Sample records for interactive network focused

  1. Ego Network Analysis of Upper Division Physics Student Survey

    NASA Astrophysics Data System (ADS)

    Brewe, Eric

    2017-01-01

    We present the analysis of student networks derived from a survey of upper division physics students. Ego networks focus on the connections that center on one person (the ego). The ego networks in this talk come from a survey that is part of an overall project focused on understanding student retention and persistence. The theory underlying this work is that social and academic integration are essential components to supporting students continued enrollment and ultimately graduation. This work uses network analysis as a way to investigate the role of social and academic interactions in retention and persistence decisions. We focus on student interactions with peers, on mentoring interactions with physics department faculty, and on engagement in physics groups and how they influence persistence. Our results, which are preliminary, will help frame the ongoing research project and identify ways in which departments can support students. This work supported by NSF grant #PHY 1344247.

  2. Emerging directions in the study of the ecology and evolution of plant-animal mutualistic networks: a review.

    PubMed

    Gu, Hao; Goodale, Eben; Chen, Jin

    2015-03-18

    The study of mutualistic plant and animal networks is an emerging field of ecological research. We reviewed progress in this field over the past 30 years. While earlier studies mostly focused on network structure, stability, and biodiversity maintenance, recent studies have investigated the conservation implications of mutualistic networks, specifically the influence of invasive species and how networks respond to habitat loss. Current research has also focused on evolutionary questions including phylogenetic signal in networks, impact of networks on the coevolution of interacting partners, and network influences on the evolution of interacting species. We outline some directions for future research, particularly the evolution of specialization in mutualistic networks, and provide concrete recommendations for environmental managers.

  3. Topology of molecular interaction networks.

    PubMed

    Winterbach, Wynand; Van Mieghem, Piet; Reinders, Marcel; Wang, Huijuan; de Ridder, Dick

    2013-09-16

    Molecular interactions are often represented as network models which have become the common language of many areas of biology. Graphs serve as convenient mathematical representations of network models and have themselves become objects of study. Their topology has been intensively researched over the last decade after evidence was found that they share underlying design principles with many other types of networks.Initial studies suggested that molecular interaction network topology is related to biological function and evolution. However, further whole-network analyses did not lead to a unified view on what this relation may look like, with conclusions highly dependent on the type of molecular interactions considered and the metrics used to study them. It is unclear whether global network topology drives function, as suggested by some researchers, or whether it is simply a byproduct of evolution or even an artefact of representing complex molecular interaction networks as graphs.Nevertheless, network biology has progressed significantly over the last years. We review the literature, focusing on two major developments. First, realizing that molecular interaction networks can be naturally decomposed into subsystems (such as modules and pathways), topology is increasingly studied locally rather than globally. Second, there is a move from a descriptive approach to a predictive one: rather than correlating biological network topology to generic properties such as robustness, it is used to predict specific functions or phenotypes.Taken together, this change in focus from globally descriptive to locally predictive points to new avenues of research. In particular, multi-scale approaches are developments promising to drive the study of molecular interaction networks further.

  4. Topology of molecular interaction networks

    PubMed Central

    2013-01-01

    Molecular interactions are often represented as network models which have become the common language of many areas of biology. Graphs serve as convenient mathematical representations of network models and have themselves become objects of study. Their topology has been intensively researched over the last decade after evidence was found that they share underlying design principles with many other types of networks. Initial studies suggested that molecular interaction network topology is related to biological function and evolution. However, further whole-network analyses did not lead to a unified view on what this relation may look like, with conclusions highly dependent on the type of molecular interactions considered and the metrics used to study them. It is unclear whether global network topology drives function, as suggested by some researchers, or whether it is simply a byproduct of evolution or even an artefact of representing complex molecular interaction networks as graphs. Nevertheless, network biology has progressed significantly over the last years. We review the literature, focusing on two major developments. First, realizing that molecular interaction networks can be naturally decomposed into subsystems (such as modules and pathways), topology is increasingly studied locally rather than globally. Second, there is a move from a descriptive approach to a predictive one: rather than correlating biological network topology to generic properties such as robustness, it is used to predict specific functions or phenotypes. Taken together, this change in focus from globally descriptive to locally predictive points to new avenues of research. In particular, multi-scale approaches are developments promising to drive the study of molecular interaction networks further. PMID:24041013

  5. The OncoPPi network of cancer-focused protein-protein interactions to inform biological insights and therapeutic strategies* | Office of Cancer Genomics

    Cancer.gov

    As genomics advances reveal the cancer gene landscape, a daunting task is to understand how these genes contribute to dysregulated oncogenic pathways. Integration of cancer genes into networks offers opportunities to reveal protein–protein interactions (PPIs) with functional and therapeutic significance. Here, we report the generation of a cancer-focused PPI network, termed OncoPPi, and identification of >260 cancer-associated PPIs not in other large-scale interactomes.

  6. Introduction to Social Network Analysis

    NASA Astrophysics Data System (ADS)

    Zaphiris, Panayiotis; Ang, Chee Siang

    Social Network analysis focuses on patterns of relations between and among people, organizations, states, etc. It aims to describe networks of relations as fully as possible, identify prominent patterns in such networks, trace the flow of information through them, and discover what effects these relations and networks have on people and organizations. Social network analysis offers a very promising potential for analyzing human-human interactions in online communities (discussion boards, newsgroups, virtual organizations). This Tutorial provides an overview of this analytic technique and demonstrates how it can be used in Human Computer Interaction (HCI) research and practice, focusing especially on Computer Mediated Communication (CMC). This topic acquires particular importance these days, with the increasing popularity of social networking websites (e.g., youtube, myspace, MMORPGs etc.) and the research interest in studying them.

  7. The STIN in the Tale: A Socio-Technical Interaction Perspective on Networked Learning

    ERIC Educational Resources Information Center

    Walker, Steve; Creanor, Linda

    2009-01-01

    In this paper, we go beyond what have been described as "mechanistic" accounts of e-learning to explore the complexity of relationships between people and technology as encountered in cases of networked learning. We introduce from the social informatics literature the concept of sociotechnical interaction networks which focus on the…

  8. Bilingual Lexical Interactions in an Unsupervised Neural Network Model

    ERIC Educational Resources Information Center

    Zhao, Xiaowei; Li, Ping

    2010-01-01

    In this paper we present an unsupervised neural network model of bilingual lexical development and interaction. We focus on how the representational structures of the bilingual lexicons can emerge, develop, and interact with each other as a function of the learning history. The results show that: (1) distinct representations for the two lexicons…

  9. Effect of interaction strength on robustness of controlling edge dynamics in complex networks

    NASA Astrophysics Data System (ADS)

    Pang, Shao-Peng; Hao, Fei

    2018-05-01

    Robustness plays a critical role in the controllability of complex networks to withstand failures and perturbations. Recent advances in the edge controllability show that the interaction strength among edges plays a more important role than network structure. Therefore, we focus on the effect of interaction strength on the robustness of edge controllability. Using three categories of all edges to quantify the robustness, we develop a universal framework to evaluate and analyze the robustness in complex networks with arbitrary structures and interaction strengths. Applying our framework to a large number of model and real-world networks, we find that the interaction strength is a dominant factor for the robustness in undirected networks. Meanwhile, the strongest robustness and the optimal edge controllability in undirected networks can be achieved simultaneously. Different from the case of undirected networks, the robustness in directed networks is determined jointly by the interaction strength and the network's degree distribution. Moreover, a stronger robustness is usually associated with a larger number of driver nodes required to maintain full control in directed networks. This prompts us to provide an optimization method by adjusting the interaction strength to optimize the robustness of edge controllability.

  10. Microbial Community Metabolic Modeling: A Community Data-Driven Network Reconstruction: COMMUNITY DATA-DRIVEN METABOLIC NETWORK MODELING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, Christopher S.; Bernstein, Hans C.; Weisenhorn, Pamela

    Metabolic network modeling of microbial communities provides an in-depth understanding of community-wide metabolic and regulatory processes. Compared to single organism analyses, community metabolic network modeling is more complex because it needs to account for interspecies interactions. To date, most approaches focus on reconstruction of high-quality individual networks so that, when combined, they can predict community behaviors as a result of interspecies interactions. However, this conventional method becomes ineffective for communities whose members are not well characterized and cannot be experimentally interrogated in isolation. Here, we tested a new approach that uses community-level data as a critical input for the networkmore » reconstruction process. This method focuses on directly predicting interspecies metabolic interactions in a community, when axenic information is insufficient. We validated our method through the case study of a bacterial photoautotroph-heterotroph consortium that was used to provide data needed for a community-level metabolic network reconstruction. Resulting simulations provided experimentally validated predictions of how a photoautotrophic cyanobacterium supports the growth of an obligate heterotrophic species by providing organic carbon and nitrogen sources.« less

  11. "Looking out for each other": a qualitative study on the role of social network interactions in asthma management among adult Latino patients presenting to an emergency department.

    PubMed

    Pai, Sucheta; Boutin-Foster, Carla; Mancuso, Carol A; Loganathan, Raghu; Basir, Riyad; Kanna, Balavenkatesh

    2014-09-01

    The objective of this study was to identify the types of interactions between asthma patients and their social networks such as close family and friends that influence the management of asthma. Participants were Latino adults presenting for a repeat visit to the emergency department for asthma treatment. Qualitative interviews were conducted with 76 participants. They were asked to describe the experiences of their social networks that have asthma and how interactions with these individuals influenced their own asthma management. Responses were transcribed and analyzed using Grounded Theory as a qualitative analytic approach. Responses were assigned codes; similar codes were grouped into concepts and then categorized to form overarching themes. Four themes emerged: (1) Perceptions of severity of asthma may be based on the experiences of social networks; (2) Economic factors may contribute to the sharing and borrowing of asthma medications between patients and their social networks; (3) Economic factors may contribute to using home remedies instead of prescribed medications; (4) Social network members may be unaware of the factors that trigger asthma and therefore, contribute to asthma exacerbations. This study identified important social network interactions that may impact asthma management in Latino adults. These results can be used to broaden the current focus of asthma self-management programs to incorporate discussions on the role of social networks. A focus on social network interactions addresses the social epidemiology of asthma and advances our understanding of root causes that may underlie the high prevalence of asthma in many Latino communities.

  12. “Guilt by Association” Is the Exception Rather Than the Rule in Gene Networks

    PubMed Central

    Gillis, Jesse; Pavlidis, Paul

    2012-01-01

    Gene networks are commonly interpreted as encoding functional information in their connections. An extensively validated principle called guilt by association states that genes which are associated or interacting are more likely to share function. Guilt by association provides the central top-down principle for analyzing gene networks in functional terms or assessing their quality in encoding functional information. In this work, we show that functional information within gene networks is typically concentrated in only a very few interactions whose properties cannot be reliably related to the rest of the network. In effect, the apparent encoding of function within networks has been largely driven by outliers whose behaviour cannot even be generalized to individual genes, let alone to the network at large. While experimentalist-driven analysis of interactions may use prior expert knowledge to focus on the small fraction of critically important data, large-scale computational analyses have typically assumed that high-performance cross-validation in a network is due to a generalizable encoding of function. Because we find that gene function is not systemically encoded in networks, but dependent on specific and critical interactions, we conclude it is necessary to focus on the details of how networks encode function and what information computational analyses use to extract functional meaning. We explore a number of consequences of this and find that network structure itself provides clues as to which connections are critical and that systemic properties, such as scale-free-like behaviour, do not map onto the functional connectivity within networks. PMID:22479173

  13. Dynamic Network-Based Epistasis Analysis: Boolean Examples

    PubMed Central

    Azpeitia, Eugenio; Benítez, Mariana; Padilla-Longoria, Pablo; Espinosa-Soto, Carlos; Alvarez-Buylla, Elena R.

    2011-01-01

    In this article we focus on how the hierarchical and single-path assumptions of epistasis analysis can bias the inference of gene regulatory networks. Here we emphasize the critical importance of dynamic analyses, and specifically illustrate the use of Boolean network models. Epistasis in a broad sense refers to gene interactions, however, as originally proposed by Bateson, epistasis is defined as the blocking of a particular allelic effect due to the effect of another allele at a different locus (herein, classical epistasis). Classical epistasis analysis has proven powerful and useful, allowing researchers to infer and assign directionality to gene interactions. As larger data sets are becoming available, the analysis of classical epistasis is being complemented with computer science tools and system biology approaches. We show that when the hierarchical and single-path assumptions are not met in classical epistasis analysis, the access to relevant information and the correct inference of gene interaction topologies is hindered, and it becomes necessary to consider the temporal dynamics of gene interactions. The use of dynamical networks can overcome these limitations. We particularly focus on the use of Boolean networks that, like classical epistasis analysis, relies on logical formalisms, and hence can complement classical epistasis analysis and relax its assumptions. We develop a couple of theoretical examples and analyze them from a dynamic Boolean network model perspective. Boolean networks could help to guide additional experiments and discern among alternative regulatory schemes that would be impossible or difficult to infer without the elimination of these assumption from the classical epistasis analysis. We also use examples from the literature to show how a Boolean network-based approach has resolved ambiguities and guided epistasis analysis. Our article complements previous accounts, not only by focusing on the implications of the hierarchical and single-path assumption, but also by demonstrating the importance of considering temporal dynamics, and specifically introducing the usefulness of Boolean network models and also reviewing some key properties of network approaches. PMID:22645556

  14. Exploring Classroom Interaction with Dynamic Social Network Analysis

    ERIC Educational Resources Information Center

    Bokhove, Christian

    2018-01-01

    This article reports on an exploratory project in which technology and dynamic social network analysis (SNA) are used for modelling classroom interaction. SNA focuses on the links between social actors, draws on graphic imagery to reveal and display the patterning of those links, and develops mathematical and computational models to describe and…

  15. Non-criticality of interaction network over system's crises: A percolation analysis.

    PubMed

    Shirazi, Amir Hossein; Saberi, Abbas Ali; Hosseiny, Ali; Amirzadeh, Ehsan; Toranj Simin, Pourya

    2017-11-20

    Extraction of interaction networks from multi-variate time-series is one of the topics of broad interest in complex systems. Although this method has a wide range of applications, most of the previous analyses have focused on the pairwise relations. Here we establish the potential of such a method to elicit aggregated behavior of the system by making a connection with the concepts from percolation theory. We study the dynamical interaction networks of a financial market extracted from the correlation network of indices, and build a weighted network. In correspondence with the percolation model, we find that away from financial crises the interaction network behaves like a critical random network of Erdős-Rényi, while close to a financial crisis, our model deviates from the critical random network and behaves differently at different size scales. We perform further analysis to clarify that our observation is not a simple consequence of the growth in correlations over the crises.

  16. Disentangling the co-structure of multilayer interaction networks: degree distribution and module composition in two-layer bipartite networks.

    PubMed

    Astegiano, Julia; Altermatt, Florian; Massol, François

    2017-11-13

    Species establish different interactions (e.g. antagonistic, mutualistic) with multiple species, forming multilayer ecological networks. Disentangling network co-structure in multilayer networks is crucial to predict how biodiversity loss may affect the persistence of multispecies assemblages. Existing methods to analyse multilayer networks often fail to consider network co-structure. We present a new method to evaluate the modular co-structure of multilayer networks through the assessment of species degree co-distribution and network module composition. We focus on modular structure because of its high prevalence among ecological networks. We apply our method to two Lepidoptera-plant networks, one describing caterpillar-plant herbivory interactions and one representing adult Lepidoptera nectaring on flowers, thereby possibly pollinating them. More than 50% of the species established either herbivory or visitation interactions, but not both. These species were over-represented among plants and lepidopterans, and were present in most modules in both networks. Similarity in module composition between networks was high but not different from random expectations. Our method clearly delineates the importance of interpreting multilayer module composition similarity in the light of the constraints imposed by network structure to predict the potential indirect effects of species loss through interconnected modular networks.

  17. Complexity of generic biochemical circuits: topology versus strength of interactions.

    PubMed

    Tikhonov, Mikhail; Bialek, William

    2016-12-06

    The historical focus on network topology as a determinant of biological function is still largely maintained today, illustrated by the rise of structure-only approaches to network analysis. However, biochemical circuits and genetic regulatory networks are defined both by their topology and by a multitude of continuously adjustable parameters, such as the strength of interactions between nodes, also recognized as important. Here we present a class of simple perceptron-based Boolean models within which comparing the relative importance of topology versus interaction strengths becomes a quantitatively well-posed problem. We quantify the intuition that for generic networks, optimization of interaction strengths is a crucial ingredient of achieving high complexity, defined here as the number of fixed points the network can accommodate. We propose a new methodology for characterizing the relative role of parameter optimization for topologies of a given class.

  18. BIND: the Biomolecular Interaction Network Database

    PubMed Central

    Bader, Gary D.; Betel, Doron; Hogue, Christopher W. V.

    2003-01-01

    The Biomolecular Interaction Network Database (BIND: http://bind.ca) archives biomolecular interaction, complex and pathway information. A web-based system is available to query, view and submit records. BIND continues to grow with the addition of individual submissions as well as interaction data from the PDB and a number of large-scale interaction and complex mapping experiments using yeast two hybrid, mass spectrometry, genetic interactions and phage display. We have developed a new graphical analysis tool that provides users with a view of the domain composition of proteins in interaction and complex records to help relate functional domains to protein interactions. An interaction network clustering tool has also been developed to help focus on regions of interest. Continued input from users has helped further mature the BIND data specification, which now includes the ability to store detailed information about genetic interactions. The BIND data specification is available as ASN.1 and XML DTD. PMID:12519993

  19. Statistical Mechanics of Temporal and Interacting Networks

    NASA Astrophysics Data System (ADS)

    Zhao, Kun

    In the last ten years important breakthroughs in the understanding of the topology of complexity have been made in the framework of network science. Indeed it has been found that many networks belong to the universality classes called small-world networks or scale-free networks. Moreover it was found that the complex architecture of real world networks strongly affects the critical phenomena defined on these structures. Nevertheless the main focus of the research has been the characterization of single and static networks. Recently, temporal networks and interacting networks have attracted large interest. Indeed many networks are interacting or formed by a multilayer structure. Example of these networks are found in social networks where an individual might be at the same time part of different social networks, in economic and financial networks, in physiology or in infrastructure systems. Moreover, many networks are temporal, i.e. the links appear and disappear on the fast time scale. Examples of these networks are social networks of contacts such as face-to-face interactions or mobile-phone communication, the time-dependent correlations in the brain activity and etc. Understanding the evolution of temporal and multilayer networks and characterizing critical phenomena in these systems is crucial if we want to describe, predict and control the dynamics of complex system. In this thesis, we investigate several statistical mechanics models of temporal and interacting networks, to shed light on the dynamics of this new generation of complex networks. First, we investigate a model of temporal social networks aimed at characterizing human social interactions such as face-to-face interactions and phone-call communication. Indeed thanks to the availability of data on these interactions, we are now in the position to compare the proposed model to the real data finding good agreement. Second, we investigate the entropy of temporal networks and growing networks , to provide a new framework to quantify the information encoded in these networks and to answer a fundamental problem in network science: how complex are temporal and growing networks. Finally, we consider two examples of critical phenomena in interacting networks. In particular, on one side we investigate the percolation of interacting networks by introducing antagonistic interactions. On the other side, we investigate a model of political election based on the percolation of antagonistic networks. The aim of this research is to show how antagonistic interactions change the physics of critical phenomena on interacting networks. We believe that the work presented in these thesis offers the possibility to appreciate the large variability of problems that can be addressed in the new framework of temporal and interacting networks.

  20. Successful strategies for competing networks

    NASA Astrophysics Data System (ADS)

    Aguirre, J.; Papo, D.; Buldú, J. M.

    2013-04-01

    Competitive interactions represent one of the driving forces behind evolution and natural selection in biological and sociological systems. For example, animals in an ecosystem may vie for food or mates; in a market economy, firms may compete over the same group of customers; sensory stimuli may compete for limited neural resources to enter the focus of attention. Here, we derive rules based on the spectral properties of the network governing the competitive interactions between groups of agents organized in networks. In the scenario studied here the winner of the competition, and the time needed to prevail, essentially depend on the way a given network connects to its competitors and on its internal structure. Our results allow assessment of the extent to which real networks optimize the outcome of their interaction, but also provide strategies through which competing networks can improve on their situation. The proposed approach is applicable to a wide range of systems that can be modelled as networks.

  1. Transfer of Training: Adding Insight through Social Network Analysis

    ERIC Educational Resources Information Center

    Van den Bossche, Piet; Segers, Mien

    2013-01-01

    This article reviews studies which apply a social network perspective to examine transfer of training. The theory behind social networks focuses on the interpersonal mechanisms and social structures that exist among interacting units such as people within an organization. A premise of this perspective is that individual's behaviors and outcomes…

  2. Teaching Heat Exchanger Network Synthesis Using Interactive Microcomputer Graphics.

    ERIC Educational Resources Information Center

    Dixon, Anthony G.

    1987-01-01

    Describes the Heat Exchanger Network Synthesis (HENS) program used at Worcester Polytechnic Institute (Massachusetts) as an aid to teaching the energy integration step in process design. Focuses on the benefits of the computer graphics used in the program to increase the speed of generating and changing networks. (TW)

  3. Nectar robbery by a hermit hummingbird: association to floral phenotype and its influence on flowers and network structure.

    PubMed

    Maruyama, Pietro Kiyoshi; Vizentin-Bugoni, Jeferson; Dalsgaard, Bo; Sazima, Ivan; Sazima, Marlies

    2015-07-01

    Interactions between flowers and their visitors span the spectrum from mutualism to antagonism. The literature is rich in studies focusing on mutualism, but nectar robbery has mostly been investigated using phytocentric approaches focused on only a few plant species. To fill this gap, we studied the interactions between a nectar-robbing hermit hummingbird, Phaethornis ruber, and the array of flowers it visits. First, based on a literature review of the interactions involving P. ruber, we characterized the association of floral larceny to floral phenotype. We then experimentally examined the effects of nectar robbing on nectar standing crop and number of visits of the pollinators to the flowers of Canna paniculata. Finally, we asked whether the incorporation of illegitimate interactions into the analysis affects plant-hummingbird network structure. We identified 97 plant species visited by P. ruber and found that P. ruber engaged in floral larceny in almost 30% of these species. Nectar robbery was especially common in flowers with longer corolla. In terms of the effect on C. paniculata, the depletion of nectar due to robbery by P. ruber was associated with decreased visitation rates of legitimate pollinators. At the community level, the inclusion of the illegitimate visits of P. ruber resulted in modifications of how modules within the network were organized, notably giving rise to a new module consisting of P. ruber and mostly robbed flowers. However, although illegitimate visits constituted approximately 9% of all interactions in the network, changes in nestedness, modularity, and network-level specialization were minor. Our results indicate that although a flower robber may have a strong effect on the pollination of a particular plant species, the inclusion of its illegitimate interactions has limited capacity to change overall network structure.

  4. Metabolic Network Modeling for Computer-Aided Design of Microbial Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Hyun-Seob; Nelson, William C.; Lee, Joon-Yong

    Interest in applying microbial communities to biotechnology continues to increase. Successful engineering of microbial communities requires a fundamental shift in focus from enhancing metabolic capabilities in individual organisms to promoting synergistic interspecies interactions. This goal necessitates in silico tools that provide a predictive understanding of how microorganisms interact with each other and their environments. In this regard, we highlight a need for a new concept that we have termed biological computer-aided design of interactions (BioCADi). We ground this discussion within the context of metabolic network modeling.

  5. Construction of ontology augmented networks for protein complex prediction.

    PubMed

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian

    2013-01-01

    Protein complexes are of great importance in understanding the principles of cellular organization and function. The increase in available protein-protein interaction data, gene ontology and other resources make it possible to develop computational methods for protein complex prediction. Most existing methods focus mainly on the topological structure of protein-protein interaction networks, and largely ignore the gene ontology annotation information. In this article, we constructed ontology augmented networks with protein-protein interaction data and gene ontology, which effectively unified the topological structure of protein-protein interaction networks and the similarity of gene ontology annotations into unified distance measures. After constructing ontology augmented networks, a novel method (clustering based on ontology augmented networks) was proposed to predict protein complexes, which was capable of taking into account the topological structure of the protein-protein interaction network, as well as the similarity of gene ontology annotations. Our method was applied to two different yeast protein-protein interaction datasets and predicted many well-known complexes. The experimental results showed that (i) ontology augmented networks and the unified distance measure can effectively combine the structure closeness and gene ontology annotation similarity; (ii) our method is valuable in predicting protein complexes and has higher F1 and accuracy compared to other competing methods.

  6. Hurry Up and "Like" Me: Immediate Feedback on Social Networking Sites and the Impact on Adolescent Girls

    ERIC Educational Resources Information Center

    Jong, Stephanie T.; Drummond, Murray J. N.

    2016-01-01

    At an age identified as the period with the most intense focus on appearance, and where young girls are establishing their identity, it appears that social networking site (SNS) interactions are playing a pivotal role in determining what is, and what is not, socially endorsed. This paper draws on data obtained during five separate focus group…

  7. Network Analysis Reveals a Common Host-Pathogen Interaction Pattern in Arabidopsis Immune Responses.

    PubMed

    Li, Hong; Zhou, Yuan; Zhang, Ziding

    2017-01-01

    Many plant pathogens secrete virulence effectors into host cells to target important proteins in host cellular network. However, the dynamic interactions between effectors and host cellular network have not been fully understood. Here, an integrative network analysis was conducted by combining Arabidopsis thaliana protein-protein interaction network, known targets of Pseudomonas syringae and Hyaloperonospora arabidopsidis effectors, and gene expression profiles in the immune response. In particular, we focused on the characteristic network topology of the effector targets and differentially expressed genes (DEGs). We found that effectors tended to manipulate key network positions with higher betweenness centrality. The effector targets, especially those that are common targets of an individual effector, tended to be clustered together in the network. Moreover, the distances between the effector targets and DEGs increased over time during infection. In line with this observation, pathogen-susceptible mutants tended to have more DEGs surrounding the effector targets compared with resistant mutants. Our results suggest a common plant-pathogen interaction pattern at the cellular network level, where pathogens employ potent local impact mode to interfere with key positions in the host network, and plant organizes an in-depth defense by sequentially activating genes distal to the effector targets.

  8. Social networks dynamics revealed by temporal analysis: An example in a non-human primate (Macaca sylvanus) in "La Forêt des Singes".

    PubMed

    Sosa, Sebastian; Zhang, Peng; Cabanes, Guénaël

    2017-06-01

    This study applied a temporal social network analysis model to describe three affiliative social networks (allogrooming, sleep in contact, and triadic interaction) in a non-human primate species, Macaca sylvanus. Three main social mechanisms were examined to determine interactional patterns among group members, namely preferential attachment (i.e., highly connected individuals are more likely to form new connections), triadic closure (new connections occur via previous close connections), and homophily (individuals interact preferably with others with similar attributes). Preferential attachment was only observed for triadic interaction network. Triadic closure was significant in allogrooming and triadic interaction networks. Finally, gender homophily was seasonal for allogrooming and sleep in contact networks, and observed in each period for triadic interaction network. These individual-based behaviors are based on individual reactions, and their analysis can shed light on the formation of the affiliative networks determining ultimate coalition networks, and how these networks may evolve over time. A focus on individual behaviors is necessary for a global interactional approach to understanding social behavior rules and strategies. When combined, these social processes could make animal social networks more resilient, thus enabling them to face drastic environmental changes. This is the first study to pinpoint some of the processes underlying the formation of a social structure in a non-human primate species, and identify common mechanisms with humans. The approach used in this study provides an ideal tool for further research seeking to answer long-standing questions about social network dynamics. © 2017 Wiley Periodicals, Inc.

  9. Multi-focus and multi-level techniques for visualization and analysis of networks with thematic data

    NASA Astrophysics Data System (ADS)

    Cossalter, Michele; Mengshoel, Ole J.; Selker, Ted

    2013-01-01

    Information-rich data sets bring several challenges in the areas of visualization and analysis, even when associated with node-link network visualizations. This paper presents an integration of multi-focus and multi-level techniques that enable interactive, multi-step comparisons in node-link networks. We describe NetEx, a visualization tool that enables users to simultaneously explore different parts of a network and its thematic data, such as time series or conditional probability tables. NetEx, implemented as a Cytoscape plug-in, has been applied to the analysis of electrical power networks, Bayesian networks, and the Enron e-mail repository. In this paper we briefly discuss visualization and analysis of the Enron social network, but focus on data from an electrical power network. Specifically, we demonstrate how NetEx supports the analytical task of electrical power system fault diagnosis. Results from a user study with 25 subjects suggest that NetEx enables more accurate isolation of complex faults compared to an especially designed software tool.

  10. Control networks and hubs.

    PubMed

    Gratton, Caterina; Sun, Haoxin; Petersen, Steven E

    2018-03-01

    Executive control functions are associated with frontal, parietal, cingulate, and insular brain regions that interact through distributed large-scale networks. Here, we discuss how fMRI functional connectivity can shed light on the organization of control networks and how they interact with other parts of the brain. In the first section of our review, we present convergent evidence from fMRI functional connectivity, activation, and lesion studies that there are multiple dissociable control networks in the brain with distinct functional properties. In the second section, we discuss how graph theoretical concepts can help illuminate the mechanisms by which control networks interact with other brain regions to carry out goal-directed functions, focusing on the role of specialized hub regions for mediating cross-network interactions. Again, we use a combination of functional connectivity, lesion, and task activation studies to bolster this claim. We conclude that a large-scale network perspective provides important neurobiological constraints on the neural underpinnings of executive control, which will guide future basic and translational research into executive function and its disruption in disease. © 2017 Society for Psychophysiological Research.

  11. [Networks and genesis of living beings: epistemologic perspectives].

    PubMed

    Perru, Olivier

    2007-01-01

    Our paper focuses on Stuart Kauffman's theory from 1993 to 2004. Kauffman is looking for an explanation of the genesis of living beings by genetic networks. From interactions to cell types, Kauffman's viewpoint is concerned with differentiation and self-organization as network's properties. His approach of morphogenetic processes is interesting but it is insufficient. According to Sole, Fernandez and Kauffman [2003], networks would give an explanation of the diversity in patterns and cell types. Some other authors [as Perkins et al., 2004] consider that it is necessary to explore interactions, not with logical methods only, but non-linear systems too. Network's structure is related to biological diversity. It supposes genes' power's mediators within the cells and between them.

  12. Investigating Patterns of Interaction in Networked Learning and Computer-Supported Collaborative Learning: A Role for Social Network Analysis

    ERIC Educational Resources Information Center

    de Laat, Maarten; Lally, Vic; Lipponen, Lasse; Simons, Robert-Jan

    2007-01-01

    The focus of this study is to explore the advances that Social Network Analysis (SNA) can bring, in combination with other methods, when studying Networked Learning/Computer-Supported Collaborative Learning (NL/CSCL). We present a general overview of how SNA is applied in NL/CSCL research; we then go on to illustrate how this research method can…

  13. Congestion relaxation due to density-dependent junction rules in TASEP network

    NASA Astrophysics Data System (ADS)

    Tannai, Takahiro; Nishinari, Katsuhiro

    2017-09-01

    We now consider a small network module of Totally Asymmetric Simple Exclusion Process with branching and aggregation points, and rules of junctions dependent on the densities of segments of the network module. We also focus on the interaction among junctions which are branching and aggregation. The interaction among junctions with density-dependent rules possesses more complexity than those with density-independent rules studied in the previous papers. In conclusion, we confirm the result that density-dependent rules enable vehicles to move more effectively than the density-independent rules.

  14. GENOME-WIDE GENETIC INTERACTION ANALYSIS OF GLAUCOMA USING EXPERT KNOWLEDGE DERIVED FROM HUMAN PHENOTYPE NETWORKS

    PubMed Central

    HU, TING; DARABOS, CHRISTIAN; CRICCO, MARIA E.; KONG, EMILY; MOORE, JASON H.

    2014-01-01

    The large volume of GWAS data poses great computational challenges for analyzing genetic interactions associated with common human diseases. We propose a computational framework for characterizing epistatic interactions among large sets of genetic attributes in GWAS data. We build the human phenotype network (HPN) and focus around a disease of interest. In this study, we use the GLAUGEN glaucoma GWAS dataset and apply the HPN as a biological knowledge-based filter to prioritize genetic variants. Then, we use the statistical epistasis network (SEN) to identify a significant connected network of pairwise epistatic interactions among the prioritized SNPs. These clearly highlight the complex genetic basis of glaucoma. Furthermore, we identify key SNPs by quantifying structural network characteristics. Through functional annotation of these key SNPs using Biofilter, a software accessing multiple publicly available human genetic data sources, we find supporting biomedical evidences linking glaucoma to an array of genetic diseases, proving our concept. We conclude by suggesting hypotheses for a better understanding of the disease. PMID:25592582

  15. Effects of training strategies implemented in a complex videogame on functional connectivity of attentional networks.

    PubMed

    Voss, Michelle W; Prakash, Ruchika Shaurya; Erickson, Kirk I; Boot, Walter R; Basak, Chandramallika; Neider, Mark B; Simons, Daniel J; Fabiani, Monica; Gratton, Gabriele; Kramer, Arthur F

    2012-01-02

    We used the Space Fortress videogame, originally developed by cognitive psychologists to study skill acquisition, as a platform to examine learning-induced plasticity of interacting brain networks. Novice videogame players learned Space Fortress using one of two training strategies: (a) focus on all aspects of the game during learning (fixed priority), or (b) focus on improving separate game components in the context of the whole game (variable priority). Participants were scanned during game play using functional magnetic resonance imaging (fMRI), both before and after 20 h of training. As expected, variable priority training enhanced learning, particularly for individuals who initially performed poorly. Functional connectivity analysis revealed changes in brain network interaction reflective of more flexible skill learning and retrieval with variable priority training, compared to procedural learning and skill implementation with fixed priority training. These results provide the first evidence for differences in the interaction of large-scale brain networks when learning with different training strategies. Our approach and findings also provide a foundation for exploring the brain plasticity involved in transfer of trained abilities to novel real-world tasks such as driving, sport, or neurorehabilitation. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Multidimensional Homophily in Friendship Networks1

    PubMed Central

    Block, Per; Grund, Thomas

    2014-01-01

    Homophily – the tendency for individuals to associate with similar others – is one of the most persistent findings in social network analysis. Its importance is established along the lines of a multitude of sociologically relevant dimensions, e.g. sex, ethnicity and social class. Existing research, however, mostly focuses on one dimension at a time. But people are inherently multidimensional, have many attributes and are members of multiple groups. In this article, we explore such multidimensionality further in the context of network dynamics. Are friendship ties increasingly likely to emerge and persist when individuals have an increasing number of attributes in common? We analyze eleven friendship networks of adolescents, draw on stochastic actor-oriented network models and focus on the interaction of established homophily effects. Our results indicate that main effects for homophily on various dimensions are positive. At the same time, the interaction of these homophily effects is negative. There seems to be a diminishing effect for having more than one attribute in common. We conclude that studies of homophily and friendship formation need to address such multidimensionality further. PMID:25525503

  17. Systematic identification of an integrative network module during senescence from time-series gene expression.

    PubMed

    Park, Chihyun; Yun, So Jeong; Ryu, Sung Jin; Lee, Soyoung; Lee, Young-Sam; Yoon, Youngmi; Park, Sang Chul

    2017-03-15

    Cellular senescence irreversibly arrests growth of human diploid cells. In addition, recent studies have indicated that senescence is a multi-step evolving process related to important complex biological processes. Most studies analyzed only the genes and their functions representing each senescence phase without considering gene-level interactions and continuously perturbed genes. It is necessary to reveal the genotypic mechanism inferred by affected genes and their interaction underlying the senescence process. We suggested a novel computational approach to identify an integrative network which profiles an underlying genotypic signature from time-series gene expression data. The relatively perturbed genes were selected for each time point based on the proposed scoring measure denominated as perturbation scores. Then, the selected genes were integrated with protein-protein interactions to construct time point specific network. From these constructed networks, the conserved edges across time point were extracted for the common network and statistical test was performed to demonstrate that the network could explain the phenotypic alteration. As a result, it was confirmed that the difference of average perturbation scores of common networks at both two time points could explain the phenotypic alteration. We also performed functional enrichment on the common network and identified high association with phenotypic alteration. Remarkably, we observed that the identified cell cycle specific common network played an important role in replicative senescence as a key regulator. Heretofore, the network analysis from time series gene expression data has been focused on what topological structure was changed over time point. Conversely, we focused on the conserved structure but its context was changed in course of time and showed it was available to explain the phenotypic changes. We expect that the proposed method will help to elucidate the biological mechanism unrevealed by the existing approaches.

  18. Pattern Analysis in Social Networks with Dynamic Connections

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Zhang, Yu

    In this paper, we explore how decentralized local interactions of autonomous agents in a network relate to collective behaviors. Most existing work in this area models social network in which agent relations are fixed; instead, we focus on dynamic social networks where agents can rationally adjust their neighborhoods based on their individual interests. We propose a new connection evaluation rule called the Highest Weighted Reward (HWR) rule, with which agents dynamically choose their neighbors in order to maximize their own utilities based on the rewards from previous interactions. Our experiments show that in the 2-action pure coordination game, our system will stabilize to a clustering state where all relationships in the network are rewarded with the optimal payoff. Our experiments also reveal additional interesting patterns in the network.

  19. The use of network theory to model disparate ship design information

    NASA Astrophysics Data System (ADS)

    Rigterink, Douglas; Piks, Rebecca; Singer, David J.

    2014-06-01

    This paper introduces the use of network theory to model and analyze disparate ship design information. This work will focus on a ship's distributed systems and their intra- and intersystem structures and interactions. The three system to be analyzed are: a passageway system, an electrical system, and a fire fighting system. These systems will be analyzed individually using common network metrics to glean information regarding their structures and attributes. The systems will also be subjected to community detection algorithms both separately and as a multiplex network to compare their similarities, differences, and interactions. Network theory will be shown to be useful in the early design stage due to its simplicity and ability to model any shipboard system.

  20. Network representations of immune system complexity

    PubMed Central

    Subramanian, Naeha; Torabi-Parizi, Parizad; Gottschalk, Rachel A.; Germain, Ronald N.; Dutta, Bhaskar

    2015-01-01

    The mammalian immune system is a dynamic multi-scale system composed of a hierarchically organized set of molecular, cellular and organismal networks that act in concert to promote effective host defense. These networks range from those involving gene regulatory and protein-protein interactions underlying intracellular signaling pathways and single cell responses to increasingly complex networks of in vivo cellular interaction, positioning and migration that determine the overall immune response of an organism. Immunity is thus not the product of simple signaling events but rather non-linear behaviors arising from dynamic, feedback-regulated interactions among many components. One of the major goals of systems immunology is to quantitatively measure these complex multi-scale spatial and temporal interactions, permitting development of computational models that can be used to predict responses to perturbation. Recent technological advances permit collection of comprehensive datasets at multiple molecular and cellular levels while advances in network biology support representation of the relationships of components at each level as physical or functional interaction networks. The latter facilitate effective visualization of patterns and recognition of emergent properties arising from the many interactions of genes, molecules, and cells of the immune system. We illustrate the power of integrating ‘omics’ and network modeling approaches for unbiased reconstruction of signaling and transcriptional networks with a focus on applications involving the innate immune system. We further discuss future possibilities for reconstruction of increasingly complex cellular and organism-level networks and development of sophisticated computational tools for prediction of emergent immune behavior arising from the concerted action of these networks. PMID:25625853

  1. Know-Who? Linking Faculty's Networks to Stages of Instructional Development

    ERIC Educational Resources Information Center

    Van Waes, Sara; Van den Bossche, Piet; Moolenaar, Nienke M.; De Maeyer, Sven; Van Petegem, Peter

    2015-01-01

    Research into faculty members' instructional development has primarily focused on individual skills and knowledge. As collegial interactions may support or constrain faculty's professional development in higher education, this study compared and contrasted the networks of faculty members in different stages of instructional development (novice,…

  2. Using Social Network Measures in Wildlife Disease Ecology, Epidemiology, and Management

    PubMed Central

    Silk, Matthew J.; Croft, Darren P.; Delahay, Richard J.; Hodgson, David J.; Boots, Mike; Weber, Nicola; McDonald, Robbie A.

    2017-01-01

    Abstract Contact networks, behavioral interactions, and shared use of space can all have important implications for the spread of disease in animals. Social networks enable the quantification of complex patterns of interactions; therefore, network analysis is becoming increasingly widespread in the study of infectious disease in animals, including wildlife. We present an introductory guide to using social-network-analytical approaches in wildlife disease ecology, epidemiology, and management. We focus on providing detailed practical guidance for the use of basic descriptive network measures by suggesting the research questions to which each technique is best suited and detailing the software available for each. We also discuss how using network approaches can be used beyond the study of social contacts and across a range of spatial and temporal scales. Finally, we integrate these approaches to examine how network analysis can be used to inform the implementation and monitoring of effective disease management strategies. PMID:28596616

  3. International Students' Networks: A Case Study in a UK University

    ERIC Educational Resources Information Center

    Taha, Nashrawan; Cox, Andrew

    2016-01-01

    The great influx of international students into UK universities has led to internationalisation becoming an important issue. Previous studies have focused on the integration of home and international students, illustrating a lack of intercultural interaction. Yet there has been a lack of research investigating international students' networks and…

  4. System-level insights into the cellular interactome of a non-model organism: inferring, modelling and analysing functional gene network of soybean (Glycine max).

    PubMed

    Xu, Yungang; Guo, Maozu; Zou, Quan; Liu, Xiaoyan; Wang, Chunyu; Liu, Yang

    2014-01-01

    Cellular interactome, in which genes and/or their products interact on several levels, forming transcriptional regulatory-, protein interaction-, metabolic-, signal transduction networks, etc., has attracted decades of research focuses. However, such a specific type of network alone can hardly explain the various interactive activities among genes. These networks characterize different interaction relationships, implying their unique intrinsic properties and defects, and covering different slices of biological information. Functional gene network (FGN), a consolidated interaction network that models fuzzy and more generalized notion of gene-gene relations, have been proposed to combine heterogeneous networks with the goal of identifying functional modules supported by multiple interaction types. There are yet no successful precedents of FGNs on sparsely studied non-model organisms, such as soybean (Glycine max), due to the absence of sufficient heterogeneous interaction data. We present an alternative solution for inferring the FGNs of soybean (SoyFGNs), in a pioneering study on the soybean interactome, which is also applicable to other organisms. SoyFGNs exhibit the typical characteristics of biological networks: scale-free, small-world architecture and modularization. Verified by co-expression and KEGG pathways, SoyFGNs are more extensive and accurate than an orthology network derived from Arabidopsis. As a case study, network-guided disease-resistance gene discovery indicates that SoyFGNs can provide system-level studies on gene functions and interactions. This work suggests that inferring and modelling the interactome of a non-model plant are feasible. It will speed up the discovery and definition of the functions and interactions of other genes that control important functions, such as nitrogen fixation and protein or lipid synthesis. The efforts of the study are the basis of our further comprehensive studies on the soybean functional interactome at the genome and microRNome levels. Additionally, a web tool for information retrieval and analysis of SoyFGNs can be accessed at SoyFN: http://nclab.hit.edu.cn/SoyFN.

  5. System-Level Insights into the Cellular Interactome of a Non-Model Organism: Inferring, Modelling and Analysing Functional Gene Network of Soybean (Glycine max)

    PubMed Central

    Xu, Yungang; Guo, Maozu; Zou, Quan; Liu, Xiaoyan; Wang, Chunyu; Liu, Yang

    2014-01-01

    Cellular interactome, in which genes and/or their products interact on several levels, forming transcriptional regulatory-, protein interaction-, metabolic-, signal transduction networks, etc., has attracted decades of research focuses. However, such a specific type of network alone can hardly explain the various interactive activities among genes. These networks characterize different interaction relationships, implying their unique intrinsic properties and defects, and covering different slices of biological information. Functional gene network (FGN), a consolidated interaction network that models fuzzy and more generalized notion of gene-gene relations, have been proposed to combine heterogeneous networks with the goal of identifying functional modules supported by multiple interaction types. There are yet no successful precedents of FGNs on sparsely studied non-model organisms, such as soybean (Glycine max), due to the absence of sufficient heterogeneous interaction data. We present an alternative solution for inferring the FGNs of soybean (SoyFGNs), in a pioneering study on the soybean interactome, which is also applicable to other organisms. SoyFGNs exhibit the typical characteristics of biological networks: scale-free, small-world architecture and modularization. Verified by co-expression and KEGG pathways, SoyFGNs are more extensive and accurate than an orthology network derived from Arabidopsis. As a case study, network-guided disease-resistance gene discovery indicates that SoyFGNs can provide system-level studies on gene functions and interactions. This work suggests that inferring and modelling the interactome of a non-model plant are feasible. It will speed up the discovery and definition of the functions and interactions of other genes that control important functions, such as nitrogen fixation and protein or lipid synthesis. The efforts of the study are the basis of our further comprehensive studies on the soybean functional interactome at the genome and microRNome levels. Additionally, a web tool for information retrieval and analysis of SoyFGNs can be accessed at SoyFN: http://nclab.hit.edu.cn/SoyFN. PMID:25423109

  6. The assembly and disassembly of ecological networks.

    PubMed

    Bascompte, Jordi; Stouffer, Daniel B

    2009-06-27

    Global change has created a severe biodiversity crisis. Species are driven extinct at an increasing rate, and this has the potential to cause further coextinction cascades. The rate and shape of these coextinction cascades depend very much on the structure of the networks of interactions across species. Understanding network structure and how it relates to network disassembly, therefore, is a priority for system-level conservation biology. This process of network collapse may indeed be related to the process of network build-up, although very little is known about both processes and even less about their relationship. Here we review recent work that provides some preliminary answers to these questions. First, we focus on network assembly by emphasizing temporal processes at the species level, as well as the structural building blocks of complex ecological networks. Second, we focus on network disassembly as a consequence of species extinctions or habitat loss. We conclude by emphasizing some general rules of thumb that can help in building a comprehensive framework to understand the responses of ecological networks to global change.

  7. Integrated inference and evaluation of host–fungi interaction networks

    PubMed Central

    Remmele, Christian W.; Luther, Christian H.; Balkenhol, Johannes; Dandekar, Thomas; Müller, Tobias; Dittrich, Marcus T.

    2015-01-01

    Fungal microorganisms frequently lead to life-threatening infections. Within this group of pathogens, the commensal Candida albicans and the filamentous fungus Aspergillus fumigatus are by far the most important causes of invasive mycoses in Europe. A key capability for host invasion and immune response evasion are specific molecular interactions between the fungal pathogen and its human host. Experimentally validated knowledge about these crucial interactions is rare in literature and even specialized host–pathogen databases mainly focus on bacterial and viral interactions whereas information on fungi is still sparse. To establish large-scale host–fungi interaction networks on a systems biology scale, we develop an extended inference approach based on protein orthology and data on gene functions. Using human and yeast intraspecies networks as template, we derive a large network of pathogen–host interactions (PHI). Rigorous filtering and refinement steps based on cellular localization and pathogenicity information of predicted interactors yield a primary scaffold of fungi–human and fungi–mouse interaction networks. Specific enrichment of known pathogenicity-relevant genes indicates the biological relevance of the predicted PHI. A detailed inspection of functionally relevant subnetworks reveals novel host–fungal interaction candidates such as the Candida virulence factor PLB1 and the anti-fungal host protein APP. Our results demonstrate the applicability of interolog-based prediction methods for host–fungi interactions and underline the importance of filtering and refinement steps to attain biologically more relevant interactions. This integrated network framework can serve as a basis for future analyses of high-throughput host–fungi transcriptome and proteome data. PMID:26300851

  8. Network Penetration Testing and Research

    NASA Technical Reports Server (NTRS)

    Murphy, Brandon F.

    2013-01-01

    This paper will focus the on research and testing done on penetrating a network for security purposes. This research will provide the IT security office new methods of attacks across and against a company's network as well as introduce them to new platforms and software that can be used to better assist with protecting against such attacks. Throughout this paper testing and research has been done on two different Linux based operating systems, for attacking and compromising a Windows based host computer. Backtrack 5 and BlackBuntu (Linux based penetration testing operating systems) are two different "attacker'' computers that will attempt to plant viruses and or NASA USRP - Internship Final Report exploits on a host Windows 7 operating system, as well as try to retrieve information from the host. On each Linux OS (Backtrack 5 and BlackBuntu) there is penetration testing software which provides the necessary tools to create exploits that can compromise a windows system as well as other operating systems. This paper will focus on two main methods of deploying exploits 1 onto a host computer in order to retrieve information from a compromised system. One method of deployment for an exploit that was tested is known as a "social engineering" exploit. This type of method requires interaction from unsuspecting user. With this user interaction, a deployed exploit may allow a malicious user to gain access to the unsuspecting user's computer as well as the network that such computer is connected to. Due to more advance security setting and antivirus protection and detection, this method is easily identified and defended against. The second method of exploit deployment is the method mainly focused upon within this paper. This method required extensive research on the best way to compromise a security enabled protected network. Once a network has been compromised, then any and all devices connected to such network has the potential to be compromised as well. With a compromised network, computers and devices can be penetrated through deployed exploits. This paper will illustrate the research done to test ability to penetrate a network without user interaction, in order to retrieve personal information from a targeted host.

  9. Multirelational organization of large-scale social networks in an online world

    PubMed Central

    Szell, Michael; Lambiotte, Renaud; Thurner, Stefan

    2010-01-01

    The capacity to collect fingerprints of individuals in online media has revolutionized the way researchers explore human society. Social systems can be seen as a nonlinear superposition of a multitude of complex social networks, where nodes represent individuals and links capture a variety of different social relations. Much emphasis has been put on the network topology of social interactions, however, the multidimensional nature of these interactions has largely been ignored, mostly because of lack of data. Here, for the first time, we analyze a complete, multirelational, large social network of a society consisting of the 300,000 odd players of a massive multiplayer online game. We extract networks of six different types of one-to-one interactions between the players. Three of them carry a positive connotation (friendship, communication, trade), three a negative (enmity, armed aggression, punishment). We first analyze these types of networks as separate entities and find that negative interactions differ from positive interactions by their lower reciprocity, weaker clustering, and fatter-tail degree distribution. We then explore how the interdependence of different network types determines the organization of the social system. In particular, we study correlations and overlap between different types of links and demonstrate the tendency of individuals to play different roles in different networks. As a demonstration of the power of the approach, we present the first empirical large-scale verification of the long-standing structural balance theory, by focusing on the specific multiplex network of friendship and enmity relations. PMID:20643965

  10. Multirelational organization of large-scale social networks in an online world.

    PubMed

    Szell, Michael; Lambiotte, Renaud; Thurner, Stefan

    2010-08-03

    The capacity to collect fingerprints of individuals in online media has revolutionized the way researchers explore human society. Social systems can be seen as a nonlinear superposition of a multitude of complex social networks, where nodes represent individuals and links capture a variety of different social relations. Much emphasis has been put on the network topology of social interactions, however, the multidimensional nature of these interactions has largely been ignored, mostly because of lack of data. Here, for the first time, we analyze a complete, multirelational, large social network of a society consisting of the 300,000 odd players of a massive multiplayer online game. We extract networks of six different types of one-to-one interactions between the players. Three of them carry a positive connotation (friendship, communication, trade), three a negative (enmity, armed aggression, punishment). We first analyze these types of networks as separate entities and find that negative interactions differ from positive interactions by their lower reciprocity, weaker clustering, and fatter-tail degree distribution. We then explore how the interdependence of different network types determines the organization of the social system. In particular, we study correlations and overlap between different types of links and demonstrate the tendency of individuals to play different roles in different networks. As a demonstration of the power of the approach, we present the first empirical large-scale verification of the long-standing structural balance theory, by focusing on the specific multiplex network of friendship and enmity relations.

  11. Microbial interaction networks in soil and in silico

    NASA Astrophysics Data System (ADS)

    Vetsigian, Kalin

    2012-02-01

    Soil harbors a huge number of microbial species interacting through secretion of antibiotics and other chemicals. What patterns of species interactions allow for this astonishing biodiversity to be sustained, and how do these interactions evolve? I used a combined experimental-theoretical approach to tackle these questions. Focusing on bacteria from the genus Steptomyces, known for their diverse secondary metabolism, I isolated 64 natural strains from several individual grains of soil and systematically measured all pairwise interactions among them. Quantitative measurements on such scale were enabled by a novel experimental platform based on robotic handling, a custom scanner array and automatic image analysis. This unique platform allowed the simultaneous capturing of ˜15,000 time-lapse movies of growing colonies of each isolate on media conditioned by each of the other isolates. The data revealed a rich network of strong negative (inhibitory) and positive (stimulating) interactions. Analysis of this network and the phylogeny of the isolates, together with mathematical modeling of microbial communities, revealed that: 1) The network of interactions has three special properties: ``balance'', ``bi- modality'' and ``reciprocity''; 2) The interaction network is fast evolving; 3) Mathematical modeling explains how rapid evolution can give rise to the three special properties through an interplay between ecology and evolution. These properties are not a result of stable co-existence, but rather of continuous evolutionary turnover of strains with different production and resistance capabilities.

  12. Complex interactions among host pines and fungi vectored by an invasive bark beetle

    Treesearch

    Min Lu; Michael J. Wingfield; Nancy E. Gillette; Sylvia R. Mori; Jian-Hua Sun

    2010-01-01

    Recent studies have investigated the relationships between pairs or groups of exotic species to illustrate invasive mechanisms, but most have focused on interactions at a single trophic level.Here, we conducted pathogenicity tests, analyses of host volatiles and fungal growth tests to elucidate an intricate network of interactions between the host...

  13. Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms

    NASA Technical Reports Server (NTRS)

    Kurdila, Andrew J.; Sharpley, Robert C.

    1999-01-01

    This paper presents a final report on Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms. The focus of this research is to derive and implement: 1) Wavelet based methodologies for the compression, transmission, decoding, and visualization of three dimensional finite element geometry and simulation data in a network environment; 2) methodologies for interactive algorithm monitoring and tracking in computational mechanics; and 3) Methodologies for interactive algorithm steering for the acceleration of large scale finite element simulations. Also included in this report are appendices describing the derivation of wavelet based Particle Image Velocity algorithms and reduced order input-output models for nonlinear systems by utilizing wavelet approximations.

  14. Labeled Postings for Asynchronous Interaction

    ERIC Educational Resources Information Center

    ChanLin, Lih-Juan; Chen, Yong-Ting; Chan, Kung-Chi

    2009-01-01

    The Internet promotes computer-mediated communications, and so asynchronous learning network systems permit more flexibility in time, space, and interaction than synchronous mode of learning. The key point of asynchronous learning is the materials for web-aided teaching and the flow of knowledge. This research focuses on improving online…

  15. In silico prediction of protein-protein interactions in human macrophages

    PubMed Central

    2014-01-01

    Background Protein-protein interaction (PPI) network analyses are highly valuable in deciphering and understanding the intricate organisation of cellular functions. Nevertheless, the majority of available protein-protein interaction networks are context-less, i.e. without any reference to the spatial, temporal or physiological conditions in which the interactions may occur. In this work, we are proposing a protocol to infer the most likely protein-protein interaction (PPI) network in human macrophages. Results We integrated the PPI dataset from the Agile Protein Interaction DataAnalyzer (APID) with different meta-data to infer a contextualized macrophage-specific interactome using a combination of statistical methods. The obtained interactome is enriched in experimentally verified interactions and in proteins involved in macrophage-related biological processes (i.e. immune response activation, regulation of apoptosis). As a case study, we used the contextualized interactome to highlight the cellular processes induced upon Mycobacterium tuberculosis infection. Conclusion Our work confirms that contextualizing interactomes improves the biological significance of bioinformatic analyses. More specifically, studying such inferred network rather than focusing at the gene expression level only, is informative on the processes involved in the host response. Indeed, important immune features such as apoptosis are solely highlighted when the spotlight is on the protein interaction level. PMID:24636261

  16. The default network and self-generated thought: component processes, dynamic control, and clinical relevance

    PubMed Central

    Andrews-Hanna, Jessica R.; Smallwood, Jonathan; Spreng, R. Nathan

    2014-01-01

    Though only a decade has elapsed since the default network was first emphasized as being a large-scale brain system, recent years have brought great insight into the network’s adaptive functions. A growing theme highlights the default network as playing a key role in internally-directed—or self-generated—thought. Here, we synthesize recent findings from cognitive science, neuroscience, and clinical psychology to focus attention on two emerging topics as current and future directions surrounding the default network. First, we present evidence that self-generated thought is a multi-faceted construct whose component processes are supported by different subsystems within the network. Second, we highlight the dynamic nature of the default network, emphasizing its interaction with executive control systems when regulating aspects of internal thought. We conclude by discussing clinical implications of disruptions to the integrity of the network, and consider disorders when thought content becomes polarized or network interactions become disrupted or imbalanced. PMID:24502540

  17. Algorithm to Identify Frequent Coupled Modules from Two-Layered Network Series: Application to Study Transcription and Splicing Coupling

    PubMed Central

    Li, Wenyuan; Dai, Chao; Liu, Chun-Chi

    2012-01-01

    Abstract Current network analysis methods all focus on one or multiple networks of the same type. However, cells are organized by multi-layer networks (e.g., transcriptional regulatory networks, splicing regulatory networks, protein-protein interaction networks), which interact and influence each other. Elucidating the coupling mechanisms among those different types of networks is essential in understanding the functions and mechanisms of cellular activities. In this article, we developed the first computational method for pattern mining across many two-layered graphs, with the two layers representing different types yet coupled biological networks. We formulated the problem of identifying frequent coupled clusters between the two layers of networks into a tensor-based computation problem, and proposed an efficient solution to solve the problem. We applied the method to 38 two-layered co-transcription and co-splicing networks, derived from 38 RNA-seq datasets. With the identified atlas of coupled transcription-splicing modules, we explored to what extent, for which cellular functions, and by what mechanisms transcription-splicing coupling takes place. PMID:22697243

  18. An Analysis of Chemical Ingredients Network of Chinese Herbal Formulae for the Treatment of Coronary Heart Disease

    PubMed Central

    Ding, Fan; Zhang, Qianru; Ung, Carolina Oi Lam; Wang, Yitao; Han, Yifan; Hu, Yuanjia; Qi, Jin

    2015-01-01

    As a complex system, the complicated interactions between chemical ingredients, as well as the potential rules of interactive associations among chemical ingredients of traditional Chinese herbal formulae are not yet fully understood by modern science. On the other hand, network analysis is emerging as a powerful approach focusing on processing complex interactive data. By employing network approach in selected Chinese herbal formulae for the treatment of coronary heart disease (CHD), this article aims to construct and analyze chemical ingredients network of herbal formulae, and provide candidate herbs, chemical constituents, and ingredient groups for further investigation. As a result, chemical ingredients network composed of 1588 ingredients from 36 herbs used in 8 core formulae for the treatment of CHD was produced based on combination associations in herbal formulae. In this network, 9 communities with relative dense internal connections are significantly associated with 14 kinds of chemical structures with P<0.001. Moreover, chemical structural fingerprints of network communities were detected, while specific centralities of chemical ingredients indicating different levels of importance in the network were also measured. Finally, several distinct herbs, chemical ingredients, and ingredient groups with essential position in the network or high centrality value are recommended for further pharmacology study in the context of new drug development. PMID:25658855

  19. Dynamic Policy-Driven Quality of Service in Service-Oriented Information Management Systems

    DTIC Science & Technology

    2011-01-01

    both DiffServ and IntServ net- work QoS mechanisms. Wang et al [48] provide middleware APIs to shield applications from directly interacting with...complex network QoS mechanism APIs . Middleware frameworks transparently converted the specified application QoS requirements into low- er-level network...QoS mechanism APIs and provided network QoS assurances. Deployment-time resource allocation. Other prior work has focused on deploying ap- plications

  20. How to Trigger Emergence and Self-Organisation in Learning Networks

    NASA Astrophysics Data System (ADS)

    Brouns, Francis; Fetter, Sibren; van Rosmalen, Peter

    The previous chapters of this section discussed why the social structure of Learning Networks is important and present guidelines on how to maintain and allow the emergence of communities in Learning Networks. Chapter 2 explains how Learning Networks rely on social interaction and active participations of the participants. Chapter 3 then continues by presenting guidelines and policies that should be incorporated into Learning Network Services in order to maintain existing communities by creating conditions that promote social interaction and knowledge sharing. Chapter 4 discusses the necessary conditions required for knowledge sharing to occur and to trigger communities to self-organise and emerge. As pointed out in Chap. 4, ad-hoc transient communities facilitate the emergence of social interaction in Learning Networks, self-organising them into communities, taking into account personal characteristics, community characteristics and general guidelines. As explained in Chap. 4 community members would benefit from a service that brings suitable people together for a specific purpose, because it will allow the participant to focus on the knowledge sharing process by reducing the effort or costs. In the current chapter, we describe an example of a peer support Learning Network Service based on the mechanism of peer tutoring in ad-hoc transient communities.

  1. Effect of livestock grazing in the partitions of a semiarid plant-plant spatial signed network

    NASA Astrophysics Data System (ADS)

    Saiz, Hugo; Alados, Concepción L.

    2014-08-01

    In recent times, network theory has become a useful tool to study the structure of the interactions in ecological communities. However, typically, these approaches focus on a particular kind of interaction while neglecting other possible interactions present in the ecosystem. Here, we present an ecological network for plant communities that consider simultaneously positive and negative interactions, which were derived from the spatial association and segregation between plant species. We employed this network to study the structure and the association strategies in a semiarid plant community of Cabo de Gata-Níjar Natural Park, SE Spain, and how they changed in 4 sites that differed in stocking rate. Association strategies were obtained from the partitions of the network, built based on a relaxed structural balance criterion. We found that grazing simplified the structure of the plant community. With increasing stocking rate species with no significant associations became dominant and the number of partitions decreased in the plant community. Independently of stocking rate, many species presented an associative strategy in the plant community because they benefit from the association to certain ‘nurse’ plants. These ‘nurses’ together with species that developed a segregating strategy, intervened in most of the interactions in the community. Ecological networks that combine links with different signs provide a new insight to analyze the structure of natural communities and identify the species which play a central role in them.

  2. Parallel versus Serial Processing Dependencies in the Perisylvian Speech Network: A Granger Analysis of Intracranial EEG Data

    ERIC Educational Resources Information Center

    Gow, David W., Jr.; Keller, Corey J.; Eskandar, Emad; Meng, Nate; Cash, Sydney S.

    2009-01-01

    In this work, we apply Granger causality analysis to high spatiotemporal resolution intracranial EEG (iEEG) data to examine how different components of the left perisylvian language network interact during spoken language perception. The specific focus is on the characterization of serial versus parallel processing dependencies in the dominant…

  3. Characterizing interactions in online social networks during exceptional events

    NASA Astrophysics Data System (ADS)

    Omodei, Elisa; De Domenico, Manlio; Arenas, Alex

    2015-08-01

    Nowadays, millions of people interact on a daily basis on online social media like Facebook and Twitter, where they share and discuss information about a wide variety of topics. In this paper, we focus on a specific online social network, Twitter, and we analyze multiple datasets each one consisting of individuals' online activity before, during and after an exceptional event in terms of volume of the communications registered. We consider important events that occurred in different arenas that range from policy to culture or science. For each dataset, the users' online activities are modeled by a multilayer network in which each layer conveys a different kind of interaction, specifically: retweeting, mentioning and replying. This representation allows us to unveil that these distinct types of interaction produce networks with different statistical properties, in particular concerning the degree distribution and the clustering structure. These results suggests that models of online activity cannot discard the information carried by this multilayer representation of the system, and should account for the different processes generated by the different kinds of interactions. Secondly, our analysis unveils the presence of statistical regularities among the different events, suggesting that the non-trivial topological patterns that we observe may represent universal features of the social dynamics on online social networks during exceptional events.

  4. Social Features of Online Networks: The Strength of Intermediary Ties in Online Social Media

    PubMed Central

    Grabowicz, Przemyslaw A.; Ramasco, José J.; Moro, Esteban; Pujol, Josep M.; Eguiluz, Victor M.

    2012-01-01

    An increasing fraction of today's social interactions occur using online social media as communication channels. Recent worldwide events, such as social movements in Spain or revolts in the Middle East, highlight their capacity to boost people's coordination. Online networks display in general a rich internal structure where users can choose among different types and intensity of interactions. Despite this, there are still open questions regarding the social value of online interactions. For example, the existence of users with millions of online friends sheds doubts on the relevance of these relations. In this work, we focus on Twitter, one of the most popular online social networks, and find that the network formed by the basic type of connections is organized in groups. The activity of the users conforms to the landscape determined by such groups. Furthermore, Twitter's distinction between different types of interactions allows us to establish a parallelism between online and offline social networks: personal interactions are more likely to occur on internal links to the groups (the weakness of strong ties); events transmitting new information go preferentially through links connecting different groups (the strength of weak ties) or even more through links connecting to users belonging to several groups that act as brokers (the strength of intermediary ties). PMID:22247773

  5. Bridging the gap between modules in isolation and as part of networks: A systems framework for elucidating interaction and regulation of signalling modules

    NASA Astrophysics Data System (ADS)

    Menon, Govind; Krishnan, J.

    2016-07-01

    While signalling and biochemical modules have been the focus of numerous studies, they are typically studied in isolation, with no examination of the effects of the ambient network. In this paper we formulate and develop a systems framework, rooted in dynamical systems, to understand such effects, by studying the interaction of signalling modules. The modules we consider are (i) basic covalent modification, (ii) monostable switches, (iii) bistable switches, (iv) adaptive modules, and (v) oscillatory modules. We systematically examine the interaction of these modules by analyzing (a) sequential interaction without shared components, (b) sequential interaction with shared components, and (c) oblique interactions. Our studies reveal that the behaviour of a module in isolation may be substantially different from that in a network, and explicitly demonstrate how the behaviour of a given module, the characteristics of the ambient network, and the possibility of shared components can result in new effects. Our global approach illuminates different aspects of the structure and functioning of modules, revealing the importance of dynamical characteristics as well as biochemical features; this provides a methodological platform for investigating the complexity of natural modules shaped by evolution, elucidating the effects of ambient networks on a module in multiple cellular contexts, and highlighting the capabilities and constraints for engineering robust synthetic modules. Overall, such a systems framework provides a platform for bridging the gap between non-linear information processing modules, in isolation and as parts of networks, and a basis for understanding new aspects of natural and engineered cellular networks.

  6. Bridging the gap between modules in isolation and as part of networks: A systems framework for elucidating interaction and regulation of signalling modules.

    PubMed

    Menon, Govind; Krishnan, J

    2016-07-21

    While signalling and biochemical modules have been the focus of numerous studies, they are typically studied in isolation, with no examination of the effects of the ambient network. In this paper we formulate and develop a systems framework, rooted in dynamical systems, to understand such effects, by studying the interaction of signalling modules. The modules we consider are (i) basic covalent modification, (ii) monostable switches, (iii) bistable switches, (iv) adaptive modules, and (v) oscillatory modules. We systematically examine the interaction of these modules by analyzing (a) sequential interaction without shared components, (b) sequential interaction with shared components, and (c) oblique interactions. Our studies reveal that the behaviour of a module in isolation may be substantially different from that in a network, and explicitly demonstrate how the behaviour of a given module, the characteristics of the ambient network, and the possibility of shared components can result in new effects. Our global approach illuminates different aspects of the structure and functioning of modules, revealing the importance of dynamical characteristics as well as biochemical features; this provides a methodological platform for investigating the complexity of natural modules shaped by evolution, elucidating the effects of ambient networks on a module in multiple cellular contexts, and highlighting the capabilities and constraints for engineering robust synthetic modules. Overall, such a systems framework provides a platform for bridging the gap between non-linear information processing modules, in isolation and as parts of networks, and a basis for understanding new aspects of natural and engineered cellular networks.

  7. Visualization of Metabolic Interaction Networks in Microbial Communities Using VisANT 5.0

    PubMed Central

    Wang, Yan; DeLisi, Charles; Segrè, Daniel; Hu, Zhenjun

    2016-01-01

    The complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT’s unique metagraph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction network between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the “symbiotic layout” of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues. VisANT is freely available at: http://visant.bu.edu and COMETS at http://comets.bu.edu. PMID:27081850

  8. Visualization of Metabolic Interaction Networks in Microbial Communities Using VisANT 5.0.

    PubMed

    Granger, Brian R; Chang, Yi-Chien; Wang, Yan; DeLisi, Charles; Segrè, Daniel; Hu, Zhenjun

    2016-04-01

    The complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique metagraph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction network between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues. VisANT is freely available at: http://visant.bu.edu and COMETS at http://comets.bu.edu.

  9. Synchronization in complex networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arenas, A.; Diaz-Guilera, A.; Moreno, Y.

    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analyticalmore » approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.« less

  10. Few Ant Species Play a Central Role Linking Different Plant Resources in a Network in Rupestrian Grasslands

    PubMed Central

    Mello, Marco A. R.; Bronstein, Judith L.; Guerra, Tadeu J.; Muylaert, Renata L.; Leite, Alice C.; Neves, Frederico S.

