Sample records for interactive processing system

  1. Speech Perception as a Cognitive Process: The Interactive Activation Model.

    ERIC Educational Resources Information Center

    Elman, Jeffrey L.; McClelland, James L.

    Research efforts to model speech perception in terms of a processing system in which knowledge and processing are distributed over large numbers of highly interactive--but computationally primative--elements are described in this report. After discussing the properties of speech that demand a parallel interactive processing system, the report…

  2. Small Interactive Image Processing System (SMIPS) system description

    NASA Technical Reports Server (NTRS)

    Moik, J. G.

    1973-01-01

    The Small Interactive Image Processing System (SMIPS) operates under control of the IBM-OS/MVT operating system and uses an IBM-2250 model 1 display unit as interactive graphic device. The input language in the form of character strings or attentions from keys and light pen is interpreted and causes processing of built-in image processing functions as well as execution of a variable number of application programs kept on a private disk file. A description of design considerations is given and characteristics, structure and logic flow of SMIPS are summarized. Data management and graphic programming techniques used for the interactive manipulation and display of digital pictures are also discussed.

  3. The Bilingual Language Interaction Network for Comprehension of Speech*

    PubMed Central

    Marian, Viorica

    2013-01-01

    During speech comprehension, bilinguals co-activate both of their languages, resulting in cross-linguistic interaction at various levels of processing. This interaction has important consequences for both the structure of the language system and the mechanisms by which the system processes spoken language. Using computational modeling, we can examine how cross-linguistic interaction affects language processing in a controlled, simulated environment. Here we present a connectionist model of bilingual language processing, the Bilingual Language Interaction Network for Comprehension of Speech (BLINCS), wherein interconnected levels of processing are created using dynamic, self-organizing maps. BLINCS can account for a variety of psycholinguistic phenomena, including cross-linguistic interaction at and across multiple levels of processing, cognate facilitation effects, and audio-visual integration during speech comprehension. The model also provides a way to separate two languages without requiring a global language-identification system. We conclude that BLINCS serves as a promising new model of bilingual spoken language comprehension. PMID:24363602

  4. IMAGES: An interactive image processing system

    NASA Technical Reports Server (NTRS)

    Jensen, J. R.

    1981-01-01

    The IMAGES interactive image processing system was created specifically for undergraduate remote sensing education in geography. The system is interactive, relatively inexpensive to operate, almost hardware independent, and responsive to numerous users at one time in a time-sharing mode. Most important, it provides a medium whereby theoretical remote sensing principles discussed in lecture may be reinforced in laboratory as students perform computer-assisted image processing. In addition to its use in academic and short course environments, the system has also been used extensively to conduct basic image processing research. The flow of information through the system is discussed including an overview of the programs.

  5. An Interactive Graphics Program for Investigating Digital Signal Processing.

    ERIC Educational Resources Information Center

    Miller, Billy K.; And Others

    1983-01-01

    Describes development of an interactive computer graphics program for use in teaching digital signal processing. The program allows students to interactively configure digital systems on a monitor display and observe their system's performance by means of digital plots on the system's outputs. A sample program run is included. (JN)

  6. Study on intelligent processing system of man-machine interactive garment frame model

    NASA Astrophysics Data System (ADS)

    Chen, Shuwang; Yin, Xiaowei; Chang, Ruijiang; Pan, Peiyun; Wang, Xuedi; Shi, Shuze; Wei, Zhongqian

    2018-05-01

    A man-machine interactive garment frame model intelligent processing system is studied in this paper. The system consists of several sensor device, voice processing module, mechanical parts and data centralized acquisition devices. The sensor device is used to collect information on the environment changes brought by the body near the clothes frame model, the data collection device is used to collect the information of the environment change induced by the sensor device, voice processing module is used for speech recognition of nonspecific person to achieve human-machine interaction, mechanical moving parts are used to make corresponding mechanical responses to the information processed by data collection device.it is connected with data acquisition device by a means of one-way connection. There is a one-way connection between sensor device and data collection device, two-way connection between data acquisition device and voice processing module. The data collection device is one-way connection with mechanical movement parts. The intelligent processing system can judge whether it needs to interact with the customer, realize the man-machine interaction instead of the current rigid frame model.

  7. MIMO model of an interacting series process for Robust MPC via System Identification.

    PubMed

    Wibowo, Tri Chandra S; Saad, Nordin

    2010-07-01

    This paper discusses the empirical modeling using system identification technique with a focus on an interacting series process. The study is carried out experimentally using a gaseous pilot plant as the process, in which the dynamic of such a plant exhibits the typical dynamic of an interacting series process. Three practical approaches are investigated and their performances are evaluated. The models developed are also examined in real-time implementation of a linear model predictive control. The selected model is able to reproduce the main dynamic characteristics of the plant in open-loop and produces zero steady-state errors in closed-loop control system. Several issues concerning the identification process and the construction of a MIMO state space model for a series interacting process are deliberated. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  8. The Bilingual Language Interaction Network for Comprehension of Speech

    ERIC Educational Resources Information Center

    Shook, Anthony; Marian, Viorica

    2013-01-01

    During speech comprehension, bilinguals co-activate both of their languages, resulting in cross-linguistic interaction at various levels of processing. This interaction has important consequences for both the structure of the language system and the mechanisms by which the system processes spoken language. Using computational modeling, we can…

  9. Resolving components of wind accreting systems: a case study of Mira AB

    NASA Astrophysics Data System (ADS)

    Karovska, M.

    2004-12-01

    Mass transfer in many systems occurs by wind interaction rather then by tidal interaction, because the primary does not fill its Roche surface. The nearby detached binary Mira AB provides a unique laboratory for studying wind accretion processes because this system can be resolved and the interacting components can be studied individually, which is not possible in most accreting systems. The study of Mira AB wind accretion and mass transfer may therefore help understand the accretion processes in many other astronomical systems.

  10. An Empirical Validation of a Dynamic Systems Model of Interaction: Do Children of Different Sociometric Statuses Differ in Their Dyadic Play?

    ERIC Educational Resources Information Center

    Steenbeek, Henderien; van Geert, Paul

    2008-01-01

    Studying short-term dynamic processes and change mechanisms in interaction yields important knowledge that contributes to understanding long-term social development of children. In order to get a grip on this short-term dynamics of interaction processes, the authors made a dynamic systems model of dyadic interaction of children during one play…

  11. Interaction of dissolution, sorption and biodegradation on transport of BTEX in a saturated groundwater system: Numerical modeling and spatial moment analysis

    NASA Astrophysics Data System (ADS)

    Valsala, Renu; Govindarajan, Suresh Kumar

    2018-06-01

    Interaction of various physical, chemical and biological transport processes plays an important role in deciding the fate and migration of contaminants in groundwater systems. In this study, a numerical investigation on the interaction of various transport processes of BTEX in a saturated groundwater system is carried out. In addition, the multi-component dissolution from a residual BTEX source under unsteady flow conditions is incorporated in the modeling framework. The model considers Benzene, Toluene, Ethyl Benzene and Xylene dissolving from the residual BTEX source zone to undergo sorption and aerobic biodegradation within the groundwater aquifer. Spatial concentration profiles of dissolved BTEX components under the interaction of various sorption and biodegradation conditions have been studied. Subsequently, a spatial moment analysis is carried out to analyze the effect of interaction of various transport processes on the total dissolved mass and the mobility of dissolved BTEX components. Results from the present numerical study suggest that the interaction of dissolution, sorption and biodegradation significantly influence the spatial distribution of dissolved BTEX components within the saturated groundwater system. Mobility of dissolved BTEX components is also found to be affected by the interaction of these transport processes.

