the different activities and a focus group of volunteers. Although the new curriculum enabled a major part of the student cohort to achieve higher pass grades (p < 0.001), it did not meet the requirements of the weaker students, and the proportion of the students failing the module remained at 34%. The action research applied here provided a number of valuable suggestions from students on how to improve future curricula from their perspective. Most importantly, an interactive online program that facilitated flexibility in the learning space for the different reagents and their interaction in diagnostic tests was proposed. The methods applied to improve and assess a curriculum refresh by involving students as partners in the process, as well as the outcomes, are discussed. Journal of Microbiology & Biology Education PMID:26753024
Active Classroom Participation in a Group Scribbles Primary Science Classroom
ERIC Educational Resources Information Center
Chen, Wenli; Looi, Chee-Kit
2011-01-01
A key stimulus of learning efficacy for students in the classroom is active participation and engagement in the learning process. This study examines the nature of teacher-student and student-student discourse when leveraged by an interactive technology--Group Scribbles (GS) in a Primary 5 Science classroom in Singapore which supports rapid…
ERIC Educational Resources Information Center
Dorner, Helga
2012-01-01
This study examines online mentor roles and effects with the online mentoring process in computer-supported collaborative learning environments in communities of in-service teachers. Interest in the online mentors' activity encompassed their participation in the online interactions, the influence of their activity on participants' patterns of…
ERIC Educational Resources Information Center
Lewis, Elizabeth; Baker, Dale; Watts, Nievita Bueno; Lang, Michael
2014-01-01
In this article we describe current educational research underlying a comprehensive model for building a scientific classroom discourse community. We offer a professional development activity for a school-based professional learning community, providing specific science instructional strategies within this interactive teaching model. This design…
A Scandinavian View on the Aesthetics as a Learning Media
ERIC Educational Resources Information Center
Austring, Bennye D.; Sorensen, Merete
2012-01-01
As the aesthetic learning process is always relational and developed in interaction with the surrounding culture, the participants in the aesthetic activities can develop cultural identity and social skills. Add to this that the individual can share its inner world with others through aesthetic activities in the potential space and in this way…
ERIC Educational Resources Information Center
Finn, Lauren; Vandermaas-Peeler, Maureen
2013-01-01
Parents teach their children through informal social interactions in a process known as guided participation (Rogoff, 1990). Although most research focuses on parent-child dyads, young children also learn from older siblings and parents through shared participation in daily activities. Utilizing a structured observational design, the authors…
Students' Preferences for Syntax Usage in Turkish Language Using Distributional Linguistic Theory
ERIC Educational Resources Information Center
Erdem, Cem
2017-01-01
Communication is one of the most important aspects of social life. Social interactions have increased the necessity for communication and learning of language. Social needs which constitute the main goal of teaching activities fill the gap of learning language. Linguistic surveys have revealed an important finding on educational activities and…
Examining Student Agency in an Active-Learning Business Calculus Course
ERIC Educational Resources Information Center
Higgins, Abigail L.
2017-01-01
This study explored student agency in an active-learning business calculus course. The lecture-style instructional practices typically used in this course at this institution allow few opportunities for students to interact with their peers, interface with the instructor one-on-one, or do mathematics during class time. Additionally, this course…
NASA Astrophysics Data System (ADS)
Çil, Emine; Maccario, Nihal; Yanmaz, Durmuş
2016-09-01
Background: Museums are useful educational resources in science teaching. Teaching strategies which promote hands-on activities, student-centred learning, and rich social interaction must be designed and implemented throughout the museum visit for effective science learning.
ERIC Educational Resources Information Center
Kim Hassell,
2011-01-01
Classroom design for the 21st-century learning environment should accommodate a variety of learning skills and needs. The space should be large enough so it can be configured to accommodate a number of learning activities. This also includes furniture that provides flexibility and accommodates collaboration and interactive work among students and…
Accounting Experiences in Collaborative Learning
ERIC Educational Resources Information Center
Edmond, Tracie; Tiggeman, Theresa
2009-01-01
This paper discusses incorporating collaborative learning into accounting classes as a response to the Accounting Education Change Commission's call to install a more active student learner in the classroom. Collaborative learning requires the students to interact with each other and with the material within the classroom setting. It is a…
Cao, Fan; Sussman, Bethany L; Rios, Valeria; Yan, Xin; Wang, Zhao; Spray, Gregory J; Mack, Ryan M
2017-03-01
Word reading has been found to be associated with different neural networks in different languages, with greater involvement of the lexical pathway for opaque languages and greater invovlement of the sub-lexical pathway for transparent langauges. However, we do not know whether this language divergence can be demonstrated in second langauge learners, how learner's metalinguistic ability would modulate the langauge divergence, or whether learning method would interact with the language divergence. In this study, we attempted to answer these questions by comparing brain activations of Chinese and Spanish word reading in native English-speaking adults who learned Chinese and Spanish over a 2 week period under three learning conditions: phonological, handwriting, and passive viewing. We found that mapping orthography to phonology in Chinese had greater activation in the left inferior frontal gyrus (IFG) and left inferior temporal gyrus (ITG) than in Spanish, suggesting greater invovlement of the lexical pathway in opaque langauges. In contrast, Spanish words evoked greater activation in the left superior temporal gyrus (STG) than English, suggesting greater invovlement of the sublexical pathway for transparant languages. Furthermore, brain-behavior correlation analyses found that higher phonological awareness and rapid naming were associated with greater activation in the bilateral IFG for Chinese and in the bilateral STG for Spanish, suggesting greater language divergence in participants with higher meta-linguistic awareness. Finally, a significant interaction between the language and learning condition was found in the left STG and middle frontal gyrus (MFG), with greater activation in handwriting learning than viewing learning in the left STG only for Spanish, and greater activation in handwriting learning than phonological learning in the left MFG only for Chinese. These findings suggest that handwriting facilitates assembled phonology in Spanish and addressed phonology in Chinese. In summary, our study suggests different mechanisms in learning different L2s, providing important insights into neural plasticity and important implications in second language education. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Priyono, Wena, Made; Rahardjo, Boedi
2017-09-01
Experts and practitioners agree that the quality of higher education in Indonesia needs to be improved significantly and continuously. The low quality of university graduates is caused by many factors, one of which is the poor quality of learning. Today's instruction process tends to place great emphasis only on delivering knowledge. To avoid the pitfalls of such instruction, e.g. passive learning, thus Civil Engineering students should be given more opportunities to interact with others and actively participate in the learning process. Based on a number of theoretical and empirical studies, one appropriate strategy to overcome the aforementioned problem is by developing and implementing activity-based learning approach.
Frequency-specific hippocampal-prefrontal interactions during associative learning
Brincat, Scott L.; Miller, Earl K.
2015-01-01
Much of our knowledge of the world depends on learning associations (e.g., face-name), for which the hippocampus (HPC) and prefrontal cortex (PFC) are critical. HPC-PFC interactions have rarely been studied in monkeys, whose cognitive/mnemonic abilities are akin to humans. Here, we show functional differences and frequency-specific interactions between HPC and PFC of monkeys learning object-pair associations, an animal model of human explicit memory. PFC spiking activity reflected learning in parallel with behavioral performance, while HPC neurons reflected feedback about whether trial-and-error guesses were correct or incorrect. Theta-band HPC-PFC synchrony was stronger after errors, was driven primarily by PFC to HPC directional influences, and decreased with learning. In contrast, alpha/beta-band synchrony was stronger after correct trials, was driven more by HPC, and increased with learning. Rapid object associative learning may occur in PFC, while HPC may guide neocortical plasticity by signaling success or failure via oscillatory synchrony in different frequency bands. PMID:25706471
ERIC Educational Resources Information Center
Cohen, Moshe; And Others
Electronic networks provide new opportunities to create functional learning environments which allow students in many different locations to carry out joint educational activities. A set of participant observation studies was conducted in the context of a cross-cultural, cross-language network called the Intercultural Learning Network in order to…
Better than Expected: Using Learning Analytics to Promote Student Success in Gateway Science
ERIC Educational Resources Information Center
Wright, Mary C.; McKay, Timothy; Hershock, Chad; Miller, Kate; Tritz, Jared
2014-01-01
Learning Analytics (LA) has been identified as one of the top technology trends in higher education today (Johnson et al., 2013). LA is based on the idea that datasets generated through normal administrative, teaching, or learning activities--such as registrar data or interactions with learning management systems--can be analyzed to enhance…
Year-Round Learning: Linking School, Afterschool, and Summer Learning to Support Student Success
ERIC Educational Resources Information Center
Dechenes, Sarah; Malone, Helen Janc
2011-01-01
Learning consists of all the ways that youth acquire new knowledge, skills, values, and behaviors. It happens not just in school, but also through afterschool and summer activities, time spent with the family, and increasingly, through interaction with digital media. Broadening ideas about where, when, and how learning happens helps communities to…
ERIC Educational Resources Information Center
Liu, C.-C.; Tao, S.-Y.; Nee, J.-N.
2008-01-01
The internet has been widely used to promote collaborative learning among students. However, students do not always have access to the system, leading to doubt in the interaction among the students, and reducing the effectiveness of collaborative learning, since the web-based collaborative learning environment relies entirely on the availability…
ERIC Educational Resources Information Center
Blasco-Arcas, Lorena; Buil, Isabel; Hernandez-Ortega, Blanca; Sese, F. Javier
2013-01-01
As more and more educational institutions are integrating new technologies (e.g. audience response systems) into their learning systems to support the learning process, it is becoming increasingly necessary to have a thorough understanding of the underlying mechanisms of these advanced technologies and their consequences on student learning…
Animal-Centered Learning Activities in Pharmacy Education
Lust, Elaine
2006-01-01
Objectives To assess the contribution of animal-centered activities to students achieving learning outcomes in a veterinary therapeutics course. Design Qualitative methods were used to assess the outcome of using “hands-on” animal interactions as tools of engagement in the course. Reflective commentary on animal-centered activities was collected and analyzed. Assessment Animal-centered learning activities are effective tools for engaging students and facilitating their understanding and application of veterinary therapeutic knowledge, skills, and attitudes. Analysis of qualitative data revealed themes of professional caring and caring behaviors as a direct result of animal-centered activities. Elements of empathy, caring, compassion, and self-awareness were strong undercurrents in student's comments. Conclusions Animal-centered learning activities provide an innovative learning environment for the application of veterinary pharmacy knowledge, skills, and attitudes directly to animal patients. The use of animals in the course is a successful active-learning technique to engage pharmacy students and assist them in developing caring attitudes and behaviors beneficial to future health care providers. PMID:17149415
Attentional control of associative learning—A possible role of the central cholinergic system
Pauli, Wolfgang M.; O'Reilly, Randall C.
2010-01-01
How does attention interact with learning? Kruschke [Kruschke, J.K. (2001). Toward a unified Model of Attention in Associative Learning. J. Math. Psychol. 45, 812–863.] proposed a model (EXIT) that captures Mackintosh's [Mackintosh, N.J. (1975). A theory of attention: Variations in the associability of stimuli with reinforcement. Psychological Review, 82(4), 276–298.] framework for attentional modulation of associative learning. We developed a computational model that showed analogous interactions between selective attention and associative learning, but is significantly simplified and, in contrast to EXIT, is motivated by neurophysiological findings. Competition among input representations in the internal representation layer, which increases the contrast between stimuli, is critical for simulating these interactions in human behavior. Furthermore, this competition is modulated in a way that might be consistent with the phasic activation of the central cholinergic system, which modulates activity in sensory cortices. Specifically, phasic increases in acetylcholine can cause increased excitability of both pyramidal excitatory neurons in cortical layers II/III and cortical GABAergic inhibitory interneurons targeting the same pyramidal neurons. These effects result in increased attentional contrast in our model. This model thus represents an initial attempt to link human attentional learning data with underlying neural substrates. PMID:17870060
Yanagihara, Shin; Yazaki-Sugiyama, Yoko
2018-04-12
Behavioral states of animals, such as observing the behavior of a conspecific, modify signal perception and/or sensations that influence state-dependent higher cognitive behavior, such as learning. Recent studies have shown that neuronal responsiveness to sensory signals is modified when animals are engaged in social interactions with others or in locomotor activities. However, how these changes produce state-dependent differences in higher cognitive function is still largely unknown. Zebra finches, which have served as the premier songbird model, learn to sing from early auditory experiences with tutors. They also learn from playback of recorded songs however, learning can be greatly improved when song models are provided through social communication with tutors (Eales, 1989; Chen et al., 2016). Recently we found a subset of neurons in the higher-level auditory cortex of juvenile zebra finches that exhibit highly selective auditory responses to the tutor song after song learning, suggesting an auditory memory trace of the tutor song (Yanagihara and Yazaki-Sugiyama, 2016). Here we show that auditory responses of these selective neurons became greater when juveniles were paired with their tutors, while responses of non-selective neurons did not change. These results suggest that social interaction modulates cortical activity and might function in state-dependent song learning. Copyright © 2018 Elsevier B.V. All rights reserved.
Butler, Andrew J; James, Thomas W; James, Karin Harman
2011-11-01
Everyday experience affords us many opportunities to learn about objects through multiple senses using physical interaction. Previous work has shown that active motor learning of unisensory items enhances memory and leads to the involvement of motor systems during subsequent perception. However, the impact of active motor learning on subsequent perception and recognition of associations among multiple senses has not been investigated. Twenty participants were included in an fMRI study that explored the impact of active motor learning on subsequent processing of unisensory and multisensory stimuli. Participants were exposed to visuo-motor associations between novel objects and novel sounds either through self-generated actions on the objects or by observing an experimenter produce the actions. Immediately after exposure, accuracy, RT, and BOLD fMRI measures were collected with unisensory and multisensory stimuli in associative perception and recognition tasks. Response times during audiovisual associative and unisensory recognition were enhanced by active learning, as was accuracy during audiovisual associative recognition. The difference in motor cortex activation between old and new associations was greater for the active than the passive group. Furthermore, functional connectivity between visual and motor cortices was stronger after active learning than passive learning. Active learning also led to greater activation of the fusiform gyrus during subsequent unisensory visual perception. Finally, brain regions implicated in audiovisual integration (e.g., STS) showed greater multisensory gain after active learning than after passive learning. Overall, the results show that active motor learning modulates the processing of multisensory associations.
ASPECT: A Survey to Assess Student Perspective of Engagement in an Active-Learning Classroom
Wiggins, Benjamin L.; Eddy, Sarah L.; Wener-Fligner, Leah; Freisem, Karen; Grunspan, Daniel Z.; Theobald, Elli J.; Timbrook, Jerry; Crowe, Alison J.
2017-01-01
The primary measure used to determine relative effectiveness of in-class activities has been student performance on pre/posttests. However, in today’s active-learning classrooms, learning is a social activity, requiring students to interact and learn from their peers. To develop effective active-learning exercises that engage students, it is important to gain a more holistic view of the student experience in an active-learning classroom. We have taken a mixed-methods approach to iteratively develop and validate a 16-item survey to measure multiple facets of the student experience during active-learning exercises. The instrument, which we call Assessing Student Perspective of Engagement in Class Tool (ASPECT), was administered to a large introductory biology class, and student responses were subjected to exploratory factor analysis. The 16 items loaded onto three factors that cumulatively explained 52% of the variation in student response: 1) value of activity, 2) personal effort, and 3) instructor contribution. ASPECT provides a rapid, easily administered means to measure student perception of engagement in an active-learning classroom. Gaining a better understanding of students’ level of engagement will help inform instructor best practices and provide an additional measure for comprehensively assessing the impact of different active-learning strategies. PMID:28495936
Case study of a problem-based learning course of physics in a telecommunications engineering degree
NASA Astrophysics Data System (ADS)
Macho-Stadler, Erica; Jesús Elejalde-García, Maria
2013-08-01
Active learning methods can be appropriate in engineering, as their methodology promotes meta-cognition, independent learning and problem-solving skills. Problem-based learning is the educational process by which problem-solving activities and instructor's guidance facilitate learning. Its key characteristic involves posing a 'concrete problem' to initiate the learning process, generally implemented by small groups of students. Many universities have developed and used active methodologies successfully in the teaching-learning process. During the past few years, the University of the Basque Country has promoted the use of active methodologies through several teacher training programmes. In this paper, we describe and analyse the results of the educational experience using the problem-based learning (PBL) method in a physics course for undergraduates enrolled in the technical telecommunications engineering degree programme. From an instructors' perspective, PBL strengths include better student attitude in class and increased instructor-student and student-student interactions. The students emphasised developing teamwork and communication skills in a good learning atmosphere as positive aspects.
Sustaining Motivation for Japanese "Kanji" Learning: Can Digital Games Help?
ERIC Educational Resources Information Center
Nesbitt, Dallas; Müller, Amanda
2016-01-01
Educational digital games are often presented at Technology in Language Education conferences. The games are entertaining and are backed by research detailing how games can improve the learning experience through active critical learning, learner interaction, competition, challenge, and high learner motivation. The authors, inspired by such…
Impacts of Learning Management System on Learner Autonomy in EFL Learning
ERIC Educational Resources Information Center
Dang, Tin Tan; Robertson, Margaret
2010-01-01
The integration of interactive online communication into different educational settings has been widely researched since the emergence of Web 2.0 technology. It has been particularly identified to give EFL students more opportunities to express ideas, enhance their engagement in learning activities and promote their confidence during virtual…
Engaging Students in Learning: An Application with Quantitative Psychology
ERIC Educational Resources Information Center
Harlow, Lisa L.; Burkholder, Gary J.; Morrow, Jennifer A.
2006-01-01
In response to calls for more engaging and interactive pedagogy, we simultaneously implemented 4 rousing learning activities: peer-mentored learning, student reports of what was clear (or not) from a previous lecture, consult corners where student groups provided course-informed solutions to problem-based scenarios, and applied projects presented…
Learning by Doing: Using an Online Simulation Game in an International Relations Course
ERIC Educational Resources Information Center
Epley, Jennifer
2016-01-01
Integrating interactive learning activities into undergraduate courses is one method for increasing student interest, engagement, and skills development. Online simulation games in particular offer students the unique applied opportunity to "learn by doing" in a virtual space to further their overall knowledge base and critical thinking…
Visualisation of Interaction Footprints for Engagement in Online Communities
ERIC Educational Resources Information Center
Glahn, Christian; Specht, Marcus; Koper, Rob
2009-01-01
Contextualised and ubiquitous learning are relatively new research areas that combine the latest developments in ubiquitous and context aware computing with educational approaches in order to provide structure to more situated and context aware learning. The majority of recent activities in contextualised and ubiquitous learning focus on mobile…
Differences That Make a Difference: A Study in Collaborative Learning
ERIC Educational Resources Information Center
Touchman, Stephanie
2012-01-01
Collaborative learning is a common teaching strategy in classrooms across age groups and content areas. It is important to measure and understand the cognitive process involved during collaboration to improve teaching methods involving interactive activities. This research attempted to answer the question: why do students learn more in…
Intuitive experimentation in the physical world.
Bramley, Neil R; Gerstenberg, Tobias; Tenenbaum, Joshua B; Gureckis, Todd M
2018-06-06
Many aspects of our physical environment are hidden. For example, it is hard to estimate how heavy an object is from visual observation alone. In this paper we examine how people actively "experiment" within the physical world to discover such latent properties. In the first part of the paper, we develop a novel framework for the quantitative analysis of the information produced by physical interactions. We then describe two experiments that present participants with moving objects in "microworlds" that operate according to continuous spatiotemporal dynamics similar to everyday physics (i.e., forces of gravity, friction, etc.). Participants were asked to interact with objects in the microworlds in order to identify their masses, or the forces of attraction/repulsion that governed their movement. Using our modeling framework, we find that learners who freely interacted with the physical system selectively produced evidence that revealed the physical property consistent with their inquiry goal. As a result, their inferences were more accurate than for passive observers and, in some contexts, for yoked participants who watched video replays of an active learner's interactions. We characterize active learners' actions into a range of micro-experiment strategies and discuss how these might be learned or generalized from past experience. The technical contribution of this work is the development of a novel analytic framework and methodology for the study of interactively learning about the physical world. Its empirical contribution is the demonstration of sophisticated goal directed human active learning in a naturalistic context. Copyright © 2018 Elsevier Inc. All rights reserved.
Interactive Simulations as Implicit Support for Guided-Inquiry
ERIC Educational Resources Information Center
Moore, Emily B.; Herzog, Timothy A.; Perkins, Katherine K.
2013-01-01
We present the results of a study designed to provide insight into interactive simulation use during guided-inquiry activities in chemistry classes. The PhET Interactive Simulations project at the University of Colorado develops interactive simulations that utilize implicit--rather than explicit--scaffolding to support student learning through…
ERIC Educational Resources Information Center
bin Mohamad, Rossafri; Muninday, Balakrishnan; Govindasamy, Malliga
2010-01-01
This article presents a study on the use of multimedia technology for the teaching of Form (Grade) One history, which is a form of narrative subject in nature. Specifically, it is to study the viability of multimedia materials in supporting active learning for subjects which are in narrative form. Due to the scarcity of interactive multimedia…
Learning about friction: group dynamics in engineering students' work with free body diagrams
NASA Astrophysics Data System (ADS)
Berge, Maria; Weilenmann, Alexandra
2014-11-01
In educational research, it is well-known that collaborative work on core conceptual issues in physics leads to significant improvements in students' conceptual understanding. In this paper, we explore collaborative learning in action, adding to previous research in engineering education with a specific focus on the students' use of free body diagrams in interaction. By looking at details in interaction among a group of three engineering students, we illustrate how they collectively construct a free body diagram together when learning introductory mechanics. In doing so, we have focused on both learning possibilities and the dynamic processes that take place in the learning activity. These findings have a number of implications for educational practice.
How relevant is social interaction in second language learning?
Verga, Laura; Kotz, Sonja A.
2013-01-01
Verbal language is the most widespread mode of human communication, and an intrinsically social activity. This claim is strengthened by evidence emerging from different fields, which clearly indicates that social interaction influences human communication, and more specifically, language learning. Indeed, research conducted with infants and children shows that interaction with a caregiver is necessary to acquire language. Further evidence on the influence of sociality on language comes from social and linguistic pathologies, in which deficits in social and linguistic abilities are tightly intertwined, as is the case for Autism, for example. However, studies on adult second language (L2) learning have been mostly focused on individualistic approaches, partly because of methodological constraints, especially of imaging methods. The question as to whether social interaction should be considered as a critical factor impacting upon adult language learning still remains underspecified. Here, we review evidence in support of the view that sociality plays a significant role in communication and language learning, in an attempt to emphasize factors that could facilitate this process in adult language learning. We suggest that sociality should be considered as a potentially influential factor in adult language learning and that future studies in this domain should explicitly target this factor. PMID:24027521
How relevant is social interaction in second language learning?
Verga, Laura; Kotz, Sonja A
2013-09-03
Verbal language is the most widespread mode of human communication, and an intrinsically social activity. This claim is strengthened by evidence emerging from different fields, which clearly indicates that social interaction influences human communication, and more specifically, language learning. Indeed, research conducted with infants and children shows that interaction with a caregiver is necessary to acquire language. Further evidence on the influence of sociality on language comes from social and linguistic pathologies, in which deficits in social and linguistic abilities are tightly intertwined, as is the case for Autism, for example. However, studies on adult second language (L2) learning have been mostly focused on individualistic approaches, partly because of methodological constraints, especially of imaging methods. The question as to whether social interaction should be considered as a critical factor impacting upon adult language learning still remains underspecified. Here, we review evidence in support of the view that sociality plays a significant role in communication and language learning, in an attempt to emphasize factors that could facilitate this process in adult language learning. We suggest that sociality should be considered as a potentially influential factor in adult language learning and that future studies in this domain should explicitly target this factor.
ERIC Educational Resources Information Center
Nottingham, Sara L.; Kasamatsu, Tricia M.; Montgomery, Melissa M.
2017-01-01
Context: Engaging clinical experiences that allow extensive active learning and patient care interactions are important for the professional development of athletic training students. Understanding students' use of clinical time is important when attempting to improve these experiences. Objective: To gain participants' perspectives on active…
ERIC Educational Resources Information Center
Avouris, N.; Fiotakis, G.; Kahrimanis, G.; Margaritis, M.; Komis, V.