    2016-01-01

    Ant-plant associations are an outstanding model to study the entangled ecological interactions that structure communities. However, most studies of plant-animal networks focus on only one type of resource that mediates these interactions (e.g, nectar or fruits), leading to a biased understanding of community structure. New approaches, however, have made possible to study several interaction types simultaneously through multilayer networks models. Here, we use this approach to ask whether the structural patterns described to date for ant-plant networks hold when multiple interactions with plant-derived food rewards are considered. We tested whether networks characterized by different resource types differ in specialization and resource partitioning among ants, and whether the identity of the core ant species is similar among resource types. We monitored ant interactions with extrafloral nectaries, flowers, and fruits, as well as trophobiont hemipterans feeding on plants, for one year, in seven rupestrian grassland (campo rupestre) sites in southeastern Brazil. We found a highly tangled ant-plant network in which plants offering different resource types are connected by a few central ant species. The multilayer network had low modularity and specialization, but ant specialization and niche overlap differed according to the type of resource used. Beyond detecting structural differences across networks, our study demonstrates empirically that the core of most central ant species is similar across them. We suggest that foraging strategies of ant species, such as massive recruitment, may determine specialization and resource partitioning in ant-plant interactions. As this core of ant species is involved in multiple ecosystem functions, it may drive the diversity and evolution of the entire campo rupestre community. PMID:27911919

  11. Protein complex prediction in large ontology attributed protein-protein interaction networks.

    PubMed

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Li, Yanpeng; Xu, Bo

    2013-01-01

    Protein complexes are important for unraveling the secrets of cellular organization and function. Many computational approaches have been developed to predict protein complexes in protein-protein interaction (PPI) networks. However, most existing approaches focus mainly on the topological structure of PPI networks, and largely ignore the gene ontology (GO) annotation information. In this paper, we constructed ontology attributed PPI networks with PPI data and GO resource. After constructing ontology attributed networks, we proposed a novel approach called CSO (clustering based on network structure and ontology attribute similarity). Structural information and GO attribute information are complementary in ontology attributed networks. CSO can effectively take advantage of the correlation between frequent GO annotation sets and the dense subgraph for protein complex prediction. Our proposed CSO approach was applied to four different yeast PPI data sets and predicted many well-known protein complexes. The experimental results showed that CSO was valuable in predicting protein complexes and achieved state-of-the-art performance.

  12. Re-Culturing Educator Preparation Programs: A Collaborative Case Study of Continuous Improvement

    ERIC Educational Resources Information Center

    Snow, Jennifer; Dismuke, Sherry; Zenkert, A. J.; Loffer, Carolyn

    2017-01-01

    Teacher educators at one institution of higher education collaborated to reculture systems for a focus on continuous improvement even within mounting accountability pressures. A framework of social network theory allowed for themes to develop around layered interactions of faculty, processes, and professional capital. Findings focused on people,…

  13. Visualization of metabolic interaction networks in microbial communities using VisANT 5.0

    DOE PAGES

    Granger, Brian R.; Chang, Yi -Chien; Wang, Yan; ...

    2016-04-15

    Here, the complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique meta-graph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction networkmore » between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues.« less

  14. Network Analysis of Drug-target Interactions: A Study on FDA-approved New Molecular Entities Between 2000 to 2015.

    PubMed

    Lin, Hui-Heng; Zhang, Le-Le; Yan, Ru; Lu, Jin-Jian; Hu, Yuanjia

    2017-09-25

    The U.S. Food and Drug Administration (FDA) approves new drugs every year. Drug targets are some of the most important interactive molecules for drugs, as they have a significant impact on the therapeutic effects of drugs. In this work, we thoroughly analyzed the data of small molecule drugs approved by the U.S. FDA between 2000 and 2015. Specifically, we focused on seven classes of new molecular entity (NME) classified by the anatomic therapeutic chemical (ATC) classification system. They were NMEs and their corresponding targets for the cardiovascular system, respiratory system, nerve system, general anti-infective systemic, genito-urinary system and sex hormones, alimentary tract and metabolisms, and antineoplastic and immunomodulating agents. To study the drug-target interaction on the systems level, we employed network topological analysis and multipartite network projections. As a result, the drug-target relations of different kinds of drugs were comprehensively characterized and global pictures of drug-target, drug-drug, and target-target interactions were visualized and analyzed from the perspective of network models.

  15. Parents and Infants: An Interactive Network. I. Introduction.

    ERIC Educational Resources Information Center

    Yarrow, Leon J.

    This symposium introduction outlines the first phase of an investigation of the mother-father-infant triad as an interactive system, influencing both parent attitudes and behaviors and child development. The focus of the research was on the early determinants of parental behavior. Subjects were 67 middle class, white parents and their first-born…

  16. Lagged correlation networks

    NASA Astrophysics Data System (ADS)

    Curme, Chester

    Technological advances have provided scientists with large high-dimensional datasets that describe the behaviors of complex systems: from the statistics of energy levels in complex quantum systems, to the time-dependent transcription of genes, to price fluctuations among assets in a financial market. In this environment, where it may be difficult to infer the joint distribution of the data, network science has flourished as a way to gain insight into the structure and organization of such systems by focusing on pairwise interactions. This work focuses on a particular setting, in which a system is described by multivariate time series data. We consider time-lagged correlations among elements in this system, in such a way that the measured interactions among elements are asymmetric. Finally, we allow these interactions to be characteristically weak, so that statistical uncertainties may be important to consider when inferring the structure of the system. We introduce a methodology for constructing statistically validated networks to describe such a system, extend the methodology to accommodate interactions with a periodic component, and show how consideration of bipartite community structures in these networks can aid in the construction of robust statistical models. An example of such a system is a financial market, in which high frequency returns data may be used to describe contagion, or the spreading of shocks in price among assets. These data provide the experimental testing ground for our methodology. We study NYSE data from both the present day and one decade ago, examine the time scales over which the validated lagged correlation networks exist, and relate differences in the topological properties of the networks to an increasing economic efficiency. We uncover daily periodicities in the validated interactions, and relate our findings to explanations of the Epps Effect, an empirical phenomenon of financial time series. We also study bipartite community structures in networks composed of market returns and news sentiment signals for 40 countries. We compare the degrees to which markets anticipate news, and news anticipate markets, and use the community structures to construct a recommender system for inputs to prediction models. Finally, we complement this work with novel investigations of the exogenous news items that may drive the financial system using topic models. This includes an analysis of how investors and the general public may interact with these news items using Internet search data, and how the diversity of stories in the news both responds to and influences market movements.

  17. Identifying interactions in the time and frequency domains in local and global networks - A Granger Causality Approach.

    PubMed

    Zou, Cunlu; Ladroue, Christophe; Guo, Shuixia; Feng, Jianfeng

    2010-06-21

    Reverse-engineering approaches such as Bayesian network inference, ordinary differential equations (ODEs) and information theory are widely applied to deriving causal relationships among different elements such as genes, proteins, metabolites, neurons, brain areas and so on, based upon multi-dimensional spatial and temporal data. There are several well-established reverse-engineering approaches to explore causal relationships in a dynamic network, such as ordinary differential equations (ODE), Bayesian networks, information theory and Granger Causality. Here we focused on Granger causality both in the time and frequency domain and in local and global networks, and applied our approach to experimental data (genes and proteins). For a small gene network, Granger causality outperformed all the other three approaches mentioned above. A global protein network of 812 proteins was reconstructed, using a novel approach. The obtained results fitted well with known experimental findings and predicted many experimentally testable results. In addition to interactions in the time domain, interactions in the frequency domain were also recovered. The results on the proteomic data and gene data confirm that Granger causality is a simple and accurate approach to recover the network structure. Our approach is general and can be easily applied to other types of temporal data.

  18. The spreading of opposite opinions on online social networks with authoritative nodes

    NASA Astrophysics Data System (ADS)

    Yan, Shu; Tang, Shaoting; Pei, Sen; Jiang, Shijin; Zhang, Xiao; Ding, Wenrui; Zheng, Zhiming

    2013-09-01

    The study of opinion dynamics, such as spreading and controlling of rumors, has become an important issue on social networks. Numerous models have been devised to describe this process, including epidemic models and spin models, which mainly focus on how opinions spread and interact with each other, respectively. In this paper, we propose a model that combines the spreading stage and the interaction stage for opinions to illustrate the process of dispelling a rumor. Moreover, we set up authoritative nodes, which disseminate positive opinion to counterbalance the negative opinion prevailing on online social networking sites. With analysis of the relationship among positive opinion proportion, opinion strength and the density of authoritative nodes in networks with different topologies, we demonstrate that the positive opinion proportion grows with the density of authoritative nodes until the positive opinion prevails in the entire network. In particular, the relationship is linear in homogeneous topologies. Besides, it is also noteworthy that initial locations of the negative opinion source and authoritative nodes do not influence positive opinion proportion in homogeneous networks but have a significant impact on heterogeneous networks. The results are verified by numerical simulations and are helpful to understand the mechanism of two different opinions interacting with each other on online social networking sites.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunden, Fanny; Peck, Ariana; Salzman, Julia

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called ‘catalytic residues’ are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modesmore » of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes.« less

  20. Genotet: An Interactive Web-based Visual Exploration Framework to Support Validation of Gene Regulatory Networks.

    PubMed

    Yu, Bowen; Doraiswamy, Harish; Chen, Xi; Miraldi, Emily; Arrieta-Ortiz, Mario Luis; Hafemeister, Christoph; Madar, Aviv; Bonneau, Richard; Silva, Cláudio T

    2014-12-01

    Elucidation of transcriptional regulatory networks (TRNs) is a fundamental goal in biology, and one of the most important components of TRNs are transcription factors (TFs), proteins that specifically bind to gene promoter and enhancer regions to alter target gene expression patterns. Advances in genomic technologies as well as advances in computational biology have led to multiple large regulatory network models (directed networks) each with a large corpus of supporting data and gene-annotation. There are multiple possible biological motivations for exploring large regulatory network models, including: validating TF-target gene relationships, figuring out co-regulation patterns, and exploring the coordination of cell processes in response to changes in cell state or environment. Here we focus on queries aimed at validating regulatory network models, and on coordinating visualization of primary data and directed weighted gene regulatory networks. The large size of both the network models and the primary data can make such coordinated queries cumbersome with existing tools and, in particular, inhibits the sharing of results between collaborators. In this work, we develop and demonstrate a web-based framework for coordinating visualization and exploration of expression data (RNA-seq, microarray), network models and gene-binding data (ChIP-seq). Using specialized data structures and multiple coordinated views, we design an efficient querying model to support interactive analysis of the data. Finally, we show the effectiveness of our framework through case studies for the mouse immune system (a dataset focused on a subset of key cellular functions) and a model bacteria (a small genome with high data-completeness).

  1. Directed clustering coefficient as a measure of systemic risk in complex banking networks

    NASA Astrophysics Data System (ADS)

    Tabak, Benjamin M.; Takami, Marcelo; Rocha, Jadson M. C.; Cajueiro, Daniel O.; Souza, Sergio R. S.

    2014-01-01

    Recent literature has focused on the study of systemic risk in complex networks. It is clear now, after the crisis of 2008, that the aggregate behavior of the interaction among agents is not straightforward and it is very difficult to predict. Contributing to this debate, this paper shows that the directed clustering coefficient may be used as a measure of systemic risk in complex networks. Furthermore, using data from the Brazilian interbank network, we show that the directed clustering coefficient is negatively correlated with domestic interest rates.

  2. The brain's default network: anatomy, function, and relevance to disease.

    PubMed

    Buckner, Randy L; Andrews-Hanna, Jessica R; Schacter, Daniel L

    2008-03-01

    Thirty years of brain imaging research has converged to define the brain's default network-a novel and only recently appreciated brain system that participates in internal modes of cognition. Here we synthesize past observations to provide strong evidence that the default network is a specific, anatomically defined brain system preferentially active when individuals are not focused on the external environment. Analysis of connectional anatomy in the monkey supports the presence of an interconnected brain system. Providing insight into function, the default network is active when individuals are engaged in internally focused tasks including autobiographical memory retrieval, envisioning the future, and conceiving the perspectives of others. Probing the functional anatomy of the network in detail reveals that it is best understood as multiple interacting subsystems. The medial temporal lobe subsystem provides information from prior experiences in the form of memories and associations that are the building blocks of mental simulation. The medial prefrontal subsystem facilitates the flexible use of this information during the construction of self-relevant mental simulations. These two subsystems converge on important nodes of integration including the posterior cingulate cortex. The implications of these functional and anatomical observations are discussed in relation to possible adaptive roles of the default network for using past experiences to plan for the future, navigate social interactions, and maximize the utility of moments when we are not otherwise engaged by the external world. We conclude by discussing the relevance of the default network for understanding mental disorders including autism, schizophrenia, and Alzheimer's disease.

  3. Global Alignment of Pairwise Protein Interaction Networks for Maximal Common Conserved Patterns

    DOE PAGES

    Tian, Wenhong; Samatova, Nagiza F.

    2013-01-01

    A number of tools for the alignment of protein-protein interaction (PPI) networks have laid the foundation for PPI network analysis. Most of alignment tools focus on finding conserved interaction regions across the PPI networks through either local or global mapping of similar sequences. Researchers are still trying to improve the speed, scalability, and accuracy of network alignment. In view of this, we introduce a connected-components based fast algorithm, HopeMap, for network alignment. Observing that the size of true orthologs across species is small comparing to the total number of proteins in all species, we take a different approach based onmore » a precompiled list of homologs identified by KO terms. Applying this approach to S. cerevisiae (yeast) and D. melanogaster (fly), E. coli K12 and S. typhimurium , E. coli K12 and C. crescenttus , we analyze all clusters identified in the alignment. The results are evaluated through up-to-date known gene annotations, gene ontology (GO), and KEGG ortholog groups (KO). Comparing to existing tools, our approach is fast with linear computational cost, highly accurate in terms of KO and GO terms specificity and sensitivity, and can be extended to multiple alignments easily.« less

  4. Protein-protein interaction networks: unraveling the wiring of molecular machines within the cell.

    PubMed

    De Las Rivas, Javier; Fontanillo, Celia

    2012-11-01

    Mapping and understanding of the protein interaction networks with their key modules and hubs can provide deeper insights into the molecular machinery underlying complex phenotypes. In this article, we present the basic characteristics and definitions of protein networks, starting with a distinction of the different types of associations between proteins. We focus the review on protein-protein interactions (PPIs), a subset of associations defined as physical contacts between proteins that occur by selective molecular docking in a particular biological context. We present such definition as opposed to other types of protein associations derived from regulatory, genetic, structural or functional relations. To determine PPIs, a variety of binary and co-complex methods exist; however, not all the technologies provide the same information and data quality. A way of increasing confidence in a given protein interaction is to integrate orthogonal experimental evidences. The use of several complementary methods testing each single interaction assesses the accuracy of PPI data and tries to minimize the occurrence of false interactions. Following this approach there have been important efforts to unify primary databases of experimentally proven PPIs into integrated databases. These meta-databases provide a measure of the confidence of interactions based on the number of experimental proofs that report them. As a conclusion, we can state that integrated information allows the building of more reliable interaction networks. Identification of communities, cliques, modules and hubs by analysing the topological parameters and graph properties of the protein networks allows the discovery of central/critical nodes, which are candidates to regulate cellular flux and dynamics.

  5. From Genes to Networks: Characterizing Gene-Regulatory Interactions in Plants.

    PubMed

    Kaufmann, Kerstin; Chen, Dijun

    2017-01-01

    Plants, like other eukaryotes, have evolved complex mechanisms to coordinate gene expression during development, environmental response, and cellular homeostasis. Transcription factors (TFs), accompanied by basic cofactors and posttranscriptional regulators, are key players in gene-regulatory networks (GRNs). The coordinated control of gene activity is achieved by the interplay of these factors and by physical interactions between TFs and DNA. Here, we will briefly outline recent technological progress made to elucidate GRNs in plants. We will focus on techniques that allow us to characterize physical interactions in GRNs in plants and to analyze their regulatory consequences. Targeted manipulation allows us to test the relevance of specific gene-regulatory interactions. The combination of genome-wide experimental approaches with mathematical modeling allows us to get deeper insights into key-regulatory interactions and combinatorial control of important processes in plants.

  6. Increased Functional Connectivity Between Subcortical and Cortical Resting-State Networks in Autism Spectrum Disorder

    PubMed Central

    Cerliani, Leonardo; Mennes, Maarten; Thomas, Rajat M.; Di Martino, Adriana; Thioux, Marc; Keysers, Christian

    2016-01-01

    Importance Individuals with autism spectrum disorder (ASD) exhibit severe difficulties in social interaction, motor coordination, behavioral flexibility, and atypical sensory processing, with considerable interindividual variability. This heterogeneous set of symptoms recently led to investigating the presence of abnormalities in the interaction across large-scale brain networks. To date, studies have focused either on constrained sets of brain regions or whole-brain analysis, rather than focusing on the interaction between brain networks. Objectives To compare the intrinsic functional connectivity between brain networks in a large sample of individuals with ASD and typically developing control subjects and to estimate to what extent group differences would predict autistic traits and reflect different developmental trajectories. Design, Setting, and Participants We studied 166 male individuals (mean age, 17.6 years; age range, 7-50 years) diagnosed as having DSM-IV-TR autism or Asperger syndrome and 193 typical developing male individuals (mean age, 16.9 years; age range, 6.5-39.4 years) using resting-state functional magnetic resonance imaging (MRI). Participants were matched for age, IQ, head motion, and eye status (open or closed) in the MRI scanner. We analyzed data from the Autism Brain Imaging Data Exchange (ABIDE), an aggregated MRI data set from 17 centers, made public in August 2012. Main Outcomes and Measures We estimated correlations between time courses of brain networks extracted using a data-driven method (independent component analysis). Subsequently, we associated estimates of interaction strength between networks with age and autistic traits indexed by the Social Responsiveness Scale. Results Relative to typically developing control participants, individuals with ASD showed increased functional connectivity between primary sensory networks and subcortical networks (thalamus and basal ganglia) (all t ≥ 3.13, P < .001 corrected). The strength of such connections was associated with the severity of autistic traits in the ASD group (all r ≥ 0.21, P < .0067 corrected). In addition, subcortico-cortical interaction decreased with age in the entire sample (all r ≤ −0.09, P < .012 corrected), although this association was significant only in typically developing participants (all r ≤ −0.13, P < .009 corrected). Conclusions and Relevance Our results showing ASD-related impairment in the interaction between primary sensory cortices and subcortical regions suggest that the sensory processes they subserve abnormally influence brain information processing in individuals with ASD. This might contribute to the occurrence of hyposensitivity or hypersensitivity and of difficulties in top-down regulation of behavior. PMID:26061743

  7. A Multi-level Fuzzy Evaluation Method for Smart Distribution Network Based on Entropy Weight

    NASA Astrophysics Data System (ADS)

    Li, Jianfang; Song, Xiaohui; Gao, Fei; Zhang, Yu

    2017-05-01

    Smart distribution network is considered as the future trend of distribution network. In order to comprehensive evaluate smart distribution construction level and give guidance to the practice of smart distribution construction, a multi-level fuzzy evaluation method based on entropy weight is proposed. Firstly, focus on both the conventional characteristics of distribution network and new characteristics of smart distribution network such as self-healing and interaction, a multi-level evaluation index system which contains power supply capability, power quality, economy, reliability and interaction is established. Then, a combination weighting method based on Delphi method and entropy weight method is put forward, which take into account not only the importance of the evaluation index in the experts’ subjective view, but also the objective and different information from the index values. Thirdly, a multi-level evaluation method based on fuzzy theory is put forward. Lastly, an example is conducted based on the statistical data of some cites’ distribution network and the evaluation method is proved effective and rational.

  8. Edge usage, motifs, and regulatory logic for cell cycling genetic networks

    NASA Astrophysics Data System (ADS)

    Zagorski, M.; Krzywicki, A.; Martin, O. C.

    2013-01-01

    The cell cycle is a tightly controlled process, yet it shows marked differences across species. Which of its structural features follow solely from the ability to control gene expression? We tackle this question in silico by examining the ensemble of all regulatory networks which satisfy the constraint of producing a given sequence of gene expressions. We focus on three cell cycle profiles coming from baker's yeast, fission yeast, and mammals. First, we show that the networks in each of the ensembles use just a few interactions that are repeatedly reused as building blocks. Second, we find an enrichment in network motifs that is similar in the two yeast cell cycle systems investigated. These motifs do not have autonomous functions, yet they reveal a regulatory logic for cell cycling based on a feed-forward cascade of activating interactions.

  9. Protein-Protein Interface and Disease: Perspective from Biomolecular Networks.

    PubMed

    Hu, Guang; Xiao, Fei; Li, Yuqian; Li, Yuan; Vongsangnak, Wanwipa

    Protein-protein interactions are involved in many important biological processes and molecular mechanisms of disease association. Structural studies of interfacial residues in protein complexes provide information on protein-protein interactions. Characterizing protein-protein interfaces, including binding sites and allosteric changes, thus pose an imminent challenge. With special focus on protein complexes, approaches based on network theory are proposed to meet this challenge. In this review we pay attention to protein-protein interfaces from the perspective of biomolecular networks and their roles in disease. We first describe the different roles of protein complexes in disease through several structural aspects of interfaces. We then discuss some recent advances in predicting hot spots and communication pathway analysis in terms of amino acid networks. Finally, we highlight possible future aspects of this area with respect to both methodology development and applications for disease treatment.

  10. Multi-cultural Wikipedia mining of geopolitics interactions leveraging reduced Google matrix analysis

    NASA Astrophysics Data System (ADS)

    Frahm, Klaus M.; El Zant, Samer; Jaffrès-Runser, Katia; Shepelyansky, Dima L.

    2017-09-01

    Geopolitics focuses on political power in relation to geographic space. Interactions among world countries have been widely studied at various scales, observing economic exchanges, world history or international politics among others. This work exhibits the potential of Wikipedia mining for such studies. Indeed, Wikipedia stores valuable fine-grained dependencies among countries by linking webpages together for diverse types of interactions (not only related to economical, political or historical facts). We mine herein the Wikipedia networks of several language editions using the recently proposed method of reduced Google matrix analysis. This approach allows to establish direct and hidden links between a subset of nodes that belong to a much larger directed network. Our study concentrates on 40 major countries chosen worldwide. Our aim is to offer a multicultural perspective on their interactions by comparing networks extracted from five different Wikipedia language editions, emphasizing English, Russian and Arabic ones. We demonstrate that this approach allows to recover meaningful direct and hidden links among the 40 countries of interest.

  11. Transitioning from Traditional Courses to Technologically Supported Classrooms. IDEA Paper #62

    ERIC Educational Resources Information Center

    Proctor, Janice; Bumgardner, Tiffany

    2016-01-01

    This paper focuses on the authors' experiences teaching on Ohio University's Learning Network (OULN), which uses interactive television and real-time face-to-face interaction as a distance-education (DE) delivery tool. One of the authors is a sociology professor, and the other is her former student and an experienced OULN system operator. The…

  12. Dynamic and Interactive Mathematics Learning Environments: Opportunities and Challenges for Future Research

    ERIC Educational Resources Information Center

    Olive, John

    2013-01-01

    New networking and social interaction technologies offer new media for learning and teaching both inside and outside the classroom. How and what kind of learning may take place in these new media is the main focus of this paper. An integrative theoretical framework for investigating these questions is posed based on the Didactic Tetrahedron (Olive…

  13. Online social networking amongst teens: friend or foe?

    PubMed

    O'Dea, Bridianne; Campbell, Andrew

    2011-01-01

    The impact of Internet communication on adolescent social development is of considerable importance to health professionals, parents and teachers. Online social networking and instant messaging programs are popular utilities amongst a generation of techno-savvy youth. Although these utilities provide varied methods of communication, their social benefits are still in question. This study examined the relationship between online social interaction, perceived social support, self-esteem and psychological distress amongst teens. A total of 400 participants (M(age) = 14.31 years) completed an online survey consisting of parametric and non-parametric measures. No significant relationship was found between online interaction and social support. Time spent interacting online was negatively correlated with self-esteem and psychological distress. While previous research has focused on young adults, this study examines the impact of online social networking on emerging teens. It highlights the need for continued caution in the acceptance of these utilities.

  14. Social inertia and diversity in collaboration networks

    NASA Astrophysics Data System (ADS)

    Ramasco, J. J.

    2007-04-01

    Random graphs are useful tools to study social interactions. In particular, the use of weighted random graphs allows to handle a high level of information concerning which agents interact and in which degree the interactions take place. Taking advantage of this representation, we recently defined a magnitude, the Social Inertia, that measures the eagerness of agents to keep ties with previous partners. To study this magnitude, we used collaboration networks that are specially appropriate to obtain valid statitical results due to the large size of publically available databases. In this work, I study the Social Inertia in two of these empirical networks, IMDB movie database and condmat. More specifically, I focus on how the Inertia relates to other properties of the graphs, and show that the Inertia provides information on how the weight of neighboring edges correlates. A social interpretation of this effect is also offered.

  15. Social network analysis of a project-based introductory physics course

    NASA Astrophysics Data System (ADS)

    Oakley, Christopher

    2016-03-01

    Research suggests that students benefit from peer interaction and active engagement in the classroom. The quality, nature, effect of these interactions is currently being explored by Physics Education Researchers. Spelman College offers an introductory physics sequence that addresses content and research skills by engaging students in open-ended research projects, a form of Project-Based Learning. Students have been surveyed at regular intervals during the second semester of trigonometry-based course to determine the frequency of interactions in and out of class. These interactions can be with current or past students, tutors, and instructors. This line of inquiry focuses on metrics of Social Network analysis, such as centrality of participants as well as segmentation of groups. Further research will refine and highlight deeper questions regarding student performance in this pedagogy and course sequence.

  16. Meta-food-chains as a many-layer epidemic process on networks

    NASA Astrophysics Data System (ADS)

    Barter, Edmund; Gross, Thilo

    2016-02-01

    Notable recent works have focused on the multilayer properties of coevolving diseases. We point out that very similar systems play an important role in population ecology. Specifically we study a meta-food-web model that was recently proposed by Pillai et al. [Theor. Ecol. 3, 223 (2009), 10.1007/s12080-009-0065-1]. This model describes a network of species connected by feeding interactions, which spread over a network of spatial patches. Focusing on the essential case, where the network of feeding interactions is a chain, we develop an analytical approach for the computation of the degree distributions of colonized spatial patches for the different species in the chain. This framework allows us to address ecologically relevant questions. Considering configuration model ensembles of spatial networks, we find that there is an upper bound for the fraction of patches that a given species can occupy, which depends only on the networks mean degree. For a given mean degree there is then an optimal degree distribution that comes closest to the upper bound. Notably scale-free degree distributions perform worse than more homogeneous degree distributions if the mean degree is sufficiently high. Because species experience the underlying network differently the optimal degree distribution for one particular species is generally not the optimal distribution for the other species in the same food web. These results are of interest for conservation ecology, where, for instance, the task of selecting areas of old-growth forest to preserve in an agricultural landscape, amounts to the design of a patch network.

  17. Exploration and Modulation of Brain Network Interactions with Noninvasive Brain Stimulation in Combination with Neuroimaging

    PubMed Central

    Shafi, Mouhsin M.; Westover, M. Brandon; Fox, Michael D.; Pascual-Leone, Alvaro

    2012-01-01

    Much recent work in systems neuroscience has focused on how dynamic interactions between different cortical regions underlie complex brain functions such as motor coordination, language, and emotional regulation. Various studies using neuroimaging and neurophysiologic techniques have suggested that in many neuropsychiatric disorders, these dynamic brain networks are dysregulated. Here we review the utility of combined noninvasive brain stimulation and neuroimaging approaches towards greater understanding of dynamic brain networks in health and disease. Brain stimulation techniques, such as transcranial magnetic stimulation and transcranial direct current stimulation, use electromagnetic principles to noninvasively alter brain activity, and induce focal but also network effects beyond the stimulation site. When combined with brain imaging techniques such as functional MRI, PET and EEG, these brain stimulation techniques enable a causal assessment of the interaction between different network components, and their respective functional roles. The same techniques can also be applied to explore hypotheses regarding the changes in functional connectivity that occur during task performance and in various disease states such as stroke, depression and schizophrenia. Finally, in diseases characterized by pathologic alterations in either the excitability within a single region or in the activity of distributed networks, such techniques provide a potential mechanism to alter cortical network function and architectures in a beneficial manner. PMID:22429242

  18. Cascading Failures and Recovery in Networks of Networks

    NASA Astrophysics Data System (ADS)

    Havlin, Shlomo

    Network science have been focused on the properties of a single isolated network that does not interact or depends on other networks. In reality, many real-networks, such as power grids, transportation and communication infrastructures interact and depend on other networks. I will present a framework for studying the vulnerability and the recovery of networks of interdependent networks. In interdependent networks, when nodes in one network fail, they cause dependent nodes in other networks to also fail. This is also the case when some nodes like certain locations play a role in two networks -multiplex. This may happen recursively and can lead to a cascade of failures and to a sudden fragmentation of the system. I will present analytical solutions for the critical threshold and the giant component of a network of n interdependent networks. I will show, that the general theory has many novel features that are not present in the classical network theory. When recovery of components is possible global spontaneous recovery of the networks and hysteresis phenomena occur and the theory suggests an optimal repairing strategy of system of systems. I will also show that interdependent networks embedded in space are significantly more vulnerable compared to non embedded networks. In particular, small localized attacks may lead to cascading failures and catastrophic consequences.Thus, analyzing data of real network of networks is highly required to understand the system vulnerability. DTRA, ONR, Israel Science Foundation.

  19. ShapeShop: Towards Understanding Deep Learning Representations via Interactive Experimentation.

    PubMed

    Hohman, Fred; Hodas, Nathan; Chau, Duen Horng

    2017-05-01

    Deep learning is the driving force behind many recent technologies; however, deep neural networks are often viewed as "black-boxes" due to their internal complexity that is hard to understand. Little research focuses on helping people explore and understand the relationship between a user's data and the learned representations in deep learning models. We present our ongoing work, ShapeShop, an interactive system for visualizing and understanding what semantics a neural network model has learned. Built using standard web technologies, ShapeShop allows users to experiment with and compare deep learning models to help explore the robustness of image classifiers.

  20. Advantages of mixing bioinformatics and visualization approaches for analyzing sRNA-mediated regulatory bacterial networks

    PubMed Central

    Bourqui, Romain; Benchimol, William; Gaspin, Christine; Sirand-Pugnet, Pascal; Uricaru, Raluca; Dutour, Isabelle

    2015-01-01

    The revolution in high-throughput sequencing technologies has enabled the acquisition of gigabytes of RNA sequences in many different conditions and has highlighted an unexpected number of small RNAs (sRNAs) in bacteria. Ongoing exploitation of these data enables numerous applications for investigating bacterial transacting sRNA-mediated regulation networks. Focusing on sRNAs that regulate mRNA translation in trans, recent works have noted several sRNA-based regulatory pathways that are essential for key cellular processes. Although the number of known bacterial sRNAs is increasing, the experimental validation of their interactions with mRNA targets remains challenging and involves expensive and time-consuming experimental strategies. Hence, bioinformatics is crucial for selecting and prioritizing candidates before designing any experimental work. However, current software for target prediction produces a prohibitive number of candidates because of the lack of biological knowledge regarding the rules governing sRNA–mRNA interactions. Therefore, there is a real need to develop new approaches to help biologists focus on the most promising predicted sRNA–mRNA interactions. In this perspective, this review aims at presenting the advantages of mixing bioinformatics and visualization approaches for analyzing predicted sRNA-mediated regulatory bacterial networks. PMID:25477348

  1. Advantages of mixing bioinformatics and visualization approaches for analyzing sRNA-mediated regulatory bacterial networks.

    PubMed

    Thébault, Patricia; Bourqui, Romain; Benchimol, William; Gaspin, Christine; Sirand-Pugnet, Pascal; Uricaru, Raluca; Dutour, Isabelle

    2015-09-01

    The revolution in high-throughput sequencing technologies has enabled the acquisition of gigabytes of RNA sequences in many different conditions and has highlighted an unexpected number of small RNAs (sRNAs) in bacteria. Ongoing exploitation of these data enables numerous applications for investigating bacterial transacting sRNA-mediated regulation networks. Focusing on sRNAs that regulate mRNA translation in trans, recent works have noted several sRNA-based regulatory pathways that are essential for key cellular processes. Although the number of known bacterial sRNAs is increasing, the experimental validation of their interactions with mRNA targets remains challenging and involves expensive and time-consuming experimental strategies. Hence, bioinformatics is crucial for selecting and prioritizing candidates before designing any experimental work. However, current software for target prediction produces a prohibitive number of candidates because of the lack of biological knowledge regarding the rules governing sRNA-mRNA interactions. Therefore, there is a real need to develop new approaches to help biologists focus on the most promising predicted sRNA-mRNA interactions. In this perspective, this review aims at presenting the advantages of mixing bioinformatics and visualization approaches for analyzing predicted sRNA-mediated regulatory bacterial networks. © The Author 2014. Published by Oxford University Press.

  2. Modeling Behavioral Experiment Interaction and Environmental Stimuli for a Synthetic C. elegans.

    PubMed

    Mujika, Andoni; Leškovský, Peter; Álvarez, Roberto; Otaduy, Miguel A; Epelde, Gorka

    2017-01-01

    This paper focusses on the simulation of the neural network of the Caenorhabditis elegans living organism, and more specifically in the modeling of the stimuli applied within behavioral experiments and the stimuli that is generated in the interaction of the C. elegans with the environment. To the best of our knowledge, all efforts regarding stimuli modeling for the C. elegans are focused on a single type of stimulus, which is usually tested with a limited subnetwork of the C. elegans neural system. In this paper, we follow a different approach where we model a wide-range of different stimuli, with more flexible neural network configurations and simulations in mind. Moreover, we focus on the stimuli sensation by different types of sensory organs or various sensory principles of the neurons. As part of this work, most common stimuli involved in behavioral assays have been modeled. It includes models for mechanical, thermal, chemical, electrical and light stimuli, and for proprioception-related self-sensed information exchange with the neural network. The developed models have been implemented and tested with the hardware-based Si elegans simulation platform.

  3. Modeling Behavioral Experiment Interaction and Environmental Stimuli for a Synthetic C. elegans

    PubMed Central

    Mujika, Andoni; Leškovský, Peter; Álvarez, Roberto; Otaduy, Miguel A.; Epelde, Gorka

    2017-01-01

    This paper focusses on the simulation of the neural network of the Caenorhabditis elegans living organism, and more specifically in the modeling of the stimuli applied within behavioral experiments and the stimuli that is generated in the interaction of the C. elegans with the environment. To the best of our knowledge, all efforts regarding stimuli modeling for the C. elegansare focused on a single type of stimulus, which is usually tested with a limited subnetwork of the C. elegansneural system. In this paper, we follow a different approach where we model a wide-range of different stimuli, with more flexible neural network configurations and simulations in mind. Moreover, we focus on the stimuli sensation by different types of sensory organs or various sensory principles of the neurons. As part of this work, most common stimuli involved in behavioral assays have been modeled. It includes models for mechanical, thermal, chemical, electrical and light stimuli, and for proprioception-related self-sensed information exchange with the neural network. The developed models have been implemented and tested with the hardware-based Si elegans simulation platform. PMID:29276485

  4. Exploring Plant Co-Expression and Gene-Gene Interactions with CORNET 3.0.

    PubMed

    Van Bel, Michiel; Coppens, Frederik

    2017-01-01

    Selecting and filtering a reference expression and interaction dataset when studying specific pathways and regulatory interactions can be a very time-consuming and error-prone task. In order to reduce the duplicated efforts required to amass such datasets, we have created the CORNET (CORrelation NETworks) platform which allows for easy access to a wide variety of data types: coexpression data, protein-protein interactions, regulatory interactions, and functional annotations. The CORNET platform outputs its results in either text format or through the Cytoscape framework, which is automatically launched by the CORNET website.CORNET 3.0 is the third iteration of the web platform designed for the user exploration of the coexpression space of plant genomes, with a focus on the model species Arabidopsis thaliana. Here we describe the platform: the tools, data, and best practices when using the platform. We indicate how the platform can be used to infer networks from a set of input genes, such as upregulated genes from an expression experiment. By exploring the network, new target and regulator genes can be discovered, allowing for follow-up experiments and more in-depth study. We also indicate how to avoid common pitfalls when evaluating the networks and how to avoid over interpretation of the results.All CORNET versions are available at http://bioinformatics.psb.ugent.be/cornet/ .

  5. Robustness in Regulatory Interaction Networks. A Generic Approach with Applications at Different Levels: Physiologic, Metabolic and Genetic

    PubMed Central

    Demongeot, Jacques; Ben Amor, Hedi; Elena, Adrien; Gillois, Pierre; Noual, Mathilde; Sené, Sylvain

    2009-01-01

    Regulatory interaction networks are often studied on their dynamical side (existence of attractors, study of their stability). We focus here also on their robustness, that is their ability to offer the same spatiotemporal patterns and to resist to external perturbations such as losses of nodes or edges in the networks interactions architecture, changes in their environmental boundary conditions as well as changes in the update schedule (or updating mode) of the states of their elements (e.g., if these elements are genes, their synchronous coexpression mode versus their sequential expression). We define the generic notions of boundary, core, and critical vertex or edge of the underlying interaction graph of the regulatory network, whose disappearance causes dramatic changes in the number and nature of attractors (e.g., passage from a bistable behaviour to a unique periodic regime) or in the range of their basins of stability. The dynamic transition of states will be presented in the framework of threshold Boolean automata rules. A panorama of applications at different levels will be given: brain and plant morphogenesis, bulbar cardio-respiratory regulation, glycolytic/oxidative metabolic coupling, and eventually cell cycle and feather morphogenesis genetic control. PMID:20057955

  6. Video Discs in Libraries.

    ERIC Educational Resources Information Center

    Barker, Philip

    1986-01-01

    Discussion of developments in information storage technology likely to have significant impact upon library utilization focuses on hardware (videodisc technology) and software developments (knowledge databases; computer networks; database management systems; interactive video, computer, and multimedia user interfaces). Three generic computer-based…

  7. Default and Executive Network Coupling Supports Creative Idea Production

    PubMed Central

    Beaty, Roger E.; Benedek, Mathias; Barry Kaufman, Scott; Silvia, Paul J.

    2015-01-01

    The role of attention in creative cognition remains controversial. Neuroimaging studies have reported activation of brain regions linked to both cognitive control and spontaneous imaginative processes, raising questions about how these regions interact to support creative thought. Using functional magnetic resonance imaging (fMRI), we explored this question by examining dynamic interactions between brain regions during a divergent thinking task. Multivariate pattern analysis revealed a distributed network associated with divergent thinking, including several core hubs of the default (posterior cingulate) and executive (dorsolateral prefrontal cortex) networks. The resting-state network affiliation of these regions was confirmed using data from an independent sample of participants. Graph theory analysis assessed global efficiency of the divergent thinking network, and network efficiency was found to increase as a function of individual differences in divergent thinking ability. Moreover, temporal connectivity analysis revealed increased coupling between default and salience network regions (bilateral insula) at the beginning of the task, followed by increased coupling between default and executive network regions at later stages. Such dynamic coupling suggests that divergent thinking involves cooperation between brain networks linked to cognitive control and spontaneous thought, which may reflect focused internal attention and the top-down control of spontaneous cognition during creative idea production. PMID:26084037

  8. Topological entropy of catalytic sets: Hypercycles revisited

    NASA Astrophysics Data System (ADS)

    Sardanyés, Josep; Duarte, Jorge; Januário, Cristina; Martins, Nuno

    2012-02-01

    The dynamics of catalytic networks have been widely studied over the last decades because of their implications in several fields like prebiotic evolution, virology, neural networks, immunology or ecology. One of the most studied mathematical bodies for catalytic networks was initially formulated in the context of prebiotic evolution, by means of the hypercycle theory. The hypercycle is a set of self-replicating species able to catalyze other replicator species within a cyclic architecture. Hypercyclic organization might arise from a quasispecies as a way to increase the informational containt surpassing the so-called error threshold. The catalytic coupling between replicators makes all the species to behave like a single and coherent evolutionary multimolecular unit. The inherent nonlinearities of catalytic interactions are responsible for the emergence of several types of dynamics, among them, chaos. In this article we begin with a brief review of the hypercycle theory focusing on its evolutionary implications as well as on different dynamics associated to different types of small catalytic networks. Then we study the properties of chaotic hypercycles with error-prone replication with symbolic dynamics theory, characterizing, by means of the theory of topological Markov chains, the topological entropy and the periods of the orbits of unimodal-like iterated maps obtained from the strange attractor. We will focus our study on some key parameters responsible for the structure of the catalytic network: mutation rates, autocatalytic and cross-catalytic interactions.

  9. Space Shuttle interactive meteorological data system study

    NASA Technical Reports Server (NTRS)

    Young, J. T.; Fox, R. J.; Benson, J. M.; Rueden, J. P.; Oehlkers, R. A.

    1985-01-01

    Although focused toward the operational meteorological support review and definition of an operational meteorological interactive data display systems (MIDDS) requirements for the Space Meteorology Support Group at NASA/Johnson Space Center, the total operational meteorological support requirements and a systems concept for the MIDDS network integration of NASA and Air Force elements to support the National Space Transportation System are also addressed.

  10. Social capital in a regional inter-hospital network among trauma centers (trauma network): results of a qualitative study in Germany.

    PubMed

    Loss, Julika; Weigl, Johannes; Ernstberger, Antonio; Nerlich, Michael; Koller, Michael; Curbach, Janina

    2018-02-26

    As inter-hospital alliances have become increasingly popular in the healthcare sector, it is important to understand the challenges and benefits that the interaction between representatives of different hospitals entail. A prominent example of inter-hospital alliances are certified 'trauma networks', which consist of 5-30 trauma departments in a given region. Trauma networks are designed to improve trauma care by providing a coordinated response to injury, and have developed across the USA and multiple European countries since the 1960s. Their members need to interact regularly, e.g. develop joint protocols for patient transfer, or discuss patient safety. Social capital is a concept focusing on the development and benefits of relations and interactions within a network. The aim of our study was to explore how social capital is generated and used in a regional German trauma network. In this qualitative study, we performed semi-standardized face-to-face interviews with 23 senior trauma surgeons (2013-14). They were the official representatives of 23 out of 26 member hospitals of the Trauma Network Eastern Bavaria. The interviews covered the structure and functioning of the network, climate and reciprocity within the network, the development of social identity, and different resources and benefits derived from the network (e.g. facilitation of interactions, advocacy, work satisfaction). Transcripts were coded using thematic content analysis. According to the interviews, the studied trauma network became a group of surgeons with substantial bonding social capital. The surgeons perceived that the network's culture of interaction was flat, and they identified with the network due to a climate of mutual respect. They felt that the inclusive leadership helped establish a norm of reciprocity. Among the interviewed surgeons, the gain of technical information was seen as less important than the exchange of information on political aspects. The perceived resources derived from this social capital were smoother interactions, a higher medical credibility, and joint advocacy securing certain privileges. Apart from addressing quality of care, a trauma network may, by way of strengthening social capital among its members, serve as a valuable resource for the participating surgeons. Some member hospitals could exploit the social capital for strategic benefits.

  11. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site

    PubMed Central

    Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel

    2015-01-01

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called ‘catalytic residues’ are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes. DOI: http://dx.doi.org/10.7554/eLife.06181.001 PMID:25902402

  12. Discrete dynamic modeling of cellular signaling networks.

    PubMed

    Albert, Réka; Wang, Rui-Sheng

    2009-01-01

    Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.

  13. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site

    DOE PAGES

    Sunden, Fanny; Peck, Ariana; Salzman, Julia; ...

    2015-04-22

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called ‘catalytic residues’ are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modesmore » of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes.« less

  14. The KUPNetViz: a biological network viewer for multiple -omics datasets in kidney diseases.

    PubMed

    Moulos, Panagiotis; Klein, Julie; Jupp, Simon; Stevens, Robert; Bascands, Jean-Loup; Schanstra, Joost P

    2013-07-24

    Constant technological advances have allowed scientists in biology to migrate from conventional single-omics to multi-omics experimental approaches, challenging bioinformatics to bridge this multi-tiered information. Ongoing research in renal biology is no exception. The results of large-scale and/or high throughput experiments, presenting a wealth of information on kidney disease are scattered across the web. To tackle this problem, we recently presented the KUPKB, a multi-omics data repository for renal diseases. In this article, we describe KUPNetViz, a biological graph exploration tool allowing the exploration of KUPKB data through the visualization of biomolecule interactions. KUPNetViz enables the integration of multi-layered experimental data over different species, renal locations and renal diseases to protein-protein interaction networks and allows association with biological functions, biochemical pathways and other functional elements such as miRNAs. KUPNetViz focuses on the simplicity of its usage and the clarity of resulting networks by reducing and/or automating advanced functionalities present in other biological network visualization packages. In addition, it allows the extrapolation of biomolecule interactions across different species, leading to the formulations of new plausible hypotheses, adequate experiment design and to the suggestion of novel biological mechanisms. We demonstrate the value of KUPNetViz by two usage examples: the integration of calreticulin as a key player in a larger interaction network in renal graft rejection and the novel observation of the strong association of interleukin-6 with polycystic kidney disease. The KUPNetViz is an interactive and flexible biological network visualization and exploration tool. It provides renal biologists with biological network snapshots of the complex integrated data of the KUPKB allowing the formulation of new hypotheses in a user friendly manner.

  15. The KUPNetViz: a biological network viewer for multiple -omics datasets in kidney diseases

    PubMed Central

    2013-01-01

    Background Constant technological advances have allowed scientists in biology to migrate from conventional single-omics to multi-omics experimental approaches, challenging bioinformatics to bridge this multi-tiered information. Ongoing research in renal biology is no exception. The results of large-scale and/or high throughput experiments, presenting a wealth of information on kidney disease are scattered across the web. To tackle this problem, we recently presented the KUPKB, a multi-omics data repository for renal diseases. Results In this article, we describe KUPNetViz, a biological graph exploration tool allowing the exploration of KUPKB data through the visualization of biomolecule interactions. KUPNetViz enables the integration of multi-layered experimental data over different species, renal locations and renal diseases to protein-protein interaction networks and allows association with biological functions, biochemical pathways and other functional elements such as miRNAs. KUPNetViz focuses on the simplicity of its usage and the clarity of resulting networks by reducing and/or automating advanced functionalities present in other biological network visualization packages. In addition, it allows the extrapolation of biomolecule interactions across different species, leading to the formulations of new plausible hypotheses, adequate experiment design and to the suggestion of novel biological mechanisms. We demonstrate the value of KUPNetViz by two usage examples: the integration of calreticulin as a key player in a larger interaction network in renal graft rejection and the novel observation of the strong association of interleukin-6 with polycystic kidney disease. Conclusions The KUPNetViz is an interactive and flexible biological network visualization and exploration tool. It provides renal biologists with biological network snapshots of the complex integrated data of the KUPKB allowing the formulation of new hypotheses in a user friendly manner. PMID:23883183

  16. Systems Biology Graphical Notation: Entity Relationship language Level 1 Version 2.

    PubMed

    Sorokin, Anatoly; Le Novère, Nicolas; Luna, Augustin; Czauderna, Tobias; Demir, Emek; Haw, Robin; Mi, Huaiyu; Moodie, Stuart; Schreiber, Falk; Villéger, Alice

    2015-09-04

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Entity Relationship language (ER) represents biological entities and their interactions and relationships within a network. SBGN ER focuses on all potential relationships between entities without considering temporal aspects. The nodes (elements) describe biological entities, such as proteins and complexes. The edges (connections) provide descriptions of interactions and relationships (or influences), e.g., complex formation, stimulation and inhibition. Among all three languages of SBGN, ER is the closest to protein interaction networks in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge.

  17. Resilient networks of ant-plant mutualists in Amazonian forest fragments.

    PubMed

    Passmore, Heather A; Bruna, Emilio M; Heredia, Sylvia M; Vasconcelos, Heraldo L

    2012-01-01

    The organization of networks of interacting species, such as plants and animals engaged in mutualisms, strongly influences the ecology and evolution of partner communities. Habitat fragmentation is a globally pervasive form of spatial heterogeneity that could profoundly impact the structure of mutualist networks. This is particularly true for biodiversity-rich tropical ecosystems, where the majority of plant species depend on mutualisms with animals and it is thought that changes in the structure of mutualist networks could lead to cascades of extinctions. We evaluated effects of fragmentation on mutualistic networks by calculating metrics of network structure for ant-plant networks in continuous Amazonian forests with those in forest fragments. We hypothesized that networks in fragments would have fewer species and higher connectance, but equal nestedness and resilience compared to forest networks. Only one of the nine metrics we compared differed between continuous forest and forest fragments, indicating that networks were resistant to the biotic and abiotic changes that accompany fragmentation. This is partially the result of the loss of only specialist species with one connection that were lost in forest fragments. We found that the networks of ant-plant mutualists in twenty-five year old fragments are similar to those in continuous forest, suggesting these interactions are resistant to the detrimental changes associated with habitat fragmentation, at least in landscapes that are a mosaic of fragments, regenerating forests, and pastures. However, ant-plant mutualistic networks may have several properties that may promote their persistence in fragmented landscapes. Proactive identification of key mutualist partners may be necessary to focus conservation efforts on the interactions that insure the integrity of network structure and the ecosystems services networks provide.

  18. Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses.

    PubMed

    Ocker, Gabriel Koch; Litwin-Kumar, Ashok; Doiron, Brent

    2015-08-01

    The synaptic connectivity of cortical networks features an overrepresentation of certain wiring motifs compared to simple random-network models. This structure is shaped, in part, by synaptic plasticity that promotes or suppresses connections between neurons depending on their joint spiking activity. Frequently, theoretical studies focus on how feedforward inputs drive plasticity to create this network structure. We study the complementary scenario of self-organized structure in a recurrent network, with spike timing-dependent plasticity driven by spontaneous dynamics. We develop a self-consistent theory for the evolution of network structure by combining fast spiking covariance with a slow evolution of synaptic weights. Through a finite-size expansion of network dynamics we obtain a low-dimensional set of nonlinear differential equations for the evolution of two-synapse connectivity motifs. With this theory in hand, we explore how the form of the plasticity rule drives the evolution of microcircuits in cortical networks. When potentiation and depression are in approximate balance, synaptic dynamics depend on weighted divergent, convergent, and chain motifs. For additive, Hebbian STDP these motif interactions create instabilities in synaptic dynamics that either promote or suppress the initial network structure. Our work provides a consistent theoretical framework for studying how spiking activity in recurrent networks interacts with synaptic plasticity to determine network structure.

  19. Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses

    PubMed Central

    Ocker, Gabriel Koch; Litwin-Kumar, Ashok; Doiron, Brent

    2015-01-01

    The synaptic connectivity of cortical networks features an overrepresentation of certain wiring motifs compared to simple random-network models. This structure is shaped, in part, by synaptic plasticity that promotes or suppresses connections between neurons depending on their joint spiking activity. Frequently, theoretical studies focus on how feedforward inputs drive plasticity to create this network structure. We study the complementary scenario of self-organized structure in a recurrent network, with spike timing-dependent plasticity driven by spontaneous dynamics. We develop a self-consistent theory for the evolution of network structure by combining fast spiking covariance with a slow evolution of synaptic weights. Through a finite-size expansion of network dynamics we obtain a low-dimensional set of nonlinear differential equations for the evolution of two-synapse connectivity motifs. With this theory in hand, we explore how the form of the plasticity rule drives the evolution of microcircuits in cortical networks. When potentiation and depression are in approximate balance, synaptic dynamics depend on weighted divergent, convergent, and chain motifs. For additive, Hebbian STDP these motif interactions create instabilities in synaptic dynamics that either promote or suppress the initial network structure. Our work provides a consistent theoretical framework for studying how spiking activity in recurrent networks interacts with synaptic plasticity to determine network structure. PMID:26291697

  20. Review: visual analytics of climate networks

    NASA Astrophysics Data System (ADS)

    Nocke, T.; Buschmann, S.; Donges, J. F.; Marwan, N.; Schulz, H.-J.; Tominski, C.

    2015-09-01

    Network analysis has become an important approach in studying complex spatiotemporal behaviour within geophysical observation and simulation data. This new field produces increasing numbers of large geo-referenced networks to be analysed. Particular focus lies currently on the network analysis of the complex statistical interrelationship structure within climatological fields. The standard procedure for such network analyses is the extraction of network measures in combination with static standard visualisation methods. Existing interactive visualisation methods and tools for geo-referenced network exploration are often either not known to the analyst or their potential is not fully exploited. To fill this gap, we illustrate how interactive visual analytics methods in combination with geovisualisation can be tailored for visual climate network investigation. Therefore, the paper provides a problem analysis relating the multiple visualisation challenges to a survey undertaken with network analysts from the research fields of climate and complex systems science. Then, as an overview for the interested practitioner, we review the state-of-the-art in climate network visualisation and provide an overview of existing tools. As a further contribution, we introduce the visual network analytics tools CGV and GTX, providing tailored solutions for climate network analysis, including alternative geographic projections, edge bundling, and 3-D network support. Using these tools, the paper illustrates the application potentials of visual analytics for climate networks based on several use cases including examples from global, regional, and multi-layered climate networks.

  1. Review: visual analytics of climate networks

    NASA Astrophysics Data System (ADS)

    Nocke, T.; Buschmann, S.; Donges, J. F.; Marwan, N.; Schulz, H.-J.; Tominski, C.

    2015-04-01

    Network analysis has become an important approach in studying complex spatiotemporal behaviour within geophysical observation and simulation data. This new field produces increasing amounts of large geo-referenced networks to be analysed. Particular focus lies currently on the network analysis of the complex statistical interrelationship structure within climatological fields. The standard procedure for such network analyses is the extraction of network measures in combination with static standard visualisation methods. Existing interactive visualisation methods and tools for geo-referenced network exploration are often either not known to the analyst or their potential is not fully exploited. To fill this gap, we illustrate how interactive visual analytics methods in combination with geovisualisation can be tailored for visual climate network investigation. Therefore, the paper provides a problem analysis, relating the multiple visualisation challenges with a survey undertaken with network analysts from the research fields of climate and complex systems science. Then, as an overview for the interested practitioner, we review the state-of-the-art in climate network visualisation and provide an overview of existing tools. As a further contribution, we introduce the visual network analytics tools CGV and GTX, providing tailored solutions for climate network analysis, including alternative geographic projections, edge bundling, and 3-D network support. Using these tools, the paper illustrates the application potentials of visual analytics for climate networks based on several use cases including examples from global, regional, and multi-layered climate networks.

  2. Structural Bioinformatics of the Interactome

    PubMed Central

    Petrey, Donald; Honig, Barry

    2014-01-01

    The last decade has seen a dramatic expansion in the number and range of techniques available to obtain genome-wide information, and to analyze this information so as to infer both the function of individual molecules and how they interact to modulate the behavior of biological systems. Here we review these techniques, focusing on the construction of physical protein-protein interaction networks, and highlighting approaches that incorporate protein structure which is becoming an increasingly important component of systems-level computational techniques. We also discuss how network analyses are being applied to enhance the basic understanding of biological systems and their disregulation, and how they are being applied in drug development. PMID:24895853

  3. ShapeShop: Towards Understanding Deep Learning Representations via Interactive Experimentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohman, Frederick M.; Hodas, Nathan O.; Chau, Duen Horng

    Deep learning is the driving force behind many recent technologies; however, deep neural networks are often viewed as “black-boxes” due to their internal complexity that is hard to understand. Little research focuses on helping people explore and understand the relationship between a user’s data and the learned representations in deep learning models. We present our ongoing work, ShapeShop, an interactive system for visualizing and understanding what semantics a neural network model has learned. Built using standard web technologies, ShapeShop allows users to experiment with and compare deep learning models to help explore the robustness of image classifiers.

  4. Toward Rigorous Parameterization of Underconstrained Neural Network Models Through Interactive Visualization and Steering of Connectivity Generation

    PubMed Central

    Nowke, Christian; Diaz-Pier, Sandra; Weyers, Benjamin; Hentschel, Bernd; Morrison, Abigail; Kuhlen, Torsten W.; Peyser, Alexander

    2018-01-01

    Simulation models in many scientific fields can have non-unique solutions or unique solutions which can be difficult to find. Moreover, in evolving systems, unique final state solutions can be reached by multiple different trajectories. Neuroscience is no exception. Often, neural network models are subject to parameter fitting to obtain desirable output comparable to experimental data. Parameter fitting without sufficient constraints and a systematic exploration of the possible solution space can lead to conclusions valid only around local minima or around non-minima. To address this issue, we have developed an interactive tool for visualizing and steering parameters in neural network simulation models. In this work, we focus particularly on connectivity generation, since finding suitable connectivity configurations for neural network models constitutes a complex parameter search scenario. The development of the tool has been guided by several use cases—the tool allows researchers to steer the parameters of the connectivity generation during the simulation, thus quickly growing networks composed of multiple populations with a targeted mean activity. The flexibility of the software allows scientists to explore other connectivity and neuron variables apart from the ones presented as use cases. With this tool, we enable an interactive exploration of parameter spaces and a better understanding of neural network models and grapple with the crucial problem of non-unique network solutions and trajectories. In addition, we observe a reduction in turn around times for the assessment of these models, due to interactive visualization while the simulation is computed. PMID:29937723

  5. Social Networks and Community-Based Natural Resource Management

    NASA Astrophysics Data System (ADS)

    Lauber, T. Bruce; Decker, Daniel J.; Knuth, Barbara A.

    2008-10-01

    We conducted case studies of three successful examples of collaborative, community-based natural resource conservation and development. Our purpose was to: (1) identify the functions served by interactions within the social networks of involved stakeholders; (2) describe key structural properties of these social networks; and (3) determine how these structural properties varied when the networks were serving different functions. The case studies relied on semi-structured, in-depth interviews of 8 to 11 key stakeholders at each site who had played a significant role in the collaborative projects. Interview questions focused on the roles played by key stakeholders and the functions of interactions between them. Interactions allowed the exchange of ideas, provided access to funding, and enabled some stakeholders to influence others. The exchange of ideas involved the largest number of stakeholders, the highest percentage of local stakeholders, and the highest density of interactions. Our findings demonstrated the value of tailoring strategies for involving stakeholders to meet different needs during a collaborative, community-based natural resource management project. Widespread involvement of local stakeholders may be most appropriate when ideas for a project are being developed. During efforts to exert influence to secure project approvals or funding, however, involving specific individuals with political connections or influence on possible sources of funds may be critical. Our findings are consistent with past work that has postulated that social networks may require specific characteristics to meet different needs in community-based environmental management.

  6. Smart sign enhancement : executive summary report.

    DOT National Transportation Integrated Search

    2007-09-01

    In the Smart Sign Ordering System (Phase I) the : University of Akron developed an on-line : interactive traffic-sign ordering system for ODOT. : The main focus of SSOS Phase I was to provide : ODOT with a fully automated and networked sign : orderin...

  7. Protein complexes and functional modules in molecular networks

    NASA Astrophysics Data System (ADS)

    Spirin, Victor; Mirny, Leonid A.

    2003-10-01

    Proteins, nucleic acids, and small molecules form a dense network of molecular interactions in a cell. Molecules are nodes of this network, and the interactions between them are edges. The architecture of molecular networks can reveal important principles of cellular organization and function, similarly to the way that protein structure tells us about the function and organization of a protein. Computational analysis of molecular networks has been primarily concerned with node degree [Wagner, A. & Fell, D. A. (2001) Proc. R. Soc. London Ser. B 268, 1803-1810; Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. (2000) Nature 407, 651-654] or degree correlation [Maslov, S. & Sneppen, K. (2002) Science 296, 910-913], and hence focused on single/two-body properties of these networks. Here, by analyzing the multibody structure of the network of protein-protein interactions, we discovered molecular modules that are densely connected within themselves but sparsely connected with the rest of the network. Comparison with experimental data and functional annotation of genes showed two types of modules: (i) protein complexes (splicing machinery, transcription factors, etc.) and (ii) dynamic functional units (signaling cascades, cell-cycle regulation, etc.). Discovered modules are highly statistically significant, as is evident from comparison with random graphs, and are robust to noise in the data. Our results provide strong support for the network modularity principle introduced by Hartwell et al. [Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. (1999) Nature 402, C47-C52], suggesting that found modules constitute the "building blocks" of molecular networks.

  8. Focus-based filtering + clustering technique for power-law networks with small world phenomenon

    NASA Astrophysics Data System (ADS)

    Boutin, François; Thièvre, Jérôme; Hascoët, Mountaz

    2006-01-01

    Realistic interaction networks usually present two main properties: a power-law degree distribution and a small world behavior. Few nodes are linked to many nodes and adjacent nodes are likely to share common neighbors. Moreover, graph structure usually presents a dense core that is difficult to explore with classical filtering and clustering techniques. In this paper, we propose a new filtering technique accounting for a user-focus. This technique extracts a tree-like graph with also power-law degree distribution and small world behavior. Resulting structure is easily drawn with classical force-directed drawing algorithms. It is also quickly clustered and displayed into a multi-level silhouette tree (MuSi-Tree) from any user-focus. We built a new graph filtering + clustering + drawing API and report a case study.

  9. Scaling properties in time-varying networks with memory

    NASA Astrophysics Data System (ADS)

    Kim, Hyewon; Ha, Meesoon; Jeong, Hawoong

    2015-12-01

    The formation of network structure is mainly influenced by an individual node's activity and its memory, where activity can usually be interpreted as the individual inherent property and memory can be represented by the interaction strength between nodes. In our study, we define the activity through the appearance pattern in the time-aggregated network representation, and quantify the memory through the contact pattern of empirical temporal networks. To address the role of activity and memory in epidemics on time-varying networks, we propose temporal-pattern coarsening of activity-driven growing networks with memory. In particular, we focus on the relation between time-scale coarsening and spreading dynamics in the context of dynamic scaling and finite-size scaling. Finally, we discuss the universality issue of spreading dynamics on time-varying networks for various memory-causality tests.

  10. Molecular parallels between neural and vascular development.

    PubMed

    Eichmann, Anne; Thomas, Jean-Léon

    2013-01-01

    The human central nervous system (CNS) features a network of ~400 miles of blood vessels that receives >20% of the body's cardiac output and uses most of its blood glucose. Many human diseases, including stroke, retinopathy, and cancer, are associated with the biology of CNS blood vessels. These vessels originate from extrinsic cell populations, including endothelial cells and pericytes that colonize the CNS and interact with glia and neurons to establish the blood-brain barrier and control cerebrovascular exchanges. Neurovascular interactions also play important roles in adult neurogenic niches, which harbor a unique population of neural stem cells that are intimately associated with blood vessels. We here review the cellular and molecular mechanisms required to establish the CNS vascular network, with a special focus on neurovascular interactions and the functions of vascular endothelial growth factors.

  11. Evaluation of the Presentation of Network Data via Visualization Tools for Network Analysts

    DTIC Science & Technology

    2014-03-01

    A. (eds.) The Human Computer Interaction Handbook, pp.544–582. Lawrence Erlbaum Associates, Mawah, NJ, 2003. 4. Goodall , John R. Introduction to...of either display type being used in the analysis of cyber security tasks. Goodall (19) is one of few whose work focused on comparing user...relating source IP address to destination IP address and time, Goodall remains the only known approach comparing tabular and graphical displays

  12. A longitudinal study of organizational formation, innovation adoption, and dissemination activities within the National Drug Abuse Treatment Clinical Trials Network.

    PubMed

    Roman, Paul M; Abraham, Amanda J; Rothrauff, Tanja C; Knudsen, Hannah K

    2010-06-01

    The National Institute on Drug Abuse established the National Drug Abuse Treatment Clinical Trials Network (CTN) to conduct trials of promising substance abuse treatment interventions in diverse clinical settings and to disseminate results of these trials. This article focuses on three dimensions of CTN's organizational functioning. First, a longitudinal dataset is used to examine CTN's formation as a network of interorganizational interaction among treatment practitioners and researchers. Data indicate strong relationships of interaction and trust, but a decline in problem-centered interorganizational interaction over time. Second, adoption of buprenorphine and motivational incentives among CTN's affiliated community treatment programs (CTPs) is examined over three waves of data. Although adoption is found to increase with CTPs' CTN participation, there is only modest evidence of widespread penetration and implementation. Third, CTPs' pursuit of the CTN's dissemination goals are examined, indicating that such organizational outreach activities are underway and likely to increase innovation diffusion in the future.

  13. A longitudinal study of organizational formation, innovation adoption, and dissemination activities within the National Drug Abuse Treatment Clinical Trials Network

    PubMed Central

    Roman, Paul M.; Abraham, Amanda J.; Rothrauff, Tanja C.; Knudsen, Hannah K.

    2010-01-01

    The National Institute on Drug Abuse (NIDA) established the National Drug Abuse Treatment Clinical Trials Network (CTN) to conduct trials of promising substance abuse treatment interventions in diverse clinical settings and to disseminate results of these trials. This paper focuses on three dimensions of the CTN’s organizational functioning. First, a longitudinal dataset is used to examine the CTN’s formation as a network of inter-organizational interaction among treatment practitioners and researchers. Data indicate strong relationships of interaction and trust, but a decline in problem-centered inter-organizational interaction over time. Second, adoption of buprenorphine and motivational incentives among the CTN’s affiliated CTPs is identified over three waves of data. While adoption is found to increase with CTPs’ CTN participation, there is only modest evidence of widespread penetration and implementation. Third, CTPs’ pursuit of the CTN’s dissemination goals are examined, indicating that such organizational outreach activities are underway and likely to increase innovation diffusion in the future. PMID:20307795

  14. Learning contextual gene set interaction networks of cancer with condition specificity

    PubMed Central

    2013-01-01

    Background Identifying similarities and differences in the molecular constitutions of various types of cancer is one of the key challenges in cancer research. The appearances of a cancer depend on complex molecular interactions, including gene regulatory networks and gene-environment interactions. This complexity makes it challenging to decipher the molecular origin of the cancer. In recent years, many studies reported methods to uncover heterogeneous depictions of complex cancers, which are often categorized into different subtypes. The challenge is to identify diverse molecular contexts within a cancer, to relate them to different subtypes, and to learn underlying molecular interactions specific to molecular contexts so that we can recommend context-specific treatment to patients. Results In this study, we describe a novel method to discern molecular interactions specific to certain molecular contexts. Unlike conventional approaches to build modular networks of individual genes, our focus is to identify cancer-generic and subtype-specific interactions between contextual gene sets, of which each gene set share coherent transcriptional patterns across a subset of samples, termed contextual gene set. We then apply a novel formulation for quantitating the effect of the samples from each subtype on the calculated strength of interactions observed. Two cancer data sets were analyzed to support the validity of condition-specificity of identified interactions. When compared to an existing approach, the proposed method was much more sensitive in identifying condition-specific interactions even in heterogeneous data set. The results also revealed that network components specific to different types of cancer are related to different biological functions than cancer-generic network components. We found not only the results that are consistent with previous studies, but also new hypotheses on the biological mechanisms specific to certain cancer types that warrant further investigations. Conclusions The analysis on the contextual gene sets and characterization of networks of interaction composed of these sets discovered distinct functional differences underlying various types of cancer. The results show that our method successfully reveals many subtype-specific regions in the identified maps of biological contexts, which well represent biological functions that can be connected to specific subtypes. PMID:23418942

  15. Modeling the cooperative and competitive contagions in online social networks

    NASA Astrophysics Data System (ADS)

    Zhuang, Yun-Bei; Chen, J. J.; Li, Zhi-hong

    2017-10-01

    The wide adoption of social media has increased the interaction among different pieces of information, and this interaction includes cooperation and competition for our finite attention. While previous research focus on fully competition, this paper extends the interaction to be both "cooperation" and "competition", by employing an IS1S2 R model. To explore how two different pieces of information interact with each other, the IS1S2 R model splits the agents into four parts-(Ignorant-Spreader I-Spreader II-Stifler), based on SIR epidemic spreading model. Using real data from Weibo.com, a social network site similar to Twitter, we find some parameters, like decaying rates, can both influence the cooperative diffusion process and the competitive process, while other parameters, like infectious rates only have influence on the competitive diffusion process. Besides, the parameters' effect are more significant in the competitive diffusion than in the cooperative diffusion.

  16. OmicsNet: a web-based tool for creation and visual analysis of biological networks in 3D space.

    PubMed

    Zhou, Guangyan; Xia, Jianguo

    2018-06-07

    Biological networks play increasingly important roles in omics data integration and systems biology. Over the past decade, many excellent tools have been developed to support creation, analysis and visualization of biological networks. However, important limitations remain: most tools are standalone programs, the majority of them focus on protein-protein interaction (PPI) or metabolic networks, and visualizations often suffer from 'hairball' effects when networks become large. To help address these limitations, we developed OmicsNet - a novel web-based tool that allows users to easily create different types of molecular interaction networks and visually explore them in a three-dimensional (3D) space. Users can upload one or multiple lists of molecules of interest (genes/proteins, microRNAs, transcription factors or metabolites) to create and merge different types of biological networks. The 3D network visualization system was implemented using the powerful Web Graphics Library (WebGL) technology that works natively in most major browsers. OmicsNet supports force-directed layout, multi-layered perspective layout, as well as spherical layout to help visualize and navigate complex networks. A rich set of functions have been implemented to allow users to perform coloring, shading, topology analysis, and enrichment analysis. OmicsNet is freely available at http://www.omicsnet.ca.