  12. AOIPS - An interactive image processing system. [Atmospheric and Oceanic Information Processing System

    NASA Technical Reports Server (NTRS)

    Bracken, P. A.; Dalton, J. T.; Quann, J. J.; Billingsley, J. B.

    1978-01-01

    The Atmospheric and Oceanographic Information Processing System (AOIPS) was developed to help applications investigators perform required interactive image data analysis rapidly and to eliminate the inefficiencies and problems associated with batch operation. This paper describes the configuration and processing capabilities of AOIPS and presents unique subsystems for displaying, analyzing, storing, and manipulating digital image data. Applications of AOIPS to research investigations in meteorology and earth resources are featured.

  13. A high-speed drug interaction search system for ease of use in the clinical environment.

    PubMed

    Takada, Masahiro; Inada, Hiroshi; Nakazawa, Kazuo; Tani, Shoko; Iwata, Michiaki; Sugimoto, Yoshihisa; Nagata, Satoru

    2012-12-01

    With the advancement of pharmaceutical development, drug interactions have become increasingly complex. As a result, a computer-based drug interaction search system is required to organize the whole of drug interaction data. To overcome problems faced with the existing systems, we developed a drug interaction search system using a hash table, which offers higher processing speeds and easier maintenance operations compared with relational databases (RDB). In order to compare the performance of our system and MySQL RDB in terms of search speed, drug interaction searches were repeated for all 45 possible combinations of two out of a group of 10 drugs for two cases: 5,604 and 56,040 drug interaction data. As the principal result, our system was able to process the search approximately 19 times faster than the system using the MySQL RDB. Our system also has several other merits such as that drug interaction data can be created in comma-separated value (CSV) format, thereby facilitating data maintenance. Although our system uses the well-known method of a hash table, it is expected to resolve problems common to existing systems and to be an effective system that enables the safe management of drugs.

  14. Interaction, coalescence, and collapse of localized patterns in a quasi-one-dimensional system of interacting particles

    NASA Astrophysics Data System (ADS)

    Dessup, Tommy; Coste, Christophe; Saint Jean, Michel

    2017-01-01

    We study the path toward equilibrium of pairs of solitary wave envelopes (bubbles) that modulate a regular zigzag pattern in an annular channel. We evidence that bubble pairs are metastable states, which spontaneously evolve toward a stable single bubble. We exhibit the concept of topological frustration of a bubble pair. A configuration is frustrated when the particles between the two bubbles are not organized in a modulated staggered row. For a nonfrustrated (NF) bubble pair configuration, the bubbles interaction is attractive, whereas it is repulsive for a frustrated (F) configuration. We describe a model of interacting solitary wave that provides all qualitative characteristics of the interaction force: It is attractive for NF systems and repulsive for F systems and decreases exponentially with the bubbles distance. Moreover, for NF systems, the bubbles come closer and eventually merge as a single bubble, in a coalescence process. We also evidence a collapse process, in which one bubble shrinks in favor of the other one, overcoming an energetic barrier in phase space. This process is relevant for both NF systems and F systems. In NF systems, the coalescence prevails at low temperature, whereas thermally activated jumps make the collapse prevail at high temperature. In F systems, the path toward equilibrium involves a collapse process regardless of the temperature.

  15. Controls on the Environmental Fate of Compounds Controlled by Coupled Hydrologic and Reactive Processes

    NASA Astrophysics Data System (ADS)

    Hixson, J.; Ward, A. S.; McConville, M.; Remucal, C.

    2017-12-01

    Current understanding of how compounds interact with hydrologic processes or reactive processes have been well established. However, the environmental fate for compounds that interact with hydrologic AND reactive processes is not well known, yet critical in evaluating environmental risk. Evaluations of risk are often simplified to homogenize processes in space and time and to assess processes independently of one another. However, we know spatial heterogeneity and time-variable reactivities complicate predictions of environmental transport and fate, and is further complicated by the interaction of these processes, limiting our ability to accurately predict risk. Compounds that interact with both systems, such as photolytic compounds, require that both components are fully understood in order to predict transport and fate. Release of photolytic compounds occurs through both unintentional releases and intentional loadings. Evaluating risks associated with unintentional releases and implementing best management practices for intentional releases requires an in-depth understanding of the sensitivity of photolytic compounds to external controls. Lampricides, such as 3-trifluoromethyl-4-nitrophenol (TFM), are broadly applied in the Great Lakes system to control the population of invasive sea lamprey. Over-dosing can yield fish kills and other detrimental impacts. Still, planning accounts for time of passage and dilution, but not the interaction of the physical and chemical systems (i.e., storage in the hyporheic zone and time-variable decay rates). In this study, we model a series of TFM applications to test the efficacy of dosing as a function of system characteristics. Overall, our results demonstrate the complexity associated with photo-sensitive compounds through stream-hyporheic systems, and highlight the need to better understand how physical and chemical systems interact to control transport and fate in the environment.

  16. Interactive computer graphics system for structural sizing and analysis of aircraft structures

    NASA Technical Reports Server (NTRS)

    Bendavid, D.; Pipano, A.; Raibstein, A.; Somekh, E.

    1975-01-01

    A computerized system for preliminary sizing and analysis of aircraft wing and fuselage structures was described. The system is based upon repeated application of analytical program modules, which are interactively interfaced and sequence-controlled during the iterative design process with the aid of design-oriented graphics software modules. The entire process is initiated and controlled via low-cost interactive graphics terminals driven by a remote computer in a time-sharing mode.

  17. Knowledge Interaction Design for Creative Knowledge Work

    NASA Astrophysics Data System (ADS)

    Nakakoji, Kumiyo; Yamamoto, Yasuhiro

    This paper describes our approach for the development of application systems for creative knowledge work, particularly for early stages of information design tasks. Being a cognitive tool serving as a means of externalization, an application system affects how the user is engaged in the creative process through its visual interaction design. Knowledge interaction design described in this paper is a framework where a set of application systems for different information design domains are developed based on an interaction model, which is designed for a particular model of a thinking process. We have developed two sets of application systems using the knowledge interaction design framework: one includes systems for linear information design, such as writing, movie-editing, and video-analysis; the other includes systems for network information design, such as file-system navigation and hypertext authoring. Our experience shows that the resulting systems encourage users to follow a certain cognitive path through graceful user experience.