2007-01-01
In this article, we discuss key requirements for collecting behavioural data concerning technology-supported collaborative learning activities. It is argued that the common practice of analysis of computer generated log files of user interactions with software tools is not enough for building a thorough view of the activity. Instead, more…
ERIC Educational Resources Information Center
Liu, Chen-Chung; Don, Ping-Hsing; Chung, Chen-Wei; Lin, Shao-Jun; Chen, Gwo-Dong; Liu, Baw-Jhiune
2010-01-01
While Web discovery is usually undertaken as a solitary activity, Web co-discovery may transform Web learning activities from the isolated individual search process into interactive and collaborative knowledge exploration. Recent studies have proposed Web co-search environments on a single computer, supported by multiple one-to-one technologies.…
Evaluation of a Didactic Method for the Active Learning of Greedy Algorithms
ERIC Educational Resources Information Center
Esteban-Sánchez, Natalia; Pizarro, Celeste; Velázquez-Iturbide, J. Ángel
2014-01-01
An evaluation of the educational effectiveness of a didactic method for the active learning of greedy algorithms is presented. The didactic method sets students structured-inquiry challenges to be addressed with a specific experimental method, supported by the interactive system GreedEx. This didactic method has been refined over several years of…
ERIC Educational Resources Information Center
Peters, Brenda; Forlin, Chris; McInerney, Dennis; Maclean, Rupert
2013-01-01
A substantial amount of learning in schools takes place within social contexts and class-based group activities; however, social learning situations, communication and social cognition development for children with ASD can be a challenge for the children and their teachers. This paper explores what happens when children with ASD draw…
ERIC Educational Resources Information Center
Cotes, Sandra; Cotuá, José
2014-01-01
This article describes a method of instruction using an active learning strategy for teaching stoichiometry through a process of gradual knowledge building. Students identify their misconceptions and progress through a sequence of questions based on the same chemical equation. An infrared device and software registered as the TurningPoint Audience…
ERIC Educational Resources Information Center
Bear, Teresa J.
2013-01-01
This quantitative action science research study utilized a causal-comparative experimental research design in order to determine if the use of student response systems (clickers), as an active learning strategy in a community college course, improved student performance in the course. Students in the experimental group (n = 26) used clickers to…
Off-line simulation inspires insight: A neurodynamics approach to efficient robot task learning.
Sousa, Emanuel; Erlhagen, Wolfram; Ferreira, Flora; Bicho, Estela
2015-12-01
There is currently an increasing demand for robots able to acquire the sequential organization of tasks from social learning interactions with ordinary people. Interactive learning-by-demonstration and communication is a promising research topic in current robotics research. However, the efficient acquisition of generalized task representations that allow the robot to adapt to different users and contexts is a major challenge. In this paper, we present a dynamic neural field (DNF) model that is inspired by the hypothesis that the nervous system uses the off-line re-activation of initial memory traces to incrementally incorporate new information into structured knowledge. To achieve this, the model combines fast activation-based learning to robustly represent sequential information from single task demonstrations with slower, weight-based learning during internal simulations to establish longer-term associations between neural populations representing individual subtasks. The efficiency of the learning process is tested in an assembly paradigm in which the humanoid robot ARoS learns to construct a toy vehicle from its parts. User demonstrations with different serial orders together with the correction of initial prediction errors allow the robot to acquire generalized task knowledge about possible serial orders and the longer term dependencies between subgoals in very few social learning interactions. This success is shown in a joint action scenario in which ARoS uses the newly acquired assembly plan to construct the toy together with a human partner. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Umam, K.; Mardi, S. N. S.; Hariadi, M.
2017-01-01
The recent popularity of internet messenger based smartphone technologies has motivated some university lecturers to use them for educational activities. These technologies have enormous potential to enhance the teaching and ubiquitous learning experience for smart campus development. However, the design ubiquitous learning model using interactive internet messenger group (IIMG) and empirical evidence that would favor a broad application of mobile and ubiquitous learning in smart campus settings to improve engagement and behavior is still limited. In addition, the expectation that mobile learning could improve engagement and behavior on smart campus cannot be confirmed because the majority of the reviewed studies followed instructions paradigms. This article aims to present ubiquitous learning model design and showing learners’ experiences in improved engagement and behavior using IIMG for learner-learner and learner-lecturer interactions. The method applied in this paper includes design process and quantitative analysis techniques, with the purpose of identifying scenarios of ubiquitous learning and realize the impressions of learners and lecturers about engagement and behavior aspect, and its contribution to learning.
Architecting Learning Continuities for Families Across Informal Science Experiences
NASA Astrophysics Data System (ADS)
Perin, Suzanne Marie
By first recognizing the valuable social and scientific practices taking place within families as they learn science together across multiple, everyday settings, this dissertation addresses questions of how to design and scaffold activities that build and expand on those practices to foster a deep understanding of science, and how the aesthetic experience of learning science builds connections across educational settings. Families were invited to visit a natural history museum, an aquarium, and a place or activity of the family's choice that they associated with science learning. Some families were asked to use a set of activities during their study visits based on the practices of science (National Research Council, 2012), which were delivered via smartphone app or on paper cards. I use design-based research, video data analysis and interaction analysis to examine how families build connections between informal science learning settings. Chapter 2 outlines the research-based design process of creating activities for families that fostered connections across multiple learning settings, regardless of the topical content of those settings. Implications of this study point to means for linking everyday family social practices such as questioning, observing, and disagreeing to the practices of science through activities that are not site-specific. The next paper delves into aesthetic experience of science learning, and I use video interaction analysis and linguistic analysis to show how notions of beauty and pleasure (and their opposites) are perfused throughout learning activity. Designing for aesthetic experience overtly -- building on the sensations of enjoyment and pleasure in the learning experience -- can motivate those who might feel alienated by the common conception of science as merely a dispassionate assembly of facts, discrete procedures or inaccessible theory. The third paper, a case study of a family who learns about salmon in each of the sites they visit, highlights the contributions of multiple sites of learning in an ecological view of learning. Finally, the dissertations' conclusion highlights the broad implications for conceiving of the many varied learning settings in a community as an educational infrastructure, and reflections on using aesthetic experience for broadening participation the sciences through the design of informal environments.
NASA Astrophysics Data System (ADS)
Bower, P.; Liddicoat (2), J.
2009-04-01
Brownfield Action (BA - http://www.brownfieldaction.org) is a web-based, interactive, three-dimensional digital space and learning simulation in which students form geotechnical consulting companies and work collaboratively to explore and solve problems in environmental forensics. BA is being used in the United States at 10 colleges and universities in earth, environmental, or engineering sciences undergraduate and graduate courses. As a semester-long activity or done in modular form for specific topics, BA encourages active learning that requires attention to detail, intuition, and positive interaction between peers that results in Phase 1 and Phase 2 Environmental Site Assessments. Besides use in higher education courses, BA also can be adapted for instruction to local, state, and federal governmental employees, and employees in industry where brownfields need to be investigated or require remediation.
Education from the Environment.
ERIC Educational Resources Information Center
Ellis, Len; And Others
1986-01-01
Discusses an inservice program for teachers during which participants explore ways to use a busy shopping area as a stimulus for learning activities. Recounts examples of interactions between teachers and shopkeepers which resulted in new learning experiences for young children. (TW)
Adventure Learning: Theory and Implementation of Hybrid Learning
NASA Astrophysics Data System (ADS)
Doering, A.
2008-12-01
Adventure Learning (AL), a hybrid distance education approach, provides students and teachers with the opportunity to learn about authentic curricular content areas while interacting with adventurers, students, and content experts at various locations throughout the world within an online learning environment (Doering, 2006). An AL curriculum and online environment provides collaborative community spaces where traditional hierarchical classroom roles are blurred and learning is transformed. AL has most recently become popular in K-12 classrooms nationally and internationally with millions of students participating online. However, in the literature, the term "adventure learning" many times gets confused with phrases such as "virtual fieldtrip" and activities where someone "exploring" is posting photos and text. This type of "adventure learning" is not "Adventure Learning" (AL), but merely a slideshow of their activities. The learning environment may not have any curricular and/or social goals, and if it does, the environment design many times does not support these objectives. AL, on the other hand, is designed so that both teachers and students understand that their online and curriculum activities are in synch and supportive of the curricular goals. In AL environments, there are no disparate activities as the design considers the educational, social, and technological affordances (Kirschner, Strijbos, Kreijns, & Beers, 2004); in other words, the artifacts of the learning environment encourage and support the instructional goals, social interactions, collaborative efforts, and ultimately learning. AL is grounded in two major theoretical approaches to learning - experiential and inquiry-based learning. As Kolb (1984) noted, in experiential learning, a learner creates meaning from direct experiences and reflections. Such is the goal of AL within the classroom. Additionally, AL affords learners a real-time authentic online learning experience concurrently as they study the AL curriculum. AL is also grounded in an inquiry- based approach to learning where learners are pursuing answers to questions they have posed rather than focusing on memorizing and regurgitating isolated, irrelevant facts. Both the curriculum and the online classroom are developed to foster students' abilities to inquire via "identifying and posing questions, designing and conducting investigations, analyzing data and evidence, using models and explanations, and communicating findings" (Keys and Bryan, 2001, p 121). The union of experiential and inquiry-based learning is the foundation of AL, guiding and supporting authentic learning endeavors. Based on these theoretical foundations, the design of the adventure learning experiences follows seven interdependent principles that further operationalize AL: researched curriculum grounded in inquiry; collaboration and interaction opportunities between students, experts, peers, and content; utilization of the Internet for curriculum and learning environment delivery; enhancement of curriculum with media and text from the field delivered in a timely manner; synched learning opportunities with the AL curriculum; pedagogical guidelines of the curriculum and the online learning environment; and adventure-based education. (Doering, 2006).
Interactive machine learning for health informatics: when do we need the human-in-the-loop?
Holzinger, Andreas
2016-06-01
Machine learning (ML) is the fastest growing field in computer science, and health informatics is among the greatest challenges. The goal of ML is to develop algorithms which can learn and improve over time and can be used for predictions. Most ML researchers concentrate on automatic machine learning (aML), where great advances have been made, for example, in speech recognition, recommender systems, or autonomous vehicles. Automatic approaches greatly benefit from big data with many training sets. However, in the health domain, sometimes we are confronted with a small number of data sets or rare events, where aML-approaches suffer of insufficient training samples. Here interactive machine learning (iML) may be of help, having its roots in reinforcement learning, preference learning, and active learning. The term iML is not yet well used, so we define it as "algorithms that can interact with agents and can optimize their learning behavior through these interactions, where the agents can also be human." This "human-in-the-loop" can be beneficial in solving computationally hard problems, e.g., subspace clustering, protein folding, or k-anonymization of health data, where human expertise can help to reduce an exponential search space through heuristic selection of samples. Therefore, what would otherwise be an NP-hard problem, reduces greatly in complexity through the input and the assistance of a human agent involved in the learning phase.
Hunger Games: Interactive Ultrasound Imaging for Learning Gastrointestinal Physiology.
Kafer, Ilana; Rennie, William; Noor, Ali; Pellerito, John S
2017-02-01
Ultrasound is playing an increasingly important role in medical student education. Although most uses of ultrasound have focused on learning purely anatomic relationships or augmentation of the physical examination, there is little documentation of the value of ultrasound as a learning tool regarding physiology alone or in association with anatomy. We devised an interactive learning session for first-year medical students using ultrasound to combine both anatomic and physiologic principles as an integration of gastrointestinal and vascular function. The incorporation of our activity, The Hunger Games, provides the foundation for a powerful integration tool for medical student education. © 2016 by the American Institute of Ultrasound in Medicine.
NASA Astrophysics Data System (ADS)
Saitta, E. K. H.; Bowdon, M. A.; Geiger, C. L.
2011-12-01
Technology was integrated into service-learning activities to create an interactive teaching method for undergraduate students at a large research institution. Chemistry students at the University of Central Florida partnered with high school students at Crooms Academy of Information Technology in interactive service learning projects. The projects allowed UCF students to teach newly acquired content knowledge and build upon course lecture and lab exercises. Activities utilized the web-conferencing tool Adobe Connect Pro to enable interaction with high school students, many of whom have limited access to supplemental educational opportunities due to low socioeconomic status. Seventy chemistry I students created lessons to clarify high school students' misconceptions through the use of refutational texts. In addition, 21 UCF students enrolled in the chemistry II laboratory course acted as virtual lab partners with Crooms students in an interactive guided inquiry experiment focused on chemical kinetics. An overview of project's design, implementation, and assessments are detailed in the case study and serve as a model for future community partnerships. Emerging technologies are emphasized as well as a suggested set of best practices for future projects.
Song, Min; Yu, Hwanjo; Han, Wook-Shin
2011-11-24
Protein-protein interaction (PPI) extraction has been a focal point of many biomedical research and database curation tools. Both Active Learning and Semi-supervised SVMs have recently been applied to extract PPI automatically. In this paper, we explore combining the AL with the SSL to improve the performance of the PPI task. We propose a novel PPI extraction technique called PPISpotter by combining Deterministic Annealing-based SSL and an AL technique to extract protein-protein interaction. In addition, we extract a comprehensive set of features from MEDLINE records by Natural Language Processing (NLP) techniques, which further improve the SVM classifiers. In our feature selection technique, syntactic, semantic, and lexical properties of text are incorporated into feature selection that boosts the system performance significantly. By conducting experiments with three different PPI corpuses, we show that PPISpotter is superior to the other techniques incorporated into semi-supervised SVMs such as Random Sampling, Clustering, and Transductive SVMs by precision, recall, and F-measure. Our system is a novel, state-of-the-art technique for efficiently extracting protein-protein interaction pairs.
Mthembu, Sindi Z; Mtshali, Fikile G
2013-01-01
Practices in higher education have been criticised for not developing and preparing students for the expertise required in real environments. Literature reports that educational programmes tend to favour knowledge conformation rather than knowledge construction; however, community service learning (CSL) is a powerful pedagogical strategy that encourages students to make meaningful connections between the content in the classroom and real-life experiences as manifested by the communities. Through CSL, learning is achieved by the active construction of knowledge supported by multiple perspectives within meaningful real contexts, and the social interactions amongst students are seen to play a critical role in the processes of learning and cognition. This article reflects facilitators’ perspective of the knowledge construction process as used with students doing community service learning in basic nursing programmes. The aim of this article was to conceptualise the phenomenon of knowledge construction and thereby provide educators with a shared meaning and common understanding, and to analyse the interaction strategies utilised by nurse educators in the process of knowledge construction in community service-learning programmes in basic nursing education. A qualitative research approach based on a grounded theory research design was used in this article. Two nursing education institutions were purposively selected. Structured interviews were conducted with 16 participants. The results revealed that the knowledge construction in community service-learning programmes is conceptualised as having specific determinants, including the use of authentic health-related problems, academic coaching through scaffolding, academic discourse-dialogue, interactive learning in communities of learners, active learning, continuous reflection as well as collaborative and inquiry-based learning. Upon completion of an experience, students create and test generated knowledge in different contextual health settings. It was concluded that knowledge is constructed by students as a result of their interaction with the communities in their socio-cultural context and is mediated by their prior concrete experiences. The implication of this is that students construct knowledge that can be applied in their future work places.
Blended learning in health education: three case studies.
de Jong, Nynke; Savin-Baden, Maggi; Cunningham, Anne Marie; Verstegen, Daniëlle M L
2014-09-01
Blended learning in which online education is combined with face-to-face education is especially useful for (future) health care professionals who need to keep up-to-date. Blended learning can make learning more efficient, for instance by removing barriers of time and distance. In the past distance-based learning activities have often been associated with traditional delivery-based methods, individual learning and limited contact. The central question in this paper is: can blended learning be active and collaborative? Three cases of blended, active and collaborative learning are presented. In case 1 a virtual classroom is used to realize online problem-based learning (PBL). In case 2 PBL cases are presented in Second Life, a 3D immersive virtual world. In case 3 discussion forums, blogs and wikis were used. In all cases face-to-face meetings were also organized. Evaluation results of the three cases clearly show that active, collaborative learning at a distance is possible. Blended learning enables the use of novel instructional methods and student-centred education. The three cases employ different educational methods, thus illustrating diverse possibilities and a variety of learning activities in blended learning. Interaction and communication rules, the role of the teacher, careful selection of collaboration tools and technical preparation should be considered when designing and implementing blended learning.
Collaboration for Education with the Apple Learning Interchange
NASA Astrophysics Data System (ADS)
Young, Patrick A.; Zimmerman, T.; Knierman, K. A.
2006-12-01
We present a progressive effort to deliver online education and outreach resources in collaboration with the Apple Learning Interchange, a free community for educators. We have created a resource site with astronomy activities, video training for the activities, and the possibility of interactive training through video chat services. Also in development is an online textbook for graduate and advanced undergraduate courses in stellar evolution, featuring an updatable and annotated text with multimedia content, online lectures, podcasts, and a framework for interactive simulation activities. Both sites will be highly interactive, combining online discussions, the opportunity for live video interaction, and a growing library of student work samples. This effort promises to provide a compelling model for collaboration between science educators and corporations. As scientists, we provide content knowledge and a compelling reason to communicate, while Apple provides technical expertise, a deep knowledge of online education, and a way for us to reach a wide audience of higher education, community outreach, and K-12 educators.
Parent-Child Interaction and Children's Number Learning
ERIC Educational Resources Information Center
Zhou, Xin; Huang, Jin; Wang, Zhengke; Wang, Bin; Zhao, Zhenguo; Yang, Lei; Yang, Zhengzheng
2006-01-01
Two groups of Chinese four-year-olds and their parents' interaction in joint activities were analyzed and compared. The children in Group 1 were high scorers in written number skills and the children in Group 2 were low scorers. Eighty-five dyads participated in four separate 15-minute joint activities such as book reading, mathematical work…
Working with Pre-School Practitioners to Improve Interactions
ERIC Educational Resources Information Center
Ahsam, Suki; Shepherd, Julie; Warren-Adamson, Chris
2006-01-01
Eight pre-schools took part in offsite and onsite speech and language training to improve their interaction skills with children and learn some group language activities. An evaluation was undertaken where practitioners at one pre-school were videoed running a language activity before and after training. The video was analysed to assess change in…
Improving Critical Thinking with Interactive Mobile Tools and Apps
ERIC Educational Resources Information Center
Lin, Lin; Widdall, Chris; Ward, Laurie
2014-01-01
In this article, the authors describe how integrating interactive mobile tools into elementary pedagogy can generate enthusiasm and critical thinking among students as they learn about the world. The activities described took place over the course of six one-hour periods spanning six days. These activities address three major social studies…
Is the learn unit a fundamental measure of pedagogy?
Greer, R. Douglas; McDonough, Sally Hogin
1999-01-01
We propose a measure of teaching, the learn unit, that explicitly describes the interaction between teachers and their students. The theoretical, educational research, and applied behavior analysis literatures all converge on the learn unit as a fundamental measure of teaching. The theoretical literature proposes the construct of the interlocking operant and embraces verbal behavior, social interaction, and translations of psychological constructs into complex theoretical respondent-operant interactions and behavior-behavior relations. Research findings in education and applied behavior analysis on engaged academic time, opportunity to respond, active student responding, teacher-student responding, student-teacher responding, tutor-tutee responding, tutee-tutor responding, and verbal episodes between individuals all support a measure of interlocking responses. More recently, research analyzing the components of both the students' and teachers' behavior suggests that the learn unit is the strongest predictor of effective teaching. Finally, we propose applications of the learn unit to other issues in pedagogy not yet researched and the relation of learn units to the verbal behavior of students. PMID:22478317
ERIC Educational Resources Information Center
Arthurs, Leilani; Templeton, Alexis
2009-01-01
Interactive engagement pedagogies that emerge from a constructivist model of teaching and learning are often a challenge to implement in larger classes for a number of reasons including the physical layout of the classroom (e.g. fixed chairs in an amphitheater-style room), the logistics of organizing a large number of students into small…
ERIC Educational Resources Information Center
Bosch, Andrea; Crespo, Cecilia
In 1993, Bolivia was selected as a site to pilot an interactive radio instruction (IRI) project that would provide practical support to adult caregivers and children around early childhood development. Through linkages with health and education networks, PIDI (Programa Integral de Desarrollo Infantil) provided young children under the age of six…
Children with Down Syndrome: Discovering the Joy of Movement
ERIC Educational Resources Information Center
Jobling, Anne; Virji-Babul, Nazin; Nichols, Doug
2006-01-01
Learning to move and moving to learn are vital aspects of every child's growth and development. Physical therapists and educators have consistently advocated the importance of being involved in a range of movement activities and games. Movement can provide an avenue for learning and interaction with others and can be linked to language and…
ERIC Educational Resources Information Center
Yuretich, Richard F.; Khan, Samia A.; Leckie, R. Mark; Clement, John J.
2001-01-01
Transfers the environment of a large enrollment oceanography course by modifying lectures to include cooperative learning via interactive in-class exercises and directed discussion. Results of student surveys, course evaluations, and exam performance demonstrate that learning of the subject under these conditions has improved. (Author/SAH)
ERIC Educational Resources Information Center
Li, Sissi L.
2012-01-01
At the university level, introductory science courses usually have high student to teacher ratios which increases the challenge to meaningfully connect with students. Various curricula have been developed in physics education to actively engage students in learning through social interactions with peers and instructors in class. This learning…
Creating Learning Momentum through Overt Teaching Interactions during Real Acute Care Episodes
ERIC Educational Resources Information Center
Piquette, Dominique; Moulton, Carol-Anne; LeBlanc, Vicki R.
2015-01-01
Clinical supervisors fulfill a dual responsibility towards patient care and learning during clinical activities. Assuming such roles in today's clinical environments may be challenging. Acute care environments present unique learning opportunities for medical trainees, as well as specific challenges. The goal of this paper was to better understand…
Affect, Epistemic Emotions, Metacognition, and Self-Regulated Learning
ERIC Educational Resources Information Center
Efklides, Anastasia
2017-01-01
This article deals with the functioning of affect and epistemic emotions, such as surprise and curiosity, in self-regulated learning (SRL). The claim is that affect plays a major role in SRL not only as an independent process that can facilitate or impede learning activities and performance but also through its interactions with cognition and…
Secret Buddies: Children Learning about Kindness
ERIC Educational Resources Information Center
Riley, Jeanetta G.
2005-01-01
Teachers must be aware of the social needs that children have and create opportunities to help children learn the skills to interact with others. As teachers help children learn these skills, they are also helping children build important life skills. In this article, the author discusses an activity that she adapted from one of her first grade…
ERIC Educational Resources Information Center
Lee, Fong-Lok; Liang, Steven; Chan, Tak-Wai
1999-01-01
Describes the design, implementation, and preliminary evaluation of three synchronous distributed learning prototype systems: Co-Working System, Working Along System, and Hybrid System. Each supports a particular style of interaction, referred to a socio-activity learning model, between members of student dyads (pairs). All systems were…
The Webinar Integration Tool: A Framework for Promoting Active Learning in Blended Environments
ERIC Educational Resources Information Center
Lieser, Ping; Taf, Steven D.; Murphy-Hagan, Anne
2018-01-01
This paper describes a three-stage process of developing a webinar integration tool to enhance the interaction of teaching and learning in blended environments. In the context of medical education, we emphasize three factors of effective webinar integration in blended learning: fostering better solutions for faculty and students to interact…
Active Learning with Interactive Videos: Creating Student-Guided Learning Materials
ERIC Educational Resources Information Center
Baker, Ariana
2016-01-01
Distance learning programs across the country continue to grow and evolve. In order to support these programs, librarians are often expected to convert face-to-face classes and reference sessions to the online environment. Due to the necessity of explaining information literacy concepts and demonstrating the access and use of library resources,…
ERIC Educational Resources Information Center
Cameron, Ian; Crosthwaite, Caroline; Norton, Christine; Balliu, Nicoleta; Tadé, Moses; Hoadley, Andrew; Shallcross, David; Barton, Geoff
2008-01-01
This work presents a unique education resource for both process engineering students and the industry workforce. The learning environment is based around spherical imagery of real operating plants coupled with interactive embedded activities and content. This Virtual Reality (VR) learning tool has been developed by applying aspects of relevant…
Lights, Camera, Action! Learning about Management with Student-Produced Video Assignments
ERIC Educational Resources Information Center
Schultz, Patrick L.; Quinn, Andrew S.