  17. Complexity Leadership: A Theoretical Perspective

    ERIC Educational Resources Information Center

    Baltaci, Ali; Balci, Ali

    2017-01-01

    Complex systems are social networks composed of interactive employees interconnected through collaborative, dynamic ties such as shared goals, perspectives and needs. Complex systems are largely based on "the complex system theory". The complex system theory focuses mainly on finding out and developing strategies and behaviours that…

  18. Brain-inspired cheminformatics of drug-target brain interactome, synthesis, and assay of TVP1022 derivatives.

    PubMed

    Romero-Durán, Francisco J; Alonso, Nerea; Yañez, Matilde; Caamaño, Olga; García-Mera, Xerardo; González-Díaz, Humberto

    2016-04-01

    The use of Cheminformatics tools is gaining importance in the field of translational research from Medicinal Chemistry to Neuropharmacology. In particular, we need it for the analysis of chemical information on large datasets of bioactive compounds. These compounds form large multi-target complex networks (drug-target interactome network) resulting in a very challenging data analysis problem. Artificial Neural Network (ANN) algorithms may help us predict the interactions of drugs and targets in CNS interactome. In this work, we trained different ANN models able to predict a large number of drug-target interactions. These models predict a dataset of thousands of interactions of central nervous system (CNS) drugs characterized by > 30 different experimental measures in >400 different experimental protocols for >150 molecular and cellular targets present in 11 different organisms (including human). The model was able to classify cases of non-interacting vs. interacting drug-target pairs with satisfactory performance. A second aim focus on two main directions: the synthesis and assay of new derivatives of TVP1022 (S-analogues of rasagiline) and the comparison with other rasagiline derivatives recently reported. Finally, we used the best of our models to predict drug-target interactions for the best new synthesized compound against a large number of CNS protein targets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Integrating probabilistic models of perception and interactive neural networks: a historical and tutorial review

    PubMed Central

    McClelland, James L.

    2013-01-01

    This article seeks to establish a rapprochement between explicitly Bayesian models of contextual effects in perception and neural network models of such effects, particularly the connectionist interactive activation (IA) model of perception. The article is in part an historical review and in part a tutorial, reviewing the probabilistic Bayesian approach to understanding perception and how it may be shaped by context, and also reviewing ideas about how such probabilistic computations may be carried out in neural networks, focusing on the role of context in interactive neural networks, in which both bottom-up and top-down signals affect the interpretation of sensory inputs. It is pointed out that connectionist units that use the logistic or softmax activation functions can exactly compute Bayesian posterior probabilities when the bias terms and connection weights affecting such units are set to the logarithms of appropriate probabilistic quantities. Bayesian concepts such the prior, likelihood, (joint and marginal) posterior, probability matching and maximizing, and calculating vs. sampling from the posterior are all reviewed and linked to neural network computations. Probabilistic and neural network models are explicitly linked to the concept of a probabilistic generative model that describes the relationship between the underlying target of perception (e.g., the word intended by a speaker or other source of sensory stimuli) and the sensory input that reaches the perceiver for use in inferring the underlying target. It is shown how a new version of the IA model called the multinomial interactive activation (MIA) model can sample correctly from the joint posterior of a proposed generative model for perception of letters in words, indicating that interactive processing is fully consistent with principled probabilistic computation. Ways in which these computations might be realized in real neural systems are also considered. PMID:23970868

  20. Integrating probabilistic models of perception and interactive neural networks: a historical and tutorial review.

    PubMed

    McClelland, James L

    2013-01-01

    This article seeks to establish a rapprochement between explicitly Bayesian models of contextual effects in perception and neural network models of such effects, particularly the connectionist interactive activation (IA) model of perception. The article is in part an historical review and in part a tutorial, reviewing the probabilistic Bayesian approach to understanding perception and how it may be shaped by context, and also reviewing ideas about how such probabilistic computations may be carried out in neural networks, focusing on the role of context in interactive neural networks, in which both bottom-up and top-down signals affect the interpretation of sensory inputs. It is pointed out that connectionist units that use the logistic or softmax activation functions can exactly compute Bayesian posterior probabilities when the bias terms and connection weights affecting such units are set to the logarithms of appropriate probabilistic quantities. Bayesian concepts such the prior, likelihood, (joint and marginal) posterior, probability matching and maximizing, and calculating vs. sampling from the posterior are all reviewed and linked to neural network computations. Probabilistic and neural network models are explicitly linked to the concept of a probabilistic generative model that describes the relationship between the underlying target of perception (e.g., the word intended by a speaker or other source of sensory stimuli) and the sensory input that reaches the perceiver for use in inferring the underlying target. It is shown how a new version of the IA model called the multinomial interactive activation (MIA) model can sample correctly from the joint posterior of a proposed generative model for perception of letters in words, indicating that interactive processing is fully consistent with principled probabilistic computation. Ways in which these computations might be realized in real neural systems are also considered.

  1. A question of trust: user-centered design requirements for an informatics intervention to promote the sexual health of African-American youth.

    PubMed

    Veinot, Tiffany C; Campbell, Terrance R; Kruger, Daniel J; Grodzinski, Alison

    2013-01-01

    We investigated the user requirements of African-American youth (aged 14-24 years) to inform the design of a culturally appropriate, network-based informatics intervention for the prevention of HIV and other sexually transmitted infections (STI). We conducted 10 focus groups with 75 African-American youth from a city with high HIV/STI prevalence. Data analyses involved coding using qualitative content analysis procedures and memo writing. Unexpectedly, the majority of participants' design recommendations concerned trust. Youth expressed distrust towards people and groups, which was amplified within the context of information technology-mediated interactions about HIV/STI. Participants expressed distrust in the reliability of condoms and the accuracy of HIV tests. They questioned the benevolence of many institutions, and some rejected authoritative HIV/STI information. Therefore, reputational information, including rumor, influenced HIV/STI-related decision making. Participants' design requirements also focused on trust-related concerns. Accordingly, we developed a novel trust-centered design framework to guide intervention design. Current approaches to online trust for health informatics do not consider group-level trusting patterns. Yet, trust was the central intervention-relevant issue among African-American youth, suggesting an important focus for culturally informed design. Our design framework incorporates: intervention objectives (eg, network embeddedness, participation); functional specifications (eg, decision support, collective action, credible question and answer services); and interaction design (eg, member control, offline network linkages, optional anonymity). Trust is a critical focus for HIV/STI informatics interventions for young African Americans. Our design framework offers practical, culturally relevant, and systematic guidance to designers to reach this underserved group better.

  2. A new multi-scale method to reveal hierarchical modular structures in biological networks.

    PubMed

    Jiao, Qing-Ju; Huang, Yan; Shen, Hong-Bin

    2016-11-15

    Biological networks are effective tools for studying molecular interactions. Modular structure, in which genes or proteins may tend to be associated with functional modules or protein complexes, is a remarkable feature of biological networks. Mining modular structure from biological networks enables us to focus on a set of potentially important nodes, which provides a reliable guide to future biological experiments. The first fundamental challenge in mining modular structure from biological networks is that the quality of the observed network data is usually low owing to noise and incompleteness in the obtained networks. The second problem that poses a challenge to existing approaches to the mining of modular structure is that the organization of both functional modules and protein complexes in networks is far more complicated than was ever thought. For instance, the sizes of different modules vary considerably from each other and they often form multi-scale hierarchical structures. To solve these problems, we propose a new multi-scale protocol for mining modular structure (named ISIMB) driven by a node similarity metric, which works in an iteratively converged space to reduce the effects of the low data quality of the observed network data. The multi-scale node similarity metric couples both the local and the global topology of the network with a resolution regulator. By varying this resolution regulator to give different weightings to the local and global terms in the metric, the ISIMB method is able to fit the shape of modules and to detect them on different scales. Experiments on protein-protein interaction and genetic interaction networks show that our method can not only mine functional modules and protein complexes successfully, but can also predict functional modules from specific to general and reveal the hierarchical organization of protein complexes.

  3. LOGISTIC NETWORK REGRESSION FOR SCALABLE ANALYSIS OF NETWORKS WITH JOINT EDGE/VERTEX DYNAMICS

    PubMed Central

    Almquist, Zack W.; Butts, Carter T.

    2015-01-01

    Change in group size and composition has long been an important area of research in the social sciences. Similarly, interest in interaction dynamics has a long history in sociology and social psychology. However, the effects of endogenous group change on interaction dynamics are a surprisingly understudied area. One way to explore these relationships is through social network models. Network dynamics may be viewed as a process of change in the edge structure of a network, in the vertex set on which edges are defined, or in both simultaneously. Although early studies of such processes were primarily descriptive, recent work on this topic has increasingly turned to formal statistical models. Although showing great promise, many of these modern dynamic models are computationally intensive and scale very poorly in the size of the network under study and/or the number of time points considered. Likewise, currently used models focus on edge dynamics, with little support for endogenously changing vertex sets. Here, the authors show how an existing approach based on logistic network regression can be extended to serve as a highly scalable framework for modeling large networks with dynamic vertex sets. The authors place this approach within a general dynamic exponential family (exponential-family random graph modeling) context, clarifying the assumptions underlying the framework (and providing a clear path for extensions), and they show how model assessment methods for cross-sectional networks can be extended to the dynamic case. Finally, the authors illustrate this approach on a classic data set involving interactions among windsurfers on a California beach. PMID:26120218

  4. LOGISTIC NETWORK REGRESSION FOR SCALABLE ANALYSIS OF NETWORKS WITH JOINT EDGE/VERTEX DYNAMICS.

    PubMed

    Almquist, Zack W; Butts, Carter T

    2014-08-01

    Change in group size and composition has long been an important area of research in the social sciences. Similarly, interest in interaction dynamics has a long history in sociology and social psychology. However, the effects of endogenous group change on interaction dynamics are a surprisingly understudied area. One way to explore these relationships is through social network models. Network dynamics may be viewed as a process of change in the edge structure of a network, in the vertex set on which edges are defined, or in both simultaneously. Although early studies of such processes were primarily descriptive, recent work on this topic has increasingly turned to formal statistical models. Although showing great promise, many of these modern dynamic models are computationally intensive and scale very poorly in the size of the network under study and/or the number of time points considered. Likewise, currently used models focus on edge dynamics, with little support for endogenously changing vertex sets. Here, the authors show how an existing approach based on logistic network regression can be extended to serve as a highly scalable framework for modeling large networks with dynamic vertex sets. The authors place this approach within a general dynamic exponential family (exponential-family random graph modeling) context, clarifying the assumptions underlying the framework (and providing a clear path for extensions), and they show how model assessment methods for cross-sectional networks can be extended to the dynamic case. Finally, the authors illustrate this approach on a classic data set involving interactions among windsurfers on a California beach.

  5. Measuring and modeling correlations in multiplex networks.

    PubMed

    Nicosia, Vincenzo; Latora, Vito

    2015-09-01

    The interactions among the elementary components of many complex systems can be qualitatively different. Such systems are therefore naturally described in terms of multiplex or multilayer networks, i.e., networks where each layer stands for a different type of interaction between the same set of nodes. There is today a growing interest in understanding when and why a description in terms of a multiplex network is necessary and more informative than a single-layer projection. Here we contribute to this debate by presenting a comprehensive study of correlations in multiplex networks. Correlations in node properties, especially degree-degree correlations, have been thoroughly studied in single-layer networks. Here we extend this idea to investigate and characterize correlations between the different layers of a multiplex network. Such correlations are intrinsically multiplex, and we first study them empirically by constructing and analyzing several multiplex networks from the real world. In particular, we introduce various measures to characterize correlations in the activity of the nodes and in their degree at the different layers and between activities and degrees. We show that real-world networks exhibit indeed nontrivial multiplex correlations. For instance, we find cases where two layers of the same multiplex network are positively correlated in terms of node degrees, while other two layers are negatively correlated. We then focus on constructing synthetic multiplex networks, proposing a series of models to reproduce the correlations observed empirically and/or to assess their relevance.

  6. Asymptotic theory of time varying networks with burstiness and heterogeneous activation patterns

    NASA Astrophysics Data System (ADS)

    Burioni, Raffaella; Ubaldi, Enrico; Vezzani, Alessandro

    2017-05-01

    The recent availability of large-scale, time-resolved and high quality digital datasets has allowed for a deeper understanding of the structure and properties of many real-world networks. The empirical evidence of a temporal dimension prompted the switch of paradigm from a static representation of networks to a time varying one. In this work we briefly review the framework of time-varying-networks in real world social systems, especially focusing on the activity-driven paradigm. We develop a framework that allows for the encoding of three generative mechanisms that seem to play a central role in the social networks’ evolution: the individual’s propensity to engage in social interactions, its strategy in allocate these interactions among its alters and the burstiness of interactions amongst social actors. The functional forms and probability distributions encoding these mechanisms are typically data driven. A natural question arises if different classes of strategies and burstiness distributions, with different local scale behavior and analogous asymptotics can lead to the same long time and large scale structure of the evolving networks. We consider the problem in its full generality, by investigating and solving the system dynamics in the asymptotic limit, for general classes of ties allocation mechanisms and waiting time probability distributions. We show that the asymptotic network evolution is driven by a few characteristics of these functional forms, that can be extracted from direct measurements on large datasets.

  7. A network model of genomic hormone interactions underlying dementia and its translational validation through serendipitous off-target effect

    PubMed Central

    2013-01-01

    Background While the majority of studies have focused on the association between sex hormones and dementia, emerging evidence supports the role of other hormone signals in increasing dementia risk. However, due to the lack of an integrated view on mechanistic interactions of hormone signaling pathways associated with dementia, molecular mechanisms through which hormones contribute to the increased risk of dementia has remained unclear and capacity of translating hormone signals to potential therapeutic and diagnostic applications in relation to dementia has been undervalued. Methods Using an integrative knowledge- and data-driven approach, a global hormone interaction network in the context of dementia was constructed, which was further filtered down to a model of convergent hormone signaling pathways. This model was evaluated for its biological and clinical relevance through pathway recovery test, evidence-based analysis, and biomarker-guided analysis. Translational validation of the model was performed using the proposed novel mechanism discovery approach based on ‘serendipitous off-target effects’. Results Our results reveal the existence of a well-connected hormone interaction network underlying dementia. Seven hormone signaling pathways converge at the core of the hormone interaction network, which are shown to be mechanistically linked to the risk of dementia. Amongst these pathways, estrogen signaling pathway takes the major part in the model and insulin signaling pathway is analyzed for its association to learning and memory functions. Validation of the model through serendipitous off-target effects suggests that hormone signaling pathways substantially contribute to the pathogenesis of dementia. Conclusions The integrated network model of hormone interactions underlying dementia may serve as an initial translational platform for identifying potential therapeutic targets and candidate biomarkers for dementia-spectrum disorders such as Alzheimer’s disease. PMID:23885764

  8. Memory-induced mechanism for self-sustaining activity in networks

    NASA Astrophysics Data System (ADS)

    Allahverdyan, A. E.; Steeg, G. Ver; Galstyan, A.

    2015-12-01

    We study a mechanism of activity sustaining on networks inspired by a well-known model of neuronal dynamics. Our primary focus is the emergence of self-sustaining collective activity patterns, where no single node can stay active by itself, but the activity provided initially is sustained within the collective of interacting agents. In contrast to existing models of self-sustaining activity that are caused by (long) loops present in the network, here we focus on treelike structures and examine activation mechanisms that are due to temporal memory of the nodes. This approach is motivated by applications in social media, where long network loops are rare or absent. Our results suggest that under a weak behavioral noise, the nodes robustly split into several clusters, with partial synchronization of nodes within each cluster. We also study the randomly weighted version of the models where the nodes are allowed to change their connection strength (this can model attention redistribution) and show that it does facilitate the self-sustained activity.

  9. Semantic Visualization of Wireless Sensor Networks for Elderly Monitoring

    NASA Astrophysics Data System (ADS)

    Stocklöw, Carsten; Kamieth, Felix

    In the area of Ambient Intelligence, Wireless Sensor Networks are commonly used for user monitoring purposes like health monitoring and user localization. Existing work on visualization of wireless sensor networks focuses mainly on displaying individual nodes and logical, graph-based topologies. This way, the relation to the real-world deployment is lost. This paper presents a novel approach for visualization of wireless sensor networks and interaction with complex services on the nodes. The environment is realized as a 3D model, and multiple nodes, that are worn by a single individual, are grouped together to allow an intuitive interface for end users. We describe application examples and show that our approach allows easier access to network information and functionality by comparing it with existing solutions.

  10. Investigation on Law and Economics Based on Complex Network and Time Series Analysis.

    PubMed

    Yang, Jian; Qu, Zhao; Chang, Hui

    2015-01-01

    The research focuses on the cooperative relationship and the strategy tendency among three mutually interactive parties in financing: small enterprises, commercial banks and micro-credit companies. Complex network theory and time series analysis were applied to figure out the quantitative evidence. Moreover, this paper built up a fundamental model describing the particular interaction among them through evolutionary game. Combining the results of data analysis and current situation, it is justifiable to put forward reasonable legislative recommendations for regulations on lending activities among small enterprises, commercial banks and micro-credit companies. The approach in this research provides a framework for constructing mathematical models and applying econometrics and evolutionary game in the issue of corporation financing.

  11. Simulating market dynamics: interactions between consumer psychology and social networks.

    PubMed

    Janssen, Marco A; Jager, Wander

    2003-01-01

    Markets can show different types of dynamics, from quiet markets dominated by one or a few products, to markets with continual penetration of new and reintroduced products. In a previous article we explored the dynamics of markets from a psychological perspective using a multi-agent simulation model. The main results indicated that the behavioral rules dominating the artificial consumer's decision making determine the resulting market dynamics, such as fashions, lock-in, and unstable renewal. Results also show the importance of psychological variables like social networks, preferences, and the need for identity to explain the dynamics of markets. In this article we extend this work in two directions. First, we will focus on a more systematic investigation of the effects of different network structures. The previous article was based on Watts and Strogatz's approach, which describes the small-world and clustering characteristics in networks. More recent research demonstrated that many large networks display a scale-free power-law distribution for node connectivity. In terms of market dynamics this may imply that a small proportion of consumers may have an exceptional influence on the consumptive behavior of others (hubs, or early adapters). We show that market dynamics is a self-organized property depending on the interaction between the agents' decision-making process (heuristics), the product characteristics (degree of satisfaction of unit of consumption, visibility), and the structure of interactions between agents (size of network and hubs in a social network).

  12. Memory Transmission in Small Groups and Large Networks: An Agent-Based Model.

    PubMed

    Luhmann, Christian C; Rajaram, Suparna

    2015-12-01

    The spread of social influence in large social networks has long been an interest of social scientists. In the domain of memory, collaborative memory experiments have illuminated cognitive mechanisms that allow information to be transmitted between interacting individuals, but these experiments have focused on small-scale social contexts. In the current study, we took a computational approach, circumventing the practical constraints of laboratory paradigms and providing novel results at scales unreachable by laboratory methodologies. Our model embodied theoretical knowledge derived from small-group experiments and replicated foundational results regarding collaborative inhibition and memory convergence in small groups. Ultimately, we investigated large-scale, realistic social networks and found that agents are influenced by the agents with which they interact, but we also found that agents are influenced by nonneighbors (i.e., the neighbors of their neighbors). The similarity between these results and the reports of behavioral transmission in large networks offers a major theoretical insight by linking behavioral transmission to the spread of information. © The Author(s) 2015.

  13. Emergent structure-function relations in emphysema and asthma.

    PubMed

    Winkler, Tilo; Suki, Béla

    2011-01-01

    Structure-function relationships in the respiratory system are often a result of the emergence of self-organized patterns or behaviors that are characteristic of certain respiratory diseases. Proper description of such self-organized behavior requires network models that include nonlinear interactions among different parts of the system. This review focuses on 2 models that exhibit self-organized behavior: a network model of the lung parenchyma during the progression of emphysema that is driven by mechanical force-induced breakdown, and an integrative model of bronchoconstriction in asthma that describes interactions among airways within the bronchial tree. Both models suggest that the transition from normal to pathologic states is a nonlinear process that includes a tipping point beyond which interactions among the system components are reinforced by positive feedback, further promoting the progression of pathologic changes. In emphysema, the progressive destruction of tissue is irreversible, while in asthma, it is possible to recover from a severe bronchoconstriction. These concepts may have implications for pulmonary medicine. Specifically, we suggest that structure-function relationships emerging from network behavior across multiple scales should be taken into account when the efficacy of novel treatments or drug therapy is evaluated. Multiscale, computational, network models will play a major role in this endeavor.

  14. Modelling opinion formation driven communities in social networks

    NASA Astrophysics Data System (ADS)

    Iñiguez, Gerardo; Barrio, Rafael A.; Kertész, János; Kaski, Kimmo K.

    2011-09-01

    In a previous paper we proposed a model to study the dynamics of opinion formation in human societies by a co-evolution process involving two distinct time scales of fast transaction and slower network evolution dynamics. In the transaction dynamics we take into account short range interactions as discussions between individuals and long range interactions to describe the attitude to the overall mood of society. The latter is handled by a uniformly distributed parameter α, assigned randomly to each individual, as quenched personal bias. The network evolution dynamics is realised by rewiring the societal network due to state variable changes as a result of transaction dynamics. The main consequence of this complex dynamics is that communities emerge in the social network for a range of values in the ratio between time scales. In this paper we focus our attention on the attitude parameter α and its influence on the conformation of opinion and the size of the resulting communities. We present numerical studies and extract interesting features of the model that can be interpreted in terms of social behaviour.

  15. Molecular Parallels between Neural and Vascular Development

    PubMed Central

    Eichmann, Anne; Thomas, Jean-Léon

    2013-01-01

    The human central nervous system (CNS) features a network of ∼400 miles of blood vessels that receives >20% of the body’s cardiac output and uses most of its blood glucose. Many human diseases, including stroke, retinopathy, and cancer, are associated with the biology of CNS blood vessels. These vessels originate from extrinsic cell populations, including endothelial cells and pericytes that colonize the CNS and interact with glia and neurons to establish the blood–brain barrier and control cerebrovascular exchanges. Neurovascular interactions also play important roles in adult neurogenic niches, which harbor a unique population of neural stem cells that are intimately associated with blood vessels. We here review the cellular and molecular mechanisms required to establish the CNS vascular network, with a special focus on neurovascular interactions and the functions of vascular endothelial growth factors. PMID:23024177

  16. Evaluating the benefits of collaboration in simulation games: the case of health care.

    PubMed

    Leung, Ricky

    2014-01-28

    Organizations have used simulation games for health promotion and communication. To evaluate how simulation games can foster collaboration among stakeholders, this paper develops two social network measures. The paper aims to initiate two specific measures that facilitate organizations and researchers to evaluate the effectiveness of Web-based simulation games in fostering collaboration. The two measures are: (1) network density and (2) network diversity. They measure the level of connectedness and communication evenness within social networks. To illustrate how these measures may be used, a hypothetical game about health policy is outlined. Web-based games can serve as an effective platform to engage stakeholders because interaction among them is quite convenient. Yet, systematic evaluation and planning are necessary to realize the benefits of these games. The paper suggests directions for testing how the social network dimension of Web-based games can augment individual-level benefits that stakeholders can obtain from playing simulation games. While this paper focuses on measuring the structural properties of social networks in Web-based games, further research should focus more attention on the appropriateness of game contents. In addition, empirical research should cover different geographical areas, such as East Asian countries where video games are very popular.

  17. Spacewire router IP-core with priority adaptive routing

    NASA Astrophysics Data System (ADS)

    Shakhmatov, A. V.; Chekmarev, S. A.; Vergasov, M. Y.; Khanov, V. Kh

    2015-10-01

    Design of modern spacecraft focuses on using network principles of interaction on-board equipment, in particular in network SpaceWire. Routers are an integral part of most SpaceWire networks. The paper presents an adaptive routing algorithm with a prioritization, allowing more flexibility to manage the routing process. This algorithm is designed to transmit SpaceWire packets over a redundant network. Also a method is proposed for rapid restoration of working capacity after power by saving the routing table and the router configuration in an external non-volatile memory. The proposed solutions used to create IP-core router, and then tested in the FPGA device. The results illustrate the realizability and rationality of the proposed solutions.

  18. Using Network Dynamical Influence to Drive Consensus

    NASA Astrophysics Data System (ADS)

    Punzo, Giuliano; Young, George F.; MacDonald, Malcolm; Leonard, Naomi E.

    2016-05-01

    Consensus and decision-making are often analysed in the context of networks, with many studies focusing attention on ranking the nodes of a network depending on their relative importance to information routing. Dynamical influence ranks the nodes with respect to their ability to influence the evolution of the associated network dynamical system. In this study it is shown that dynamical influence not only ranks the nodes, but also provides a naturally optimised distribution of effort to steer a network from one state to another. An example is provided where the “steering” refers to the physical change in velocity of self-propelled agents interacting through a network. Distinct from other works on this subject, this study looks at directed and hence more general graphs. The findings are presented with a theoretical angle, without targeting particular applications or networked systems; however, the framework and results offer parallels with biological flocks and swarms and opportunities for design of technological networks.

  19. Psyche and soma: New insights into the connection.

    PubMed

    Kumar, Rahul; Yeragani, Vikram K

    2010-01-01

    The interaction of Psyche and Soma are well known and this interaction happens through a complex network of feedback, medication, and modulation among the central and autonomic nervous systems, the endocrine system, the immune system, and the stress system. These systems, which were previously considered pristinely independent, in fact, interact at myriad levels. Psychoneuroimmunology (PNI) is an emerging discipline that focuses on various interactions among these body systems and provides the underpinnings of a scientific explanation for what is commonly referred to as the mind-body connection. This article reviews the relevant literature with an emphasis on Indian research.

  20. Psyche and soma: New insights into the connection

    PubMed Central

    Kumar, Rahul; Yeragani, Vikram K.

    2010-01-01

    The interaction of Psyche and Soma are well known and this interaction happens through a complex network of feedback, medication, and modulation among the central and autonomic nervous systems, the endocrine system, the immune system, and the stress system. These systems, which were previously considered pristinely independent, in fact, interact at myriad levels. Psychoneuroimmunology (PNI) is an emerging discipline that focuses on various interactions among these body systems and provides the underpinnings of a scientific explanation for what is commonly referred to as the mind-body connection. This article reviews the relevant literature with an emphasis on Indian research. PMID:21836684

  1. Anthropogenic impacts on tropical forest biodiversity: a network structure and ecosystem functioning perspective

    PubMed Central

    Morris, Rebecca J.

    2010-01-01

    Huge areas of diverse tropical forest are lost or degraded every year with dramatic consequences for biodiversity. Deforestation and fragmentation, over-exploitation, invasive species and climate change are the main drivers of tropical forest biodiversity loss. Most studies investigating these threats have focused on changes in species richness or species diversity. However, if we are to understand the absolute and long-term effects of anthropogenic impacts on tropical forests, we should also consider the interactions between species, how those species are organized in networks, and the function that those species perform. I discuss our current knowledge of network structure and ecosystem functioning, highlighting empirical examples of their response to anthropogenic impacts. I consider the future prospects for tropical forest biodiversity, focusing on biodiversity and ecosystem functioning in secondary forest. Finally, I propose directions for future research to help us better understand the effects of anthropogenic impacts on tropical forest biodiversity. PMID:20980318

  2. Resource Discovery within the Networked "Hybrid" Library.

    ERIC Educational Resources Information Center

    Leigh, Sally-Anne

    This paper focuses on the development, adoption, and integration of resource discovery, knowledge management, and/or knowledge sharing interfaces such as interactive portals, and the use of the library's World Wide Web presence to increase the availability and usability of information services. The introduction addresses changes in library…

  3. SPACEWAY: Providing affordable and versatile communication solutions

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, E. J.

    1995-08-01

    By the end of this decade, Hughes' SPACEWAY network will provide the first interactive 'bandwidth on demand' communication services for a variety of applications. High quality digital voice, interactive video, global access to multimedia databases, and transborder workgroup computing will make SPACEWAY an essential component of the computer-based workplace of the 21st century. With relatively few satellites to construct, insure, and launch -- plus extensive use of cost-effective, tightly focused spot beams on the world's most populated areas -- the high capacity SPACEWAY system can pass its significant cost savings onto its customers. The SPACEWAY network is different from other proposed global networks in that its geostationary orbit location makes it a truly market driven system: each satellite will make available extensive telecom services to hundreds of millions of people within the continuous view of that satellite, providing immediate capacity within a specific region of the world.

  4. A Collaborative Knowledge Plane for Autonomic Networks

    NASA Astrophysics Data System (ADS)

    Mbaye, Maïssa; Krief, Francine

    Autonomic networking aims to give network components self-managing capabilities. Several autonomic architectures have been proposed. Each of these architectures includes sort of a knowledge plane which is very important to mimic an autonomic behavior. Knowledge plane has a central role for self-functions by providing suitable knowledge to equipment and needs to learn new strategies for more accuracy.However, defining knowledge plane's architecture is still a challenge for researchers. Specially, defining the way cognitive supports interact each other in knowledge plane and implementing them. Decision making process depends on these interactions between reasoning and learning parts of knowledge plane. In this paper we propose a knowledge plane's architecture based on machine learning (inductive logic programming) paradigm and situated view to deal with distributed environment. This architecture is focused on two self-functions that include all other self-functions: self-adaptation and self-organization. Study cases are given and implemented.

  5. SPACEWAY: Providing affordable and versatile communication solutions

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, E. J.

    1995-01-01

    By the end of this decade, Hughes' SPACEWAY network will provide the first interactive 'bandwidth on demand' communication services for a variety of applications. High quality digital voice, interactive video, global access to multimedia databases, and transborder workgroup computing will make SPACEWAY an essential component of the computer-based workplace of the 21st century. With relatively few satellites to construct, insure, and launch -- plus extensive use of cost-effective, tightly focused spot beams on the world's most populated areas -- the high capacity SPACEWAY system can pass its significant cost savings onto its customers. The SPACEWAY network is different from other proposed global networks in that its geostationary orbit location makes it a truly market driven system: each satellite will make available extensive telecom services to hundreds of millions of people within the continuous view of that satellite, providing immediate capacity within a specific region of the world.

  6. Adaptive-network models of collective dynamics

    NASA Astrophysics Data System (ADS)

    Zschaler, G.

    2012-09-01

    Complex systems can often be modelled as networks, in which their basic units are represented by abstract nodes and the interactions among them by abstract links. This network of interactions is the key to understanding emergent collective phenomena in such systems. In most cases, it is an adaptive network, which is defined by a feedback loop between the local dynamics of the individual units and the dynamical changes of the network structure itself. This feedback loop gives rise to many novel phenomena. Adaptive networks are a promising concept for the investigation of collective phenomena in different systems. However, they also present a challenge to existing modelling approaches and analytical descriptions due to the tight coupling between local and topological degrees of freedom. In this work, which is essentially my PhD thesis, I present a simple rule-based framework for the investigation of adaptive networks, using which a wide range of collective phenomena can be modelled and analysed from a common perspective. In this framework, a microscopic model is defined by the local interaction rules of small network motifs, which can be implemented in stochastic simulations straightforwardly. Moreover, an approximate emergent-level description in terms of macroscopic variables can be derived from the microscopic rules, which we use to analyse the system's collective and long-term behaviour by applying tools from dynamical systems theory. We discuss three adaptive-network models for different collective phenomena within our common framework. First, we propose a novel approach to collective motion in insect swarms, in which we consider the insects' adaptive interaction network instead of explicitly tracking their positions and velocities. We capture the experimentally observed onset of collective motion qualitatively in terms of a bifurcation in this non-spatial model. We find that three-body interactions are an essential ingredient for collective motion to emerge. Moreover, we show what minimal microscopic interaction rules determine whether the transition to collective motion is continuous or discontinuous. Second, we consider a model of opinion formation in groups of individuals, where we focus on the effect of directed links in adaptive networks. Extending the adaptive voter model to directed networks, we find a novel fragmentation mechanism, by which the network breaks into distinct components of opposing agents. This fragmentation is mediated by the formation of self-stabilizing structures in the network, which do not occur in the undirected case. We find that they are related to degree correlations stemming from the interplay of link directionality and adaptive topological change. Third, we discuss a model for the evolution of cooperation among self-interested agents, in which the adaptive nature of their interaction network gives rise to a novel dynamical mechanism promoting cooperation. We show that even full cooperation can be achieved asymptotically if the networks' adaptive response to the agents' dynamics is sufficiently fast.

  7. Network inference from multimodal data: A review of approaches from infectious disease transmission.

    PubMed

    Ray, Bisakha; Ghedin, Elodie; Chunara, Rumi

    2016-12-01

    Networks inference problems are commonly found in multiple biomedical subfields such as genomics, metagenomics, neuroscience, and epidemiology. Networks are useful for representing a wide range of complex interactions ranging from those between molecular biomarkers, neurons, and microbial communities, to those found in human or animal populations. Recent technological advances have resulted in an increasing amount of healthcare data in multiple modalities, increasing the preponderance of network inference problems. Multi-domain data can now be used to improve the robustness and reliability of recovered networks from unimodal data. For infectious diseases in particular, there is a body of knowledge that has been focused on combining multiple pieces of linked information. Combining or analyzing disparate modalities in concert has demonstrated greater insight into disease transmission than could be obtained from any single modality in isolation. This has been particularly helpful in understanding incidence and transmission at early stages of infections that have pandemic potential. Novel pieces of linked information in the form of spatial, temporal, and other covariates including high-throughput sequence data, clinical visits, social network information, pharmaceutical prescriptions, and clinical symptoms (reported as free-text data) also encourage further investigation of these methods. The purpose of this review is to provide an in-depth analysis of multimodal infectious disease transmission network inference methods with a specific focus on Bayesian inference. We focus on analytical Bayesian inference-based methods as this enables recovering multiple parameters simultaneously, for example, not just the disease transmission network, but also parameters of epidemic dynamics. Our review studies their assumptions, key inference parameters and limitations, and ultimately provides insights about improving future network inference methods in multiple applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. A mathematical model for mesenchymal and chemosensitive cell dynamics.

    PubMed

    Häcker, Anita

    2012-01-01

    The structure of an underlying tissue network has a strong impact on cell dynamics. If, in addition, cells alter the network by mechanical and chemical interactions, their movement is called mesenchymal. Important examples for mesenchymal movement include fibroblasts in wound healing and metastatic tumour cells. This paper is focused on the latter. Based on the anisotropic biphasic theory of Barocas and Tranquillo, which models a fibre network and interstitial solution as two-component fluid, a mathematical model for the interactions of cells with a fibre network is developed. A new description for fibre reorientation is given and orientation-dependent proteolysis is added to the model. With respect to cell dynamics, the equation, based on anisotropic diffusion, is extended by haptotaxis and chemotaxis. The chemoattractants are the solute network fragments, emerging from proteolysis, and the epidermal growth factor which may guide the cells to a blood vessel. Moreover the cell migration is impeded at either high or low network density. This new model enables us to study chemotactic cell migration in a complex fibre network and the consequential network deformation. Numerical simulations for the cell migration and network deformation are carried out in two space dimensions. Simulations of cell migration in underlying tissue networks visualise the impact of the network structure on cell dynamics. In a scenario for fibre reorientation between cell clusters good qualitative agreement with experimental results is achieved. The invasion speeds of cells in an aligned and an isotropic fibre network are compared. © Springer-Verlag 2011

  9. Selective logging in tropical forests decreases the robustness of liana-tree interaction networks to the loss of host tree species.

    PubMed

    Magrach, Ainhoa; Senior, Rebecca A; Rogers, Andrew; Nurdin, Deddy; Benedick, Suzan; Laurance, William F; Santamaria, Luis; Edwards, David P

    2016-03-16

    Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the 'health' and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana-tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of 'extinction debt'. © 2016 The Author(s).

  10. Selective logging in tropical forests decreases the robustness of liana–tree interaction networks to the loss of host tree species

    PubMed Central

    Magrach, Ainhoa; Senior, Rebecca A.; Rogers, Andrew; Nurdin, Deddy; Benedick, Suzan; Laurance, William F.; Santamaria, Luis; Edwards, David P.

    2016-01-01

    Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the ‘health’ and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana–tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of ‘extinction debt’. PMID:26936241

  11. Cell-microenvironment interactions and architectures in microvascular systems

    PubMed Central

    Bersini, Simone; Yazdi, Iman K.; Talò, Giuseppe; Shin, Su Ryon; Moretti, Matteo; Khademhosseini, Ali

    2016-01-01

    In the past decade, significant advances have been made in the design and optimization of novel biomaterials and microfabrication techniques to generate vascularized tissues. Novel microfluidic systems have facilitated the development and optimization of in vitro models for exploring the complex pathophysiological phenomena that occur inside a microvascular environment. To date, most of these models have focused on engineering of increasingly complex systems, rather than analyzing the molecular and cellular mechanisms that drive microvascular network morphogenesis and remodeling. In fact, mutual interactions among endothelial cells (ECs), supporting mural cells and organ-specific cells, as well as between ECs and the extracellular matrix, are key driving forces for vascularization. This review focuses on the integration of materials science, microengineering and vascular biology for the development of in vitro microvascular systems. Various approaches currently being applied to study cell-cell/cell-matrix interactions, as well as biochemical/biophysical cues promoting vascularization and their impact on microvascular network formation, will be identified and discussed. Finally, this review will explore in vitro applications of microvascular systems, in vivo integration of transplanted vascularized tissues, and the important challenges for vascularization and controlling the microcirculatory system within the engineered tissues, especially for microfabrication approaches. It is likely that existing models and more complex models will further our understanding of the key elements of vascular network growth, stabilization and remodeling to translate basic research principles into functional, vascularized tissue constructs for regenerative medicine applications, drug screening and disease models. PMID:27417066

  12. Cell-microenvironment interactions and architectures in microvascular systems.

    PubMed

    Bersini, Simone; Yazdi, Iman K; Talò, Giuseppe; Shin, Su Ryon; Moretti, Matteo; Khademhosseini, Ali

    2016-11-01

    In the past decade, significant advances have been made in the design and optimization of novel biomaterials and microfabrication techniques to generate vascularized tissues. Novel microfluidic systems have facilitated the development and optimization of in vitro models for exploring the complex pathophysiological phenomena that occur inside a microvascular environment. To date, most of these models have focused on engineering of increasingly complex systems, rather than analyzing the molecular and cellular mechanisms that drive microvascular network morphogenesis and remodeling. In fact, mutual interactions among endothelial cells (ECs), supporting mural cells and organ-specific cells, as well as between ECs and the extracellular matrix, are key driving forces for vascularization. This review focuses on the integration of materials science, microengineering and vascular biology for the development of in vitro microvascular systems. Various approaches currently being applied to study cell-cell/cell-matrix interactions, as well as biochemical/biophysical cues promoting vascularization and their impact on microvascular network formation, will be identified and discussed. Finally, this review will explore in vitro applications of microvascular systems, in vivo integration of transplanted vascularized tissues, and the important challenges for vascularization and controlling the microcirculatory system within the engineered tissues, especially for microfabrication approaches. It is likely that existing models and more complex models will further our understanding of the key elements of vascular network growth, stabilization and remodeling to translate basic research principles into functional, vascularized tissue constructs for regenerative medicine applications, drug screening and disease models. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Visualising the invisible: a network approach to reveal the informal social side of student learning.

    PubMed

    Hommes, J; Rienties, B; de Grave, W; Bos, G; Schuwirth, L; Scherpbier, A

    2012-12-01

    World-wide, universities in health sciences have transformed their curriculum to include collaborative learning and facilitate the students' learning process. Interaction has been acknowledged to be the synergistic element in this learning context. However, students spend the majority of their time outside their classroom and interaction does not stop outside the classroom. Therefore we studied how informal social interaction influences student learning. Moreover, to explore what really matters in the students learning process, a model was tested how the generally known important constructs-prior performance, motivation and social integration-relate to informal social interaction and student learning. 301 undergraduate medical students participated in this cross-sectional quantitative study. Informal social interaction was assessed using self-reported surveys following the network approach. Students' individual motivation, social integration and prior performance were assessed by the Academic Motivation Scale, the College Adaption Questionnaire and students' GPA respectively. A factual knowledge test represented student' learning. All social networks were positively associated with student learning significantly: friendships (β = 0.11), providing information to other students (β = 0.16), receiving information from other students (β = 0.25). Structural equation modelling revealed a model in which social networks increased student learning (r = 0.43), followed by prior performance (r = 0.31). In contrast to prior literature, students' academic motivation and social integration were not associated with students' learning. Students' informal social interaction is strongly associated with students' learning. These findings underline the need to change our focus from the formal context (classroom) to the informal context to optimize student learning and deliver modern medics.

  14. The influence of age on wild rhesus macaques' affiliative social interactions.

    PubMed

    Liao, Zhijie; Sosa, Sebastian; Wu, Chengfeng; Zhang, Peng

    2018-02-01

    The social relationships that individuals experience at different life stages have a non-negligible influence on their lives, and this is particularly true for group living animals. The long lifespan of many primates makes it likely that these animals have various tactics of social interaction to adapt to complex changes in environmental or physical conditions. The different strategies used in social interaction by individuals at different life stages, and whether the position (central or peripheral) or role (initiator or recipient) of an individual in the group social network changes with age, are intriguing questions that remain to be investigated. We used social network analysis to examine age-related differences in social interaction patterns, social roles, and social positions in three affiliative social networks (approach, allogrooming, and social play) in a group of wild rhesus macaques (Macaca mulatta). Our results showed that social interaction patterns of rhesus macaques differ between age classes in the following ways: i) young individuals tend to allocate social time to a high number of groupmates, older individuals prefer to focus on fewer, specific partners; ii) as they grow older, individuals tend to be recipients in approach interactions and initiators in grooming interactions; and iii) regardless of the different social interaction strategies, individuals of all ages occupy a central position in the group. These results reveal a possible key role played by immature individuals in group social communication, a little-explored issue which deserves closer investigation in future research. © 2017 Wiley Periodicals, Inc.

  15. A game theory-based trust measurement model for social networks.

    PubMed

    Wang, Yingjie; Cai, Zhipeng; Yin, Guisheng; Gao, Yang; Tong, Xiangrong; Han, Qilong

    2016-01-01

    In social networks, trust is a complex social network. Participants in online social networks want to share information and experiences with as many reliable users as possible. However, the modeling of trust is complicated and application dependent. Modeling trust needs to consider interaction history, recommendation, user behaviors and so on. Therefore, modeling trust is an important focus for online social networks. We propose a game theory-based trust measurement model for social networks. The trust degree is calculated from three aspects, service reliability, feedback effectiveness, recommendation credibility, to get more accurate result. In addition, to alleviate the free-riding problem, we propose a game theory-based punishment mechanism for specific trust and global trust, respectively. We prove that the proposed trust measurement model is effective. The free-riding problem can be resolved effectively through adding the proposed punishment mechanism.

  16. The Diversity Project: An Ethnography of Social Justice Experiential Education Programming

    ERIC Educational Resources Information Center

    Vernon, Franklin

    2016-01-01

    Whilst adventure-based experiential education traditions have long-standing claims of progressive, democratic learning potential, little research has examined practice from within democratic theories of participation and learning. Focusing on a complex network making up a disturbing interaction in an outdoor education programme, I posit forms of…

  17. The GenTechnique Project: Developing an Open Environment for Learning Molecular Genetics.

    ERIC Educational Resources Information Center

    Calza, R. E.; Meade, J. T.

    1998-01-01

    The GenTechnique project at Washington State University uses a networked learning environment for molecular genetics learning. The project is developing courseware featuring animation, hyper-link controls, and interactive self-assessment exercises focusing on fundamental concepts. The first pilot course featured a Web-based module on DNA…

  18. Self-Presentation and Gender on MySpace

    ERIC Educational Resources Information Center

    Manago, Adriana M.; Graham, Michael B.; Greenfield, Patricia M.; Salimkhan, Goldie

    2008-01-01

    Within the cultural context of MySpace, this study explores the ways emerging adults experience social networking. Through focus group methodology, the role of virtual peer interaction in the development of personal, social, and gender identities was investigated. Findings suggest that college students utilize MySpace for identity exploration,…

  19. A question of trust: user-centered design requirements for an informatics intervention to promote the sexual health of African-American youth

    PubMed Central

    Veinot, Tiffany C; Campbell, Terrance R; Kruger, Daniel J; Grodzinski, Alison

    2013-01-01

    Objective We investigated the user requirements of African-American youth (aged 14–24 years) to inform the design of a culturally appropriate, network-based informatics intervention for the prevention of HIV and other sexually transmitted infections (STI). Materials and Methods We conducted 10 focus groups with 75 African-American youth from a city with high HIV/STI prevalence. Data analyses involved coding using qualitative content analysis procedures and memo writing. Results Unexpectedly, the majority of participants’ design recommendations concerned trust. Youth expressed distrust towards people and groups, which was amplified within the context of information technology-mediated interactions about HIV/STI. Participants expressed distrust in the reliability of condoms and the accuracy of HIV tests. They questioned the benevolence of many institutions, and some rejected authoritative HIV/STI information. Therefore, reputational information, including rumor, influenced HIV/STI-related decision making. Participants’ design requirements also focused on trust-related concerns. Accordingly, we developed a novel trust-centered design framework to guide intervention design. Discussion Current approaches to online trust for health informatics do not consider group-level trusting patterns. Yet, trust was the central intervention-relevant issue among African-American youth, suggesting an important focus for culturally informed design. Our design framework incorporates: intervention objectives (eg, network embeddedness, participation); functional specifications (eg, decision support, collective action, credible question and answer services); and interaction design (eg, member control, offline network linkages, optional anonymity). Conclusions Trust is a critical focus for HIV/STI informatics interventions for young African Americans. Our design framework offers practical, culturally relevant, and systematic guidance to designers to reach this underserved group better. PMID:23512830

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granger, Brian R.; Chang, Yi -Chien; Wang, Yan

    Here, the complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique meta-graph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction networkmore » between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues.« less

  1. Modern temporal network theory: a colloquium

    NASA Astrophysics Data System (ADS)

    Holme, Petter

    2015-09-01

    The power of any kind of network approach lies in the ability to simplify a complex system so that one can better understand its function as a whole. Sometimes it is beneficial, however, to include more information than in a simple graph of only nodes and links. Adding information about times of interactions can make predictions and mechanistic understanding more accurate. The drawback, however, is that there are not so many methods available, partly because temporal networks is a relatively young field, partly because it is more difficult to develop such methods compared to for static networks. In this colloquium, we review the methods to analyze and model temporal networks and processes taking place on them, focusing mainly on the last three years. This includes the spreading of infectious disease, opinions, rumors, in social networks; information packets in computer networks; various types of signaling in biology, and more. We also discuss future directions.

  2. Multimedia Information Networks in Social Media

    NASA Astrophysics Data System (ADS)

    Cao, Liangliang; Qi, Guojun; Tsai, Shen-Fu; Tsai, Min-Hsuan; Pozo, Andrey Del; Huang, Thomas S.; Zhang, Xuemei; Lim, Suk Hwan

    The popularity of personal digital cameras and online photo/video sharing community has lead to an explosion of multimedia information. Unlike traditional multimedia data, many new multimedia datasets are organized in a structural way, incorporating rich information such as semantic ontology, social interaction, community media, geographical maps, in addition to the multimedia contents by themselves. Studies of such structured multimedia data have resulted in a new research area, which is referred to as Multimedia Information Networks. Multimedia information networks are closely related to social networks, but especially focus on understanding the topics and semantics of the multimedia files in the context of network structure. This chapter reviews different categories of recent systems related to multimedia information networks, summarizes the popular inference methods used in recent works, and discusses the applications related to multimedia information networks. We also discuss a wide range of topics including public datasets, related industrial systems, and potential future research directions in this field.

  3. An ANOVA approach for statistical comparisons of brain networks.

    PubMed

    Fraiman, Daniel; Fraiman, Ricardo

    2018-03-16

    The study of brain networks has developed extensively over the last couple of decades. By contrast, techniques for the statistical analysis of these networks are less developed. In this paper, we focus on the statistical comparison of brain networks in a nonparametric framework and discuss the associated detection and identification problems. We tested network differences between groups with an analysis of variance (ANOVA) test we developed specifically for networks. We also propose and analyse the behaviour of a new statistical procedure designed to identify different subnetworks. As an example, we show the application of this tool in resting-state fMRI data obtained from the Human Connectome Project. We identify, among other variables, that the amount of sleep the days before the scan is a relevant variable that must be controlled. Finally, we discuss the potential bias in neuroimaging findings that is generated by some behavioural and brain structure variables. Our method can also be applied to other kind of networks such as protein interaction networks, gene networks or social networks.

  4. The emergence of learning-teaching trajectories in education: a complex dynamic systems approach.

    PubMed

    Steenbeek, Henderien; van Geert, Paul

    2013-04-01

    In this article we shall focus on learning-teaching trajectories ='successful' as well as 'unsuccessful' ones - as emergent and dynamic phenomena resulting from the interactions in the entire educational context, in particular the interaction between students and teachers viewed as processes of intertwining self-, other- and co-regulation. The article provides a review of the educational research literature on action regulation in learning and teaching, and interprets this literature in light of the theory of complex dynamic systems. Based on this reinterpretation of the literature, two dynamic models are proposed, one focusing on the short-term dynamics of learning-teaching interactions as they take place in classrooms, the other focusing on the long-term dynamics of interactions in a network of variables encompassing concerns, evaluations, actions and action effects (such as learning) students and teachers. The aim of presenting these models is to demonstrate, first, the possibility of transforming existing educational theory into dynamic models and, second, to provide some suggestions as to how such models can be used to further educational theory and practice.

  5. Genome wide predictions of miRNA regulation by transcription factors.

    PubMed

    Ruffalo, Matthew; Bar-Joseph, Ziv

    2016-09-01

    Reconstructing regulatory networks from expression and interaction data is a major goal of systems biology. While much work has focused on trying to experimentally and computationally determine the set of transcription-factors (TFs) and microRNAs (miRNAs) that regulate genes in these networks, relatively little work has focused on inferring the regulation of miRNAs by TFs. Such regulation can play an important role in several biological processes including development and disease. The main challenge for predicting such interactions is the very small positive training set currently available. Another challenge is the fact that a large fraction of miRNAs are encoded within genes making it hard to determine the specific way in which they are regulated. To enable genome wide predictions of TF-miRNA interactions, we extended semi-supervised machine-learning approaches to integrate a large set of different types of data including sequence, expression, ChIP-seq and epigenetic data. As we show, the methods we develop achieve good performance on both a labeled test set, and when analyzing general co-expression networks. We next analyze mRNA and miRNA cancer expression data, demonstrating the advantage of using the predicted set of interactions for identifying more coherent and relevant modules, genes, and miRNAs. The complete set of predictions is available on the supporting website and can be used by any method that combines miRNAs, genes, and TFs. Code and full set of predictions are available from the supporting website: http://cs.cmu.edu/~mruffalo/tf-mirna/ zivbj@cs.cmu.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. How Can We Treat Cancer Disease Not Cancer Cells?

    PubMed

    Kim, Kyu-Won; Lee, Su-Jae; Kim, Woo-Young; Seo, Ji Hae; Lee, Ho-Young

    2017-01-01

    Since molecular biology studies began, researches in biological science have centered on proteins and genes at molecular level of a single cell. Cancer research has also focused on various functions of proteins and genes that distinguish cancer cells from normal cells. Accordingly, most contemporary anticancer drugs have been developed to target abnormal characteristics of cancer cells. Despite the great advances in the development of anticancer drugs, vast majority of patients with advanced cancer have shown grim prognosis and high rate of relapse. To resolve this problem, we must reevaluate our focuses in current cancer research. Cancer should be considered as a systemic disease because cancer cells undergo a complex interaction with various surrounding cells in cancer tissue and spread to whole body through metastasis under the control of the systemic modulation. Human body relies on the cooperative interaction between various tissues and organs, and each organ performs its specialized function through tissue-specific cell networks. Therefore, investigation of the tumor-specific cell networks can provide novel strategy to overcome the limitation of current cancer research. This review presents the limitations of the current cancer research, emphasizing the necessity of studying tissue-specific cell network which could be a new perspective on treating cancer disease, not cancer cells.

  7. Investigation on Law and Economics Based on Complex Network and Time Series Analysis

    PubMed Central

    Yang, Jian; Qu, Zhao; Chang, Hui

    2015-01-01

    The research focuses on the cooperative relationship and the strategy tendency among three mutually interactive parties in financing: small enterprises, commercial banks and micro-credit companies. Complex network theory and time series analysis were applied to figure out the quantitative evidence. Moreover, this paper built up a fundamental model describing the particular interaction among them through evolutionary game. Combining the results of data analysis and current situation, it is justifiable to put forward reasonable legislative recommendations for regulations on lending activities among small enterprises, commercial banks and micro-credit companies. The approach in this research provides a framework for constructing mathematical models and applying econometrics and evolutionary game in the issue of corporation financing. PMID:26076460

  8. Analysis and Visualization of Relations in eLearning

    NASA Astrophysics Data System (ADS)

    Dráždilová, Pavla; Obadi, Gamila; Slaninová, Kateřina; Martinovič, Jan; Snášel, Václav

    The popularity of eLearning systems is growing rapidly; this growth is enabled by the consecutive development in Internet and multimedia technologies. Web-based education became wide spread in the past few years. Various types of learning management systems facilitate development of Web-based courses. Users of these courses form social networks through the different activities performed by them. This chapter focuses on searching the latent social networks in eLearning systems data. These data consist of students activity records wherein latent ties among actors are embedded. The social network studied in this chapter is represented by groups of students who have similar contacts and interact in similar social circles. Different methods of data clustering analysis can be applied to these groups, and the findings show the existence of latent ties among the group members. The second part of this chapter focuses on social network visualization. Graphical representation of social network can describe its structure very efficiently. It can enable social network analysts to determine the network degree of connectivity. Analysts can easily determine individuals with a small or large amount of relationships as well as the amount of independent groups in a given network. When applied to the field of eLearning, data visualization simplifies the process of monitoring the study activities of individuals or groups, as well as the planning of educational curriculum, the evaluation of study processes, etc.

  9. Hubs of Anticorrelation in High-Resolution Resting-State Functional Connectivity Network Architecture.

    PubMed

    Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Cabanban, Romeo; Crosson, Bruce A

    2015-06-01

    A major focus of brain research recently has been to map the resting-state functional connectivity (rsFC) network architecture of the normal brain and pathology through functional magnetic resonance imaging. However, the phenomenon of anticorrelations in resting-state signals between different brain regions has not been adequately examined. The preponderance of studies on resting-state fMRI (rsFMRI) have either ignored anticorrelations in rsFC networks or adopted methods in data analysis, which have rendered anticorrelations in rsFC networks uninterpretable. The few studies that have examined anticorrelations in rsFC networks using conventional methods have found anticorrelations to be weak in strength and not very reproducible across subjects. Anticorrelations in rsFC network architecture could reflect mechanisms that subserve a number of important brain processes. In this preliminary study, we examined the properties of anticorrelated rsFC networks by systematically focusing on negative cross-correlation coefficients (CCs) among rsFMRI voxel time series across the brain with graph theory-based network analysis. A number of methods were implemented to enhance the neuronal specificity of resting-state functional connections that yield negative CCs, although at the cost of decreased sensitivity. Hubs of anticorrelation were seen in a number of cortical and subcortical brain regions. Examination of the anticorrelation maps of these hubs indicated that negative CCs in rsFC network architecture highlight a number of regulatory interactions between brain networks and regions, including reciprocal modulations, suppression, inhibition, and neurofeedback.

  10. IAU Public Astronomical Organisations Network

    NASA Astrophysics Data System (ADS)

    Canas, Lina; Cheung, Sze Leung

    2015-08-01

    The Office for Astronomy Outreach has devoted intensive means to create and support a global network of public astronomical organisations around the world. Focused on bringing established and newly formed amateur astronomy organizations together, providing communications channels and platforms for disseminating news to the global community and the sharing of best practices and resources among these associations around the world. In establishing the importance that these organizations have for the dissemination of activities globally and acting as key participants in IAU various campaigns social media has played a key role in keeping this network engaged and connected. Here we discuss the implementation process of maintaining this extensive network, the processing and gathering of information and the interactions between local active members at a national and international level.

  11. Process mapping as a tool for home health network analysis.

    PubMed

    Pluto, Delores M; Hirshorn, Barbara A

    2003-01-01

    Process mapping is a qualitative tool that allows service providers, policy makers, researchers, and other concerned stakeholders to get a "bird's eye view" of a home health care organizational network or a very focused, in-depth view of a component of such a network. It can be used to share knowledge about community resources directed at the older population, identify gaps in resource availability and access, and promote on-going collaborative interactions that encourage systemic policy reassessment and programmatic refinement. This article is a methodological description of process mapping, which explores its utility as a practice and research tool, illustrates its use in describing service-providing networks, and discusses some of the issues that are key to successfully using this methodology.

  12. GENIUS: web server to predict local gene networks and key genes for biological functions.

    PubMed

    Puelma, Tomas; Araus, Viviana; Canales, Javier; Vidal, Elena A; Cabello, Juan M; Soto, Alvaro; Gutiérrez, Rodrigo A

    2017-03-01

    GENIUS is a user-friendly web server that uses a novel machine learning algorithm to infer functional gene networks focused on specific genes and experimental conditions that are relevant to biological functions of interest. These functions may have different levels of complexity, from specific biological processes to complex traits that involve several interacting processes. GENIUS also enriches the network with new genes related to the biological function of interest, with accuracies comparable to highly discriminative Support Vector Machine methods. GENIUS currently supports eight model organisms and is freely available for public use at http://networks.bio.puc.cl/genius . genius.psbl@gmail.com. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  13. Learning about learning: Mining human brain sub-network biomarkers from fMRI data

    PubMed Central

    Dereli, Nazli; Dang, Xuan-Hong; Bassett, Danielle S.; Wymbs, Nicholas F.; Grafton, Scott T.; Singh, Ambuj K.

    2017-01-01

    Modeling the brain as a functional network can reveal the relationship between distributed neurophysiological processes and functional interactions between brain structures. Existing literature on functional brain networks focuses mainly on a battery of network properties in “resting state” employing, for example, modularity, clustering, or path length among regions. In contrast, we seek to uncover functionally connected subnetworks that predict or correlate with cohort differences and are conserved within the subjects within a cohort. We focus on differences in both the rate of learning as well as overall performance in a sensorimotor task across subjects and develop a principled approach for the discovery of discriminative subgraphs of functional connectivity based on imaging acquired during practice. We discover two statistically significant subgraph regions: one involving multiple regions in the visual cortex and another involving the parietal operculum and planum temporale. High functional coherence in the former characterizes sessions in which subjects take longer to perform the task, while high coherence in the latter is associated with high learning rate (performance improvement across trials). Our proposed methodology is general, in that it can be applied to other cognitive tasks, to study learning or to differentiate between healthy patients and patients with neurological disorders, by revealing the salient interactions among brain regions associated with the observed global state. The discovery of such significant discriminative subgraphs promises a better data-driven understanding of the dynamic brain processes associated with high-level cognitive functions. PMID:29016686

  14. Learning about learning: Mining human brain sub-network biomarkers from fMRI data.

    PubMed

    Bogdanov, Petko; Dereli, Nazli; Dang, Xuan-Hong; Bassett, Danielle S; Wymbs, Nicholas F; Grafton, Scott T; Singh, Ambuj K

    2017-01-01

    Modeling the brain as a functional network can reveal the relationship between distributed neurophysiological processes and functional interactions between brain structures. Existing literature on functional brain networks focuses mainly on a battery of network properties in "resting state" employing, for example, modularity, clustering, or path length among regions. In contrast, we seek to uncover functionally connected subnetworks that predict or correlate with cohort differences and are conserved within the subjects within a cohort. We focus on differences in both the rate of learning as well as overall performance in a sensorimotor task across subjects and develop a principled approach for the discovery of discriminative subgraphs of functional connectivity based on imaging acquired during practice. We discover two statistically significant subgraph regions: one involving multiple regions in the visual cortex and another involving the parietal operculum and planum temporale. High functional coherence in the former characterizes sessions in which subjects take longer to perform the task, while high coherence in the latter is associated with high learning rate (performance improvement across trials). Our proposed methodology is general, in that it can be applied to other cognitive tasks, to study learning or to differentiate between healthy patients and patients with neurological disorders, by revealing the salient interactions among brain regions associated with the observed global state. The discovery of such significant discriminative subgraphs promises a better data-driven understanding of the dynamic brain processes associated with high-level cognitive functions.

  15. Network inference using informative priors

    PubMed Central

    Mukherjee, Sach; Speed, Terence P.

    2008-01-01

    Recent years have seen much interest in the study of systems characterized by multiple interacting components. A class of statistical models called graphical models, in which graphs are used to represent probabilistic relationships between variables, provides a framework for formal inference regarding such systems. In many settings, the object of inference is the network structure itself. This problem of “network inference” is well known to be a challenging one. However, in scientific settings there is very often existing information regarding network connectivity. A natural idea then is to take account of such information during inference. This article addresses the question of incorporating prior information into network inference. We focus on directed models called Bayesian networks, and use Markov chain Monte Carlo to draw samples from posterior distributions over network structures. We introduce prior distributions on graphs capable of capturing information regarding network features including edges, classes of edges, degree distributions, and sparsity. We illustrate our approach in the context of systems biology, applying our methods to network inference in cancer signaling. PMID:18799736

  16. Network inference using informative priors.

    PubMed

    Mukherjee, Sach; Speed, Terence P

    2008-09-23

    Recent years have seen much interest in the study of systems characterized by multiple interacting components. A class of statistical models called graphical models, in which graphs are used to represent probabilistic relationships between variables, provides a framework for formal inference regarding such systems. In many settings, the object of inference is the network structure itself. This problem of "network inference" is well known to be a challenging one. However, in scientific settings there is very often existing information regarding network connectivity. A natural idea then is to take account of such information during inference. This article addresses the question of incorporating prior information into network inference. We focus on directed models called Bayesian networks, and use Markov chain Monte Carlo to draw samples from posterior distributions over network structures. We introduce prior distributions on graphs capable of capturing information regarding network features including edges, classes of edges, degree distributions, and sparsity. We illustrate our approach in the context of systems biology, applying our methods to network inference in cancer signaling.

  17. Computational gene network study on antibiotic resistance genes of Acinetobacter baumannii.

    PubMed

    Anitha, P; Anbarasu, Anand; Ramaiah, Sudha

    2014-05-01

    Multi Drug Resistance (MDR) in Acinetobacter baumannii is one of the major threats for emerging nosocomial infections in hospital environment. Multidrug-resistance in A. baumannii may be due to the implementation of multi-combination resistance mechanisms such as β-lactamase synthesis, Penicillin-Binding Proteins (PBPs) changes, alteration in porin proteins and in efflux pumps against various existing classes of antibiotics. Multiple antibiotic resistance genes are involved in MDR. These resistance genes are transferred through plasmids, which are responsible for the dissemination of antibiotic resistance among Acinetobacter spp. In addition, these resistance genes may also have a tendency to interact with each other or with their gene products. Therefore, it becomes necessary to understand the impact of these interactions in antibiotic resistance mechanism. Hence, our study focuses on protein and gene network analysis on various resistance genes, to elucidate the role of the interacting proteins and to study their functional contribution towards antibiotic resistance. From the search tool for the retrieval of interacting gene/protein (STRING), a total of 168 functional partners for 15 resistance genes were extracted based on the confidence scoring system. The network study was then followed up with functional clustering of associated partners using molecular complex detection (MCODE). Later, we selected eight efficient clusters based on score. Interestingly, the associated protein we identified from the network possessed greater functional similarity with known resistance genes. This network-based approach on resistance genes of A. baumannii could help in identifying new genes/proteins and provide clues on their association in antibiotic resistance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Human initiated cascading failures in societal infrastructures.

    PubMed

    Barrett, Chris; Channakeshava, Karthik; Huang, Fei; Kim, Junwhan; Marathe, Achla; Marathe, Madhav V; Pei, Guanhong; Saha, Sudip; Subbiah, Balaaji S P; Vullikanti, Anil Kumar S

    2012-01-01

    In this paper, we conduct a systematic study of human-initiated cascading failures in three critical inter-dependent societal infrastructures due to behavioral adaptations in response to a crisis. We focus on three closely coupled socio-technical networks here: (i) cellular and mesh networks, (ii) transportation networks and (iii) mobile call networks. In crises, changes in individual behaviors lead to altered travel, activity and calling patterns, which influence the transport network and the loads on wireless networks. The interaction between these systems and their co-evolution poses significant technical challenges for representing and reasoning about these systems. In contrast to system dynamics models for studying these interacting infrastructures, we develop interaction-based models in which individuals and infrastructure elements are represented in detail and are placed in a common geographic coordinate system. Using the detailed representation, we study the impact of a chemical plume that has been released in a densely populated urban region. Authorities order evacuation of the affected area, and this leads to individual behavioral adaptation wherein individuals drop their scheduled activities and drive to home or pre-specified evacuation shelters as appropriate. They also revise their calling behavior to communicate and coordinate among family members. These two behavioral adaptations cause flash-congestion in the urban transport network and the wireless network. The problem is exacerbated with a few, already occurring, road closures. We analyze how extended periods of unanticipated road congestion can result in failure of infrastructures, starting with the servicing base stations in the congested area. A sensitivity analysis on the compliance rate of evacuees shows non-intuitive effect on the spatial distribution of people and on the loading of the base stations. For example, an evacuation compliance rate of 70% results in higher number of overloaded base stations than the evacuation compliance rate of 90%.

  19. Human Initiated Cascading Failures in Societal Infrastructures

    PubMed Central

    Barrett, Chris; Channakeshava, Karthik; Huang, Fei; Kim, Junwhan; Marathe, Achla; Marathe, Madhav V.; Pei, Guanhong; Saha, Sudip; Subbiah, Balaaji S. P.; Vullikanti, Anil Kumar S.

    2012-01-01

    In this paper, we conduct a systematic study of human-initiated cascading failures in three critical inter-dependent societal infrastructures due to behavioral adaptations in response to a crisis. We focus on three closely coupled socio-technical networks here: (i) cellular and mesh networks, (ii) transportation networks and (iii) mobile call networks. In crises, changes in individual behaviors lead to altered travel, activity and calling patterns, which influence the transport network and the loads on wireless networks. The interaction between these systems and their co-evolution poses significant technical challenges for representing and reasoning about these systems. In contrast to system dynamics models for studying these interacting infrastructures, we develop interaction-based models in which individuals and infrastructure elements are represented in detail and are placed in a common geographic coordinate system. Using the detailed representation, we study the impact of a chemical plume that has been released in a densely populated urban region. Authorities order evacuation of the affected area, and this leads to individual behavioral adaptation wherein individuals drop their scheduled activities and drive to home or pre-specified evacuation shelters as appropriate. They also revise their calling behavior to communicate and coordinate among family members. These two behavioral adaptations cause flash-congestion in the urban transport network and the wireless network. The problem is exacerbated with a few, already occurring, road closures. We analyze how extended periods of unanticipated road congestion can result in failure of infrastructures, starting with the servicing base stations in the congested area. A sensitivity analysis on the compliance rate of evacuees shows non-intuitive effect on the spatial distribution of people and on the loading of the base stations. For example, an evacuation compliance rate of 70% results in higher number of overloaded base stations than the evacuation compliance rate of 90%. PMID:23118847

  20. Spatially Nonlinear Interdependence of Alpha-Oscillatory Neural Networks under Chan Meditation

    PubMed Central

    Chang, Chih-Hao

    2013-01-01

    This paper reports the results of our investigation of the effects of Chan meditation on brain electrophysiological behaviors from the viewpoint of spatially nonlinear interdependence among regional neural networks. Particular emphasis is laid on the alpha-dominated EEG (electroencephalograph). Continuous-time wavelet transform was adopted to detect the epochs containing substantial alpha activities. Nonlinear interdependence quantified by similarity index S(X∣Y), the influence of source signal Y on sink signal X, was applied to the nonlinear dynamical model in phase space reconstructed from multichannel EEG. Experimental group involved ten experienced Chan-Meditation practitioners, while control group included ten healthy subjects within the same age range, yet, without any meditation experience. Nonlinear interdependence among various cortical regions was explored for five local neural-network regions, frontal, posterior, right-temporal, left-temporal, and central regions. In the experimental group, the inter-regional interaction was evaluated for the brain dynamics under three different stages, at rest (stage R, pre-meditation background recording), in Chan meditation (stage M), and the unique Chakra-focusing practice (stage C). Experimental group exhibits stronger interactions among various local neural networks at stages M and C compared with those at stage R. The intergroup comparison demonstrates that Chan-meditation brain possesses better cortical inter-regional interactions than the resting brain of control group. PMID:24489583

  1. Learning of embodied interaction dynamics with recurrent neural networks: some exploratory experiments.

    PubMed

    Oubbati, Mohamed; Kord, Bahram; Koprinkova-Hristova, Petia; Palm, Günther

    2014-04-01

    The new tendency of artificial intelligence suggests that intelligence must be seen as a result of the interaction between brains, bodies and environments. This view implies that designing sophisticated behaviour requires a primary focus on how agents are functionally coupled to their environments. Under this perspective, we present early results with the application of reservoir computing as an efficient tool to understand how behaviour emerges from interaction. Specifically, we present reservoir computing models, that are inspired by imitation learning designs, to extract the essential components of behaviour that results from agent-environment interaction dynamics. Experimental results using a mobile robot are reported to validate the learning architectures.

  2. Learning of embodied interaction dynamics with recurrent neural networks: some exploratory experiments

    NASA Astrophysics Data System (ADS)

    Oubbati, Mohamed; Kord, Bahram; Koprinkova-Hristova, Petia; Palm, Günther

    2014-04-01

    The new tendency of artificial intelligence suggests that intelligence must be seen as a result of the interaction between brains, bodies and environments. This view implies that designing sophisticated behaviour requires a primary focus on how agents are functionally coupled to their environments. Under this perspective, we present early results with the application of reservoir computing as an efficient tool to understand how behaviour emerges from interaction. Specifically, we present reservoir computing models, that are inspired by imitation learning designs, to extract the essential components of behaviour that results from agent-environment interaction dynamics. Experimental results using a mobile robot are reported to validate the learning architectures.