  18. Unintended consequences of information technologies in health care--an interactive sociotechnical analysis.

    PubMed

    Harrison, Michael I; Koppel, Ross; Bar-Lev, Shirly

    2007-01-01

    Many unintended and undesired consequences of Healthcare Information Technologies (HIT) flow from interactions between the HIT and the healthcare organization's sociotechnical system-its workflows, culture, social interactions, and technologies. This paper develops and illustrates a conceptual model of these processes that we call Interactive Sociotechnical Analysis (ISTA). ISTA captures common types of interaction with special emphasis on recursive processes, i.e., feedback loops that alter the newly introduced HIT and promote second-level changes in the social system. ISTA draws on prior studies of unintended consequences, along with research in sociotechnical systems, ergonomics, social informatics, technology-in-practice, and social construction of technology. We present five types of sociotechnical interaction and illustrate each with cases from published research. The ISTA model should further research on emergent and recursive processes in HIT implementation and their unintended consequences. Familiarity with the model can also foster practitioners' awareness of unanticipated consequences that only become evident during HIT implementation.

  19. Nice Guys Finish Fast and Bad Guys Finish Last: Facilitatory vs. Inhibitory Interaction in Parallel Systems

    PubMed Central

    Eidels, Ami; Houpt, Joseph W.; Altieri, Nicholas; Pei, Lei; Townsend, James T.

    2011-01-01

    Systems Factorial Technology is a powerful framework for investigating the fundamental properties of human information processing such as architecture (i.e., serial or parallel processing) and capacity (how processing efficiency is affected by increased workload). The Survivor Interaction Contrast (SIC) and the Capacity Coefficient are effective measures in determining these underlying properties, based on response-time data. Each of the different architectures, under the assumption of independent processing, predicts a specific form of the SIC along with some range of capacity. In this study, we explored SIC predictions of discrete-state (Markov process) and continuous-state (Linear Dynamic) models that allow for certain types of cross-channel interaction. The interaction can be facilitatory or inhibitory: one channel can either facilitate, or slow down processing in its counterpart. Despite the relative generality of these models, the combination of the architecture-oriented plus the capacity oriented analyses provide for precise identification of the underlying system. PMID:21516183

  20. Nice Guys Finish Fast and Bad Guys Finish Last: Facilitatory vs. Inhibitory Interaction in Parallel Systems.

    PubMed

    Eidels, Ami; Houpt, Joseph W; Altieri, Nicholas; Pei, Lei; Townsend, James T

    2011-04-01

    Systems Factorial Technology is a powerful framework for investigating the fundamental properties of human information processing such as architecture (i.e., serial or parallel processing) and capacity (how processing efficiency is affected by increased workload). The Survivor Interaction Contrast (SIC) and the Capacity Coefficient are effective measures in determining these underlying properties, based on response-time data. Each of the different architectures, under the assumption of independent processing, predicts a specific form of the SIC along with some range of capacity. In this study, we explored SIC predictions of discrete-state (Markov process) and continuous-state (Linear Dynamic) models that allow for certain types of cross-channel interaction. The interaction can be facilitatory or inhibitory: one channel can either facilitate, or slow down processing in its counterpart. Despite the relative generality of these models, the combination of the architecture-oriented plus the capacity oriented analyses provide for precise identification of the underlying system.

  1. A dynamic dual process model of risky decision making.

    PubMed

    Diederich, Adele; Trueblood, Jennifer S

    2018-03-01

    Many phenomena in judgment and decision making are often attributed to the interaction of 2 systems of reasoning. Although these so-called dual process theories can explain many types of behavior, they are rarely formalized as mathematical or computational models. Rather, dual process models are typically verbal theories, which are difficult to conclusively evaluate or test. In the cases in which formal (i.e., mathematical) dual process models have been proposed, they have not been quantitatively fit to experimental data and are often silent when it comes to the timing of the 2 systems. In the current article, we present a dynamic dual process model framework of risky decision making that provides an account of the timing and interaction of the 2 systems and can explain both choice and response-time data. We outline several predictions of the model, including how changes in the timing of the 2 systems as well as time pressure can influence behavior. The framework also allows us to explore different assumptions about how preferences are constructed by the 2 systems as well as the dynamic interaction of the 2 systems. In particular, we examine 3 different possible functional forms of the 2 systems and 2 possible ways the systems can interact (simultaneously or serially). We compare these dual process models with 2 single process models using risky decision making data from Guo, Trueblood, and Diederich (2017). Using this data, we find that 1 of the dual process models significantly outperforms the other models in accounting for both choices and response times. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  2. How attention gates social interactions.

    PubMed

    Capozzi, Francesca; Ristic, Jelena

    2018-05-25

    Social interactions are at the core of social life. However, humans selectively choose their exchange partners and do not engage in all available opportunities for social encounters. In this review, we argue that attentional systems play an important role in guiding the selection of social interactions. Supported by both classic and emerging literature, we identify and characterize the three core processes-perception, interpretation, and evaluation-that interact with attentional systems to modulate selective responses to social environments. Perceptual processes facilitate attentional prioritization of social cues. Interpretative processes link attention with understanding of cues' social meanings and agents' mental states. Evaluative processes determine the perceived value of the source of social information. The interplay between attention and these three routes of processing places attention in a powerful role to manage the selection of the vast amount of social information that individuals encounter on a daily basis and, in turn, gate the selection of social interactions. © 2018 New York Academy of Sciences.

  3. Metrics for Labeled Markov Systems

    NASA Technical Reports Server (NTRS)

    Desharnais, Josee; Jagadeesan, Radha; Gupta, Vineet; Panangaden, Prakash

    1999-01-01

    Partial Labeled Markov Chains are simultaneously generalizations of process algebra and of traditional Markov chains. They provide a foundation for interacting discrete probabilistic systems, the interaction being synchronization on labels as in process algebra. Existing notions of process equivalence are too sensitive to the exact probabilities of various transitions. This paper addresses contextual reasoning principles for reasoning about more robust notions of "approximate" equivalence between concurrent interacting probabilistic systems. The present results indicate that:We develop a family of metrics between partial labeled Markov chains to formalize the notion of distance between processes. We show that processes at distance zero are bisimilar. We describe a decision procedure to compute the distance between two processes. We show that reasoning about approximate equivalence can be done compositionally by showing that process combinators do not increase distance. We introduce an asymptotic metric to capture asymptotic properties of Markov chains; and show that parallel composition does not increase asymptotic distance.