2014-01-01
In this article, we present a proposal for fostering learning in the management classroom through the use of student-produced video assignments. We describe the potential for video technology to create active learning environments focused on problem solving, authentic and direct experiences, and interaction and collaboration to promote student…
ERIC Educational Resources Information Center
Wu, Yun-Wu; Weng, Apollo; Weng, Kuo-Hua
2017-01-01
The purpose of this study is to design a knowledge conversion and management digital learning system for architecture design learning, helping students to share, extract, use and create their design knowledge through web-based interactive activities based on socialization, internalization, combination and externalization process in addition to…
Embracing Distance Education in a Blended Learning Model: Challenges and Prospects
ERIC Educational Resources Information Center
Fresen, Jill W.
2018-01-01
Distance education reaches out to non-traditional students in geographically dispersed locations, who are unable to attend face-to-face classes. Contact institutions have been quick to realise the many advantages of distance (online) learning, such as easy access to learning materials, interactive activities, assessment and communication tools.…
ERIC Educational Resources Information Center
Ozfidan, Burhan; Machtmes, Krisanna L.; Demir, Husamettin
2014-01-01
Sociocultural theories consider language learning as a social practice examines students as active participants in the construction of learning processes. This study investigates sociocultural theories' central concepts, which includes peer interaction and feedback, private speech, and self-efficacy. The present study is a case study of twenty…
ERIC Educational Resources Information Center
Hwang, Gwo-Jen; Wu, Po-Han; Ke, Hui-Ru
2011-01-01
Mobile and wireless communication technologies not only enable anytime and anywhere learning, but also provide the opportunity to develop learning environments that combine real-world and digital-world resources. Nevertheless, researchers have indicated that, without effective tools for helping students organize their observations in the field,…
Problem-Based Learning in an Online Course of Health Education
ERIC Educational Resources Information Center
Chagas, Isabel; Faria, Claudia; Mourato, Dulce; Pereira, Goncalo; Santos, Afonso
2012-01-01
The objectives of this project were to: i) describe the experience of implementing Problem-Based Learning in an online course over three consecutive academic years, ii) analyse the learning environment generated, iii) discuss impacts on students' active participation, based on the analysis of their interactions. The participants were 30 students,…
ERIC Educational Resources Information Center
Wang, Minjuan; Shen, Ruimin; Novak, Daniel; Pan, Xiaoyan
2009-01-01
Chinese classrooms, whether on school grounds or online, have long suffered from a lack of interactivity. Many online classes simply provide recorded instructor lectures, which only reinforces the negative effects of passive nonparticipatory learning. At Shanghai Jiaotong University, researchers and developers actively seek technologic…
ERIC Educational Resources Information Center
Eynde, Peter Op't; De Corte, Erik; Verschaffel, Lieven
2006-01-01
A socio-constructivist account of learning and emotions stresses the situatedness of every learning activity and points to the close interactions between cognitive, conative and affective factors in students' learning and problem solving. Emotions are perceived as being constituted by the dynamic interplay of cognitive, physiological, and…
NASA Astrophysics Data System (ADS)
Chan, Man Ching Esther; Clarke, David; Cao, Yiming
2018-03-01
Interactive problem solving and learning are priorities in contemporary education, but these complex processes have proved difficult to research. This project addresses the question "How do we optimise social interaction for the promotion of learning in a mathematics classroom?" Employing the logic of multi-theoretic research design, this project uses the newly built Science of Learning Research Classroom (ARC-SR120300015) at The University of Melbourne and equivalent facilities in China to investigate classroom learning and social interactions, focusing on collaborative small group problem solving as a way to make the social aspects of learning visible. In Australia and China, intact classes of local year 7 students with their usual teacher will be brought into the research classroom facilities with built-in video cameras and audio recording equipment to participate in purposefully designed activities in mathematics. The students will undertake a sequence of tasks in the social units of individual, pair, small group (typically four students) and whole class. The conditions for student collaborative problem solving and learning will be manipulated so that student and teacher contributions to that learning process can be distinguished. Parallel and comparative analyses will identify culture-specific interactive patterns and provide the basis for hypotheses about the learning characteristics underlying collaborative problem solving performance documented in the research classrooms in each country. The ultimate goals of the project are to generate, develop and test more sophisticated hypotheses for the optimisation of social interaction in the mathematics classroom in the interest of improving learning and, particularly, student collaborative problem solving.
Feasibility of Active Machine Learning for Multiclass Compound Classification.
Lang, Tobias; Flachsenberg, Florian; von Luxburg, Ulrike; Rarey, Matthias
2016-01-25
A common task in the hit-to-lead process is classifying sets of compounds into multiple, usually structural classes, which build the groundwork for subsequent SAR studies. Machine learning techniques can be used to automate this process by learning classification models from training compounds of each class. Gathering class information for compounds can be cost-intensive as the required data needs to be provided by human experts or experiments. This paper studies whether active machine learning can be used to reduce the required number of training compounds. Active learning is a machine learning method which processes class label data in an iterative fashion. It has gained much attention in a broad range of application areas. In this paper, an active learning method for multiclass compound classification is proposed. This method selects informative training compounds so as to optimally support the learning progress. The combination with human feedback leads to a semiautomated interactive multiclass classification procedure. This method was investigated empirically on 15 compound classification tasks containing 86-2870 compounds in 3-38 classes. The empirical results show that active learning can solve these classification tasks using 10-80% of the data which would be necessary for standard learning techniques.
Lech, Robert K; Güntürkün, Onur; Suchan, Boris
2016-09-15
The aim of the present study was to examine the contributions of different brain structures to prototype- and exemplar-based category learning using functional magnetic resonance imaging (fMRI). Twenty-eight subjects performed a categorization task in which they had to assign prototypes and exceptions to two different families. This test procedure usually produces different learning curves for prototype and exception stimuli. Our behavioral data replicated these previous findings by showing an initially superior performance for prototypes and typical stimuli and a switch from a prototype-based to an exemplar-based categorization for exceptions in the later learning phases. Since performance varied, we divided participants into learners and non-learners. Analysis of the functional imaging data revealed that the interaction of group (learners vs. non-learners) and block (Block 5 vs. Block 1) yielded an activation of the left fusiform gyrus for the processing of prototypes, and an activation of the right hippocampus for exceptions after learning the categories. Thus, successful prototype- and exemplar-based category learning is associated with activations of complementary neural substrates that constitute object-based processes of the ventral visual stream and their interaction with unique-cue representations, possibly based on sparse coding within the hippocampus. Copyright © 2016 Elsevier B.V. All rights reserved.
Pettit, Robin K; McCoy, Lise; Kinney, Marjorie; Schwartz, Frederic N
2015-05-22
Higher education students have positive attitudes about the use of audience response systems (ARS), but even technology-enhanced lessons can become tiresome if the pedagogical approach is exactly the same with each implementation. Gamification is the notion that gaming mechanics can be applied to routine activities. In this study, TurningPoint (TP) ARS interactions were gamified and implemented in 22 large group medical microbiology lectures throughout an integrated year 1 osteopathic medical school curriculum. A 32-item questionnaire was used to measure students' perceptions of the gamified TP interactions at the end of their first year. The survey instrument generated both Likert scale and open-ended response data that addressed game design and variety, engagement and learning features, use of TP questions after class, and any value of lecture capture technology for reviewing these interactive presentations. The Chi Square Test was used to analyze grouped responses to Likert scale questions. Responses to open-ended prompts were categorized using open-coding. Ninety-one students out of 106 (86 %) responded to the survey. A significant majority of the respondents agreed or strongly agreed that the games were engaging, and an effective learning tool. The questionnaire investigated the degree to which specific features of these interactions were engaging (nine items) and promoted learning (seven items). The most highly ranked engagement aspects were peer competition and focus on the activity (tied for highest ranking), and the most highly ranked learning aspect was applying theoretical knowledge to clinical scenarios. Another notable item was the variety of interactions, which ranked in the top three in both the engagement and learning categories. Open-ended comments shed light on how students use TP questions for exam preparation, and revealed engaging and non-engaging attributes of these interactive sessions for students who review them via lecture capture. Students clearly valued the engagement and learning aspects of gamified TP interactions. The overwhelming majority of students surveyed in this study were engaged by the variety of TP games, and gained an interest in microbiology. The methods described in this study may be useful for other educators wishing to expand the utility of ARS in their classrooms.
Placement education pedagogy as social participation: what are students really learning?
Kell, Clare
2014-03-01
This paper draws on empirical fieldwork data of naturally occurring UK physiotherapy placement education to make visible how education is actually carried out and suggest what students may be learning through their placement interactions. The data challenge everyone involved in placement education design and practice to consider the values and practices students are learning to perpetuate through placement education experiences. The researcher undertook an ethnomethodologically informed ethnographic observation of naturally occurring physiotherapy placement education in two UK NHS placement sites. This study adopted a social perspective of learning to focus on the minutiae of placement educator, student and patient interaction practices during student-present therapeutic activities. Two days of placement for each of six senior students were densely recorded in real-time focussing specifically on the verbal, kinesics and proxemics-based elements of the participants' interaction practices. Repeated cycles of data analysis suggested consistent practices irrespective of the placement, educators, students or patients. The data suggest that placement education is a powerful situated learning environment in which students see, experience and learn to reproduce the physiotherapy practices valued by the local placement. Consistently, placement educators and students co-produced patient-facing activities as spectacles of physiotherapy-as-science. In each setting, patients were used as person-absent audiovisual teaching aids from which students learnt to make a case for physiotherapy intervention. The paper challenges physiotherapists and other professions using work-placement education to look behind the rhetoric of their placement documentation and explore the reality of students' learning in the field. The UK-based physiotherapy profession may wish to consider further the possible implications of its self-definition as a 'science-based healthcare profession' on its in-the-presence-of-students interactions with patients. Copyright © 2013 John Wiley & Sons, Ltd.
Li, Xin; Verspoor, Karin; Gray, Kathleen; Barnett, Stephen
2017-01-01
Online social networks (OSNs) enable health professionals to learn informally, for example by sharing medical knowledge, or discussing practice management challenges and clinical issues. Understanding how learning occurs in OSNs is necessary to better support this type of learning. Through a cross-sectional survey, this study found that learning interaction in OSNs is low in general, with a small number of active users. Some health professionals actively used OSNs to support their practice, including sharing practical and experiential knowledge, benchmarking themselves, and to keep up-to-date on policy, advanced information and news in the field. These health professionals had an overall positive learning experience in OSNs.
Contextual Teaching and Learning Approach of Mathematics in Primary Schools
NASA Astrophysics Data System (ADS)
Selvianiresa, D.; Prabawanto, S.
2017-09-01
The Contextual Teaching and Learning (CTL) approach is an approach involving active students in the learning process to discover the concepts learned through to knowledge and experience of the students. Similar to Piaget’s opinion that learning gives students an actives trying to do new things by relating their experiences and building their own minds. When students to connecting mathematics with real life, then students can looking between a conceptual to be learned with a concept that has been studied. So that, students can developing of mathematical connection ability. This research is quasi experiment with a primary school in the city of Kuningan. The result showed that CTL learning can be successful, when learning used a collaborative interaction with students, a high level of activity in the lesson, a connection to real-world contexts, and an integration of science content with other content and skill areas. Therefore, CTL learning can be applied by techer to mathematics learning in primary schools.
Developing an e-pedagogy for interprofessional learning: Lecturers' thinking on curriculum design.
Gordon, Frances; Booth, Karen; Bywater, Helen
2010-09-01
E-learning is seen as offering possible solutions to the barriers of large scale interprofessional education. This paper discusses a study that explored the underlying pedagogical thinking employed by lecturers when planning e-learning materials for interprofessional education. The themes uncovered in the data were: "reflective spaces for creativity"; "from logistics to learner autonomy"; "authentic"; "constructivist approaches"; "inter-active learning to promote collaboration" and "bringing the patient/service user into the classroom". Discussions about e-learning can focus on the technological aspects of design and delivery. However the findings of this study revealed that technology was not a consideration for the lecturers who saw e-learning as a vehicle to promote interactive learning. Their prime focus was revealed as the application of learning theory to the design of materials that would support students' acquisition of collaborative skills and the generation of new interprofessional knowledge.
Visualizing Dispersion Interactions
ERIC Educational Resources Information Center
Gottschalk, Elinor; Venkataraman, Bhawani
2014-01-01
An animation and accompanying activity has been developed to help students visualize how dispersion interactions arise. The animation uses the gecko's ability to walk on vertical surfaces to illustrate how dispersion interactions play a role in macroscale outcomes. Assessment of student learning reveals that students were able to develop…
ERIC Educational Resources Information Center
van Daal, Tine; Donche, Vincent; De Maeyer, Sven
2014-01-01
This study examines the influence of personality traits, goal orientation and self-efficacy on high school teachers' participation in learning activities in the workplace (i.e. experimentation, informal interaction with colleagues, self-regulation and avoidance behaviour). A convenience sample of 95 teachers from six high schools in Flanders…
ERIC Educational Resources Information Center
Counsell, Shelly L.; Wright, Brian L.
2016-01-01
Physical science activities provide multiple and varied opportunities for young children to actively observe, engage in, interact with, and interpret experiences in the physical world within diverse, inclusive settings. If all learners are to gain access to, fully participate in, and achieve maximum profit from early science opportunities,…
eLearning and eMaking: 3D Printing Blurring the Digital and the Physical
ERIC Educational Resources Information Center
Loy, Jennifer
2014-01-01
This article considers the potential of 3D printing as an eLearning tool for design education and the role of eMaking in bringing together the virtual and the physical in the design studio. eLearning has matured from the basics of lecture capture into sophisticated, interactive learning activities for students. At the same time, laptops and…
Iqbal, Maha; Velan, Gary M; O'Sullivan, Anthony J; Balasooriya, Chinthaka
2016-08-22
Collaboration is of increasing importance in medical education and medical practice. Students' and tutors' perceptions about small group learning are valuable to inform the development of strategies to promote group dynamics and collaborative learning. This study investigated medical students' and tutors' views on competencies and behaviours which promote effective learning and interaction in small group settings. This study was conducted at UNSW Australia. Five focus group discussions were conducted with first and second year medical students and eight small group tutors were interviewed. Data were transcribed verbatim and thematic analysis was conducted. Students and tutors identified a range of behaviours that influenced collaborative learning. The main themes that emerged included: respectfulness; dominance, strong opinions and openness; constructiveness of feedback; active listening and contribution; goal orientation; acceptance of roles and responsibilities; engagement and enthusiasm; preparedness; self- awareness and positive personal attributes. An important finding was that some of these student behaviours were found to have a differential impact on group interaction compared with collaborative learning. This information could be used to promote higher quality learning in small groups. This study has identified medical students' and tutors' perceptions regarding interactional behaviours in small groups, as well as behaviours which lead to more effective learning in those settings. This information could be used to promote learning in small groups.
NASA Astrophysics Data System (ADS)
Lyon, S. W.; Walter, M. T.; Jantze, E. J.; Archibald, J. A.
2012-08-01
Structuring an education strategy capable of addressing the various spheres of ecohydrology is difficult due to the inter-disciplinary and cross-disciplinary nature of this emergent field. Clearly, there is a need for such strategies to accommodate more progressive educational concepts while highlighting a skills-based education. To demonstrate a possible way to develop courses that include such concepts, we offer a case-study or a "how-you-can-do-it" example from an ecohydrology course recently co-taught by teachers from Stockholm University and Cornell University at the Navarino Environmental Observatory (NEO) in Costa Navarino, Greece. This course focused on introducing hydrology Master's students to some of the central concepts of ecohydrology while at the same time supplying process-based understanding relevant for characterizing evapotranspiration. As such, the main goal of the course was to explore central theories in ecohydrology and their connection to plant-water interactions and the water cycle in a semiarid environment. In addition to presenting this roadmap for ecohydrology course development, we explore the utility and effectiveness of adopting active teaching and learning strategies drawing from the suite of learn-by-doing, hands-on, and inquiry-based techniques in such a course. We test a gradient of "activeness" across a sequence of three teaching and learning activities. Our results indicate that there was a clear advantage for utilizing active learning techniques in place of traditional lecture-based styles. In addition, there was a preference among the student towards the more "active" techniques. This demonstrates the added value of incorporating even the simplest active learning approaches in our ecohydrology (or general) teaching.
Watanabe, Noriya; Sakagami, Masamichi; Haruno, Masahiko
2013-03-06
Learning does not only depend on rationality, because real-life learning cannot be isolated from emotion or social factors. Therefore, it is intriguing to determine how emotion changes learning, and to identify which neural substrates underlie this interaction. Here, we show that the task-independent presentation of an emotional face before a reward-predicting cue increases the speed of cue-reward association learning in human subjects compared with trials in which a neutral face is presented. This phenomenon was attributable to an increase in the learning rate, which regulates reward prediction errors. Parallel to these behavioral findings, functional magnetic resonance imaging demonstrated that presentation of an emotional face enhanced reward prediction error (RPE) signal in the ventral striatum. In addition, we also found a functional link between this enhanced RPE signal and increased activity in the amygdala following presentation of an emotional face. Thus, this study revealed an acceleration of cue-reward association learning by emotion, and underscored a role of striatum-amygdala interactions in the modulation of the reward prediction errors by emotion.
Cardinale, Jean A
2011-01-01
Longer term research activities that may be incorporated in undergraduate courses are a powerful tool for promoting student interest and learning, developing cognitive process skills, and allowing undergraduates to experience real research activities in which they may not otherwise have the opportunity to participate. The challenge to doing so in lower-level courses is that students may have not fully grasped the scientific concepts needed to undertake such research endeavors, and that they may be discouraged if activities are perceived to be too challenging. The paper describes how a bacterial protein:protein interaction detection system was adapted and incorporated into the laboratory component of a sophomore-level Molecular Cell Biology course. The project was designed to address multiple learning objectives connecting course content to the laboratory activities, as well as teach basic molecular biology laboratory skills and procedures in the context of a primary research activity. Pre- and posttesting and student surveys both suggest that the laboratory curriculum resulted in significant learning gains, as well as being well received and valued by the students.
Is Peer Interaction Necessary for Optimal Active Learning?
Linton, Debra L; Farmer, Jan Keith; Peterson, Ernie
2014-01-01
Meta-analyses of active-learning research consistently show that active-learning techniques result in greater student performance than traditional lecture-based courses. However, some individual studies show no effect of active-learning interventions. This may be due to inexperienced implementation of active learning. To minimize the effect of inexperience, we should try to provide more explicit implementation recommendations based on research into the key components of effective active learning. We investigated the optimal implementation of active-learning exercises within a "lecture" course. Two sections of nonmajors biology were taught by the same instructor, in the same semester, using the same instructional materials and assessments. Students in one section completed in-class active-learning exercises in cooperative groups, while students in the other section completed the same activities individually. Performance on low-level, multiple-choice assessments was not significantly different between sections. However, students who worked in cooperative groups on the in-class activities significantly outperformed students who completed the activities individually on the higher-level, extended-response questions. Our results provide additional evidence that group processing of activities should be the recommended mode of implementation for in-class active-learning exercises. © 2014 D. L. Linton et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
NASA Astrophysics Data System (ADS)
Wilke, Roger Russell
2000-10-01
This study investigated the effects active learning strategies had on college students' achievement, motivation, and self-efficacy, in a human physiology course for non-majors. A continuum-based active learning instructional model was implemented over the course of a semester to assess the effects on the variables and specific student outcomes of learning mentioned above. In addition analyses were conducted to explore what learner characteristics contributed to the successful implementation of the model such as students' gender, classification, major, grade point average, ACT and SAT scores, motivation, and self-efficacy. A quasi-experimental, Solomon-4 Group design was undertaken on 171 students in a small west-Texas university. Treatment groups were taught using the model while controls were taught using traditional lecture methods. Students were administered a comprehensive physiology content exam, sections of the Motivated Strategies for Learning Questionnaire, and attitude surveys to assess the effects of the continuum-based active learning strategies. Factorial analyses indicated the treatment group acquired significantly more content knowledge and were significantly more self-efficacious than students in the control group. There were no significant differences in motivation. Factorial and modified regression analyses in the aptitude by treatment interaction exploration determined that males in the treatment group performed significantly better on the comprehensive physiology content exam versus males in the control group. While females performed better overall than males, there were no significant differences in achievement between females in the treatment group and those in the control. No significant interactions were found for the other learner characteristics. The results also indicated that students' general cognitive ability as measured by their grade point average, ACT, and SAT scores and their self-efficacy contributed significantly to their achievement. Attitude surveys indicated that students in both the treatment and control groups demonstrated a positive attitude toward active learning, believed it helped them to learn the material, and would choose an active learning course in the future if given the opportunity. This study demonstrated that continuum-based active learning strategies used in this context, improved students' content acquisition and self-efficacy and had wide applicability with a number of learner characteristics.
Hägg-Martinell, A; Hult, H; Henriksson, P; Kiessling, A
2017-01-01
Objectives To optimise medical students’ early clerkship is a complex task since it is conducted in a context primarily organised to take care of patients. Previous studies have explored medical students’ perceptions of facilitation and hindrance of learning. However, the opportunities for medical student to learn within the culture of acute medicine care have not been fully investigated. This study aimed to explore how medical students approach, interact and socialise in an acute internal medicine ward context, and how spaces for learning are created and used in such a culture. Design and setting Ethnographic observations were performed of medical students' interactions and learning during early clerkship at an acute internal medicine care ward. Field notes were taken, transcribed and analysed qualitatively. Data analysis was guided by Wenger's theory of communities of practice. Participants 21 medical students and 30 supervisors participated. Results Two themes were identified: Nervousness and curiosity—students acted nervously and stressed, especially when they could not answer questions. Over time curiosity could evolve. Unexplored opportunities to support students in developing competence to judge and approach more complex patient-related problems were identified. Invited and involved—students were exposed to a huge variation of opportunities to learn, and to interact and to be involved. Short placements seemed to disrupt the learning process. If and how students became involved also depended on supervisors' activities and students' initiatives. Conclusions This study shed light on how an acute internal medicine ward culture can facilitate medical students' possibilities to participate and learn. Medical students' learning situations were characterised by questions and answers rather than challenging dialogues related to the complexity of presented patient cases. Further, students experienced continuous transfers between learning situations where the potential to be involved differed in a wide variety of ways. PMID:28196948
Understanding How Families Use Magnifiers During Nature Center Walks
NASA Astrophysics Data System (ADS)
Zimmerman, Heather Toomey; McClain, Lucy Richardson; Crowl, Michele
2013-10-01
This analysis uses a sociocultural learning theory and parent-child interaction framework to understand families' interactions with one type of scientific tool, the magnifier, during nature walks offered by a nature center. Families were video recorded to observe how they organized their activities where they used magnifiers to explore in the outdoors. Findings include that families used magnifiers for scientific inquiry as well as for playful exploration. Using the concept of guided facilitation where families develop roles to support their joint endeavor, three roles to support family thinking were found to be: (a) tool suggester, (b) teacher, and (c) exploration ender. Some families struggled to use magnifiers and often, parents and older siblings provided support for younger children in using magnifying lenses. Implications to informal science learning theory are drawn and suggestions for future family learning research are offered: (a) inclusion of sociocultural and situated perspectives as theories to study informal learning in outdoor spaces, (b) further study on the role of siblings in family interactions, (c) design-based research is needed to encourage family role-taking when engaging in science practices, and (d) new conceptualizations on how to design informal programs that support science learning while leaving space for visitors' personal agendas and interests that can guide the families' activities.
A Cognitive Approach to e-Learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greitzer, Frank L.; Rice, Douglas M.; Eaton, Sharon L.