  3. Continuous attractor network models of grid cell firing based on excitatory–inhibitory interactions

    PubMed Central

    Shipston‐Sharman, Oliver; Solanka, Lukas

    2016-01-01

    Abstract Neurons in the medial entorhinal cortex encode location through spatial firing fields that have a grid‐like organisation. The challenge of identifying mechanisms for grid firing has been addressed through experimental and theoretical investigations of medial entorhinal circuits. Here, we discuss evidence for continuous attractor network models that account for grid firing by synaptic interactions between excitatory and inhibitory cells. These models assume that grid‐like firing patterns are the result of computation of location from velocity inputs, with additional spatial input required to oppose drift in the attractor state. We focus on properties of continuous attractor networks that are revealed by explicitly considering excitatory and inhibitory neurons, their connectivity and their membrane potential dynamics. Models at this level of detail can account for theta‐nested gamma oscillations as well as grid firing, predict spatial firing of interneurons as well as excitatory cells, show how gamma oscillations can be modulated independently from spatial computations, reveal critical roles for neuronal noise, and demonstrate that only a subset of excitatory cells in a network need have grid‐like firing fields. Evaluating experimental data against predictions from detailed network models will be important for establishing the mechanisms mediating grid firing. PMID:27870120

  4. Patterns in PARTNERing across Public Health Collaboratives.

    PubMed

    Bevc, Christine A; Retrum, Jessica H; Varda, Danielle M

    2015-10-05

    Inter-organizational networks represent one of the most promising practice-based approaches in public health as a way to attain resources, share knowledge, and, in turn, improve population health outcomes. However, the interdependencies and effectiveness related to the structure, management, and costs of these networks represents a critical item to be addressed. The objective of this research is to identify and determine the extent to which potential partnering patterns influence the structure of collaborative networks. This study examines data collected by PARTNER, specifically public health networks (n = 162), to better understand the structured relationships and interactions among public health organizations and their partners, in relation to collaborative activities. Combined with descriptive analysis, we focus on the composition of public health collaboratives in a series of Exponential Random Graph (ERG) models to examine the partnerships between different organization types to identify the attribute-based effects promoting the formation of network ties within and across collaboratives. We found high variation within and between these collaboratives including composition, diversity, and interactions. The findings of this research suggest common and frequent types of partnerships, as well as opportunities to develop new collaborations. The result of this analysis offer additional evidence to inform and strengthen public health practice partnerships.

  5. Embedding dynamical networks into distributed models

    NASA Astrophysics Data System (ADS)

    Innocenti, Giacomo; Paoletti, Paolo

    2015-07-01

    Large networks of interacting dynamical systems are well-known for the complex behaviours they are able to display, even when each node features a quite simple dynamics. Despite examples of such networks being widespread both in nature and in technological applications, the interplay between the local and the macroscopic behaviour, through the interconnection topology, is still not completely understood. Moreover, traditional analytical methods for dynamical response analysis fail because of the intrinsically large dimension of the phase space of the network which makes the general problem intractable. Therefore, in this paper we develop an approach aiming to condense all the information in a compact description based on partial differential equations. By focusing on propagative phenomena, rigorous conditions under which the original network dynamical properties can be successfully analysed within the proposed framework are derived as well. A network of Fitzhugh-Nagumo systems is finally used to illustrate the effectiveness of the proposed method.

  6. New Abstraction Networks and a New Visualization Tool in Support of Auditing the SNOMED CT Content

    PubMed Central

    Geller, James; Ochs, Christopher; Perl, Yehoshua; Xu, Junchuan

    2012-01-01

    Medical terminologies are large and complex. Frequently, errors are hidden in this complexity. Our objective is to find such errors, which can be aided by deriving abstraction networks from a large terminology. Abstraction networks preserve important features but eliminate many minor details, which are often not useful for identifying errors. Providing visualizations for such abstraction networks aids auditors by allowing them to quickly focus on elements of interest within a terminology. Previously we introduced area taxonomies and partial area taxonomies for SNOMED CT. In this paper, two advanced, novel kinds of abstraction networks, the relationship-constrained partial area subtaxonomy and the root-constrained partial area subtaxonomy are defined and their benefits are demonstrated. We also describe BLUSNO, an innovative software tool for quickly generating and visualizing these SNOMED CT abstraction networks. BLUSNO is a dynamic, interactive system that provides quick access to well organized information about SNOMED CT. PMID:23304293

  7. New abstraction networks and a new visualization tool in support of auditing the SNOMED CT content.

    PubMed

    Geller, James; Ochs, Christopher; Perl, Yehoshua; Xu, Junchuan

    2012-01-01

    Medical terminologies are large and complex. Frequently, errors are hidden in this complexity. Our objective is to find such errors, which can be aided by deriving abstraction networks from a large terminology. Abstraction networks preserve important features but eliminate many minor details, which are often not useful for identifying errors. Providing visualizations for such abstraction networks aids auditors by allowing them to quickly focus on elements of interest within a terminology. Previously we introduced area taxonomies and partial area taxonomies for SNOMED CT. In this paper, two advanced, novel kinds of abstraction networks, the relationship-constrained partial area subtaxonomy and the root-constrained partial area subtaxonomy are defined and their benefits are demonstrated. We also describe BLUSNO, an innovative software tool for quickly generating and visualizing these SNOMED CT abstraction networks. BLUSNO is a dynamic, interactive system that provides quick access to well organized information about SNOMED CT.

  8. On Using Home Networks and Cloud Computing for a Future Internet of Things

    NASA Astrophysics Data System (ADS)

    Niedermayer, Heiko; Holz, Ralph; Pahl, Marc-Oliver; Carle, Georg

    In this position paper we state four requirements for a Future Internet and sketch our initial concept. The requirements: (1) more comfort, (2) integration of home networks, (3) resources like service clouds in the network, and (4) access anywhere on any machine. Future Internet needs future quality and future comfort. There need to be new possiblities for everyone. Our focus is on higher layers and related to the many overlay proposals. We consider them to run on top of a basic Future Internet core. A new user experience means to include all user devices. Home networks and services should be a fundamental part of the Future Internet. Home networks extend access and allow interaction with the environment. Cloud Computing can provide reliable resources beyond local boundaries. For access anywhere, we also need secure storage for data and profiles in the network, in particular for access with non-personal devices (Internet terminal, ticket machine, ...).

  9. Deciding where to attend: Large-scale network mechanisms underlying attention and intention revealed by graph-theoretic analysis.

    PubMed

    Liu, Yuelu; Hong, Xiangfei; Bengson, Jesse J; Kelley, Todd A; Ding, Mingzhou; Mangun, George R

    2017-08-15

    The neural mechanisms by which intentions are transformed into actions remain poorly understood. We investigated the network mechanisms underlying spontaneous voluntary decisions about where to focus visual-spatial attention (willed attention). Graph-theoretic analysis of two independent datasets revealed that regions activated during willed attention form a set of functionally-distinct networks corresponding to the frontoparietal network, the cingulo-opercular network, and the dorsal attention network. Contrasting willed attention with instructed attention (where attention is directed by external cues), we observed that the dorsal anterior cingulate cortex was allied with the dorsal attention network in instructed attention, but shifted connectivity during willed attention to interact with the cingulo-opercular network, which then mediated communications between the frontoparietal network and the dorsal attention network. Behaviorally, greater connectivity in network hubs, including the dorsolateral prefrontal cortex, the dorsal anterior cingulate cortex, and the inferior parietal lobule, was associated with faster reaction times. These results, shown to be consistent across the two independent datasets, uncover the dynamic organization of functionally-distinct networks engaged to support intentional acts. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Multi-disciplinary communication networks for skin risk assessment in nursing homes with high IT sophistication.

    PubMed

    Alexander, Gregory L; Pasupathy, Kalyan S; Steege, Linsey M; Strecker, E Bradley; Carley, Kathleen M

    2014-08-01

    The role of nursing home (NH) information technology (IT) in quality improvement has not been clearly established, and its impacts on communication between care givers and patient outcomes in these settings deserve further attention. In this research, we describe a mixed method approach to explore communication strategies used by healthcare providers for resident skin risk in NH with high IT sophistication (ITS). Sample included NH participating in the statewide survey of ITS. We incorporated rigorous observation of 8- and 12-h shifts, and focus groups to identify how NH IT and a range of synchronous and asynchronous tools are used. Social network analysis tools and qualitative analysis were used to analyze data and identify relationships between ITS dimensions and communication interactions between care providers. Two of the nine ITS dimensions (resident care-technological and administrative activities-technological) and total ITS were significantly negatively correlated with number of unique interactions. As more processes in resident care and administrative activities are supported by technology, the lower the number of observed unique interactions. Additionally, four thematic areas emerged from staff focus groups that demonstrate how important IT is to resident care in these facilities including providing resident-centered care, teamwork and collaboration, maintaining safety and quality, and using standardized information resources. Our findings in this study confirm prior research that as technology support (resident care and administrative activities) and overall ITS increases, observed interactions between staff members decrease. Conversations during staff interviews focused on how technology facilitated resident centered care through enhanced information sharing, greater virtual collaboration between team members, and improved care delivery. These results provide evidence for improving the design and implementation of IT in long term care systems to support communication and associated resident outcomes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Collaborative Learning: A Critical Success Factor in Distance Education.

    ERIC Educational Resources Information Center

    Levin, David S.; Ben-Jacob, Marion G.

    This paper discusses the use of new technologies for distance learning-- including interactive video, computers, and the Internet-- at Mercy College (New York) and DePaul University (Illinois). The description of a course on discrete mathematics that is taught using the Mercy College Long-distance Instructional Network (MerLIN) focuses on the use…

  12. Supporting Novice Teachers through Mentoring and Induction in the United States

    ERIC Educational Resources Information Center

    Zembytska, Maryna

    2015-01-01

    The study focuses on the U.S. system of novice teacher support. The study highlights the evolution of mentoring from a traditional, isolated, hierarchical one-to-one relationship to multiple interactions which comprise a collaborative developmental network. The findings suggest that mentoring and induction support in the United States are…

  13. Developing Automated Feedback Materials for a Training Simulator: An Interaction between Users and Researchers.

    ERIC Educational Resources Information Center

    Shlechter, Theodore M.; And Others

    This paper focuses upon the research and development (R&D) process associated with developing automated feedback materials for the SIMulation NETworking (SIMNET) training system. This R&D process involved a partnership among instructional developers, practitioners, and researchers. Users' input has been utilized to help: (1) design the…

  14. Past, Present, and Future Trends in Teaching Clinical Skills through Web-Based Learning Environments

    ERIC Educational Resources Information Center

    Coe Regan, Jo Ann R.; Youn, Eric J.

    2008-01-01

    Distance education in social work has grown significantly due to the use of interactive television and computer networks. Given the recent developments in delivering distance education utilizing Web-based technology, this article presents a literature review focused on identifying generational trends in the development of Web-based learning…

  15. Words on the Screen: Broadening Analyses of Interactions among Fanfiction Writers and Reviewers

    ERIC Educational Resources Information Center

    Magnifico, Alecia Marie; Curwood, Jen Scott; Lammers, Jayne C.

    2015-01-01

    Young fanfiction writers use the Internet to build networks of reading, writing and editing--literacy practices that are highly valued in schools, universities and workplaces. While prior research shows that online spaces frame multiple kinds of participation as legitimate, much of this work focuses on the extensive contributions of exceptional…

  16. Games and Web 2.0: A Winning Combination for Millennials

    ERIC Educational Resources Information Center

    Spiegelman, Marsha; Glass, Richard

    2009-01-01

    Gaming and social networking define the millennial student. This research focuses on an evolving collaboration between 2 faculty members of different disciplines who merged Web 2.0 and game scenarios to infuse research techniques as integral components of math/computer science courses. Blogs and wikis facilitated student-faculty interaction beyond…

  17. Considering Materiality in Educational Policy: Messy Objects and Multiple Reals

    ERIC Educational Resources Information Center

    Fenwick, Tara; Edwards, Richard

    2011-01-01

    Educational analysts need new ways to engage with policy processes in a networked world of complex transnational connections. In this discussion, Tara Fenwick and Richard Edwards argue for a greater focus on materiality in educational policy as a way to trace the heterogeneous interactions and precarious linkages that enact policy as complex…

  18. Identity, Context Collapse, and Facebook Use in Higher Education: Putting Presence and Privacy at Odds

    ERIC Educational Resources Information Center

    Dennen, Vanessa P.; Burner, Kerry J.

    2017-01-01

    This study examines university student's attitudes toward Facebook use, focusing specifically on how they feel about using a social network that encourages the performance of personal and social identity to support learning and interaction among classmates and instructors. Two surveys elicited student habits, preferences, and beliefs related to…

  19. Novel GM animal technologies and their governance.

    PubMed

    Bruce, Ann; Castle, David; Gibbs, Corrina; Tait, Joyce; Whitelaw, C Bruce A

    2013-08-01

    Scientific advances in methods of producing genetically modified (GM) animals continue, yet few such animals have reached commercial production. Existing regulations designed for early techniques of genetic modification pose formidable barriers to commercial applications. Radically improved techniques for producing GM animals invite a re-examination of current regulatory regimes. We critically examine current GM animal regulations, with a particular focus on the European Union, through a framework that recognises the importance of interactions among regulatory regimes, innovation outcomes and industry sectors. The current focus on the regulation of risk is necessary but is unable to discriminate among applications and tends to close down broad areas of application rather than facilitate innovation and positive industry interactions. Furthermore, the fields of innovative animal biosciences appear to lack networks of organisations with co-ordinated future oriented actions. Such networks could drive coherent programmes of innovation towards particular visions and contribute actively to the development of regulatory systems for GM animals. The analysis presented makes the case for regulatory consideration of each animal bioscience related innovation on the basis of the nature of the product itself and not the process by which it was developed.

  20. The use of social networking to improve the quality of interprofessional education.

    PubMed

    Pittenger, Amy L

    2013-10-14

    To evaluate the feasibility and effectiveness of using an online social networking platform for interprofessional education. Three groups of 6 students were formed with 1 student in each group from medicine, nursing, dentistry, pharmacy, veterinary medicine, and public health. Each group followed a different collaborative educational model with a unique pedagogical structure. Students in all groups interacted via an online social networking platform for a minimum of 15 weeks and met in person once at the end of the 15-week experience for a focus group session. The students were tasked with developing a collaborative recommendation for using social networking in interprofessional education programs. Most of the students who reported in a post-experience survey that their expectations were not met were in the minimally structured group. Almost all students in the facilitated and highly structured groups indicated that this experience positively impacted their knowledge of other health professions. Most students stated that interacting within a social networking space for 15 weeks with other members of the university's health professions programs was a positive and effective interprofessional education experience. Social networking is feasible and can be used effectively within an overall strategy for interprofessional education, but design and placement within a core content course is critical to success.

  1. Investigating the Associations between Ethnic Networks, Community Social Capital, and Physical Health among Marriage Migrants in Korea.

    PubMed

    Kim, Harris Hyun-Soo

    2018-01-17

    This study examines factors associated with the physical health of Korea's growing immigrant population. Specifically, it focuses on the associations between ethnic networks, community social capital, and self-rated health (SRH) among female marriage migrants. For empirical testing, secondary analysis of a large nationally representative sample (NSMF 2009) is conducted. Given the clustered data structure (individuals nested in communities), a series of two-level random intercepts and slopes models are fitted to probe the relationships between SRH and interpersonal (bonding and bridging) networks among foreign-born wives in Korea. In addition to direct effects, cross-level interaction effects are investigated using hierarchical linear modeling. While adjusting for confounders, bridging (inter-ethnic) networks are significantly linked with better health. Bonding (co-ethnic) networks, to the contrary, are negatively associated with immigrant health. Net of individual-level covariates, living in a commuijnity with more aggregate bridging social capital is positively linked with health. Community-level bonding social capital, however, is not a significant predictor. Lastly, two cross-level interaction terms are found. First, the positive relationship between bridging network and health is stronger in residential contexts with more aggregate bridging social capital. Second, it is weaker in communities with more aggregate bonding social capital.

  2. The Use of Social Networking to Improve the Quality of Interprofessional Education

    PubMed Central

    2013-01-01

    Objective. To evaluate the feasibility and effectiveness of using an online social networking platform for interprofessional education. Design. Three groups of 6 students were formed with 1 student in each group from medicine, nursing, dentistry, pharmacy, veterinary medicine, and public health. Each group followed a different collaborative educational model with a unique pedagogical structure. Students in all groups interacted via an online social networking platform for a minimum of 15 weeks and met in person once at the end of the 15-week experience for a focus group session. The students were tasked with developing a collaborative recommendation for using social networking in interprofessional education programs. Assessment. Most of the students who reported in a post-experience survey that their expectations were not met were in the minimally structured group. Almost all students in the facilitated and highly structured groups indicated that this experience positively impacted their knowledge of other health professions. Most students stated that interacting within a social networking space for 15 weeks with other members of the university’s health professions programs was a positive and effective interprofessional education experience. Conclusion. Social networking is feasible and can be used effectively within an overall strategy for interprofessional education, but design and placement within a core content course is critical to success. PMID:24159215

  3. Characterizing and controlling the inflammatory network during influenza A virus infection

    NASA Astrophysics Data System (ADS)

    Jin, Suoqin; Li, Yuanyuan; Pan, Ruangang; Zou, Xiufen

    2014-01-01

    To gain insights into the pathogenesis of influenza A virus (IAV) infections, this study focused on characterizing the inflammatory network and identifying key proteins by combining high-throughput data and computational techniques. We constructed the cell-specific normal and inflammatory networks for H5N1 and H1N1 infections through integrating high-throughput data. We demonstrated that better discrimination between normal and inflammatory networks by network entropy than by other topological metrics. Moreover, we identified different dynamical interactions among TLR2, IL-1β, IL10 and NFκB between normal and inflammatory networks using optimization algorithm. In particular, good robustness and multistability of inflammatory sub-networks were discovered. Furthermore, we identified a complex, TNFSF10/HDAC4/HDAC5, which may play important roles in controlling inflammation, and demonstrated that changes in network entropy of this complex negatively correlated to those of three proteins: TNFα, NFκB and COX-2. These findings provide significant hypotheses for further exploring the molecular mechanisms of infectious diseases and developing control strategies.

  4. Weighted complex network analysis of the Beijing subway system: Train and passenger flows

    NASA Astrophysics Data System (ADS)

    Feng, Jia; Li, Xiamiao; Mao, Baohua; Xu, Qi; Bai, Yun

    2017-05-01

    In recent years, complex network theory has become an important approach to the study of the structure and dynamics of traffic networks. However, because traffic data is difficult to collect, previous studies have usually focused on the physical topology of subway systems, whereas few studies have considered the characteristics of traffic flows through the network. Therefore, in this paper, we present a multi-layer model to analyze traffic flow patterns in subway networks, based on trip data and an operation timetable obtained from the Beijing Subway System. We characterize the patterns in terms of the spatiotemporal flow size distributions of both the train flow network and the passenger flow network. In addition, we describe the essential interactions between these two networks based on statistical analyses. The results of this study suggest that layered models of transportation systems can elucidate fundamental differences between the coexisting traffic flows and can also clarify the mechanism that causes these differences.

  5. Structural Controllability and Controlling Centrality of Temporal Networks

    PubMed Central

    Pan, Yujian; Li, Xiang

    2014-01-01

    Temporal networks are such networks where nodes and interactions may appear and disappear at various time scales. With the evidence of ubiquity of temporal networks in our economy, nature and society, it's urgent and significant to focus on its structural controllability as well as the corresponding characteristics, which nowadays is still an untouched topic. We develop graphic tools to study the structural controllability as well as its characteristics, identifying the intrinsic mechanism of the ability of individuals in controlling a dynamic and large-scale temporal network. Classifying temporal trees of a temporal network into different types, we give (both upper and lower) analytical bounds of the controlling centrality, which are verified by numerical simulations of both artificial and empirical temporal networks. We find that the positive relationship between aggregated degree and controlling centrality as well as the scale-free distribution of node's controlling centrality are virtually independent of the time scale and types of datasets, meaning the inherent robustness and heterogeneity of the controlling centrality of nodes within temporal networks. PMID:24747676

  6. Spectral fingerprints of large-scale neuronal interactions.

    PubMed

    Siegel, Markus; Donner, Tobias H; Engel, Andreas K

    2012-01-11

    Cognition results from interactions among functionally specialized but widely distributed brain regions; however, neuroscience has so far largely focused on characterizing the function of individual brain regions and neurons therein. Here we discuss recent studies that have instead investigated the interactions between brain regions during cognitive processes by assessing correlations between neuronal oscillations in different regions of the primate cerebral cortex. These studies have opened a new window onto the large-scale circuit mechanisms underlying sensorimotor decision-making and top-down attention. We propose that frequency-specific neuronal correlations in large-scale cortical networks may be 'fingerprints' of canonical neuronal computations underlying cognitive processes.

  7. Rapid Sampling of Hydrogen Bond Networks for Computational Protein Design.

    PubMed

    Maguire, Jack B; Boyken, Scott E; Baker, David; Kuhlman, Brian

    2018-05-08

    Hydrogen bond networks play a critical role in determining the stability and specificity of biomolecular complexes, and the ability to design such networks is important for engineering novel structures, interactions, and enzymes. One key feature of hydrogen bond networks that makes them difficult to rationally engineer is that they are highly cooperative and are not energetically favorable until the hydrogen bonding potential has been satisfied for all buried polar groups in the network. Existing computational methods for protein design are ill-equipped for creating these highly cooperative networks because they rely on energy functions and sampling strategies that are focused on pairwise interactions. To enable the design of complex hydrogen bond networks, we have developed a new sampling protocol in the molecular modeling program Rosetta that explicitly searches for sets of amino acid mutations that can form self-contained hydrogen bond networks. For a given set of designable residues, the protocol often identifies many alternative sets of mutations/networks, and we show that it can readily be applied to large sets of residues at protein-protein interfaces or in the interior of proteins. The protocol builds on a recently developed method in Rosetta for designing hydrogen bond networks that has been experimentally validated for small symmetric systems but was not extensible to many larger protein structures and complexes. The sampling protocol we describe here not only recapitulates previously validated designs with performance improvements but also yields viable hydrogen bond networks for cases where the previous method fails, such as the design of large, asymmetric interfaces relevant to engineering protein-based therapeutics.

  8. Adapting and Bending the Portal to the Public: Evaluation of an NSF-Funded Science Communication Model for UNAVCO's Geoscience Summer Internships

    NASA Astrophysics Data System (ADS)

    Dutilly, E.; Charlevoix, D. J.; Bartel, B. A.

    2017-12-01

    UNAVCO is a National Science Foundation (NSF) facility specializing in geodesy. As part of its education and outreach work, it operates annual summer internships. In 2016, UNAVCO joined the Portal to the Public (PoP) network and the PoP model was adapted and bent to provide science communication professional development for summer interns. PoP is one way that UNAVCO invests in and trains future generations of geoscientists. The NSF-funded PoP initiative and its network, PoPNet, is a premier outreach framework connecting scientists and public audiences for over a decade. PoPNet is a network of sixty organizations committed to using the PoP method to engage the public in face-to-face interactions with practicing scientists. The PoP initiative provides professional development to scientists focused on best practices in science communication, helps them to develop an interactive exhibit consistent with their current research, and offers them a venue for interacting with the public. No other evaluation work to date has examined how summer internships can uptake the PoP model. This presentation focuses on evaluation findings from two cohorts of summer interns across two years. Three primary domains were assessed: how demographic composition across cohorts required changes to the original PoP framework, which of the PoP professional development trainings were valued (or not) by interns, and changes to intern knowledge, attitudes, and abilities to communicate science. Analyses via surveys and interviews revealed that level of intern geoscience knowledge was a major factor in deciding the focus of the work, specifically whether to create new hands-on exhibits or use existing ones. Regarding the use of PoP trainings, there was no obvious pattern in what interns preferred. Most growth and learning for interns occurred during and after the outreach activity. Results of this evaluation can be used to inform other applications of the PoP approach in summer internships.

  9. Trend Motif: A Graph Mining Approach for Analysis of Dynamic Complex Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, R; McCallen, S; Almaas, E

    2007-05-28

    Complex networks have been used successfully in scientific disciplines ranging from sociology to microbiology to describe systems of interacting units. Until recently, studies of complex networks have mainly focused on their network topology. However, in many real world applications, the edges and vertices have associated attributes that are frequently represented as vertex or edge weights. Furthermore, these weights are often not static, instead changing with time and forming a time series. Hence, to fully understand the dynamics of the complex network, we have to consider both network topology and related time series data. In this work, we propose a motifmore » mining approach to identify trend motifs for such purposes. Simply stated, a trend motif describes a recurring subgraph where each of its vertices or edges displays similar dynamics over a userdefined period. Given this, each trend motif occurrence can help reveal significant events in a complex system; frequent trend motifs may aid in uncovering dynamic rules of change for the system, and the distribution of trend motifs may characterize the global dynamics of the system. Here, we have developed efficient mining algorithms to extract trend motifs. Our experimental validation using three disparate empirical datasets, ranging from the stock market, world trade, to a protein interaction network, has demonstrated the efficiency and effectiveness of our approach.« less

  10. Nonextensivity in a Dark Maximum Entropy Landscape

    NASA Astrophysics Data System (ADS)

    Leubner, M. P.

    2011-03-01

    Nonextensive statistics along with network science, an emerging branch of graph theory, are increasingly recognized as potential interdisciplinary frameworks whenever systems are subject to long-range interactions and memory. Such settings are characterized by non-local interactions evolving in a non-Euclidean fractal/multi-fractal space-time making their behavior nonextensive. After summarizing the theoretical foundations from first principles, along with a discussion of entropy bifurcation and duality in nonextensive systems, we focus on selected significant astrophysical consequences. Those include the gravitational equilibria of dark matter (DM) and hot gas in clustered structures, the dark energy(DE) negative pressure landscape governed by the highest degree of mutual correlations and the hierarchy of discrete cosmic structure scales, available upon extremizing the generalized nonextensive link entropy in a homogeneous growing network.

  11. A neural network model of metaphor understanding with dynamic interaction based on a statistical language analysis: targeting a human-like model.

    PubMed

    Terai, Asuka; Nakagawa, Masanori

    2007-08-01

    The purpose of this paper is to construct a model that represents the human process of understanding metaphors, focusing specifically on similes of the form an "A like B". Generally speaking, human beings are able to generate and understand many sorts of metaphors. This study constructs the model based on a probabilistic knowledge structure for concepts which is computed from a statistical analysis of a large-scale corpus. Consequently, this model is able to cover the many kinds of metaphors that human beings can generate. Moreover, the model implements the dynamic process of metaphor understanding by using a neural network with dynamic interactions. Finally, the validity of the model is confirmed by comparing model simulations with the results from a psychological experiment.

  12. Linking macroecology and community ecology: refining predictions of species distributions using biotic interaction networks.

    PubMed

    Staniczenko, Phillip P A; Sivasubramaniam, Prabu; Suttle, K Blake; Pearson, Richard G

    2017-06-01

    Macroecological models for predicting species distributions usually only include abiotic environmental conditions as explanatory variables, despite knowledge from community ecology that all species are linked to other species through biotic interactions. This disconnect is largely due to the different spatial scales considered by the two sub-disciplines: macroecologists study patterns at large extents and coarse resolutions, while community ecologists focus on small extents and fine resolutions. A general framework for including biotic interactions in macroecological models would help bridge this divide, as it would allow for rigorous testing of the role that biotic interactions play in determining species ranges. Here, we present an approach that combines species distribution models with Bayesian networks, which enables the direct and indirect effects of biotic interactions to be modelled as propagating conditional dependencies among species' presences. We show that including biotic interactions in distribution models for species from a California grassland community results in better range predictions across the western USA. This new approach will be important for improving estimates of species distributions and their dynamics under environmental change. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  13. How social network analysis can be used to monitor online collaborative learning and guide an informed intervention

    PubMed Central

    Fors, Uno; Tedre, Matti; Nouri, Jalal

    2018-01-01

    To ensure online collaborative learning meets the intended pedagogical goals (is actually collaborative and stimulates learning), mechanisms are needed for monitoring the efficiency of online collaboration. Various studies have indicated that social network analysis can be particularly effective in studying students’ interactions in online collaboration. However, research in education has only focused on the theoretical potential of using SNA, not on the actual benefits they achieved. This study investigated how social network analysis can be used to monitor online collaborative learning, find aspects in need of improvement, guide an informed intervention, and assess the efficacy of intervention using an experimental, observational repeated-measurement design in three courses over a full-term duration. Using a combination of SNA-based visual and quantitative analysis, we monitored three SNA constructs for each participant: the level of interactivity, the role, and position in information exchange, and the role played by each participant in the collaboration. On the group level, we monitored interactivity and group cohesion indicators. Our monitoring uncovered a non-collaborative teacher-centered pattern of interactions in the three studied courses as well as very few interactions among students, limited information exchange or negotiation, and very limited student networks dominated by the teacher. An intervention based on SNA-generated insights was designed. The intervention was structured into five actions: increasing awareness, promoting collaboration, improving the content, preparing teachers, and finally practicing with feedback. Evaluation of the intervention revealed that it has significantly enhanced student-student interactions and teacher-student interactions, as well as produced a collaborative pattern of interactions among most students and teachers. Since efficient and communicative activities are essential prerequisites for successful content discussion and for realizing the goals of collaboration, we suggest that our SNA-based approach will positively affect teaching and learning in many educational domains. Our study offers a proof-of-concept of what SNA can add to the current tools for monitoring and supporting teaching and learning in higher education. PMID:29566058

  14. How social network analysis can be used to monitor online collaborative learning and guide an informed intervention.

    PubMed

    Saqr, Mohammed; Fors, Uno; Tedre, Matti; Nouri, Jalal

    2018-01-01

    To ensure online collaborative learning meets the intended pedagogical goals (is actually collaborative and stimulates learning), mechanisms are needed for monitoring the efficiency of online collaboration. Various studies have indicated that social network analysis can be particularly effective in studying students' interactions in online collaboration. However, research in education has only focused on the theoretical potential of using SNA, not on the actual benefits they achieved. This study investigated how social network analysis can be used to monitor online collaborative learning, find aspects in need of improvement, guide an informed intervention, and assess the efficacy of intervention using an experimental, observational repeated-measurement design in three courses over a full-term duration. Using a combination of SNA-based visual and quantitative analysis, we monitored three SNA constructs for each participant: the level of interactivity, the role, and position in information exchange, and the role played by each participant in the collaboration. On the group level, we monitored interactivity and group cohesion indicators. Our monitoring uncovered a non-collaborative teacher-centered pattern of interactions in the three studied courses as well as very few interactions among students, limited information exchange or negotiation, and very limited student networks dominated by the teacher. An intervention based on SNA-generated insights was designed. The intervention was structured into five actions: increasing awareness, promoting collaboration, improving the content, preparing teachers, and finally practicing with feedback. Evaluation of the intervention revealed that it has significantly enhanced student-student interactions and teacher-student interactions, as well as produced a collaborative pattern of interactions among most students and teachers. Since efficient and communicative activities are essential prerequisites for successful content discussion and for realizing the goals of collaboration, we suggest that our SNA-based approach will positively affect teaching and learning in many educational domains. Our study offers a proof-of-concept of what SNA can add to the current tools for monitoring and supporting teaching and learning in higher education.

  15. Localizing Global Medicine: Challenges and Opportunities in Cervical Screening in an Indigenous Community in Ecuador.

    PubMed

    Nugus, Peter; Désalliers, Julie; Morales, Juana; Graves, Lisa; Evans, Andrea; Macaulay, Ann C

    2018-04-01

    This participatory research study examines the tensions and opportunities in accessing allopathic medicine, or biomedicine, in the context of a cervical cancer screening program in a rural indigenous community of Northern Ecuador. Focusing on the influence of social networks, the article extends research on "re-appropriation" of biomedicine. It does so by recognizing two competing tensions expressed through social interactions: suspicion of allopathic medicine and the desire to maximize one's health. Semistructured individual interviews and focus groups were conducted with 28 women who had previously participated in a government-sponsored cervical screening program. From inductive thematic analysis, the article traces these women's active agency in navigating coherent paths of health. Despite drawing on social networks to overcome formidable challenges, the participants faced enduring system obstacles-the organizational effects of the networks of allopathic medicine. Such obstacles need to be understood to reconcile competing knowledge systems and improve health care access in underresourced communities.

  16. Social insect colony as a biological regulatory system: modelling information flow in dominance networks.

    PubMed

    Nandi, Anjan K; Sumana, Annagiri; Bhattacharya, Kunal

    2014-12-06

    Social insects provide an excellent platform to investigate flow of information in regulatory systems since their successful social organization is essentially achieved by effective information transfer through complex connectivity patterns among the colony members. Network representation of such behavioural interactions offers a powerful tool for structural as well as dynamical analysis of the underlying regulatory systems. In this paper, we focus on the dominance interaction networks in the tropical social wasp Ropalidia marginata-a species where behavioural observations indicate that such interactions are principally responsible for the transfer of information between individuals about their colony needs, resulting in a regulation of their own activities. Our research reveals that the dominance networks of R. marginata are structurally similar to a class of naturally evolved information processing networks, a fact confirmed also by the predominance of a specific substructure-the 'feed-forward loop'-a key functional component in many other information transfer networks. The dynamical analysis through Boolean modelling confirms that the networks are sufficiently stable under small fluctuations and yet capable of more efficient information transfer compared to their randomized counterparts. Our results suggest the involvement of a common structural design principle in different biological regulatory systems and a possible similarity with respect to the effect of selection on the organization levels of such systems. The findings are also consistent with the hypothesis that dominance behaviour has been shaped by natural selection to co-opt the information transfer process in such social insect species, in addition to its primal function of mediation of reproductive competition in the colony. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  17. Tele-counseling and social-skill trainings using JGNII optical network and a mirror-interface system

    NASA Astrophysics Data System (ADS)

    Hashimoto, Sayuri; Hashimoto, Nobuyuki; Onozawa, Akira; Hosoya, Eiichi; Harada, Ikuo; Okunaka, Junzo

    2007-09-01

    "Tele-presence" communication using JGNII - an exclusive optical-fiber network system - was applied to social-skills training in the form of child-rearing support. This application focuses on internet counseling and social training skills that require interactive verbal and none-verbal communications. The motivation for this application is supporting local communities by constructing tele-presence education and entertainment systems using recently available, inexpensive IP networks. This latest application of tele-presence communication uses mirror-interface system which provides to users in remote locations a shared quasi-space where they can see themselves as if they were in the same room by overlapping video images from remote locations.

  18. Estimation of Flux Between Interacting Nodes on Huge Inter-Firm Networks

    NASA Astrophysics Data System (ADS)

    Tamura, Koutarou; Miura, Wataru; Takayasu, Misako; Takayasu, Hideki; Kitajima, Satoshi; Goto, Hayato

    We analyze Japanese inter-firm network data showing scale-free properties as an example of a real complex network. The data contains information on money flow (annual transaction volume) between about 7000 pairs of firms. We focus on this money-flow data and investigate the correlation between various quantities such as sales or link numbers. We find that the flux from a buyer to a supplier is given by the product of the fractional powers of both sales with different exponents. This result indicates that the principle of detailed balance does not hold in the real transport of money; therefore, random walk type transport models such as PageRank are not suitable.

  19. Associating Human-Centered Concepts with Social Networks Using Fuzzy Sets

    NASA Astrophysics Data System (ADS)

    Yager, Ronald R.

    The rapidly growing global interconnectivity, brought about to a large extent by the Internet, has dramatically increased the importance and diversity of social networks. Modern social networks cut across a spectrum from benign recreational focused websites such as Facebook to occupationally oriented websites such as LinkedIn to criminally focused groups such as drug cartels to devastation and terror focused groups such as Al-Qaeda. Many organizations are interested in analyzing and extracting information related to these social networks. Among these are governmental police and security agencies as well marketing and sales organizations. To aid these organizations there is a need for technologies to model social networks and intelligently extract information from these models. While established technologies exist for the modeling of relational networks [1-7] few technologies exist to extract information from these, compatible with human perception and understanding. Data bases is an example of a technology in which we have tools for representing our information as well as tools for querying and extracting the information contained. Our goal is in some sense analogous. We want to use the relational network model to represent information, in this case about relationships and interconnections, and then be able to query the social network using intelligent human-centered concepts. To extend our capabilities to interact with social relational networks we need to associate with these network human concepts and ideas. Since human beings predominantly use linguistic terms in which to reason and understand we need to build bridges between human conceptualization and the formal mathematical representation of the social network. Consider for example a concept such as "leader". An analyst may be able to express, in linguistic terms, using a network relevant vocabulary, properties of a leader. Our task is to translate this linguistic description into a mathematical formalism that allows us to determine how true it is that a particular node is a leader. In this work we look at the use of fuzzy set methodologies [8-10] to provide a bridge between the human analyst and the formal model of the network.

  20. Integrative analyses of leprosy susceptibility genes indicate a common autoimmune profile.

    PubMed

    Zhang, Deng-Feng; Wang, Dong; Li, Yu-Ye; Yao, Yong-Gang

    2016-04-01

    Leprosy is an ancient chronic infection in the skin and peripheral nerves caused by Mycobacterium leprae. The development of leprosy depends on genetic background and the immune status of the host. However, there is no systematic view focusing on the biological pathways, interaction networks and overall expression pattern of leprosy-related immune and genetic factors. To identify the hub genes in the center of leprosy genetic network and to provide an insight into immune and genetic factors contributing to leprosy. We retrieved all reported leprosy-related genes and performed integrative analyses covering gene expression profiling, pathway analysis, protein-protein interaction network, and evolutionary analyses. A list of 123 differentially expressed leprosy related genes, which were enriched in activation and regulation of immune response, was obtained in our analyses. Cross-disorder analysis showed that the list of leprosy susceptibility genes was largely shared by typical autoimmune diseases such as lupus erythematosus and arthritis, suggesting that similar pathways might be affected in leprosy and autoimmune diseases. Protein-protein interaction (PPI) and positive selection analyses revealed a co-evolution network of leprosy risk genes. Our analyses showed that leprosy associated genes constituted a co-evolution network and might undergo positive selection driven by M. leprae. We suggested that leprosy may be a kind of autoimmune disease and the development of leprosy is a matter of defect or over-activation of body immunity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Supporting virtual enterprise design by a web-based information model

    NASA Astrophysics Data System (ADS)

    Li, Dong; Barn, Balbir; McKay, Alison; de Pennington, Alan

    2001-10-01

    Development of IT and its applications have led to significant changes in business processes. To pursue agility, flexibility and best service to customers, enterprises focus on their core competence and dynamically build relationships with partners to form virtual enterprises as customer driven temporary demand chains/networks. Building the networked enterprise needs responsively interactive decisions instead of a single-direction partner selection process. Benefits and risks in the combination should be systematically analysed, and aggregated information about value-adding abilities and risks of networks needs to be derived from interactions of all partners. In this research, a hierarchical information model to assess partnerships for designing virtual enterprises was developed. Internet technique has been applied to the evaluation process so that interactive decisions can be visualised and made responsively during the design process. The assessment is based on the process which allows each partner responds to requirements of the virtual enterprise by planning its operational process as a bidder. The assessment is then produced by making an aggregated value to represent prospect of the combination of partners given current bidding. Final design is a combination of partners with the greatest total value-adding capability and lowest risk.

  2. Bus-based park-and-ride system: a stochastic model on multimodal network with congestion pricing schemes

    NASA Astrophysics Data System (ADS)

    Liu, Zhiyuan; Meng, Qiang

    2014-05-01

    This paper focuses on modelling the network flow equilibrium problem on a multimodal transport network with bus-based park-and-ride (P&R) system and congestion pricing charges. The multimodal network has three travel modes: auto mode, transit mode and P&R mode. A continuously distributed value-of-time is assumed to convert toll charges and transit fares to time unit, and the users' route choice behaviour is assumed to follow the probit-based stochastic user equilibrium principle with elastic demand. These two assumptions have caused randomness to the users' generalised travel times on the multimodal network. A comprehensive network framework is first defined for the flow equilibrium problem with consideration of interactions between auto flows and transit (bus) flows. Then, a fixed-point model with unique solution is proposed for the equilibrium flows, which can be solved by a convergent cost averaging method. Finally, the proposed methodology is tested by a network example.

  3. The new challenges of multiplex networks: Measures and models

    NASA Astrophysics Data System (ADS)

    Battiston, Federico; Nicosia, Vincenzo; Latora, Vito

    2017-02-01

    What do societies, the Internet, and the human brain have in common? They are all examples of complex relational systems, whose emerging behaviours are largely determined by the non-trivial networks of interactions among their constituents, namely individuals, computers, or neurons, rather than only by the properties of the units themselves. In the last two decades, network scientists have proposed models of increasing complexity to better understand real-world systems. Only recently we have realised that multiplexity, i.e. the coexistence of several types of interactions among the constituents of a complex system, is responsible for substantial qualitative and quantitative differences in the type and variety of behaviours that a complex system can exhibit. As a consequence, multilayer and multiplex networks have become a hot topic in complexity science. Here we provide an overview of some of the measures proposed so far to characterise the structure of multiplex networks, and a selection of models aiming at reproducing those structural properties and quantifying their statistical significance. Focusing on a subset of relevant topics, this brief review is a quite comprehensive introduction to the most basic tools for the analysis of multiplex networks observed in the real-world. The wide applicability of multiplex networks as a framework to model complex systems in different fields, from biology to social sciences, and the colloquial tone of the paper will make it an interesting read for researchers working on both theoretical and experimental analysis of networked systems.

  4. Cognitive Vulnerability to Major Depression: View from the Intrinsic Network and Cross-network Interactions

    PubMed Central

    Wang, Xiang; Öngür, Dost; Auerbach, Randy P.; Yao, Shuqiao

    2016-01-01

    Abstract Although it is generally accepted that cognitive factors contribute to the pathogenesis of major depressive disorder (MDD), there are missing links between behavioral and biological models of depression. Nevertheless, research employing neuroimaging technologies has elucidated some of the neurobiological mechanisms related to cognitive-vulnerability factors, especially from a whole-brain, dynamic perspective. In this review, we integrate well-established cognitive-vulnerability factors for MDD and corresponding neural mechanisms in intrinsic networks using a dual-process framework. We propose that the dynamic alteration and imbalance among the intrinsic networks, both in the resting-state and the rest-task transition stages, contribute to the development of cognitive vulnerability and MDD. Specifically, we propose that abnormally increased resting-state default mode network (DMN) activity and connectivity (mainly in anterior DMN regions) contribute to the development of cognitive vulnerability. Furthermore, when subjects confront negative stimuli in the period of rest-to-task transition, the following three kinds of aberrant network interactions have been identified as facilitators of vulnerability and dysphoric mood, each through a different cognitive mechanism: DMN dominance over the central executive network (CEN), an impaired salience network–mediated switching between the DMN and CEN, and ineffective CEN modulation of the DMN. This focus on interrelated networks and brain-activity changes between rest and task states provides a neural-system perspective for future research on cognitive vulnerability and resilience, and may potentially guide the development of new intervention strategies for MDD. PMID:27148911

  5. Using Networks to Visualize and Analyze Process Data for Educational Assessment

    ERIC Educational Resources Information Center

    Zhu, Mengxiao; Shu, Zhan; von Davier, Alina A.

    2016-01-01

    New technology enables interactive and adaptive scenario-based tasks (SBTs) to be adopted in educational measurement. At the same time, it is a challenging problem to build appropriate psychometric models to analyze data collected from these tasks, due to the complexity of the data. This study focuses on process data collected from SBTs. We…

  6. Analysis of discontinuities across thin inhomogeneities, groundwater/surface water interactions in river networks, and circulation about slender bodies using slit elements in the Analytic Element Method

    USDA-ARS?s Scientific Manuscript database

    Groundwater and surface water contain interfaces across which hydrologic functions are discontinuous. Thin elements with high hydraulic conductivity in a porous media focus groundwater, which flows through such inhomogeneities and causes an abrupt change in stream function across their interfaces, a...

  7. Holistic School Leadership: Development of Systems Thinking in School Leaders

    ERIC Educational Resources Information Center

    Shaked, Haim; Schechter, Chen

    2018-01-01

    Background: Systems thinking is a holistic approach that puts the study of wholes before that of parts. It does not try to break systems down into parts in order to understand them; instead, it focuses attention on how the parts act together in networks of interactions. Purpose: This study explored the development of holistic school leadership--an…

  8. Attention and Cognitive Control Networks Assessed in a Dichotic Listening fMRI Study

    ERIC Educational Resources Information Center

    Falkenberg, Liv E.; Specht, Karsten; Westerhausen, Rene

    2011-01-01

    A meaningful interaction with our environment relies on the ability to focus on relevant sensory input and to ignore irrelevant information, i.e. top-down control and attention processes are employed to select from competing stimuli following internal goals. In this, the demands for the recruitment of top-down control processes depend on the…

  9. From Isolation to Interaction? Network-Based Professional Development and Teacher Professional Communication.

    ERIC Educational Resources Information Center

    McMahon, Teresa A.

    The Mathematics Learning Forums, a collaborative effort of Bank Street College and the Center for Children and Technology, Education Development Center, Inc., provided the primary research setting for this study. Each 8-week forum focuses on specific elements of a mathematics content area and is designed to address both student learning and…

  10. Recent Progress in CFTR Interactome Mapping and Its Importance for Cystic Fibrosis.

    PubMed

    Lim, Sang Hyun; Legere, Elizabeth-Ann; Snider, Jamie; Stagljar, Igor

    2017-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a chloride channel found in secretory epithelia with a plethora of known interacting proteins. Mutations in the CFTR gene cause cystic fibrosis (CF), a disease that leads to progressive respiratory illness and other complications of phenotypic variance resulting from perturbations of this protein interaction network. Studying the collection of CFTR interacting proteins and the differences between the interactomes of mutant and wild type CFTR provides insight into the molecular machinery of the disease and highlights possible therapeutic targets. This mini review focuses on functional genomics and proteomics approaches used for systematic, high-throughput identification of CFTR-interacting proteins to provide comprehensive insight into CFTR regulation and function.

  11. Simple deterministic models and applications. Comment on "Coupled disease-behavior dynamics on complex networks: A review" by Z. Wang et al.

    NASA Astrophysics Data System (ADS)

    Yang, Hyun Mo

    2015-12-01

    Currently, discrete modellings are largely accepted due to the access to computers with huge storage capacity and high performance processors and easy implementation of algorithms, allowing to develop and simulate increasingly sophisticated models. Wang et al. [7] present a review of dynamics in complex networks, focusing on the interaction between disease dynamics and human behavioral and social dynamics. By doing an extensive review regarding to the human behavior responding to disease dynamics, the authors briefly describe the complex dynamics found in the literature: well-mixed populations networks, where spatial structure can be neglected, and other networks considering heterogeneity on spatially distributed populations. As controlling mechanisms are implemented, such as social distancing due 'social contagion', quarantine, non-pharmaceutical interventions and vaccination, adaptive behavior can occur in human population, which can be easily taken into account in the dynamics formulated by networked populations.

  12. Interdependent networks: the fragility of control

    PubMed Central

    Morris, Richard G.; Barthelemy, Marc

    2013-01-01

    Recent work in the area of interdependent networks has focused on interactions between two systems of the same type. However, an important and ubiquitous class of systems are those involving monitoring and control, an example of interdependence between processes that are very different. In this Article, we introduce a framework for modelling ‘distributed supervisory control' in the guise of an electrical network supervised by a distributed system of control devices. The system is characterised by degrees of freedom salient to real-world systems— namely, the number of control devices, their inherent reliability, and the topology of the control network. Surprisingly, the behavior of the system depends crucially on the reliability of control devices. When devices are completely reliable, cascade sizes are percolation controlled; the number of devices being the relevant parameter. For unreliable devices, the topology of the control network is important and can dramatically reduce the resilience of the system. PMID:24067404

  13. Urbanism, Neighborhood Context, and Social Networks.

    PubMed

    Cornwell, Erin York; Behler, Rachel L

    2015-09-01

    Theories of urbanism suggest that the urban context erodes individuals' strong social ties with friends and family. Recent research has narrowed focus to the neighborhood context, emphasizing how localized structural disadvantage affects community-level cohesion and social capital. In this paper, we argue that neighborhood context also shapes social ties with friends and family- particularly for community-dwelling seniors. We hypothesize that neighborhood disadvantage, residential instability, and disorder restrict residents' abilities to cultivate close relationships with neighbors and non-neighbor friends and family. Using data from the National Social Life, Health, and Aging Project (NSHAP), we find that older adults who live in disadvantaged neighborhoods have smaller social networks. Neighborhood disadvantage is also associated with less close network ties and less frequent interaction - but only among men. Furthermore, residents of disordered neighborhoods have smaller networks and weaker ties. We urge scholars to pay greater attention to how neighborhood context contributes to disparities in network-based access to resources.

  14. Urbanism, Neighborhood Context, and Social Networks

    PubMed Central

    Cornwell, Erin York; Behler, Rachel L.

    2017-01-01

    Theories of urbanism suggest that the urban context erodes individuals’ strong social ties with friends and family. Recent research has narrowed focus to the neighborhood context, emphasizing how localized structural disadvantage affects community-level cohesion and social capital. In this paper, we argue that neighborhood context also shapes social ties with friends and family– particularly for community-dwelling seniors. We hypothesize that neighborhood disadvantage, residential instability, and disorder restrict residents’ abilities to cultivate close relationships with neighbors and non-neighbor friends and family. Using data from the National Social Life, Health, and Aging Project (NSHAP), we find that older adults who live in disadvantaged neighborhoods have smaller social networks. Neighborhood disadvantage is also associated with less close network ties and less frequent interaction – but only among men. Furthermore, residents of disordered neighborhoods have smaller networks and weaker ties. We urge scholars to pay greater attention to how neighborhood context contributes to disparities in network-based access to resources. PMID:28819338

  15. Representing distributed cognition in complex systems: how a submarine returns to periscope depth.

    PubMed

    Stanton, Neville A

    2014-01-01

    This paper presents the Event Analysis of Systemic Teamwork (EAST) method as a means of modelling distributed cognition in systems. The method comprises three network models (i.e. task, social and information) and their combination. This method was applied to the interactions between the sound room and control room in a submarine, following the activities of returning the submarine to periscope depth. This paper demonstrates three main developments in EAST. First, building the network models directly, without reference to the intervening methods. Second, the application of analysis metrics to all three networks. Third, the combination of the aforementioned networks in different ways to gain a broader understanding of the distributed cognition. Analyses have shown that EAST can be used to gain both qualitative and quantitative insights into distributed cognition. Future research should focus on the analyses of network resilience and modelling alternative versions of a system.

  16. Comparing social factors affecting recommender decisions in online and educational social network

    NASA Astrophysics Data System (ADS)

    MartÍn, Estefanía; Hernán-Losada, Isidoro; Haya, Pablo A.

    2016-01-01

    In the educational context, there is an increasing interest in learning networks. Recommender systems (RSs) can play an important role in achieving educational objectives. Although we can find many papers focused on recommendation techniques and algorithms, in general, less attention has been dedicated to social factors that influence the recommendation process. This process could be improved if we had a deeper understanding of the social factors that influence the quality or validity of a suggestion made by the RS. This work elucidates and analyses the social factors that influence the design and decision-making process of RSs. We conducted a survey in which 126 undergraduate students were asked to extract which are the main factors for improving suggestions when they are interacting with an Online Social Network (OSN) or in an Educational Social Network (ESN). The results show that different factors have to be considered depending on the type of network.

  17. Evolution and function of CAG/polyglutamine repeats in protein–protein interaction networks

    PubMed Central

    Schaefer, Martin H.; Wanker, Erich E.; Andrade-Navarro, Miguel A.

    2012-01-01

    Expanded runs of consecutive trinucleotide CAG repeats encoding polyglutamine (polyQ) stretches are observed in the genes of a large number of patients with different genetic diseases such as Huntington's and several Ataxias. Protein aggregation, which is a key feature of most of these diseases, is thought to be triggered by these expanded polyQ sequences in disease-related proteins. However, polyQ tracts are a normal feature of many human proteins, suggesting that they have an important cellular function. To clarify the potential function of polyQ repeats in biological systems, we systematically analyzed available information stored in sequence and protein interaction databases. By integrating genomic, phylogenetic, protein interaction network and functional information, we obtained evidence that polyQ tracts in proteins stabilize protein interactions. This happens most likely through structural changes whereby the polyQ sequence extends a neighboring coiled-coil region to facilitate its interaction with a coiled-coil region in another protein. Alteration of this important biological function due to polyQ expansion results in gain of abnormal interactions, leading to pathological effects like protein aggregation. Our analyses suggest that research on polyQ proteins should shift focus from expanded polyQ proteins into the characterization of the influence of the wild-type polyQ on protein interactions. PMID:22287626

  18. The Interaction Network Ontology-supported modeling and mining of complex interactions represented with multiple keywords in biomedical literature.

    PubMed

    Özgür, Arzucan; Hur, Junguk; He, Yongqun

    2016-01-01

    The Interaction Network Ontology (INO) logically represents biological interactions, pathways, and networks. INO has been demonstrated to be valuable in providing a set of structured ontological terms and associated keywords to support literature mining of gene-gene interactions from biomedical literature. However, previous work using INO focused on single keyword matching, while many interactions are represented with two or more interaction keywords used in combination. This paper reports our extension of INO to include combinatory patterns of two or more literature mining keywords co-existing in one sentence to represent specific INO interaction classes. Such keyword combinations and related INO interaction type information could be automatically obtained via SPARQL queries, formatted in Excel format, and used in an INO-supported SciMiner, an in-house literature mining program. We studied the gene interaction sentences from the commonly used benchmark Learning Logic in Language (LLL) dataset and one internally generated vaccine-related dataset to identify and analyze interaction types containing multiple keywords. Patterns obtained from the dependency parse trees of the sentences were used to identify the interaction keywords that are related to each other and collectively represent an interaction type. The INO ontology currently has 575 terms including 202 terms under the interaction branch. The relations between the INO interaction types and associated keywords are represented using the INO annotation relations: 'has literature mining keywords' and 'has keyword dependency pattern'. The keyword dependency patterns were generated via running the Stanford Parser to obtain dependency relation types. Out of the 107 interactions in the LLL dataset represented with two-keyword interaction types, 86 were identified by using the direct dependency relations. The LLL dataset contained 34 gene regulation interaction types, each of which associated with multiple keywords. A hierarchical display of these 34 interaction types and their ancestor terms in INO resulted in the identification of specific gene-gene interaction patterns from the LLL dataset. The phenomenon of having multi-keyword interaction types was also frequently observed in the vaccine dataset. By modeling and representing multiple textual keywords for interaction types, the extended INO enabled the identification of complex biological gene-gene interactions represented with multiple keywords.

  19. The shortest path is not the one you know: application of biological network resources in precision oncology research.

    PubMed

    Kuperstein, Inna; Grieco, Luca; Cohen, David P A; Thieffry, Denis; Zinovyev, Andrei; Barillot, Emmanuel

    2015-03-01

    Several decades of molecular biology research have delivered a wealth of detailed descriptions of molecular interactions in normal and tumour cells. This knowledge has been functionally organised and assembled into dedicated biological pathway resources that serve as an invaluable tool, not only for structuring the information about molecular interactions but also for making it available for biological, clinical and computational studies. With the advent of high-throughput molecular profiling of tumours, close to complete molecular catalogues of mutations, gene expression and epigenetic modifications are available and require adequate interpretation. Taking into account the information about biological signalling machinery in cells may help to better interpret molecular profiles of tumours. Making sense out of these descriptions requires biological pathway resources for functional interpretation of the data. In this review, we describe the available biological pathway resources, their characteristics in terms of construction mode, focus, aims and paradigms of biological knowledge representation. We present a new resource that is focused on cancer-related signalling, the Atlas of Cancer Signalling Networks. We briefly discuss current approaches for data integration, visualisation and analysis, using biological networks, such as pathway scoring, guilt-by-association and network propagation. Finally, we illustrate with several examples the added value of data interpretation in the context of biological networks and demonstrate that it may help in analysis of high-throughput data like mutation, gene expression or small interfering RNA screening and can guide in patients stratification. Finally, we discuss perspectives for improving precision medicine using biological network resources and tools. Taking into account the information about biological signalling machinery in cells may help to better interpret molecular patterns of tumours and enable to put precision oncology into general clinical practice. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. A network-based approach to disturbance transmission through microbial interactions

    PubMed Central

    Hunt, Dana E.; Ward, Christopher S.

    2015-01-01

    Microbes numerically dominate aquatic ecosystems and play key roles in the biogeochemistry and the health of these environments. Due to their short generations times and high diversity, microbial communities are among the first responders to environmental changes, including natural and anthropogenic disturbances such as storms, pollutant releases, and upwelling. These disturbances affect members of the microbial communities both directly and indirectly through interactions with impacted community members. Thus, interactions can influence disturbance propagation through the microbial community by either expanding the range of organisms affected or buffering the influence of disturbance. For example, interactions may expand the number of disturbance-affected taxa by favoring a competitor or buffer the impacts of disturbance when a potentially disturbance-responsive clade’s growth is limited by an essential microbial partner. Here, we discuss the potential to use inferred ecological association networks to examine how disturbances propagate through microbial communities focusing on a case study of a coastal community’s response to a storm. This approach will offer greater insight into how disturbances can produce community-wide impacts on aquatic environments following transient changes in environmental parameters. PMID:26579091

  1. Followers are not enough: a multifaceted approach to community detection in online social networks.

    PubMed

    Darmon, David; Omodei, Elisa; Garland, Joshua

    2015-01-01

    In online social media networks, individuals often have hundreds or even thousands of connections, which link these users not only to friends, associates, and colleagues, but also to news outlets, celebrities, and organizations. In these complex social networks, a 'community' as studied in the social network literature, can have very different meaning depending on the property of the network under study. Taking into account the multifaceted nature of these networks, we claim that community detection in online social networks should also be multifaceted in order to capture all of the different and valuable viewpoints of 'community.' In this paper we focus on three types of communities beyond follower-based structural communities: activity-based, topic-based, and interaction-based. We analyze a Twitter dataset using three different weightings of the structural network meant to highlight these three community types, and then infer the communities associated with these weightings. We show that interesting insights can be obtained about the complex community structure present in social networks by studying when and how these four community types give rise to similar as well as completely distinct community structure.

  2. Representing perturbed dynamics in biological network models

    NASA Astrophysics Data System (ADS)

    Stoll, Gautier; Rougemont, Jacques; Naef, Felix

    2007-07-01

    We study the dynamics of gene activities in relatively small size biological networks (up to a few tens of nodes), e.g., the activities of cell-cycle proteins during the mitotic cell-cycle progression. Using the framework of deterministic discrete dynamical models, we characterize the dynamical modifications in response to structural perturbations in the network connectivities. In particular, we focus on how perturbations affect the set of fixed points and sizes of the basins of attraction. Our approach uses two analytical measures: the basin entropy H and the perturbation size Δ , a quantity that reflects the distance between the set of fixed points of the perturbed network and that of the unperturbed network. Applying our approach to the yeast-cell-cycle network introduced by Li [Proc. Natl. Acad. Sci. U.S.A. 101, 4781 (2004)] provides a low-dimensional and informative fingerprint of network behavior under large classes of perturbations. We identify interactions that are crucial for proper network function, and also pinpoint functionally redundant network connections. Selected perturbations exemplify the breadth of dynamical responses in this cell-cycle model.

  3. Plant pollinator networks along a gradient of urbanisation.

    PubMed

    Geslin, Benoît; Gauzens, Benoit; Thébault, Elisa; Dajoz, Isabelle

    2013-01-01

    Habitat loss is one of the principal causes of the current pollinator decline. With agricultural intensification, increasing urbanisation is among the main drivers of habitat loss. Consequently studies focusing on pollinator community structure along urbanisation gradients have increased in recent years. However, few studies have investigated how urbanisation affects plant-pollinator interaction networks. Here we assessed modifications of plant-pollinator interactions along an urbanisation gradient based on the study of their morphological relationships. Along an urbanisation gradient comprising four types of landscape contexts (semi-natural, agricultural, suburban, urban), we set up experimental plant communities containing two plant functional groups differing in their morphological traits ("open flowers" and "tubular flowers"). Insect visitations on these communities were recorded to build plant-pollinator networks. A total of 17 857 interactions were recorded between experimental plant communities and flower-visitors. The number of interactions performed by flower-visitors was significantly lower in urban landscape context than in semi-natural and agricultural ones. In particular, insects such as Syrphidae and solitary bees that mostly visited the open flower functional group were significantly impacted by urbanisation, which was not the case for bumblebees. Urbanisation also impacted the generalism of flower-visitors and we detected higher interaction evenness in urban landscape context than in agricultural and suburban ones. Finally, in urban context, these modifications lowered the potential reproductive success of the open flowers functional group. Our findings show that open flower plant species and their specific flower-visitors are especially sensitive to increasing urbanisation. These results provide new clues to improve conservation measures within urbanised areas in favour of specialist flower-visitors. To complete this functional approach, studies using networks resolved to the species level along urbanised gradients would be required.

  4. Plant Pollinator Networks along a Gradient of Urbanisation

    PubMed Central

    Geslin, Benoît; Gauzens, Benoit; Thébault, Elisa; Dajoz, Isabelle

    2013-01-01

    Background Habitat loss is one of the principal causes of the current pollinator decline. With agricultural intensification, increasing urbanisation is among the main drivers of habitat loss. Consequently studies focusing on pollinator community structure along urbanisation gradients have increased in recent years. However, few studies have investigated how urbanisation affects plant-pollinator interaction networks. Here we assessed modifications of plant-pollinator interactions along an urbanisation gradient based on the study of their morphological relationships. Methodology/Principal Findings Along an urbanisation gradient comprising four types of landscape contexts (semi-natural, agricultural, suburban, urban), we set up experimental plant communities containing two plant functional groups differing in their morphological traits (“open flowers” and “tubular flowers”). Insect visitations on these communities were recorded to build plant-pollinator networks. A total of 17 857 interactions were recorded between experimental plant communities and flower-visitors. The number of interactions performed by flower-visitors was significantly lower in urban landscape context than in semi-natural and agricultural ones. In particular, insects such as Syrphidae and solitary bees that mostly visited the open flower functional group were significantly impacted by urbanisation, which was not the case for bumblebees. Urbanisation also impacted the generalism of flower-visitors and we detected higher interaction evenness in urban landscape context than in agricultural and suburban ones. Finally, in urban context, these modifications lowered the potential reproductive success of the open flowers functional group. Conclusions/Significance Our findings show that open flower plant species and their specific flower-visitors are especially sensitive to increasing urbanisation. These results provide new clues to improve conservation measures within urbanised areas in favour of specialist flower-visitors. To complete this functional approach, studies using networks resolved to the species level along urbanised gradients would be required. PMID:23717421

  5. Brain Activity and Network Interactions in the Impact of Internal Emotional Distraction.

    PubMed

    Iordan, A D; Dolcos, S; Dolcos, F

    2018-06-14

    Emotional distraction may come from the external world and from our mind, as internal distraction. Although external emotional distraction has been extensively investigated, less is known about the mechanisms associated with the impact of internal emotional distraction on cognitive performance, and those involved in coping with such distraction. These issues were investigated using a working memory task with emotional distraction, where recollected unpleasant autobiographical memories served as internal emotional distraction. Emotion regulation was manipulated by instructing participants to focus their attention either on or away from the emotional aspects of their memories. Behaviorally, focusing away from emotion was associated with better working memory performance than focusing on the recollected emotions. Functional MRI data showed reduced response in brain regions associated with the salience network, coupled with greater recruitment of executive prefrontal and memory-related temporoparietal regions, and with increased frontoparietal connectivity, when subjects focused on nonemotional contextual details of their memories. Finally, temporal dissociations were also identified between regions involved in self-referential (showing faster responses) versus context-related processing (showing delayed responses). These findings demonstrate that focused attention is an effective regulation strategy in coping with internal distraction, and are relevant for understanding clinical conditions where coping with distressing memories is dysfunctional.

  6. NATO Human View Architecture and Human Networks

    NASA Technical Reports Server (NTRS)

    Handley, Holly A. H.; Houston, Nancy P.

    2010-01-01

    The NATO Human View is a system architectural viewpoint that focuses on the human as part of a system. Its purpose is to capture the human requirements and to inform on how the human impacts the system design. The viewpoint contains seven static models that include different aspects of the human element, such as roles, tasks, constraints, training and metrics. It also includes a Human Dynamics component to perform simulations of the human system under design. One of the static models, termed Human Networks, focuses on the human-to-human communication patterns that occur as a result of ad hoc or deliberate team formation, especially teams distributed across space and time. Parameters of human teams that effect system performance can be captured in this model. Human centered aspects of networks, such as differences in operational tempo (sense of urgency), priorities (common goal), and team history (knowledge of the other team members), can be incorporated. The information captured in the Human Network static model can then be included in the Human Dynamics component so that the impact of distributed teams is represented in the simulation. As the NATO militaries transform to a more networked force, the Human View architecture is an important tool that can be used to make recommendations on the proper mix of technological innovations and human interactions.

  7. The interplay of covalency, hydrogen bonding, and dispersion leads to a long range chiral network: The example of 2-butanol

    NASA Astrophysics Data System (ADS)

    Liriano, Melissa L.; Carrasco, Javier; Lewis, Emily A.; Murphy, Colin J.; Lawton, Timothy J.; Marcinkowski, Matthew D.; Therrien, Andrew J.; Michaelides, Angelos; Sykes, E. Charles H.

    2016-03-01

    The assembly of complex structures in nature is driven by an interplay between several intermolecular interactions, from strong covalent bonds to weaker dispersion forces. Understanding and ultimately controlling the self-assembly of materials requires extensive study of how these forces drive local nanoscale interactions and how larger structures evolve. Surface-based self-assembly is particularly amenable to modeling and measuring these interactions in well-defined systems. This study focuses on 2-butanol, the simplest aliphatic chiral alcohol. 2-butanol has recently been shown to have interesting properties as a chiral modifier of surface chemistry; however, its mode of action is not fully understood and a microscopic understanding of the role non-covalent interactions play in its adsorption and assembly on surfaces is lacking. In order to probe its surface properties, we employed high-resolution scanning tunneling microscopy and density functional theory (DFT) simulations. We found a surprisingly rich degree of enantiospecific adsorption, association, chiral cluster growth and ultimately long range, highly ordered chiral templating. Firstly, the chiral molecules acquire a second chiral center when adsorbed to the surface via dative bonding of one of the oxygen atom lone pairs. This interaction is controlled via the molecule's intrinsic chiral center leading to monomers of like chirality, at both chiral centers, adsorbed on the surface. The monomers then associate into tetramers via a cyclical network of hydrogen bonds with an opposite chirality at the oxygen atom. The evolution of these square units is surprising given that the underlying surface has a hexagonal symmetry. Our DFT calculations, however, reveal that the tetramers are stable entities that are able to associate with each other by weaker van der Waals interactions and tessellate in an extended square network. This network of homochiral square pores grows to cover the whole Au(111) surface. Our data reveal that the chirality of a simple alcohol can be transferred to its surface binding geometry, drive the directionality of hydrogen-bonded networks and ultimately extended structure. Furthermore, this study provides the first microscopic insight into the surface properties of this important chiral modifier and provides a well-defined system for studying the network's enantioselective interaction with other molecules.

  8. The role of the interaction network in the emergence of diversity of behavior

    PubMed Central

    Tabacof, Pedro; Von Zuben, Fernando J.

    2017-01-01

    How can systems in which individuals’ inner workings are very similar to each other, as neural networks or ant colonies, produce so many qualitatively different behaviors, giving rise to roles and specialization? In this work, we bring new perspectives to this question by focusing on the underlying network that defines how individuals in these systems interact. We applied a genetic algorithm to optimize rules and connections of cellular automata in order to solve the density classification task, a classical problem used to study emergent behaviors in decentralized computational systems. The networks used were all generated by the introduction of shortcuts in an originally regular topology, following the small-world model. Even though all cells follow the exact same rules, we observed the existence of different classes of cells’ behaviors in the best cellular automata found—most cells were responsible for memory and others for integration of information. Through the analysis of structural measures and patterns of connections (motifs) in successful cellular automata, we observed that the distribution of shortcuts between distant regions and the speed in which a cell can gather information from different parts of the system seem to be the main factors for the specialization we observed, demonstrating how heterogeneity in a network can create heterogeneity of behavior. PMID:28234962

  9. ChinaSpec: a network of SIF observations to bridge flux measurements and remote sensing data

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Wang, S.; Liu, L.; Ju, W.; Zhu, X.

    2017-12-01

    Accurately quantifying atmosphere-biosphere interactions across multiple scale still remains a challenge. Remote sensing, especially satellite data, has been widely used as a solution to resolve the broad scale estimation of carbon flux by upscaling the point measurements of eddy covariance (EC) technique. However, critical gaps remain between the EC observations and coarse satellite data due to the scale mismatch. In this regard, it is necessary to build a network of in situ optical observations to bridge the scale-mismatch between EC measurements and satellite remote sensing data. Internationally, a few networks have already been established (e.g., SpecNet and EuroSpec), but still at its early stage. ChinaSpec is a network of linking in situ spectral measurements, especially sun-induce chlorophyll fluorescence (SIF), with point EC observations for better understanding the interactions of atmosphere-biosphere. One main focus of ChinsSpec is to conduct continuous field SIF measurements at multiple EC sites across the mainland of China. This will help us better understand the mechanics of SIF and photosynthesis, and resolve the missing gaps between recent SIF retrievals from coarse satellite data and EC observations. In this presentation, we introduce the background, current stage, and the development of ChinaSpec network.