  4. Identifying Measures of Student Behavior from Interaction with a Course Management System

    ERIC Educational Resources Information Center

    Nickles, George M., III

    2006-01-01

    The purpose of this work is to identify process measures of student interaction with a course management system (CMS). Logs maintained by Web servers capture aggregate user interactions with a Website. When combined with a login system and context from the course recorded in the CMS, more detailed measures of individual student interaction can be…

  5. Interactive Learning Environment: Web-based Virtual Hydrological Simulation System using Augmented and Immersive Reality

    NASA Astrophysics Data System (ADS)

    Demir, I.

    2014-12-01

    Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The hydrological simulation system is a web-based 3D interactive learning environment for teaching hydrological processes and concepts. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create or load predefined scenarios, control environmental parameters, and evaluate environmental mitigation alternatives. The web-based simulation system provides an environment for students to learn about the hydrological processes (e.g. flooding and flood damage), and effects of development and human activity in the floodplain. The system utilizes latest web technologies and graphics processing unit (GPU) for water simulation and object collisions on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various visualization and interaction modes.

  6. Small Interactive Image Processing System (SMIPS) users manual

    NASA Technical Reports Server (NTRS)

    Moik, J. G.

    1973-01-01

    The Small Interactive Image Processing System (SMIP) is designed to facilitate the acquisition, digital processing and recording of image data as well as pattern recognition in an interactive mode. Objectives of the system are ease of communication with the computer by personnel who are not expert programmers, fast response to requests for information on pictures, complete error recovery as well as simplification of future programming efforts for extension of the system. The SMIP system is intended for operation under OS/MVT on an IBM 360/75 or 91 computer equipped with the IBM-2250 Model 1 display unit. This terminal is used as an interface between user and main computer. It has an alphanumeric keyboard, a programmed function keyboard and a light pen which are used for specification of input to the system. Output from the system is displayed on the screen as messages and pictures.

  7. A methodology for evaluation of an interactive multispectral image processing system

    NASA Technical Reports Server (NTRS)

    Kovalick, William M.; Newcomer, Jeffrey A.; Wharton, Stephen W.

    1987-01-01

    Because of the considerable cost of an interactive multispectral image processing system, an evaluation of a prospective system should be performed to ascertain if it will be acceptable to the anticipated users. Evaluation of a developmental system indicated that the important system elements include documentation, user friendliness, image processing capabilities, and system services. The criteria and evaluation procedures for these elements are described herein. The following factors contributed to the success of the evaluation of the developmental system: (1) careful review of documentation prior to program development, (2) construction and testing of macromodules representing typical processing scenarios, (3) availability of other image processing systems for referral and verification, and (4) use of testing personnel with an applications perspective and experience with other systems. This evaluation was done in addition to and independently of program testing by the software developers of the system.

  8. Development of a prototype interactive learning system using multi-media technology for mission independent training program

    NASA Technical Reports Server (NTRS)

    Matson, Jack E.

    1992-01-01

    The Spacelab Mission Independent Training Program provides an overview of payload operations. Most of the training material is currently presented in workbook form with some lecture sessions to supplement selected topics. The goal of this project was to develop a prototype interactive learning system for one of the Mission Independent Training topics to demonstrate how the learning process can be improved by incorporating multi-media technology into an interactive system. This report documents the development process and some of the problems encountered during the analysis, design, and production phases of this system.

  9. Simulating Complex, Cold-region Process Interactions Using a Multi-scale, Variable-complexity Hydrological Model

    NASA Astrophysics Data System (ADS)

    Marsh, C.; Pomeroy, J. W.; Wheater, H. S.

    2017-12-01

    Accurate management of water resources is necessary for social, economic, and environmental sustainability worldwide. In locations with seasonal snowcovers, the accurate prediction of these water resources is further complicated due to frozen soils, solid-phase precipitation, blowing snow transport, and snowcover-vegetation-atmosphere interactions. Complex process interactions and feedbacks are a key feature of hydrological systems and may result in emergent phenomena, i.e., the arising of novel and unexpected properties within a complex system. One example is the feedback associated with blowing snow redistribution, which can lead to drifts that cause locally-increased soil moisture, thus increasing plant growth that in turn subsequently impacts snow redistribution, creating larger drifts. Attempting to simulate these emergent behaviours is a significant challenge, however, and there is concern that process conceptualizations within current models are too incomplete to represent the needed interactions. An improved understanding of the role of emergence in hydrological systems often requires high resolution distributed numerical hydrological models that incorporate the relevant process dynamics. The Canadian Hydrological Model (CHM) provides a novel tool for examining cold region hydrological systems. Key features include efficient terrain representation, allowing simulations at various spatial scales, reduced computational overhead, and a modular process representation allowing for an alternative-hypothesis framework. Using both physics-based and conceptual process representations sourced from long term process studies and the current cold regions literature allows for comparison of process representations and importantly, their ability to produce emergent behaviours. Examining the system in a holistic, process-based manner can hopefully derive important insights and aid in development of improved process representations.

  10. Image data-processing system for solar astronomy

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.; Teuber, D. L.; Watkins, J. R.; Thomas, D. T.; Cooper, C. M.

    1977-01-01

    The paper describes an image data processing system (IDAPS), its hardware/software configuration, and interactive and batch modes of operation for the analysis of the Skylab/Apollo Telescope Mount S056 X-Ray Telescope experiment data. Interactive IDAPS is primarily designed to provide on-line interactive user control of image processing operations for image familiarization, sequence and parameter optimization, and selective feature extraction and analysis. Batch IDAPS follows the normal conventions of card control and data input and output, and is best suited where the desired parameters and sequence of operations are known and when long image-processing times are required. Particular attention is given to the way in which this system has been used in solar astronomy and other investigations. Some recent results obtained by means of IDAPS are presented.

  11. Collaborative Educational Leadership: The Emergence of Human Interactional Sense-Making Process as a Complex System

    ERIC Educational Resources Information Center

    Jäppinen, Aini-Kristiina

    2014-01-01

    The article aims at explicating the emergence of human interactional sense-making process within educational leadership as a complex system. The kind of leadership is understood as a holistic entity called collaborative leadership. There, sense-making emerges across interdependent domains, called attributes of collaborative leadership. The…

  12. Research of Environmental and Economic Interactions of Coke And By-Product Process

    NASA Astrophysics Data System (ADS)

    Mikhailov, Vladimir; Kiseleva, Tamara; Bugrova, Svetlana; Muromtseva, Alina; Mikhailova, Yana

    2017-11-01

    The issues of showing relations between environmental and economic indicators (further - environmental and economic interactions) of coke and by-product process are considered in the article. The purpose of the study is to reveal the regularities of the functioning of the local environmental and economic system on the basis of revealed spectrum of environmental and economic interactions. A simplified scheme of the environmental and economic system "coke and by-product process - the environment" was developed. The forms of the investigated environmental-economic interactions were visualized and the selective interpretation of the tightness of the established connection was made. The main result of the work is modeling system of environmental and economic interactions that allows increasing the efficiency of local ecological and economic system management and optimizing the "interests" of an industrial enterprise - the source of negative impact on the environment. The results of the survey can be recommended to government authorities and industrial enterprises with a wide range of negative impact forms to support the adoption of effective management decisions aimed at sustainable environmental and economic development of the region or individual municipalities.