2003-12-01
Like traditional classroom instruction, distributed learning derives from passive training paradigms. Just as student-centered classroom teaching methods have been applied over several decades of classroom instruction, interactive approaches have been encouraged for distributed learning. While implementation of multimedia-based training features may appear to produce active learning, sophisticated use of multimedia features alone does not necessarily enhance learning. This paper describes the results of applying cognitive science principles to enhance learning in a student-centered, distributed learning environment, and lessons learned in developing and delivering this training. Our interactive, scenario-based approach exploits multimedia technology within a systematic, cognitive framework for learning. Themore » basis of the application of cognitive principles is the innovative use of multimedia technology to implement interaction elements. These simple multimedia interactions, which are used to support new concepts, are later combined with other interaction elements to create more complex, integrated practical exercises. This technology-based approach may be applied in a variety of training and education contexts, but is especially well suited for training of equipment operators and maintainers. For example, it has been used in a sustainment training application for the United States Army's Combat Support System Automated Information System Interface (CAISI). The CAISI provides a wireless communications capability that allows various logistics systems to communicate across the battlefield. Based on classroom training material developed by the CAISI Project Office, the Pacific Northwest National Laboratory designed and developed an interactive, student-centered distributed-learning application for CAISI operators and maintainers. This web-based CAISI training system is also distributed on CD media for use on individual computers, and material developed for the computer-based course can be used in the classroom. In addition to its primary role in sustainment training, this distributed learning course can complement or replace portions of the classroom instruction, thus supporting a blended learning solution.« less
Responsive eLearning exercises to enhance student interaction with metabolic pathways.
Roesler, William J; Dreaver-Charles, Kristine
2018-05-01
Successful learning of biochemistry requires students to engage with the material. In the past this often involved students writing out pathways by hand, and more recently directing students to online resources such as videos, songs, and animated slide presentations. However, even these latter resources do not really provide students an opportunity to engage with the material in an active fashion. As part of an online introductory metabolism course that was developed at our university, we created a series of twelve online interactive activities using Adobe Captivate 9. These activities targeted glycolysis, gluconeogenesis, the pentose phosphate pathway, glycogen metabolism, the citric acid cycle, and fatty acid oxidation. The interactive exercises consisted of two types. One involved dragging objects such as names of enzymes or allosteric modifiers to their correct drop locations such as a particular point in a metabolic pathway, a specific enzyme, and so forth. A second type involved clicking on objects, locations within a pathway, and so forth, in response to a particular question. In both types of exercises, students received feedback on their decisions in order to enhance learning. The student feedback received on these activities was very positive, and indicated that they found them to increase their confidence in the material and that they had learned the key principles of each pathway. © 2018 by The International Union of Biochemistry and Molecular Biology, 46(3):223-229, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.
Inquiry in interaction: How local adaptations of curricula shape classroom communities
NASA Astrophysics Data System (ADS)
Enyedy, Noel; Goldberg, Jennifer
2004-11-01
In this study, we seek a better understanding of how individuals and their daily interactions shape and reshape social structures that constitute a classroom community. Moreover, we provide insight into how discourse and classroom interactions shape the nature of a learning community, as well as which aspects of the classroom culture may be consequential for learning. The participants in this study include two teachers who are implementing a new environmental science program, Global Learning through Observation to Benefit the Environment (GLOBE), and interacting with 54 children in an urban middle school. Both qualitative and quantitative data are analyzed and presented. To gain a better understanding of the inquiry teaching within classroom communities, we compare and contrast the discourse and interactions of the two teachers during three parallel environmental science lessons. The focus of our analysis includes (1) how the community identifies the object or goal of its activity; and (2) how the rights, rules, and roles for members are established and inhabited in interaction. Quantitative analyses of student pre- and posttests suggest greater learning for students in one classroom over the other, providing support for the influence of the classroom community and interactional choices of the teacher on student learning. Implications of the findings from this study are discussed in the context of curricular design, professional development, and educational reform. ? 2004 Wiley Periodicals, Inc. J Res Sci Teach 41: 905-935, 2004.
Nageswari, K Sri; Malhotra, Anita S; Kapoor, Nandini; Kaur, Gurjit
2004-12-01
Modern teaching trends in medical education exhibit a paradigm shift from the conventional classroom teaching methods adopted in the past to nonconventional teaching aids so as to encourage interactive forms of learning in medical students through active participation and integrative reasoning where the relationship of the teacher and the taught has undergone tremendous transformation. Some of the nonconventional teaching methods adopted at our department are learning through active participation by the students through computer-assisted learning (CD-ROMs), Web-based learning (undergraduate projects), virtual laboratories, seminars, audiovisual aids (video-based demonstrations), and "physioquiz."
The Relationships of Mental States and Intellectual Processes in the Learning Activities of Students
ERIC Educational Resources Information Center
Prokhorov, Alexander O.; Chernov, Albert V.; Yusupov, Mark G.
2016-01-01
Investigation of the interaction of mental states and cognitive processes in the classroom allows us to solve the problem of increasing the effectiveness of training by activating cognitive processes and management of students' mental states. This article is concerned with the most general patterns of interaction between mental state and…
Interactive Distance Education: Improvisation Helps Bridge the Gap.
ERIC Educational Resources Information Center
Yucha, Carolyn B.
1996-01-01
Describes distance learning through the use of interactive duplex video and audio. Improvisation techniques force active participation by students. Addresses faculty concerns about the interrelationships between instructor and students and among students in distance education environments. (MKR)
Mobile Devices: A Distraction, or a Useful Tool to Engage Nursing Students?
Gallegos, Cara; Nakashima, Hannah
2018-03-01
Engaging nursing students in theoretical courses, such as research, can be challenging. Innovative instructional strategies are essential to engage nursing students in theoretical nursing courses. This article describes an educational innovation using technology as a tool in an undergraduate nursing research class. All students in the course received iPads for the semester. Lecture material was presented in class using Nearpod, an interactive presentation embedded with slides, multimedia components, and learning activities. Students reported that using the mobile technology helped them minimize off-task activities, interact more with each other and the instructor, solve problems in the class, and develop skills and confidence related to their career. Allowing device use in the classroom, such as iPads and interactive mobile applications, can be a useful learning tool. Intentional use of technology and pedagogy can increase engagement and interaction with students. [J Nurs Educ. 2018;57(3):170-173.]. Copyright 2018, SLACK Incorporated.
Using a dual safeguard web-based interactive teaching approach in an introductory physics class
NASA Astrophysics Data System (ADS)
Li, Lie-Ming; Li, Bin; Luo, Ying
2015-06-01
We modified the Just-in-Time Teaching approach and developed a dual safeguard web-based interactive (DGWI) teaching system for an introductory physics course. The system consists of four instructional components that improve student learning by including warm-up assignments and online homework. Student and instructor activities involve activities both in the classroom and on a designated web site. An experimental study with control groups evaluated the effectiveness of the DGWI teaching method. The results indicate that the DGWI method is an effective way to improve students' understanding of physics concepts, develop students' problem-solving abilities through instructor-student interactions, and identify students' misconceptions through a safeguard framework based on questions that satisfy teaching requirements and cover all of the course material. The empirical study and a follow-up survey found that the DGWI method increased student-teacher interaction and improved student learning outcomes.
Interactive Response Systems (IRS) Socrative Application Sample
ERIC Educational Resources Information Center
Aslan, Bilge; Seker, Hasan
2017-01-01
In globally developing education system, technology has made instructional improved in many ways. One of these improvements is the Interactive Response Systems (IRS) that are applied in classroom activities. Therefore, it is "smart" to focus on interactive response systems in learning environment. This study was conducted aiming to focus…
Using Mobile Phones to Increase Classroom Interaction
ERIC Educational Resources Information Center
Cobb, Stephanie; Heaney, Rose; Corcoran, Olivia; Henderson-Begg, Stephanie
2010-01-01
This study examines the possible benefits of using mobile phones to increase interaction and promote active learning in large classroom settings. First year undergraduate students studying Cellular Processes at the University of East London took part in a trial of a new text-based classroom interaction system and evaluated their experience by…
ERIC Educational Resources Information Center
Peters, Brenda
2016-01-01
Children with a diagnosis of Autism Spectrum Disorder may find the social aspects of learning particularly challenging because of the traits of diffculty with social communication and interaction. This paper evaluates the impact of an interactive model designed to support social communication and interaction for twelve students with ASD, who…
Using Problem-Based Learning to Increase Computer Self-Efficacy in Taiwanese Students
ERIC Educational Resources Information Center
Smith, Cary Stacy; Hung, Li-Ching
2017-01-01
In Taiwan, teaching focuses around lecturing, with students having little opportunity to interact with each other. Problem-based learning (PBL) is a means of instruction where students learn the subject by being active participants in the pedagogical process, with the emphasis on problem-solving. In this study, the authors investigated whether PBL…
ERIC Educational Resources Information Center
Meade, Melinda S.; Washburn, Sarah; Holman, Jeremy T.
This learning module aims to engage students in problem solving, critical thinking, scientific inquiry, and cooperative learning. The module is appropriate for use in any introductory or intermediate undergraduate course that focuses on human-environment relationships. The module states that human health is a product of complex interactions among…
ERIC Educational Resources Information Center
Thoe, Ng Khar
2007-01-01
Instructional strategies determine the approaches an educator may take to achieve learning objectives. Research has shown that sets of strategies or instructional models anchored on social constructivist learning theories were found to be effective in enhancing active participation. It is particularly influential and meaningful in many areas of…
ERIC Educational Resources Information Center
Grapragasem, Selvaraj; Krishnan, Anbalagan; Joshi, Prem Lal; Krishnan, Shubashini; Azlin, Azlin
2015-01-01
The classroom is a learning environment where active interactions and meaningful learning occur between learners and knowledge providers. The teachers and the learners have a unique relationship and this relationship is highly determined by their backgrounds and experiences. Teachers have the responsibility to manage the classroom with the aim of…
How Working Collaboratively with Technology Can Foster a Creative Learning Environment
ERIC Educational Resources Information Center
Gómez, Susana
2016-01-01
Research has shown that collaborative learning is a very powerful methodology as it ensures interaction among students, humanises the learning process and has positive effects on academic achievement. An activity based on this approach can also benefit from the use of technology, making this task more appealing to our students today. The aim of…
ERIC Educational Resources Information Center
Çil, Emine; Maccario, Nihal; Yanmaz, Durmus
2016-01-01
Background: Museums are useful educational resources in science teaching. Teaching strategies which promote hands-on activities, student-centred learning, and rich social interaction must be designed and implemented throughout the museum visit for effective science learning. Purpose: This study aimed to design and implement innovative teaching…
ERIC Educational Resources Information Center
Bidarra, José; Rusman, Ellen
2017-01-01
This paper proposes a design framework to support science education through blended learning, based on a participatory and interactive approach supported by ICT-based tools, called "Science Learning Activities Model" (SLAM). The development of this design framework started as a response to complex changes in society and education (e.g.…
Autonomous Optimization of Targeted Stimulation of Neuronal Networks
Kumar, Sreedhar S.; Wülfing, Jan; Okujeni, Samora; Boedecker, Joschka; Riedmiller, Martin
2016-01-01
Driven by clinical needs and progress in neurotechnology, targeted interaction with neuronal networks is of increasing importance. Yet, the dynamics of interaction between intrinsic ongoing activity in neuronal networks and their response to stimulation is unknown. Nonetheless, electrical stimulation of the brain is increasingly explored as a therapeutic strategy and as a means to artificially inject information into neural circuits. Strategies using regular or event-triggered fixed stimuli discount the influence of ongoing neuronal activity on the stimulation outcome and are therefore not optimal to induce specific responses reliably. Yet, without suitable mechanistic models, it is hardly possible to optimize such interactions, in particular when desired response features are network-dependent and are initially unknown. In this proof-of-principle study, we present an experimental paradigm using reinforcement-learning (RL) to optimize stimulus settings autonomously and evaluate the learned control strategy using phenomenological models. We asked how to (1) capture the interaction of ongoing network activity, electrical stimulation and evoked responses in a quantifiable ‘state’ to formulate a well-posed control problem, (2) find the optimal state for stimulation, and (3) evaluate the quality of the solution found. Electrical stimulation of generic neuronal networks grown from rat cortical tissue in vitro evoked bursts of action potentials (responses). We show that the dynamic interplay of their magnitudes and the probability to be intercepted by spontaneous events defines a trade-off scenario with a network-specific unique optimal latency maximizing stimulus efficacy. An RL controller was set to find this optimum autonomously. Across networks, stimulation efficacy increased in 90% of the sessions after learning and learned latencies strongly agreed with those predicted from open-loop experiments. Our results show that autonomous techniques can exploit quantitative relationships underlying activity-response interaction in biological neuronal networks to choose optimal actions. Simple phenomenological models can be useful to validate the quality of the resulting controllers. PMID:27509295
Autonomous Optimization of Targeted Stimulation of Neuronal Networks.
Kumar, Sreedhar S; Wülfing, Jan; Okujeni, Samora; Boedecker, Joschka; Riedmiller, Martin; Egert, Ulrich
2016-08-01
Driven by clinical needs and progress in neurotechnology, targeted interaction with neuronal networks is of increasing importance. Yet, the dynamics of interaction between intrinsic ongoing activity in neuronal networks and their response to stimulation is unknown. Nonetheless, electrical stimulation of the brain is increasingly explored as a therapeutic strategy and as a means to artificially inject information into neural circuits. Strategies using regular or event-triggered fixed stimuli discount the influence of ongoing neuronal activity on the stimulation outcome and are therefore not optimal to induce specific responses reliably. Yet, without suitable mechanistic models, it is hardly possible to optimize such interactions, in particular when desired response features are network-dependent and are initially unknown. In this proof-of-principle study, we present an experimental paradigm using reinforcement-learning (RL) to optimize stimulus settings autonomously and evaluate the learned control strategy using phenomenological models. We asked how to (1) capture the interaction of ongoing network activity, electrical stimulation and evoked responses in a quantifiable 'state' to formulate a well-posed control problem, (2) find the optimal state for stimulation, and (3) evaluate the quality of the solution found. Electrical stimulation of generic neuronal networks grown from rat cortical tissue in vitro evoked bursts of action potentials (responses). We show that the dynamic interplay of their magnitudes and the probability to be intercepted by spontaneous events defines a trade-off scenario with a network-specific unique optimal latency maximizing stimulus efficacy. An RL controller was set to find this optimum autonomously. Across networks, stimulation efficacy increased in 90% of the sessions after learning and learned latencies strongly agreed with those predicted from open-loop experiments. Our results show that autonomous techniques can exploit quantitative relationships underlying activity-response interaction in biological neuronal networks to choose optimal actions. Simple phenomenological models can be useful to validate the quality of the resulting controllers.
Deliano, Matthias; Scheich, Henning; Ohl, Frank W
2009-12-16
Several studies have shown that animals can learn to make specific use of intracortical microstimulation (ICMS) of sensory cortex within behavioral tasks. Here, we investigate how the focal, artificial activation by ICMS leads to a meaningful, behaviorally interpretable signal. In natural learning, this involves large-scale activity patterns in widespread brain-networks. We therefore trained gerbils to discriminate closely neighboring ICMS sites within primary auditory cortex producing evoked responses largely overlapping in space. In parallel, during training, we recorded electrocorticograms (ECoGs) at high spatial resolution. Applying a multivariate classification procedure, we identified late spatial patterns that emerged with discrimination learning from the ongoing poststimulus ECoG. These patterns contained information about the preceding conditioned stimulus, and were associated with a subsequent correct behavioral response by the animal. Thereby, relevant pattern information was mainly carried by neuron populations outside the range of the lateral spatial spread of ICMS-evoked cortical activation (approximately 1.2 mm). This demonstrates that the stimulated cortical area not only encoded information about the stimulation sites by its focal, stimulus-driven activation, but also provided meaningful signals in its ongoing activity related to the interpretation of ICMS learned by the animal. This involved the stimulated area as a whole, and apparently required large-scale integration in the brain. However, ICMS locally interfered with the ongoing cortical dynamics by suppressing pattern formation near the stimulation sites. The interaction between ICMS and ongoing cortical activity has several implications for the design of ICMS protocols and cortical neuroprostheses, since the meaningful interpretation of ICMS depends on this interaction.
Resaland, G K; Moe, V F; Bartholomew, J B; Andersen, L B; McKay, H A; Anderssen, S A; Aadland, E
2018-01-01
Active learning combines academic content with physical activity (PA) to increase child PA and academic performance, but the impact of active learning is mixed. It may be that this is a moderated relationship in which active learning is beneficial for only some children. This paper examine the impact of baseline academic performance and gender as moderators for the effects of active learning on children's academic performance. In the ASK-study, 1129 fifth-graders from 57 Norwegian elementary schools were randomized by school to intervention or control in a physical activity intervention between November 2014 and June 2015. Academic performance in numeracy, reading, and English was measured and a composite score was calculated. Children were split into low, middle and high academic performing tertiles. 3-way-interactions for group (intervention, control)∗gender (boys, girls)∗academic performance (tertiles) were investigated using mixed model regression. There was a significant, 3-way-interaction (p=0.044). Both boys (ES=0.11) and girls (ES=0.18) in the low performing tertile had a similar beneficial trend. In contrast, middle (ES=0.03) and high performing boys (ES=0.09) responded with small beneficial trends, while middle (ES=-0.11) and high performing girls (ES=-0.06) responded with negative trends. ASK was associated with a significant increase in academic performance for low performing children. It is likely that active learning benefited children most in need of adapted education but it may have a null or negative effect for those girls who are already performing well in the sedentary classroom. Differences in gendered responses are discussed as a possible explanation for these results. Clinicaltrials.gov registry, trial registration number: NCT02132494. Copyright © 2017 Elsevier Inc. All rights reserved.
An Active Learning Activity to Reinforce the Design Components of the Corticosteroids
Mandela, Prashant
2018-01-01
Despite the popularity of active learning applications over the past few decades, few activities have been reported for the field of medicinal chemistry. The purpose of this study is to report a new active learning activity, describe participant contributions, and examine participant performance on the assessment questions mapped to the objective covered by the activity. In this particular activity, students are asked to design two novel corticosteroids as a group (6–8 students per group) based on the design characteristics of marketed corticosteroids covered in lecture coupled with their pharmaceutics knowledge from the previous semester and then defend their design to the class through an interactive presentation model. Although class performance on the objective mapped to this material on the assessment did not reach statistical significance, use of this activity has allowed fruitful discussion of misunderstood concepts and facilitated multiple changes to the lecture presentation. As pharmacy schools continue to emphasize alternative learning pedagogies, publication of previously implemented activities demonstrating their use will help others apply similar methodologies. PMID:29401733
An Active Learning Activity to Reinforce the Design Components of the Corticosteroids.
Slauson, Stephen R; Mandela, Prashant
2018-02-05
Despite the popularity of active learning applications over the past few decades, few activities have been reported for the field of medicinal chemistry. The purpose of this study is to report a new active learning activity, describe participant contributions, and examine participant performance on the assessment questions mapped to the objective covered by the activity. In this particular activity, students are asked to design two novel corticosteroids as a group (6-8 students per group) based on the design characteristics of marketed corticosteroids covered in lecture coupled with their pharmaceutics knowledge from the previous semester and then defend their design to the class through an interactive presentation model. Although class performance on the objective mapped to this material on the assessment did not reach statistical significance, use of this activity has allowed fruitful discussion of misunderstood concepts and facilitated multiple changes to the lecture presentation. As pharmacy schools continue to emphasize alternative learning pedagogies, publication of previously implemented activities demonstrating their use will help others apply similar methodologies.
Cook, David A; Gelula, Mark H; Dupras, Denise M; Schwartz, Alan
2007-09-01
Adapting web-based (WB) instruction to learners' individual differences may enhance learning. Objectives This study aimed to investigate aptitude-treatment interactions between learning and cognitive styles and WB instructional methods. We carried out a factorial, randomised, controlled, crossover, post-test-only trial involving 89 internal medicine residents, family practice residents and medical students at 2 US medical schools. Parallel versions of a WB course in complementary medicine used either active or reflective questions and different end-of-module review activities ('create and study a summary table' or 'study an instructor-created table'). Participants were matched or mismatched to question type based on active or reflective learning style. Participants used each review activity for 1 course module (crossover design). Outcome measurements included the Index of Learning Styles, the Cognitive Styles Analysis test, knowledge post-test, course rating and preference. Post-test scores were similar for matched (mean +/- standard error of the mean 77.4 +/- 1.7) and mismatched (76.9 +/- 1.7) learners (95% confidence interval [CI] for difference - 4.3 to 5.2l, P = 0.84), as were course ratings (P = 0.16). Post-test scores did not differ between active-type questions (77.1 +/- 2.1) and reflective-type questions (77.2 +/- 1.4; P = 0.97). Post-test scores correlated with course ratings (r = 0.45). There was no difference in post-test subscores for modules completed using the 'construct table' format (78.1 +/- 1.4) or the 'table provided' format (76.1 +/- 1.4; CI - 1.1 to 5.0, P = 0.21), and wholist and analytic styles had no interaction (P = 0.75) or main effect (P = 0.18). There was no association between activity preference and wholist or analytic scores (P = 0.37). Cognitive and learning styles had no apparent influence on learning outcomes. There were no differences in outcome between these instructional methods.
Intercultural Business Communication, International Students, and Experiential Learning.
ERIC Educational Resources Information Center
Cheney, Rebecca S.
2001-01-01
Outlines the relevance of experiential learning to the teaching of intercultural business communication. Offers several examples of activities offering structured interactions between United States and international students, which help students apply principles of intercultural business communication to a given situation. Discusses several…
Technology enhanced learning for occupational and environmental health nursing: a global imperative.
Olson, D K; Cohn, S; Carlson, V
2000-04-01
One strategy for decreasing the barriers to higher education and for increasing the competency and performance of the occupational and environmental health nurse in the information age is technology enhanced learning. Technology enhanced learning encompasses a variety of technologies employed in teaching and learning activities of presentation, interaction, and transmission to on campus and distant students. Web based learning is growing faster than any other instructional technology, offering students convenience and a wealth of information.
ERIC Educational Resources Information Center
Ramirez, Olga; McCollough, Cherie A.; Diaz, Zulmaris
2016-01-01
The following describes a culturally relevant mathematics and science content program implemented by preservice teachers (PSTs) at Family Math/Science Learning Events (FM/SLEs) conducted through two different university programs in south Texas. These experiences are required course activities designed to inform PSTs of the importance of…
ERIC Educational Resources Information Center
Kutnick, Peter; Brighi, Antonella; Colwell, Jennifer
2016-01-01
This study describes the social contexts in which four-year-olds undertake practitioner-assigned cognitive/learning tasks within preschools and the different experiences these contexts provide for children. Data was collected in 34 preschool settings in South East England, using a phenomenographic mapping of activities and social groupings during…
Murty, Vishnu P.; LaBar, Kevin S.; Adcock, R. Alison
2012-01-01
Neural circuits associated with motivated declarative encoding and active threat avoidance have both been described, but the relative contribution of these systems to punishment-motivated encoding remains unknown. The current study used functional magnetic resonance imaging in humans to examine mechanisms of declarative memory enhancement when subjects were motivated to avoid punishments that were contingent on forgetting. A motivational cue on each trial informed participants whether they would be punished or not for forgetting an upcoming scene image. Items associated with the threat of shock were better recognized 24 h later. Punishment-motivated enhancements in subsequent memory were associated with anticipatory activation of right amygdala and increases in its functional connectivity with parahippocampal and orbitofrontal cortices. On a trial-by-trial basis, right amygdala activation during the motivational cue predicted hippocampal activation during encoding of the subsequent scene; across participants, the strength of this interaction predicted memory advantages due to motivation. Of note, punishment-motivated learning was not associated with activation of dopaminergic midbrain, as would be predicted by valence-independent models of motivation to learn. These data are consistent with the view that motivation by punishment activates the amygdala, which in turn prepares the medial temporal lobe for memory formation. The findings further suggest a brain system for declarative learning motivated by punishment that is distinct from that for learning motivated by reward. PMID:22745496
Murty, Vishnu P; Labar, Kevin S; Adcock, R Alison
2012-06-27
Neural circuits associated with motivated declarative encoding and active threat avoidance have both been described, but the relative contribution of these systems to punishment-motivated encoding remains unknown. The current study used functional magnetic resonance imaging in humans to examine mechanisms of declarative memory enhancement when subjects were motivated to avoid punishments that were contingent on forgetting. A motivational cue on each trial informed participants whether they would be punished or not for forgetting an upcoming scene image. Items associated with the threat of shock were better recognized 24 h later. Punishment-motivated enhancements in subsequent memory were associated with anticipatory activation of right amygdala and increases in its functional connectivity with parahippocampal and orbitofrontal cortices. On a trial-by-trial basis, right amygdala activation during the motivational cue predicted hippocampal activation during encoding of the subsequent scene; across participants, the strength of this interaction predicted memory advantages due to motivation. Of note, punishment-motivated learning was not associated with activation of dopaminergic midbrain, as would be predicted by valence-independent models of motivation to learn. These data are consistent with the view that motivation by punishment activates the amygdala, which in turn prepares the medial temporal lobe for memory formation. The findings further suggest a brain system for declarative learning motivated by punishment that is distinct from that for learning motivated by reward.