  10. The feasibility of equilibria in large ecosystems: A primary but neglected concept in the complexity-stability debate

    PubMed Central

    Dougoud, Michaël; Rohr, Rudolf P.

    2018-01-01

    The consensus that complexity begets stability in ecosystems was challenged in the seventies, a result recently extended to ecologically-inspired networks. The approaches assume the existence of a feasible equilibrium, i.e. with positive abundances. However, this key assumption has not been tested. We provide analytical results complemented by simulations which show that equilibrium feasibility vanishes in species rich systems. This result leaves us in the uncomfortable situation in which the existence of a feasible equilibrium assumed in local stability criteria is far from granted. We extend our analyses by changing interaction structure and intensity, and find that feasibility and stability is warranted irrespective of species richness with weak interactions. Interestingly, we find that the dynamical behaviour of ecologically inspired architectures is very different and richer than that of unstructured systems. Our results suggest that a general understanding of ecosystem dynamics requires focusing on the interplay between interaction strength and network architecture. PMID:29420532

  11. Mouse Social Network Dynamics and Community Structure are Associated with Plasticity-Related Brain Gene Expression

    PubMed Central

    Williamson, Cait M.; Franks, Becca; Curley, James P.

    2016-01-01

    Laboratory studies of social behavior have typically focused on dyadic interactions occurring within a limited spatiotemporal context. However, this strategy prevents analyses of the dynamics of group social behavior and constrains identification of the biological pathways mediating individual differences in behavior. In the current study, we aimed to identify the spatiotemporal dynamics and hierarchical organization of a large social network of male mice. We also sought to determine if standard assays of social and exploratory behavior are predictive of social behavior in this social network and whether individual network position was associated with the mRNA expression of two plasticity-related genes, DNA methyltransferase 1 and 3a. Mice were observed to form a hierarchically organized social network and self-organized into two separate social network communities. Members of both communities exhibited distinct patterns of socio-spatial organization within the vivaria that was not limited to only agonistic interactions. We further established that exploratory and social behaviors in standard behavioral assays conducted prior to placing the mice into the large group was predictive of initial network position and behavior but were not associated with final social network position. Finally, we determined that social network position is associated with variation in mRNA levels of two neural plasticity genes, DNMT1 and DNMT3a, in the hippocampus but not the mPOA. This work demonstrates the importance of understanding the role of social context and complex social dynamics in determining the relationship between individual differences in social behavior and brain gene expression. PMID:27540359

  12. A soft porous drop in linear flows

    NASA Astrophysics Data System (ADS)

    Young, Yuan-Nan; Miksis, Michael; Mori, Yoichiro; Shelley, Michael

    2017-11-01

    The cellular cytoplasm consists a viscous fluid filled with fibrous networks that also have their own dynamics. Such fluid-structure interactions have been modeled as a soft porous material immersed in a viscous fluid. In this talk we focus on the hydrodynamics of a viscous drop filled with soft porous material inside. Suspended in a Stokes flow, such a porous viscous drop is allowed to deform, both the drop interface and the porous structures inside. Special focus is on the deformation dynamics of both the porosity and the shape of the drop under simple flows such as a uniform streaming flow and linear flows. We examine the effects of flow boundary conditions at interface between the porous drop and the surrounding viscous fluid. We also examine the dynamics of a porous drop with active stress from the porous network.

  13. APINetworks: A general API for the treatment of complex networks in arbitrary computational environments

    NASA Astrophysics Data System (ADS)

    Niño, Alfonso; Muñoz-Caro, Camelia; Reyes, Sebastián

    2015-11-01

    The last decade witnessed a great development of the structural and dynamic study of complex systems described as a network of elements. Therefore, systems can be described as a set of, possibly, heterogeneous entities or agents (the network nodes) interacting in, possibly, different ways (defining the network edges). In this context, it is of practical interest to model and handle not only static and homogeneous networks but also dynamic, heterogeneous ones. Depending on the size and type of the problem, these networks may require different computational approaches involving sequential, parallel or distributed systems with or without the use of disk-based data structures. In this work, we develop an Application Programming Interface (APINetworks) for the modeling and treatment of general networks in arbitrary computational environments. To minimize dependency between components, we decouple the network structure from its function using different packages for grouping sets of related tasks. The structural package, the one in charge of building and handling the network structure, is the core element of the system. In this work, we focus in this API structural component. We apply an object-oriented approach that makes use of inheritance and polymorphism. In this way, we can model static and dynamic networks with heterogeneous elements in the nodes and heterogeneous interactions in the edges. In addition, this approach permits a unified treatment of different computational environments. Tests performed on a C++11 version of the structural package show that, on current standard computers, the system can handle, in main memory, directed and undirected linear networks formed by tens of millions of nodes and edges. Our results compare favorably to those of existing tools.

  14. Differentially Coexpressed Disease Gene Identification Based on Gene Coexpression Network.

    PubMed

    Jiang, Xue; Zhang, Han; Quan, Xiongwen

    2016-01-01

    Screening disease-related genes by analyzing gene expression data has become a popular theme. Traditional disease-related gene selection methods always focus on identifying differentially expressed gene between case samples and a control group. These traditional methods may not fully consider the changes of interactions between genes at different cell states and the dynamic processes of gene expression levels during the disease progression. However, in order to understand the mechanism of disease, it is important to explore the dynamic changes of interactions between genes in biological networks at different cell states. In this study, we designed a novel framework to identify disease-related genes and developed a differentially coexpressed disease-related gene identification method based on gene coexpression network (DCGN) to screen differentially coexpressed genes. We firstly constructed phase-specific gene coexpression network using time-series gene expression data and defined the conception of differential coexpression of genes in coexpression network. Then, we designed two metrics to measure the value of gene differential coexpression according to the change of local topological structures between different phase-specific networks. Finally, we conducted meta-analysis of gene differential coexpression based on the rank-product method. Experimental results demonstrated the feasibility and effectiveness of DCGN and the superior performance of DCGN over other popular disease-related gene selection methods through real-world gene expression data sets.

  15. Large Scale Proteomic Data and Network-Based Systems Biology Approaches to Explore the Plant World.

    PubMed

    Di Silvestre, Dario; Bergamaschi, Andrea; Bellini, Edoardo; Mauri, PierLuigi

    2018-06-03

    The investigation of plant organisms by means of data-derived systems biology approaches based on network modeling is mainly characterized by genomic data, while the potential of proteomics is largely unexplored. This delay is mainly caused by the paucity of plant genomic/proteomic sequences and annotations which are fundamental to perform mass-spectrometry (MS) data interpretation. However, Next Generation Sequencing (NGS) techniques are contributing to filling this gap and an increasing number of studies are focusing on plant proteome profiling and protein-protein interactions (PPIs) identification. Interesting results were obtained by evaluating the topology of PPI networks in the context of organ-associated biological processes as well as plant-pathogen relationships. These examples foreshadow well the benefits that these approaches may provide to plant research. Thus, in addition to providing an overview of the main-omic technologies recently used on plant organisms, we will focus on studies that rely on concepts of module, hub and shortest path, and how they can contribute to the plant discovery processes. In this scenario, we will also consider gene co-expression networks, and some examples of integration with metabolomic data and genome-wide association studies (GWAS) to select candidate genes will be mentioned.

  16. Visualizing protein partnerships in living cells and organisms.

    PubMed

    Lowder, Melissa A; Appelbaum, Jacob S; Hobert, Elissa M; Schepartz, Alanna

    2011-12-01

    In recent years, scientists have expanded their focus from cataloging genes to characterizing the multiple states of their translated products. One anticipated result is a dynamic map of the protein association networks and activities that occur within the cellular environment. While in vitro-derived network maps can illustrate which of a multitude of possible protein-protein associations could exist, they supply a falsely static picture lacking the subtleties of subcellular location (where) or cellular state (when). Generating protein association network maps that are informed by both subcellular location and cell state requires novel approaches that accurately characterize the state of protein associations in living cells and provide precise spatiotemporal resolution. In this review, we highlight recent advances in visualizing protein associations and networks under increasingly native conditions. These advances include second generation protein complementation assays (PCAs), chemical and photo-crosslinking techniques, and proximity-induced ligation approaches. The advances described focus on background reduction, signal optimization, rapid and reversible reporter assembly, decreased cytotoxicity, and minimal functional perturbation. Key breakthroughs have addressed many challenges and should expand the repertoire of tools useful for generating maps of protein interactions resolved in both time and space. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Social traits, social networks and evolutionary biology.

    PubMed

    Fisher, D N; McAdam, A G

    2017-12-01

    The social environment is both an important agent of selection for most organisms, and an emergent property of their interactions. As an aggregation of interactions among members of a population, the social environment is a product of many sets of relationships and so can be represented as a network or matrix. Social network analysis in animals has focused on why these networks possess the structure they do, and whether individuals' network traits, representing some aspect of their social phenotype, relate to their fitness. Meanwhile, quantitative geneticists have demonstrated that traits expressed in a social context can depend on the phenotypes and genotypes of interacting partners, leading to influences of the social environment on the traits and fitness of individuals and the evolutionary trajectories of populations. Therefore, both fields are investigating similar topics, yet have arrived at these points relatively independently. We review how these approaches are diverged, and yet how they retain clear parallelism and so strong potential for complementarity. This demonstrates that, despite separate bodies of theory, advances in one might inform the other. Techniques in network analysis for quantifying social phenotypes, and for identifying community structure, should be useful for those studying the relationship between individual behaviour and group-level phenotypes. Entering social association matrices into quantitative genetic models may also reduce bias in heritability estimates, and allow the estimation of the influence of social connectedness on trait expression. Current methods for measuring natural selection in a social context explicitly account for the fact that a trait is not necessarily the property of a single individual, something the network approaches have not yet considered when relating network metrics to individual fitness. Harnessing evolutionary models that consider traits affected by genes in other individuals (i.e. indirect genetic effects) provides the potential to understand how entire networks of social interactions in populations influence phenotypes and predict how these traits may evolve. By theoretical integration of social network analysis and quantitative genetics, we hope to identify areas of compatibility and incompatibility and to direct research efforts towards the most promising areas. Continuing this synthesis could provide important insights into the evolution of traits expressed in a social context and the evolutionary consequences of complex and nuanced social phenotypes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  18. Ethnic diversity and value sharing: A longitudinal social network perspective on interactive group processes.

    PubMed

    Meeussen, Loes; Agneessens, Filip; Delvaux, Ellen; Phalet, Karen

    2018-04-01

    People often collaborate in groups that are increasingly diverse. As research predominantly investigated effects of diversity, the processes behind these effects remain understudied. We follow recent research that shows creating shared values is important for group functioning but seems hindered in high diversity groups - and use longitudinal social network analyses to study two interpersonal processes behind value sharing: creating relations between members or 'social bonding' (network tie formation and homophily) and sharing values - potentially through these relationships - or 'social norming' (network convergence and influence). We investigate these processes in small interactive groups with low and high ethnic diversity as they collaborate over time. In both low and high diversity groups, members showed social bonding and this creation of relations between members was not organized along ethnic lines. Low diversity groups also showed social norming: Members adjusted their relational values to others they liked and achievement values converged regardless of liking. In high diversity groups, however, there was no evidence for social norming. Thus, ethnic diversity seems to especially affect processes of social norming in groups, suggesting that targeted interventions should focus on facilitating social norming to stimulate value sharing in high diversity groups. © 2018 The British Psychological Society.

  19. Modelling protein functional domains in signal transduction using Maude

    NASA Technical Reports Server (NTRS)

    Sriram, M. G.

    2003-01-01

    Modelling of protein-protein interactions in signal transduction is receiving increased attention in computational biology. This paper describes recent research in the application of Maude, a symbolic language founded on rewriting logic, to the modelling of functional domains within signalling proteins. Protein functional domains (PFDs) are a critical focus of modern signal transduction research. In general, Maude models can simulate biological signalling networks and produce specific testable hypotheses at various levels of abstraction. Developing symbolic models of signalling proteins containing functional domains is important because of the potential to generate analyses of complex signalling networks based on structure-function relationships.

  20. Qualitative validation of the reduction from two reciprocally coupled neurons to one self-coupled neuron in a respiratory network model.

    PubMed

    Dunmyre, Justin R

    2011-06-01

    The pre-Bötzinger complex of the mammalian brainstem is a heterogeneous neuronal network, and individual neurons within the network have varying strengths of the persistent sodium and calcium-activated nonspecific cationic currents. Individually, these currents have been the focus of modeling efforts. Previously, Dunmyre et al. (J Comput Neurosci 1-24, 2011) proposed a model and studied the interactions of these currents within one self-coupled neuron. In this work, I consider two identical, reciprocally coupled model neurons and validate the reduction to the self-coupled case. I find that all of the dynamics of the two model neuron network and the regions of parameter space where these distinct dynamics are found are qualitatively preserved in the reduction to the self-coupled case.

  1. From brain topography to brain topology: relevance of graph theory to functional neuroscience.

    PubMed

    Minati, Ludovico; Varotto, Giulia; D'Incerti, Ludovico; Panzica, Ferruccio; Chan, Dennis

    2013-07-10

    Although several brain regions show significant specialization, higher functions such as cross-modal information integration, abstract reasoning and conscious awareness are viewed as emerging from interactions across distributed functional networks. Analytical approaches capable of capturing the properties of such networks can therefore enhance our ability to make inferences from functional MRI, electroencephalography and magnetoencephalography data. Graph theory is a branch of mathematics that focuses on the formal modelling of networks and offers a wide range of theoretical tools to quantify specific features of network architecture (topology) that can provide information complementing the anatomical localization of areas responding to given stimuli or tasks (topography). Explicit modelling of the architecture of axonal connections and interactions among areas can furthermore reveal peculiar topological properties that are conserved across diverse biological networks, and highly sensitive to disease states. The field is evolving rapidly, partly fuelled by computational developments that enable the study of connectivity at fine anatomical detail and the simultaneous interactions among multiple regions. Recent publications in this area have shown that graph-based modelling can enhance our ability to draw causal inferences from functional MRI experiments, and support the early detection of disconnection and the modelling of pathology spread in neurodegenerative disease, particularly Alzheimer's disease. Furthermore, neurophysiological studies have shown that network topology has a profound link to epileptogenesis and that connectivity indices derived from graph models aid in modelling the onset and spread of seizures. Graph-based analyses may therefore significantly help understand the bases of a range of neurological conditions. This review is designed to provide an overview of graph-based analyses of brain connectivity and their relevance to disease aimed principally at general neuroscientists and clinicians.

  2. Process Network Approach to Understanding How Forest Ecosystems Adapt to Changes

    NASA Astrophysics Data System (ADS)

    Kim, J.; Yun, J.; Hong, J.; Kwon, H.; Chun, J.

    2011-12-01

    Sustainability challenges are transforming science and its role in society. Complex systems science has emerged as an inevitable field of education and research, which transcends disciplinary boundaries and focuses on understanding of the dynamics of complex social-ecological systems (SES). SES is a combined system of social and ecological components and drivers that interact and give rise to results, which could not be understood on the basis of sociological or ecological considerations alone. However, both systems may be viewed as a network of processes, and such a network hierarchy may serve as a hinge to bridge social and ecological systems. As a first step toward such effort, we attempted to delineate and interpret such process networks in forest ecosystems, which play a critical role in the cycles of carbon and water from local to global scales. These cycles and their variability, in turn, play an important role in the emergent and self-organizing interactions between forest ecosystems and their environment. Ruddell and Kumar (2009) define a process network as a network of feedback loops and the related time scales, which describe the magnitude and direction of the flow of energy, matter, and information between the different variables in a complex system. Observational evidence, based on micrometeorological eddy covariance measurements, suggests that heterogeneity and disturbances in forest ecosystems in monsoon East Asia may facilitate to build resilience for adaptation to change. Yet, the principles that characterize the role of variability in these interactions remain elusive. In this presentation, we report results from the analysis of multivariate ecohydrologic and biogeochemical time series data obtained from temperate forest ecosystems in East Asia based on information flow statistics.

  3. Quasispecies dynamics on a network of interacting genotypes and idiotypes: formulation of the model

    NASA Astrophysics Data System (ADS)

    Barbosa, Valmir C.; Donangelo, Raul; Souza, Sergio R.

    2015-01-01

    A quasispecies is the stationary state of a set of interrelated genotypes that evolve according to the usual principles of selection and mutation. Quasispecies studies have for the most part concentrated on the possibility of errors during genotype replication and their role in promoting either the survival or the demise of the quasispecies. In a previous work, we introduced a network model of quasispecies dynamics, based on a single probability parameter (p) and capable of addressing several plausibility issues of previous models. Here we extend that model by pairing its network with another one aimed at modeling the dynamics of the immune system when confronted with the quasispecies. The new network is based on the idiotypic-network model of immunity and, together with the previous one, constitutes a network model of interacting genotypes and idiotypes. The resulting model requires further parameters and as a consequence leads to a vast phase space. We have focused on a particular niche in which it is possible to observe the trade-offs involved in the quasispecies' survival or destruction. Within this niche, we give simulation results that highlight some key preconditions for quasispecies survival. These include a minimum initial abundance of genotypes relative to that of the idiotypes and a minimum value of p. The latter, in particular, is to be contrasted with the stand-alone quasispecies network of our previous work, in which arbitrarily low values of p constitute a guarantee of quasispecies survival.

  4. Video-based convolutional neural networks for activity recognition from robot-centric videos

    NASA Astrophysics Data System (ADS)

    Ryoo, M. S.; Matthies, Larry

    2016-05-01

    In this evaluation paper, we discuss convolutional neural network (CNN)-based approaches for human activity recognition. In particular, we investigate CNN architectures designed to capture temporal information in videos and their applications to the human activity recognition problem. There have been multiple previous works to use CNN-features for videos. These include CNNs using 3-D XYT convolutional filters, CNNs using pooling operations on top of per-frame image-based CNN descriptors, and recurrent neural networks to learn temporal changes in per-frame CNN descriptors. We experimentally compare some of these different representatives CNNs while using first-person human activity videos. We especially focus on videos from a robots viewpoint, captured during its operations and human-robot interactions.

  5. Chimera states: Effects of different coupling topologies

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Majhi, Soumen; Ghosh, Dibakar; Perc, Matjaž

    2017-04-01

    Collective behavior among coupled dynamical units can emerge in various forms as a result of different coupling topologies as well as different types of coupling functions. Chimera states have recently received ample attention as a fascinating manifestation of collective behavior, in particular describing a symmetry breaking spatiotemporal pattern where synchronized and desynchronized states coexist in a network of coupled oscillators. In this perspective, we review the emergence of different chimera states, focusing on the effects of different coupling topologies that describe the interaction network connecting the oscillators. We cover chimera states that emerge in local, nonlocal and global coupling topologies, as well as in modular, temporal and multilayer networks. We also provide an outline of challenges and directions for future research.

  6. Cooperation in scale-free networks with limited associative capacities

    NASA Astrophysics Data System (ADS)

    Poncela, Julia; Gómez-Gardeñes, Jesús; Moreno, Yamir

    2011-05-01

    In this work we study the effect of limiting the number of interactions (the associative capacity) that a node can establish per round of a prisoner’s dilemma game. We focus on the way this limitation influences the level of cooperation sustained by scale-free networks. We show that when the game includes cooperation costs, limiting the associative capacity of nodes to a fixed quantity renders in some cases larger values of cooperation than in the unrestricted scenario. This allows one to define an optimum capacity for which cooperation is maximally enhanced. Finally, for the case without cooperation costs, we find that even a tight limitation of the associative capacity of nodes yields the same levels of cooperation as in the original network.

  7. Dynamic motifs in socio-economic networks

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Shao, Shuai; Stanley, H. Eugene; Havlin, Shlomo

    2014-12-01

    Socio-economic networks are of central importance in economic life. We develop a method of identifying and studying motifs in socio-economic networks by focusing on “dynamic motifs,” i.e., evolutionary connection patterns that, because of “node acquaintances” in the network, occur much more frequently than random patterns. We examine two evolving bi-partite networks: i) the world-wide commercial ship chartering market and ii) the ship build-to-order market. We find similar dynamic motifs in both bipartite networks, even though they describe different economic activities. We also find that “influence” and “persistence” are strong factors in the interaction behavior of organizations. When two companies are doing business with the same customer, it is highly probable that another customer who currently only has business relationship with one of these two companies, will become customer of the second in the future. This is the effect of influence. Persistence means that companies with close business ties to customers tend to maintain their relationships over a long period of time.

  8. Extraordinary variability and sharp transitions in a maximally frustrated dynamic network

    NASA Astrophysics Data System (ADS)

    Liu, Wenjia; Schmittmann, Beate; Zia, R. K. P.

    2013-03-01

    Most previous studies of complex networks have focused on single, static networks. However, in the real world, networks are dynamic and interconnected. Inspired by the presence of extroverts and introverts in the general population, we investigate a highly simplified model of a social network, involving two types of nodes: one preferring the highest degree possible, and one preferring no connections whatsoever. There are only two control parameters in the model: the number of ``introvert'' and ``extrovert'' nodes, NI and NE. Our key findings are as follows: As a function of NI and NE, the system exhibits a highly unusual transition, displaying extraordinary fluctuations (as in 2nd order transitions) and discontinuous jumps (characteristic of 1st order transitions). Most remarkably, the system can be described by an Ising-like Hamiltonian with long-range multi-spin interactions and some of its properties can be obtained analytically. This is in stark contrast with other dynamic network models which rely almost exclusively on simulations. NSF-DMR-1005417/1244666 and and ICTAS Virginia Tech

  9. Cascades on a stochastic pulse-coupled network

    NASA Astrophysics Data System (ADS)

    Wray, C. M.; Bishop, S. R.

    2014-09-01

    While much recent research has focused on understanding isolated cascades of networks, less attention has been given to dynamical processes on networks exhibiting repeated cascades of opposing influence. An example of this is the dynamic behaviour of financial markets where cascades of buying and selling can occur, even over short timescales. To model these phenomena, a stochastic pulse-coupled oscillator network with upper and lower thresholds is described and analysed. Numerical confirmation of asynchronous and synchronous regimes of the system is presented, along with analytical identification of the fixed point state vector of the asynchronous mean field system. A lower bound for the finite system mean field critical value of network coupling probability is found that separates the asynchronous and synchronous regimes. For the low-dimensional mean field system, a closed-form equation is found for cascade size, in terms of the network coupling probability. Finally, a description of how this model can be applied to interacting agents in a financial market is provided.

  10. Cascades on a stochastic pulse-coupled network

    PubMed Central

    Wray, C. M.; Bishop, S. R.

    2014-01-01

    While much recent research has focused on understanding isolated cascades of networks, less attention has been given to dynamical processes on networks exhibiting repeated cascades of opposing influence. An example of this is the dynamic behaviour of financial markets where cascades of buying and selling can occur, even over short timescales. To model these phenomena, a stochastic pulse-coupled oscillator network with upper and lower thresholds is described and analysed. Numerical confirmation of asynchronous and synchronous regimes of the system is presented, along with analytical identification of the fixed point state vector of the asynchronous mean field system. A lower bound for the finite system mean field critical value of network coupling probability is found that separates the asynchronous and synchronous regimes. For the low-dimensional mean field system, a closed-form equation is found for cascade size, in terms of the network coupling probability. Finally, a description of how this model can be applied to interacting agents in a financial market is provided. PMID:25213626

  11. Evolutionary games on multilayer networks: a colloquium

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Wang, Lin; Szolnoki, Attila; Perc, Matjaž

    2015-05-01

    Networks form the backbone of many complex systems, ranging from the Internet to human societies. Accordingly, not only is the range of our interactions limited and thus best described and modeled by networks, it is also a fact that the networks that are an integral part of such models are often interdependent or even interconnected. Networks of networks or multilayer networks are therefore a more apt description of social systems. This colloquium is devoted to evolutionary games on multilayer networks, and in particular to the evolution of cooperation as one of the main pillars of modern human societies. We first give an overview of the most significant conceptual differences between single-layer and multilayer networks, and we provide basic definitions and a classification of the most commonly used terms. Subsequently, we review fascinating and counterintuitive evolutionary outcomes that emerge due to different types of interdependencies between otherwise independent populations. The focus is on coupling through the utilities of players, through the flow of information, as well as through the popularity of different strategies on different network layers. The colloquium highlights the importance of pattern formation and collective behavior for the promotion of cooperation under adverse conditions, as well as the synergies between network science and evolutionary game theory.

  12. Differential network as an indicator of osteoporosis with network entropy.

    PubMed

    Ma, Lili; Du, Hongmei; Chen, Guangdong

    2018-07-01

    Osteoporosis is a common skeletal disorder characterized by a decrease in bone mass and density. The peak bone mass (PBM) is a significant determinant of osteoporosis. To gain insights into the indicating effect of PBM to osteoporosis, this study focused on characterizing the PBM networks and identifying key genes. One biological data set with 12 monocyte low PBM samples and 11 high PBM samples was derived to construct protein-protein interaction networks (PPINs). Based on clique-merging, module-identification algorithm was used to identify modules from PPINs. The systematic calculation and comparison were performed to test whether the network entropy can discriminate the low PBM network from high PBM network. We constructed 32 destination networks with 66 modules divided from monocyte low and high PBM networks. Among them, network 11 was the only significantly differential one (P<0.05) with 8 nodes and 28 edges. All genes belonged to precursors of osteoclasts, which were related to calcium transport as well as blood monocytes. In conclusion, based on the entropy in PBM PPINs, the differential network appears to be a novel therapeutic indicator for osteoporosis during the bone monocyte progression; these findings are helpful in disclosing the pathogenetic mechanisms of osteoporosis.

  13. Information spreading in complex networks with participation of independent spreaders

    NASA Astrophysics Data System (ADS)

    Ma, Kun; Li, Weihua; Guo, Quantong; Zheng, Xiaoqi; Zheng, Zhiming; Gao, Chao; Tang, Shaoting

    2018-02-01

    Information diffusion dynamics in complex networks is often modeled as a contagion process among neighbors which is analogous to epidemic diffusion. The attention of previous literature is mainly focused on epidemic diffusion within one network, which, however neglects the possible interactions between nodes beyond the underlying network. The disease can be transmitted to other nodes by other means without following the links in the focal network. Here we account for this phenomenon by introducing the independent spreaders in a susceptible-infectious-recovered contagion process. We derive the critical epidemic thresholds on Erdős-Rényi and scale-free networks as a function of infectious rate, recovery rate and the activeness of independent spreaders. We also present simulation results on ER and SF networks, as well as on a real-world email network. The result shows that the extent to which a disease can infect might be more far-reaching, than we can explain in terms of link contagion only. Besides, these results also help to explain how activeness of independent spreaders can affect the diffusion process, which can be used to explore many other dynamical processes.

  14. From sMOOC to tMOOC, Learning towards Professional Transference: ECO European Project

    ERIC Educational Resources Information Center

    Osuna-Acedo, Sara; Marta-Lazo, Carmen; Frau-Meigs, Divina

    2018-01-01

    The evolution of MOOCs in the last decade has been constant and dynamic. The first cMOOC and xMOOC models eventually evolved into different post-MOOC modalities, such as sMOOC, which conjugates interaction among students with a participation model based on social networks. This work is focused on carrying out a systematic review of the…

  15. Sociometric Indicators of Leadership: An Exploratory Analysis

    DTIC Science & Technology

    2018-01-01

    streamline existing observational protocols and assessment methods . This research provides an initial test of sociometric badges in the context of the U.S...understand, the requirements of the mission. Traditional research and assessment methods focusing on leader and follower interactions require direct...based methods of social network analysis. Novel Measures of Leadership Building on these findings and earlier research , it is apparent that

  16. Actor Diversity and Interactions in the Development of Banana Hybrid Varieties in Uganda: Implications for Technology Uptake

    ERIC Educational Resources Information Center

    Sanya, Losira Nasirumbi; Sseguya, Haroon; Kyazze, Florence Birungi; Baguma, Yona; Kibwika, Paul

    2018-01-01

    Purpose: We examine the nature of networks through which new hybrid banana varieties (HBVs) in Uganda are developed, and how different actors engage in the technology development process. Design/methodology/approach: We collected the data through 20 key informant interviews and 5 focus group discussions with actors involved in the process. We…

  17. Communities of Sound: Examining Meaningful Engagement with Generative Music Making and Virtual Ensembles

    ERIC Educational Resources Information Center

    Dillon, Steve; Adkins, Barbara; Brown, Andrew; Hirche, Kathy

    2009-01-01

    In this article, we examine the affordances of the concept of "network jamming" as a means of facilitating social and cultural interaction, that provides a basis for unified communities that use sound and visual media as their key expressive medium. This article focuses upon the development of a means of measuring social and musical benefit…

  18. Social Media and Health Education: What the Early Literature Says

    ERIC Educational Resources Information Center

    Gorham, Robyn; Carter, Lorraine; Nowrouzi, Behdin; McLean, Natalie; Guimond, Melissa

    2012-01-01

    Social media allows for a wealth of social interactions. More recently, there is a growing use of social media for the purposes of health education. Using an adaptation of the Networked student model by Drexler (2010) as a conceptual model, this article conducts a literature review focusing on the use of social media for health education purposes.…

  19. Community Tracking in a cMOOC and Nomadic Learner Behavior Identification on a Connectivist Rhizomatic Learning Network

    ERIC Educational Resources Information Center

    Bozkurt, Aras; Honeychurch, Sarah; Caines, Autumm; Bali, Maha; Koutropoulos, Apostolos; Cormier, Dave

    2016-01-01

    This article contributes to the literature on connectivism, connectivist MOOCs (cMOOCs) and rhizomatic learning by examining participant interactions, community formation and nomadic learner behavior in a particular cMOOC, #rhizo15, facilitated for 6 weeks by Dave Cormier. It further focuses on what we can learn by observing Twitter interactions…

  20. Technology Needs for Teachers Web Development and Curriculum Adaptations

    NASA Technical Reports Server (NTRS)

    Carroll, Christy J.

    1999-01-01

    Computer-based mathematics and science curricula focusing on NASA inventions and technologies will enhance current teacher knowledge and skills. Materials and interactive software developed by educators will allow students to integrate their various courses, to work cooperatively, and to collaborate with both NASA scientists and students at other locations by using computer networks, email and the World Wide Web.

  1. Seldon v.3.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Nina; Ko, Teresa; Shneider, Max

    Seldon is an agent-based social simulation framework that uniquely integrates concepts from a variety of different research areas including psychology, social science, and agent-based modeling. Development has been taking place for a number of years, previously focusing on gang and terrorist recruitment. The toolkit consists of simple agents (individuals) and abstract agents (groups of individuals representing social/institutional concepts) that interact according to exchangeable rule sets (i.e. linear attraction, linear reinforcement). Each agent has a set of customizable attributes that get modified during the interactions. Interactions create relationships between agents, and each agent has a maximum amount of relationship energy thatmore » it can expend. As relationships evolve, they form multiple levels of social networks (i.e. acquaintances, friends, cliques) that in turn drive future interactions. Agents can also interact randomly if they are not connected through a network, mimicking the chance interactions that real people have in everyday life. We are currently integrating Seldon with the cognitive framework (also developed at Sandia). Each individual agent has a lightweight cognitive model that is created automatically from textual sources. Cognitive information is exchanged during interactions, and can also be injected into a running simulation. The entire framework has been parallelized to allow for larger simulations in an HPC environment. We have also added more detail to the agents themselves (a"Big Five" personality model) and their interactions (an enhanced relationship model) for a more realistic representation.« less

  2. Growth of a Dendritic Channel Network (Invited)

    NASA Astrophysics Data System (ADS)

    Rothman, D.; Abrams, D. M.; Devauchelle, O.; Petroff, A. P.; Lobkovsky, A. E.; Straub, K. M.; McElroy, B.; Mohrig, D. C.; Kudrolli, A.

    2009-12-01

    Dendritic channel networks are a ubiquitous feature of Earth's topography. A half century of work has detailed their scale-invariant geometry. But relatively little is known about how such networks grow, especially in natural settings at geologic time scales. This talk addresses the growth of a particularly simple class of channel networks: those which drain groundwater. We focus on a pristine field site in the Florida Panhandle, in which channels extending for kilometers have been incised vertically through tens of meters of ancient beach sands. We first show how the flow of subsurface water interacts with the planform geometry of the network. Ground-penetrating radar images of the water table shape near a highly-ramified section of the network provide a qualitative view of groundwater focusing. Noting that the water table represents a balance between water input via rain and water flowing into the channel network, we solve for the steady state shape of the water table around the entire network and the associated water fluxes. Comparison of predicted and measured fluxes shows that the ramified structure of the Florida network is consistent with uniformly forced unstable growth through a homogeneous medium. In other words, the dendritic pattern results intrinsically from growth dynamics rather than geologic heterogeneity. We then use these observations to show that the growth of groundwater-driven networks can be described by two linear response laws. Remarkably, one of these growth laws is reversible, which allows us to reconstruct network history and estimate network age. A particularly striking feature of the Florida network is the existence of a characteristic length scale between channels. Our theory predicts how this length scale evolves, thereby linking network growth to geometric form. Reference: D. M. Abrams, A. E. Lobkovsky, A. P. Petroff, K. M. Straub, B. McElroy, D. C. Mohrig, A. Kudrolli, and D. H. Rothman,, Growth laws for channel networks incised by groundwater flow, Nature Geoscience, v. 2, 193-196, March 2009.

  3. Wildlife contact analysis: Emerging methods, questions, and challenges

    USGS Publications Warehouse

    Cross, Paul C.; Creech, Tyler G.; Ebinger, Michael R.; Heisey, Dennis M.; Irvine, Kathryn M.; Creel, Scott

    2012-01-01

    Recent technological advances, such as proximity loggers, allow researchers to collect complete interaction histories, day and night, among sampled individuals over several months to years. Social network analyses are an obvious approach to analyzing interaction data because of their flexibility for fitting many different social structures as well as the ability to assess both direct contacts and indirect associations via intermediaries. For many network properties, however, it is not clear whether estimates based upon a sample of the network are reflective of the entire network. In wildlife applications, networks may be poorly sampled and boundary effects will be common. We present an alternative approach that utilizes a hierarchical modeling framework to assess the individual, dyadic, and environmental factors contributing to variation in the interaction rates and allows us to estimate the underlying process variation in each. In a disease control context, this approach will allow managers to focus efforts on those types of individuals and environments that contribute the most toward super-spreading events. We account for the sampling distribution of proximity loggers and the non-independence of contacts among groups by only using contact data within a group during days when the group membership of proximity loggers was known. This allows us to separate the two mechanisms responsible for a pair not contacting one another: they were not in the same group or they were in the same group but did not come within the specified contact distance. We illustrate our approach with an example dataset of female elk from northwestern Wyoming and conclude with a number of important future research directions.

  4. Robustness of plant-insect herbivore interaction networks to climate change in a fragmented temperate forest landscape.

    PubMed

    Bähner, K W; Zweig, K A; Leal, I R; Wirth, R

    2017-10-01

    Forest fragmentation and climate change are among the most severe and pervasive forms of human impact. Yet, their combined effects on plant-insect herbivore interaction networks, essential components of forest ecosystems with respect to biodiversity and functioning, are still poorly investigated, particularly in temperate forests. We addressed this issue by analysing plant-insect herbivore networks (PIHNs) from understories of three managed beech forest habitats: small forest fragments (2.2-145 ha), forest edges and forest interior areas within three continuous control forests (1050-5600 ha) in an old hyper-fragmented forest landscape in SW Germany. We assessed the impact of forest fragmentation, particularly edge effects, on PIHNs and the resulting differences in robustness against climate change by habitat-wise comparison of network topology and biologically realistic extinction cascades of networks following scores of vulnerability to climate change for the food plant species involved. Both the topological network metrics (complexity, nestedness, trophic niche redundancy) and robustness to climate change strongly increased in forest edges and fragments as opposed to the managed forest interior. The nature of the changes indicates that human impacts modify network structure mainly via host plant availability to insect herbivores. Improved robustness of PIHNs in forest edges/small fragments to climate-driven extinction cascades was attributable to an overall higher thermotolerance across plant communities, along with positive effects of network structure. The impoverishment of PIHNs in managed forest interiors and the suggested loss of insect diversity from climate-induced co-extinction highlight the need for further research efforts focusing on adequate silvicultural and conservation approaches.

  5. Networks and the Epidemiology of Infectious Disease

    PubMed Central

    Danon, Leon; Ford, Ashley P.; House, Thomas; Jewell, Chris P.; Keeling, Matt J.; Roberts, Gareth O.; Ross, Joshua V.; Vernon, Matthew C.

    2011-01-01

    The science of networks has revolutionised research into the dynamics of interacting elements. It could be argued that epidemiology in particular has embraced the potential of network theory more than any other discipline. Here we review the growing body of research concerning the spread of infectious diseases on networks, focusing on the interplay between network theory and epidemiology. The review is split into four main sections, which examine: the types of network relevant to epidemiology; the multitude of ways these networks can be characterised; the statistical methods that can be applied to infer the epidemiological parameters on a realised network; and finally simulation and analytical methods to determine epidemic dynamics on a given network. Given the breadth of areas covered and the ever-expanding number of publications, a comprehensive review of all work is impossible. Instead, we provide a personalised overview into the areas of network epidemiology that have seen the greatest progress in recent years or have the greatest potential to provide novel insights. As such, considerable importance is placed on analytical approaches and statistical methods which are both rapidly expanding fields. Throughout this review we restrict our attention to epidemiological issues. PMID:21437001

  6. Evolution of the Max and Mlx networks in animals.

    PubMed

    McFerrin, Lisa G; Atchley, William R

    2011-01-01

    Transcription factors (TFs) are essential for the regulation of gene expression and often form emergent complexes to perform vital roles in cellular processes. In this paper, we focus on the parallel Max and Mlx networks of TFs because of their critical involvement in cell cycle regulation, proliferation, growth, metabolism, and apoptosis. A basic-helix-loop-helix-zipper (bHLHZ) domain mediates the competitive protein dimerization and DNA binding among Max and Mlx network members to form a complex system of cell regulation. To understand the importance of these network interactions, we identified the bHLHZ domain of Max and Mlx network proteins across the animal kingdom and carried out several multivariate statistical analyses. The presence and conservation of Max and Mlx network proteins in animal lineages stemming from the divergence of Metazoa indicate that these networks have ancient and essential functions. Phylogenetic analysis of the bHLHZ domain identified clear relationships among protein families with distinct points of radiation and divergence. Multivariate discriminant analysis further isolated specific amino acid changes within the bHLHZ domain that classify proteins, families, and network configurations. These analyses on Max and Mlx network members provide a model for characterizing the evolution of TFs involved in essential networks.

  7. NAP: The Network Analysis Profiler, a web tool for easier topological analysis and comparison of medium-scale biological networks.

    PubMed

    Theodosiou, Theodosios; Efstathiou, Georgios; Papanikolaou, Nikolas; Kyrpides, Nikos C; Bagos, Pantelis G; Iliopoulos, Ioannis; Pavlopoulos, Georgios A

    2017-07-14

    Nowadays, due to the technological advances of high-throughput techniques, Systems Biology has seen a tremendous growth of data generation. With network analysis, looking at biological systems at a higher level in order to better understand a system, its topology and the relationships between its components is of a great importance. Gene expression, signal transduction, protein/chemical interactions, biomedical literature co-occurrences, are few of the examples captured in biological network representations where nodes represent certain bioentities and edges represent the connections between them. Today, many tools for network visualization and analysis are available. Nevertheless, most of them are standalone applications that often (i) burden users with computing and calculation time depending on the network's size and (ii) focus on handling, editing and exploring a network interactively. While such functionality is of great importance, limited efforts have been made towards the comparison of the topological analysis of multiple networks. Network Analysis Provider (NAP) is a comprehensive web tool to automate network profiling and intra/inter-network topology comparison. It is designed to bridge the gap between network analysis, statistics, graph theory and partially visualization in a user-friendly way. It is freely available and aims to become a very appealing tool for the broader community. It hosts a great plethora of topological analysis methods such as node and edge rankings. Few of its powerful characteristics are: its ability to enable easy profile comparisons across multiple networks, find their intersection and provide users with simplified, high quality plots of any of the offered topological characteristics against any other within the same network. It is written in R and Shiny, it is based on the igraph library and it is able to handle medium-scale weighted/unweighted, directed/undirected and bipartite graphs. NAP is available at http://bioinformatics.med.uoc.gr/NAP .

  8. Talking about your health to strangers: understanding the use of online social networks by patients

    NASA Astrophysics Data System (ADS)

    Colineau, Nathalie; Paris, Cécile

    2010-04-01

    The internet has become a participatory place where everyone can contribute and interact with others. In health in particular, social media have changed traditional patient-physician relationships. Patients are organising themselves in groups, sharing observations and helping each other, although there is still little evidence of the effectiveness of these online communities on people's health. To understand why and how people use health-related sites, we studied these sites and identified three dimensions characterising most of them: informational/supportive; general/focused; and new relationships/existing ones. We conducted an online survey about the use of health-related social networking (SN) sites and learnt that, consistent with previous research, most patients were seeking information about their medical condition online, while, at the same time, still interacting with health professionals to talk about sensitive information and complex issues. We also found that, while people's natural social network played an important role for emotional support, sometimes, people chose to not involve their family, but instead interact with peers online because of their perceived support and ability to understand someone's experience, and also to maintain a comfortable emotional distance. Finally, our results show that people using general SN sites do not necessarily use health-related sites and vice versa.

  9. Rigid-Docking Approaches to Explore Protein-Protein Interaction Space.

    PubMed

    Matsuzaki, Yuri; Uchikoga, Nobuyuki; Ohue, Masahito; Akiyama, Yutaka

    Protein-protein interactions play core roles in living cells, especially in the regulatory systems. As information on proteins has rapidly accumulated on publicly available databases, much effort has been made to obtain a better picture of protein-protein interaction networks using protein tertiary structure data. Predicting relevant interacting partners from their tertiary structure is a challenging task and computer science methods have the potential to assist with this. Protein-protein rigid docking has been utilized by several projects, docking-based approaches having the advantages that they can suggest binding poses of predicted binding partners which would help in understanding the interaction mechanisms and that comparing docking results of both non-binders and binders can lead to understanding the specificity of protein-protein interactions from structural viewpoints. In this review we focus on explaining current computational prediction methods to predict pairwise direct protein-protein interactions that form protein complexes.

  10. EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing.

    PubMed

    Cohen, Michael X; Ridderinkhof, K Richard

    2013-01-01

    Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus) conflict modulation in stimulus-contralateral parietal gamma (30-50 Hz), followed by a later alpha-band (8-12 Hz) conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4-8 Hz), alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials) had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions.

  11. Pathway analysis of high-throughput biological data within a Bayesian network framework.

    PubMed

    Isci, Senol; Ozturk, Cengizhan; Jones, Jon; Otu, Hasan H

    2011-06-15

    Most current approaches to high-throughput biological data (HTBD) analysis either perform individual gene/protein analysis or, gene/protein set enrichment analysis for a list of biologically relevant molecules. Bayesian Networks (BNs) capture linear and non-linear interactions, handle stochastic events accounting for noise, and focus on local interactions, which can be related to causal inference. Here, we describe for the first time an algorithm that models biological pathways as BNs and identifies pathways that best explain given HTBD by scoring fitness of each network. Proposed method takes into account the connectivity and relatedness between nodes of the pathway through factoring pathway topology in its model. Our simulations using synthetic data demonstrated robustness of our approach. We tested proposed method, Bayesian Pathway Analysis (BPA), on human microarray data regarding renal cell carcinoma (RCC) and compared our results with gene set enrichment analysis. BPA was able to find broader and more specific pathways related to RCC. Accompanying BPA software (BPAS) package is freely available for academic use at http://bumil.boun.edu.tr/bpa.

  12. Protein interaction networks from literature mining

    NASA Astrophysics Data System (ADS)

    Ihara, Sigeo

    2005-03-01

    The ability to accurately predict and understand physiological changes in the biological network system in response to disease or drug therapeutics is of crucial importance in life science. The extensive amount of gene expression data generated from even a single microarray experiment often proves difficult to fully interpret and comprehend the biological significance. An increasing knowledge of protein interactions stored in the PubMed database, as well as the advancement of natural language processing, however, makes it possible to construct protein interaction networks from the gene expression information that are essential for understanding the biological meaning. From the in house literature mining system we have developed, the protein interaction network for humans was constructed. By analysis based on the graph-theoretical characterization of the total interaction network in literature, we found that the network is scale-free and semantic long-ranged interactions (i.e. inhibit, induce) between proteins dominate in the total interaction network, reducing the degree exponent. Interaction networks generated based on scientific text in which the interaction event is ambiguously described result in disconnected networks. In contrast interaction networks based on text in which the interaction events are clearly stated result in strongly connected networks. The results of protein-protein interaction networks obtained in real applications from microarray experiments are discussed: For example, comparisons of the gene expression data indicative of either a good or a poor prognosis for acute lymphoblastic leukemia with MLL rearrangements, using our system, showed newly discovered signaling cross-talk.

  13. A Face Attention Technique for a Robot Able to Interpret Facial Expressions

    NASA Astrophysics Data System (ADS)

    Simplício, Carlos; Prado, José; Dias, Jorge

    Automatic facial expressions recognition using vision is an important subject towards human-robot interaction. Here is proposed a human face focus of attention technique and a facial expressions classifier (a Dynamic Bayesian Network) to incorporate in an autonomous mobile agent whose hardware is composed by a robotic platform and a robotic head. The focus of attention technique is based on the symmetry presented by human faces. By using the output of this module the autonomous agent keeps always targeting the human face frontally. In order to accomplish this, the robot platform performs an arc centered at the human; thus the robotic head, when necessary, moves synchronized. In the proposed probabilistic classifier the information is propagated, from the previous instant, in a lower level of the network, to the current instant. Moreover, to recognize facial expressions are used not only positive evidences but also negative.

  14. Real-time decision support systems: the famine early warning system network

    USGS Publications Warehouse

    Funk, Christopher C.; Verdin, James P.

    2010-01-01

    A multi-institutional partnership, the US Agency for International Development’s Famine Early Warning System Network (FEWS NET) provides routine monitoring of climatic, agricultural, market, and socioeconomic conditions in over 20 countries. FEWS NET supports and informs disaster relief decisions that impact millions of people and involve billions of dollars. In this chapter, we focus on some of FEWS NET’s hydrologic monitoring tools, with a specific emphasis on combining “low frequency” and “high frequency” assessment tools. Low frequency assessment tools, tied to water and food balance estimates, enable us to evaluate and map long-term tendencies in food security. High frequency assessments are supported by agrohydrologic models driven by satellite rainfall estimates, such as the Water Requirement Satisfaction Index (WRSI). Focusing on eastern Africa, we suggest that both these high and low frequency approaches are necessary to capture the interaction of slow variations in vulnerability and the relatively rapid onset of climatic shocks.

  15. Social interaction in management group meetings: a case study of Finnish hospital.

    PubMed

    Laapotti, Tomi; Mikkola, Leena

    2016-06-20

    Purpose - The purpose of this paper is to understand the role of management group meetings (MGMs) in hospital organization by examining the social interaction in these meetings. Design/methodology/approach - This case study approaches social interaction from a structuration point of view. Social network analysis and qualitative content analysis are applied. Findings - The findings show that MGMs are mainly forums for information sharing. Meetings are not held for problem solving or decision making, and operational coordinating is limited. Meeting interaction is very much focused on the chair, and most of the discussion takes place between the chair and one other member, not between members. The organizational structures are maintained and reproduced in the meeting interaction, and they appear to limit discussion. Meetings appear to fulfil their goals as a part of the organization's information structure and to some extent as an instrument for management. The significance of the relational side of MGMs was recognized. Research limitations/implications - The results of this study provide a basis for future research on hospital MGMs with wider datasets and other methodologies. Especially the relational role of MGMs needs more attention. Practical implications - The goals of MGMs should be reviewed and MG members should be made aware of meeting interaction structures. Originality/value - The paper provides new knowledge about interaction networks in hospital MGMs, and describes the complexity of the importance of MGMs for hospitals.

  16. An interactive web-based system using cloud for large-scale visual analytics

    NASA Astrophysics Data System (ADS)

    Kaseb, Ahmed S.; Berry, Everett; Rozolis, Erik; McNulty, Kyle; Bontrager, Seth; Koh, Youngsol; Lu, Yung-Hsiang; Delp, Edward J.

    2015-03-01

    Network cameras have been growing rapidly in recent years. Thousands of public network cameras provide tremendous amount of visual information about the environment. There is a need to analyze this valuable information for a better understanding of the world around us. This paper presents an interactive web-based system that enables users to execute image analysis and computer vision techniques on a large scale to analyze the data from more than 65,000 worldwide cameras. This paper focuses on how to use both the system's website and Application Programming Interface (API). Given a computer program that analyzes a single frame, the user needs to make only slight changes to the existing program and choose the cameras to analyze. The system handles the heterogeneity of the geographically distributed cameras, e.g. different brands, resolutions. The system allocates and manages Amazon EC2 and Windows Azure cloud resources to meet the analysis requirements.

  17. Drug Target Optimization in Chronic Myeloid Leukemia Using Innovative Computational Platform

    PubMed Central

    Chuang, Ryan; Hall, Benjamin A.; Benque, David; Cook, Byron; Ishtiaq, Samin; Piterman, Nir; Taylor, Alex; Vardi, Moshe; Koschmieder, Steffen; Gottgens, Berthold; Fisher, Jasmin

    2015-01-01

    Chronic Myeloid Leukemia (CML) represents a paradigm for the wider cancer field. Despite the fact that tyrosine kinase inhibitors have established targeted molecular therapy in CML, patients often face the risk of developing drug resistance, caused by mutations and/or activation of alternative cellular pathways. To optimize drug development, one needs to systematically test all possible combinations of drug targets within the genetic network that regulates the disease. The BioModelAnalyzer (BMA) is a user-friendly computational tool that allows us to do exactly that. We used BMA to build a CML network-model composed of 54 nodes linked by 104 interactions that encapsulates experimental data collected from 160 publications. While previous studies were limited by their focus on a single pathway or cellular process, our executable model allowed us to probe dynamic interactions between multiple pathways and cellular outcomes, suggest new combinatorial therapeutic targets, and highlight previously unexplored sensitivities to Interleukin-3. PMID:25644994

  18. Drug Target Optimization in Chronic Myeloid Leukemia Using Innovative Computational Platform

    NASA Astrophysics Data System (ADS)

    Chuang, Ryan; Hall, Benjamin A.; Benque, David; Cook, Byron; Ishtiaq, Samin; Piterman, Nir; Taylor, Alex; Vardi, Moshe; Koschmieder, Steffen; Gottgens, Berthold; Fisher, Jasmin

    2015-02-01

    Chronic Myeloid Leukemia (CML) represents a paradigm for the wider cancer field. Despite the fact that tyrosine kinase inhibitors have established targeted molecular therapy in CML, patients often face the risk of developing drug resistance, caused by mutations and/or activation of alternative cellular pathways. To optimize drug development, one needs to systematically test all possible combinations of drug targets within the genetic network that regulates the disease. The BioModelAnalyzer (BMA) is a user-friendly computational tool that allows us to do exactly that. We used BMA to build a CML network-model composed of 54 nodes linked by 104 interactions that encapsulates experimental data collected from 160 publications. While previous studies were limited by their focus on a single pathway or cellular process, our executable model allowed us to probe dynamic interactions between multiple pathways and cellular outcomes, suggest new combinatorial therapeutic targets, and highlight previously unexplored sensitivities to Interleukin-3.

  19. The evolution of interdisciplinarity in physics research.

    PubMed

    Pan, Raj Kumar; Sinha, Sitabhra; Kaski, Kimmo; Saramäki, Jari

    2012-01-01

    Science, being a social enterprise, is subject to fragmentation into groups that focus on specialized areas or topics. Often new advances occur through cross-fertilization of ideas between sub-fields that otherwise have little overlap as they study dissimilar phenomena using different techniques. Thus to explore the nature and dynamics of scientific progress one needs to consider the organization and interactions between different subject areas. Here, we study the relationships between the sub-fields of Physics using the Physics and Astronomy Classification Scheme (PACS) codes employed for self-categorization of articles published over the past 25 years (1985-2009). We observe a clear trend towards increasing interactions between the different sub-fields. The network of sub-fields also exhibits core-periphery organization, the nucleus being dominated by Condensed Matter and General Physics. However, over time Interdisciplinary Physics is steadily increasing its share in the network core, reflecting a shift in the overall trend of Physics research.

  20. Online Social Networking and Mental Health

    PubMed Central

    2014-01-01

    Abstract During the past decade, online social networking has caused profound changes in the way people communicate and interact. It is unclear, however, whether some of these changes may affect certain normal aspects of human behavior and cause psychiatric disorders. Several studies have indicated that the prolonged use of social networking sites (SNS), such as Facebook, may be related to signs and symptoms of depression. In addition, some authors have indicated that certain SNS activities might be associated with low self-esteem, especially in children and adolescents. Other studies have presented opposite results in terms of positive impact of social networking on self-esteem. The relationship between SNS use and mental problems to this day remains controversial, and research on this issue is faced with numerous challenges. This concise review focuses on the recent findings regarding the suggested connection between SNS and mental health issues such as depressive symptoms, changes in self-esteem, and Internet addiction. PMID:25192305

  1. Online social networking and mental health.

    PubMed

    Pantic, Igor

    2014-10-01

    During the past decade, online social networking has caused profound changes in the way people communicate and interact. It is unclear, however, whether some of these changes may affect certain normal aspects of human behavior and cause psychiatric disorders. Several studies have indicated that the prolonged use of social networking sites (SNS), such as Facebook, may be related to signs and symptoms of depression. In addition, some authors have indicated that certain SNS activities might be associated with low self-esteem, especially in children and adolescents. Other studies have presented opposite results in terms of positive impact of social networking on self-esteem. The relationship between SNS use and mental problems to this day remains controversial, and research on this issue is faced with numerous challenges. This concise review focuses on the recent findings regarding the suggested connection between SNS and mental health issues such as depressive symptoms, changes in self-esteem, and Internet addiction.

  2. A Social Network Analysis of a Coalition Initiative to Prevent Underage Drinking in Los Angeles County

    PubMed Central

    Chu, Kar-Hai; Hoeppner, Elena; Valente, Thomas; Rohrbach, Luanne

    2016-01-01

    In 2011, the Los Angeles County Department of Public Health began a prevention services initiative to address problems dealing with alcohol and other drugs across the County. A major component of the strategy included the formation of eight coalitions. Defined by geographic borders, each coalition consisted of multiple service provider organizations, and were mandated to implement customized plans that would focus on preventing underage drinking by addressing availability and accessibility of alcohol. In this study, we collect survey data and observe coalition meetings to study the interactions within and between coalitions. We are informed by network tie strength theories to supplement our view of how organizations communicate. We apply social network analysis to learn how the multi-coalition network is functioning, and identify important unrealized connections. Our findings suggest there are many potential connections between coalitions that are not being leveraged. PMID:27899879

  3. Static network structure can stabilize human cooperation.

    PubMed

    Rand, David G; Nowak, Martin A; Fowler, James H; Christakis, Nicholas A

    2014-12-02

    The evolution of cooperation in network-structured populations has been a major focus of theoretical work in recent years. When players are embedded in fixed networks, cooperators are more likely to interact with, and benefit from, other cooperators. In theory, this clustering can foster cooperation on fixed networks under certain circumstances. Laboratory experiments with humans, however, have thus far found no evidence that fixed network structure actually promotes cooperation. Here, we provide such evidence and help to explain why others failed to find it. First, we show that static networks can lead to a stable high level of cooperation, outperforming well-mixed populations. We then systematically vary the benefit that cooperating provides to one's neighbors relative to the cost required to cooperate (b/c), as well as the average number of neighbors in the network (k). When b/c > k, we observe high and stable levels of cooperation. Conversely, when b/c ≤ k or players are randomly shuffled, cooperation decays. Our results are consistent with a quantitative evolutionary game theoretic prediction for when cooperation should succeed on networks and, for the first time to our knowledge, provide an experimental demonstration of the power of static network structure for stabilizing human cooperation.

  4. Static network structure can stabilize human cooperation

    PubMed Central

    Rand, David G.; Nowak, Martin A.; Fowler, James H.; Christakis, Nicholas A.

    2014-01-01

    The evolution of cooperation in network-structured populations has been a major focus of theoretical work in recent years. When players are embedded in fixed networks, cooperators are more likely to interact with, and benefit from, other cooperators. In theory, this clustering can foster cooperation on fixed networks under certain circumstances. Laboratory experiments with humans, however, have thus far found no evidence that fixed network structure actually promotes cooperation. Here, we provide such evidence and help to explain why others failed to find it. First, we show that static networks can lead to a stable high level of cooperation, outperforming well-mixed populations. We then systematically vary the benefit that cooperating provides to one’s neighbors relative to the cost required to cooperate (b/c), as well as the average number of neighbors in the network (k). When b/c > k, we observe high and stable levels of cooperation. Conversely, when b/c ≤ k or players are randomly shuffled, cooperation decays. Our results are consistent with a quantitative evolutionary game theoretic prediction for when cooperation should succeed on networks and, for the first time to our knowledge, provide an experimental demonstration of the power of static network structure for stabilizing human cooperation. PMID:25404308

  5. Design on intelligent gateway technique in home network

    NASA Astrophysics Data System (ADS)

    Hu, Zhonggong; Feng, Xiancheng

    2008-12-01

    Based on digitization, multimedia, mobility, wide band, real-time interaction and so on,family networks, because can provide diverse and personalized synthesis service in information, correspondence work, entertainment, education and health care and so on, are more and more paid attention by the market. The family network product development has become the focus of the related industry. In this paper,the concept of the family network and the overall reference model of the family network are introduced firstly.Then the core techniques and the correspondence standard related with the family network are proposed.The key analysis is made for the function of family gateway, the function module of the software,the key technologies to client side software architecture and the trend of development of the family network entertainment seeing and hearing service and so on. Product present situation of the family gateway and the future trend of development, application solution of the digital family service are introduced. The development of the family network product bringing about the digital family network industry is introduced finally.It causes the development of software industries,such as communication industry,electrical appliances industry, computer and game and so on.It also causes the development of estate industry.

  6. Followers Are Not Enough: A Multifaceted Approach to Community Detection in Online Social Networks

    PubMed Central

    2015-01-01

    In online social media networks, individuals often have hundreds or even thousands of connections, which link these users not only to friends, associates, and colleagues, but also to news outlets, celebrities, and organizations. In these complex social networks, a ‘community’ as studied in the social network literature, can have very different meaning depending on the property of the network under study. Taking into account the multifaceted nature of these networks, we claim that community detection in online social networks should also be multifaceted in order to capture all of the different and valuable viewpoints of ‘community.’ In this paper we focus on three types of communities beyond follower-based structural communities: activity-based, topic-based, and interaction-based. We analyze a Twitter dataset using three different weightings of the structural network meant to highlight these three community types, and then infer the communities associated with these weightings. We show that interesting insights can be obtained about the complex community structure present in social networks by studying when and how these four community types give rise to similar as well as completely distinct community structure. PMID:26267868

  7. Workshop: Theory an Applications of Coupled Cell Networks

    DTIC Science & Technology

    2006-03-22

    physical location and environment and the scientific inter- actions with the longer term participants in the PFD programme. Furthermore, the Institute...in generating a tangible air of excitement about the challenges posed by coupled cell systems, both in terms of the mathematical questions, and in the...longer term visitors interacted with the workshop participants, and by focusing on a slightly different collection of themes, the workshop participants

  8. Focus on the emerging new fields of network physiology and network medicine

    NASA Astrophysics Data System (ADS)

    Ivanov, Plamen Ch; Liu, Kang K. L.; Bartsch, Ronny P.

    2016-10-01

    Despite the vast progress and achievements in systems biology and integrative physiology in the last decades, there is still a significant gap in understanding the mechanisms through which (i) genomic, proteomic and metabolic factors and signaling pathways impact vertical processes across cells, tissues and organs leading to the expression of different disease phenotypes and influence the functional and clinical associations between diseases, and (ii) how diverse physiological systems and organs coordinate their functions over a broad range of space and time scales and horizontally integrate to generate distinct physiologic states at the organism level. Two emerging fields, network medicine and network physiology, aim to address these fundamental questions. Novel concepts and approaches derived from recent advances in network theory, coupled dynamical systems, statistical and computational physics show promise to provide new insights into the complexity of physiological structure and function in health and disease, bridging the genetic and sub-cellular level with inter-cellular interactions and communications among integrated organ systems and sub-systems. These advances form first building blocks in the methodological formalism and theoretical framework necessary to address fundamental problems and challenges in physiology and medicine. This ‘focus on’ issue contains 26 articles representing state-of-the-art contributions covering diverse systems from the sub-cellular to the organism level where physicists have key role in laying the foundations of these new fields.

  9. Coevolution of dynamical states and interactions in dynamic networks

    NASA Astrophysics Data System (ADS)

    Zimmermann, Martín G.; Eguíluz, Víctor M.; San Miguel, Maxi

    2004-06-01

    We explore the coupled dynamics of the internal states of a set of interacting elements and the network of interactions among them. Interactions are modeled by a spatial game and the network of interaction links evolves adapting to the outcome of the game. As an example, we consider a model of cooperation in which the adaptation is shown to facilitate the formation of a hierarchical interaction network that sustains a highly cooperative stationary state. The resulting network has the characteristics of a small world network when a mechanism of local neighbor selection is introduced in the adaptive network dynamics. The highly connected nodes in the hierarchical structure of the network play a leading role in the stability of the network. Perturbations acting on the state of these special nodes trigger global avalanches leading to complete network reorganization.

  10. Can multilayer brain networks be a real step forward?. Comment on "Network science of biological systems at different scales: A review" by M. Gosak et al.

    NASA Astrophysics Data System (ADS)

    Buldú, Javier M.; Papo, David

    2018-03-01

    Over the last two decades Network Science has become one of the most active fields in science, whose growth has been supported by four fundamental pillars: statistical physics, nonlinear dynamics, graph theory and Big Data [1]. Initially concerned with analyzing the structure of networks, Network Science rapidly turned its attention, focused on the implications of network topology, on the dynamics of and processes unfolding on networked systems, greatly improving our understanding of diffusion, synchronization, epidemics and information transmission in complex systems [2]. The network approach typically considered complex systems as evolving in a vacuum; however real networks are generally not isolated systems, but are in continuous and evolving contact with other networks, with which they interact in multiple qualitative different and typically time-varying ways. These systems can then be represented as a collection of subsystems with connectivity layers, which are simply collapsed when considering the traditional monolayer representation. Surprisingly, such an "unpacking" of layers has proven to bear profound consequences on the structural and dynamical properties of networks, leading for instance to counter-intuitive synchronization phenomena, where maximization synchronization is achieved through strategies opposite of those maximizing synchronization in isolated networks [3].

  11. Efficient and accurate Greedy Search Methods for mining functional modules in protein interaction networks.

    PubMed

    He, Jieyue; Li, Chaojun; Ye, Baoliu; Zhong, Wei

    2012-06-25

    Most computational algorithms mainly focus on detecting highly connected subgraphs in PPI networks as protein complexes but ignore their inherent organization. Furthermore, many of these algorithms are computationally expensive. However, recent analysis indicates that experimentally detected protein complexes generally contain Core/attachment structures. In this paper, a Greedy Search Method based on Core-Attachment structure (GSM-CA) is proposed. The GSM-CA method detects densely connected regions in large protein-protein interaction networks based on the edge weight and two criteria for determining core nodes and attachment nodes. The GSM-CA method improves the prediction accuracy compared to other similar module detection approaches, however it is computationally expensive. Many module detection approaches are based on the traditional hierarchical methods, which is also computationally inefficient because the hierarchical tree structure produced by these approaches cannot provide adequate information to identify whether a network belongs to a module structure or not. In order to speed up the computational process, the Greedy Search Method based on Fast Clustering (GSM-FC) is proposed in this work. The edge weight based GSM-FC method uses a greedy procedure to traverse all edges just once to separate the network into the suitable set of modules. The proposed methods are applied to the protein interaction network of S. cerevisiae. Experimental results indicate that many significant functional modules are detected, most of which match the known complexes. Results also demonstrate that the GSM-FC algorithm is faster and more accurate as compared to other competing algorithms. Based on the new edge weight definition, the proposed algorithm takes advantages of the greedy search procedure to separate the network into the suitable set of modules. Experimental analysis shows that the identified modules are statistically significant. The algorithm can reduce the computational time significantly while keeping high prediction accuracy.

  12. Frontal glutamate and reward processing in adolescence and adulthood.

    PubMed

    Gleich, Tobias; Lorenz, Robert C; Pöhland, Lydia; Raufelder, Diana; Deserno, Lorenz; Beck, Anne; Heinz, Andreas; Kühn, Simone; Gallinat, Jürgen

    2015-11-01

    The fronto-limbic network interaction, driven by glutamatergic and dopaminergic neurotransmission, represents a core mechanism of motivated behavior and personality traits. Reward seeking behavior undergoes tremendous changes in adolescence paralleled by neurobiological changes of this network including the prefrontal cortex, striatum and amygdala. Since fronto-limbic dysfunctions also underlie major psychiatric diseases beginning in adolescence, this investigation focuses on network characteristics separating adolescents from adults. To investigate differences in network interactions, the brain reward system activity (slot machine task) together with frontal glutamate concentration (anterior cingulate cortex, ACC) was measured in 28 adolescents and 26 adults employing functional magnetic resonance imaging and magnetic resonance spectroscopy, respectively. An inverse coupling of glutamate concentrations in the ACC and activation of the ventral striatum was observed in adolescents. Further, amygdala response in adolescents was negatively correlated with the personality trait impulsivity. For adults, no significant associations of network components or correlations with impulsivity were found. The inverse association between frontal glutamate concentration and striatal activation in adolescents is in line with the triadic model of motivated behavior stressing the important role of frontal top-down inhibition on limbic structures. Our data identified glutamate as the mediating neurotransmitter of this inhibitory process and demonstrates the relevance of glutamate on the reward system and related behavioral traits like impulsivity. This fronto-limbic coupling may represent a vulnerability factor for psychiatric disorders starting in adolescence but not in adulthood.

  13. Ocean Observatories Initiative (OOI): Status of Design, Capabilities, and Implementation

    NASA Astrophysics Data System (ADS)

    Brasseur, L. H.; Banahan, S.; Cowles, T.

    2009-05-01

    The National Science Foundation's (NSF) Ocean Observatories Initiative (OOI) will implement the construction and operation of an interactive, integrated ocean observing network. This research- driven, multi-scale network will provide the broad ocean science community with access to advanced technology to enable studies of fundamental ocean processes. The OOI will afford observations at coastal, regional, and global scales on timeframes of milliseconds to decades in support of investigations into climate variability, ocean ecosystems, biogeochemical processes, coastal ocean dynamics, circulation and mixing dynamics, fluid-rock interactions, and the sub-seafloor biosphere. The elements of the OOI include arrays of fixed and re-locatable moorings, autonomous underwater vehicles, and cabled seafloor nodes. All assets combined, the OOI network will provide data from over 45 distinct types of sensors, comprising over 800 total sensors distributed in the Pacific and Atlantic oceans. These core sensors for the OOI were determined through a formal process of science requirements development. This core sensor array will be integrated through a system-wide cyberinfrastructure allowing for remote control of instruments, adaptive sampling, and near-real time access to data. Implementation of the network will stimulate new avenues of research and the development of new infrastructure, instrumentation, and sensor technologies. The OOI is funded by the NSF and managed by the Consortium for Ocean Leadership which focuses on the science, technology, education, and outreach for an emerging network of ocean observing systems.

  14. Understanding the role of contrasting urban contexts in healthy aging: an international cohort study using wearable sensor devices (the CURHA study protocol).

    PubMed

    Kestens, Yan; Chaix, Basile; Gerber, Philippe; Desprès, Michel; Gauvin, Lise; Klein, Olivier; Klein, Sylvain; Köppen, Bernhard; Lord, Sébastien; Naud, Alexandre; Payette, Hélène; Richard, Lucie; Rondier, Pierre; Shareck, Martine; Sueur, Cédric; Thierry, Benoit; Vallée, Julie; Wasfi, Rania

    2016-05-05

    Given the challenges of aging populations, calls have been issued for more sustainable urban re-development and implementation of local solutions to address global environmental and healthy aging issues. However, few studies have considered older adults' daily mobility to better understand how local built and social environments may contribute to healthy aging. Meanwhile, wearable sensors and interactive map-based applications offer novel means for gathering information on people's mobility, levels of physical activity, or social network structure. Combining such data with classical questionnaires on well-being, physical activity, perceived environments and qualitative assessment of experience of places opens new opportunities to assess the complex interplay between individuals and environments. In line with current gaps and novel analytical capabilities, this research proposes an international research agenda to collect and analyse detailed data on daily mobility, social networks and health outcomes among older adults using interactive web-based questionnaires and wearable sensors. Our study resorts to a battery of innovative data collection methods including use of a novel multisensor device for collection of location and physical activity, interactive map-based questionnaires on regular destinations and social networks, and qualitative assessment of experience of places. This rich data will allow advanced quantitative and qualitative analyses in the aim to disentangle the complex people-environment interactions linking urban local contexts to healthy aging, with a focus on active living, social networks and participation, and well-being. This project will generate evidence about what characteristics of urban environments relate to active mobility, social participation, and well-being, three important dimensions of healthy aging. It also sets the basis for an international research agenda on built environment and healthy aging based on a shared and comprehensive data collection protocol.