  13. Analysis of exergy efficiency of a super-critical compressed carbon dioxide energy-storage system based on the orthogonal method.

    PubMed

    He, Qing; Hao, Yinping; Liu, Hui; Liu, Wenyi

    2018-01-01

    Super-critical carbon dioxide energy-storage (SC-CCES) technology is a new type of gas energy-storage technology. This paper used orthogonal method and variance analysis to make significant analysis on the factors which would affect the thermodynamics characteristics of the SC-CCES system and obtained the significant factors and interactions in the energy-storage process, the energy-release process and the whole energy-storage system. Results have shown that the interactions in the components have little influence on the energy-storage process, the energy-release process and the whole energy-storage process of the SC-CCES system, the significant factors are mainly on the characteristics of the system component itself, which will provide reference for the optimization of the thermal properties of the energy-storage system.

  14. Analysis of exergy efficiency of a super-critical compressed carbon dioxide energy-storage system based on the orthogonal method

    PubMed Central

    He, Qing; Liu, Hui; Liu, Wenyi

    2018-01-01

    Super-critical carbon dioxide energy-storage (SC-CCES) technology is a new type of gas energy-storage technology. This paper used orthogonal method and variance analysis to make significant analysis on the factors which would affect the thermodynamics characteristics of the SC-CCES system and obtained the significant factors and interactions in the energy-storage process, the energy-release process and the whole energy-storage system. Results have shown that the interactions in the components have little influence on the energy-storage process, the energy-release process and the whole energy-storage process of the SC-CCES system, the significant factors are mainly on the characteristics of the system component itself, which will provide reference for the optimization of the thermal properties of the energy-storage system. PMID:29634742

  15. The role of interactions along the flood process chain and implications for risk assessment

    NASA Astrophysics Data System (ADS)

    Vorogushyn, Sergiy; Apel, Heiko; Viet Nguyen, Dung; Guse, Björn; Kreibich, Heidi; Lüdtke, Stefan; Schröter, Kai; Merz, Bruno

    2017-04-01

    Floods with their manifold characteristics are shaped by various processes along the flood process chain - from triggering meteorological extremes through catchment and river network process down to impacts on societies. In flood risk systems numerous interactions and feedbacks along the process chain may occur which finally shape spatio-temporal flood patterns and determine the ultimate risk. In this talk, we review some important interactions in the atmosphere-catchment, river-dike-floodplain and vulnerability compartments of the flood risk system. We highlight the importance of spatial interactions for flood hazard and risk assessment. For instance, the role of spatial rainfall structure or wave superposition in river networks is elucidated with selected case studies. In conclusion, we show the limits of current methods in assessment of large-scale flooding and outline the approach to more comprehensive risk assessment based on our regional flood risk model (RFM) for Germany.

  16. The MIDAS processor. [Multivariate Interactive Digital Analysis System for multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Kriegler, F. J.; Gordon, M. F.; Mclaughlin, R. H.; Marshall, R. E.

    1975-01-01

    The MIDAS (Multivariate Interactive Digital Analysis System) processor is a high-speed processor designed to process multispectral scanner data (from Landsat, EOS, aircraft, etc.) quickly and cost-effectively to meet the requirements of users of remote sensor data, especially from very large areas. MIDAS consists of a fast multipipeline preprocessor and classifier, an interactive color display and color printer, and a medium scale computer system for analysis and control. The system is designed to process data having as many as 16 spectral bands per picture element at rates of 200,000 picture elements per second into as many as 17 classes using a maximum likelihood decision rule.

  17. Sensitivity of measurement-based purification processes to inner interactions

    NASA Astrophysics Data System (ADS)

    Militello, Benedetto; Napoli, Anna

    2018-02-01

    The sensitivity of a repeated measurement-based purification scheme to additional undesired couplings is analyzed, focusing on the very simple and archetypical system consisting of two two-level systems interacting with a repeatedly measured one. Several regimes are considered and in the strong coupling limit (i.e., when the coupling constant of the undesired interaction is very large) the occurrence of a quantum Zeno effect is proven to dramatically jeopardize the efficiency of the purification process.

  18. A Nonlinear Model for Interactive Data Analysis and Visualization and an Implementation Using Progressive Computation for Massive Remote Climate Data Ensembles

    NASA Astrophysics Data System (ADS)

    Christensen, C.; Liu, S.; Scorzelli, G.; Lee, J. W.; Bremer, P. T.; Summa, B.; Pascucci, V.

    2017-12-01

    The creation, distribution, analysis, and visualization of large spatiotemporal datasets is a growing challenge for the study of climate and weather phenomena in which increasingly massive domains are utilized to resolve finer features, resulting in datasets that are simply too large to be effectively shared. Existing workflows typically consist of pipelines of independent processes that preclude many possible optimizations. As data sizes increase, these pipelines are difficult or impossible to execute interactively and instead simply run as large offline batch processes. Rather than limiting our conceptualization of such systems to pipelines (or dataflows), we propose a new model for interactive data analysis and visualization systems in which we comprehensively consider the processes involved from data inception through analysis and visualization in order to describe systems composed of these processes in a manner that facilitates interactive implementations of the entire system rather than of only a particular component. We demonstrate the application of this new model with the implementation of an interactive system that supports progressive execution of arbitrary user scripts for the analysis and visualization of massive, disparately located climate data ensembles. It is currently in operation as part of the Earth System Grid Federation server running at Lawrence Livermore National Lab, and accessible through both web-based and desktop clients. Our system facilitates interactive analysis and visualization of massive remote datasets up to petabytes in size, such as the 3.5 PB 7km NASA GEOS-5 Nature Run simulation, previously only possible offline or at reduced resolution. To support the community, we have enabled general distribution of our application using public frameworks including Docker and Anaconda.

  19. Internet-based Interactive Construction Management Learning System.

    ERIC Educational Resources Information Center

    Sawhney, Anil; Mund, Andre; Koczenasz, Jeremy

    2001-01-01

    Describes a way to incorporate practical content into the construction engineering and management curricula: the Internet-based Interactive Construction Management Learning System, which uses interactive and adaptive learning environments to train students in the areas of construction methods, equipment and processes using multimedia, databases,…

  20. The Monash University Interactive Simple Climate Model

    NASA Astrophysics Data System (ADS)

    Dommenget, D.