Rudebeck, Peter H; Ripple, Joshua A; Mitz, Andrew R; Averbeck, Bruno B; Murray, Elisabeth A
2017-02-22
Orbitofrontal cortex (OFC), medial frontal cortex (MFC), and amygdala mediate stimulus-reward learning, but the mechanisms through which they interact are unclear. Here, we investigated how neurons in macaque OFC and MFC signaled rewards and the stimuli that predicted them during learning with and without amygdala input. Macaques performed a task that required them to evaluate two stimuli and then choose one to receive the reward associated with that option. Four main findings emerged. First, amygdala lesions slowed the acquisition and use of stimulus-reward associations. Further analyses indicated that this impairment was due, at least in part, to ineffective use of negative feedback to guide subsequent decisions. Second, the activity of neurons in OFC and MFC rapidly evolved to encode the amount of reward associated with each stimulus. Third, amygdalectomy reduced encoding of stimulus-reward associations during the evaluation of different stimuli. Reward encoding of anticipated and received reward after choices were made was not altered. Fourth, amygdala lesions led to an increase in the proportion of neurons in MFC, but not OFC, that encoded the instrumental response that monkeys made on each trial. These correlated changes in behavior and neural activity after amygdala lesions strongly suggest that the amygdala contributes to the ability to learn stimulus-reward associations rapidly by shaping encoding within OFC and MFC. SIGNIFICANCE STATEMENT Altered functional interactions among orbital frontal cortex (OFC), medial frontal cortex (MFC), and amygdala are thought to underlie several psychiatric conditions, many related to reward learning. Here, we investigated the causal contribution of the amygdala to the development of neuronal activity in macaque OFC and MFC related to rewards and the stimuli that predict them during learning. Without amygdala inputs, neurons in both OFC and MFC showed decreased encoding of stimulus-reward associations. MFC also showed increased encoding of the instrumental responses that monkeys made on each trial. Behaviorally, changes in neural activity were accompanied by slower stimulus-reward learning. The findings suggest that interactions among amygdala, OFC, and MFC contribute to learning about stimuli that predict rewards. Copyright © 2017 the authors 0270-6474/17/372186-17$15.00/0.
Averbeck, Bruno B.
2017-01-01
Orbitofrontal cortex (OFC), medial frontal cortex (MFC), and amygdala mediate stimulus–reward learning, but the mechanisms through which they interact are unclear. Here, we investigated how neurons in macaque OFC and MFC signaled rewards and the stimuli that predicted them during learning with and without amygdala input. Macaques performed a task that required them to evaluate two stimuli and then choose one to receive the reward associated with that option. Four main findings emerged. First, amygdala lesions slowed the acquisition and use of stimulus–reward associations. Further analyses indicated that this impairment was due, at least in part, to ineffective use of negative feedback to guide subsequent decisions. Second, the activity of neurons in OFC and MFC rapidly evolved to encode the amount of reward associated with each stimulus. Third, amygdalectomy reduced encoding of stimulus–reward associations during the evaluation of different stimuli. Reward encoding of anticipated and received reward after choices were made was not altered. Fourth, amygdala lesions led to an increase in the proportion of neurons in MFC, but not OFC, that encoded the instrumental response that monkeys made on each trial. These correlated changes in behavior and neural activity after amygdala lesions strongly suggest that the amygdala contributes to the ability to learn stimulus–reward associations rapidly by shaping encoding within OFC and MFC. SIGNIFICANCE STATEMENT Altered functional interactions among orbital frontal cortex (OFC), medial frontal cortex (MFC), and amygdala are thought to underlie several psychiatric conditions, many related to reward learning. Here, we investigated the causal contribution of the amygdala to the development of neuronal activity in macaque OFC and MFC related to rewards and the stimuli that predict them during learning. Without amygdala inputs, neurons in both OFC and MFC showed decreased encoding of stimulus–reward associations. MFC also showed increased encoding of the instrumental responses that monkeys made on each trial. Behaviorally, changes in neural activity were accompanied by slower stimulus–reward learning. The findings suggest that interactions among amygdala, OFC, and MFC contribute to learning about stimuli that predict rewards. PMID:28123082
2013-01-01
Background The learning active subnetworks problem involves finding subnetworks of a bio-molecular network that are active in a particular condition. Many approaches integrate observation data (e.g., gene expression) with the network topology to find candidate subnetworks. Increasingly, pathway databases contain additional annotation information that can be mined to improve prediction accuracy, e.g., interaction mechanism (e.g., transcription, microRNA, cleavage) annotations. We introduce a mechanism-based approach to active subnetwork recovery which exploits such annotations. We suggest that neighboring interactions in a network tend to be co-activated in a way that depends on the “correlation” of their mechanism annotations. e.g., neighboring phosphorylation and de-phosphorylation interactions may be more likely to be co-activated than neighboring phosphorylation and covalent bonding interactions. Results Our method iteratively learns the mechanism correlations and finds the most likely active subnetwork. We use a probabilistic graphical model with a Markov Random Field component which creates dependencies between the states (active or non-active) of neighboring interactions, that incorporates a mechanism-based component to the function. We apply a heuristic-based EM-based algorithm suitable for the problem. We validated our method’s performance using simulated data in networks downloaded from GeneGO against the same approach without the mechanism-based component, and two other existing methods. We validated our methods performance in correctly recovering (1) the true interaction states, and (2) global network properties of the original network against these other methods. We applied our method to networks generated from time-course gene expression studies in angiogenesis and lung organogenesis and validated the findings from a biological perspective against current literature. Conclusions The advantage of our mechanism-based approach is best seen in networks composed of connected regions with a large number of interactions annotated with a subset of mechanisms, e.g., a regulatory region of transcription interactions, or a cleavage cascade region. When applied to real datasets, our method recovered novel and biologically meaningful putative interactions, e.g., interactions from an integrin signaling pathway using the angiogenesis dataset, and a group of regulatory microRNA interactions in an organogenesis network. PMID:23432934
NASA Astrophysics Data System (ADS)
Olitsky, Stacy
2007-01-01
This study explores the relationship between interaction rituals, student engagement with science, and learning environments modeled on communities of practice based on an ethnographic study of an eighth grade urban magnet school classroom. It compares three interactional events in order to examine the classroom conditions and teacher practices that can foster successful interaction rituals (IRs), which are characterized by high levels of emotional energy, feelings of group membership, and sustained interest in the subject. Classroom conditions surrounding the emergence of successful IRs included mutual focus, familiar symbols and activity structures, the permissibility of some side-talk, and opportunities for physical and emotional entrainment. Sustained interest in the topic beyond the duration of the IR and an increase in students' helping each other learn occurred more frequently when the mutual focus consisted of science-related symbols, when there were low levels of risk for participants, when activities involved sufficient challenge and time, and when students were positioned as knowledgeable and competent in science. The results suggest that successful interaction rituals can foster student engagement with topics that may not have previously held interest and can contribute to students' support of peers' learning, thereby moving the classroom toward a community-of-practice model.
The Role of Interactional Quality in Learning from Touch Screens during Infancy: Context Matters.
Zack, Elizabeth; Barr, Rachel
2016-01-01
Interactional quality has been shown to enhance learning during book reading and play, but has not been examined during touch screen use. Learning to apply knowledge from a touch screen is complex for infants because it involves transfer of learning between a two-dimensional (2D) screen and three-dimensional (3D) object in the physical world. This study uses a touch screen procedure to examine interactional quality measured via maternal structuring, diversity of maternal language, and dyadic emotional responsiveness and infant outcomes during a transfer of learning task. Fifty 15-month-old infants and their mothers participated in this semi-naturalistic teaching task. Mothers were given a 3D object, and a static image of the object presented on a touch screen. Mothers had 5 min to teach their infant that a button on the real toy works in the same way as a virtual button on the touch screen (or vice versa). Overall, 64% of infants learned how to make the button work, transferring learning from the touch screen to the 3D object or vice versa. Infants were just as successful in the 3D to 2D transfer direction as they were in the 2D to 3D transfer direction. A cluster analysis based on emotional responsiveness, the proportion of diverse maternal verbal input, and amount of maternal structuring resulted in two levels of interactional quality: high quality and moderate quality. A logistic regression revealed the level of interactional quality predicted infant transfer. Infants were 19 times more likely to succeed and transfer learning between the touch screen and real object if they were in a high interactional quality dyad, even after controlling for infant activity levels. The present findings suggest that interactional quality between mother and infant plays an important role in making touch screens effective teaching tools for infants' learning.
The Role of Interactional Quality in Learning from Touch Screens during Infancy: Context Matters
Zack, Elizabeth; Barr, Rachel
2016-01-01
Interactional quality has been shown to enhance learning during book reading and play, but has not been examined during touch screen use. Learning to apply knowledge from a touch screen is complex for infants because it involves transfer of learning between a two-dimensional (2D) screen and three-dimensional (3D) object in the physical world. This study uses a touch screen procedure to examine interactional quality measured via maternal structuring, diversity of maternal language, and dyadic emotional responsiveness and infant outcomes during a transfer of learning task. Fifty 15-month-old infants and their mothers participated in this semi-naturalistic teaching task. Mothers were given a 3D object, and a static image of the object presented on a touch screen. Mothers had 5 min to teach their infant that a button on the real toy works in the same way as a virtual button on the touch screen (or vice versa). Overall, 64% of infants learned how to make the button work, transferring learning from the touch screen to the 3D object or vice versa. Infants were just as successful in the 3D to 2D transfer direction as they were in the 2D to 3D transfer direction. A cluster analysis based on emotional responsiveness, the proportion of diverse maternal verbal input, and amount of maternal structuring resulted in two levels of interactional quality: high quality and moderate quality. A logistic regression revealed the level of interactional quality predicted infant transfer. Infants were 19 times more likely to succeed and transfer learning between the touch screen and real object if they were in a high interactional quality dyad, even after controlling for infant activity levels. The present findings suggest that interactional quality between mother and infant plays an important role in making touch screens effective teaching tools for infants’ learning. PMID:27625613
Novitskaya, Yulia; Sara, Susan J.; Logothetis, Nikos K.
2016-01-01
Experience-induced replay of neuronal ensembles occurs during hippocampal high-frequency oscillations, or ripples. Post-learning increase in ripple rate is predictive of memory recall, while ripple disruption impairs learning. Ripples may thus present a fundamental component of a neurophysiological mechanism of memory consolidation. In addition to system-level local and cross-regional interactions, a consolidation mechanism involves stabilization of memory representations at the synaptic level. Synaptic plasticity within experience-activated neuronal networks is facilitated by noradrenaline release from the axon terminals of the locus coeruleus (LC). Here, to better understand interactions between the system and synaptic mechanisms underlying “off-line” consolidation, we examined the effects of ripple-associated LC activation on hippocampal and cortical activity and on spatial memory. Rats were trained on a radial maze; after each daily learning session neural activity was monitored for 1 h via implanted electrode arrays. Immediately following “on-line” detection of ripple, a brief train of electrical pulses (0.05 mA) was applied to LC. Low-frequency (20 Hz) stimulation had no effect on spatial learning, while higher-frequency (100 Hz) trains transiently blocked generation of ripple-associated cortical spindles and caused a reference memory deficit. Suppression of synchronous ripple/spindle events appears to interfere with hippocampal-cortical communication, thereby reducing the efficiency of “off-line” memory consolidation. PMID:27084931
Performance in physiology evaluation: possible improvement by active learning strategies.
Montrezor, Luís H
2016-12-01
The evaluation process is complex and extremely important in the teaching/learning process. Evaluations are constantly employed in the classroom to assist students in the learning process and to help teachers improve the teaching process. The use of active methodologies encourages students to participate in the learning process, encourages interaction with their peers, and stimulates thinking about physiological mechanisms. This study examined the performance of medical students on physiology over four semesters with and without active engagement methodologies. Four activities were used: a puzzle, a board game, a debate, and a video. The results show that engaging in activities with active methodologies before a physiology cognitive monitoring test significantly improved student performance compared with not performing the activities. We integrate the use of these methodologies with classic lectures, and this integration appears to improve the teaching/learning process in the discipline of physiology and improves the integration of physiology with cardiology and neurology. In addition, students enjoy the activities and perform better on their evaluations when they use them. Copyright © 2016 The American Physiological Society.
Cavanaugh, James T; Konrad, Shelley Cohen
2012-01-01
To describe the implementation of an interprofessional shared learning model designed to promote the development of person-centered healthcare communication skills. Master of social work (MSW) and doctor of physical therapy (DPT) degree students. The model used evidence-based principles of effective healthcare communication and shared learning methods; it was aligned with student learning outcomes contained in MSW and DPT curricula. Students engaged in 3 learning sessions over 2 days. Sessions involved interactive reflective learning, simulated role-modeling with peer assessment, and context-specific practice of communication skills. The perspective of patients/clients was included in each learning activity. Activities were evaluated through narrative feedback. Students valued opportunities to learn directly from each other and from healthcare consumers. Important insights and directions for future interprofessional learning experiences were gleaned from model implementation. The interprofessional shared learning model shows promise as an effective method for developing person-centered communication skills.
Empowering Prospective Teachers to Become Active Sense-Makers: Multimodal Modeling of the Seasons
NASA Astrophysics Data System (ADS)
Kim, Mi Song
2015-10-01
Situating science concepts in concrete and authentic contexts, using information and communications technologies, including multimodal modeling tools, is important for promoting the development of higher-order thinking skills in learners. However, teachers often struggle to integrate emergent multimodal models into a technology-rich informal learning environment. Our design-based research co-designs and develops engaging, immersive, and interactive informal learning activities called "Embodied Modeling-Mediated Activities" (EMMA) to support not only Singaporean learners' deep learning of astronomy but also the capacity of teachers. As part of the research on EMMA, this case study describes two prospective teachers' co-design processes involving multimodal models for teaching and learning the concept of the seasons in a technology-rich informal learning setting. Our study uncovers four prominent themes emerging from our data concerning the contextualized nature of learning and teaching involving multimodal models in informal learning contexts: (1) promoting communication and emerging questions, (2) offering affordances through limitations, (3) explaining one concept involving multiple concepts, and (4) integrating teaching and learning experiences. This study has an implication for the development of a pedagogical framework for teaching and learning in technology-enhanced learning environments—that is empowering teachers to become active sense-makers using multimodal models.
NASA Astrophysics Data System (ADS)
Pakpahan, N. F. D. B.
2018-01-01
All articles must contain an abstract. The research methodology is a subject in which the materials must be understood by the students who will take the thesis. Implementation of learning should create the conditions for active learning, interactive and effective are called Team Assisted Individualization (TAI) cooperative learning. The purpose of this study: 1) improving student learning outcomes at the course research methodology on TAI cooperative learning. 2) improvement of teaching activities. 3) improvement of learning activities. This study is a classroom action research conducted at the Department of Civil Engineering Universitas Negeri Surabaya. The research subjects were 30 students and lecturer of courses. Student results are complete in the first cycle by 20 students (67%) and did not complete 10 students (33%). In the second cycle students who complete being 26 students (87%) and did not complete 4 students (13%). There is an increase in learning outcomes by 20%. Results of teaching activities in the first cycle obtained the value of 3.15 with the criteria enough well. In the second cycle obtained the value of 4.22 with good criterion. The results of learning activities in the first cycle obtained the value of 3.05 with enough criterion. In the second cycle was obtained 3.95 with good criterion.
LaDage, Lara D; Tornello, Samantha L; Vallejera, Jennilyn M; Baker, Emily E; Yan, Yue; Chowdhury, Anik
2018-03-01
There are many pedagogical techniques used by educators in higher education; however, some techniques and activities have been shown to be more beneficial to student learning than others. Research has demonstrated that active learning and learning in which students cognitively engage with the material in a multitude of ways result in better understanding and retention. The aim of the present study was to determine which of three pedagogical techniques led to improvement in learning and retention in undergraduate college students. Subjects partook in one of three different types of pedagogical engagement: hands-on learning with a model, observing someone else manipulate the model, and traditional lecture-based presentation. Students were then asked to take an online quiz that tested their knowledge of the new material, both immediately after learning the material and 2 wk later. Students who engaged in direct manipulation of the model scored higher on the assessment immediately after learning the material compared with the other two groups. However, there were no differences among the three groups when assessed after a 2-wk retention interval. Thus active learning techniques that involve direct interaction with the material can lead to learning benefits; however, how these techniques benefit long-term retention of the information is equivocal.
ERIC Educational Resources Information Center
Serna Dimas, Héctor Manuel; Ruíz Castellanos, Erika
2014-01-01
The preparation of both language-building activities and a variety of teacher/student interaction patterns increase both oral language participation and content learning in a course of manual therapy with mixed-language ability students. In this article, the researchers describe their collaboration in a content-based course in English with English…
Annotation-Based Learner's Personality Modeling in Distance Learning Context
ERIC Educational Resources Information Center
Omheni, Nizar; Kalboussi, Anis; Mazhoud, Omar; Kacem, Ahmed Hadj
2016-01-01
Researchers in distance education are interested in observing and modeling learners' personality profiles, and adapting their learning experiences accordingly. When learners read and interact with their reading materials, they do unselfconscious activities like annotation which may be key feature of their personalities. Annotation activity…
Engaging Student Learning in Physical Education.
ERIC Educational Resources Information Center
Anderson, Andy
2002-01-01
Explores the significance of engagement as a stance toward teaching and learning, noting how engagement can affect the way teachers and students interact in physical education settings and surrounding environments and presenting activities to encourage engagement (develop performance routines, say and switch, roundtable brainstorm, bubble gum…
ERIC Educational Resources Information Center
Park, Hyungjoo; Song, Hae-Deok
2015-01-01
Given that a user interface interacts with users, a critical factor to be considered in improving the usability of an e-learning user interface is user-friendliness. Affordances enable users to more easily approach and engage in learning tasks because they strengthen positive, activating emotions. However, most studies on affordances limit…
Full Spectrum Training and Development: Soldier Skills and Attributes
2010-07-01
aspects of social interdependence theory , which suggests that socioemotional as well as cognitive benefits can accrue from such training (O’Donnell...sociocognitive learning theories . In the ARC, P2P training can guide cadre and student interaction while creating an active learning environment...learning theories (Costanza et al., 2009). Behavioral theory prescribes gradually approximating, or shaping, the desired response until it meets
ERIC Educational Resources Information Center
Jenkinson, Kate. A.; Naughton, Geraldine; Benson, Amanda C.
2014-01-01
Background: Peer-assisted learning (PAL) is a teaching strategy utilised in both the general classroom and physical education. Through the interaction with same-age or cross-age peers, learning can occur across various domains. Purpose: This review aimed to identify school-based PAL interventions and assess the tutor training provided, as well as…
ERIC Educational Resources Information Center
Arend, Béatrice; Sunnen, Patrick
2017-01-01
Our paper provides an empirically based perspective on the contribution of Conversation Analysis (CA) to our understanding of children's second language learning practices in a multilingual classroom setting. While exploring the interactional configuration of a French second language learning activity, we focus our analytic lens on how five…
Revealing the Interactional Features of Learning and Teaching Moments in Outdoor Activity
ERIC Educational Resources Information Center
Waters, Jane; Bateman, Amanda
2015-01-01
The data considered in this article was generated as part of a doctoral research study entitled: "A sociocultural consideration of child-initiated interaction with teachers in indoor and outdoor spaces" (Waters 2011) where child-initiated, teacher-child interaction in indoor and outdoor spaces were investigated. The purpose of the…
Effects of Interactive Chat versus Independent Writing on L2 Learning
ERIC Educational Resources Information Center
Tare, Medha; Golonka, Ewa M.; Vatz, Karen; Bonilla, Carrie L.; Crooks, Carolyn; Strong, Rachel
2014-01-01
This study examines the importance of interaction for second language (L2) acquisition by analyzing outcomes from two types of out-of-class activities. The study compared: (a) interactive homework, completed via text chat, and (b) individual homework, completed via independent writing. In a between-subjects design, participants in two…
Understanding the Use of Interactive Whiteboards in Primary Science
ERIC Educational Resources Information Center
Sweeney, Trudy
2013-01-01
This paper explores the dimensions of change experienced by a specialist primary science teacher in Australia as she attempted to embed an interactive whiteboard into her practice as a tool to enhance interactive teaching and learning. This paper uses the theoretical frameworks of activity theory and the stages of concern to understand the…
NASA Astrophysics Data System (ADS)
Dicker, R. J.
The main objective of this thesis is to describe the effect on cognition of the structure of CAL simulation programs used, in science teaching. Four programs simulating a pond ecosystem were written so as to present a simulation model and to assist in cognition in different ways. Various clinically detailed methods of describing learning were developed and tried including concept maps which were found to be sammative rather than formative descriptions of learning, and to be ambiguous) and hierarchical structures (which were found to be difficult to produce). Fran these concept maps and hierarchical structures I developed my Interaction Model of Learning which can be used to describe the chronological events concerned with cognition. Using the Interaction Model, the nature of cognition and the effect that CAL program structure has on this process is described. Various scenarios are presented as a means of showing the possible effects of program structure on learning. Four forms of concept learning activity and their relationship to learning valid and alternative conceptions are described. The findings from the study are particularly related to the work of Driver (1983), Marton (1976) and Entwistle (1981).
Promoting Scientist Communications Through Graduate Summer School in Heliophysics and Space Physics
NASA Astrophysics Data System (ADS)
Gross, N. A.; Schrijver, K.; Bagenal, F.; Sojka, J. J.; Wiltberger, M. J.
2014-12-01
edagogical tools that promote student interaction can be applied successfully during graduate workshops to enhance community and communication among the participants and instructors. The NASA/LWS funded Heliophysics Summer School and the NSF funded Space Weather Summer School provide graduate students starting research in the field, and others who are involved in space physics, an opportunity to learn from and interact with leaders in the field and each other. These interactions can happen casually, but there are a number of programatic aspects that foster the interaction so that they can be as fruitful as possible during the short period. These include: specific "ice-breaker" activities, practicing "elevator speeches", embedded lecture questions, question cards, discussion questions, interactive lab activities, structured lab groups, and use of social media. We are continuing to develop new ways to foster profession interaction during these short courses. Along with enhancing their own learning, the inclusion of these strategies provides both the participants and the instructors with models of good pedagogical tools and builds community among the students. Our specific implementation of these strategies and evidence of success will be presented.
Teachers' and students' verbal behaviours during cooperative and small-group learning.
Gillies, Robyn M
2006-06-01
Teachers play a critical role in promoting interactions between students and engaging them in the learning process. This study builds on a study by Hertz-Lazarowitz and Shachar (1990) who found that during cooperative learning teachers' verbal behaviours were more helpful to and encouraging of their students' efforts while during whole-class instruction, their verbal behaviours tended to be more authoritarian, rigid, and impersonal. This study seeks to determine if teachers who implement cooperative learning engage in more facilitative learning interactions with their students than teachers who implement group work only. The study also seeks to determine if students in the cooperative groups model their teachers' behaviours and engage in more positive helping interactions with each other than their peers in the group work groups. The study involved 26 teachers and 303 students in Grades 8 to 10 from 4 large high schools in Brisbane, Australia. All teachers agreed to establish cooperative, small-group activities in their classrooms for a unit of work (4 to 6 weeks) once a term for 3 school terms. The teachers were audiotaped twice during these lessons and samples of the students' language, as they worked in their groups, were also collected at the same time. The results show that teachers who implement cooperative learning in their classrooms engage in more mediated-learning interactions and make fewer disciplinary comments than teachers who implement group work only. Furthermore, the students model many of these interactions in their groups. The study shows that when teachers implement cooperative learning, their verbal behaviour is affected by the organizational structure of the classroom.