  15. A gene network bioinformatics analysis for pemphigoid autoimmune blistering diseases.

    PubMed

    Barone, Antonio; Toti, Paolo; Giuca, Maria Rita; Derchi, Giacomo; Covani, Ugo

    2015-07-01

    In this theoretical study, a text mining search and clustering analysis of data related to genes potentially involved in human pemphigoid autoimmune blistering diseases (PAIBD) was performed using web tools to create a gene/protein interaction network. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database was employed to identify a final set of PAIBD-involved genes and to calculate the overall significant interactions among genes: for each gene, the weighted number of links, or WNL, was registered and a clustering procedure was performed using the WNL analysis. Genes were ranked in class (leader, B, C, D and so on, up to orphans). An ontological analysis was performed for the set of 'leader' genes. Using the above-mentioned data network, 115 genes represented the final set; leader genes numbered 7 (intercellular adhesion molecule 1 (ICAM-1), interferon gamma (IFNG), interleukin (IL)-2, IL-4, IL-6, IL-8 and tumour necrosis factor (TNF)), class B genes were 13, whereas the orphans were 24. The ontological analysis attested that the molecular action was focused on extracellular space and cell surface, whereas the activation and regulation of the immunity system was widely involved. Despite the limited knowledge of the present pathologic phenomenon, attested by the presence of 24 genes revealing no protein-protein direct or indirect interactions, the network showed significant pathways gathered in several subgroups: cellular components, molecular functions, biological processes and the pathologic phenomenon obtained from the Kyoto Encyclopaedia of Genes and Genomes (KEGG) database. The molecular basis for PAIBD was summarised and expanded, which will perhaps give researchers promising directions for the identification of new therapeutic targets.

  16. Animal models of social stress: the dark side of social interactions.

    PubMed

    Masis-Calvo, Marianela; Schmidtner, Anna K; de Moura Oliveira, Vinícius E; Grossmann, Cindy P; de Jong, Trynke R; Neumann, Inga D

    2018-05-10

    Social stress occurs in all social species, including humans, and shape both mental health and future interactions with conspecifics. Animal models of social stress are used to unravel the precise role of the main stress system - the HPA axis - on the one hand, and the social behavior network on the other, as these are intricately interwoven. The present review aims to summarize the insights gained from three highly useful and clinically relevant animal models of psychosocial stress: the resident-intruder (RI) test, the chronic subordinate colony housing (CSC), and the social fear conditioning (SFC). Each model brings its own focus: the role of the HPA axis in shaping acute social confrontations (RI test), the physiological and behavioral impairments resulting from chronic exposure to negative social experiences (CSC), and the neurobiology underlying social fear and its effects on future social interactions (SFC). Moreover, these models are discussed with special attention to the HPA axis and the neuropeptides vasopressin and oxytocin, which are important messengers in the stress system, in emotion regulation, as well as in the social behavior network. It appears that both nonapeptides balance the relative strength of the stress response, and simultaneously predispose the animal to positive or negative social interactions.

  17. Mesoscopic Effects in an Agent-Based Bargaining Model in Regular Lattices

    PubMed Central

    Poza, David J.; Santos, José I.; Galán, José M.; López-Paredes, Adolfo

    2011-01-01

    The effect of spatial structure has been proved very relevant in repeated games. In this work we propose an agent based model where a fixed finite population of tagged agents play iteratively the Nash demand game in a regular lattice. The model extends the multiagent bargaining model by Axtell, Epstein and Young [1] modifying the assumption of global interaction. Each agent is endowed with a memory and plays the best reply against the opponent's most frequent demand. We focus our analysis on the transient dynamics of the system, studying by computer simulation the set of states in which the system spends a considerable fraction of the time. The results show that all the possible persistent regimes in the global interaction model can also be observed in this spatial version. We also find that the mesoscopic properties of the interaction networks that the spatial distribution induces in the model have a significant impact on the diffusion of strategies, and can lead to new persistent regimes different from those found in previous research. In particular, community structure in the intratype interaction networks may cause that communities reach different persistent regimes as a consequence of the hindering diffusion effect of fluctuating agents at their borders. PMID:21408019

  18. Mesoscopic effects in an agent-based bargaining model in regular lattices.

    PubMed

    Poza, David J; Santos, José I; Galán, José M; López-Paredes, Adolfo

    2011-03-09

    The effect of spatial structure has been proved very relevant in repeated games. In this work we propose an agent based model where a fixed finite population of tagged agents play iteratively the Nash demand game in a regular lattice. The model extends the multiagent bargaining model by Axtell, Epstein and Young modifying the assumption of global interaction. Each agent is endowed with a memory and plays the best reply against the opponent's most frequent demand. We focus our analysis on the transient dynamics of the system, studying by computer simulation the set of states in which the system spends a considerable fraction of the time. The results show that all the possible persistent regimes in the global interaction model can also be observed in this spatial version. We also find that the mesoscopic properties of the interaction networks that the spatial distribution induces in the model have a significant impact on the diffusion of strategies, and can lead to new persistent regimes different from those found in previous research. In particular, community structure in the intratype interaction networks may cause that communities reach different persistent regimes as a consequence of the hindering diffusion effect of fluctuating agents at their borders.

  19. Global Mapping of the Yeast Genetic Interaction Network

    NASA Astrophysics Data System (ADS)

    Tong, Amy Hin Yan; Lesage, Guillaume; Bader, Gary D.; Ding, Huiming; Xu, Hong; Xin, Xiaofeng; Young, James; Berriz, Gabriel F.; Brost, Renee L.; Chang, Michael; Chen, YiQun; Cheng, Xin; Chua, Gordon; Friesen, Helena; Goldberg, Debra S.; Haynes, Jennifer; Humphries, Christine; He, Grace; Hussein, Shamiza; Ke, Lizhu; Krogan, Nevan; Li, Zhijian; Levinson, Joshua N.; Lu, Hong; Ménard, Patrice; Munyana, Christella; Parsons, Ainslie B.; Ryan, Owen; Tonikian, Raffi; Roberts, Tania; Sdicu, Anne-Marie; Shapiro, Jesse; Sheikh, Bilal; Suter, Bernhard; Wong, Sharyl L.; Zhang, Lan V.; Zhu, Hongwei; Burd, Christopher G.; Munro, Sean; Sander, Chris; Rine, Jasper; Greenblatt, Jack; Peter, Matthias; Bretscher, Anthony; Bell, Graham; Roth, Frederick P.; Brown, Grant W.; Andrews, Brenda; Bussey, Howard; Boone, Charles

    2004-02-01

    A genetic interaction network containing ~1000 genes and ~4000 interactions was mapped by crossing mutations in 132 different query genes into a set of ~4700 viable gene yeast deletion mutants and scoring the double mutant progeny for fitness defects. Network connectivity was predictive of function because interactions often occurred among functionally related genes, and similar patterns of interactions tended to identify components of the same pathway. The genetic network exhibited dense local neighborhoods; therefore, the position of a gene on a partially mapped network is predictive of other genetic interactions. Because digenic interactions are common in yeast, similar networks may underlie the complex genetics associated with inherited phenotypes in other organisms.

  20. Inferring the interplay between network structure and market effects in Bitcoin

    NASA Astrophysics Data System (ADS)

    Kondor, Dániel; Csabai, István; Szüle, János; Pósfai, Márton; Vattay, Gábor

    2014-12-01

    A main focus in economics research is understanding the time series of prices of goods and assets. While statistical models using only the properties of the time series itself have been successful in many aspects, we expect to gain a better understanding of the phenomena involved if we can model the underlying system of interacting agents. In this article, we consider the history of Bitcoin, a novel digital currency system, for which the complete list of transactions is available for analysis. Using this dataset, we reconstruct the transaction network between users and analyze changes in the structure of the subgraph induced by the most active users. Our approach is based on the unsupervised identification of important features of the time variation of the network. Applying the widely used method of Principal Component Analysis to the matrix constructed from snapshots of the network at different times, we are able to show how structural changes in the network accompany significant changes in the exchange price of bitcoins.

  1. Interaction Control to Synchronize Non-synchronizable Networks.

    PubMed

    Schröder, Malte; Chakraborty, Sagar; Witthaut, Dirk; Nagler, Jan; Timme, Marc

    2016-11-17

    Synchronization constitutes one of the most fundamental collective dynamics across networked systems and often underlies their function. Whether a system may synchronize depends on the internal unit dynamics as well as the topology and strength of their interactions. For chaotic units with certain interaction topologies synchronization might be impossible across all interaction strengths, meaning that these networks are non-synchronizable. Here we propose the concept of interaction control, generalizing transient uncoupling, to induce desired collective dynamics in complex networks and apply it to synchronize even such non-synchronizable systems. After highlighting that non-synchronizability prevails for a wide range of networks of arbitrary size, we explain how a simple binary control may localize interactions in state space and thereby synchronize networks. Intriguingly, localizing interactions by a fixed control scheme enables stable synchronization across all connected networks regardless of topological constraints. Interaction control may thus ease the design of desired collective dynamics even without knowledge of the networks' exact interaction topology and consequently have implications for biological and self-organizing technical systems.

  2. The interplay of covalency, hydrogen bonding, and dispersion leads to a long range chiral network: The example of 2-butanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liriano, Melissa L.; Lewis, Emily A.; Murphy, Colin J.

    The assembly of complex structures in nature is driven by an interplay between several intermolecular interactions, from strong covalent bonds to weaker dispersion forces. Understanding and ultimately controlling the self-assembly of materials requires extensive study of how these forces drive local nanoscale interactions and how larger structures evolve. Surface-based self-assembly is particularly amenable to modeling and measuring these interactions in well-defined systems. This study focuses on 2-butanol, the simplest aliphatic chiral alcohol. 2-butanol has recently been shown to have interesting properties as a chiral modifier of surface chemistry; however, its mode of action is not fully understood and a microscopicmore » understanding of the role non-covalent interactions play in its adsorption and assembly on surfaces is lacking. In order to probe its surface properties, we employed high-resolution scanning tunneling microscopy and density functional theory (DFT) simulations. We found a surprisingly rich degree of enantiospecific adsorption, association, chiral cluster growth and ultimately long range, highly ordered chiral templating. Firstly, the chiral molecules acquire a second chiral center when adsorbed to the surface via dative bonding of one of the oxygen atom lone pairs. This interaction is controlled via the molecule’s intrinsic chiral center leading to monomers of like chirality, at both chiral centers, adsorbed on the surface. The monomers then associate into tetramers via a cyclical network of hydrogen bonds with an opposite chirality at the oxygen atom. The evolution of these square units is surprising given that the underlying surface has a hexagonal symmetry. Our DFT calculations, however, reveal that the tetramers are stable entities that are able to associate with each other by weaker van der Waals interactions and tessellate in an extended square network. This network of homochiral square pores grows to cover the whole Au(111) surface. Our data reveal that the chirality of a simple alcohol can be transferred to its surface binding geometry, drive the directionality of hydrogen-bonded networks and ultimately extended structure. Furthermore, this study provides the first microscopic insight into the surface properties of this important chiral modifier and provides a well-defined system for studying the network’s enantioselective interaction with other molecules.« less

  3. Development of an online tool for public health: the European Public Health Law Network.

    PubMed

    Basak, P

    2011-09-01

    The European Public Health Law Network was established in 2007 as part of the European Union (EU) co-funded Public Health Law Flu project. The aims of the website consisted of designing an interactive network of specialist information and encouraging an exchange of expertise amongst members. The website sought to appeal to academics, public health professionals and lawyers. The Public Health Law Flu project team designed and managed the website. Registered network members were recruited through publicity, advertising and word of mouth. Details of the network were sent to health organizations and universities throughout Europe. Corresponding website links attracted many new visitors. Publications, news, events and a pandemic glossary became popular features on the site. Although the website initially focused only on pandemic diseases it has grown into a multidisciplinary website covering a range of public health law topics. The network contains over 700 publications divided into 28 public health law categories. News, events, front page content, legislation and the francophone section are updated on a regular basis. Since 2007 the website has received over 15,000 views from 156 countries. Newsletter subscribers have risen to 304. There are now 723 followers on the associated Twitter site. The European Public Health Law Network has been a successful and innovative site in the area of public health law. Interest in the site continues to grow. Future funding can contribute to a bigger site with interactive features and pages in a wider variety of languages to attract a wider global audience. Copyright © 2011 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  4. Emergent processes in cognitive-emotional interactions

    PubMed Central

    Pessoa, Luiz

    2010-01-01

    Emotion and cognition have been viewed as largely separate entities in the brain. Within this framework, significant progress has been made in understanding specific aspects of behavior. Research in the past two decades, however, has started to paint a different picture of brain organization, one in which network interactions are key to understanding complex behaviors. From both basic and clinical perspectives, the characterization of cognitive-emotional interactions constitutes a fundamental issue in the investigation of the mind and brain. This review will highlight the interactive and integrative potential that exists in the brain to bring together the cognitive and emotional domains. First, anatomical evidence will be provided, focusing on structures such as hypothalamus, basal forebrain, amygdala, cingulate cortex, orbitofrontal cortex, and insula. Data on functional interactions will then be discussed, followed by a discussion of a dual competition framework, which describes cognitive-emotional interactions in terms of perceptual and cognitive competition mechanisms. PMID:21319489

  5. Proteomic and computational analysis of bronchoalveolar proteins during the course of the acute respiratory distress syndrome.

    PubMed

    Chang, Dong W; Hayashi, Shinichi; Gharib, Sina A; Vaisar, Tomas; King, S Trevor; Tsuchiya, Mitsuhiro; Ruzinski, John T; Park, David R; Matute-Bello, Gustavo; Wurfel, Mark M; Bumgarner, Roger; Heinecke, Jay W; Martin, Thomas R

    2008-10-01

    Acute lung injury causes complex changes in protein expression in the lungs. Whereas most prior studies focused on single proteins, newer methods allowing the simultaneous study of many proteins could lead to a better understanding of pathogenesis and new targets for treatment. The purpose of this study was to examine the changes in protein expression in the bronchoalveolar lavage fluid (BALF) of patients during the course of the acute respiratory distress syndrome (ARDS). Using two-dimensional difference gel electrophoresis (DIGE), the expression of proteins in the BALF from patients on Days 1 (n = 7), 3 (n = 8), and 7 (n = 5) of ARDS were compared with findings in normal volunteers (n = 9). The patterns of protein expression were analyzed using principal component analysis (PCA). Biological processes that were enriched in the BALF proteins of patients with ARDS were identified using Gene Ontology (GO) analysis. Protein networks that model the protein interactions in the BALF were generated using Ingenuity Pathway Analysis. An average of 991 protein spots were detected using DIGE. Of these, 80 protein spots, representing 37 unique proteins in all of the fluids, were identified using mass spectrometry. PCA confirmed important differences between the proteins in the ARDS and normal samples. GO analysis showed that these differences are due to the enrichment of proteins involved in inflammation, infection, and injury. The protein network analysis showed that the protein interactions in ARDS are complex and redundant, and revealed unexpected central components in the protein networks. Proteomics and protein network analysis reveals the complex nature of lung protein interactions in ARDS. The results provide new insights about protein networks in injured lungs, and identify novel mediators that are likely to be involved in the pathogenesis and progression of acute lung injury.

  6. Loss of functional diversity and network modularity in introduced plant–fungal symbioses

    PubMed Central

    Cooper, Jerry A.; Bufford, Jennifer L.; Hulme, Philip E.; Bates, Scott T.

    2017-01-01

    The introduction of alien plants into a new range can result in the loss of co-evolved symbiotic organisms, such as mycorrhizal fungi, that are essential for normal plant physiological functions. Prior studies of mycorrhizal associations in alien plants have tended to focus on individual plant species on a case-by-case basis. This approach limits broad scale understanding of functional shifts and changes in interaction network structure that may occur following introduction. Here we use two extensive datasets of plant–fungal interactions derived from fungal sporocarp observations and recorded plant hosts in two island archipelago nations: New Zealand (NZ) and the United Kingdom (UK). We found that the NZ dataset shows a lower functional diversity of fungal hyphal foraging strategies in mycorrhiza of alien when compared with native trees. Across species this resulted in fungal foraging strategies associated with alien trees being much more variable in functional composition compared with native trees, which had a strikingly similar functional composition. The UK data showed no functional difference in fungal associates of alien and native plant genera. Notwithstanding this, both the NZ and UK data showed a substantial difference in interaction network structure of alien trees compared with native trees. In both cases, fungal associates of native trees showed strong modularity, while fungal associates of alien trees generally integrated into a single large module. The results suggest a lower functional diversity (in one dataset) and a simplification of network structure (in both) as a result of introduction, potentially driven by either limited symbiont co-introductions or disruption of habitat as a driver of specificity due to nursery conditions, planting, or plant edaphic-niche expansion. Recognizing these shifts in function and network structure has important implications for plant invasions and facilitation of secondary invasions via shared mutualist populations. PMID:28039116

  7. Gene Networks Involved in Hormonal Control of Root Development in Arabidopsis thaliana: A Framework for Studying Its Disturbance by Metal Stress

    PubMed Central

    De Smet, Stefanie; Cuypers, Ann; Vangronsveld, Jaco; Remans, Tony

    2015-01-01

    Plant survival under abiotic stress conditions requires morphological and physiological adaptations. Adverse soil conditions directly affect root development, although the underlying mechanisms remain largely to be discovered. Plant hormones regulate normal root growth and mediate root morphological responses to abiotic stress. Hormone synthesis, signal transduction, perception and cross-talk create a complex network in which metal stress can interfere, resulting in root growth alterations. We focus on Arabidopsis thaliana, for which gene networks in root development have been intensively studied, and supply essential terminology of anatomy and growth of roots. Knowledge of gene networks, mechanisms and interactions related to the role of plant hormones is reviewed. Most knowledge has been generated for auxin, the best-studied hormone with a pronounced primary role in root development. Furthermore, cytokinins, gibberellins, abscisic acid, ethylene, jasmonic acid, strigolactones, brassinosteroids and salicylic acid are discussed. Interactions between hormones that are of potential importance for root growth are described. This creates a framework that can be used for investigating the impact of abiotic stress factors on molecular mechanisms related to plant hormones, with the limited knowledge of the effects of the metals cadmium, copper and zinc on plant hormones and root development included as case example. PMID:26287175

  8. Integrating the invisible fabric of nature into fisheries management.

    PubMed

    Travis, Joseph; Coleman, Felicia C; Auster, Peter J; Cury, Philippe M; Estes, James A; Orensanz, Jose; Peterson, Charles H; Power, Mary E; Steneck, Robert S; Wootton, J Timothy

    2014-01-14

    Overfishing and environmental change have triggered many severe and unexpected consequences. As existing communities have collapsed, new ones have become established, fundamentally transforming ecosystems to those that are often less productive for fisheries, more prone to cycles of booms and busts, and thus less manageable. We contend that the failure of fisheries science and management to anticipate these transformations results from a lack of appreciation for the nature, strength, complexity, and outcome of species interactions. Ecologists have come to understand that networks of interacting species exhibit nonlinear dynamics and feedback loops that can produce sudden and unexpected shifts. We argue that fisheries science and management must follow this lead by developing a sharper focus on species interactions and how disrupting these interactions can push ecosystems in which fisheries are embedded past their tipping points.

  9. Identification of fever and vaccine-associated gene interaction networks using ontology-based literature mining

    PubMed Central

    2012-01-01

    Background Fever is one of the most common adverse events of vaccines. The detailed mechanisms of fever and vaccine-associated gene interaction networks are not fully understood. In the present study, we employed a genome-wide, Centrality and Ontology-based Network Discovery using Literature data (CONDL) approach to analyse the genes and gene interaction networks associated with fever or vaccine-related fever responses. Results Over 170,000 fever-related articles from PubMed abstracts and titles were retrieved and analysed at the sentence level using natural language processing techniques to identify genes and vaccines (including 186 Vaccine Ontology terms) as well as their interactions. This resulted in a generic fever network consisting of 403 genes and 577 gene interactions. A vaccine-specific fever sub-network consisting of 29 genes and 28 gene interactions was extracted from articles that are related to both fever and vaccines. In addition, gene-vaccine interactions were identified. Vaccines (including 4 specific vaccine names) were found to directly interact with 26 genes. Gene set enrichment analysis was performed using the genes in the generated interaction networks. Moreover, the genes in these networks were prioritized using network centrality metrics. Making scientific discoveries and generating new hypotheses were possible by using network centrality and gene set enrichment analyses. For example, our study found that the genes in the generic fever network were more enriched in cell death and responses to wounding, and the vaccine sub-network had more gene enrichment in leukocyte activation and phosphorylation regulation. The most central genes in the vaccine-specific fever network are predicted to be highly relevant to vaccine-induced fever, whereas genes that are central only in the generic fever network are likely to be highly relevant to generic fever responses. Interestingly, no Toll-like receptors (TLRs) were found in the gene-vaccine interaction network. Since multiple TLRs were found in the generic fever network, it is reasonable to hypothesize that vaccine-TLR interactions may play an important role in inducing fever response, which deserves a further investigation. Conclusions This study demonstrated that ontology-based literature mining is a powerful method for analyzing gene interaction networks and generating new scientific hypotheses. PMID:23256563

  10. Opinion dynamics on interacting networks: media competition and social influence.

    PubMed

    Quattrociocchi, Walter; Caldarelli, Guido; Scala, Antonio

    2014-05-27

    The inner dynamics of the multiple actors of the informations systems - i.e, T.V., newspapers, blogs, social network platforms, - play a fundamental role on the evolution of the public opinion. Coherently with the recent history of the information system (from few main stream media to the massive diffusion of socio-technical system), in this work we investigate how main stream media signed interaction might shape the opinion space. In particular we focus on how different size (in the number of media) and interaction patterns of the information system may affect collective debates and thus the opinions' distribution. We introduce a sophisticated computational model of opinion dynamics which accounts for the coexistence of media and gossip as separated mechanisms and for their feedback loops. The model accounts also for the effect of the media communication patterns by considering both the simple case where each medium mimics the behavior of the most successful one (to maximize the audience) and the case where there is polarization and thus competition among media memes. We show that plurality and competition within information sources lead to stable configurations where several and distant cultures coexist.

  11. Opinion dynamics on interacting networks: media competition and social influence

    NASA Astrophysics Data System (ADS)

    Quattrociocchi, Walter; Caldarelli, Guido; Scala, Antonio

    2014-05-01

    The inner dynamics of the multiple actors of the informations systems - i.e, T.V., newspapers, blogs, social network platforms, - play a fundamental role on the evolution of the public opinion. Coherently with the recent history of the information system (from few main stream media to the massive diffusion of socio-technical system), in this work we investigate how main stream media signed interaction might shape the opinion space. In particular we focus on how different size (in the number of media) and interaction patterns of the information system may affect collective debates and thus the opinions' distribution. We introduce a sophisticated computational model of opinion dynamics which accounts for the coexistence of media and gossip as separated mechanisms and for their feedback loops. The model accounts also for the effect of the media communication patterns by considering both the simple case where each medium mimics the behavior of the most successful one (to maximize the audience) and the case where there is polarization and thus competition among media memes. We show that plurality and competition within information sources lead to stable configurations where several and distant cultures coexist.

  12. The Relationship Between Online Social Networking and Depression: A Systematic Review of Quantitative Studies.

    PubMed

    Baker, David A; Algorta, Guillermo Perez

    2016-11-01

    Online social networking sites (SNSs) such as Facebook, Twitter, and MySpace are used by billions of people every day to communicate and interact with others. There has been increasing interest in the potential impact of online social networking on wellbeing, with a broadening body of new research into factors associated with both positive and negative mental health outcomes such as depression. This systematic review of empirical studies (n = 30) adds to existing research in this field by examining current quantitative studies focused on the relationship between online social networking and symptoms of depression. The academic databases PsycINFO, Web of Science, CINAHL, MEDLINE, and EMBASE were searched systematically using terms related to online social networking and depression. Reporting quality was critically appraised and the findings discussed with reference to their wider implications. The findings suggest that the relationship between online social networking and symptoms of depression may be complex and associated with multiple psychological, social, behavioral, and individual factors. Furthermore, the impact of online social networking on wellbeing may be both positive and negative, highlighting the need for future research to determine the impact of candidate mediators and moderators underlying these heterogeneous outcomes across evolving networks.

  13. Active learning of cortical connectivity from two-photon imaging data.

    PubMed

    Bertrán, Martín A; Martínez, Natalia L; Wang, Ye; Dunson, David; Sapiro, Guillermo; Ringach, Dario

    2018-01-01

    Understanding how groups of neurons interact within a network is a fundamental question in system neuroscience. Instead of passively observing the ongoing activity of a network, we can typically perturb its activity, either by external sensory stimulation or directly via techniques such as two-photon optogenetics. A natural question is how to use such perturbations to identify the connectivity of the network efficiently. Here we introduce a method to infer sparse connectivity graphs from in-vivo, two-photon imaging of population activity in response to external stimuli. A novel aspect of the work is the introduction of a recommended distribution, incrementally learned from the data, to optimally refine the inferred network. Unlike existing system identification techniques, this "active learning" method automatically focuses its attention on key undiscovered areas of the network, instead of targeting global uncertainty indicators like parameter variance. We show how active learning leads to faster inference while, at the same time, provides confidence intervals for the network parameters. We present simulations on artificial small-world networks to validate the methods and apply the method to real data. Analysis of frequency of motifs recovered show that cortical networks are consistent with a small-world topology model.

  14. Active learning of cortical connectivity from two-photon imaging data

    PubMed Central

    Wang, Ye; Dunson, David; Sapiro, Guillermo; Ringach, Dario

    2018-01-01

    Understanding how groups of neurons interact within a network is a fundamental question in system neuroscience. Instead of passively observing the ongoing activity of a network, we can typically perturb its activity, either by external sensory stimulation or directly via techniques such as two-photon optogenetics. A natural question is how to use such perturbations to identify the connectivity of the network efficiently. Here we introduce a method to infer sparse connectivity graphs from in-vivo, two-photon imaging of population activity in response to external stimuli. A novel aspect of the work is the introduction of a recommended distribution, incrementally learned from the data, to optimally refine the inferred network. Unlike existing system identification techniques, this “active learning” method automatically focuses its attention on key undiscovered areas of the network, instead of targeting global uncertainty indicators like parameter variance. We show how active learning leads to faster inference while, at the same time, provides confidence intervals for the network parameters. We present simulations on artificial small-world networks to validate the methods and apply the method to real data. Analysis of frequency of motifs recovered show that cortical networks are consistent with a small-world topology model. PMID:29718955

  15. The BioGRID Interaction Database: 2011 update

    PubMed Central

    Stark, Chris; Breitkreutz, Bobby-Joe; Chatr-aryamontri, Andrew; Boucher, Lorrie; Oughtred, Rose; Livstone, Michael S.; Nixon, Julie; Van Auken, Kimberly; Wang, Xiaodong; Shi, Xiaoqi; Reguly, Teresa; Rust, Jennifer M.; Winter, Andrew; Dolinski, Kara; Tyers, Mike

    2011-01-01

    The Biological General Repository for Interaction Datasets (BioGRID) is a public database that archives and disseminates genetic and protein interaction data from model organisms and humans (http://www.thebiogrid.org). BioGRID currently holds 347 966 interactions (170 162 genetic, 177 804 protein) curated from both high-throughput data sets and individual focused studies, as derived from over 23 000 publications in the primary literature. Complete coverage of the entire literature is maintained for budding yeast (Saccharomyces cerevisiae), fission yeast (Schizosaccharomyces pombe) and thale cress (Arabidopsis thaliana), and efforts to expand curation across multiple metazoan species are underway. The BioGRID houses 48 831 human protein interactions that have been curated from 10 247 publications. Current curation drives are focused on particular areas of biology to enable insights into conserved networks and pathways that are relevant to human health. The BioGRID 3.0 web interface contains new search and display features that enable rapid queries across multiple data types and sources. An automated Interaction Management System (IMS) is used to prioritize, coordinate and track curation across international sites and projects. BioGRID provides interaction data to several model organism databases, resources such as Entrez-Gene and other interaction meta-databases. The entire BioGRID 3.0 data collection may be downloaded in multiple file formats, including PSI MI XML. Source code for BioGRID 3.0 is freely available without any restrictions. PMID:21071413

  16. Adverse outcome pathway networks II: Network analytics.

    PubMed

    Villeneuve, Daniel L; Angrish, Michelle M; Fortin, Marie C; Katsiadaki, Ioanna; Leonard, Marc; Margiotta-Casaluci, Luigi; Munn, Sharon; O'Brien, Jason M; Pollesch, Nathan L; Smith, L Cody; Zhang, Xiaowei; Knapen, Dries

    2018-06-01

    Toxicological responses to stressors are more complex than the simple one-biological-perturbation to one-adverse-outcome model portrayed by individual adverse outcome pathways (AOPs). Consequently, the AOP framework was designed to facilitate de facto development of AOP networks that can aid in the understanding and prediction of pleiotropic and interactive effects more common to environmentally realistic, complex exposure scenarios. The present study introduces nascent concepts related to the qualitative analysis of AOP networks. First, graph theory-based approaches for identifying important topological features are illustrated using 2 example AOP networks derived from existing AOP descriptions. Second, considerations for identifying the most significant path(s) through an AOP network from either a biological or risk assessment perspective are described. Finally, approaches for identifying interactions among AOPs that may result in additive, synergistic, or antagonistic responses (or previously undefined emergent patterns of response) are introduced. Along with a companion article (part I), these concepts set the stage for the development of tools and case studies that will facilitate more rigorous analysis of AOP networks, and the utility of AOP network-based predictions, for use in research and regulatory decision-making. The present study addresses one of the major themes identified through a Society of Environmental Toxicology and Chemistry Horizon Scanning effort focused on advancing the AOP framework. Environ Toxicol Chem 2018;37:1734-1748. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  17. Voluntary Vaccination through Self-organizing Behaviors on Locally-mixed Social Networks.

    PubMed

    Shi, Benyun; Qiu, Hongjun; Niu, Wenfang; Ren, Yizhi; Ding, Hong; Chen, Dan

    2017-06-01

    Voluntary vaccination reflects how individuals weigh the risk of infection and the cost of vaccination against the spread of vaccine-preventable diseases, such as smallpox and measles. In a homogeneously mixing population, the infection risk of an individual depends largely on the proportion of vaccinated individuals due to the effects of herd immunity. While in a structured population, the infection risk can also be affected by the structure of individuals' social network. In this paper, we focus on studying individuals' self-organizing behaviors under the circumstance of voluntary vaccination in different types of social networks. Specifically, we assume that each individual together with his/her neighbors forms a local well-mixed environment, where individuals meet equally often as long as they have a common neighbor. We carry out simulations on four types of locally-mixed social networks to investigate the network effects on voluntary vaccination. Furthermore, we also evaluate individuals' vaccinating decisions through interacting with their "neighbors of neighbors". The results and findings of this paper provide a new perspective for vaccination policy-making by taking into consideration human responses in complex social networks.

  18. Utopia Providing Trusted Social Network Relationships within an Un-trusted Environment

    NASA Astrophysics Data System (ADS)

    Gauvin, William; Liu, Benyuan; Fu, Xinwen; Wang, Jie

    This paper introduces an unobtrusive method and distributed solution set to aid users of on-line social networking sites, by creating a trusted environment in which every member has the ability to identify each other within their private social network by name, gender, age, location, and the specific usage patterns adopted by the group. Utopia protects members by understanding how the social network is created and the specific aspects of the group that make it unique and identifiable. The main focus of Utopia is the protection of the group, and their privacy within a social network from predators and spammers that characteristically do not fit within the well defined usage boundaries of the social network as a whole. The solution set provides defensive, as well as offensive tools to identify these threats. Once identified, client desktop tools are used to prevent these predators from further interaction within the group. In addition, offensive tools are used to determine the origin of the predator to allow actions to be taken by automated tools and law enforcement to alleviate the threat.

  19. Reduction of streamflow monitoring networks by a reference point approach

    NASA Astrophysics Data System (ADS)

    Cetinkaya, Cem P.; Harmancioglu, Nilgun B.

    2014-05-01

    Adoption of an integrated approach to water management strongly forces policy and decision-makers to focus on hydrometric monitoring systems as well. Existing hydrometric networks need to be assessed and revised against the requirements on water quantity data to support integrated management. One of the questions that a network assessment study should resolve is whether a current monitoring system can be consolidated in view of the increased expenditures in time, money and effort imposed on the monitoring activity. Within the last decade, governmental monitoring agencies in Turkey have foreseen an audit on all their basin networks in view of prevailing economic pressures. In particular, they question how they can decide whether monitoring should be continued or terminated at a particular site in a network. The presented study is initiated to address this question by examining the applicability of a method called “reference point approach” (RPA) for network assessment and reduction purposes. The main objective of the study is to develop an easily applicable and flexible network reduction methodology, focusing mainly on the assessment of the “performance” of existing streamflow monitoring networks in view of variable operational purposes. The methodology is applied to 13 hydrometric stations in the Gediz Basin, along the Aegean coast of Turkey. The results have shown that the simplicity of the method, in contrast to more complicated computational techniques, is an asset that facilitates the involvement of decision makers in application of the methodology for a more interactive assessment procedure between the monitoring agency and the network designer. The method permits ranking of hydrometric stations with regard to multiple objectives of monitoring and the desired attributes of the basin network. Another distinctive feature of the approach is that it also assists decision making in cases with limited data and metadata. These features of the RPA approach highlight its advantages over the existing network assessment and reduction methods.

  20. Analysing Health Professionals' Learning Interactions in an Online Social Network: A Longitudinal Study.

    PubMed

    Li, Xin; Verspoor, Karin; Gray, Kathleen; Barnett, Stephen

    2016-01-01

    This paper summarises a longitudinal analysis of learning interactions occurring over three years among health professionals in an online social network. The study employs the techniques of Social Network Analysis (SNA) and statistical modeling to identify the changes in patterns of interaction over time and test associated structural network effects. SNA results indicate overall low participation in the network, although some participants became active over time and even led discussions. In particular, the analysis has shown that a change of lead contributor results in a change in learning interaction and network structure. The analysis of structural network effects demonstrates that the interaction dynamics slow down over time, indicating that interactions in the network are more stable. The health professionals may be reluctant to share knowledge and collaborate in groups but were interested in building personal learning networks or simply seeking information.

  1. Revealing hidden insect-fungus interactions; moderately specialized, modular and anti-nested detritivore networks.

    PubMed

    Jacobsen, Rannveig M; Sverdrup-Thygeson, Anne; Kauserud, Håvard; Birkemoe, Tone

    2018-04-11

    Ecological networks are composed of interacting communities that influence ecosystem structure and function. Fungi are the driving force for ecosystem processes such as decomposition and carbon sequestration in terrestrial habitats, and are strongly influenced by interactions with invertebrates. Yet, interactions in detritivore communities have rarely been considered from a network perspective. In the present study, we analyse the interaction networks between three functional guilds of fungi and insects sampled from dead wood. Using DNA metabarcoding to identify fungi, we reveal a diversity of interactions differing in specificity in the detritivore networks, involving three guilds of fungi. Plant pathogenic fungi were relatively unspecialized in their interactions with insects inhabiting dead wood, while interactions between the insects and wood-decay fungi exhibited the highest degree of specialization, which was similar to estimates for animal-mediated seed dispersal networks in previous studies. The low degree of specialization for insect symbiont fungi was unexpected. In general, the pooled insect-fungus networks were significantly more specialized, more modular and less nested than randomized networks. Thus, the detritivore networks had an unusual anti-nested structure. Future studies might corroborate whether this is a common aspect of networks based on interactions with fungi, possibly owing to their often intense competition for substrate. © 2018 The Author(s).

  2. Network Physiology: How Organ Systems Dynamically Interact

    PubMed Central

    Bartsch, Ronny P.; Liu, Kang K. L.; Bashan, Amir; Ivanov, Plamen Ch.

    2015-01-01

    We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS), we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems. PMID:26555073

  3. Analysis and logical modeling of biological signaling transduction networks

    NASA Astrophysics Data System (ADS)

    Sun, Zhongyao

    The study of network theory and its application span across a multitude of seemingly disparate fields of science and technology: computer science, biology, social science, linguistics, etc. It is the intrinsic similarities embedded in the entities and the way they interact with one another in these systems that link them together. In this dissertation, I present from both the aspect of theoretical analysis and the aspect of application three projects, which primarily focus on signal transduction networks in biology. In these projects, I assembled a network model through extensively perusing literature, performed model-based simulations and validation, analyzed network topology, and proposed a novel network measure. The application of network modeling to the system of stomatal opening in plants revealed a fundamental question about the process that has been left unanswered in decades. The novel measure of the redundancy of signal transduction networks with Boolean dynamics by calculating its maximum node-independent elementary signaling mode set accurately predicts the effect of single node knockout in such signaling processes. The three projects as an organic whole advance the understanding of a real system as well as the behavior of such network models, giving me an opportunity to take a glimpse at the dazzling facets of the immense world of network science.

  4. Performance verification of network function virtualization in software defined optical transport networks

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Hu, Liyazhou; Wang, Wei; Li, Yajie; Zhang, Jie

    2017-01-01

    With the continuous opening of resource acquisition and application, there are a large variety of network hardware appliances deployed as the communication infrastructure. To lunch a new network application always implies to replace the obsolete devices and needs the related space and power to accommodate it, which will increase the energy and capital investment. Network function virtualization1 (NFV) aims to address these problems by consolidating many network equipment onto industry standard elements such as servers, switches and storage. Many types of IT resources have been deployed to run Virtual Network Functions (vNFs), such as virtual switches and routers. Then how to deploy NFV in optical transport networks is a of great importance problem. This paper focuses on this problem, and gives an implementation architecture of NFV-enabled optical transport networks based on Software Defined Optical Networking (SDON) with the procedure of vNFs call and return. Especially, an implementation solution of NFV-enabled optical transport node is designed, and a parallel processing method for NFV-enabled OTN nodes is proposed. To verify the performance of NFV-enabled SDON, the protocol interaction procedures of control function virtualization and node function virtualization are demonstrated on SDON testbed. Finally, the benefits and challenges of the parallel processing method for NFV-enabled OTN nodes are simulated and analyzed.

  5. Specific non-monotonous interactions increase persistence of ecological networks.

    PubMed

    Yan, Chuan; Zhang, Zhibin

    2014-03-22

    The relationship between stability and biodiversity has long been debated in ecology due to opposing empirical observations and theoretical predictions. Species interaction strength is often assumed to be monotonically related to population density, but the effects on stability of ecological networks of non-monotonous interactions that change signs have not been investigated previously. We demonstrate that for four kinds of non-monotonous interactions, shifting signs to negative or neutral interactions at high population density increases persistence (a measure of stability) of ecological networks, while for the other two kinds of non-monotonous interactions shifting signs to positive interactions at high population density decreases persistence of networks. Our results reveal a novel mechanism of network stabilization caused by specific non-monotonous interaction types through either increasing stable equilibrium points or reducing unstable equilibrium points (or both). These specific non-monotonous interactions may be important in maintaining stable and complex ecological networks, as well as other networks such as genes, neurons, the internet and human societies.

  6. Interaction Control to Synchronize Non-synchronizable Networks

    PubMed Central

    Schröder, Malte; Chakraborty, Sagar; Witthaut, Dirk; Nagler, Jan; Timme, Marc

    2016-01-01

    Synchronization constitutes one of the most fundamental collective dynamics across networked systems and often underlies their function. Whether a system may synchronize depends on the internal unit dynamics as well as the topology and strength of their interactions. For chaotic units with certain interaction topologies synchronization might be impossible across all interaction strengths, meaning that these networks are non-synchronizable. Here we propose the concept of interaction control, generalizing transient uncoupling, to induce desired collective dynamics in complex networks and apply it to synchronize even such non-synchronizable systems. After highlighting that non-synchronizability prevails for a wide range of networks of arbitrary size, we explain how a simple binary control may localize interactions in state space and thereby synchronize networks. Intriguingly, localizing interactions by a fixed control scheme enables stable synchronization across all connected networks regardless of topological constraints. Interaction control may thus ease the design of desired collective dynamics even without knowledge of the networks’ exact interaction topology and consequently have implications for biological and self-organizing technical systems. PMID:27853266

  7. Deciphering microbial interactions and detecting keystone species with co-occurrence networks.

    PubMed

    Berry, David; Widder, Stefanie

    2014-01-01

    Co-occurrence networks produced from microbial survey sequencing data are frequently used to identify interactions between community members. While this approach has potential to reveal ecological processes, it has been insufficiently validated due to the technical limitations inherent in studying complex microbial ecosystems. Here, we simulate multi-species microbial communities with known interaction patterns using generalized Lotka-Volterra dynamics. We then construct co-occurrence networks and evaluate how well networks reveal the underlying interactions and how experimental and ecological parameters can affect network inference and interpretation. We find that co-occurrence networks can recapitulate interaction networks under certain conditions, but that they lose interpretability when the effects of habitat filtering become significant. We demonstrate that networks suffer from local hot spots of spurious correlation in the neighborhood of hub species that engage in many interactions. We also identify topological features associated with keystone species in co-occurrence networks. This study provides a substantiated framework to guide environmental microbiologists in the construction and interpretation of co-occurrence networks from microbial survey datasets.

  8. Controllability of multiplex, multi-time-scale networks

    NASA Astrophysics Data System (ADS)

    Pósfai, Márton; Gao, Jianxi; Cornelius, Sean P.; Barabási, Albert-László; D'Souza, Raissa M.

    2016-09-01

    The paradigm of layered networks is used to describe many real-world systems, from biological networks to social organizations and transportation systems. While recently there has been much progress in understanding the general properties of multilayer networks, our understanding of how to control such systems remains limited. One fundamental aspect that makes this endeavor challenging is that each layer can operate at a different time scale; thus, we cannot directly apply standard ideas from structural control theory of individual networks. Here we address the problem of controlling multilayer and multi-time-scale networks focusing on two-layer multiplex networks with one-to-one interlayer coupling. We investigate the practically relevant case when the control signal is applied to the nodes of one layer. We develop a theory based on disjoint path covers to determine the minimum number of inputs (Ni) necessary for full control. We show that if both layers operate on the same time scale, then the network structure of both layers equally affect controllability. In the presence of time-scale separation, controllability is enhanced if the controller interacts with the faster layer: Ni decreases as the time-scale difference increases up to a critical time-scale difference, above which Ni remains constant and is completely determined by the faster layer. We show that the critical time-scale difference is large if layer I is easy and layer II is hard to control in isolation. In contrast, control becomes increasingly difficult if the controller interacts with the layer operating on the slower time scale and increasing time-scale separation leads to increased Ni, again up to a critical value, above which Ni still depends on the structure of both layers. This critical value is largely determined by the longest path in the faster layer that does not involve cycles. By identifying the underlying mechanisms that connect time-scale difference and controllability for a simplified model, we provide crucial insight into disentangling how our ability to control real interacting complex systems is affected by a variety of sources of complexity.

  9. Weighted projected networks: mapping hypergraphs to networks.

    PubMed

    López, Eduardo

    2013-05-01

    Many natural, technological, and social systems incorporate multiway interactions, yet are characterized and measured on the basis of weighted pairwise interactions. In this article, I propose a family of models in which pairwise interactions originate from multiway interactions, by starting from ensembles of hypergraphs and applying projections that generate ensembles of weighted projected networks. I calculate analytically the statistical properties of weighted projected networks, and suggest ways these could be used beyond theoretical studies. Weighted projected networks typically exhibit weight disorder along links even for very simple generating hypergraph ensembles. Also, as the size of a hypergraph changes, a signature of multiway interaction emerges on the link weights of weighted projected networks that distinguishes them from fundamentally weighted pairwise networks. This signature could be used to search for hidden multiway interactions in weighted network data. I find the percolation threshold and size of the largest component for hypergraphs of arbitrary uniform rank, translate the results into projected networks, and show that the transition is second order. This general approach to network formation has the potential to shed new light on our understanding of weighted networks.

  10. Minimal Network Topologies for Signal Processing during Collective Cell Chemotaxis.

    PubMed

    Yue, Haicen; Camley, Brian A; Rappel, Wouter-Jan

    2018-06-19

    Cell-cell communication plays an important role in collective cell migration. However, it remains unclear how cells in a group cooperatively process external signals to determine the group's direction of motion. Although the topology of signaling pathways is vitally important in single-cell chemotaxis, the signaling topology for collective chemotaxis has not been systematically studied. Here, we combine mathematical analysis and simulations to find minimal network topologies for multicellular signal processing in collective chemotaxis. We focus on border cell cluster chemotaxis in the Drosophila egg chamber, in which responses to several experimental perturbations of the signaling network are known. Our minimal signaling network includes only four elements: a chemoattractant, the protein Rac (indicating cell activation), cell protrusion, and a hypothesized global factor responsible for cell-cell interaction. Experimental data on cell protrusion statistics allows us to systematically narrow the number of possible topologies from more than 40,000,000 to only six minimal topologies with six interactions between the four elements. This analysis does not require a specific functional form of the interactions, and only qualitative features are needed; it is thus robust to many modeling choices. Simulations of a stochastic biochemical model of border cell chemotaxis show that the qualitative selection procedure accurately determines which topologies are consistent with the experiment. We fit our model for all six proposed topologies; each produces results that are consistent with all experimentally available data. Finally, we suggest experiments to further discriminate possible pathway topologies. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Asymmetrically interacting spreading dynamics on complex layered networks.

    PubMed

    Wang, Wei; Tang, Ming; Yang, Hui; Younghae Do; Lai, Ying-Cheng; Lee, GyuWon

    2014-05-29

    The spread of disease through a physical-contact network and the spread of information about the disease on a communication network are two intimately related dynamical processes. We investigate the asymmetrical interplay between the two types of spreading dynamics, each occurring on its own layer, by focusing on the two fundamental quantities underlying any spreading process: epidemic threshold and the final infection ratio. We find that an epidemic outbreak on the contact layer can induce an outbreak on the communication layer, and information spreading can effectively raise the epidemic threshold. When structural correlation exists between the two layers, the information threshold remains unchanged but the epidemic threshold can be enhanced, making the contact layer more resilient to epidemic outbreak. We develop a physical theory to understand the intricate interplay between the two types of spreading dynamics.

  12. Asymmetrically interacting spreading dynamics on complex layered networks

    PubMed Central

    Wang, Wei; Tang, Ming; Yang, Hui; Younghae Do; Lai, Ying-Cheng; Lee, GyuWon

    2014-01-01

    The spread of disease through a physical-contact network and the spread of information about the disease on a communication network are two intimately related dynamical processes. We investigate the asymmetrical interplay between the two types of spreading dynamics, each occurring on its own layer, by focusing on the two fundamental quantities underlying any spreading process: epidemic threshold and the final infection ratio. We find that an epidemic outbreak on the contact layer can induce an outbreak on the communication layer, and information spreading can effectively raise the epidemic threshold. When structural correlation exists between the two layers, the information threshold remains unchanged but the epidemic threshold can be enhanced, making the contact layer more resilient to epidemic outbreak. We develop a physical theory to understand the intricate interplay between the two types of spreading dynamics. PMID:24872257

  13. Species interactions in occurrence data for a community of tick-transmitted pathogens

    PubMed Central

    Estrada-Peña, Agustín; de la Fuente, José

    2016-01-01

    Interactions between tick species, their realized range of hosts, the pathogens they carry and transmit, and the geographic distribution of species in the Western Palearctic were determined based on evidence published between 1970–2014. These relationships were linked to remotely sensed features of temperature and vegetation and used to extract the network of interactions among the organisms. The resulting datasets focused on niche overlap among ticks and hosts, species interactions, and the fraction of the environmental niche in which tick-borne pathogens may circulate as a result of interactions and overlapping environmental traits. The resulting datasets provide a valuable resource for researchers interested in tick-borne pathogens, as they conciliate the abiotic and biotic sides of their niche, allowing exploration of the importance of each host species acting as a vertebrate reservoir in the circulation of tick-transmitted pathogens in the environmental niche. PMID:27479213

  14. Developing algorithm for the critical care physician scheduling

    NASA Astrophysics Data System (ADS)

    Lee, Hyojun; Pah, Adam; Amaral, Luis; Northwestern Memorial Hospital Collaboration

    Understanding the social network has enabled us to quantitatively study social phenomena such as behaviors in adoption and propagation of information. However, most work has been focusing on networks of large heterogeneous communities, and little attention has been paid to how work-relevant information spreads within networks of small and homogeneous groups of highly trained individuals, such as physicians. Within the professionals, the behavior patterns and the transmission of information relevant to the job are dependent not only on the social network between the employees but also on the schedules and teams that work together. In order to systematically investigate the dependence of the spread of ideas and adoption of innovations on a work-environment network, we sought to construct a model for the interaction network of critical care physicians at Northwestern Memorial Hospital (NMH) based on their work schedules. We inferred patterns and hidden rules from past work schedules such as turnover rates. Using the characteristics of the work schedules of the physicians and their turnover rates, we were able to create multi-year synthetic work schedules for a generic intensive care unit. The algorithm for creating shift schedules can be applied to other schedule dependent networks ARO1.

  15. Landslide Susceptibility Index Determination Using Aritificial Neural Network

    NASA Astrophysics Data System (ADS)

    Kawabata, D.; Bandibas, J.; Urai, M.

    2004-12-01

    The occurrence of landslide is the result of the interaction of complex and diverse environmental factors. The geomorphic features, rock types and geologic structure are especially important base factors of the landslide occurrence. Generating landslide susceptibility index by defining the relationship between landslide occurrence and that base factors using conventional mathematical and statistical methods is very difficult and inaccurate. This study focuses on generating landslide susceptibility index using artificial neural networks in Southern Japanese Alps. The training data are geomorphic (e.g. altitude, slope and aspect) and geologic parameters (e.g. rock type, distance from geologic boundary and geologic dip-strike angle) and landslides. Artificial neural network structure and training scheme are formulated to generate the index. Data from areas with and without landslide occurrences are used to train the network. The network is trained to output 1 when the input data are from areas with landslides and 0 when no landslide occurred. The trained network generates an output ranging from 0 to 1 reflecting the possibility of landslide occurrence based on the inputted data. Output values nearer to 1 means higher possibility of landslide occurrence. The artificial neural network model is incorporated into the GIS software to generate a landslide susceptibility map.

  16. An Exploration of Social Functioning in Young People with Eating Disorders: A Qualitative Study

    PubMed Central

    Patel, Krisna; Tchanturia, Kate; Harrison, Amy

    2016-01-01

    Previous research indicates adults with eating disorders (EDs) report smaller social networks, and difficulties with social functioning, alongside demonstrating difficulties recognising and regulating emotions in social contexts. Concurrently, those recovered from the illness have discussed the vital role offered by social support and interaction in their recovery. To date, little is known about the social skills and social networks of adolescents with EDs and this study aimed to conduct focus groups to explore the social functioning of 17 inpatients aged 12–17. Data were analysed using thematic analysis and six core themes were identified: group belonging, self-monitoring, social sensitivity, impact of hospitalisation, limited coping strategies and strategies for service provision. Key areas for service provision were: management of anxiety, development and/or maintenance of a social network and development of inter and intrapersonal skills. The most salient finding was that adolescents with EDs reported social difficulties which appeared to persist over and above those typically experienced at this point in the lifespan and therefore a key area for future focus is the development of appropriate coping strategies and solutions to deal with these reported difficulties. PMID:27458808

  17. Connecting the snowpack to the internet of things: an IPv6 architecture for providing real-time measurements of hydrologic systems

    NASA Astrophysics Data System (ADS)

    Kerkez, B.; Zhang, Z.; Oroza, C.; Glaser, S. D.; Bales, R. C.

    2012-12-01

    We describe our improved, robust, and scalable architecture by which to rapidly instrument large-scale watersheds, while providing the resulting data in real-time. Our system consists of more than twenty wireless sensor networks and thousands of sensors, which will be deployed in the American River basin (5000 sq. km) of California. The core component of our system is known as a mote, a tiny, ultra-low-power, embedded wireless computer that can be used for any number of sensing applications. Our new generation of motes is equipped with IPv6 functionality, effectively giving each sensor in the field its own unique IP address, thus permitting users to remotely interact with the devices without going through intermediary services. Thirty to fifty motes will be deployed across 1-2 square kilometer regions to form a mesh-based wireless sensor network. Redundancy of local wireless links will ensure that data will always be able to traverse the network, even if hash wintertime conditions adversely affect some network nodes. These networks will be used to develop spatial estimates of a number of hydrologic parameters, focusing especially on snowpack. Each wireless sensor network has one main network controller, which is responsible with interacting with an embedded Linux computer to relay information across higher-powered, long-range wireless links (cell modems, satellite, WiFi) to neighboring networks and remote, offsite servers. The network manager is also responsible for providing an Internet connection to each mote. Data collected by the sensors can either be read directly by remote hosts, or stored on centralized servers for future access. With 20 such networks deployed in the American River, our system will comprise an unprecedented cyber-physical architecture for measuring hydrologic parameters in large-scale basins. The spatiotemporal density and real-time nature of the data is also expected to significantly improve operational hydrology and water resource management in the basin.

  18. A network biology approach to understanding the importance of chameleon proteins in human physiology and pathology.

    PubMed

    Bahramali, Golnaz; Goliaei, Bahram; Minuchehr, Zarrin; Marashi, Sayed-Amir

    2017-02-01

    Chameleon proteins are proteins which include sequences that can adopt α-helix-β-strand (HE-chameleon) or α-helix-coil (HC-chameleon) or β-strand-coil (CE-chameleon) structures to operate their crucial biological functions. In this study, using a network-based approach, we examined the chameleon proteins to give a better knowledge on these proteins. We focused on proteins with identical chameleon sequences with more than or equal to seven residues long in different PDB entries, which adopt HE-chameleon, HC-chameleon, and CE-chameleon structures in the same protein. One hundred and ninety-one human chameleon proteins were identified via our in-house program. Then, protein-protein interaction (PPI) networks, Gene ontology (GO) enrichment, disease network, and pathway enrichment analyses were performed for our derived data set. We discovered that there are chameleon sequences which reside in protein-protein interaction regions between two proteins critical for their dual function. Analysis of the PPI networks for chameleon proteins introduced five hub proteins, namely TP53, EGFR, HSP90AA1, PPARA, and HIF1A, which were presented in four PPI clusters. The outcomes demonstrate that the chameleon regions are in critical domains of these proteins and are important in the development and treatment of human cancers. The present report is the first network-based functional study of chameleon proteins using computational approaches and might provide a new perspective for understanding the mechanisms of diseases helping us in developing new medical therapies along with discovering new proteins with chameleon properties which are highly important in cancer.

  19. Co-expression network analysis identified six hub genes in association with metastasis risk and prognosis in hepatocellular carcinoma

    PubMed Central

    Feng, Juerong; Zhou, Rui; Chang, Ying; Liu, Jing; Zhao, Qiu

    2017-01-01

    Hepatocellular carcinoma (HCC) has a high incidence and mortality worldwide, and its carcinogenesis and progression are influenced by a complex network of gene interactions. A weighted gene co-expression network was constructed to identify gene modules associated with the clinical traits in HCC (n = 214). Among the 13 modules, high correlation was only found between the red module and metastasis risk (classified by the HCC metastasis gene signature) (R2 = −0.74). Moreover, in the red module, 34 network hub genes for metastasis risk were identified, six of which (ABAT, AGXT, ALDH6A1, CYP4A11, DAO and EHHADH) were also hub nodes in the protein-protein interaction network of the module genes. Thus, a total of six hub genes were identified. In validation, all hub genes showed a negative correlation with the four-stage HCC progression (P for trend < 0.05) in the test set. Furthermore, in the training set, HCC samples with any hub gene lowly expressed demonstrated a higher recurrence rate and poorer survival rate (hazard ratios with 95% confidence intervals > 1). RNA-sequencing data of 142 HCC samples showed consistent results in the prognosis. Gene set enrichment analysis (GSEA) demonstrated that in the samples with any hub gene highly expressed, a total of 24 functional gene sets were enriched, most of which focused on amino acid metabolism and oxidation. In conclusion, co-expression network analysis identified six hub genes in association with HCC metastasis risk and prognosis, which might improve the prognosis by influencing amino acid metabolism and oxidation. PMID:28430663

  20. Inhibitory Network Interactions Shape the Auditory Processing of Natural Communication Signals in the Songbird Auditory Forebrain

    PubMed Central

    Pinaud, Raphael; Terleph, Thomas A.; Tremere, Liisa A.; Phan, Mimi L.; Dagostin, André A.; Leão, Ricardo M.; Mello, Claudio V.; Vicario, David S.

    2008-01-01

    The role of GABA in the central processing of complex auditory signals is not fully understood. We have studied the involvement of GABAA-mediated inhibition in the processing of birdsong, a learned vocal communication signal requiring intact hearing for its development and maintenance. We focused on caudomedial nidopallium (NCM), an area analogous to parts of the mammalian auditory cortex with selective responses to birdsong. We present evidence that GABAA-mediated inhibition plays a pronounced role in NCM's auditory processing of birdsong. Using immunocytochemistry, we show that approximately half of NCM's neurons are GABAergic. Whole cell patch-clamp recordings in a slice preparation demonstrate that, at rest, spontaneously active GABAergic synapses inhibit excitatory inputs onto NCM neurons via GABAA receptors. Multi-electrode electrophysiological recordings in awake birds show that local blockade of GABAA-mediated inhibition in NCM markedly affects the temporal pattern of song-evoked responses in NCM without modifications in frequency tuning. Surprisingly, this blockade increases the phasic and largely suppresses the tonic response component, reflecting dynamic relationships of inhibitory networks that could include disinhibition. Thus processing of learned natural communication sounds in songbirds, and possibly other vocal learners, may depend on complex interactions of inhibitory networks. PMID:18480371

  1. EEG Source Reconstruction Reveals Frontal-Parietal Dynamics of Spatial Conflict Processing

    PubMed Central

    Cohen, Michael X; Ridderinkhof, K. Richard

    2013-01-01

    Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus) conflict modulation in stimulus-contralateral parietal gamma (30–50 Hz), followed by a later alpha-band (8–12 Hz) conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4–8 Hz), alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials) had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions. PMID:23451201

  2. Pleistocene megafaunal interaction networks became more vulnerable after human arrival.

    PubMed

    Pires, Mathias M; Koch, Paul L; Fariña, Richard A; de Aguiar, Marcus A M; dos Reis, Sérgio F; Guimarães, Paulo R

    2015-09-07

    The end of the Pleistocene was marked by the extinction of almost all large land mammals worldwide except in Africa. Although the debate on Pleistocene extinctions has focused on the roles of climate change and humans, the impact of perturbations depends on properties of ecological communities, such as species composition and the organization of ecological interactions. Here, we combined palaeoecological and ecological data, food-web models and community stability analysis to investigate if differences between Pleistocene and modern mammalian assemblages help us understand why the megafauna died out in the Americas while persisting in Africa. We show Pleistocene and modern assemblages share similar network topology, but differences in richness and body size distributions made Pleistocene communities significantly more vulnerable to the effects of human arrival. The structural changes promoted by humans in Pleistocene networks would have increased the likelihood of unstable dynamics, which may favour extinction cascades in communities facing extrinsic perturbations. Our findings suggest that the basic aspects of the organization of ecological communities may have played an important role in major extinction events in the past. Knowledge of community-level properties and their consequences to dynamics may be critical to understand past and future extinctions. © 2015 The Author(s).

  3. Pleistocene megafaunal interaction networks became more vulnerable after human arrival

    PubMed Central

    Pires, Mathias M.; Koch, Paul L.; Fariña, Richard A.; de Aguiar, Marcus A. M.; dos Reis, Sérgio F.; Guimarães, Paulo R.

    2015-01-01

    The end of the Pleistocene was marked by the extinction of almost all large land mammals worldwide except in Africa. Although the debate on Pleistocene extinctions has focused on the roles of climate change and humans, the impact of perturbations depends on properties of ecological communities, such as species composition and the organization of ecological interactions. Here, we combined palaeoecological and ecological data, food-web models and community stability analysis to investigate if differences between Pleistocene and modern mammalian assemblages help us understand why the megafauna died out in the Americas while persisting in Africa. We show Pleistocene and modern assemblages share similar network topology, but differences in richness and body size distributions made Pleistocene communities significantly more vulnerable to the effects of human arrival. The structural changes promoted by humans in Pleistocene networks would have increased the likelihood of unstable dynamics, which may favour extinction cascades in communities facing extrinsic perturbations. Our findings suggest that the basic aspects of the organization of ecological communities may have played an important role in major extinction events in the past. Knowledge of community-level properties and their consequences to dynamics may be critical to understand past and future extinctions. PMID:26336175

  4. Taking Systems Medicine to Heart.

    PubMed

    Trachana, Kalliopi; Bargaje, Rhishikesh; Glusman, Gustavo; Price, Nathan D; Huang, Sui; Hood, Leroy E

    2018-04-27

    Systems medicine is a holistic approach to deciphering the complexity of human physiology in health and disease. In essence, a living body is constituted of networks of dynamically interacting units (molecules, cells, organs, etc) that underlie its collective functions. Declining resilience because of aging and other chronic environmental exposures drives the system to transition from a health state to a disease state; these transitions, triggered by acute perturbations or chronic disturbance, manifest as qualitative shifts in the interactions and dynamics of the disease-perturbed networks. Understanding health-to-disease transitions poses a high-dimensional nonlinear reconstruction problem that requires deep understanding of biology and innovation in study design, technology, and data analysis. With a focus on the principles of systems medicine, this Review discusses approaches for deciphering this biological complexity from a novel perspective, namely, understanding how disease-perturbed networks function; their study provides insights into fundamental disease mechanisms. The immediate goals for systems medicine are to identify early transitions to cardiovascular (and other chronic) diseases and to accelerate the translation of new preventive, diagnostic, or therapeutic targets into clinical practice, a critical step in the development of personalized, predictive, preventive, and participatory (P4) medicine. © 2018 American Heart Association, Inc.

  5. Multichannel Convolutional Neural Network for Biological Relation Extraction.

    PubMed

    Quan, Chanqin; Hua, Lei; Sun, Xiao; Bai, Wenjun

    2016-01-01

    The plethora of biomedical relations which are embedded in medical logs (records) demands researchers' attention. Previous theoretical and practical focuses were restricted on traditional machine learning techniques. However, these methods are susceptible to the issues of "vocabulary gap" and data sparseness and the unattainable automation process in feature extraction. To address aforementioned issues, in this work, we propose a multichannel convolutional neural network (MCCNN) for automated biomedical relation extraction. The proposed model has the following two contributions: (1) it enables the fusion of multiple (e.g., five) versions in word embeddings; (2) the need for manual feature engineering can be obviated by automated feature learning with convolutional neural network (CNN). We evaluated our model on two biomedical relation extraction tasks: drug-drug interaction (DDI) extraction and protein-protein interaction (PPI) extraction. For DDI task, our system achieved an overall f -score of 70.2% compared to the standard linear SVM based system (e.g., 67.0%) on DDIExtraction 2013 challenge dataset. And for PPI task, we evaluated our system on Aimed and BioInfer PPI corpus; our system exceeded the state-of-art ensemble SVM system by 2.7% and 5.6% on f -scores.

  6. Navigating the network: signaling cross-talk in hematopoietic cells

    PubMed Central

    Fraser, Iain D C; Germain, Ronald N

    2009-01-01

    Recent studies in hematopoietic cells have led to a growing appreciation of the diverse modes of molecular and functional cross-talk between canonical signaling pathways. However, these intersections represent only the tip of the iceberg. Emerging global analytical methods are providing an even richer and more complete picture of the many components that measurably interact in a network manner to produce cellular responses. Here we highlight the pieces in this Focus, emphasize the limitations of the present canonical pathway paradigm, and discuss the value of a systems biology approach using more global, quantitative experimental design and data analysis strategies. Lastly, we urge caution about overly facile interpretation of genome- and proteome-level studies. PMID:19295628

  7. Computational Analyses of Synergism in Small Molecular Network Motifs

    PubMed Central

    Zhang, Yili; Smolen, Paul; Baxter, Douglas A.; Byrne, John H.

    2014-01-01

    Cellular functions and responses to stimuli are controlled by complex regulatory networks that comprise a large diversity of molecular components and their interactions. However, achieving an intuitive understanding of the dynamical properties and responses to stimuli of these networks is hampered by their large scale and complexity. To address this issue, analyses of regulatory networks often focus on reduced models that depict distinct, reoccurring connectivity patterns referred to as motifs. Previous modeling studies have begun to characterize the dynamics of small motifs, and to describe ways in which variations in parameters affect their responses to stimuli. The present study investigates how variations in pairs of parameters affect responses in a series of ten common network motifs, identifying concurrent variations that act synergistically (or antagonistically) to alter the responses of the motifs to stimuli. Synergism (or antagonism) was quantified using degrees of nonlinear blending and additive synergism. Simulations identified concurrent variations that maximized synergism, and examined the ways in which it was affected by stimulus protocols and the architecture of a motif. Only a subset of architectures exhibited synergism following paired changes in parameters. The approach was then applied to a model describing interlocked feedback loops governing the synthesis of the CREB1 and CREB2 transcription factors. The effects of motifs on synergism for this biologically realistic model were consistent with those for the abstract models of single motifs. These results have implications for the rational design of combination drug therapies with the potential for synergistic interactions. PMID:24651495

  8. Urban networks among Chinese cities along "the Belt and Road": A case of web search activity in cyberspace.

    PubMed

    Zhang, Lu; Du, Hongru; Zhao, Yannan; Wu, Rongwei; Zhang, Xiaolei

    2017-01-01

    "The Belt and Road" initiative has been expected to facilitate interactions among numerous city centers. This initiative would generate a number of centers, both economic and political, which would facilitate greater interaction. To explore how information flows are merged and the specific opportunities that may be offered, Chinese cities along "the Belt and Road" are selected for a case study. Furthermore, urban networks in cyberspace have been characterized by their infrastructure orientation, which implies that there is a relative dearth of studies focusing on the investigation of urban hierarchies by capturing information flows between Chinese cities along "the Belt and Road". This paper employs Baidu, the main web search engine in China, to examine urban hierarchies. The results show that urban networks become more balanced, shifting from a polycentric to a homogenized pattern. Furthermore, cities in networks tend to have both a hierarchical system and a spatial concentration primarily in regions such as Beijing-Tianjin-Hebei, Yangtze River Delta and the Pearl River Delta region. Urban hierarchy based on web search activity does not follow the existing hierarchical system based on geospatial and economic development in all cases. Moreover, urban networks, under the framework of "the Belt and Road", show several significant corridors and more opportunities for more cities, particularly western cities. Furthermore, factors that may influence web search activity are explored. The results show that web search activity is significantly influenced by the economic gap, geographical proximity and administrative rank of the city.

  9. A hybrid model based on neural networks for biomedical relation extraction.

    PubMed

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Zhang, Shaowu; Sun, Yuanyuan; Yang, Liang

    2018-05-01

    Biomedical relation extraction can automatically extract high-quality biomedical relations from biomedical texts, which is a vital step for the mining of biomedical knowledge hidden in the literature. Recurrent neural networks (RNNs) and convolutional neural networks (CNNs) are two major neural network models for biomedical relation extraction. Neural network-based methods for biomedical relation extraction typically focus on the sentence sequence and employ RNNs or CNNs to learn the latent features from sentence sequences separately. However, RNNs and CNNs have their own advantages for biomedical relation extraction. Combining RNNs and CNNs may improve biomedical relation extraction. In this paper, we present a hybrid model for the extraction of biomedical relations that combines RNNs and CNNs. First, the shortest dependency path (SDP) is generated based on the dependency graph of the candidate sentence. To make full use of the SDP, we divide the SDP into a dependency word sequence and a relation sequence. Then, RNNs and CNNs are employed to automatically learn the features from the sentence sequence and the dependency sequences, respectively. Finally, the output features of the RNNs and CNNs are combined to detect and extract biomedical relations. We evaluate our hybrid model using five public (protein-protein interaction) PPI corpora and a (drug-drug interaction) DDI corpus. The experimental results suggest that the advantages of RNNs and CNNs in biomedical relation extraction are complementary. Combining RNNs and CNNs can effectively boost biomedical relation extraction performance. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. The beta-diversity of species interactions: Untangling the drivers of geographic variation in plant-pollinator diversity and function across scales.

    PubMed

    Burkle, Laura A; Myers, Jonathan A; Belote, R Travis

    2016-01-01

    Geographic patterns of biodiversity have long inspired interest in processes that shape the assembly, diversity, and dynamics of communities at different spatial scales. To study mechanisms of community assembly, ecologists often compare spatial variation in community composition (beta-diversity) across environmental and spatial gradients. These same patterns inspired evolutionary biologists to investigate how micro- and macro-evolutionary processes create gradients in biodiversity. Central to these perspectives are species interactions, which contribute to community assembly and geographic variation in evolutionary processes. However, studies of beta-diversity have predominantly focused on single trophic levels, resulting in gaps in our understanding of variation in species-interaction networks (interaction beta-diversity), especially at scales most relevant to evolutionary studies of geographic variation. We outline two challenges and their consequences in scaling-up studies of interaction beta-diversity from local to biogeographic scales using plant-pollinator interactions as a model system in ecology, evolution, and conservation. First, we highlight how variation in regional species pools may contribute to variation in interaction beta-diversity among biogeographic regions with dissimilar evolutionary history. Second, we highlight how pollinator behavior (host-switching) links ecological networks to geographic patterns of plant-pollinator interactions and evolutionary processes. Third, we outline key unanswered questions regarding the role of geographic variation in plant-pollinator interactions for conservation and ecosystem services (pollination) in changing environments. We conclude that the largest advances in the burgeoning field of interaction beta-diversity will come from studies that integrate frameworks in ecology, evolution, and conservation to understand the causes and consequences of interaction beta-diversity across scales. © 2016 Botanical Society of America.