    2013-12-01

    The Monash university interactive simple climate model is a web-based interface that allows students and the general public to explore the physical simulation of the climate system with a real global climate model. It is based on the Globally Resolved Energy Balance (GREB) model, which is a climate model published by Dommenget and Floeter [2011] in the international peer review science journal Climate Dynamics. The model simulates most of the main physical processes in the climate system in a very simplistic way and therefore allows very fast and simple climate model simulations on a normal PC computer. Despite its simplicity the model simulates the climate response to external forcings, such as doubling of the CO2 concentrations very realistically (similar to state of the art climate models). The Monash simple climate model web-interface allows you to study the results of more than a 2000 different model experiments in an interactive way and it allows you to study a number of tutorials on the interactions of physical processes in the climate system and solve some puzzles. By switching OFF/ON physical processes you can deconstruct the climate and learn how all the different processes interact to generate the observed climate and how the processes interact to generate the IPCC predicted climate change for anthropogenic CO2 increase. The presentation will illustrate how this web-base tool works and what are the possibilities in teaching students with this tool are.

  1. Message frames interact with motivational systems to determine depth of message processing.

    PubMed

    Shen, Lijiang; Dillard, James Price

    2009-09-01

    Although several theoretical perspectives predict that negatively framed messages will be processed more deeply than positively framed messages, a recent meta-analysis found no such difference. In this article, the authors explore 2 explanations for this inconsistency. One possibility is methodological: the statistics used in the primary studies underestimated framing effects on depth of message processing because the data were maldistributed. The other is theoretical: the absence of a main effect is veridical, but framing interacts with individual differences that predispose individuals to greater or lesser depth of processing. Data from 2 experiments (Ns = 286 and 252) were analyzed via tobit regression, a technique designed to overcome the limitations of maldistributed data. One study showed the predicted main effect for framing, but the other did not. Both studies showed the anticipated interaction: Depth of processing correlated positively with a measure of the behavioral activation system in the advantage framing condition, whereas depth of processing correlated positively with the behavioral inhibition system in the disadvantage framing condition.

  2. Use of graphics in the design office at the Military Aircraft Division of the British Aircraft Corporation

    NASA Technical Reports Server (NTRS)

    Coles, W. A.

    1975-01-01

    The CAD/CAM interactive computer graphics system was described; uses to which it has been put were shown, and current developments of the system were outlined. The system supports batch, time sharing, and fully interactive graphic processing. Engineers using the system may switch between these methods of data processing and problem solving to make the best use of the available resources. It is concluded that the introduction of on-line computing in the form of teletypes, storage tubes, and fully interactive graphics has resulted in large increases in productivity and reduced timescales in the geometric computing, numerical lofting and part programming areas, together with a greater utilization of the system in the technical departments.

  3. Deciphering the Interdependence between Ecological and Evolutionary Networks.

    PubMed

    Melián, Carlos J; Matthews, Blake; de Andreazzi, Cecilia S; Rodríguez, Jorge P; Harmon, Luke J; Fortuna, Miguel A

    2018-05-24

    Biological systems consist of elements that interact within and across hierarchical levels. For example, interactions among genes determine traits of individuals, competitive and cooperative interactions among individuals influence population dynamics, and interactions among species affect the dynamics of communities and ecosystem processes. Such systems can be represented as hierarchical networks, but can have complex dynamics when interdependencies among levels of the hierarchy occur. We propose integrating ecological and evolutionary processes in hierarchical networks to explore interdependencies in biological systems. We connect gene networks underlying predator-prey trait distributions to food webs. Our approach addresses longstanding questions about how complex traits and intraspecific trait variation affect the interdependencies among biological levels and the stability of meta-ecosystems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Towards a multi-level approach to the emergence of meaning processes in living systems.

    PubMed

    Queiroz, João; El-Hani, Charbel Niño

    2006-09-01

    Any description of the emergence and evolution of different types of meaning processes (semiosis, sensu C.S.Peirce) in living systems must be supported by a theoretical framework which makes it possible to understand the nature and dynamics of such processes. Here we propose that the emergence of semiosis of different kinds can be understood as resulting from fundamental interactions in a triadically-organized hierarchical process. To grasp these interactions, we develop a model grounded on Stanley Salthe's hierarchical structuralism. This model can be applied to establish, in a general sense, a set of theoretical constraints for explaining the instantiation of different kinds of meaning processes (iconic, indexical, symbolic) in semiotic systems. We use it to model a semiotic process in the immune system, namely, B-cell activation, in order to offer insights into the heuristic role it can play in the development of explanations for specific semiotic processes.

  5. Visualizing the process of interaction in a 3D environment

    NASA Astrophysics Data System (ADS)

    Vaidya, Vivek; Suryanarayanan, Srikanth; Krishnan, Kajoli; Mullick, Rakesh

    2007-03-01

    As the imaging modalities used in medicine transition to increasingly three-dimensional data the question of how best to interact with and analyze this data becomes ever more pressing. Immersive virtual reality systems seem to hold promise in tackling this, but how individuals learn and interact in these environments is not fully understood. Here we will attempt to show some methods in which user interaction in a virtual reality environment can be visualized and how this can allow us to gain greater insight into the process of interaction/learning in these systems. Also explored is the possibility of using this method to improve understanding and management of ergonomic issues within an interface.

  6. Laser metrology in food-related systems

    NASA Astrophysics Data System (ADS)

    Mendoza-Sanchez, Patricia; Lopez, Daniel; Kongraksawech, Teepakorn; Vazquez, Pedro; Torres, J. Antonio; Ramirez, Jose A.; Huerta-Ruelas, Jorge

    2005-02-01

    An optical system was developed using a low-cost semiconductor laser and commercial optical and electronic components, to monitor food processes by measuring changes in optical rotation (OR) of chiral compounds. The OR signal as a function of processing time and sample temperature were collected and recorded using a computer data acquisition system. System has been tested during two different processes: sugar-protein interaction and, beer fermentation process. To study sugar-protein interaction, the following sugars were used: sorbitol, trehalose and sucrose, and in the place of Protein, Serum Albumin Bovine (BSA, A-7906 Sigma-Aldrich). In some food processes, different sugars are added to protect damage of proteins during their processing, storage and/or distribution. Different sugar/protein solutions were prepared and heated above critical temperature of protein denaturation. OR measurements were performed during heating process and effect of different sugars in protein denaturation was measured. Higher sensitivity of these measurements was found compared with Differential Scanning Calorimetry, which needs higher protein concentration to study these interactions. The brewing fermentation process was monitored in-situ using this OR system and validated by correlation with specific density measurements and gas chromatography. This instrument can be implemented to monitor fermentation on-line, thereby determining end of process and optimizing process conditions in an industrial setting. The high sensitivity of developed OR system has no mobile parts and is more flexible than commercial polarimeters providing the capability of implementation in harsh environments, signifying the potential of this method as an in-line technique for quality control in food processing and for experimentation with optically active solutions.