Devonshire, Elizabeth; Henderson, Sarah E
2012-05-01
1. Health professionals need access to flexible, high-quality, advanced education in pain management. 2. There are multiple pedagogical distances to be negotiated in the delivery of effective postgraduate education. 3. A critical consideration in the design and delivery of effective online learning for postgraduate education in pain management is how to: actively engage students in the learning process; and encourage students to become lifelong learners. 4. Conceptual frameworks for encouraging student interaction online provide a useful tool in the design of postgraduate online learning activities.
Burnout and engagement at work as a function of demands and control.
Demerouti, E; Bakker, A B; de Jonge, J; Janssen, P P; Schaufeli, W B
2001-08-01
The present study was designed to test the demand-control model using indicators of both health impairment and active learning or motivation. A total of 381 insurance company employees participated in the study. Discriminant analysis was used to examine the relationship between job demands and job control on one hand and health impairment and active learning on the other. The amount of demands and control could be predicted on the basis of employees' perceived health impairment (exhaustion and health complaints) and active learning (engagement and commitment). Each of the four combinations of demand and control differentially affected the perception of strain or active learning. Job demands were the most clearly related to health impairment, whereas job control was the most clearly associated with active learning. These findings partly contradict the demand-control model, especially with respect to the validity of the interaction between demand and control. Job demands and job control seem to initiate two essentially independent processes, and this occurrence is consistent with the recently proposed job demands-resources model.
Efficacy of a Meiosis Learning Module Developed for the Virtual Cell Animation Collection
Goff, Eric E.; Reindl, Katie M.; Johnson, Christina; McClean, Phillip; Offerdahl, Erika G.; Schroeder, Noah L.; White, Alan R.
2017-01-01
Recent reports calling for change in undergraduate biology education have resulted in the redesign of many introductory biology courses. Reports on one common change to course structure, the active-learning environment, have placed an emphasis on student preparation, noting that the positive outcomes of active learning in the classroom depend greatly on how well the student prepares before class. As a possible preparatory resource, we test the efficacy of a learning module developed for the Virtual Cell Animation Collection. This module presents the concepts of meiosis in an interactive, dynamic environment that has previously been shown to facilitate learning in introductory biology students. Participants (n = 534) were enrolled in an introductory biology course and were presented the concepts of meiosis in one of two treatments: the interactive-learning module or a traditional lecture session. Analysis of student achievement shows that students who viewed the learning module as their only means of conceptual presentation scored significantly higher (d = 0.40, p < 0.001) than students who only attended a traditional lecture on the topic. Our results show the animation-based learning module effectively conveyed meiosis conceptual understanding, which suggests that it may facilitate student learning outside the classroom. Moreover, these results have implications for instructors seeking to expand their arsenal of tools for “flipping” undergraduate biology courses. PMID:28188282
The effectiveness of integration of virtual patients in a collaborative learning activity.
Marei, Hesham F; Donkers, Jeroen; Van Merrienboer, Jeroen J G
2018-05-07
Virtual patients (VPs) have been recently integrated within different learning activities. To compare between the effect of using VPs in a collaborative learning activity and using VPs in an independent learning activity on students' knowledge acquisition, retention and transfer. For two different topics, respectively 82 and 76 dental students participated in teaching, learning and assessment sessions with VPs. Students from a female campus and from a male campus have been randomly assigned to condition (collaborative and independent), yielding four experimental groups. Each group received a lecture followed by a learning session using two VPs per topic. Students were administrated immediate and delayed written tests as well as transfer tests using two VPs to assess their knowledge in diagnosis and treatment. For the treatment items of the immediate and delayed written tests, females outperformed males in the collaborative VP group but not in the independent VP group. On the female campus, the use of VPs in a collaborative learning activity is more effective than its use as an independent learning activity in enhancing students' knowledge acquisition and retention. However, the collaborative use of VPs by itself is not enough to produce consistent results across different groups of students and attention should be given to all the factors that would affect students' interaction.
NASA Astrophysics Data System (ADS)
Budiharti, Rini; Waras, N. S.
2018-05-01
This article aims to describe the student’s scientific attitude behaviour change as treatment effect of Blended Learning supported by I-Spring Suite 8 application on the material balance and the rotational dynamics. Blended Learning models is learning strategy that integrate between face-to-face learning and online learning by combination of various media. Blended Learning model supported I-Spring Suite 8 media setting can direct learning becomes interactive. Students are guided to actively interact with the media as well as with other students to discuss getting the concept by the phenomena or facts presented. The scientific attitude is a natural attitude of students in the learning process. In interactive learning, scientific attitude is so needed. The research was conducted using a model Lesson Study which consists of the stages Plan-Do-Check-Act (PDCA) and applied to the subject of learning is students at class XI MIPA 2 of Senior High School 6 Surakarta. The validity of the data used triangulation techniques of observation, interviews and document review. Based on the discussion, it can be concluded that the use of Blended Learning supported media I-Spring Suite 8 is able to give the effect of changes in student behaviour on all dimensions of scientific attitude that is inquisitive, respect the data or fact, critical thinking, discovery and creativity, open minded and cooperation, and perseverance. Display e-learning media supported student worksheet makes the students enthusiastically started earlier, the core until the end of learning
Petty, Julia
2013-01-01
Learning technology is increasingly being implemented for programmes of blended learning within nurse education. With a growing emphasis on self-directed study particularly in post-basic education, there is a need for learners to be guided in their learning away from practice and limited classroom time. Technology-enabled (TE) tools which engage learners actively can play a part in this. The effectiveness and value of interactive TE learning strategies within healthcare is the focus of this paper. To identify literature that explores the effectiveness of interactive, TE tools on knowledge acquisition and learner satisfaction within healthcare with a view to evaluating their use for post-basic nurse education. A Literature Review was performed focusing on papers exploring the comparative value and perceived benefit of TE tools compared to traditional modes of learning within healthcare. The Databases identified as most suitable due to their relevance to healthcare were accessed through EBSCOhost. Primary, Boolean and advanced searches on key terms were undertaken. Inclusion and exclusion criteria were applied which resulted in a final selection of 11 studies for critique. Analysis of the literature found that knowledge acquisition in most cases was enhanced and measured learner satisfaction was generally positive for interactive, self-regulated TE tools. However, TE education may not suit all learners and this is critiqued in the light of the identified limitations. Interactive self regulation and/or testing can be a valuable learning strategy that can be incorporated into self-directed programmes of study for post-registration learners. Whilst acknowledging the learning styles not suited to such tools, the concurrent use of self-directed TE tools with those learning strategies necessitating a more social presence can work together to support enhancement of knowledge required to deliver rationale for nursing practice. Copyright © 2012 Elsevier Ltd. All rights reserved.
Parallel-distributed mobile robot simulator
NASA Astrophysics Data System (ADS)
Okada, Hiroyuki; Sekiguchi, Minoru; Watanabe, Nobuo
1996-06-01
The aim of this project is to achieve an autonomous learning and growth function based on active interaction with the real world. It should also be able to autonomically acquire knowledge about the context in which jobs take place, and how the jobs are executed. This article describes a parallel distributed movable robot system simulator with an autonomous learning and growth function. The autonomous learning and growth function which we are proposing is characterized by its ability to learn and grow through interaction with the real world. When the movable robot interacts with the real world, the system compares the virtual environment simulation with the interaction result in the real world. The system then improves the virtual environment to match the real-world result more closely. This the system learns and grows. It is very important that such a simulation is time- realistic. The parallel distributed movable robot simulator was developed to simulate the space of a movable robot system with an autonomous learning and growth function. The simulator constructs a virtual space faithful to the real world and also integrates the interfaces between the user, the actual movable robot and the virtual movable robot. Using an ultrafast CG (computer graphics) system (FUJITSU AG series), time-realistic 3D CG is displayed.
Kim, Su Kyoung; Kirchner, Elsa Andrea; Stefes, Arne; Kirchner, Frank
2017-12-14
Reinforcement learning (RL) enables robots to learn its optimal behavioral strategy in dynamic environments based on feedback. Explicit human feedback during robot RL is advantageous, since an explicit reward function can be easily adapted. However, it is very demanding and tiresome for a human to continuously and explicitly generate feedback. Therefore, the development of implicit approaches is of high relevance. In this paper, we used an error-related potential (ErrP), an event-related activity in the human electroencephalogram (EEG), as an intrinsically generated implicit feedback (rewards) for RL. Initially we validated our approach with seven subjects in a simulated robot learning scenario. ErrPs were detected online in single trial with a balanced accuracy (bACC) of 91%, which was sufficient to learn to recognize gestures and the correct mapping between human gestures and robot actions in parallel. Finally, we validated our approach in a real robot scenario, in which seven subjects freely chose gestures and the real robot correctly learned the mapping between gestures and actions (ErrP detection (90% bACC)). In this paper, we demonstrated that intrinsically generated EEG-based human feedback in RL can successfully be used to implicitly improve gesture-based robot control during human-robot interaction. We call our approach intrinsic interactive RL.
Limperos, Anthony M
2014-02-01
Many studies have investigated how commercial exergames can be used to increase physical activity and energy expenditure, but relatively few have focused on understanding if these games can impact learning of exercise behavior. The objective of this research is to understand how features of mediated exercise technologies can impact learning of exercise behavior. One hundred thirty college students (mean age, 20.56 years old) participated in a between-subjects experiment where they spent approximately 10 minutes exercising with either the "Biggest Loser" exergame (for the Nintendo(®) [Redmond, WA] Wii™ console) or the Biggest Loser Workout Vol. 2 DVD. Then, participants filled out a questionnaire with items pertaining to interactivity, trainer liking, self-efficacy, and learning. Analysis of covariance tests and meditational analyses were used to answer the questions of interest. Results indicated that participants who interacted with an exergame experienced greater interactivity and learning from playing the game than working out with the nearly identical exercise DVD. Furthermore, the relationship between playing an exergame and learning was mediated by interactivity. This study suggests that exergames may be more beneficial than similar mediated exercise companions in encouraging learning about exercise. Theoretical and practical implications as well as limitations and future research considerations are discussed.
Early childhood numeracy in a multiage setting
NASA Astrophysics Data System (ADS)
Wood, Karen; Frid, Sandra
2005-10-01
This research is a case study examining numeracy teaching and learning practices in an early childhood multiage setting with Pre-Primary to Year 2 children. Data were collected via running records, researcher reflection notes, and video and audio recordings. Video and audio transcripts were analysed using a mathematical discourse and social interactions coding system designed by MacMillan (1998), while the running records and reflection notes contributed to descriptions of the children's interactions with each other and with the teachers. Teachers used an `assisted performance' approach to instruction that supported problem solving and inquiry processes in mathematics activities, and this, combined with a child-centred pedagogy and specific values about community learning, created a learning environment designed to stimulate and foster learning. The mathematics discourse analysis showed a use of explanatory language in mathematics discourse, and this language supported scaffolding among children for new mathematics concepts. These and other interactions related to peer sharing, tutoring and regulation also emerged as key aspects of students' learning practices. However, the findings indicated that multiage grouping alone did not support learning. Rather, effective learning was dependent upon the teacher's capacities to develop productive discussion among children, as well as implement developmentally appropriate curricula that addressed the needs of the different children.
How to Trigger Emergence and Self-Organisation in Learning Networks
NASA Astrophysics Data System (ADS)
Brouns, Francis; Fetter, Sibren; van Rosmalen, Peter
The previous chapters of this section discussed why the social structure of Learning Networks is important and present guidelines on how to maintain and allow the emergence of communities in Learning Networks. Chapter 2 explains how Learning Networks rely on social interaction and active participations of the participants. Chapter 3 then continues by presenting guidelines and policies that should be incorporated into Learning Network Services in order to maintain existing communities by creating conditions that promote social interaction and knowledge sharing. Chapter 4 discusses the necessary conditions required for knowledge sharing to occur and to trigger communities to self-organise and emerge. As pointed out in Chap. 4, ad-hoc transient communities facilitate the emergence of social interaction in Learning Networks, self-organising them into communities, taking into account personal characteristics, community characteristics and general guidelines. As explained in Chap. 4 community members would benefit from a service that brings suitable people together for a specific purpose, because it will allow the participant to focus on the knowledge sharing process by reducing the effort or costs. In the current chapter, we describe an example of a peer support Learning Network Service based on the mechanism of peer tutoring in ad-hoc transient communities.
Interactive Engagement in the Large Lecture Environment
NASA Astrophysics Data System (ADS)
Dubson, Michael
Watching a great physics lecture is like watching a great piano performance. It is can be inspiring, and it can give you insights, but it doesn't teach you to play piano. Students don't learn physics by watching expert professors perform at the board; they can only learn by practicing it themselves. Learning physics involves high-level thinking like formulating problem-solving strategies or explaining concepts to other humans. Learning is always messy, involving struggle, trial-and-error, and paradigm shifts. That learning struggle cannot be overcome with a more eloquent lecture; it can only be surmounted with prolonged, determined, active engagement by the student. I will demonstrate some techniques of active engagement, including clicker questions and in-class activities, which are designed to activate the student's higher-level thinking, get them actively involved in their learning, and start them on the path of productive struggle. These techniques are scalable; they work in classrooms with 30 or 300 students. This talk about audience participation will involve audience participation, so please put down your phone and be ready for a challenge.
Persky, Susan; Kaphingst, Kimberly A.; McCall, Cade; Lachance, Christina; Beall, Andrew C.; Blascovich, Jim
2009-01-01
Presence in virtual learning environments (VLEs) has been associated with a number of outcome factors related to a user’s ability and motivation to learn. The extant but relatively small body of research suggests that a high level of presence is related to better performance on learning outcomes in VLEs. Different configurations of form and content variables such as those associated with active (self-driven, interactive activities) versus didactic (reading or lecture) learning may, however, influence how presence operates and on what content it operates. We compared the influence of presence between two types of immersive VLEs (i.e., active versus didactic techniques) on comprehension and engagement-related outcomes. The findings revealed that the active VLE promoted greater presence. Although we found no relationship between presence and learning comprehension outcomes for either virtual environment, presence was related to information engagement variables in the didactic immersive VLE but not the active environment. Results demonstrate that presence is not uniformly elicited or effective across immersive VLEs. Educational delivery mode and environment complexity may influence the impact of presence on engagement. PMID:19366319
Persky, Susan; Kaphingst, Kimberly A; McCall, Cade; Lachance, Christina; Beall, Andrew C; Blascovich, Jim
2009-06-01
Presence in virtual learning environments (VLEs) has been associated with a number of outcome factors related to a user's ability and motivation to learn. The extant but relatively small body of research suggests that a high level of presence is related to better performance on learning outcomes in VLEs. Different configurations of form and content variables such as those associated with active (self-driven, interactive activities) versus didactic (reading or lecture) learning may, however, influence how presence operates and on what content it operates. We compared the influence of presence between two types of immersive VLEs (i.e., active versus didactic techniques) on comprehension and engagement-related outcomes. The findings revealed that the active VLE promoted greater presence. Although we found no relationship between presence and learning comprehension outcomes for either virtual environment, presence was related to information engagement variables in the didactic immersive VLE but not the active environment. Results demonstrate that presence is not uniformly elicited or effective across immersive VLEs. Educational delivery mode and environment complexity may influence the impact of presence on engagement.
Ask-the-expert: Active Learning Based Knowledge Discovery Using the Expert
NASA Technical Reports Server (NTRS)
Das, Kamalika; Avrekh, Ilya; Matthews, Bryan; Sharma, Manali; Oza, Nikunj
2017-01-01
Often the manual review of large data sets, either for purposes of labeling unlabeled instances or for classifying meaningful results from uninteresting (but statistically significant) ones is extremely resource intensive, especially in terms of subject matter expert (SME) time. Use of active learning has been shown to diminish this review time significantly. However, since active learning is an iterative process of learning a classifier based on a small number of SME-provided labels at each iteration, the lack of an enabling tool can hinder the process of adoption of these technologies in real-life, in spite of their labor-saving potential. In this demo we present ASK-the-Expert, an interactive tool that allows SMEs to review instances from a data set and provide labels within a single framework. ASK-the-Expert is powered by an active learning algorithm for training a classifier in the backend. We demonstrate this system in the context of an aviation safety application, but the tool can be adopted to work as a simple review and labeling tool as well, without the use of active learning.
Ask-the-Expert: Active Learning Based Knowledge Discovery Using the Expert
NASA Technical Reports Server (NTRS)
Das, Kamalika
2017-01-01
Often the manual review of large data sets, either for purposes of labeling unlabeled instances or for classifying meaningful results from uninteresting (but statistically significant) ones is extremely resource intensive, especially in terms of subject matter expert (SME) time. Use of active learning has been shown to diminish this review time significantly. However, since active learning is an iterative process of learning a classifier based on a small number of SME-provided labels at each iteration, the lack of an enabling tool can hinder the process of adoption of these technologies in real-life, in spite of their labor-saving potential. In this demo we present ASK-the-Expert, an interactive tool that allows SMEs to review instances from a data set and provide labels within a single framework. ASK-the-Expert is powered by an active learning algorithm for training a classifier in the back end. We demonstrate this system in the context of an aviation safety application, but the tool can be adopted to work as a simple review and labeling tool as well, without the use of active learning.
Dynamic Interaction between Reinforcement Learning and Attention in Multidimensional Environments.
Leong, Yuan Chang; Radulescu, Angela; Daniel, Reka; DeWoskin, Vivian; Niv, Yael
2017-01-18
Little is known about the relationship between attention and learning during decision making. Using eye tracking and multivariate pattern analysis of fMRI data, we measured participants' dimensional attention as they performed a trial-and-error learning task in which only one of three stimulus dimensions was relevant for reward at any given time. Analysis of participants' choices revealed that attention biased both value computation during choice and value update during learning. Value signals in the ventromedial prefrontal cortex and prediction errors in the striatum were similarly biased by attention. In turn, participants' focus of attention was dynamically modulated by ongoing learning. Attentional switches across dimensions correlated with activity in a frontoparietal attention network, which showed enhanced connectivity with the ventromedial prefrontal cortex between switches. Our results suggest a bidirectional interaction between attention and learning: attention constrains learning to relevant dimensions of the environment, while we learn what to attend to via trial and error. Copyright © 2017 Elsevier Inc. All rights reserved.
The Construction of Knowledge through Social Interaction via Computer-Mediated Communication
ERIC Educational Resources Information Center
Saritas, Tuncay
2008-01-01
With the advance in information and communication technologies, computer-mediated communication--more specifically computer conferencing systems (CCS)--has captured the interest of educators as an ideal tool to create a learning environment featuring active, participative, and reflective learning. Educators are increasingly adapting the features…
Still Building Rafts, Juggling Balls and Driving Tanks?
ERIC Educational Resources Information Center
Beard, Colin; Wilson, John
2002-01-01
A model presents experiential learning as a combination lock. Outdoor environmental elements, activities, senses, emotions, forms of intelligence, and ways of learning are grouped into six "tumblers" that can be arranged into combinations that best help learners interact with the external environment through their senses, thus generating…
Expert Voices in Learning Improvisation: Shaping Regulation Processes through Experiential Influence
ERIC Educational Resources Information Center
de Bruin, Leon R.
2017-01-01
Interpersonal and collaborative activity plays an important role in the social aspects of self-regulated learning (SRL) development. Peer, teacher and group interactions facilitate support for self-regulation, co-regulation and socially shared regulatory processes. Situated and experiential interplay facilitates personal, co-constructed and…
45 CFR 1306.33 - Home-based program option.
Code of Federal Regulations, 2011 CFR
2011-10-01
... as the child's primary learning environment. The home visitor must work with parents to help them provide learning opportunities that enhance their child's growth and development. (2) Home visits must... for the children is to emphasize peer group interaction through age appropriate activities in a Head...
34 CFR 464.3 - What kinds of activities may be assisted?
Code of Federal Regulations, 2012 CFR
2012-07-01
... literacy instructors in reading instruction and in— (i) Selecting and making the most effective use of... instruction; (B) Video tapes; (C) Interactive systems; and (D) Data link systems; or (ii) Assessing learning style, screening for learning disabilities, and providing individualized remedial reading instruction...
34 CFR 464.3 - What kinds of activities may be assisted?
Code of Federal Regulations, 2014 CFR
2014-07-01
... literacy instructors in reading instruction and in— (i) Selecting and making the most effective use of... instruction; (B) Video tapes; (C) Interactive systems; and (D) Data link systems; or (ii) Assessing learning style, screening for learning disabilities, and providing individualized remedial reading instruction...
34 CFR 464.3 - What kinds of activities may be assisted?
Code of Federal Regulations, 2011 CFR
2011-07-01
... literacy instructors in reading instruction and in— (i) Selecting and making the most effective use of... instruction; (B) Video tapes; (C) Interactive systems; and (D) Data link systems; or (ii) Assessing learning style, screening for learning disabilities, and providing individualized remedial reading instruction...
34 CFR 464.3 - What kinds of activities may be assisted?
Code of Federal Regulations, 2013 CFR
2013-07-01
... literacy instructors in reading instruction and in— (i) Selecting and making the most effective use of... instruction; (B) Video tapes; (C) Interactive systems; and (D) Data link systems; or (ii) Assessing learning style, screening for learning disabilities, and providing individualized remedial reading instruction...
Effectiveness of Vocabulary Intervention for Older Children with (Developmental) Language Disorder
ERIC Educational Resources Information Center
Wright, Lisa; Pring, Tim; Ebbels, Susan
2018-01-01
Background: Children with developmental language disorder (DLD) frequently have difficulties with word learning and understanding vocabulary. For these children, this can significantly impact on social interactions, daily activities and academic progress. Although there is literature providing a rationale for targeting word learning in such…
The High/Scope Preschool Curriculum: What Is It? Why Use It?
ERIC Educational Resources Information Center
Schweinhart, Lawrence J.; Weikart, David P.; Hohmann, Mary
2002-01-01
Describes the High/Scope Preschool Curriculum, an approach that supports young children's learning and enables children, particularly those at risk, to achieve greater school success and adult socioeconomic status. Discusses the central principles of curriculum: active learning, positive adult-child interactions, child-centered learning…
NASA Astrophysics Data System (ADS)
Lachowicz, Mirosław
2016-03-01
The very stimulating paper [6] discusses an approach to perception and learning in a large population of living agents. The approach is based on a generalization of kinetic theory methods in which the interactions between agents are described in terms of game theory. Such an approach was already discussed in Ref. [2-4] (see also references therein) in various contexts. The processes of perception and learning are based on the interactions between agents and therefore the general kinetic theory is a suitable tool for modeling them. However the main question that rises is how the perception and learning processes may be treated in the mathematical modeling. How may we precisely deliver suitable mathematical structures that are able to capture various aspects of perception and learning?
The ICAP Framework: Linking Cognitive Engagement to Active Learning Outcomes
ERIC Educational Resources Information Center
Chi, Michelene T. H.; Wylie, Ruth
2014-01-01
This article describes the ICAP framework that defines cognitive engagement activities on the basis of students' overt behaviors and proposes that engagement behaviors can be categorized and differentiated into one of four modes: "Interactive," "Constructive," "Active," and "Passive." The ICAP hypothesis…
Seif, Gretchen A; Brown, Debora
2013-01-01
It is difficult to provide real-world learning experiences for students to master clinical and communication skills. The purpose of this paper is to describe a novel instructional method using self- and peer-assessment, reflection, and technology to help students develop effective interpersonal and clinical skills. The teaching method is described by the constructivist learning theory and incorporates the use of educational technology. The learning activities were incorporated into the pre-clinical didactic curriculum. The students participated in two video-recording assignments and performed self-assessments on each and had a peer-assessment on the second video-recording. The learning activity was evaluated through the self- and peer-assessments and an instructor-designed survey. This evaluation identified several themes related to the assignment, student performance, clinical behaviors and establishing rapport. Overall the students perceived that the learning activities assisted in the development of clinical and communication skills prior to direct patient care. The use of video recordings of a simulated history and examination is a unique learning activity for preclinical PT students in the development of clinical and communication skills.
Interactions between attention, context and learning in primary visual cortex.
Gilbert, C; Ito, M; Kapadia, M; Westheimer, G
2000-01-01
Attention in early visual processing engages the higher order, context dependent properties of neurons. Even at the earliest stages of visual cortical processing neurons play a role in intermediate level vision - contour integration and surface segmentation. The contextual influences mediating this process may be derived from long range connections within primary visual cortex (V1). These influences are subject to perceptual learning, and are strongly modulated by visuospatial attention, which is itself a learning dependent process. The attentional influences may involve interactions between feedback and horizontal connections in V1. V1 is therefore a dynamic and active processor, subject to top-down influences.