  11. Modeling and simulating networks of interdependent protein interactions.

    PubMed

    Stöcker, Bianca K; Köster, Johannes; Zamir, Eli; Rahmann, Sven

    2018-05-21

    Protein interactions are fundamental building blocks of biochemical reaction systems underlying cellular functions. The complexity and functionality of these systems emerge not only from the protein interactions themselves but also from the dependencies between these interactions, as generated by allosteric effects or mutual exclusion due to steric hindrance. Therefore, formal models for integrating and utilizing information about interaction dependencies are of high interest. Here, we describe an approach for endowing protein networks with interaction dependencies using propositional logic, thereby obtaining constrained protein interaction networks ("constrained networks"). The construction of these networks is based on public interaction databases as well as text-mined information about interaction dependencies. We present an efficient data structure and algorithm to simulate protein complex formation in constrained networks. The efficiency of the model allows fast simulation and facilitates the analysis of many proteins in large networks. In addition, this approach enables the simulation of perturbation effects, such as knockout of single or multiple proteins and changes of protein concentrations. We illustrate how our model can be used to analyze a constrained human adhesome protein network, which is responsible for the formation of diverse and dynamic cell-matrix adhesion sites. By comparing protein complex formation under known interaction dependencies versus without dependencies, we investigate how these dependencies shape the resulting repertoire of protein complexes. Furthermore, our model enables investigating how the interplay of network topology with interaction dependencies influences the propagation of perturbation effects across a large biochemical system. Our simulation software CPINSim (for Constrained Protein Interaction Network Simulator) is available under the MIT license at http://github.com/BiancaStoecker/cpinsim and as a Bioconda package (https://bioconda.github.io).

  12. Machine Learning for Detecting Gene-Gene Interactions

    PubMed Central

    McKinney, Brett A.; Reif, David M.; Ritchie, Marylyn D.; Moore, Jason H.

    2011-01-01

    Complex interactions among genes and environmental factors are known to play a role in common human disease aetiology. There is a growing body of evidence to suggest that complex interactions are ‘the norm’ and, rather than amounting to a small perturbation to classical Mendelian genetics, interactions may be the predominant effect. Traditional statistical methods are not well suited for detecting such interactions, especially when the data are high dimensional (many attributes or independent variables) or when interactions occur between more than two polymorphisms. In this review, we discuss machine-learning models and algorithms for identifying and characterising susceptibility genes in common, complex, multifactorial human diseases. We focus on the following machine-learning methods that have been used to detect gene-gene interactions: neural networks, cellular automata, random forests, and multifactor dimensionality reduction. We conclude with some ideas about how these methods and others can be integrated into a comprehensive and flexible framework for data mining and knowledge discovery in human genetics. PMID:16722772

  13. Integrating the invisible fabric of nature into fisheries management

    PubMed Central

    Travis, Joseph; Coleman, Felicia C.; Auster, Peter J.; Cury, Philippe M.; Estes, James A.; Orensanz, Jose; Peterson, Charles H.; Power, Mary E.; Steneck, Robert S.; Wootton, J. Timothy

    2014-01-01

    Overfishing and environmental change have triggered many severe and unexpected consequences. As existing communities have collapsed, new ones have become established, fundamentally transforming ecosystems to those that are often less productive for fisheries, more prone to cycles of booms and busts, and thus less manageable. We contend that the failure of fisheries science and management to anticipate these transformations results from a lack of appreciation for the nature, strength, complexity, and outcome of species interactions. Ecologists have come to understand that networks of interacting species exhibit nonlinear dynamics and feedback loops that can produce sudden and unexpected shifts. We argue that fisheries science and management must follow this lead by developing a sharper focus on species interactions and how disrupting these interactions can push ecosystems in which fisheries are embedded past their tipping points. PMID:24367087

  14. Deciphering microbial interactions and detecting keystone species with co-occurrence networks

    PubMed Central

    Berry, David; Widder, Stefanie

    2014-01-01

    Co-occurrence networks produced from microbial survey sequencing data are frequently used to identify interactions between community members. While this approach has potential to reveal ecological processes, it has been insufficiently validated due to the technical limitations inherent in studying complex microbial ecosystems. Here, we simulate multi-species microbial communities with known interaction patterns using generalized Lotka-Volterra dynamics. We then construct co-occurrence networks and evaluate how well networks reveal the underlying interactions and how experimental and ecological parameters can affect network inference and interpretation. We find that co-occurrence networks can recapitulate interaction networks under certain conditions, but that they lose interpretability when the effects of habitat filtering become significant. We demonstrate that networks suffer from local hot spots of spurious correlation in the neighborhood of hub species that engage in many interactions. We also identify topological features associated with keystone species in co-occurrence networks. This study provides a substantiated framework to guide environmental microbiologists in the construction and interpretation of co-occurrence networks from microbial survey datasets. PMID:24904535

  15. Estimation of Global Network Statistics from Incomplete Data

    PubMed Central

    Bliss, Catherine A.; Danforth, Christopher M.; Dodds, Peter Sheridan

    2014-01-01

    Complex networks underlie an enormous variety of social, biological, physical, and virtual systems. A profound complication for the science of complex networks is that in most cases, observing all nodes and all network interactions is impossible. Previous work addressing the impacts of partial network data is surprisingly limited, focuses primarily on missing nodes, and suggests that network statistics derived from subsampled data are not suitable estimators for the same network statistics describing the overall network topology. We generate scaling methods to predict true network statistics, including the degree distribution, from only partial knowledge of nodes, links, or weights. Our methods are transparent and do not assume a known generating process for the network, thus enabling prediction of network statistics for a wide variety of applications. We validate analytical results on four simulated network classes and empirical data sets of various sizes. We perform subsampling experiments by varying proportions of sampled data and demonstrate that our scaling methods can provide very good estimates of true network statistics while acknowledging limits. Lastly, we apply our techniques to a set of rich and evolving large-scale social networks, Twitter reply networks. Based on 100 million tweets, we use our scaling techniques to propose a statistical characterization of the Twitter Interactome from September 2008 to November 2008. Our treatment allows us to find support for Dunbar's hypothesis in detecting an upper threshold for the number of active social contacts that individuals maintain over the course of one week. PMID:25338183

  16. Culture, economic development, social-network type, and mortality: Evidence from Chinese older adults.

    PubMed

    Li, Ting; Yang, Yang Claire; Zhang, Yanlong

    2018-05-01

    This study examined the patterns of social-network types and their relative survival benefits among Chinese older adults. We examined how macro-level social factors such as cultural norms and unbalanced regional economic development shaped older people's network behaviors, and whether these factors could moderate the association between network types and mortality. Using data from the Chinese Longitudinal Healthy Longevity Survey (2008-2014), we identified four network types-diverse, friend-focused, family-focused, and restricted-based on individuals' social network measures. Multinomial logistic analyses revealed that older people situated in an area with a deeply rooted family culture or a more advanced economy tend to be less likely to enroll in a diverse network than a family-focused one. This prevents them from achieving the best adaptive survival, as Cox regression analyses showed that the family-focused network type was less beneficial than the diverse one for the survival of older adults. Furthermore, while the survival advantage of the diverse-network type over the family-focused type did not change with cultural contexts, economic development attenuated the deleterious effects of the friend-focused network type. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Computational Prediction of Protein-Protein Interactions

    PubMed Central

    Ehrenberger, Tobias; Cantley, Lewis C.; Yaffe, Michael B.

    2015-01-01

    The prediction of protein-protein interactions and kinase-specific phosphorylation sites on individual proteins is critical for correctly placing proteins within signaling pathways and networks. The importance of this type of annotation continues to increase with the continued explosion of genomic and proteomic data, particularly with emerging data categorizing posttranslational modifications on a large scale. A variety of computational tools are available for this purpose. In this chapter, we review the general methodologies for these types of computational predictions and present a detailed user-focused tutorial of one such method and computational tool, Scansite, which is freely available to the entire scientific community over the Internet. PMID:25859943

  18. Solution NMR structures of homeodomains from human proteins ALX4, ZHX1, and CASP8AP2 contribute to the structural coverage of the Human Cancer Protein Interaction Network.

    PubMed

    Xu, Xianzhong; Pulavarti, Surya V S R K; Eletsky, Alexander; Huang, Yuanpeng Janet; Acton, Thomas B; Xiao, Rong; Everett, John K; Montelione, Gaetano T; Szyperski, Thomas

    2014-12-01

    High-quality solution NMR structures of three homeodomains from human proteins ALX4, ZHX1 and CASP8AP2 were solved. These domains were chosen as targets of a biomedical theme project pursued by the Northeast Structural Genomics Consortium. This project focuses on increasing the structural coverage of human proteins associated with cancer.

  19. Nonlinear Dynamics on Interconnected Networks

    NASA Astrophysics Data System (ADS)

    Arenas, Alex; De Domenico, Manlio

    2016-06-01

    Networks of dynamical interacting units can represent many complex systems, from the human brain to transportation systems and societies. The study of these complex networks, when accounting for different types of interactions has become a subject of interest in the last few years, especially because its representational power in the description of users' interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.) [1], or in representing different transportation modes in urban networks [2,3]. The general name coined for these networks is multilayer networks, where each layer accounts for a type of interaction (see Fig. 1).

  20. MOLSIM: A modular molecular simulation software

    PubMed Central

    Jurij, Reščič

    2015-01-01

    The modular software MOLSIM for all‐atom molecular and coarse‐grained simulations is presented with focus on the underlying concepts used. The software possesses four unique features: (1) it is an integrated software for molecular dynamic, Monte Carlo, and Brownian dynamics simulations; (2) simulated objects are constructed in a hierarchical fashion representing atoms, rigid molecules and colloids, flexible chains, hierarchical polymers, and cross‐linked networks; (3) long‐range interactions involving charges, dipoles and/or anisotropic dipole polarizabilities are handled either with the standard Ewald sum, the smooth particle mesh Ewald sum, or the reaction‐field technique; (4) statistical uncertainties are provided for all calculated observables. In addition, MOLSIM supports various statistical ensembles, and several types of simulation cells and boundary conditions are available. Intermolecular interactions comprise tabulated pairwise potentials for speed and uniformity and many‐body interactions involve anisotropic polarizabilities. Intramolecular interactions include bond, angle, and crosslink potentials. A very large set of analyses of static and dynamic properties is provided. The capability of MOLSIM can be extended by user‐providing routines controlling, for example, start conditions, intermolecular potentials, and analyses. An extensive set of case studies in the field of soft matter is presented covering colloids, polymers, and crosslinked networks. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:25994597

  1. CD4-gp120 interaction interface - a gateway for HIV-1 infection in human: molecular network, modeling and docking studies.

    PubMed

    Pandey, Deeksha; Podder, Avijit; Pandit, Mansi; Latha, Narayanan

    2017-09-01

    The major causative agent for Acquired Immune Deficiency Syndrome (AIDS) is Human Immunodeficiency Virus-1 (HIV-1). HIV-1 is a predominant subtype of HIV which counts on human cellular mechanism virtually in every aspect of its life cycle. Binding of viral envelope glycoprotein-gp120 with human cell surface CD4 receptor triggers the early infection stage of HIV-1. This study focuses on the interaction interface between these two proteins that play a crucial role for viral infectivity. The CD4-gp120 interaction interface has been studied through a comprehensive protein-protein interaction network (PPIN) analysis and highlighted as a useful step towards identifying potential therapeutic drug targets against HIV-1 infection. We prioritized gp41, Nef and Tat proteins of HIV-1 as valuable drug targets at early stage of viral infection. Lack of crystal structure has made it difficult to understand the biological implication of these proteins during disease progression. Here, computational protein modeling techniques and molecular dynamics simulations were performed to generate three-dimensional models of these targets. Besides, molecular docking was initiated to determine the desirability of these target proteins for already available HIV-1 specific drugs which indicates the usefulness of these protein structures to identify an effective drug combination therapy against AIDS.

  2. Circles of Confidence in Correspondence: Modeling Confidentiality and Secrecy in Knowledge Exchange Networks of Letters and Drawings in the Early Modern Period.

    PubMed

    van den Heuvel, Charles; Weingart, Scott B; Spelt, Nils; Nellen, Henk

    2016-01-01

    Science in the early modern world depended on openness in scholarly communication. On the other hand, a web of commercial, political, and religious conflicts required broad measures of secrecy and confidentiality; similar measures were integral to scholarly rivalries and plagiarism. This paper analyzes confidentiality and secrecy in intellectual and technological knowledge exchange via letters and drawings. We argue that existing approaches to understanding knowledge exchange in early modern Europe--which focus on the Republic of Letters as a unified entity of corresponding scholars--can be improved upon by analyzing multilayered networks of communication. We describe a data model to analyze circles of confidence and cultures of secrecy in intellectual and technological knowledge exchanges. Finally, we discuss the outcomes of a first experiment focusing on the question of how personal and professional/official relationships interact with confidentiality and secrecy, based on a case study of the correspondence of Hugo Grotius.

  3. Applications of Social Network Analysis

    NASA Astrophysics Data System (ADS)

    Thilagam, P. Santhi

    A social network [2] is a description of the social structure between actors, mostly persons, groups or organizations. It indicates the ways in which they are connected with each other by some relationship such as friendship, kinship, finance exchange etc. In a nutshell, when the person uses already known/unknown people to create new contacts, it forms social networking. The social network is not a new concept rather it can be formed when similar people interact with each other directly or indirectly to perform particular task. Examples of social networks include a friendship networks, collaboration networks, co-authorship networks, and co-employees networks which depict the direct interaction among the people. There are also other forms of social networks, such as entertainment networks, business Networks, citation networks, and hyperlink networks, in which interaction among the people is indirect. Generally, social networks operate on many levels, from families up to the level of nations and assists in improving interactive knowledge sharing, interoperability and collaboration.

  4. Characterizing the topology of probabilistic biological networks.

    PubMed

    Todor, Andrei; Dobra, Alin; Kahveci, Tamer

    2013-01-01

    Biological interactions are often uncertain events, that may or may not take place with some probability. This uncertainty leads to a massive number of alternative interaction topologies for each such network. The existing studies analyze the degree distribution of biological networks by assuming that all the given interactions take place under all circumstances. This strong and often incorrect assumption can lead to misleading results. In this paper, we address this problem and develop a sound mathematical basis to characterize networks in the presence of uncertain interactions. Using our mathematical representation, we develop a method that can accurately describe the degree distribution of such networks. We also take one more step and extend our method to accurately compute the joint-degree distributions of node pairs connected by edges. The number of possible network topologies grows exponentially with the number of uncertain interactions. However, the mathematical model we develop allows us to compute these degree distributions in polynomial time in the number of interactions. Our method works quickly even for entire protein-protein interaction (PPI) networks. It also helps us find an adequate mathematical model using MLE. We perform a comparative study of node-degree and joint-degree distributions in two types of biological networks: the classical deterministic networks and the more flexible probabilistic networks. Our results confirm that power-law and log-normal models best describe degree distributions for both probabilistic and deterministic networks. Moreover, the inverse correlation of degrees of neighboring nodes shows that, in probabilistic networks, nodes with large number of interactions prefer to interact with those with small number of interactions more frequently than expected. We also show that probabilistic networks are more robust for node-degree distribution computation than the deterministic ones. all the data sets used, the software implemented and the alignments found in this paper are available at http://bioinformatics.cise.ufl.edu/projects/probNet/.

  5. Human Dopamine Receptors Interaction Network (DRIN): a systems biology perspective on topology, stability and functionality of the network.

    PubMed

    Podder, Avijit; Jatana, Nidhi; Latha, N

    2014-09-21

    Dopamine receptors (DR) are one of the major neurotransmitter receptors present in human brain. Malfunctioning of these receptors is well established to trigger many neurological and psychiatric disorders. Taking into consideration that proteins function collectively in a network for most of the biological processes, the present study is aimed to depict the interactions between all dopamine receptors following a systems biology approach. To capture comprehensive interactions of candidate proteins associated with human dopamine receptors, we performed a protein-protein interaction network (PPIN) analysis of all five receptors and their protein partners by mapping them into human interactome and constructed a human Dopamine Receptors Interaction Network (DRIN). We explored the topology of dopamine receptors as molecular network, revealing their characteristics and the role of central network elements. More to the point, a sub-network analysis was done to determine major functional clusters in human DRIN that govern key neurological pathways. Besides, interacting proteins in a pathway were characterized and prioritized based on their affinity for utmost drug molecules. The vulnerability of different networks to the dysfunction of diverse combination of components was estimated under random and direct attack scenarios. To the best of our knowledge, the current study is unique to put all five dopamine receptors together in a common interaction network and to understand the functionality of interacting proteins collectively. Our study pinpointed distinctive topological and functional properties of human dopamine receptors that have helped in identifying potential therapeutic drug targets in the dopamine interaction network. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Reverse Engineering Cellular Networks with Information Theoretic Methods

    PubMed Central

    Villaverde, Alejandro F.; Ross, John; Banga, Julio R.

    2013-01-01

    Building mathematical models of cellular networks lies at the core of systems biology. It involves, among other tasks, the reconstruction of the structure of interactions between molecular components, which is known as network inference or reverse engineering. Information theory can help in the goal of extracting as much information as possible from the available data. A large number of methods founded on these concepts have been proposed in the literature, not only in biology journals, but in a wide range of areas. Their critical comparison is difficult due to the different focuses and the adoption of different terminologies. Here we attempt to review some of the existing information theoretic methodologies for network inference, and clarify their differences. While some of these methods have achieved notable success, many challenges remain, among which we can mention dealing with incomplete measurements, noisy data, counterintuitive behaviour emerging from nonlinear relations or feedback loops, and computational burden of dealing with large data sets. PMID:24709703

  7. Neural model of gene regulatory network: a survey on supportive meta-heuristics.

    PubMed

    Biswas, Surama; Acharyya, Sriyankar

    2016-06-01

    Gene regulatory network (GRN) is produced as a result of regulatory interactions between different genes through their coded proteins in cellular context. Having immense importance in disease detection and drug finding, GRN has been modelled through various mathematical and computational schemes and reported in survey articles. Neural and neuro-fuzzy models have been the focus of attraction in bioinformatics. Predominant use of meta-heuristic algorithms in training neural models has proved its excellence. Considering these facts, this paper is organized to survey neural modelling schemes of GRN and the efficacy of meta-heuristic algorithms towards parameter learning (i.e. weighting connections) within the model. This survey paper renders two different structure-related approaches to infer GRN which are global structure approach and substructure approach. It also describes two neural modelling schemes, such as artificial neural network/recurrent neural network based modelling and neuro-fuzzy modelling. The meta-heuristic algorithms applied so far to learn the structure and parameters of neutrally modelled GRN have been reviewed here.

  8. Converging models of schizophrenia - Network alterations of prefrontal cortex underlying cognitive impairments

    PubMed Central

    Sakurai, Takeshi; Gamo, Nao J; Hikida, Takatoshi; Kim, Sun-Hong; Murai, Toshiya; Tomoda, Toshifumi; Sawa, Akira

    2015-01-01

    The prefrontal cortex (PFC) and its connections with other brain areas are crucial for cognitive function. Cognitive impairments are one of the core symptoms associated with schizophrenia, and manifest even before the onset of the disorder. Altered neural networks involving PFC contribute to cognitive impairments in schizophrenia. Both genetic and environmental risk factors affect the development of the local circuitry within PFC as well as development of broader brain networks, and make the system vulnerable to further insults during adolescence, leading to the onset of the disorder in young adulthood. Since spared cognitive functions correlate with functional outcome and prognosis, a better understanding of the mechanisms underlying cognitive impairments will have important implications for novel therapeutics for schizophrenia focusing on cognitive functions. Multidisciplinary approaches, from basic neuroscience to clinical studies, are required to link molecules, circuitry, networks, and behavioral phenotypes. Close interactions among such fields by sharing a common language on connectomes, behavioral readouts, and other concepts are crucial for this goal. PMID:26408506

  9. Ant-Plant Interaction in a Tropical Savanna: May the Network Structure Vary over Time and Influence on the Outcomes of Associations?

    PubMed Central

    Lange, Denise; Del-Claro, Kleber

    2014-01-01

    Plant-animal interactions occur in a community context of dynamic and complex ecological interactive networks. The understanding of who interacts with whom is a basic information, but the outcomes of interactions among associates are fundamental to draw valid conclusions about the functional structure of the network. Ecological networks studies in general gave little importance to know the true outcomes of interactions and how they may change over time. We evaluate the dynamic of an interaction network between ants and plants with extrafloral nectaries, by verifying the temporal variation in structure and outcomes of mutualism for the plant community (leaf herbivory). To reach this goal, we used two tools: bipartite network analysis and experimental manipulation. The networks exhibited the same general pattern as other mutualistic networks: nestedness, asymmetry and low specialization and this pattern was maintained over time, but with internal changes (species degree, connectance and ant abundance). These changes influenced the protection effectiveness of plants by ants, which varied over time. Our study shows that interaction networks between ants and plants are dynamic over time, and that these alterations affect the outcomes of mutualisms. In addition, our study proposes that the set of single systems that shape ecological networks can be manipulated for a greater understanding of the entire system. PMID:25141007

  10. The Core Symptoms of Bulimia Nervosa, Anxiety, and Depression: A Network Analysis

    PubMed Central

    Levinson, Cheri A.; Zerwas, Stephanie; Calebs, Benjamin; Forbush, Kelsie; Kordy, Hans; Watson, Hunna; Hofmeier, Sara; Levine, Michele; Crosby, Ross D.; Peat, Christine; Runfola, Cristin D.; Zimmer, Benjamin; Moesner, Markus; Marcus, Marsha D.; Bulik, Cynthia M.

    2017-01-01

    Bulimia nervosa (BN) is characterized by symptoms of binge eating and compensatory behavior, and overevaluation of weight and shape, which often co-occur with symptoms of anxiety and depression. However, there is little research identifying which specific BN symptoms maintain BN psychopathology and how they are associated with symptoms of depression and anxiety. Network analyses represent an emerging method in psychopathology research to examine how symptoms interact and may become self-reinforcing. In the current study of adults with a DSM-IV diagnosis of BN (N = 196), we used network analysis to identify the central symptoms of BN, as well as symptoms that may bridge the association between BN symptoms and anxiety and depression symptoms. Results showed that fear of weight gain was central to BN psychopathology, whereas binge eating, purging, and restriction were less central in the symptom network. Symptoms related to sensitivity to physical sensations (e.g., changes in appetite, feeling dizzy, wobbly) were identified as bridge symptoms between BN, and anxiety and depressive symptoms. We discuss our findings with respect to cognitive-behavioral treatment approaches for BN. These findings suggest that treatments for BN should focus on fear of weight gain, perhaps through exposure therapies. Further, interventions focusing on exposure to physical sensations may also address BN psychopathology, as well as co-occurring anxiety and depressive symptoms. PMID:28277735

  11. Modularity, pollination systems, and interaction turnover in plant-pollinator networks across space.

    PubMed

    Carstensen, Daniel W; Sabatino, Malena; Morellato, Leonor Patricia C

    2016-05-01

    Mutualistic interaction networks have been shown to be structurally conserved over space and time while pairwise interactions show high variability. In such networks, modularity is the division of species into compartments, or modules, where species within modules share more interactions with each other than they do with species from other modules. Such a modular structure is common in mutualistic networks and several evolutionary and ecological mechanisms have been proposed as underlying drivers. One prominent explanation is the existence of pollination syndromes where flowers tend to attract certain pollinators as determined by a set of traits. We investigate the modularity of seven community level plant-pollinator networks sampled in rupestrian grasslands, or campos rupestres, in SE Brazil. Defining pollination systems as corresponding groups of flower syndromes and pollinator functional groups, we test the two hypotheses that (1) interacting species from the same pollination system are more often assigned to the same module than interacting species from different pollination systems and; that (2) interactions between species from the same pollination system are more consistent across space than interactions between species from different pollination systems. Specifically we ask (1) whether networks are consistently modular across space; (2) whether interactions among species of the same pollination system occur more often inside modules, compared to interactions among species of different pollination systems, and finally; (3) whether the spatial variation in interaction identity, i.e., spatial interaction rewiring, is affected by trait complementarity among species as indicated by pollination systems. We confirm that networks are consistently modular across space and that interactions within pollination systems principally occur inside modules. Despite a strong tendency, we did not find a significant effect of pollination systems on the spatial consistency of pairwise interactions. These results indicate that the spatial rewiring of interactions could be constrained by pollination systems, resulting in conserved network structures in spite of high variation in pairwise interactions. Our findings suggest a relevant role of pollination systems in structuring plant-pollinator networks and we argue that structural patterns at the sub-network level can help us to fully understand how and why interactions vary across space and time.

  12. Limitation of degree information for analyzing the interaction evolution in online social networks

    NASA Astrophysics Data System (ADS)

    Shang, Ke-Ke; Yan, Wei-Sheng; Xu, Xiao-Ke

    2014-04-01

    Previously many studies on online social networks simply analyze the static topology in which the friend relationship once established, then the links and nodes will not disappear, but this kind of static topology may not accurately reflect temporal interactions on online social services. In this study, we define four types of users and interactions in the interaction (dynamic) network. We found that active, disappeared, new and super nodes (users) have obviously different strength distribution properties and this result also can be revealed by the degree characteristics of the unweighted interaction and friendship (static) networks. However, the active, disappeared, new and super links (interactions) only can be reflected by the strength distribution in the weighted interaction network. This result indicates the limitation of the static topology data on analyzing social network evolutions. In addition, our study uncovers the approximately stable statistics for the dynamic social network in which there are a large variation for users and interaction intensity. Our findings not only verify the correctness of our definitions, but also helped to study the customer churn and evaluate the commercial value of valuable customers in online social networks.

  13. A systematic study of chemogenomics of carbohydrates.

    PubMed

    Gu, Jiangyong; Luo, Fang; Chen, Lirong; Yuan, Gu; Xu, Xiaojie

    2014-03-04

    Chemogenomics focuses on the interactions between biologically active molecules and protein targets for drug discovery. Carbohydrates are the most abundant compounds in natural products. Compared with other drugs, the carbohydrate drugs show weaker side effects. Searching for multi-target carbohydrate drugs can be regarded as a solution to improve therapeutic efficacy and safety. In this work, we collected 60 344 carbohydrates from the Universal Natural Products Database (UNPD) and explored the chemical space of carbohydrates by principal component analysis. We found that there is a large quantity of potential lead compounds among carbohydrates. Then we explored the potential of carbohydrates in drug discovery by using a network-based multi-target computational approach. All carbohydrates were docked to 2389 target proteins. The most potential carbohydrates for drug discovery and their indications were predicted based on a docking score-weighted prediction model. We also explored the interactions between carbohydrates and target proteins to find the pathological networks, potential drug candidates and new indications.

  14. Host-pathogen interaction in Fusarium oxysporum infections: where do we stand?

    PubMed

    Husaini, Amjad M; Sakina, Aafreen; Cambay, Souliha R

    2018-03-16

    Fusarium oxysporum, a ubiquitous soil-borne pathogen causes devastating vascular wilt in more than 100 plant species and ranks fifth among top ten fungal plant pathogens. It has emerged as a human pathogen too, causing infections in immune-compromised patients. It is, therefore, important to gain insight into the molecular processes involved in the pathogenesis of this trans-kingdom pathogen. A complex network comprising of interconnected and over lapping signal pathways; mitogen-activated protein kinase (MAPK) signaling pathways, Ras proteins, G-protein signaling components and their downstream pathways, components of the velvet (LaeA/VeA/VelB) complex and cAMP pathways, is involved in perceiving the host. This network regulates the expression of various pathogenicity genes. Plants have however evolved an elaborate protection system to combat this attack. They too possess intricate mechanisms at molecular level, which once triggered by pathogen attack transduce signals to activate defense response. This review focuses on understanding and presenting a wholistic picture of the molecular mechanisms of F. oxysporum-host interactions in plant immunity.

  15. Antioxidant Activity of γ-Oryzanol: A Complex Network of Interactions

    PubMed Central

    Minatel, Igor Otavio; Francisqueti, Fabiane Valentini; Corrêa, Camila Renata; Lima, Giuseppina Pace Pereira

    2016-01-01

    γ-oryzanol (Orz), a steryl ferulate extracted from rice bran layer, exerts a wide spectrum of biological activities. In addition to its antioxidant activity, Orz is often associated with cholesterol-lowering, anti-inflammatory, anti-cancer and anti-diabetic effects. In recent years, the usefulness of Orz has been studied for the treatment of metabolic diseases, as it acts to ameliorate insulin activity, cholesterol metabolism, and associated chronic inflammation. Previous studies have shown the direct action of Orz when downregulating the expression of genes that encode proteins related to adiposity (CCAAT/enhancer binding proteins (C/EBPs)), inflammatory responses (nuclear factor kappa-B (NF-κB)), and metabolic syndrome (peroxisome proliferator-activated receptors (PPARs)). It is likely that this wide range of beneficial activities results from a complex network of interactions and signals triggered, and/or inhibited by its antioxidant properties. This review focuses on the significance of Orz in metabolic disorders, which feature remarkable oxidative imbalance, such as impaired glucose metabolism, obesity, and inflammation. PMID:27517904

  16. From Network Analysis to Functional Metabolic Modeling of the Human Gut Microbiota.

    PubMed

    Bauer, Eugen; Thiele, Ines

    2018-01-01

    An important hallmark of the human gut microbiota is its species diversity and complexity. Various diseases have been associated with a decreased diversity leading to reduced metabolic functionalities. Common approaches to investigate the human microbiota include high-throughput sequencing with subsequent correlative analyses. However, to understand the ecology of the human gut microbiota and consequently design novel treatments for diseases, it is important to represent the different interactions between microbes with their associated metabolites. Computational systems biology approaches can give further mechanistic insights by constructing data- or knowledge-driven networks that represent microbe interactions. In this minireview, we will discuss current approaches in systems biology to analyze the human gut microbiota, with a particular focus on constraint-based modeling. We will discuss various community modeling techniques with their advantages and differences, as well as their application to predict the metabolic mechanisms of intestinal microbial communities. Finally, we will discuss future perspectives and current challenges of simulating realistic and comprehensive models of the human gut microbiota.

  17. Antioxidant Activity of γ-Oryzanol: A Complex Network of Interactions.

    PubMed

    Minatel, Igor Otavio; Francisqueti, Fabiane Valentini; Corrêa, Camila Renata; Lima, Giuseppina Pace Pereira

    2016-08-09

    γ-oryzanol (Orz), a steryl ferulate extracted from rice bran layer, exerts a wide spectrum of biological activities. In addition to its antioxidant activity, Orz is often associated with cholesterol-lowering, anti-inflammatory, anti-cancer and anti-diabetic effects. In recent years, the usefulness of Orz has been studied for the treatment of metabolic diseases, as it acts to ameliorate insulin activity, cholesterol metabolism, and associated chronic inflammation. Previous studies have shown the direct action of Orz when downregulating the expression of genes that encode proteins related to adiposity (CCAAT/enhancer binding proteins (C/EBPs)), inflammatory responses (nuclear factor kappa-B (NF-κB)), and metabolic syndrome (peroxisome proliferator-activated receptors (PPARs)). It is likely that this wide range of beneficial activities results from a complex network of interactions and signals triggered, and/or inhibited by its antioxidant properties. This review focuses on the significance of Orz in metabolic disorders, which feature remarkable oxidative imbalance, such as impaired glucose metabolism, obesity, and inflammation.

  18. My Friends Right Next to Me: A Laboratory Investigation on Predictors and Consequences of Experiencing Social Closeness on Social Networking Sites.

    PubMed

    Neubaum, German; Krämer, Nicole C

    2015-08-01

    In the last decade, research has provided a series of insights into how and why the use of social networking sites (SNSs) can be socially and psychologically beneficial for individuals. The present research extends this evidence by focusing on the concept of social closeness as a feeling experienced when using SNSs. In a laboratory setting, participants (N=60) spent 10 minutes on Facebook, and then reported their experiences during this session. Analyses of participants' usage behavior and their experiences revealed that the more time users spent interacting with other users (e.g., commenting on updates), the closer they felt to other people. Interacting with others also predicted users' positive emotional states after Facebook use; this effect may be explained by the perception of social closeness. This study is one of the first to employ momentary measures, offering a further theoretical link between active SNS use and well-being.

  19. Investigating a holobiont: Microbiota perturbations and transkingdom networks.

    PubMed

    Greer, Renee; Dong, Xiaoxi; Morgun, Andrey; Shulzhenko, Natalia

    2016-01-01

    The scientific community has recently come to appreciate that, rather than existing as independent organisms, multicellular hosts and their microbiota comprise a complex evolving superorganism or metaorganism, termed a holobiont. This point of view leads to a re-evaluation of our understanding of different physiological processes and diseases. In this paper we focus on experimental and computational approaches which, when combined in one study, allowed us to dissect mechanisms (traditionally named host-microbiota interactions) regulating holobiont physiology. Specifically, we discuss several approaches for microbiota perturbation, such as use of antibiotics and germ-free animals, including advantages and potential caveats of their usage. We briefly review computational approaches to characterize the microbiota and, more importantly, methods to infer specific components of microbiota (such as microbes or their genes) affecting host functions. One such approach called transkingdom network analysis has been recently developed and applied in our study. (1) Finally, we also discuss common methods used to validate the computational predictions of host-microbiota interactions using in vitro and in vivo experimental systems.

  20. Unfavorable Individuals in Social Gaming Networks.

    PubMed

    Zhang, Yichao; Chen, Guanrong; Guan, Jihong; Zhang, Zhongzhi; Zhou, Shuigeng

    2015-12-09

    In social gaming networks, the current research focus has been on the origin of widespread reciprocal behaviors when individuals play non-cooperative games. In this paper, we investigate the topological properties of unfavorable individuals in evolutionary games. The unfavorable individuals are defined as the individuals gaining the lowest average payoff in a round of game. Since the average payoff is normally considered as a measure of fitness, the unfavorable individuals are very likely to be eliminated or change their strategy updating rules from a Darwinian perspective. Considering that humans can hardly adopt a unified strategy to play with their neighbors, we propose a divide-and-conquer game model, where individuals can interact with their neighbors in the network with appropriate strategies. We test and compare a series of highly rational strategy updating rules. In the tested scenarios, our analytical and simulation results surprisingly reveal that the less-connected individuals in degree-heterogeneous networks are more likely to become the unfavorable individuals. Our finding suggests that the connectivity of individuals as a social capital fundamentally changes the gaming environment. Our model, therefore, provides a theoretical framework for further understanding the social gaming networks.

  1. White matter pathways and social cognition.

    PubMed

    Wang, Yin; Metoki, Athanasia; Alm, Kylie H; Olson, Ingrid R

    2018-04-20

    There is a growing consensus that social cognition and behavior emerge from interactions across distributed regions of the "social brain". Researchers have traditionally focused their attention on functional response properties of these gray matter networks and neglected the vital role of white matter connections in establishing such networks and their functions. In this article, we conduct a comprehensive review of prior research on structural connectivity in social neuroscience and highlight the importance of this literature in clarifying brain mechanisms of social cognition. We pay particular attention to three key social processes: face processing, embodied cognition, and theory of mind, and their respective underlying neural networks. To fully identify and characterize the anatomical architecture of these networks, we further implement probabilistic tractography on a large sample of diffusion-weighted imaging data. The combination of an in-depth literature review and the empirical investigation gives us an unprecedented, well-defined landscape of white matter pathways underlying major social brain networks. Finally, we discuss current problems in the field, outline suggestions for best practice in diffusion-imaging data collection and analysis, and offer new directions for future research. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Unfavorable Individuals in Social Gaming Networks

    NASA Astrophysics Data System (ADS)

    Zhang, Yichao; Chen, Guanrong; Guan, Jihong; Zhang, Zhongzhi; Zhou, Shuigeng

    2015-12-01

    In social gaming networks, the current research focus has been on the origin of widespread reciprocal behaviors when individuals play non-cooperative games. In this paper, we investigate the topological properties of unfavorable individuals in evolutionary games. The unfavorable individuals are defined as the individuals gaining the lowest average payoff in a round of game. Since the average payoff is normally considered as a measure of fitness, the unfavorable individuals are very likely to be eliminated or change their strategy updating rules from a Darwinian perspective. Considering that humans can hardly adopt a unified strategy to play with their neighbors, we propose a divide-and-conquer game model, where individuals can interact with their neighbors in the network with appropriate strategies. We test and compare a series of highly rational strategy updating rules. In the tested scenarios, our analytical and simulation results surprisingly reveal that the less-connected individuals in degree-heterogeneous networks are more likely to become the unfavorable individuals. Our finding suggests that the connectivity of individuals as a social capital fundamentally changes the gaming environment. Our model, therefore, provides a theoretical framework for further understanding the social gaming networks.

  3. In silico polypharmacology of natural products.

    PubMed

    Fang, Jiansong; Liu, Chuang; Wang, Qi; Lin, Ping; Cheng, Feixiong

    2017-04-27

    Natural products with polypharmacological profiles have demonstrated promise as novel therapeutics for various complex diseases, including cancer. Currently, many gaps exist in our knowledge of which compounds interact with which targets, and experimentally testing all possible interactions is infeasible. Recent advances and developments of systems pharmacology and computational (in silico) approaches provide powerful tools for exploring the polypharmacological profiles of natural products. In this review, we introduce recent progresses and advances of computational tools and systems pharmacology approaches for identifying drug targets of natural products by focusing on the development of targeted cancer therapy. We survey the polypharmacological and systems immunology profiles of five representative natural products that are being considered as cancer therapies. We summarize various chemoinformatics, bioinformatics and systems biology resources for reconstructing drug-target networks of natural products. We then review currently available computational approaches and tools for prediction of drug-target interactions by focusing on five domains: target-based, ligand-based, chemogenomics-based, network-based and omics-based systems biology approaches. In addition, we describe a practical example of the application of systems pharmacology approaches by integrating the polypharmacology of natural products and large-scale cancer genomics data for the development of precision oncology under the systems biology framework. Finally, we highlight the promise of cancer immunotherapies and combination therapies that target tumor ecosystems (e.g. clones or 'selfish' sub-clones) via exploiting the immunological and inflammatory 'side' effects of natural products in the cancer post-genomics era. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Physical and social activities mediate the associations between social network types and ventilatory function in Chinese older adults.

    PubMed

    Cheng, Sheung-Tak; Leung, Edward M F; Chan, Trista Wai Sze

    2014-06-01

    This study examined the associations between social network types and peak expiratory flow (PEF), and whether these associations were mediated by social and physical activities and mood. Nine hundred twenty-four community-dwelling Chinese older adults, who were classified into five network types (diverse, friend-focused, family-focused, distant family, and restricted), provided data on demographics, social and physical activities, mood, smoking, chronic diseases, and instrumental activities of daily living. PEF and biological covariates, including blood lipids and glucose, blood pressure, and height and weight, were assessed. Two measures of PEF were analyzed: the raw reading in L/min and the reading expressed as percentage of predicted normal value on the basis of age, sex, and height. Diverse, friend-focused, and distant family networks were hypothesized to have better PEF values compared with restricted networks, through higher physical and/or social activities. No relative advantage was predicted for family-focused networks because such networks tend to be associated with lower physical activity. Older adults with diverse, friend-focused, and distant family networks had significantly better PEF measures than those with restricted networks. The associations between diverse network and PEF measures were partially mediated by physical exercise and socializing activity. The associations between friend-focused network and PEF measures were partially mediated by socializing activity. No significant PEF differences between family-focused and restricted networks were found. Findings suggest that social network types are associated with PEF in older adults, and that network-type differences in physical and socializing activity is partly responsible for this relationship. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  5. Identification of Modules in Protein-Protein Interaction Networks

    NASA Astrophysics Data System (ADS)

    Erten, Sinan; Koyutürk, Mehmet

    In biological systems, most processes are carried out through orchestration of multiple interacting molecules. These interactions are often abstracted using network models. A key feature of cellular networks is their modularity, which contributes significantly to the robustness, as well as adaptability of biological systems. Therefore, modularization of cellular networks is likely to be useful in obtaining insights into the working principles of cellular systems, as well as building tractable models of cellular organization and dynamics. A common, high-throughput source of data on molecular interactions is in the form of physical interactions between proteins, which are organized into protein-protein interaction (PPI) networks. This chapter provides an overview on identification and analysis of functional modules in PPI networks, which has been an active area of research in the last decade.

  6. Gain control through divisive inhibition prevents abrupt transition to chaos in a neural mass model.

    PubMed

    Papasavvas, Christoforos A; Wang, Yujiang; Trevelyan, Andrew J; Kaiser, Marcus

    2015-09-01

    Experimental results suggest that there are two distinct mechanisms of inhibition in cortical neuronal networks: subtractive and divisive inhibition. They modulate the input-output function of their target neurons either by increasing the input that is needed to reach maximum output or by reducing the gain and the value of maximum output itself, respectively. However, the role of these mechanisms on the dynamics of the network is poorly understood. We introduce a novel population model and numerically investigate the influence of divisive inhibition on network dynamics. Specifically, we focus on the transitions from a state of regular oscillations to a state of chaotic dynamics via period-doubling bifurcations. The model with divisive inhibition exhibits a universal transition rate to chaos (Feigenbaum behavior). In contrast, in an equivalent model without divisive inhibition, transition rates to chaos are not bounded by the universal constant (non-Feigenbaum behavior). This non-Feigenbaum behavior, when only subtractive inhibition is present, is linked to the interaction of bifurcation curves in the parameter space. Indeed, searching the parameter space showed that such interactions are impossible when divisive inhibition is included. Therefore, divisive inhibition prevents non-Feigenbaum behavior and, consequently, any abrupt transition to chaos. The results suggest that the divisive inhibition in neuronal networks could play a crucial role in keeping the states of order and chaos well separated and in preventing the onset of pathological neural dynamics.

  7. Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae

    PubMed Central

    Reguly, Teresa; Breitkreutz, Ashton; Boucher, Lorrie; Breitkreutz, Bobby-Joe; Hon, Gary C; Myers, Chad L; Parsons, Ainslie; Friesen, Helena; Oughtred, Rose; Tong, Amy; Stark, Chris; Ho, Yuen; Botstein, David; Andrews, Brenda; Boone, Charles; Troyanskya, Olga G; Ideker, Trey; Dolinski, Kara; Batada, Nizar N; Tyers, Mike

    2006-01-01

    Background The study of complex biological networks and prediction of gene function has been enabled by high-throughput (HTP) methods for detection of genetic and protein interactions. Sparse coverage in HTP datasets may, however, distort network properties and confound predictions. Although a vast number of well substantiated interactions are recorded in the scientific literature, these data have not yet been distilled into networks that enable system-level inference. Results We describe here a comprehensive database of genetic and protein interactions, and associated experimental evidence, for the budding yeast Saccharomyces cerevisiae, as manually curated from over 31,793 abstracts and online publications. This literature-curated (LC) dataset contains 33,311 interactions, on the order of all extant HTP datasets combined. Surprisingly, HTP protein-interaction datasets currently achieve only around 14% coverage of the interactions in the literature. The LC network nevertheless shares attributes with HTP networks, including scale-free connectivity and correlations between interactions, abundance, localization, and expression. We find that essential genes or proteins are enriched for interactions with other essential genes or proteins, suggesting that the global network may be functionally unified. This interconnectivity is supported by a substantial overlap of protein and genetic interactions in the LC dataset. We show that the LC dataset considerably improves the predictive power of network-analysis approaches. The full LC dataset is available at the BioGRID () and SGD () databases. Conclusion Comprehensive datasets of biological interactions derived from the primary literature provide critical benchmarks for HTP methods, augment functional prediction, and reveal system-level attributes of biological networks. PMID:16762047

  8. Commensurate distances and similar motifs in genetic congruence and protein interaction networks in yeast

    PubMed Central

    Ye, Ping; Peyser, Brian D; Spencer, Forrest A; Bader, Joel S

    2005-01-01

    Background In a genetic interaction, the phenotype of a double mutant differs from the combined phenotypes of the underlying single mutants. When the single mutants have no growth defect, but the double mutant is lethal or exhibits slow growth, the interaction is termed synthetic lethality or synthetic fitness. These genetic interactions reveal gene redundancy and compensating pathways. Recently available large-scale data sets of genetic interactions and protein interactions in Saccharomyces cerevisiae provide a unique opportunity to elucidate the topological structure of biological pathways and how genes function in these pathways. Results We have defined congruent genes as pairs of genes with similar sets of genetic interaction partners and constructed a genetic congruence network by linking congruent genes. By comparing path lengths in three types of networks (genetic interaction, genetic congruence, and protein interaction), we discovered that high genetic congruence not only exhibits correlation with direct protein interaction linkage but also exhibits commensurate distance with the protein interaction network. However, consistent distances were not observed between genetic and protein interaction networks. We also demonstrated that congruence and protein networks are enriched with motifs that indicate network transitivity, while the genetic network has both transitive (triangle) and intransitive (square) types of motifs. These results suggest that robustness of yeast cells to gene deletions is due in part to two complementary pathways (square motif) or three complementary pathways, any two of which are required for viability (triangle motif). Conclusion Genetic congruence is superior to genetic interaction in prediction of protein interactions and function associations. Genetically interacting pairs usually belong to parallel compensatory pathways, which can generate transitive motifs (any two of three pathways needed) or intransitive motifs (either of two pathways needed). PMID:16283923

  9. Processes entangling interactions in communities: forbidden links are more important than abundance in a hummingbird-plant network.

    PubMed

    Vizentin-Bugoni, Jeferson; Maruyama, Pietro Kiyoshi; Sazima, Marlies

    2014-04-07

    Understanding the relative importance of multiple processes on structuring species interactions within communities is one of the major challenges in ecology. Here, we evaluated the relative importance of species abundance and forbidden links in structuring a hummingbird-plant interaction network from the Atlantic rainforest in Brazil. Our results show that models incorporating phenological overlapping and morphological matches were more accurate in predicting the observed interactions than models considering species abundance. This means that forbidden links, by imposing constraints on species interactions, play a greater role than species abundance in structuring the ecological network. We also show that using the frequency of interaction as a proxy for species abundance and network metrics to describe the detailed network structure might lead to biased conclusions regarding mechanisms generating network structure. Together, our findings suggest that species abundance can be a less important driver of species interactions in communities than previously thought.

  10. Processes entangling interactions in communities: forbidden links are more important than abundance in a hummingbird–plant network

    PubMed Central

    Vizentin-Bugoni, Jeferson; Maruyama, Pietro Kiyoshi; Sazima, Marlies

    2014-01-01

    Understanding the relative importance of multiple processes on structuring species interactions within communities is one of the major challenges in ecology. Here, we evaluated the relative importance of species abundance and forbidden links in structuring a hummingbird–plant interaction network from the Atlantic rainforest in Brazil. Our results show that models incorporating phenological overlapping and morphological matches were more accurate in predicting the observed interactions than models considering species abundance. This means that forbidden links, by imposing constraints on species interactions, play a greater role than species abundance in structuring the ecological network. We also show that using the frequency of interaction as a proxy for species abundance and network metrics to describe the detailed network structure might lead to biased conclusions regarding mechanisms generating network structure. Together, our findings suggest that species abundance can be a less important driver of species interactions in communities than previously thought. PMID:24552835

  11. An integrative system biology approach to unravel potential drug candidates for multiple age related disorders.

    PubMed

    Srivastava, Isha; Khurana, Pooja; Yadav, Mohini; Hasija, Yasha

    2017-12-01

    Aging, though an inevitable part of life, is becoming a worldwide social and economic problem. Healthy aging is usually marked by low probability of age related disorders. Good therapeutic approaches are still in need to cure age related disorders. Occurrence of more than one ARD in an individual, expresses the need of discovery of such target proteins, which can affect multiple ARDs. Advanced scientific and medical research technologies throughout last three decades have arrived to the point where lots of key molecular determinants affect human disorders can be examined thoroughly. In this study, we designed and executed an approach to prioritize drugs that may target multiple age related disorders. Our methodology, focused on the analysis of biological pathways and protein protein interaction networks that may contribute to the pharmacology of age related disorders, included various steps such as retrieval and analysis of data, protein-protein interaction network analysis, and statistical and comparative analysis of topological coefficients, pathway, and functional enrichment analysis, and identification of drug-target proteins. We assume that the identified molecular determinants may be prioritized for further screening as novel drug targets to cure multiple ARDs. Based on the analysis, an online tool named as 'ARDnet' has been developed to construct and demonstrate ARD interactions at the level of PPI, ARDs and ARDs protein interaction, ARDs pathway interaction and drug-target interaction. The tool is freely made available at http://genomeinformatics.dtu.ac.in/ARDNet/Index.html. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The critical protein interactions and structures that elicit growth deregulation in cancer and viral replication

    PubMed Central

    Ou, Horng D.; May, Andrew P.

    2010-01-01

    One of the greatest challenges in biomedicine is to define the critical targets and network interactions that are subverted to elicit growth deregulation in human cells. Understanding and developing rational treatments for cancer requires a definition of the key molecular targets and how they interact to elicit the complex growth deregulation phenotype. Viral proteins provide discerning and powerful probes to understand both how cells work and how they can be manipulated using a minimal number of components. The small DNA viruses have evolved to target inherent weaknesses in cellular protein interaction networks to hijack the cellular DNA and protein replication machinery. In the battle to escape the inevitability of senescence and programmed cell death, cancers have converged on similar mechanisms, through the acquisition and selection of somatic mutations that drive unchecked cellular replication in tumors. Understanding the dynamic mechanisms through which a minimal number of viral proteins promote host cells to undergo unscheduled and pathological replication is a powerful strategy to identify critical targets that are also disrupted in cancer. Viruses can therefore be used as tools to probe the system-wide protein-protein interactions and structures that drive growth deregulation in human cells. Ultimately this can provide a path for developing system context-dependent therapeutics. This review will describe ongoing experimental approaches using viruses to study pathways deregulated in cancer, with a particular focus on viral cellular protein-protein interactions and structures. PMID:21061422

  13. Earthquake Education and Public Information Centers: A Collaboration Between the Earthquake Country Alliance and Free-Choice Learning Institutions in California

    NASA Astrophysics Data System (ADS)

    Degroot, R. M.; Springer, K.; Brooks, C. J.; Schuman, L.; Dalton, D.; Benthien, M. L.

    2009-12-01

    In 1999 the Southern California Earthquake Center initiated an effort to expand its reach to multiple target audiences through the development of an interpretive trail on the San Andreas fault at Wallace Creek and an earthquake exhibit at Fingerprints Youth Museum in Hemet. These projects and involvement with the San Bernardino County Museum in Redlands beginning in 2007 led to the creation of Earthquake Education and Public Information Centers (EPIcenters) in 2008. The impetus for the development of the network was to broaden participation in The Great Southern California ShakeOut. In 2009 it has grown to be more comprehensive in its scope including its evolution into a statewide network. EPIcenters constitute a variety of free-choice learning institutions, representing museums, science centers, libraries, universities, parks, and other places visited by a variety of audiences including families, seniors, and school groups. They share a commitment to demonstrating and encouraging earthquake preparedness. EPIcenters coordinate Earthquake Country Alliance activities in their county or region, lead presentations or organize events in their communities, or in other ways demonstrate leadership in earthquake education and risk reduction. The San Bernardino County Museum (Southern California) and The Tech Museum of Innovation (Northern California) serve as EPIcenter regional coordinating institutions. They interact with over thirty institutional partners who have implemented a variety of activities from displays and talks to earthquake exhibitions. While many activities are focused on the time leading up to and just after the ShakeOut, most EPIcenter members conduct activities year round. Network members at Kidspace Museum in Pasadena and San Diego Natural History Museum have formed EPIcenter focus groups on early childhood education and safety and security. This presentation highlights the development of the EPIcenter network, synergistic activities resulting from this collaboration, and lessons learned from interacting with free-choice learning institutions.

  14. Immediate and Longitudinal Alterations of Functional Networks after Thalamotomy in Essential Tremor

    PubMed Central

    Jang, Changwon; Park, Hae-Jeong; Chang, Won Seok; Pae, Chongwon; Chang, Jin Woo

    2016-01-01

    Thalamotomy at the ventralis intermedius nucleus has been an effective treatment method for essential tremor, but how the brain network changes immediately responding to this deliberate lesion and then reorganizes afterwards are not clear. Taking advantage of a non-cranium-opening MRI-guided focused ultrasound ablation technique, we investigated functional network changes due to a focal lesion. To classify the diverse time courses of those network changes with respect to symptom-related long-lasting treatment effects and symptom-unrelated transient effects, we applied graph-theoretic analyses to longitudinal resting-state functional magnetic resonance imaging data before and 1 day, 7 days, and 3 months after thalamotomy with essential tremor. We found reduced average connections among the motor-related areas, reduced connectivity between substantia nigra and external globus pallidum and reduced total connection in the thalamus after thalamotomy, which are all associated with clinical rating scales. The average connectivity among whole brain regions and inter-hemispheric network asymmetry show symptom-unrelated transient increases, indicating temporary reconfiguration of the whole brain network. In summary, thalamotomy regulates interactions over the motor network via symptom-related connectivity changes but accompanies transient, symptom-unrelated diaschisis in the global brain network. This study suggests the significance of longitudinal network analysis, combined with minimal-invasive treatment techniques, in understanding time-dependent diaschisis in the brain network due to a focal lesion. PMID:27822200

  15. Gene network analysis: from heart development to cardiac therapy.

    PubMed

    Ferrazzi, Fulvia; Bellazzi, Riccardo; Engel, Felix B

    2015-03-01

    Networks offer a flexible framework to represent and analyse the complex interactions between components of cellular systems. In particular gene networks inferred from expression data can support the identification of novel hypotheses on regulatory processes. In this review we focus on the use of gene network analysis in the study of heart development. Understanding heart development will promote the elucidation of the aetiology of congenital heart disease and thus possibly improve diagnostics. Moreover, it will help to establish cardiac therapies. For example, understanding cardiac differentiation during development will help to guide stem cell differentiation required for cardiac tissue engineering or to enhance endogenous repair mechanisms. We introduce different methodological frameworks to infer networks from expression data such as Boolean and Bayesian networks. Then we present currently available temporal expression data in heart development and discuss the use of network-based approaches in published studies. Collectively, our literature-based analysis indicates that gene network analysis constitutes a promising opportunity to infer therapy-relevant regulatory processes in heart development. However, the use of network-based approaches has so far been limited by the small amount of samples in available datasets. Thus, we propose to acquire high-resolution temporal expression data to improve the mathematical descriptions of regulatory processes obtained with gene network inference methodologies. Especially probabilistic methods that accommodate the intrinsic variability of biological systems have the potential to contribute to a deeper understanding of heart development.

  16. Identification of functional modules using network topology and high-throughput data.

    PubMed

    Ulitsky, Igor; Shamir, Ron

    2007-01-26

    With the advent of systems biology, biological knowledge is often represented today by networks. These include regulatory and metabolic networks, protein-protein interaction networks, and many others. At the same time, high-throughput genomics and proteomics techniques generate very large data sets, which require sophisticated computational analysis. Usually, separate and different analysis methodologies are applied to each of the two data types. An integrated investigation of network and high-throughput information together can improve the quality of the analysis by accounting simultaneously for topological network properties alongside intrinsic features of the high-throughput data. We describe a novel algorithmic framework for this challenge. We first transform the high-throughput data into similarity values, (e.g., by computing pairwise similarity of gene expression patterns from microarray data). Then, given a network of genes or proteins and similarity values between some of them, we seek connected sub-networks (or modules) that manifest high similarity. We develop algorithms for this problem and evaluate their performance on the osmotic shock response network in S. cerevisiae and on the human cell cycle network. We demonstrate that focused, biologically meaningful and relevant functional modules are obtained. In comparison with extant algorithms, our approach has higher sensitivity and higher specificity. We have demonstrated that our method can accurately identify functional modules. Hence, it carries the promise to be highly useful in analysis of high throughput data.

  17. Network dynamics in nanofilled polymers

    NASA Astrophysics Data System (ADS)

    Baeza, Guilhem P.; Dessi, Claudia; Costanzo, Salvatore; Zhao, Dan; Gong, Shushan; Alegria, Angel; Colby, Ralph H.; Rubinstein, Michael; Vlassopoulos, Dimitris; Kumar, Sanat K.

    2016-04-01

    It is well accepted that adding nanoparticles (NPs) to polymer melts can result in significant property improvements. Here we focus on the causes of mechanical reinforcement and present rheological measurements on favourably interacting mixtures of spherical silica NPs and poly(2-vinylpyridine), complemented by several dynamic and structural probes. While the system dynamics are polymer-like with increased friction for low silica loadings, they turn network-like when the mean face-to-face separation between NPs becomes smaller than the entanglement tube diameter. Gel-like dynamics with a Williams-Landel-Ferry temperature dependence then result. This dependence turns particle dominated, that is, Arrhenius-like, when the silica loading increases to ~31 vol%, namely, when the average nearest distance between NP faces becomes comparable to the polymer's Kuhn length. Our results demonstrate that the flow properties of nanocomposites are complex and can be tuned via changes in filler loading, that is, the character of polymer bridges which `tie' NPs together into a network.

  18. Security management based on trust determination in cognitive radio networks

    NASA Astrophysics Data System (ADS)

    Li, Jianwu; Feng, Zebing; Wei, Zhiqing; Feng, Zhiyong; Zhang, Ping

    2014-12-01

    Security has played a major role in cognitive radio networks. Numerous researches have mainly focused on attacking detection based on source localization and detection probability. However, few of them took the penalty of attackers into consideration and neglected how to implement effective punitive measures against attackers. To address this issue, this article proposes a novel penalty mechanism based on cognitive trust value. The main feature of this mechanism has been realized by six functions: authentication, interactive, configuration, trust value collection, storage and update, and punishment. Data fusion center (FC) and cluster heads (CHs) have been put forward as a hierarchical architecture to manage trust value of cognitive users. Misbehaving users would be punished by FC by declining their trust value; thus, guaranteeing network security via distinguishing attack users is of great necessity. Simulation results verify the rationality and effectiveness of our proposed mechanism.

  19. Beyond policy networks: policy framing and the politics of expertise in the 2001 Foot and Mouth Disease crisis.

    PubMed

    Wilkinson, Katy; Lowe, Philip; Donaldson, Andrew

    2010-01-01

    For the past decade, the policy community/issue network typology of pressure group interaction has been used to explain policy outcomes and the policy-making process. To re-examine the validity of this typology, the paper focuses on the UK government's response to the 2001 Foot and Mouth Disease (FMD) crisis, and in particular the decision to pursue contiguous culling rather than vaccination to overcome the epidemic. Rather than illustrating the emergence of an issue network in agricultural policy, the decision-making process of the FMD outbreak demonstrates continuity with prior crises. In addition, the politicization of scientific expertise is identified as an emerging trend in crisis management. Policy framing is used to explain the impetus behind the contiguous cull decision, concluding that the legacy of previous policy choices conditioned the crisis response to a far greater degree than contemporaneous pressure group action.

  20. Negative Affect, Decision Making, and Attentional Networks.

    PubMed

    Ortega, Ana Raquel; Ramírez, Encarnación; Colmenero, José María; García-Viedma, Ma Del Rosario

    2017-02-01

    This study focuses on whether risk avoidance in decision making depends on negative affect or it is specific to anxious individuals. The Balloon Analogue Risk Task was used to obtain an objective measure in a risk situation with anxious, depressive, and control individuals. The role of attentional networks was also studied using the Attentional Network Test-Interaction (ANT-I) task with neutral stimuli. A significant difference was observed between anxious and depressive individuals in assumed risk in decision making. We found no differences between anxious and normal individuals in the alert, orientation, and congruency effects obtained in the ANT-I task. The results showed that there was no significant relationship between the risk avoidance and the indexes of alertness, orienting, and control. Future research shall determine whether emotionally relevant stimulation leads to attentional control deficit or whether differences between anxious and no anxious individuals are due to the type of strategy followed in choice tasks.

  1. Role of GABAergic inhibition in hippocampal network oscillations.

    PubMed

    Mann, Edward O; Paulsen, Ole

    2007-07-01

    Physiological rhythmic activity in cortical circuits relies on GABAergic inhibition to balance excitation and control spike timing. With a focus on recent experimental progress in the hippocampus, here we review the mechanisms by which synaptic inhibition can control the precise timing of spike generation, by way of effects of GABAergic events on membrane conductance ('shunting' inhibition) and membrane potential ('hyperpolarizing' inhibition). Synaptic inhibition itself can be synchronized by way of interactions within networks of GABAergic neurons, and by excitatory neurons. The importance of GABAergic mechanisms for generation of cortical rhythms is now well established. What remains to be resolved is how such inhibitory control of spike timing can be harnessed for long-range fast synchronization, and the relevance of these mechanisms to network function. This review is part of the INMED/TINS special issue Physiogenic and pathogenic oscillations: the beauty and the beast, based on presentations at the annual INMED/TINS symposium (http://inmednet.com).

  2. #LancerHealth: Using Twitter and Instagram as a tool in a campus wide health promotion initiative.

    PubMed

    Santarossa, Sara; Woodruff, Sarah J

    2018-02-05

    The present study aimed to explore using popular technology that people already have/use as a health promotion tool, in a campus wide social media health promotion initiative, entitled #LancerHealth . During a two-week period the university community was asked to share photos on Twitter and Instagram of What does being healthy on campus look like to you ?, while tagging the image with #LancerHealth . All publically tagged media was collected using the Netlytic software and analysed. Text analysis (N=234 records, Twitter; N=141 records, Instagram) revealed that the majority of the conversation was positive and focused on health and the university. Social network analysis, based on five network properties, showed a small network with little interaction. Lastly, photo coding analysis (N=71 unique image) indicated that the majority of the shared images were of physical activity (52%) and on campus (80%). Further research into this area is warranted.

  3. Influence of Chirality in Ordered Block Copolymer Phases

    NASA Astrophysics Data System (ADS)

    Prasad, Ishan; Grason, Gregory

    2015-03-01

    Block copolymers are known to assemble into rich spectrum of ordered phases, with many complex phases driven by asymmetry in copolymer architecture. Despite decades of study, the influence of intrinsic chirality on equilibrium mesophase assembly of block copolymers is not well understood and largely unexplored. Self-consistent field theory has played a major role in prediction of physical properties of polymeric systems. Only recently, a polar orientational self-consistent field (oSCF) approach was adopted to model chiral BCP having a thermodynamic preference for cholesteric ordering in chiral segments. We implement oSCF theory for chiral nematic copolymers, where segment orientations are characterized by quadrupolar chiral interactions, and focus our study on the thermodynamic stability of bi-continuous network morphologies, and the transfer of molecular chirality to mesoscale chirality of networks. Unique photonic properties observed in butterfly wings have been attributed to presence of chiral single-gyroid networks, this has made it an attractive target for chiral metamaterial design.

  4. Perception as a Route for Motor Skill Learning: Perspectives from Neuroscience.

    PubMed

    Ossmy, Ori; Mukamel, Roy

    2018-04-22

    Learning a motor skill requires physical practice that engages neural networks involved in movement. These networks have also been found to be engaged during perception of sensory signals associated with actions. Nonetheless, despite extensive evidence for the existence of such sensory-evoked neural activity in motor pathways, much less is known about their contribution to learning and actual changes in behavior. Primate studies usually involve an overlearned task while studies in humans have largely focused on characterizing activity of the action observation network (AON) in the context of action understanding, theory of mind, and social interactions. Relatively few studies examined neural plasticity induced by perception and its role in transfer of motor knowledge. Here, we review this body of literature and point to future directions for the development of alternative, physiologically grounded ways in which sensory signals could be harnessed to improve motor skills. Copyright © 2018. Published by Elsevier Ltd.

  5. Correctness Proof of a Self-Stabilizing Distributed Clock Synchronization Protocol for Arbitrary Digraphs

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    2011-01-01

    This report presents a deductive proof of a self-stabilizing distributed clock synchronization protocol. It is focused on the distributed clock synchronization of an arbitrary, non-partitioned digraph ranging from fully connected to 1-connected networks of nodes while allowing for differences in the network elements. This protocol does not rely on assumptions about the initial state of the system, and no central clock or a centrally generated signal, pulse, or message is used. Nodes are anonymous, i.e., they do not have unique identities. There is no theoretical limit on the maximum number of participating nodes. The only constraint on the behavior of the node is that the interactions with other nodes are restricted to defined links and interfaces. We present a deductive proof of the correctness of the protocol as it applies to the networks with unidirectional and bidirectional links. We also confirm the claims of determinism and linear convergence.

  6. Annotating Atomic Components of Papers in Digital Libraries: The Semantic and Social Web Heading towards a Living Document Supporting eSciences

    NASA Astrophysics Data System (ADS)

    García Castro, Alexander; García-Castro, Leyla Jael; Labarga, Alberto; Giraldo, Olga; Montaña, César; O'Neil, Kieran; Bateman, John A.

    Rather than a document that is being constantly re-written as in the wiki approach, the Living Document (LD) is one that acts as a document router, operating by means of structured and organized social tagging and existing ontologies. It offers an environment where users can manage papers and related information, share their knowledge with their peers and discover hidden associations among the shared knowledge. The LD builds upon both the Semantic Web, which values the integration of well-structured data, and the Social Web, which aims to facilitate interaction amongst people by means of user-generated content. In this vein, the LD is similar to a social networking system, with users as central nodes in the network, with the difference that interaction is focused on papers rather than people. Papers, with their ability to represent research interests, expertise, affiliations, and links to web based tools and databanks, represent a central axis for interaction amongst users. To begin to show the potential of this vision, we have implemented a novel web prototype that enables researchers to accomplish three activities central to the Semantic Web vision: organizing, sharing and discovering. Availability: http://www.scientifik.info/

  7. Opinion dynamics on interacting networks: media competition and social influence

    PubMed Central

    Quattrociocchi, Walter; Caldarelli, Guido; Scala, Antonio

    2014-01-01

    The inner dynamics of the multiple actors of the informations systems – i.e, T.V., newspapers, blogs, social network platforms, – play a fundamental role on the evolution of the public opinion. Coherently with the recent history of the information system (from few main stream media to the massive diffusion of socio-technical system), in this work we investigate how main stream media signed interaction might shape the opinion space. In particular we focus on how different size (in the number of media) and interaction patterns of the information system may affect collective debates and thus the opinions' distribution. We introduce a sophisticated computational model of opinion dynamics which accounts for the coexistence of media and gossip as separated mechanisms and for their feedback loops. The model accounts also for the effect of the media communication patterns by considering both the simple case where each medium mimics the behavior of the most successful one (to maximize the audience) and the case where there is polarization and thus competition among media memes. We show that plurality and competition within information sources lead to stable configurations where several and distant cultures coexist. PMID:24861995

  8. A Lane-Level LBS System for Vehicle Network with High-Precision BDS/GPS Positioning

    PubMed Central

    Guo, Chi; Guo, Wenfei; Cao, Guangyi; Dong, Hongbo

    2015-01-01

    In recent years, research on vehicle network location service has begun to focus on its intelligence and precision. The accuracy of space-time information has become a core factor for vehicle network systems in a mobile environment. However, difficulties persist in vehicle satellite positioning since deficiencies in the provision of high-quality space-time references greatly limit the development and application of vehicle networks. In this paper, we propose a high-precision-based vehicle network location service to solve this problem. The major components of this study include the following: (1) application of wide-area precise positioning technology to the vehicle network system. An adaptive correction message broadcast protocol is designed to satisfy the requirements for large-scale target precise positioning in the mobile Internet environment; (2) development of a concurrence service system with a flexible virtual expansion architecture to guarantee reliable data interaction between vehicles and the background; (3) verification of the positioning precision and service quality in the urban environment. Based on this high-precision positioning service platform, a lane-level location service is designed to solve a typical traffic safety problem. PMID:25755665

  9. Complex and unexpected dynamics in simple genetic regulatory networks

    NASA Astrophysics Data System (ADS)

    Borg, Yanika; Ullner, Ekkehard; Alagha, Afnan; Alsaedi, Ahmed; Nesbeth, Darren; Zaikin, Alexey

    2014-03-01

    One aim of synthetic biology is to construct increasingly complex genetic networks from interconnected simpler ones to address challenges in medicine and biotechnology. However, as systems increase in size and complexity, emergent properties lead to unexpected and complex dynamics due to nonlinear and nonequilibrium properties from component interactions. We focus on four different studies of biological systems which exhibit complex and unexpected dynamics. Using simple synthetic genetic networks, small and large populations of phase-coupled quorum sensing repressilators, Goodwin oscillators, and bistable switches, we review how coupled and stochastic components can result in clustering, chaos, noise-induced coherence and speed-dependent decision making. A system of repressilators exhibits oscillations, limit cycles, steady states or chaos depending on the nature and strength of the coupling mechanism. In large repressilator networks, rich dynamics can also be exhibited, such as clustering and chaos. In populations of Goodwin oscillators, noise can induce coherent oscillations. In bistable systems, the speed with which incoming external signals reach steady state can bias the network towards particular attractors. These studies showcase the range of dynamical behavior that simple synthetic genetic networks can exhibit. In addition, they demonstrate the ability of mathematical modeling to analyze nonlinearity and inhomogeneity within these systems.