  7. A Systems View of Mother-Infant Face-to-Face Communication

    ERIC Educational Resources Information Center

    Beebe, Beatrice; Messinger, Daniel; Bahrick, Lorraine E.; Margolis, Amy; Buck, Karen A.; Chen, Henian

    2016-01-01

    Principles of a dynamic, dyadic systems view of mother-infant face-to-face communication, which considers self- and interactive processes in relation to one another, were tested. The process of interaction across time in a large low-risk community sample at infant age 4 months was examined. Split-screen videotape was coded on a 1-s time base for…

  8. Functional and performance requirements of the next NOAA-Kasas City computer system

    NASA Technical Reports Server (NTRS)

    Mosher, F. R.

    1985-01-01

    The development of the Advanced Weather Interactive Processing System for the 1990's (AWIPS-90) will result in more timely and accurate forecasts with improved cost effectiveness. As part of the AWIPS-90 initiative, the National Meteorological Center (NMC), the National Severe Storms Forecast Center (NSSFC), and the National Hurricane Center (NHC) are to receive upgrades of interactive processing systems. This National Center Upgrade program will support the specialized inter-center communications, data acquisition, and processing needs of these centers. The missions, current capabilities and general functional requirements for the upgrade to the NSSFC are addressed. System capabilities are discussed along with the requirements for the upgraded system.

  9. A Dynamic Interactive Theory of Person Construal

    ERIC Educational Resources Information Center

    Freeman, Jonathan B.; Ambady, Nalini

    2011-01-01

    A dynamic interactive theory of person construal is proposed. It assumes that the perception of other people is accomplished by a dynamical system involving continuous interaction between social categories, stereotypes, high-level cognitive states, and the low-level processing of facial, vocal, and bodily cues. This system permits lower-level…

  10. Systems Modeling at Multiple Levels of Regulation: Linking Systems and Genetic Networks to Spatially Explicit Plant Populations

    PubMed Central

    Kitchen, James L.; Allaby, Robin G.

    2013-01-01

    Selection and adaptation of individuals to their underlying environments are highly dynamical processes, encompassing interactions between the individual and its seasonally changing environment, synergistic or antagonistic interactions between individuals and interactions amongst the regulatory genes within the individual. Plants are useful organisms to study within systems modeling because their sedentary nature simplifies interactions between individuals and the environment, and many important plant processes such as germination or flowering are dependent on annual cycles which can be disrupted by climate behavior. Sedentism makes plants relevant candidates for spatially explicit modeling that is tied in with dynamical environments. We propose that in order to fully understand the complexities behind plant adaptation, a system that couples aspects from systems biology with population and landscape genetics is required. A suitable system could be represented by spatially explicit individual-based models where the virtual individuals are located within time-variable heterogeneous environments and contain mutable regulatory gene networks. These networks could directly interact with the environment, and should provide a useful approach to studying plant adaptation. PMID:27137364

  11. Process migration in UNIX environments

    NASA Technical Reports Server (NTRS)

    Lu, Chin; Liu, J. W. S.

    1988-01-01

    To support process migration in UNIX environments, the main problem is how to encapsulate the location dependent features of the system in such a way that a host independent virtual environment is maintained by the migration handlers on the behalf of each migrated process. An object-oriented approach is used to describe the interaction between a process and its environment. More specifically, environmental objects were introduced in UNIX systems to carry out the user-environment interaction. The implementation of the migration handlers is based on both the state consistency criterion and the property consistency criterion.

  12. Bioluminescence Resonance Energy Transfer System for Measuring Dynamic Protein-Protein Interactions in Bacteria

    PubMed Central

    Cui, Boyu; Wang, Yao; Song, Yunhong; Wang, Tietao; Li, Changfu; Wei, Yahong

    2014-01-01

    ABSTRACT Protein-protein interactions are important for virtually every biological process, and a number of elegant approaches have been designed to detect and evaluate such interactions. However, few of these methods allow the detection of dynamic and real-time protein-protein interactions in bacteria. Here we describe a bioluminescence resonance energy transfer (BRET) system based on the bacterial luciferase LuxAB. We found that enhanced yellow fluorescent protein (eYFP) accepts the emission from LuxAB and emits yellow fluorescence. Importantly, BRET occurred when LuxAB and eYFP were fused, respectively, to the interacting protein pair FlgM and FliA. Furthermore, we observed sirolimus (i.e., rapamycin)-inducible interactions between FRB and FKBP12 and a dose-dependent abolishment of such interactions by FK506, the ligand of FKBP12. Using this system, we showed that osmotic stress or low pH efficiently induced multimerization of the regulatory protein OmpR and that the multimerization induced by low pH can be reversed by a neutralizing agent, further indicating the usefulness of this system in the measurement of dynamic interactions. This method can be adapted to analyze dynamic protein-protein interactions and the importance of such interactions in bacterial processes such as development and pathogenicity. PMID:24846380

  13. Judges, Legislators, and Social Change

    ERIC Educational Resources Information Center

    Dienes, C. Thomas

    1970-01-01

    The interaction analysis scheme describes the adjustment of the legal system to change. It is a dynamic decision-making process interacting internally among the judicial and legislative subsystems, and, externally with the social environment in the policy-making process. (SE)

  14. Stochastic availability analysis of operational data systems in the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Issa, T. N.

    1991-01-01

    Existing availability models of standby redundant systems consider only an operator's performance and its interaction with the hardware performance. In the case of operational data systems in the Deep Space Network (DSN), in addition to an operator system interface, a controller reconfigures the system and links a standby unit into the network data path upon failure of the operating unit. A stochastic (Markovian) process technique is used to model and analyze the availability performance and occurrence of degradation due to partial failures are quantitatively incorporated into the model. Exact expressions of the steady state availability and proportion degraded performance measures are derived for the systems under study. The interaction among the hardware, operator, and controller performance parameters and that interaction's effect on data availability are evaluated and illustrated for an operational data processing system.