Phase Transitions in a Model for Social Learning via the Internet
NASA Astrophysics Data System (ADS)
Bordogna, Clelia M.; Albano, Ezequiel V.
Based on the concepts of educational psychology, sociology and statistical physics, a mathematical model for a new type of social learning process that takes place when individuals interact via the Internet is proposed and studied. The noise of the interaction (misunderstandings, lack of well organized participative activities, etc.) dramatically restricts the number of individuals that can be efficiently in mutual contact and drives phase transitions between ``ordered states'' such as the achievements of the individuals are satisfactory and ``disordered states'' with negligible achievements.
NASA Astrophysics Data System (ADS)
Beichner, Robert
2016-03-01
The Student-Centered Active Learning Environment with Upside-down Pedagogies (SCALE-UP) Project combines curricula and a specially-designed instructional space to enhance learning. SCALE-UP students practice communication and teamwork skills while performing activities that enhance their conceptual understanding and problem solving skills. This can be done with small or large classes and has been implemented at more than 250 institutions. Educational research indicates that students should collaborate on interesting tasks and be deeply involved with the material they are studying. SCALE-UP classtime is spent primarily on ``tangibles'' and ``ponderables''--hands-on measurements/observations and interesting questions. There are also computer simulations (called ``visibles'') and hypothesis-driven labs. Students sit at tables designed to facilitate group interactions. Instructors circulate and engage in Socratic dialogues. The setting looks like a banquet hall, with lively interactions nearly all the time. Impressive learning gains have been measured at institutions across the US and internationally. This talk describes today's students, how lecturing got started, what happens in a SCALE-UP classroom, and how the approach has spread. The SCALE-UP project has greatly benefitted from numerous Grants made by NSF and FIPSE to NCSU and other institutions.
Testing communication strategies to convey genomic concepts using virtual reality technology.
Kaphingst, Kimberly A; Persky, Susan; McCall, Cade; Lachance, Christina; Beall, Andrew C; Blascovich, Jim
2009-06-01
Health professionals need to be able to communicate information about genomic susceptibility in understandable and usable ways, but substantial challenges are involved. We developed four learning modules that varied along two factors: (1) learning mode (active learning vs. didactic learning) and (2) metaphor (risk elevator vs. bridge) and tested them using a 2 x 2 between-subjects, repeated measures design. The study used an innovative virtual reality technology experimental platform; four virtual worlds were designed to convey the concept that genetic and behavioral factors interact to affect common disease risk. The primary outcome was comprehension (recall, transfer). Study participants were 42 undergraduates aged 19-23. The results indicated that the elevator metaphor better supported learning of the concept than the bridge metaphor. Mean transfer score was significantly higher for the elevator metaphor (p < 0.05). Mean change in recall was significantly higher for didactic learning than active learning (p < 0.05). Mean ratings for variables posited to be associated with better learning (e.g., motivation), however, were generally higher for the active learning worlds. The results suggested that active learning might not always be more effective than didactic learning in increasing comprehension of health information. The findings also indicated that less complex metaphors might convey abstract concepts more effectively.
Testing Communication Strategies to Convey Genomic Concepts Using Virtual Reality Technology
Kaphingst, Kimberly A.; Persky, Susan; McCall, Cade; Lachance, Christina; Beall, Andrew C.; Blascovich, Jim
2009-01-01
Health professionals need to be able to communicate information about genomic susceptibility in understandable and usable ways, but substantial challenges are involved. We developed four learning modules that varied along two factors: (1) learning mode (active learning vs. didactic learning) and (2) metaphor (risk elevator vs. bridge) and tested them using a 2×2 between-subjects, repeated measures design. The study used an innovative virtual reality technology experimental platform; four virtual worlds were designed to convey the concept that genetic and behavioral factors interact to affect common disease risk. The primary outcome was comprehension (recall, transfer). Study participants were 42 undergraduates aged 19–23. The results indicated that the elevator metaphor better supported learning of the concept than the bridge metaphor. Mean transfer score was significantly higher for the elevator metaphor (p<0.05). Mean change in recall was significantly higher for didactic learning than active learning (p<0.05). However, mean ratings for variables posited to be associated with better learning (e.g., motivation) were generally higher for the active learning worlds. The results suggested that active learning might not always be more effective than didactic learning in increasing comprehension of health information. The findings also indicated that less complex metaphors might convey abstract concepts more effectively. PMID:19466649
Baid, Heather; Lambert, Nicky
2010-08-01
Education that captures the attention of students is an essential aspect of promoting meaningful, active learning. Rather than standing at the front of a group of learners simply speaking about a topic, teachers have the opportunity of livening up their teaching with humour, games, and other fun activities. This article critically evaluates the benefits and limitations of humour within nursing education as well as the use of games and fun activities as teaching strategies. Examples of various games and interactive activities are also provided. Copyright 2009 Elsevier Ltd. All rights reserved.
Real World Connections Through Videoconferences
NASA Technical Reports Server (NTRS)
Peterson, Ruth; Lytle, John (Technical Monitor)
2002-01-01
The Learning Technologies Project (LTP) is a partner in the National Aeronautics and Space Administration's (NASA's) educational technology program unit, an electronic community center that fosters interaction, collaboration, and sharing among educators, learners, and scientists. The goal of the NASA Glenn Research Center's Learning Technologies Project is to increase students' interest and proficiency in mathematics, science, and technology through the use of computing and communications technology and by using NASA's mission in aerospace technology as a theme. The primary components are: (1) Beginner's Guide to Aeronautics, including interactive simulation packages and teacher-created online activities. (2) NASA Virtual Visits, videoconferences (with online pre-post-conference activities) connecting students and teachers to NASA scientists and researchers.
Gubbiyappa, Kumar Shiva; Barua, Ankur; Das, Biswadeep; Vasudeva Murthy, C. R.; Baloch, Hasnain Zafar
2016-01-01
Objectives: Flipped classroom (FC) is a pedagogical model to engage students in learning process by replacing the didactic lectures. Using technology, lectures are moved out of the classroom and delivered online as means to provide interaction and collaboration. Poll Everywhere is an audience response system (ARS) which can be used in an FC to make the activities more interesting, engaging, and interactive. This study aims to study the perception of undergraduate pharmacy students on FC activity using Poll Everywhere ARS and to study the effectiveness of FC activity as a teaching-learning tool for delivering complementary medicine module in the undergraduate pharmacy program. Materials and Methods: In this nonrandomized trial on interrupted time series study, flipped class was conducted on group of 112 students of bachelor of pharmacy semester V. The topic selected was popular herbal remedies of the complementary medicine module. Flipped class was conducted with audio and video presentation in the form of a quiz using ten one-best-answer type of multiple-choice questions covering the learning objectives. Audience response was captured using web-based interaction with Poll Everywhere. Feedback was obtained from participants at the end of FC activity and debriefing was done. Results: Randomly selected 112 complete responses were included in the final analysis. There were 47 (42%) male and 65 (58%) female respondents. The overall Cronbach’s alpha of feedback questionnaire was 0.912. The central tendencies and dispersions of items in the questionnaire indicated the effectiveness of FC. The low or middle achievers of quiz session (pretest) during the FC activity were three times (95% confidence interval [CI] = 1.1–8.9) at the risk of providing neutral or negative feedback than high achievers (P = 0.040). Those who gave neutral or negative feedback on FC activity were 3.9 times (95% CI = 1.3–11.8) at the risk of becoming low or middle achievers during the end of semester examination (P = 0.013). The multivariate analysis of “Agree” or “Disagree” and “Agree” or “Strongly Agree” was statistically significant. Conclusion: This study provides insight on how the pharmacy students learn and develop their cognitive functions. The results revealed that the FC activity with Poll Everywhere is an effective teaching-learning method. PMID:28031607
Gubbiyappa, Kumar Shiva; Barua, Ankur; Das, Biswadeep; Vasudeva Murthy, C R; Baloch, Hasnain Zafar
2016-10-01
Flipped classroom (FC) is a pedagogical model to engage students in learning process by replacing the didactic lectures. Using technology, lectures are moved out of the classroom and delivered online as means to provide interaction and collaboration. Poll Everywhere is an audience response system (ARS) which can be used in an FC to make the activities more interesting, engaging, and interactive. This study aims to study the perception of undergraduate pharmacy students on FC activity using Poll Everywhere ARS and to study the effectiveness of FC activity as a teaching-learning tool for delivering complementary medicine module in the undergraduate pharmacy program. In this nonrandomized trial on interrupted time series study, flipped class was conducted on group of 112 students of bachelor of pharmacy semester V. The topic selected was popular herbal remedies of the complementary medicine module. Flipped class was conducted with audio and video presentation in the form of a quiz using ten one-best-answer type of multiple-choice questions covering the learning objectives. Audience response was captured using web-based interaction with Poll Everywhere. Feedback was obtained from participants at the end of FC activity and debriefing was done. Randomly selected 112 complete responses were included in the final analysis. There were 47 (42%) male and 65 (58%) female respondents. The overall Cronbach's alpha of feedback questionnaire was 0.912. The central tendencies and dispersions of items in the questionnaire indicated the effectiveness of FC. The low or middle achievers of quiz session (pretest) during the FC activity were three times (95% confidence interval [CI] = 1.1-8.9) at the risk of providing neutral or negative feedback than high achievers ( P = 0.040). Those who gave neutral or negative feedback on FC activity were 3.9 times (95% CI = 1.3-11.8) at the risk of becoming low or middle achievers during the end of semester examination ( P = 0.013). The multivariate analysis of "Agree" or "Disagree" and "Agree" or "Strongly Agree" was statistically significant. This study provides insight on how the pharmacy students learn and develop their cognitive functions. The results revealed that the FC activity with Poll Everywhere is an effective teaching-learning method.
ERIC Educational Resources Information Center
Beauchamp, Gary; Kennewell, Steve; Tanner, Howard; Jones, Sonia
2010-01-01
The teacher's role has often been described as one of "orchestration", and this musical analogy is a powerful one in characterising the manipulation of features in the classroom setting in order to generate activity or "performance" which leads to learning. However, a classical view of orchestration would fail to recognise the extent to which…
ERIC Educational Resources Information Center
Castro Rojas, María Dolores; Bygholm, Ann; Hansen, Tia G. B.
2018-01-01
This study is part of a design-based research project aimed at designing a learning intervention for enabling Costa Rican older people to use information and communication technologies for cognitive activity and social interaction. Data from relevant literature, a focus group with older adults, and interviews with professionals teaching older…
NASA Astrophysics Data System (ADS)
Gardner, Christina M.
Learning-by-doing learning environments support a wealth of physical engagement in activities. However, there is also a lot of variability in what participants learn in each enactment of these types of environments. Therefore, it is not always clear how participants are learning in these environments. In order to design technologies to support learning in these environments, we must have a greater understanding of how participants engage in learning activities, their goals for their engagement, and the types of help they need to cognitively engage in learning activities. To gain a greater understanding of participant engagement and factors and circumstances that promote and inhibit engagement, this dissertation explores and answers several questions: What are the types of interactions and experiences that promote and /or inhibit learning and engagement in learning-by-doing learning environments? What are the types of configurations that afford or inhibit these interactions and experiences in learning-by-doing learning environments? I explore answers to these questions through the context of two enactments of Kitchen Science Investigators (KSI), a learning-by-doing learning environment where middle-school aged children learn science through cooking from customizing recipes to their own taste and texture preferences. In small groups, they investigate effects of ingredients through the design of cooking and science experiments, through which they experience and learn about chemical, biological, and physical science phenomena and concepts (Clegg, Gardner, Williams, & Kolodner, 2006). The research reported in this dissertation sheds light on the different ways participant engagement promotes and/or inhibits cognitive engagement in by learning-by-doing learning environments through two case studies. It also provides detailed descriptions of the circumstances (social, material, and physical configurations) that promote and/or inhibit participant engagement in these learning environments through cross-case analyses of these cases. Finally, it offers suggestions about structuring activities, selecting materials and resources, and designing facilitation and software-realized scaffolding in the design of these types of learning environments. These design implications focus on affording participant engagement in science content and practices learning. Overall, the case studies, cross-case analyses, and empirically-based design implications begin to bridge the gap between theory and practice in the design and implementation of these learning environments. This is demonstrated by providing detailed and explanatory examples and factors that affect how participants take up the affordances of the learning opportunities designed into these learning environments.
Role of expressive behaviour for robots that learn from people.
Breazeal, Cynthia
2009-12-12
Robotics has traditionally focused on developing intelligent machines that can manipulate and interact with objects. The promise of personal robots, however, challenges researchers to develop socially intelligent robots that can collaborate with people to do things. In the future, robots are envisioned to assist people with a wide range of activities such as domestic chores, helping elders to live independently longer, serving a therapeutic role to help children with autism, assisting people undergoing physical rehabilitation and much more. Many of these activities shall require robots to learn new tasks, skills and individual preferences while 'on the job' from people with little expertise in the underlying technology. This paper identifies four key challenges in developing social robots that can learn from natural interpersonal interaction. The author highlights the important role that expressive behaviour plays in this process, drawing on examples from the past 8 years of her research group, the Personal Robots Group at the MIT Media Lab.
Digging Deeper: Learning and Re-Learning with Student and Teacher Minecraft Communities
ERIC Educational Resources Information Center
Dodgson, David
2017-01-01
Minecraft has become well established in the world of education. Around the world, the game is being used in a variety of educational settings for virtual project work and as a virtual world for collaboration and social interaction. Minecraft is an activity players want to talk about. It is a game they want to learn more about. In order to do…
ERIC Educational Resources Information Center
Virtue, Alicia; Dean, Ellen; Matheson, Molly
2014-01-01
More and more of today's scholars conduct their research in a digital realm rather than using a print collection. The University of Arizona Libraries Guide on the Side tutorial software offers an opportunity to apply the principles of active learning with real world research scenarios. This paper reports on the design and introduction of…
de Leng, Bas A; Dolmans, Diana H J M; Muijtjens, Arno M M; van der Vleuten, Cees P M
2006-06-01
To investigate the effects of a virtual learning environment (VLE) on group interaction and consultation of information resources during the preliminary phase, self-study phase and reporting phase of the problem-based learning process in an undergraduate medical curriculum. A questionnaire was administered to 355 medical students in Years 1 and 2 to ask them about the perceived usefulness of a virtual learning environment that was created with Blackboard for group interaction and the use of learning resources. The students indicated that the VLE supported face-to-face interaction in the preliminary discussion and in the reporting phase but did not stimulate computer-mediated distance interaction during the self-study phase. They perceived that the use of multimedia in case presentations led to a better quality of group discussion than if case presentations were exclusively text-based. They also indicated that the information resources that were hyperlinked in the VLE stimulated the consultation of these resources during self-study, but not during the reporting phase. Students indicated that the use of a VLE in the tutorial room and the inclusion of multimedia in case presentations supported processes of active learning in the tutorial groups. However, if we want to exploit the full potential of asynchronous computer-mediated communication to initiate in-depth discussion during the self-study phase, its application will have to be selective and deliberate. Students indicated that the links in the VLE to selected information in library repositories supported their learning.
NASA Astrophysics Data System (ADS)
Thomas, Gregory P.; Anderson, David
2013-06-01
Despite science learning in settings such as science museums being recognized as important and given increasing attention in science education circles, the investigation of parents' and their children's metacognition in such settings is still in its infancy. This is despite an individual's metacognition being acknowledged as an important influence on their learning within and across contexts. This research investigated parents' metacognitive procedural and conditional knowledge, a key element of their metacognition, related to (a) what they knew about how they and their children thought and learned, and (b) whether this metacognitive knowledge influenced their interactions with their children during their interaction with a moderately complex simulation in a science museum. Parents reported metacognitive procedural and conditional knowledge regarding their own and their children's thinking and learning processes. Further, parents were aware that this metacognitive knowledge influenced their interactions with their children, seeing this as appropriate pedagogical action for them within the context of the particular exhibit and its task requirements at the science museum, and for the child involved. These findings have implications for exhibit and activity development within science museum settings.
NASA Astrophysics Data System (ADS)
Wahyudin; Riza, L. S.; Putro, B. L.
2018-05-01
E-learning as a learning activity conducted online by the students with the usual tools is favoured by students. The use of computer media in learning provides benefits that are not owned by other learning media that is the ability of computers to interact individually with students. But the weakness of many learning media is to assume that all students have a uniform ability, when in reality this is not the case. The concept of Intelligent Tutorial System (ITS) combined with cyberblog application can overcome the weaknesses in neglecting diversity. An Intelligent Tutorial System-based Cyberblog application (ITS) is a web-based interactive application program that implements artificial intelligence which can be used as a learning and evaluation media in the learning process. The use of ITS-based Cyberblog in learning is one of the alternative learning media that is interesting and able to help students in measuring ability in understanding the material. This research will be associated with the improvement of logical thinking ability (logical thinking) of students, especially in algorithm subjects.
ERIC Educational Resources Information Center
Armstrong, Victoria; Barnes, Sally; Sutherland, Rosamund; Curran, Sarah; Mills, Simon; Thompson, Ian
2005-01-01
This paper discusses the results of a research project which aimed to capture, analyse and communicate the complex interactions between students, teachers and technology that occur in the classroom. Teachers and researchers used an innovative research design developed through the InterActive Education Project (Sutherland et al., 2003). Video case…
Interactive Learning and "Clickers"
NASA Astrophysics Data System (ADS)
Rudolph, Alexander
2006-12-01
A growing body of evidence demonstrates that student understanding and retention of key concepts in science can be dramatically improved by using “Interactive Learning” techniques. Interactive learning is a way to get students more actively involved in their own learning than by simple lecture alone. I will focus on one type of interactive learning activity, known as “Think-Pair-Share”. After a brief (10-20 minute) lecture on a topic, students are asked a conceptually challenging multiple-choice question. After they answer, if there is sufficient disagreement, the students discuss the question in small groups after which they answer the same question again. Frequently, the percentage of correct answers goes up, indicating that the active role of speaking and listening, together with peer instruction, has helped students better grasp the concept being tested. If disagreement persists, or if students continue to have questions, a short, class-wide discussion can be held. Clickers provide an excellent means to collect students’ answers to “Think-Pair-Share” questions in real time. Although clickers are not essential, they do provide some advantages over alternatives such as flash cards: answers are completely anonymous (though you as instructor can record individual responses); you can display a histogram of results immediately, either before or after group discussion, providing immediate feedback; by recording the results, you can give students credit for their participation in class. In this talk, I will model “Think-Pair-Share” with the audience using clickers, show results from my classes before and after group discussions, share results of a student survey on “Think-Pair-Share” and clickers, describe other uses of clickers (e.g., taking attendance, surveys, test administration) and highlight some of the pros and cons of clickers v. flashcards.
NASA Astrophysics Data System (ADS)
Tang, Xiaowei
Recent reform documents and science education literature emphasize the importance of scientific argumentation as a discourse and practice of science that should be supported in school science learning. Much of this literature focuses on the structure of argument, whether for assessing the quality of argument or designing instructional scaffolds. This study challenges the narrowness of this research paradigm and argues for the necessity of examining students' argumentative practices as rooted in the complex, evolving system of the classroom. Employing a sociocultural-historical lens of activity theory (Engestrom, 1987, 1999), discourse analysis is employed to explore how a high school biology class continuously builds affordances and constraints for argumentation practices through interactions. The ways in which argumentation occurs, including the nature of teacher and student participation, are influenced by learning goals, classroom norms, teacher-student relationships and epistemological stances constructed through a class' interactive history. Based on such findings, science education should consider promoting classroom scientific argumentation as a long-term process, requiring supportive resources that develop through continuous classroom interactions. Moreover, in order to understand affordances that support disciplinary learning in classroom, we need to look beyond just disciplinary interactions. This work has implications for classroom research on argumentation and teacher education, specifically, the preparation of teachers for secondary science teaching.
Using Technology Effectively to Teach about Fractions
ERIC Educational Resources Information Center
Hensberry, Karina K. R.; Moore, Emily B.; Perkins, Katherine
2015-01-01
In this article, the authors describe classroom use of technology that successfully engaged fourth grade students (typically aged 9-10) in the United States in learning about fractions. The activities involved the use of an interactive simulation designed to support student learning of fractions, and whole-class discussion where students were…
Transforming Professional Healthcare Narratives into Structured Game-Informed-Learning Activities
ERIC Educational Resources Information Center
Begg, Michael; Ellaway, Rachel; Dewhurst, David; Macleod, Hamish
2007-01-01
Noting the dependency of healthcare education on practice-based learning, Michael Begg, Rachel Ellaway, David Dewhurst, and Hamish Macleod suggest that creating a virtual clinical setting for students to interact with virtual patients can begin to address educational demands for clinical experience. They argue that virtual patient simulations that…
LMOOCs, Classifying Design: Survey Findings from LMOOC Providers
ERIC Educational Resources Information Center
Beirne, Elaine; Mhichíl, Mairéad Nic Giolla; Cleircín, Gearóid Ó
2017-01-01
Many of the major Massive Open Online Course (MOOC) platforms support learning approaches which can be roughly categorised as transmission-based and asynchronous (Morris & Lambe, 2014), with limited forms of interactive elements. Language learning is viewed within this study as an active process which includes knowledge, skills, and cultural…
Group Learning as Relational Economic Activity
ERIC Educational Resources Information Center
Saito, Eisuke; Atencio, Matthew
2014-01-01
The purpose of this paper is to discuss group learning in line with economic perspectives of embeddedness and integration emanating from the work of Karl Polanyi. Polanyi's work defines economy as a necessary interaction among human beings for survival; the economy is considered inextricably linked from broader society and social relations rather…
Geometrical Constructions in Dynamic and Interactive Mathematics Learning Environment
ERIC Educational Resources Information Center
Kondratieva, Margo
2013-01-01
This paper concerns teaching Euclidean geometry at the university level. It is based on the authors' personal experience. It describes a sequence of learning activities that combine geometrical constructions with explorations, observations, and explanations of facts related to the geometry of triangle. Within this approach, a discussion of the…
Some Thoughts about Togetherness: An Introduction.
ERIC Educational Resources Information Center
van Oers, Bert; Hannikainen, Maritta
2001-01-01
Discusses the need to study the social interactive dimension of learning, attempting to formulate a definition of togetherness on a theoretical basis. Explores processes in early childhood that relate to understanding how children learn to maintain togetherness in their group activities, and how a strategy for togetherness may prepare children for…
Recognition of Learner's Personality Traits through Digital Annotations in Distance Learning
ERIC Educational Resources Information Center
Omheni, Nizar; Kalboussi, Anis; Mazhoud, Omar; Kacem, Ahmed Hadj
2017-01-01
Researchers in distance education are interested in observing and modelling of learner's personality profile, and adapting their learning experiences accordingly. When learners read and interact with their reading materials, they do unselfconscious activities like annotation which may be a key feature of their personalities. Annotation activity…
34 CFR 489.3 - What activities may the Secretary fund?
Code of Federal Regulations, 2012 CFR
2012-07-01
..., including learning disabilities, upon arrival in the system or at the prison, jail, or detention center. (b..., such as interactive video- and computer-based adult literacy learning: and (2) Include— (i) A... disability, achieves a level of functional literacy commensurate with his or her ability; (B) Is granted...
34 CFR 489.3 - What activities may the Secretary fund?
Code of Federal Regulations, 2013 CFR
2013-07-01
..., including learning disabilities, upon arrival in the system or at the prison, jail, or detention center. (b..., such as interactive video- and computer-based adult literacy learning: and (2) Include— (i) A... disability, achieves a level of functional literacy commensurate with his or her ability; (B) Is granted...
34 CFR 489.3 - What activities may the Secretary fund?
Code of Federal Regulations, 2014 CFR
2014-07-01
..., including learning disabilities, upon arrival in the system or at the prison, jail, or detention center. (b..., such as interactive video- and computer-based adult literacy learning: and (2) Include— (i) A... disability, achieves a level of functional literacy commensurate with his or her ability; (B) Is granted...