  10. Report on the Dagstuhl Seminar on Visualization and Monitoring of Network Traffic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keim, Daniel; Pras, Aiko; Schonwalder, Jurgen

    2011-01-26

    The Dagstuhl Seminar on Visualization and Monitoring of Network Traffic [1] took place May 17-20, 2009 in Dagstuhl, Germany. Dagstuhl seminars promote personal interaction and open discussion of results as well as new ideas. Unlike at most conferences, the focus is not solely on the presentation of established results but to equal parts on results, ideas, sketches, and open problems. The aim of this particular seminar was to bring together experts from the information visualization community and the networking community in order to discuss the state of the art of monitoring and visualization of network traffic. People from the differentmore » research communities involved jointly organized the seminar. The co-chairs of the seminar from the networking community were Aiko Pras (University of Twente) and Jürgen Schönwälder (Jacobs University Bremen). The co-chairs from the visualization community were Daniel A. Keim (University of Konstanz) and Pak Chung Wong (Pacific Northwest National Lab). Florian Mansmann (University of Konstanz) helped with producing this report. The seminar was organized and supported by Schloss Dagstuhl and the EC IST-EMANICS Network of Excellence [1].« less

  11. State Support: A Prerequisite for Global Health Network Effectiveness

    PubMed Central

    Marten, Robert; Smith, Richard D.

    2018-01-01

    Shiffman recently summarized lessons for network effectiveness from an impressive collection of case-studies. However, in common with most global health governance analysis in recent years, Shiffman underplays the important role of states in these global networks. As the body which decides and signs international agreements, often provides the resourcing, and is responsible for implementing initiatives all contributing to the prioritization of certain issues over others, state recognition and support is a prerequisite to enabling and determining global health networks’ success. The role of states deserves greater attention, analysis and consideration. We reflect upon the underappreciated role of the state within the current discourse on global health. We present the tobacco case study to illustrate the decisive role of states in determining progress for global health networks, and highlight how states use a legitimacy loop to gain legitimacy from and provide legitimacy to global health networks. Moving forward in assessing global health networks’ effectiveness, further investigating state support as a determinant of success will be critical. Understanding how global health networks and states interact and evolve to shape and support their respective interests should be a focus for future research. PMID:29524958

  12. [Chemical libraries dedicated to protein-protein interactions].

    PubMed

    Sperandio, Olivier; Villoutreix, Bruno O; Morelli, Xavier; Roche, Philippe

    2015-03-01

    The identification of complete networks of protein-protein interactions (PPI) within a cell has contributed to major breakthroughs in understanding biological pathways, host-pathogen interactions and cancer development. As a consequence, PPI have emerged as a new class of promising therapeutic targets. However, they are still considered as a challenging class of targets for drug discovery programs. Recent successes have allowed the characterization of structural and physicochemical properties of protein-protein interfaces leading to a better understanding of how they can be disrupted with small molecule compounds. In addition, characterization of the profiles of PPI inhibitors has allowed the development of PPI-focused libraries. In this review, we present the current efforts at developing chemical libraries dedicated to these innovative targets. © 2015 médecine/sciences – Inserm.

  13. CBEO:N, Chesapeake Bay Environmental Observatory as a Cyberinfrastructure Node

    NASA Astrophysics Data System (ADS)

    Zaslavsky, I.; Piasecki, M.; Whitenack, T.; Ball, W. P.; Murphy, R.

    2008-12-01

    Chesapeake Bay Environmental Observatory (CBEO) is an NSF-supported project focused on studying hypoxia in Chesapeake Bay using advanced cyberinfrastructure (CI) technologies. The project is organized around four concurrent and interacting activities: 1) CBEO:S provides science and management context for the use of CI technologies, focusing on hypoxia and its non-linear dynamics as affected by management and climate; 2) CBEO:T constructs a locally-accessible CBEO test bed prototype centered on spatio-temporal interpolation and advanced querying of model runs; 3) CBEO:N incorporates the test bed CI into national environmental observation networks, and 4) CBEO:E develops education and outreach components of the project that translate observational science for public consumption. CBEO:N activities, which are the focus of this paper, are four-fold: - constructing an online project portal to enable researchers to publish, discover, query, visualize and integrate project-related datasets of different types. The portal is based on the technologies developed within the GEON (the Geosciences Network) project, and has established the CBEO project data server as part of the GEON network of servers; * developing a CBEO node within the WATERS network, taking advantage of the CUAHSI Hydrologic Information System (HIS) Server technology that supports online publication of observation data as web services, and ontology-assisted data discovery; *developing new data structures and metadata in order to describe water quality observational data, and model run output, obtained for the Chesapeake Bay area, using data structures adopted and modified from the Observations Data Model of CUAHSI HIS; * prototyping CBEO tools that can be re-used through the portal, in particular implementing a portal version of R-based spatial interpolation tools. The paper describes recent accomplishments in these four development areas, and demonstrates how CI approaches transform research and data sharing in environmental observing systems.

  14. Differential C3NET reveals disease networks of direct physical interactions

    PubMed Central

    2011-01-01

    Background Genes might have different gene interactions in different cell conditions, which might be mapped into different networks. Differential analysis of gene networks allows spotting condition-specific interactions that, for instance, form disease networks if the conditions are a disease, such as cancer, and normal. This could potentially allow developing better and subtly targeted drugs to cure cancer. Differential network analysis with direct physical gene interactions needs to be explored in this endeavour. Results C3NET is a recently introduced information theory based gene network inference algorithm that infers direct physical gene interactions from expression data, which was shown to give consistently higher inference performances over various networks than its competitors. In this paper, we present, DC3net, an approach to employ C3NET in inferring disease networks. We apply DC3net on a synthetic and real prostate cancer datasets, which show promising results. With loose cutoffs, we predicted 18583 interactions from tumor and normal samples in total. Although there are no reference interactions databases for the specific conditions of our samples in the literature, we found verifications for 54 of our predicted direct physical interactions from only four of the biological interaction databases. As an example, we predicted that RAD50 with TRF2 have prostate cancer specific interaction that turned out to be having validation from the literature. It is known that RAD50 complex associates with TRF2 in the S phase of cell cycle, which suggests that this predicted interaction may promote telomere maintenance in tumor cells in order to allow tumor cells to divide indefinitely. Our enrichment analysis suggests that the identified tumor specific gene interactions may be potentially important in driving the growth in prostate cancer. Additionally, we found that the highest connected subnetwork of our predicted tumor specific network is enriched for all proliferation genes, which further suggests that the genes in this network may serve in the process of oncogenesis. Conclusions Our approach reveals disease specific interactions. It may help to make experimental follow-up studies more cost and time efficient by prioritizing disease relevant parts of the global gene network. PMID:21777411

  15. Controllability of protein-protein interaction phosphorylation-based networks: Participation of the hub 14-3-3 protein family

    PubMed Central

    Uhart, Marina; Flores, Gabriel; Bustos, Diego M.

    2016-01-01

    Posttranslational regulation of protein function is an ubiquitous mechanism in eukaryotic cells. Here, we analyzed biological properties of nodes and edges of a human protein-protein interaction phosphorylation-based network, especially of those nodes critical for the network controllability. We found that the minimal number of critical nodes needed to control the whole network is 29%, which is considerably lower compared to other real networks. These critical nodes are more regulated by posttranslational modifications and contain more binding domains to these modifications than other kinds of nodes in the network, suggesting an intra-group fast regulation. Also, when we analyzed the edges characteristics that connect critical and non-critical nodes, we found that the former are enriched in domain-to-eukaryotic linear motif interactions, whereas the later are enriched in domain-domain interactions. Our findings suggest a possible structure for protein-protein interaction networks with a densely interconnected and self-regulated central core, composed of critical nodes with a high participation in the controllability of the full network, and less regulated peripheral nodes. Our study offers a deeper understanding of complex network control and bridges the controllability theorems for complex networks and biological protein-protein interaction phosphorylation-based networked systems. PMID:27195976

  16. Interactions of the Salience Network and Its Subsystems with the Default-Mode and the Central-Executive Networks in Normal Aging and Mild Cognitive Impairment.

    PubMed

    Chand, Ganesh B; Wu, Junjie; Hajjar, Ihab; Qiu, Deqiang

    2017-09-01

    Previous functional magnetic resonance imaging (fMRI) investigations suggest that the intrinsically organized large-scale networks and the interaction between them might be crucial for cognitive activities. A triple network model, which consists of the default-mode network, salience network, and central-executive network, has been recently used to understand the connectivity patterns of the cognitively normal brains versus the brains with disorders. This model suggests that the salience network dynamically controls the default-mode and central-executive networks in healthy young individuals. However, the patterns of interactions have remained largely unknown in healthy aging or those with cognitive decline. In this study, we assess the patterns of interactions between the three networks using dynamical causal modeling in resting state fMRI data and compare them between subjects with normal cognition and mild cognitive impairment (MCI). In healthy elderly subjects, our analysis showed that the salience network, especially its dorsal subnetwork, modulates the interaction between the default-mode network and the central-executive network (Mann-Whitney U test; p < 0.05), which was consistent with the pattern of interaction reported in young adults. In contrast, this pattern of modulation by salience network was disrupted in MCI (p < 0.05). Furthermore, the degree of disruption in salience network control correlated significantly with lower overall cognitive performance measured by Montreal Cognitive Assessment (r = 0.295; p < 0.05). This study suggests that a disruption of the salience network control, especially the dorsal salience network, over other networks provides a neuronal basis for cognitive decline and may be a candidate neuroimaging biomarker of cognitive impairment.

  17. Topology association analysis in weighted protein interaction network for gene prioritization

    NASA Astrophysics Data System (ADS)

    Wu, Shunyao; Shao, Fengjing; Zhang, Qi; Ji, Jun; Xu, Shaojie; Sun, Rencheng; Sun, Gengxin; Du, Xiangjun; Sui, Yi

    2016-11-01

    Although lots of algorithms for disease gene prediction have been proposed, the weights of edges are rarely taken into account. In this paper, the strengths of topology associations between disease and essential genes are analyzed in weighted protein interaction network. Empirical analysis demonstrates that compared to other genes, disease genes are weakly connected with essential genes in protein interaction network. Based on this finding, a novel global distance measurement for gene prioritization with weighted protein interaction network is proposed in this paper. Positive and negative flow is allocated to disease and essential genes, respectively. Additionally network propagation model is extended for weighted network. Experimental results on 110 diseases verify the effectiveness and potential of the proposed measurement. Moreover, weak links play more important role than strong links for gene prioritization, which is meaningful to deeply understand protein interaction network.

  18. Electronic community: The role of an electronic network in the development of a community of teachers engaged in curriculum development and implementation

    NASA Astrophysics Data System (ADS)

    Keating, Thomas Michael

    The goal of this study was to describe the development of an electronic community of teachers who had the common experience of working on a Human Biology Curriculum Project through Stanford University. It was hypothesized that the interdisciplinary teams of teachers distributed across the United States would find a telecommunication network an ideal vehicle for extending their curricular collaborations they had begun in a series of summer institutes at Stanford. It was antlclpated that teachers would use the network to keep in touch with each other, share their common experiences piloting the HumBio Curriculum materials, provide feedback to the faculty and staff writing teams, and explore the possibilities of enacting cross site projects based on the curriculum project. From these interactions over the network it was hypothesized that a viable electronic community of schools could emerge. Establishment of a thriving electronic educational community is not an easy task. An analysis of three years of network interactions representing approximately 3125 email messages exchanged between HumBio test sites, HumBio Staff, the Network Coordinator and an additional three schools added in the third year, did not support the hypothesis that an electronic community would emerge and prosper. Participation in the electronic network was largely sporadic. However, a core group of schools was able to engage in meaningful, long term, cross-site projects, and student exchanges. By studying the active schools' message exchanges through time, insights were gained as to which ingredients are necessary to nurture an electronic network through the early stages of community development. A life history approach was found to be useful when considering the developmental stages of electronic networks. A key finding is that teachers choose to participate in electronic collaborations that will have a direct impact on what students are doing in the classroom. The first phase in the development of this network was characterized by greetings and requests for technical assistance, the second phase focused on curricular concerns, and the third phase led to a greater degree of full and open communication. Community is ephemeral by nature. Perhaps a more accurate depiction of the interactions that take place over an email system is that of a social network from which community characteristics emerge at different times and in different ways. This was certainly the case in the development of this "electronic community."

  19. Case management for high-intensity service users: towards a relational approach to care co-ordination.

    PubMed

    McEvoy, Phil; Escott, Diane; Bee, Penny

    2011-01-01

    This study is based on a formative evaluation of a case management service for high-intensity service users in Northern England. The evaluation had three main purposes: (i) to assess the quality of the organisational infrastructure; (ii) to obtain a better understanding of the key influences that played a role in shaping the development of the service; and (iii) to identify potential changes in practice that may help to improve the quality of service provision. The evaluation was informed by Gittell's relational co-ordination theory, which focuses upon cross-boundary working practices that facilitate task integration. The Assessment of Chronic Illness Care Survey was used to assess the organisational infrastructure and qualitative interviews with front line staff were conducted to explore the key influences that shaped the development of the service. A high level of strategic commitment and political support for integrated working was identified. However, the quality of care co-ordination was variable. The most prominent operational factor that appeared to influence the scope and quality of care co-ordination was the pattern of interaction between the case managers and their co-workers. The co-ordination of patient care was much more effective in integrated co-ordination networks. Key features included clearly defined, task focussed, relational workspaces with interactive forums where case managers could engage with co-workers in discussions about the management of interdependent care activities. In dispersed co-ordination networks with fewer relational workspaces, the case managers struggled to work as effectively. The evaluation concluded that the creation of flexible and efficient task focused relational workspaces that are systemically managed and adequately resourced could help to improve the quality of care co-ordination, particularly in dispersed networks. © 2010 Blackwell Publishing Ltd.

  20. ENGAGING COMMUNITIES TO STRENGTHEN RESEARCH ETHICS IN LOW-INCOME SETTINGS: SELECTION AND PERCEPTIONS OF MEMBERS OF A NETWORK OF REPRESENTATIVES IN COASTAL KENYA

    PubMed Central

    Kamuya, Dorcas M; Marsh, Vicki; Kombe, Francis K; Geissler, P Wenzel; Molyneux, Sassy C

    2013-01-01

    There is wide agreement that community engagement is important for many research types and settings, often including interaction with ‘representatives’ of communities. There is relatively little published experience of community engagement in international research settings, with available information focusing on Community Advisory Boards or Groups (CAB/CAGs), or variants of these, where CAB/G members often advise researchers on behalf of the communities they represent. In this paper we describe a network of community members (‘KEMRI Community Representatives’, or ‘KCRs’) linked to a large multi-disciplinary research programme on the Kenyan Coast. Unlike many CAB/Gs, the intention with the KCR network has evolved to be for members to represent the geographical areas in which a diverse range of health studies are conducted through being typical of those communities. We draw on routine reports, self-administered questionnaires and interviews to: 1) document how typical KCR members are of the local communities in terms of basic characteristics, and 2) explore KCR's perceptions of their roles, and of the benefits and challenges of undertaking these roles. We conclude that this evolving network is a potentially valuable way of strengthening interactions between a research institution and a local geographic community, through contributing to meeting intrinsic ethical values such as showing respect, and instrumental values such as improving consent processes. However, there are numerous challenges involved. Other ways of interacting with members of local communities, including community leaders, and the most vulnerable groups least likely to be vocal in representative groups, have always been, and remain, essential. PMID:23433404

  1. Systems biology impact on antiepileptic drug discovery.

    PubMed

    Margineanu, Doru Georg

    2012-02-01

    Systems biology (SB), a recent trend in bioscience research to consider the complex interactions in biological systems from a holistic perspective, sees the disease as a disturbed network of interactions, rather than alteration of single molecular component(s). SB-relying network pharmacology replaces the prevailing focus on specific drug-receptor interaction and the corollary of rational drug design of "magic bullets", by the search for multi-target drugs that would act on biological networks as "magic shotguns". Epilepsy being a multi-factorial, polygenic and dynamic pathology, SB approach appears particularly fit and promising for antiepileptic drug (AED) discovery. In fact, long before the advent of SB, AED discovery already involved some SB-like elements. A reported SB project aimed to find out new drug targets in epilepsy relies on a relational database that integrates clinical information, recordings from deep electrodes and 3D-brain imagery with histology and molecular biology data on modified expression of specific genes in the brain regions displaying spontaneous epileptic activity. Since hitting a single target does not treat complex diseases, a proper pharmacological promiscuity might impart on an AED the merit of being multi-potent. However, multi-target drug discovery entails the complicated task of optimizing multiple activities of compounds, while having to balance drug-like properties and to control unwanted effects. Specific design tools for this new approach in drug discovery barely emerge, but computational methods making reliable in silico predictions of poly-pharmacology did appear, and their progress might be quite rapid. The current move away from reductionism into network pharmacology allows expecting that a proper integration of the intrinsic complexity of epileptic pathology in AED discovery might result in literally anti-epileptic drugs. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Stability of Control Networks in Autonomous Homeostatic Regulation of Stem Cell Lineages.

    PubMed

    Komarova, Natalia L; van den Driessche, P

    2018-05-01

    Design principles of biological networks have been studied extensively in the context of protein-protein interaction networks, metabolic networks, and regulatory (transcriptional) networks. Here we consider regulation networks that occur on larger scales, namely the cell-to-cell signaling networks that connect groups of cells in multicellular organisms. These are the feedback loops that orchestrate the complex dynamics of cell fate decisions and are necessary for the maintenance of homeostasis in stem cell lineages. We focus on "minimal" networks that are those that have the smallest possible numbers of controls. For such minimal networks, the number of controls must be equal to the number of compartments, and the reducibility/irreducibility of the network (whether or not it can be split into smaller independent sub-networks) is defined by a matrix comprised of the cell number increments induced by each of the controlled processes in each of the compartments. Using the formalism of digraphs, we show that in two-compartment lineages, reducible systems must contain two 1-cycles, and irreducible systems one 1-cycle and one 2-cycle; stability follows from the signs of the controls and does not require magnitude restrictions. In three-compartment systems, irreducible digraphs have a tree structure or have one 3-cycle and at least two more shorter cycles, at least one of which is a 1-cycle. With further work and proper biological validation, our results may serve as a first step toward an understanding of ways in which these networks become dysregulated in cancer.

  3. Networking among young global health researchers through an intensive training approach: a mixed methods exploratory study.

    PubMed

    Lenters, Lindsey M; Cole, Donald C; Godoy-Ruiz, Paula

    2014-01-25

    Networks are increasingly regarded as essential in health research aimed at influencing practice and policies. Less research has focused on the role networking can play in researchers' careers and its broader impacts on capacity strengthening in health research. We used the Canadian Coalition for Global Health Research (CCGHR) annual Summer Institute for New Global Health Researchers (SIs) as an opportunity to explore networking among new global health researchers. A mixed-methods exploratory study was conducted among SI alumni and facilitators who had participated in at least one SI between 2004 and 2010. Alumni and facilitators completed an online short questionnaire, and a subset participated in an in-depth interview. Thematic analysis of the qualitative data was triangulated with quantitative results and CCGHR reports on SIs. Synthesis occurred through the development of a process model relevant to networking through the SIs. Through networking at the SIs, participants experienced decreased isolation and strengthened working relationships. Participants accessed new knowledge, opportunities, and resources through networking during the SI. Post-SI, participants reported ongoing contact and collaboration, although most participants desired more opportunities for interaction. They made suggestions for structural supports to networking among new global health researchers. Networking at the SI contributed positively to opportunities for individuals, and contributed to the formation of a network of global health researchers. Intentional inclusion of networking in health research capacity strengthening initiatives, with supportive resources and infrastructure could create dynamic, sustainable networks accessible to global health researchers around the world.

  4. Relationships between probabilistic Boolean networks and dynamic Bayesian networks as models of gene regulatory networks

    PubMed Central

    Lähdesmäki, Harri; Hautaniemi, Sampsa; Shmulevich, Ilya; Yli-Harja, Olli

    2006-01-01

    A significant amount of attention has recently been focused on modeling of gene regulatory networks. Two frequently used large-scale modeling frameworks are Bayesian networks (BNs) and Boolean networks, the latter one being a special case of its recent stochastic extension, probabilistic Boolean networks (PBNs). PBN is a promising model class that generalizes the standard rule-based interactions of Boolean networks into the stochastic setting. Dynamic Bayesian networks (DBNs) is a general and versatile model class that is able to represent complex temporal stochastic processes and has also been proposed as a model for gene regulatory systems. In this paper, we concentrate on these two model classes and demonstrate that PBNs and a certain subclass of DBNs can represent the same joint probability distribution over their common variables. The major benefit of introducing the relationships between the models is that it opens up the possibility of applying the standard tools of DBNs to PBNs and vice versa. Hence, the standard learning tools of DBNs can be applied in the context of PBNs, and the inference methods give a natural way of handling the missing values in PBNs which are often present in gene expression measurements. Conversely, the tools for controlling the stationary behavior of the networks, tools for projecting networks onto sub-networks, and efficient learning schemes can be used for DBNs. In other words, the introduced relationships between the models extend the collection of analysis tools for both model classes. PMID:17415411

  5. How plants connect pollination and herbivory networks and their contribution to community stability.

    PubMed

    Sauve, Alix M C; Thébault, Elisa; Pocock, Michael J O; Fontaine, Colin

    2016-04-01

    Pollination and herbivory networks have mainly been studied separately, highlighting their distinct structural characteristics and the related processes and dynamics. However, most plants interact with both pollinators and herbivores, and there is evidence that both types of interaction affect each other. Here we investigated the way plants connect these mutualistic and antagonistic networks together, and the consequences for community stability. Using an empirical data set, we show that the way plants connect pollination and herbivory networks is not random and promotes community stability. Analyses of the structure of binary and quantitative networks show different results: the plants' generalism with regard to pollinators is positively correlated to their generalism with regard to herbivores when considering binary interactions, but not when considering quantitative interactions. We also show that plants that share the same pollinators do not share the same herbivores. However, the way plants connect pollination and herbivory networks promotes stability for both binary and quantitative networks. Our results highlight the relevance of considering the diversity of interaction types in ecological communities, and stress the need to better quantify the costs and benefits of interactions, as well as to develop new metrics characterizing the way different interaction types are combined within ecological networks.

  6. Building the Next Generation of Earth Scientists: the Deep Carbon Observatory Early Career Scientist Workshops

    NASA Astrophysics Data System (ADS)

    Pratt, K.; Fellowes, J.; Giovannelli, D.; Stagno, V.

    2016-12-01

    Building a network of collaborators and colleagues is a key professional development activity for early career scientists (ECS) dealing with a challenging job market. At large conferences, young scientists often focus on interacting with senior researchers, competing for a small number of positions in leading laboratories. However, building a strong, international network amongst their peers in related disciplines is often as valuable in the long run. The Deep Carbon Observatory (DCO) began funding a series of workshops in 2014 designed to connect early career researchers within its extensive network of multidisciplinary scientists. The workshops, by design, are by and for early career scientists, thus removing any element of competition and focusing on peer-to-peer networking, collaboration, and creativity. The successful workshops, organized by committees of early career deep carbon scientists, have nucleated a lively community of like-minded individuals from around the world. Indeed, the organizers themselves often benefit greatly from the leadership experience of pulling together an international workshop on budget and on deadline. We have found that a combination of presentations from all participants in classroom sessions, professional development training such as communication and data management, and field-based relationship building and networking is a recipe for success. Small groups within the DCO ECS network have formed; publishing papers together, forging new research directions, and planning novel and ambitious field campaigns. Many DCO ECS also have come together to convene sessions at major international conferences, including the AGU Fall Meeting. Most of all, there is a broad sense of camaraderie and accessibility within the DCO ECS Community, providing the foundation for a career in the new, international, and interdisciplinary field of deep carbon science.

  7. Development of Novel Random Network Theory-Based Approaches to Identify Network Interactions among Nitrifying Bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Cindy

    2015-07-17

    The interactions among different microbial populations in a community could play more important roles in determining ecosystem functioning than species numbers and their abundances, but very little is known about such network interactions at a community level. The goal of this project is to develop novel framework approaches and associated software tools to characterize the network interactions in microbial communities based on high throughput, large scale high-throughput metagenomics data and apply these approaches to understand the impacts of environmental changes (e.g., climate change, contamination) on network interactions among different nitrifying populations and associated microbial communities.

  8. Talking and learning physics: Predicting future grades from network measures and Force Concept Inventory pretest scores

    NASA Astrophysics Data System (ADS)

    Bruun, Jesper; Brewe, Eric

    2013-12-01

    The role of student interactions in learning situations is a foundation of sociocultural learning theory, and social network analysis can be used to quantify student relations. We discuss how self-reported student interactions can be viewed as processes of meaning making and use this to understand how quantitative measures that describe the position in a network, called centrality measures, can be understood in terms of interactions that happen in the context of a university physics course. We apply this discussion to an empirical data set of self-reported student interactions. In a weekly administered survey, first year university students enrolled in an introductory physics course at a Danish university indicated with whom they remembered having communicated within different interaction categories. For three categories pertaining to (1) communication about how to solve physics problems in the course (called the PS category), (2) communications about the nature of physics concepts (called the CD category), and (3) social interactions that are not strictly related to the content of the physics classes (called the ICS category) in the introductory mechanics course, we use the survey data to create networks of student interaction. For each of these networks, we calculate centrality measures for each student and correlate these measures with grades from the introductory course, grades from two subsequent courses, and the pretest Force Concept Inventory (FCI) scores. We find highly significant correlations (p<0.001) between network centrality measures and grades in all networks. We find the highest correlations between network centrality measures and future grades. In the network composed of interactions regarding problem solving (the PS network), the centrality measures hide and PageRank show the highest correlations (r=-0.32 and r=0.33, respectively) with future grades. In the CD network, the network measure target entropy shows the highest correlation (r=0.45) with future grades. In the network composed solely of noncontent related social interactions, these patterns of correlation are maintained in the sense that these network measures show the highest correlations and maintain their internal ranking. Using hierarchical linear regression, we find that a linear model that adds the network measures hide and target entropy, calculated on the ICS network, significantly improves a base model that uses only the FCI pretest scores from the beginning of the semester. Though one should not infer causality from these results, they do point to how social interactions in class are intertwined with academic interactions. We interpret this as an integral part of learning, and suggest that physics is a robust example.

  9. Upscaling of fungal-bacterial interactions: from the lab to the field.

    PubMed

    de Boer, Wietse

    2017-06-01

    Fungal-bacterial interactions (FBI) are an integral component of microbial community networks in terrestrial ecosystems. During the last decade, the attention for FBI has increased tremendously. For a wide variety of FBI, information has become available on the mechanisms and functional responses. Yet, most studies have focused on pairwise interactions under controlled conditions. The question to what extent such studies are relevant to assess the importance of FBI for functioning of natural microbial communities in real ecosystems remains largely unanswered. Here, the information obtained by studying a type of FBI, namely antagonistic interactions between bacteria and plant pathogenic fungi, is discussed for different levels of community complexity. Based on this, general recommendations are given to integrate pairwise and ecosystem FBI studies. This approach could lead to the development of novel strategies to steer terrestrial ecosystem functioning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Building a glaucoma interaction network using a text mining approach.

    PubMed

    Soliman, Maha; Nasraoui, Olfa; Cooper, Nigel G F

    2016-01-01

    The volume of biomedical literature and its underlying knowledge base is rapidly expanding, making it beyond the ability of a single human being to read through all the literature. Several automated methods have been developed to help make sense of this dilemma. The present study reports on the results of a text mining approach to extract gene interactions from the data warehouse of published experimental results which are then used to benchmark an interaction network associated with glaucoma. To the best of our knowledge, there is, as yet, no glaucoma interaction network derived solely from text mining approaches. The presence of such a network could provide a useful summative knowledge base to complement other forms of clinical information related to this disease. A glaucoma corpus was constructed from PubMed Central and a text mining approach was applied to extract genes and their relations from this corpus. The extracted relations between genes were checked using reference interaction databases and classified generally as known or new relations. The extracted genes and relations were then used to construct a glaucoma interaction network. Analysis of the resulting network indicated that it bears the characteristics of a small world interaction network. Our analysis showed the presence of seven glaucoma linked genes that defined the network modularity. A web-based system for browsing and visualizing the extracted glaucoma related interaction networks is made available at http://neurogene.spd.louisville.edu/GlaucomaINViewer/Form1.aspx. This study has reported the first version of a glaucoma interaction network using a text mining approach. The power of such an approach is in its ability to cover a wide range of glaucoma related studies published over many years. Hence, a bigger picture of the disease can be established. To the best of our knowledge, this is the first glaucoma interaction network to summarize the known literature. The major findings were a set of relations that could not be found in existing interaction databases and that were found to be new, in addition to a smaller subnetwork consisting of interconnected clusters of seven glaucoma genes. Future improvements can be applied towards obtaining a better version of this network.

  11. Data Imputation in Epistatic MAPs by Network-Guided Matrix Completion

    PubMed Central

    Žitnik, Marinka; Zupan, Blaž

    2015-01-01

    Abstract Epistatic miniarray profile (E-MAP) is a popular large-scale genetic interaction discovery platform. E-MAPs benefit from quantitative output, which makes it possible to detect subtle interactions with greater precision. However, due to the limits of biotechnology, E-MAP studies fail to measure genetic interactions for up to 40% of gene pairs in an assay. Missing measurements can be recovered by computational techniques for data imputation, in this way completing the interaction profiles and enabling downstream analysis algorithms that could otherwise be sensitive to missing data values. We introduce a new interaction data imputation method called network-guided matrix completion (NG-MC). The core part of NG-MC is low-rank probabilistic matrix completion that incorporates prior knowledge presented as a collection of gene networks. NG-MC assumes that interactions are transitive, such that latent gene interaction profiles inferred by NG-MC depend on the profiles of their direct neighbors in gene networks. As the NG-MC inference algorithm progresses, it propagates latent interaction profiles through each of the networks and updates gene network weights toward improved prediction. In a study with four different E-MAP data assays and considered protein–protein interaction and gene ontology similarity networks, NG-MC significantly surpassed existing alternative techniques. Inclusion of information from gene networks also allowed NG-MC to predict interactions for genes that were not included in original E-MAP assays, a task that could not be considered by current imputation approaches. PMID:25658751

  12. Dynamic Creative Interaction Networks and Team Creativity Evolution: A Longitudinal Study

    ERIC Educational Resources Information Center

    Jiang, Hui; Zhang, Qing-Pu; Zhou, Yang

    2018-01-01

    To assess the dynamical effects of creative interaction networks on team creativity evolution, this paper elaborates a theoretical framework that links the key elements of creative interaction networks, including node, edge and network structure, to creativity in teams. The process of team creativity evolution is divided into four phases,…

  13. Functional Interaction Network Construction and Analysis for Disease Discovery.

    PubMed

    Wu, Guanming; Haw, Robin

    2017-01-01

    Network-based approaches project seemingly unrelated genes or proteins onto a large-scale network context, therefore providing a holistic visualization and analysis platform for genomic data generated from high-throughput experiments, reducing the dimensionality of data via using network modules and increasing the statistic analysis power. Based on the Reactome database, the most popular and comprehensive open-source biological pathway knowledgebase, we have developed a highly reliable protein functional interaction network covering around 60 % of total human genes and an app called ReactomeFIViz for Cytoscape, the most popular biological network visualization and analysis platform. In this chapter, we describe the detailed procedures on how this functional interaction network is constructed by integrating multiple external data sources, extracting functional interactions from human curated pathway databases, building a machine learning classifier called a Naïve Bayesian Classifier, predicting interactions based on the trained Naïve Bayesian Classifier, and finally constructing the functional interaction database. We also provide an example on how to use ReactomeFIViz for performing network-based data analysis for a list of genes.

  14. Robustness Elasticity in Complex Networks

    PubMed Central

    Matisziw, Timothy C.; Grubesic, Tony H.; Guo, Junyu

    2012-01-01

    Network robustness refers to a network’s resilience to stress or damage. Given that most networks are inherently dynamic, with changing topology, loads, and operational states, their robustness is also likely subject to change. However, in most analyses of network structure, it is assumed that interaction among nodes has no effect on robustness. To investigate the hypothesis that network robustness is not sensitive or elastic to the level of interaction (or flow) among network nodes, this paper explores the impacts of network disruption, namely arc deletion, over a temporal sequence of observed nodal interactions for a large Internet backbone system. In particular, a mathematical programming approach is used to identify exact bounds on robustness to arc deletion for each epoch of nodal interaction. Elasticity of the identified bounds relative to the magnitude of arc deletion is assessed. Results indicate that system robustness can be highly elastic to spatial and temporal variations in nodal interactions within complex systems. Further, the presence of this elasticity provides evidence that a failure to account for nodal interaction can confound characterizations of complex networked systems. PMID:22808060

  15. State-space model with deep learning for functional dynamics estimation in resting-state fMRI.

    PubMed

    Suk, Heung-Il; Wee, Chong-Yaw; Lee, Seong-Whan; Shen, Dinggang

    2016-04-01

    Studies on resting-state functional Magnetic Resonance Imaging (rs-fMRI) have shown that different brain regions still actively interact with each other while a subject is at rest, and such functional interaction is not stationary but changes over time. In terms of a large-scale brain network, in this paper, we focus on time-varying patterns of functional networks, i.e., functional dynamics, inherent in rs-fMRI, which is one of the emerging issues along with the network modelling. Specifically, we propose a novel methodological architecture that combines deep learning and state-space modelling, and apply it to rs-fMRI based Mild Cognitive Impairment (MCI) diagnosis. We first devise a Deep Auto-Encoder (DAE) to discover hierarchical non-linear functional relations among regions, by which we transform the regional features into an embedding space, whose bases are complex functional networks. Given the embedded functional features, we then use a Hidden Markov Model (HMM) to estimate dynamic characteristics of functional networks inherent in rs-fMRI via internal states, which are unobservable but can be inferred from observations statistically. By building a generative model with an HMM, we estimate the likelihood of the input features of rs-fMRI as belonging to the corresponding status, i.e., MCI or normal healthy control, based on which we identify the clinical label of a testing subject. In order to validate the effectiveness of the proposed method, we performed experiments on two different datasets and compared with state-of-the-art methods in the literature. We also analyzed the functional networks learned by DAE, estimated the functional connectivities by decoding hidden states in HMM, and investigated the estimated functional connectivities by means of a graph-theoretic approach. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. State-space model with deep learning for functional dynamics estimation in resting-state fMRI

    PubMed Central

    Suk, Heung-Il; Wee, Chong-Yaw; Lee, Seong-Whan; Shen, Dinggang

    2017-01-01

    Studies on resting-state functional Magnetic Resonance Imaging (rs-fMRI) have shown that different brain regions still actively interact with each other while a subject is at rest, and such functional interaction is not stationary but changes over time. In terms of a large-scale brain network, in this paper, we focus on time-varying patterns of functional networks, i.e., functional dynamics, inherent in rs-fMRI, which is one of the emerging issues along with the network modelling. Specifically, we propose a novel methodological architecture that combines deep learning and state-space modelling, and apply it to rs-fMRI based Mild Cognitive Impairment (MCI) diagnosis. We first devise a Deep Auto-Encoder (DAE) to discover hierarchical non-linear functional relations among regions, by which we transform the regional features into an embedding space, whose bases are complex functional networks. Given the embedded functional features, we then use a Hidden Markov Model (HMM) to estimate dynamic characteristics of functional networks inherent in rs-fMRI via internal states, which are unobservable but can be inferred from observations statistically. By building a generative model with an HMM, we estimate the likelihood of the input features of rs-fMRI as belonging to the corresponding status, i.e., MCI or normal healthy control, based on which we identify the clinical label of a testing subject. In order to validate the effectiveness of the proposed method, we performed experiments on two different datasets and compared with state-of-the-art methods in the literature. We also analyzed the functional networks learned by DAE, estimated the functional connectivities by decoding hidden states in HMM, and investigated the estimated functional connectivities by means of a graph-theoretic approach. PMID:26774612

  17. Characterizing Topology of Probabilistic Biological Networks.

    PubMed

    Todor, Andrei; Dobra, Alin; Kahveci, Tamer

    2013-09-06

    Biological interactions are often uncertain events, that may or may not take place with some probability. Existing studies analyze the degree distribution of biological networks by assuming that all the given interactions take place under all circumstances. This strong and often incorrect assumption can lead to misleading results. Here, we address this problem and develop a sound mathematical basis to characterize networks in the presence of uncertain interactions. We develop a method that accurately describes the degree distribution of such networks. We also extend our method to accurately compute the joint degree distributions of node pairs connected by edges. The number of possible network topologies grows exponentially with the number of uncertain interactions. However, the mathematical model we develop allows us to compute these degree distributions in polynomial time in the number of interactions. It also helps us find an adequate mathematical model using maximum likelihood estimation. Our results demonstrate that power law and log-normal models best describe degree distributions for probabilistic networks. The inverse correlation of degrees of neighboring nodes shows that, in probabilistic networks, nodes with large number of interactions prefer to interact with those with small number of interactions more frequently than expected.

  18. Unravelling Darwin's entangled bank: architecture and robustness of mutualistic networks with multiple interaction types.

    PubMed

    Dáttilo, Wesley; Lara-Rodríguez, Nubia; Jordano, Pedro; Guimarães, Paulo R; Thompson, John N; Marquis, Robert J; Medeiros, Lucas P; Ortiz-Pulido, Raul; Marcos-García, Maria A; Rico-Gray, Victor

    2016-11-30

    Trying to unravel Darwin's entangled bank further, we describe the architecture of a network involving multiple forms of mutualism (pollination by animals, seed dispersal by birds and plant protection by ants) and evaluate whether this multi-network shows evidence of a structure that promotes robustness. We found that species differed strongly in their contributions to the organization of the multi-interaction network, and that only a few species contributed to the structuring of these patterns. Moreover, we observed that the multi-interaction networks did not enhance community robustness compared with each of the three independent mutualistic networks when analysed across a range of simulated scenarios of species extinction. By simulating the removal of highly interacting species, we observed that, overall, these species enhance network nestedness and robustness, but decrease modularity. We discuss how the organization of interlinked mutualistic networks may be essential for the maintenance of ecological communities, and therefore the long-term ecological and evolutionary dynamics of interactive, species-rich communities. We suggest that conserving these keystone mutualists and their interactions is crucial to the persistence of species-rich mutualistic assemblages, mainly because they support other species and shape the network organization. © 2016 The Author(s).

  19. A Three-Dimensional Computational Model of Collagen Network Mechanics

    PubMed Central

    Lee, Byoungkoo; Zhou, Xin; Riching, Kristin; Eliceiri, Kevin W.; Keely, Patricia J.; Guelcher, Scott A.; Weaver, Alissa M.; Jiang, Yi

    2014-01-01

    Extracellular matrix (ECM) strongly influences cellular behaviors, including cell proliferation, adhesion, and particularly migration. In cancer, the rigidity of the stromal collagen environment is thought to control tumor aggressiveness, and collagen alignment has been linked to tumor cell invasion. While the mechanical properties of collagen at both the single fiber scale and the bulk gel scale are quite well studied, how the fiber network responds to local stress or deformation, both structurally and mechanically, is poorly understood. This intermediate scale knowledge is important to understanding cell-ECM interactions and is the focus of this study. We have developed a three-dimensional elastic collagen fiber network model (bead-and-spring model) and studied fiber network behaviors for various biophysical conditions: collagen density, crosslinker strength, crosslinker density, and fiber orientation (random vs. prealigned). We found the best-fit crosslinker parameter values using shear simulation tests in a small strain region. Using this calibrated collagen model, we simulated both shear and tensile tests in a large linear strain region for different network geometry conditions. The results suggest that network geometry is a key determinant of the mechanical properties of the fiber network. We further demonstrated how the fiber network structure and mechanics evolves with a local formation, mimicking the effect of pulling by a pseudopod during cell migration. Our computational fiber network model is a step toward a full biomechanical model of cellular behaviors in various ECM conditions. PMID:25386649

  20. Non-consensus Opinion Models on Complex Networks

    NASA Astrophysics Data System (ADS)

    Li, Qian; Braunstein, Lidia A.; Wang, Huijuan; Shao, Jia; Stanley, H. Eugene; Havlin, Shlomo

    2013-04-01

    Social dynamic opinion models have been widely studied to understand how interactions among individuals cause opinions to evolve. Most opinion models that utilize spin interaction models usually produce a consensus steady state in which only one opinion exists. Because in reality different opinions usually coexist, we focus on non-consensus opinion models in which above a certain threshold two opinions coexist in a stable relationship. We revisit and extend the non-consensus opinion (NCO) model introduced by Shao et al. (Phys. Rev. Lett. 103:01870, 2009). The NCO model in random networks displays a second order phase transition that belongs to regular mean field percolation and is characterized by the appearance (above a certain threshold) of a large spanning cluster of the minority opinion. We generalize the NCO model by adding a weight factor W to each individual's original opinion when determining their future opinion (NCO W model). We find that as W increases the minority opinion holders tend to form stable clusters with a smaller initial minority fraction than in the NCO model. We also revisit another non-consensus opinion model based on the NCO model, the inflexible contrarian opinion (ICO) model (Li et al. in Phys. Rev. E 84:066101, 2011), which introduces inflexible contrarians to model the competition between two opinions in a steady state. Inflexible contrarians are individuals that never change their original opinion but may influence the opinions of others. To place the inflexible contrarians in the ICO model we use two different strategies, random placement and one in which high-degree nodes are targeted. The inflexible contrarians effectively decrease the size of the largest rival-opinion cluster in both strategies, but the effect is more pronounced under the targeted method. All of the above models have previously been explored in terms of a single network, but human communities are usually interconnected, not isolated. Because opinions propagate not only within single networks but also between networks, and because the rules of opinion formation within a network may differ from those between networks, we study here the opinion dynamics in coupled networks. Each network represents a social group or community and the interdependent links joining individuals from different networks may be social ties that are unusually strong, e.g., married couples. We apply the non-consensus opinion (NCO) rule on each individual network and the global majority rule on interdependent pairs such that two interdependent agents with different opinions will, due to the influence of mass media, follow the majority opinion of the entire population. The opinion interactions within each network and the interdependent links across networks interlace periodically until a steady state is reached. We find that the interdependent links effectively force the system from a second order phase transition, which is characteristic of the NCO model on a single network, to a hybrid phase transition, i.e., a mix of second-order and abrupt jump-like transitions that ultimately becomes, as we increase the percentage of interdependent agents, a pure abrupt transition. We conclude that for the NCO model on coupled networks, interactions through interdependent links could push the non-consensus opinion model to a consensus opinion model, which mimics the reality that increased mass communication causes people to hold opinions that are increasingly similar. We also find that the effect of interdependent links is more pronounced in interdependent scale free networks than in interdependent Erdős Rényi networks.

  1. Multiple tipping points and optimal repairing in interacting networks

    PubMed Central

    Majdandzic, Antonio; Braunstein, Lidia A.; Curme, Chester; Vodenska, Irena; Levy-Carciente, Sary; Eugene Stanley, H.; Havlin, Shlomo

    2016-01-01

    Systems composed of many interacting dynamical networks—such as the human body with its biological networks or the global economic network consisting of regional clusters—often exhibit complicated collective dynamics. Three fundamental processes that are typically present are failure, damage spread and recovery. Here we develop a model for such systems and find a very rich phase diagram that becomes increasingly more complex as the number of interacting networks increases. In the simplest example of two interacting networks we find two critical points, four triple points, ten allowed transitions and two ‘forbidden' transitions, as well as complex hysteresis loops. Remarkably, we find that triple points play the dominant role in constructing the optimal repairing strategy in damaged interacting systems. To test our model, we analyse an example of real interacting financial networks and find evidence of rapid dynamical transitions between well-defined states, in agreement with the predictions of our model. PMID:26926803

  2. A network analysis of DSM-5 posttraumatic stress disorder and functional impairment in UK treatment-seeking veterans.

    PubMed

    Ross, Jana; Murphy, Dominic; Armour, Cherie

    2018-05-28

    Network analysis is a relatively new methodology for studying psychological disorders. It focuses on the associations between individual symptoms which are hypothesized to mutually interact with each other. The current study represents the first network analysis conducted with treatment-seeking military veterans in UK. The study aimed to examine the network structure of posttraumatic stress disorder (PTSD) symptoms and four domains of functional impairment by identifying the most central (i.e., important) symptoms of PTSD and by identifying those symptoms of PTSD that are related to functional impairment. Participants were 331 military veterans with probable PTSD. In the first step, a network of PTSD symptoms based on the PTSD Checklist for DSM-5 was estimated. In the second step, functional impairment items were added to the network. The most central symptoms of PTSD were recurrent thoughts, nightmares, negative emotional state, detachment and exaggerated startle response. Functional impairment was related to a number of different PTSD symptoms. Impairments in close relationships were associated primarily with the negative alterations in cognitions and mood symptoms and impairments in home management were associated primarily with the reexperiencing symptoms. The results are discussed in relation to previous PTSD network studies and include implications for clinical practice. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. The mechanism of erythrocyte sedimentation. Part 2: The global collapse of settling erythrocyte network.

    PubMed

    Pribush, A; Meyerstein, D; Meyerstein, N

    2010-01-01

    Results reported in the companion paper showed that erythrocytes in quiescent blood are combined into a network followed by the formation of plasma channels within it. This study is focused on structural changes in the settling dispersed phase subsequent to the channeling and the effect of the structural organization on the sedimentation rate. It is suggested that the initial, slow stage of erythrocyte sedimentation is mainly controlled by the gravitational compactness of the collapsed network. The lifetime of RBC network and hence the duration of the slow regime of erythrocyte sedimentation decrease with an increase in the intercellular pair potential and with a decrease in Hct. The gravitational compactness of the collapsed network causes its rupture into individual fragments. The catastrophic collapse of the network transforms erythrocyte sedimentation from slow to fast regime. The size of RBC network fragment is insignificantly affected by Hct and is mainly determined by the intensity of intercellular attractive interactions. When cells were suspended in the weak aggregating medium, the Stokes radius of fragments does not differ measurably from that of individual RBCs. The proposed mechanism provides a reasonable explanation of the effects of RBC aggregation, Hct and the initial height of the blood column on the delayed erythrocyte sedimentation.

  4. Sensing network for electromagnetic fields generated by seismic activities

    NASA Astrophysics Data System (ADS)

    Gershenzon, Naum I.; Bambakidis, Gust; Ternovskiy, Igor V.

    2014-06-01

    The sensors network is becoming prolific and play now increasingly more important role in acquiring and processing information. Cyber-Physical Systems are focusing on investigation of integrated systems that includes sensing, networking, and computations. The physics of the seismic measurement and electromagnetic field measurement requires special consideration how to design electromagnetic field measurement networks for both research and detection earthquakes and explosions along with the seismic measurement networks. In addition, the electromagnetic sensor network itself could be designed and deployed, as a research tool with great deal of flexibility, the placement of the measuring nodes must be design based on systematic analysis of the seismic-electromagnetic interaction. In this article, we review the observations of the co-seismic electromagnetic field generated by earthquakes and man-made sources such as vibrations and explosions. The theoretical investigation allows the distribution of sensor nodes to be optimized and could be used to support existing geological networks. The placement of sensor nodes have to be determined based on physics of electromagnetic field distribution above the ground level. The results of theoretical investigations of seismo-electromagnetic phenomena are considered in Section I. First, we compare the relative contribution of various types of mechano-electromagnetic mechanisms and then analyze in detail the calculation of electromagnetic fields generated by piezomagnetic and electrokinetic effects.

  5. Social networks and future direction for obesity research: A scoping review.

    PubMed

    Nam, Soohyun; Redeker, Nancy; Whittemore, Robin

    2015-01-01

    Despite significant efforts to decrease obesity rates, the prevalence of obesity continues to increase in the United States. Obesity risk behaviors including physical inactivity, unhealthy eating, and sleep deprivation are intertwined during daily life and are difficult to improve in the current social environment. Studies show that social networks-the thick webs of social relations and interactions-influence various health outcomes, such as HIV risk behaviors, alcohol consumption, smoking, depression, and cardiovascular mortality; however, there is limited information on the influences of social networks on obesity and obesity risk behaviors. Given the complexities of the biobehavioral pathology of obesity and the lack of clear evidence of effectiveness and sustainability of existing interventions that are usually focused on an individual approach, targeting change in an individual's health behaviors or attitude may not take sociocontextual factors into account; there is a pressing need for a new perspective on this problem. In this review, we evaluate the literature on social networks as a potential approach for obesity prevention and treatment (i.e., how social networks affect various health outcomes), present two major social network data analyses (i.e., egocentric and sociometric analysis), and discuss implications and the future direction for obesity research using social networks. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Interactogeneous: Disease Gene Prioritization Using Heterogeneous Networks and Full Topology Scores

    PubMed Central

    Gonçalves, Joana P.; Francisco, Alexandre P.; Moreau, Yves; Madeira, Sara C.

    2012-01-01

    Disease gene prioritization aims to suggest potential implications of genes in disease susceptibility. Often accomplished in a guilt-by-association scheme, promising candidates are sorted according to their relatedness to known disease genes. Network-based methods have been successfully exploiting this concept by capturing the interaction of genes or proteins into a score. Nonetheless, most current approaches yield at least some of the following limitations: (1) networks comprise only curated physical interactions leading to poor genome coverage and density, and bias toward a particular source; (2) scores focus on adjacencies (direct links) or the most direct paths (shortest paths) within a constrained neighborhood around the disease genes, ignoring potentially informative indirect paths; (3) global clustering is widely applied to partition the network in an unsupervised manner, attributing little importance to prior knowledge; (4) confidence weights and their contribution to edge differentiation and ranking reliability are often disregarded. We hypothesize that network-based prioritization related to local clustering on graphs and considering full topology of weighted gene association networks integrating heterogeneous sources should overcome the above challenges. We term such a strategy Interactogeneous. We conducted cross-validation tests to assess the impact of network sources, alternative path inclusion and confidence weights on the prioritization of putative genes for 29 diseases. Heat diffusion ranking proved the best prioritization method overall, increasing the gap to neighborhood and shortest paths scores mostly on single source networks. Heterogeneous associations consistently delivered superior performance over single source data across the majority of methods. Results on the contribution of confidence weights were inconclusive. Finally, the best Interactogeneous strategy, heat diffusion ranking and associations from the STRING database, was used to prioritize genes for Parkinson’s disease. This method effectively recovered known genes and uncovered interesting candidates which could be linked to pathogenic mechanisms of the disease. PMID:23185389

  7. Linear motif-mediated interactions have contributed to the evolution of modularity in complex protein interaction networks.

    PubMed

    Kim, Inhae; Lee, Heetak; Han, Seong Kyu; Kim, Sanguk

    2014-10-01

    The modular architecture of protein-protein interaction (PPI) networks is evident in diverse species with a wide range of complexity. However, the molecular components that lead to the evolution of modularity in PPI networks have not been clearly identified. Here, we show that weak domain-linear motif interactions (DLIs) are more likely to connect different biological modules than strong domain-domain interactions (DDIs). This molecular division of labor is essential for the evolution of modularity in the complex PPI networks of diverse eukaryotic species. In particular, DLIs may compensate for the reduction in module boundaries that originate from increased connections between different modules in complex PPI networks. In addition, we show that the identification of biological modules can be greatly improved by including molecular characteristics of protein interactions. Our findings suggest that transient interactions have played a unique role in shaping the architecture and modularity of biological networks over the course of evolution.

  8. Unravelling networks in local public health policymaking in three European countries - a systems analysis.

    PubMed

    Spitters, Hilde P E M; Lau, Cathrine J; Sandu, Petru; Quanjel, Marcel; Dulf, Diana; Glümer, Charlotte; van Oers, Hans A M; van de Goor, Ien A M

    2017-02-03

    Facilitating and enhancing interaction between stakeholders involved in the policymaking process to stimulate collaboration and use of evidence, is important to foster the development of effective Health Enhancing Physical Activity (HEPA) policies. Performing an analysis of real-world policymaking processes will help reveal the complexity of a network of stakeholders. Therefore, the main objectives were to unravel the stakeholder network in the policy process by conducting three systems analyses, and to increase insight into the similarities and differences in the policy processes of these European country cases. A systems analysis of the local HEPA policymaking process was performed in three European countries involved in the 'REsearch into POlicy to enhance Physical Activity' (REPOPA) project, resulting in three schematic models showing the main stakeholders and their relationships. The models were used to compare the systems, focusing on implications with respect to collaboration and use of evidence in local HEPA policymaking. Policy documents and relevant webpages were examined and main stakeholders were interviewed. The systems analysis in each country identified the main stakeholders involved and their position and relations in the policymaking process. The Netherlands and Denmark were the most similar and both differed most from Romania, especially at the level of accountability of the local public authorities for local HEPA policymaking. The categories of driving forces underlying the relations between stakeholders were formal relations, informal interaction and knowledge exchange. A systems analysis providing detailed descriptions of positions and relations in the stakeholder network in local level HEPA policymaking is rather unique in this area. The analyses are useful when a need arises for increased interaction, collaboration and use of knowledge between stakeholders in the local HEPA network, as they provide an overview of the stakeholders involved and their mutual relations. This information can be an important starting point to enhance the uptake of evidence and build more effective public health policies.

  9. Insular dysfunction within the salience network is associated with severity of symptoms and aberrant inter-network connectivity in major depressive disorder

    PubMed Central

    Manoliu, Andrei; Meng, Chun; Brandl, Felix; Doll, Anselm; Tahmasian, Masoud; Scherr, Martin; Schwerthöffer, Dirk; Zimmer, Claus; Förstl, Hans; Bäuml, Josef; Riedl, Valentin; Wohlschläger, Afra M.; Sorg, Christian

    2014-01-01

    Major depressive disorder (MDD) is characterized by altered intrinsic functional connectivity within (intra-iFC) intrinsic connectivity networks (ICNs), such as the Default Mode- (DMN), Salience- (SN) and Central Executive Network (CEN). It has been proposed that aberrant switching between DMN-mediated self-referential and CEN-mediated goal-directed cognitive processes might contribute to MDD, possibly explaining patients' difficulties to disengage the processing of self-focused, often negatively biased thoughts. Recently, it has been shown that the right anterior insula (rAI) within the SN is modulating DMN/CEN interactions. Since structural and functional alterations within the AI have been frequently reported in MDD, we hypothesized that aberrant intra-iFC in the SN's rAI is associated with both aberrant iFC between DMN and CEN (inter-iFC) and severity of symptoms in MDD. Twenty-five patients with MDD and 25 healthy controls were assessed using resting-state fMRI (rs-fMRI) and psychometric examination. High-model-order independent component analysis (ICA) of rs-fMRI data was performed to identify ICNs including DMN, SN, and CEN. Intra-iFC within and inter-iFC between distinct subsystems of the DMN, SN, and CEN were calculated, compared between groups and correlated with the severity of symptoms. Patients with MDD showed (1) decreased intra-iFC within the SN's rAI, (2) decreased inter-iFC between the DMN and CEN, and (3) increased inter-iFC between the SN and DMN. Moreover, decreased intra-iFC in the SN's rAI was associated with severity of symptoms and aberrant DMN/CEN interactions, with the latter losing significance after correction for multiple comparisons. Our results provide evidence for a relationship between aberrant intra-iFC in the salience network's rAI, aberrant DMN/CEN interactions and severity of symptoms, suggesting a link between aberrant salience mapping, abnormal coordination of DMN/CEN based cognitive processes and psychopathology in MDD. PMID:24478665

  10. Network interactions underlying mirror feedback in stroke: A dynamic causal modeling study.

    PubMed

    Saleh, Soha; Yarossi, Mathew; Manuweera, Thushini; Adamovich, Sergei; Tunik, Eugene

    2017-01-01

    Mirror visual feedback (MVF) is potentially a powerful tool to facilitate recovery of disordered movement and stimulate activation of under-active brain areas due to stroke. The neural mechanisms underlying MVF have therefore been a focus of recent inquiry. Although it is known that sensorimotor areas can be activated via mirror feedback, the network interactions driving this effect remain unknown. The aim of the current study was to fill this gap by using dynamic causal modeling to test the interactions between regions in the frontal and parietal lobes that may be important for modulating the activation of the ipsilesional motor cortex during mirror visual feedback of unaffected hand movement in stroke patients. Our intent was to distinguish between two theoretical neural mechanisms that might mediate ipsilateral activation in response to mirror-feedback: transfer of information between bilateral motor cortices versus recruitment of regions comprising an action observation network which in turn modulate the motor cortex. In an event-related fMRI design, fourteen chronic stroke subjects performed goal-directed finger flexion movements with their unaffected hand while observing real-time visual feedback of the corresponding (veridical) or opposite (mirror) hand in virtual reality. Among 30 plausible network models that were tested, the winning model revealed significant mirror feedback-based modulation of the ipsilesional motor cortex arising from the contralesional parietal cortex, in a region along the rostral extent of the intraparietal sulcus. No winning model was identified for the veridical feedback condition. We discuss our findings in the context of supporting the latter hypothesis, that mirror feedback-based activation of motor cortex may be attributed to engagement of a contralateral (contralesional) action observation network. These findings may have important implications for identifying putative cortical areas, which may be targeted with non-invasive brain stimulation as a means of potentiating the effects of mirror training.

  11. Acceptance in the domestic environment: the experience of senior housing for lesbian, gay, bisexual, and transgender seniors.

    PubMed

    Sullivan, Kathleen M

    2014-01-01

    The social environment impacts the ability of older adults to interact successfully with their community and age-in-place. This study asked, for the first time, residents of existing Lesbian, Gay, Bisexual, and Transgender (LGBT) senior living communities to explain why they chose to live in those communities and what, if any, benefit the community afforded them. Focus groups were conducted at 3 retirement communities. Analysis found common categories across focus groups that explain the phenomenon of LGBT senior housing. Acceptance is paramount for LGBT seniors and social networks expanded, contrary to socioemotional selectivity theory. Providers are encouraged to develop safe spaces for LGBT seniors.

  12. Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks.

    PubMed

    Nariai, N; Kim, S; Imoto, S; Miyano, S

    2004-01-01

    We propose a statistical method to estimate gene networks from DNA microarray data and protein-protein interactions. Because physical interactions between proteins or multiprotein complexes are likely to regulate biological processes, using only mRNA expression data is not sufficient for estimating a gene network accurately. Our method adds knowledge about protein-protein interactions to the estimation method of gene networks under a Bayesian statistical framework. In the estimated gene network, a protein complex is modeled as a virtual node based on principal component analysis. We show the effectiveness of the proposed method through the analysis of Saccharomyces cerevisiae cell cycle data. The proposed method improves the accuracy of the estimated gene networks, and successfully identifies some biological facts.

  13. Urban networks among Chinese cities along "the Belt and Road": A case of web search activity in cyberspace

    PubMed Central

    Du, Hongru; Zhao, Yannan; Wu, Rongwei; Zhang, Xiaolei

    2017-01-01

    “The Belt and Road” initiative has been expected to facilitate interactions among numerous city centers. This initiative would generate a number of centers, both economic and political, which would facilitate greater interaction. To explore how information flows are merged and the specific opportunities that may be offered, Chinese cities along “the Belt and Road” are selected for a case study. Furthermore, urban networks in cyberspace have been characterized by their infrastructure orientation, which implies that there is a relative dearth of studies focusing on the investigation of urban hierarchies by capturing information flows between Chinese cities along “the Belt and Road”. This paper employs Baidu, the main web search engine in China, to examine urban hierarchies. The results show that urban networks become more balanced, shifting from a polycentric to a homogenized pattern. Furthermore, cities in networks tend to have both a hierarchical system and a spatial concentration primarily in regions such as Beijing-Tianjin-Hebei, Yangtze River Delta and the Pearl River Delta region. Urban hierarchy based on web search activity does not follow the existing hierarchical system based on geospatial and economic development in all cases. Moreover, urban networks, under the framework of “the Belt and Road”, show several significant corridors and more opportunities for more cities, particularly western cities. Furthermore, factors that may influence web search activity are explored. The results show that web search activity is significantly influenced by the economic gap, geographical proximity and administrative rank of the city. PMID:29200421

  14. Recent advances in symmetric and network dynamics

    NASA Astrophysics Data System (ADS)

    Golubitsky, Martin; Stewart, Ian

    2015-09-01

    We summarize some of the main results discovered over the past three decades concerning symmetric dynamical systems and networks of dynamical systems, with a focus on pattern formation. In both of these contexts, extra constraints on the dynamical system are imposed, and the generic phenomena can change. The main areas discussed are time-periodic states, mode interactions, and non-compact symmetry groups such as the Euclidean group. We consider both dynamics and bifurcations. We summarize applications of these ideas to pattern formation in a variety of physical and biological systems, and explain how the methods were motivated by transferring to new contexts René Thom's general viewpoint, one version of which became known as "catastrophe theory." We emphasize the role of symmetry-breaking in the creation of patterns. Topics include equivariant Hopf bifurcation, which gives conditions for a periodic state to bifurcate from an equilibrium, and the H/K theorem, which classifies the pairs of setwise and pointwise symmetries of periodic states in equivariant dynamics. We discuss mode interactions, which organize multiple bifurcations into a single degenerate bifurcation, and systems with non-compact symmetry groups, where new technical issues arise. We transfer many of the ideas to the context of networks of coupled dynamical systems, and interpret synchrony and phase relations in network dynamics as a type of pattern, in which space is discretized into finitely many nodes, while time remains continuous. We also describe a variety of applications including animal locomotion, Couette-Taylor flow, flames, the Belousov-Zhabotinskii reaction, binocular rivalry, and a nonlinear filter based on anomalous growth rates for the amplitude of periodic oscillations in a feed-forward network.

  15. ARACNe-based inference, using curated microarray data, of Arabidopsis thaliana root transcriptional regulatory networks

    PubMed Central

    2014-01-01

    Background Uncovering the complex transcriptional regulatory networks (TRNs) that underlie plant and animal development remains a challenge. However, a vast amount of data from public microarray experiments is available, which can be subject to inference algorithms in order to recover reliable TRN architectures. Results In this study we present a simple bioinformatics methodology that uses public, carefully curated microarray data and the mutual information algorithm ARACNe in order to obtain a database of transcriptional interactions. We used data from Arabidopsis thaliana root samples to show that the transcriptional regulatory networks derived from this database successfully recover previously identified root transcriptional modules and to propose new transcription factors for the SHORT ROOT/SCARECROW and PLETHORA pathways. We further show that these networks are a powerful tool to integrate and analyze high-throughput expression data, as exemplified by our analysis of a SHORT ROOT induction time-course microarray dataset, and are a reliable source for the prediction of novel root gene functions. In particular, we used our database to predict novel genes involved in root secondary cell-wall synthesis and identified the MADS-box TF XAL1/AGL12 as an unexpected participant in this process. Conclusions This study demonstrates that network inference using carefully curated microarray data yields reliable TRN architectures. In contrast to previous efforts to obtain root TRNs, that have focused on particular functional modules or tissues, our root transcriptional interactions provide an overview of the transcriptional pathways present in Arabidopsis thaliana roots and will likely yield a plethora of novel hypotheses to be tested experimentally. PMID:24739361

  16. Food Web Designer: a flexible tool to visualize interaction networks.

    PubMed

    Sint, Daniela; Traugott, Michael

    Species are embedded in complex networks of ecological interactions and assessing these networks provides a powerful approach to understand what the consequences of these interactions are for ecosystem functioning and services. This is mandatory to develop and evaluate strategies for the management and control of pests. Graphical representations of networks can help recognize patterns that might be overlooked otherwise. However, there is a lack of software which allows visualizing these complex interaction networks. Food Web Designer is a stand-alone, highly flexible and user friendly software tool to quantitatively visualize trophic and other types of bipartite and tripartite interaction networks. It is offered free of charge for use on Microsoft Windows platforms. Food Web Designer is easy to use without the need to learn a specific syntax due to its graphical user interface. Up to three (trophic) levels can be connected using links cascading from or pointing towards the taxa within each level to illustrate top-down and bottom-up connections. Link width/strength and abundance of taxa can be quantified, allowing generating fully quantitative networks. Network datasets can be imported, saved for later adjustment and the interaction webs can be exported as pictures for graphical display in different file formats. We show how Food Web Designer can be used to draw predator-prey and host-parasitoid food webs, demonstrating that this software is a simple and straightforward tool to graphically display interaction networks for assessing pest control or any other type of interaction in both managed and natural ecosystems from an ecological network perspective.

  17. Evaluating the Spatio-Temporal Factors that Structure Network Parameters of Plant-Herbivore Interactions

    PubMed Central

    López-Carretero, Antonio; Díaz-Castelazo, Cecilia; Boege, Karina; Rico-Gray, Víctor

    2014-01-01

    Despite the dynamic nature of ecological interactions, most studies on species networks offer static representations of their structure, constraining our understanding of the ecological mechanisms involved in their spatio-temporal stability. This is the first study to evaluate plant-herbivore interaction networks on a small spatio-temporal scale. Specifically, we simultaneously assessed the effect of host plant availability, habitat complexity and seasonality on the structure of plant-herbivore networks in a coastal tropical ecosystem. Our results revealed that changes in the host plant community resulting from seasonality and habitat structure are reflected not only in the herbivore community, but also in the emergent properties (network parameters) of the plant-herbivore interaction network such as connectance, selectiveness and modularity. Habitat conditions and periods that are most stressful favored the presence of less selective and susceptible herbivore species, resulting in increased connectance within networks. In contrast, the high degree of selectivennes (i.e. interaction specialization) and modularity of the networks under less stressful conditions was promoted by the diversification in resource use by herbivores. By analyzing networks at a small spatio-temporal scale we identified the ecological factors structuring this network such as habitat complexity and seasonality. Our research offers new evidence on the role of abiotic and biotic factors in the variation of the properties of species interaction networks. PMID:25340790

  18. Differential associations of combined vs. isolated cannabis and nicotine on brain resting state networks.

    PubMed

    Filbey, Francesca M; Gohel, Suril; Prashad, Shikha; Biswal, Bharat B

    2018-06-07

    Concomitant cannabis and nicotine use is more prevalent than cannabis use alone; however, to date, most of the literature has focused on associations of isolated cannabis and nicotine use limiting the generalizability of existing research. To determine differential associations of concomitant use of cannabis and nicotine, isolated cannabis use and isolated nicotine use on brain network connectivity, we examined systems-level neural functioning via independent components analysis (ICA) on resting state networks (RSNs) in cannabis users (CAN, n = 53), nicotine users (NIC, n = 28), concomitant nicotine and cannabis users (NIC + CAN, n = 26), and non-users (CTRL, n = 30). Our results indicated that the CTRL group and NIC + CAN users had the greatest functional connectivity relative to CAN users and NIC users in 12 RSNs: anterior default mode network (DMN), posterior DMN, left frontal parietal network, lingual gyrus, salience network, right frontal parietal network, higher visual network, insular cortex, cuneus/precuneus, posterior cingulate gyrus/middle temporal gyrus, dorsal attention network, and basal ganglia network. Post hoc tests showed no significant differences between (1) CTRL and NIC + CAN and (2) NIC and CAN users. These findings of differential associations of isolated vs. combined nicotine and cannabis use demonstrate an interaction between cannabis and nicotine use on RSNs. These unique and combined mechanisms through which cannabis and nicotine influence cortical network functional connectivity are important to consider when evaluating the neurobiological pathways associated with cannabis and nicotine use.

  19. Episodic memory in aspects of large-scale brain networks

    PubMed Central

    Jeong, Woorim; Chung, Chun Kee; Kim, June Sic

    2015-01-01

    Understanding human episodic memory in aspects of large-scale brain networks has become one of the central themes in neuroscience over the last decade. Traditionally, episodic memory was regarded as mostly relying on medial temporal lobe (MTL) structures. However, recent studies have suggested involvement of more widely distributed cortical network and the importance of its interactive roles in the memory process. Both direct and indirect neuro-modulations of the memory network have been tried in experimental treatments of memory disorders. In this review, we focus on the functional organization of the MTL and other neocortical areas in episodic memory. Task-related neuroimaging studies together with lesion studies suggested that specific sub-regions of the MTL are responsible for specific components of memory. However, recent studies have emphasized that connectivity within MTL structures and even their network dynamics with other cortical areas are essential in the memory process. Resting-state functional network studies also have revealed that memory function is subserved by not only the MTL system but also a distributed network, particularly the default-mode network (DMN). Furthermore, researchers have begun to investigate memory networks throughout the entire brain not restricted to the specific resting-state network (RSN). Altered patterns of functional connectivity (FC) among distributed brain regions were observed in patients with memory impairments. Recently, studies have shown that brain stimulation may impact memory through modulating functional networks, carrying future implications of a novel interventional therapy for memory impairment. PMID:26321939

  20. Maximally informative pairwise interactions in networks

    PubMed Central

    Fitzgerald, Jeffrey D.; Sharpee, Tatyana O.

    2010-01-01

    Several types of biological networks have recently been shown to be accurately described by a maximum entropy model with pairwise interactions, also known as the Ising model. Here we present an approach for finding the optimal mappings between input signals and network states that allow the network to convey the maximal information about input signals drawn from a given distribution. This mapping also produces a set of linear equations for calculating the optimal Ising-model coupling constants, as well as geometric properties that indicate the applicability of the pairwise Ising model. We show that the optimal pairwise interactions are on average zero for Gaussian and uniformly distributed inputs, whereas they are nonzero for inputs approximating those in natural environments. These nonzero network interactions are predicted to increase in strength as the noise in the response functions of each network node increases. This approach also suggests ways for how interactions with unmeasured parts of the network can be inferred from the parameters of response functions for the measured network nodes. PMID:19905153

Top