Enriching Classroom Learning through a Microblogging-Supported Activity
ERIC Educational Resources Information Center
Li, Kun; Darr, Kent; Gao, Fei
2018-01-01
Researchers have recognized the role that microblogging tools play in enhancing the effectiveness of communication and interaction in the classroom. However, few studies have specifically examined how to use microblogging tools to bring educational resources into the classroom to enrich the student learning experience. The exploratory case study…
They All Have Something To Say: Helping Learning Disabled Students Write.
ERIC Educational Resources Information Center
Schwartz, Shirley S.; MacArthur, Charles A.
1990-01-01
A process approach to writing instruction with learning-disabled students is presented, in which students are guided through the processes of planning, drafting, and revising text. The model emphasizes the interaction of the teacher and learner through such activities as conferences, prompting, modeling, peer collaboration, and dialogues about…
Visual Literacy: Some Lessons from Children's Television Workshop.
ERIC Educational Resources Information Center
Fowles, Barbara R.; Horner, Vivian M.
With the pervasiveness of television, especially for children, visual literacy is a growing concern. Television should be regarded as part of a potential solution to the country's need for improved education. "Sesame Street" has proved that children do learn from television, that active interaction is not always necessary for learning,…
Notional-Functional Syllabus: From Theory to Classroom Applications.
ERIC Educational Resources Information Center
Knop, Constance K.
A notional-functional syllabus is a set of materials to be learned by students of a second language. While learning to perform communicative activities, students practice language structures that refer to certain situations and ideas (notions). The language structures are organized to express different interactions (functions) that are possible…
ERIC Educational Resources Information Center
Daher, Wajeeh; Baya'a, Nimer
2012-01-01
Learning in the cellular phone environment enables utilizing the multiple functions of the cellular phone, such as mobility, availability, interactivity, verbal and voice communication, taking pictures or recording audio and video, measuring time and transferring information. These functions together with mathematics-designated cellular phone…
Technology-Supported Mathematics Environments: Telecollaboration in a Secondary Statistics Classroom
ERIC Educational Resources Information Center
Staley, John; Moyer-Packenham, Patricia; Lynch, Monique C.
2005-01-01
The Internet, an exciting and radically different medium infiltrating pop culture, business, and education, is also a powerful educational tool with teaching and learning potential for mathematics. Web-based instructional tools allow students and teachers to actively and interactively participate in the learning process (Lynch, Moyer, Frye & Suh,…
34 CFR 489.3 - What activities may the Secretary fund?
Code of Federal Regulations, 2010 CFR
2010-07-01
..., including learning disabilities, upon arrival in the system or at the prison, jail, or detention center. (b..., such as interactive video- and computer-based adult literacy learning: and (2) Include— (i) A... disability, achieves a level of functional literacy commensurate with his or her ability; (B) Is granted...
Tool-Mediated Authentic Learning in an Educational Technology Course: A Designed-Based Innovation
ERIC Educational Resources Information Center
Amory, Alan
2014-01-01
This design-based research project is concerned with the design, development and deployment of interactive technological learning environments to support contemporary education. The use of technologies in education often replicates instructivist positions and practices. However, the use of Cultural Historical Activity Theory (C), authentic…
Humanoids Learning to Walk: A Natural CPG-Actor-Critic Architecture.
Li, Cai; Lowe, Robert; Ziemke, Tom
2013-01-01
The identification of learning mechanisms for locomotion has been the subject of much research for some time but many challenges remain. Dynamic systems theory (DST) offers a novel approach to humanoid learning through environmental interaction. Reinforcement learning (RL) has offered a promising method to adaptively link the dynamic system to the environment it interacts with via a reward-based value system. In this paper, we propose a model that integrates the above perspectives and applies it to the case of a humanoid (NAO) robot learning to walk the ability of which emerges from its value-based interaction with the environment. In the model, a simplified central pattern generator (CPG) architecture inspired by neuroscientific research and DST is integrated with an actor-critic approach to RL (cpg-actor-critic). In the cpg-actor-critic architecture, least-square-temporal-difference based learning converges to the optimal solution quickly by using natural gradient learning and balancing exploration and exploitation. Futhermore, rather than using a traditional (designer-specified) reward it uses a dynamic value function as a stability indicator that adapts to the environment. The results obtained are analyzed using a novel DST-based embodied cognition approach. Learning to walk, from this perspective, is a process of integrating levels of sensorimotor activity and value.
Humanoids Learning to Walk: A Natural CPG-Actor-Critic Architecture
Li, Cai; Lowe, Robert; Ziemke, Tom
2013-01-01
The identification of learning mechanisms for locomotion has been the subject of much research for some time but many challenges remain. Dynamic systems theory (DST) offers a novel approach to humanoid learning through environmental interaction. Reinforcement learning (RL) has offered a promising method to adaptively link the dynamic system to the environment it interacts with via a reward-based value system. In this paper, we propose a model that integrates the above perspectives and applies it to the case of a humanoid (NAO) robot learning to walk the ability of which emerges from its value-based interaction with the environment. In the model, a simplified central pattern generator (CPG) architecture inspired by neuroscientific research and DST is integrated with an actor-critic approach to RL (cpg-actor-critic). In the cpg-actor-critic architecture, least-square-temporal-difference based learning converges to the optimal solution quickly by using natural gradient learning and balancing exploration and exploitation. Futhermore, rather than using a traditional (designer-specified) reward it uses a dynamic value function as a stability indicator that adapts to the environment. The results obtained are analyzed using a novel DST-based embodied cognition approach. Learning to walk, from this perspective, is a process of integrating levels of sensorimotor activity and value. PMID:23675345
The Receptor Tyrosine Kinase Alk Controls Neurofibromin Functions in Drosophila Growth and Learning
Walker, James A.; Apostolopoulou, Anthi A.; Palmer, Ruth H.; Bernards, André; Skoulakis, Efthimios M. C.
2011-01-01
Anaplastic Lymphoma Kinase (Alk) is a Receptor Tyrosine Kinase (RTK) activated in several cancers, but with largely unknown physiological functions. We report two unexpected roles for the Drosophila ortholog dAlk, in body size determination and associative learning. Remarkably, reducing neuronal dAlk activity increased body size and enhanced associative learning, suggesting that its activation is inhibitory in both processes. Consistently, dAlk activation reduced body size and caused learning deficits resembling phenotypes of null mutations in dNf1, the Ras GTPase Activating Protein-encoding conserved ortholog of the Neurofibromatosis type 1 (NF1) disease gene. We show that dAlk and dNf1 co-localize extensively and interact functionally in the nervous system. Importantly, genetic or pharmacological inhibition of dAlk rescued the reduced body size, adult learning deficits, and Extracellular-Regulated-Kinase (ERK) overactivation dNf1 mutant phenotypes. These results identify dAlk as an upstream activator of dNf1-regulated Ras signaling responsible for several dNf1 defects, and they implicate human Alk as a potential therapeutic target in NF1. PMID:21949657
Resting-state Functional Connectivity is an Age-dependent Predictor of Motor Learning Abilities.
Mary, Alison; Wens, Vincent; Op de Beeck, Marc; Leproult, Rachel; De Tiège, Xavier; Peigneux, Philippe
2017-10-01
This magnetoencephalography study investigates how ageing modulates the relationship between pre-learning resting-state functional connectivity (rsFC) and subsequent learning. Neuromagnetic resting-state activity was recorded 5 min before motor sequence learning in 14 young (19-30 years) and 14 old (66-70 years) participants. We used a seed-based beta-band power envelope correlation approach to estimate rsFC maps, with the seed located in the right primary sensorimotor cortex. In each age group, the relation between individual rsFC and learning performance was investigated using Pearson's correlation analyses. Our results show that rsFC is predictive of subsequent motor sequence learning but involves different cross-network interactions in the two age groups. In young adults, decreased coupling between the sensorimotor network and the cortico-striato-cerebellar network is associated with better motor learning, whereas a similar relation is found in old adults between the sensorimotor, the dorsal-attentional and the DMNs. Additionally, age-related correlational differences were found in the dorsolateral prefrontal cortex, known to subtend attentional and controlled processes. These findings suggest that motor skill learning depends-in an age-dependent manner-on subtle interactions between resting-state networks subtending motor activity on the one hand, and controlled and attentional processes on the other hand. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Webinar Software: A Tool for Developing More Effective Lectures (Online or In-Person)
Mayorga, Eduardo P.; Bekerman, Jesica G.; Palis, Ana G.
2014-01-01
Purpose: To describe the use of online seminars (webinars) to improve learning experience for medical residents and fostering critical thinking. Materials and Methods: Sixty-one online seminars (webinars) for residents were developed from April 2012 to February 2013. Residents attended the lectures in the same room as the presenter or from distant locations. Residents interacted with the presenter using their personal computers, tablets, or smartphones. They were able to ask questions and answer the instructor's multiple choice or open-ended questions. The lecture dynamics consisted of: (1) The presentation of a clinical case by an expert on the clinical topic; (2) the instructor asked open-ended and multiple-choice questions about the problem-resolution process; (3) participants responded questions individually; (4) participants received feedback on their answers; (5) a brief conference was given on the learning objectives and the content, also fostering interactive participation; (6) lectures were complemented with work documents. Results: This method allowed for exploration of learning of scientific knowledge and the acquisition of other medical competences (such as patient care, interpersonal and communication skills, and professionalism). The question-and-answer activity and immediate feedback gave attendees the chance to participate actively in the conference, reflect on the topic, correct conceptual errors, and exercise critical thinking. All these factors are necessary for learning. Conclusions: This modality, which facilitates interaction, active participation, and immediate feedback, could allow learners to acquire knowledge more effectively. PMID:24791102
Agent Technologies Designed to Facilitate Interactive Knowledge Construction
ERIC Educational Resources Information Center
Graesser, Arthur C.; Jeon, Moongee; Dufty, David
2008-01-01
During the last decade, interdisciplinary researchers have developed technologies with animated pedagogical agents that interact with the student in language and other communication channels (such as facial expressions and gestures). These pedagogical agents model good learning strategies and coach the students in actively constructing knowledge…
Novitskaya, Yulia; Sara, Susan J; Logothetis, Nikos K; Eschenko, Oxana
2016-05-01
Experience-induced replay of neuronal ensembles occurs during hippocampal high-frequency oscillations, or ripples. Post-learning increase in ripple rate is predictive of memory recall, while ripple disruption impairs learning. Ripples may thus present a fundamental component of a neurophysiological mechanism of memory consolidation. In addition to system-level local and cross-regional interactions, a consolidation mechanism involves stabilization of memory representations at the synaptic level. Synaptic plasticity within experience-activated neuronal networks is facilitated by noradrenaline release from the axon terminals of the locus coeruleus (LC). Here, to better understand interactions between the system and synaptic mechanisms underlying "off-line" consolidation, we examined the effects of ripple-associated LC activation on hippocampal and cortical activity and on spatial memory. Rats were trained on a radial maze; after each daily learning session neural activity was monitored for 1 h via implanted electrode arrays. Immediately following "on-line" detection of ripple, a brief train of electrical pulses (0.05 mA) was applied to LC. Low-frequency (20 Hz) stimulation had no effect on spatial learning, while higher-frequency (100 Hz) trains transiently blocked generation of ripple-associated cortical spindles and caused a reference memory deficit. Suppression of synchronous ripple/spindle events appears to interfere with hippocampal-cortical communication, thereby reducing the efficiency of "off-line" memory consolidation. © 2016 Novitskaya et al.; Published by Cold Spring Harbor Laboratory Press.
Lujan, Heidi L; DiCarlo, Stephen E
2014-12-01
Students are naturally curious and inquisitive with powerful intrinsic motives to probe, learn, and understand their world. Accordingly, class activities must capitalize on this inherently energetic and curious nature so that learning becomes a lifelong activity where students take initiative for learning, are skilled in learning, and want to learn new things. This report describes a student-centered class activity, the "flipped exam," designed to achieve this goal. The flipped exam was a collaborative, group effort, and learning was interactive. It included a significant proportion (∼30-35%) of material not covered in class. This required students to actively search for content and context, dynamically making connections between what they knew and what they learned, grappling with complexity, uncertainty, and ambiguity, and finally discovering answers to important questions. Accordingly, the need or desire to know was the catalyst for meaningful learning. Student assessment was determined by behavioral noncognitive parameters that were based on the observation of the student and the student's work as well as cognitive parameters (i.e., the student's score on the examination). It is our view that the flipped exam provided a student-centered activity in which students discovered, because of the need to know and opportunities for discussion, the important concepts and principles we wanted them to learn. Copyright © 2014 The American Physiological Society.
Hägg-Martinell, A; Hult, H; Henriksson, P; Kiessling, A
2017-02-14
To optimise medical students' early clerkship is a complex task since it is conducted in a context primarily organised to take care of patients. Previous studies have explored medical students' perceptions of facilitation and hindrance of learning. However, the opportunities for medical student to learn within the culture of acute medicine care have not been fully investigated. This study aimed to explore how medical students approach, interact and socialise in an acute internal medicine ward context, and how spaces for learning are created and used in such a culture. Ethnographic observations were performed of medical students' interactions and learning during early clerkship at an acute internal medicine care ward. Field notes were taken, transcribed and analysed qualitatively. Data analysis was guided by Wenger's theory of communities of practice. 21 medical students and 30 supervisors participated. Two themes were identified: Nervousness and curiosity- students acted nervously and stressed, especially when they could not answer questions. Over time curiosity could evolve. Unexplored opportunities to support students in developing competence to judge and approach more complex patient-related problems were identified. Invited and involved -students were exposed to a huge variation of opportunities to learn, and to interact and to be involved. Short placements seemed to disrupt the learning process. If and how students became involved also depended on supervisors' activities and students' initiatives. This study shed light on how an acute internal medicine ward culture can facilitate medical students' possibilities to participate and learn. Medical students' learning situations were characterised by questions and answers rather than challenging dialogues related to the complexity of presented patient cases. Further, students experienced continuous transfers between learning situations where the potential to be involved differed in a wide variety of ways. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Correa-Chávez, Maricela; Roberts, Amy L D; Pérez, Margarita Martínez
2011-01-01
This chapter examines children's learning through careful attention and participation in the ongoing activities of their community. This form of learning, which has been called learning through Intent Community Participation, seems to be especially common in Mesoamerican Indigenous communities. In these communities, children are integrated into the everyday work and lives of adults and their learning may not be the central focus. We contrast this pattern with that of middle-class European American communities where children are segregated from the primary adult functions of the community. In middle-class communities and schools, children are often encouraged to engage in abstract lessons where their attention is explicitly directed to specific events. In contrast, learning through keen attention and observation may rely on learning through attention to instructions not specifically directed to the learner. Studies demonstrate Mesoamerican Indigenous children's ability to learn through simultaneous and open attention to overheard or observed activities. This form of learning is supported through multiple modalities of communication and interaction. Motivation to learn stems from the learner's inclusion into the major activities and goals of the community. Implications of research and future directions for the study of learning through keen observation are discussed.
The Interactive Planetarium: Student-led Investigations of Naked-Eye Astronomy and Planetary Motion
NASA Astrophysics Data System (ADS)
Rice, Emily L.; McCrady, N.
2007-12-01
We have developed a set of interactive, learner-centered planetarium lab activities for the introductory astronomy course for non-majors at UCLA. A planetarium is ideal for the visualization of the celestial sphere as a 2D projection in 3D space and for the direct spatial simulation of geometric relationships. These concepts are fundamental to content areas frequently covered in introductory courses but are notoriously difficult for non-specialists. Opportunities for engaging students in actively learning content and process skills are limited in the traditional "sky show” approach typically employed in a planetarium setting. The novel aspect of our activities is that they actively engage students in learning: students make predictions, design observational tests, and direct the motion of the planetarium sky in order to evaluate their hypotheses. We have also developed complementary, kinesthetic lab activities that take place outside the planetarium with overlapping content and process goals. Several hundred schools, colleges, and universities across the country have immediate access to a planetarium as a classroom, and our method represents a novel way to use the planetarium as interactive lab equipment in college-level introductory astronomy courses.
A pilot use of team-based learning in graduate public health education.
Van der Putten, Marc; Vichit-Vadakan, Nuntavarn
2010-05-01
This pilot study was undertaken to determine the impact of team-based learning (TBL) on graduate students of public health in a Thai context. The pilot project adopted Michaelsen's approach with the aim of improving learning among Thai graduate students enrolled in public health ethics. This TBL approach attempted to motivate students to do pre-class reading and be active "in-class" learners. Pre-class preparation allowed teachers to address and concentrate on learning gaps, while team work promoted peer interaction and active learning. TBL was found to be useful in fostering student preparedness and to transform "passive" into "active" learning, which especially benefited students "academically at risk" through peer teaching opportunities. With TBL, students valued the relevance of the course content and learning materials. They had positive opinions regarding the effect of TBL on individual and group learning. TBL was perceived to be instrumental in translating conceptual into applicable knowledge, and stimulated individual efforts as well as accountability. This study should be useful to those considering using TBL for public health education.
Cooperative learning model with high order thinking skills questions: an understanding on geometry
NASA Astrophysics Data System (ADS)
Sari, P. P.; Budiyono; Slamet, I.
2018-05-01
Geometry, a branch of mathematics, has an important role in mathematics learning. This research aims to find out the effect of learning model, emotional intelligence, and the interaction between learning model and emotional intelligence toward students’ mathematics achievement. This research is quasi-experimental research with 2 × 3 factorial design. The sample in this research included 179 Senior High School students on 11th grade in Sukoharjo Regency, Central Java, Indonesia in academic year of 2016/2017. The sample was taken by using stratified cluster random sampling. The results showed that: the student are taught by Thinking Aloud Pairs Problem-Solving using HOTs questions provides better mathematics learning achievement than Make A Match using HOTs questions. High emotional intelligence students have better mathematics learning achievement than moderate and low emotional intelligence students, and moderate emotional intelligence students have better mathematics learning achievement than low emotional intelligence students. There is an interaction between learning model and emotional intelligence, and these affect mathematics learning achievement. We conclude that appropriate learning model can support learning activities become more meaningful and facilitate students to understand material. For further research, we suggest to explore the contribution of other aspects in cooperative learning modification to mathematics achievement.
Role of virtual reality for cerebral palsy management.
Weiss, Patrice L Tamar; Tirosh, Emanuel; Fehlings, Darcy
2014-08-01
Virtual reality is the use of interactive simulations to present users with opportunities to perform in virtual environments that appear, sound, and less frequently, feel similar to real-world objects and events. Interactive computer play refers to the use of a game where a child interacts and plays with virtual objects in a computer-generated environment. Because of their distinctive attributes that provide ecologically realistic and motivating opportunities for active learning, these technologies have been used in pediatric rehabilitation over the past 15 years. The ability of virtual reality to create opportunities for active repetitive motor/sensory practice adds to their potential for neuroplasticity and learning in individuals with neurologic disorders. The objectives of this article is to provide an overview of how virtual reality and gaming are used clinically, to present the results of several example studies that demonstrate their use in research, and to briefly remark on future developments. © The Author(s) 2014.
A meta-analysis of outcomes from the use of computer-simulated experiments in science education
NASA Astrophysics Data System (ADS)
Lejeune, John Van
The purpose of this study was to synthesize the findings from existing research on the effects of computer simulated experiments on students in science education. Results from 40 reports were integrated by the process of meta-analysis to examine the effect of computer-simulated experiments and interactive videodisc simulations on student achievement and attitudes. Findings indicated significant positive differences in both low-level and high-level achievement of students who use computer-simulated experiments and interactive videodisc simulations as compared to students who used more traditional learning activities. No significant differences in retention, student attitudes toward the subject, or toward the educational method were found. Based on the findings of this study, computer-simulated experiments and interactive videodisc simulations should be used to enhance students' learning in science, especially in cases where the use of traditional laboratory activities are expensive, dangerous, or impractical.
NASA Astrophysics Data System (ADS)
Veglio, E.; Graves, L. W.; Bank, C. G.
2014-12-01
We designed various computer-based applications and videos as educational resources for undergraduate courses at the University of Toronto in the Earth Science Department. These resources were developed in effort to enhance students' self-learning of key concepts as identified by educators at the department. The interactive learning modules and videos were created using the programs MATLAB and Adobe Creative Suite 5 (Photoshop and Premiere) and range from optical mineralogy (extinction and Becke line), petrology (equilibrium melting in 2-phase systems), crystallography (crystal systems), geophysics (gravity anomaly), and geologic history (evolution of Canada). These resources will be made available for students on internal course websites as well as through the University of Toronto Earth Science's website (www.es.utoronto.ca) where appropriate; the video platform YouTube.com may be used to reach a wide audience and promote the material. Usage of the material will be monitored and feedback will be collected over the next academic year in order to gage the use of these interactive learning tools and to assess if these computer-based applications and videos foster student engagement and active learning, and thus offer an enriched learning experience.
Energizing the nursing lecture: Application of the Theory of Multiple Intelligence Learning.
Amerson, Roxanne
2006-01-01
Nurse educators struggle to find ways to create learning opportunities that are interactive and appeal to the needs of various students. The key to energizing the nursing lecture is to create an environment that encourages students to be active participants. It is essential to use creativity to design cognitive strategies that appeal to students' learning preferences. This article discusses the methods one educator has used to implement the Theory of Multiple Intelligence Learning in the classroom. Specific cognitive strategies that address the learning preferences of each intelligence are discussed.
Evaluating the use of augmented reality to support undergraduate student learning in geomorphology
NASA Astrophysics Data System (ADS)
Ockelford, A.; Bullard, J. E.; Burton, E.; Hackney, C. R.
2016-12-01
Augmented Reality (AR) supports the understanding of complex phenomena by providing unique visual and interactive experiences that combine real and virtual information and help communicate abstract problems to learners. With AR, designers can superimpose virtual graphics over real objects, allowing users to interact with digital content through physical manipulation. One of the most significant pedagogic features of AR is that it provides an essentially student-centred and flexible space in which students can learn. By actively engaging participants using a design-thinking approach, this technology has the potential to provide a more productive and engaging learning environment than real or virtual learning environments alone. AR is increasingly being used in support of undergraduate learning and public engagement activities across engineering, medical and humanities disciplines but it is not widely used across the geosciences disciplines despite the obvious applicability. This paper presents preliminary results from a multi-institutional project which seeks to evaluate the benefits and challenges of using an augmented reality sand box to support undergraduate learning in geomorphology. The sandbox enables users to create and visualise topography. As the sand is sculpted, contours are projected onto the miniature landscape. By hovering a hand over the box, users can make it `rain' over the landscape and the water `flows' down in to rivers and valleys. At undergraduate level, the sand-box is an ideal focus for problem-solving exercises, for example exploring how geomorphology controls hydrological processes, how such processes can be altered and the subsequent impacts of the changes for environmental risk. It is particularly valuable for students who favour a visual or kinesthetic learning style. Results presented in this paper discuss how the sandbox provides a complex interactive environment that encourages communication, collaboration and co-design.
Learning to Control Advanced Life Support Systems
NASA Technical Reports Server (NTRS)
Subramanian, Devika
2004-01-01
Advanced life support systems have many interacting processes and limited resources. Controlling and optimizing advanced life support systems presents unique challenges. In particular, advanced life support systems are nonlinear coupled dynamical systems and it is difficult for humans to take all interactions into account to design an effective control strategy. In this project. we developed several reinforcement learning controllers that actively explore the space of possible control strategies, guided by rewards from a user specified long term objective function. We evaluated these controllers using a discrete event simulation of an advanced life support system. This simulation, called BioSim, designed by Nasa scientists David Kortenkamp and Scott Bell has multiple, interacting life support modules including crew, food production, air revitalization, water recovery, solid waste incineration and power. They are implemented in a consumer/producer relationship in which certain modules produce resources that are consumed by other modules. Stores hold resources between modules. Control of this simulation is via adjusting flows of resources between modules and into/out of stores. We developed adaptive algorithms that control the flow of resources in BioSim. Our learning algorithms discovered several ingenious strategies for maximizing mission length by controlling the air and water recycling systems as well as crop planting schedules. By exploiting non-linearities in the overall system dynamics, the learned controllers easily out- performed controllers written by human experts. In sum, we accomplished three goals. We (1) developed foundations for learning models of coupled dynamical systems by active exploration of the state space, (2) developed and tested algorithms that learn to efficiently control air and water recycling processes as well as crop scheduling in Biosim, and (3) developed an understanding of the role machine learning in designing control systems for advanced life support.