  15. Application of agent-based system for bioprocess description and process improvement.

    PubMed

    Gao, Ying; Kipling, Katie; Glassey, Jarka; Willis, Mark; Montague, Gary; Zhou, Yuhong; Titchener-Hooker, Nigel J

    2010-01-01

    Modeling plays an important role in bioprocess development for design and scale-up. Predictive models can also be used in biopharmaceutical manufacturing to assist decision-making either to maintain process consistency or to identify optimal operating conditions. To predict the whole bioprocess performance, the strong interactions present in a processing sequence must be adequately modeled. Traditionally, bioprocess modeling considers process units separately, which makes it difficult to capture the interactions between units. In this work, a systematic framework is developed to analyze the bioprocesses based on a whole process understanding and considering the interactions between process operations. An agent-based approach is adopted to provide a flexible infrastructure for the necessary integration of process models. This enables the prediction of overall process behavior, which can then be applied during process development or once manufacturing has commenced, in both cases leading to the capacity for fast evaluation of process improvement options. The multi-agent system comprises a process knowledge base, process models, and a group of functional agents. In this system, agent components co-operate with each other in performing their tasks. These include the description of the whole process behavior, evaluating process operating conditions, monitoring of the operating processes, predicting critical process performance, and providing guidance to decision-making when coping with process deviations. During process development, the system can be used to evaluate the design space for process operation. During manufacture, the system can be applied to identify abnormal process operation events and then to provide suggestions as to how best to cope with the deviations. In all cases, the function of the system is to ensure an efficient manufacturing process. The implementation of the agent-based approach is illustrated via selected application scenarios, which demonstrate how such a framework may enable the better integration of process operations by providing a plant-wide process description to facilitate process improvement. Copyright 2009 American Institute of Chemical Engineers

  16. Human Factors Considerations in System Design

    NASA Technical Reports Server (NTRS)

    Mitchell, C. M. (Editor); Vanbalen, P. M. (Editor); Moe, K. L. (Editor)

    1983-01-01

    Human factors considerations in systems design was examined. Human factors in automated command and control, in the efficiency of the human computer interface and system effectiveness are outlined. The following topics are discussed: human factors aspects of control room design; design of interactive systems; human computer dialogue, interaction tasks and techniques; guidelines on ergonomic aspects of control rooms and highly automated environments; system engineering for control by humans; conceptual models of information processing; information display and interaction in real time environments.

  17. Systems and methods for interactive virtual reality process control and simulation

    DOEpatents

    Daniel, Jr., William E.; Whitney, Michael A.

    2001-01-01

    A system for visualizing, controlling and managing information includes a data analysis unit for interpreting and classifying raw data using analytical techniques. A data flow coordination unit routes data from its source to other components within the system. A data preparation unit handles the graphical preparation of the data and a data rendering unit presents the data in a three-dimensional interactive environment where the user can observe, interact with, and interpret the data. A user can view the information on various levels, from a high overall process level view, to a view illustrating linkage between variables, to view the hard data itself, or to view results of an analysis of the data. The system allows a user to monitor a physical process in real-time and further allows the user to manage and control the information in a manner not previously possible.

  18. Pathways of Understanding: the Interactions of Humanity and Global Environmental Change

    NASA Technical Reports Server (NTRS)

    Jacobson, Harold K.; Katzenberger, John; Lousma, Jack; Mooney, Harold A.; Moss, Richard H.; Kuhn, William; Luterbacher, Urs; Wiegandt, Ellen

    1992-01-01

    How humans, interacting within social systems, affect and are affected by global change is explored. Recognizing the impact human activities have on the environment and responding to the need to document the interactions among human activities, the Consortium for International Earth Science Information Network (CIESIN) commissioned a group of 12 scientists to develop a framework illustrating the key human systems that contribute to global change. This framework, called the Social Process Diagram, will help natural and social scientists, educators, resource managers and policy makers envision and analyze how human systems interact among themselves and with the natural system. The Social Process Diagram consists of the following blocks that constitute the Diagram's structural framework: (1) fund of knowledge and experience; (2) preferences and expectations; (3) factors of production and technology; (4) population and social structure; (5) economic systems; (6) political systems and institutions; and (7) global scale environmental processes. To demonstrate potential ways the Diagram can be used, this document includes 3 hypothetical scenarios of global change issues: global warming and sea level rise; the environmental impact of human population migration; and energy and the environment. These scenarios demonstrate the Diagram's usefulness for visualizing specific processes that might be studied to evaluate a particular global change issues. The scenario also shows that interesting and unanticipated questions may emerge as links are explored between categories on the Diagram.

  19. Assessing Technology in the Absence of Proof: Trust Based on the Interplay of Others' Opinions and the Interaction Process.

    PubMed

    de Vries, Peter W; van den Berg, Stéphanie M; Midden, Cees

    2015-12-01

    The present research addresses the question of how trust in systems is formed when unequivocal information about system accuracy and reliability is absent, and focuses on the interaction of indirect information (others' evaluations) and direct (experiential) information stemming from the interaction process. Trust in decision-supporting technology, such as route planners, is important for satisfactory user interactions. Little is known, however, about trust formation in the absence of outcome feedback, that is, when users have not yet had opportunity to verify actual outcomes. Three experiments manipulated others' evaluations ("endorsement cues") and various forms of experience-based information ("process feedback") in interactions with a route planner and measured resulting trust using rating scales and credits staked on the outcome. Subsequently, an overall analysis was conducted. Study 1 showed that effectiveness of endorsement cues on trust is moderated by mere process feedback. In Study 2, consistent (i.e., nonrandom) process feedback overruled the effect of endorsement cues on trust, whereas inconsistent process feedback did not. Study 3 showed that although the effects of consistent and inconsistent process feedback largely remained regardless of face validity, high face validity in process feedback caused higher trust than those with low face validity. An overall analysis confirmed these findings. Experiential information impacts trust even if outcome feedback is not available, and, moreover, overrules indirect trust cues-depending on the nature of the former. Designing systems so that they allow novice users to make inferences about their inner workings may foster initial trust. © 2015, Human Factors and Ergonomics Society.

  20. How an interacting many-body system tunnels through a potential barrier to open space

    PubMed Central

    Lode, Axel U.J.; Streltsov, Alexej I.; Sakmann, Kaspar; Alon, Ofir E.; Cederbaum, Lorenz S.

    2012-01-01

    The tunneling process in a many-body system is a phenomenon which lies at the very heart of quantum mechanics. It appears in nature in the form of α-decay, fusion and fission in nuclear physics, and photoassociation and photodissociation in biology and chemistry. A detailed theoretical description of the decay process in these systems is a very cumbersome problem, either because of very complicated or even unknown interparticle interactions or due to a large number of constituent particles. In this work, we theoretically study the phenomenon of quantum many-body tunneling in a transparent and controllable physical system, an ultracold atomic gas. We analyze a full, numerically exact many-body solution of the Schrödinger equation of a one-dimensional system with repulsive interactions tunneling to open space. We show how the emitted particles dissociate or fragment from the trapped and coherent source of bosons: The overall many-particle decay process is a quantum interference of single-particle tunneling processes emerging from sources with different particle numbers taking place simultaneously. The close relation to atom lasers and ionization processes allows us to unveil the great relevance of many-body correlations between the emitted and trapped fractions of the wave function in the respective processes. PMID:22869703

  1. METEOSAT studies of clouds and radiation budget

    NASA Technical Reports Server (NTRS)

    Saunders, R. W.

    1982-01-01

    Radiation budget studies of the atmosphere/surface system from Meteosat, cloud parameter determination from space, and sea surface temperature measurements from TIROS N data are all described. This work was carried out on the interactive planetary image processing system (IPIPS), which allows interactive manipulationion of the image data in addition to the conventional computational tasks. The current hardware configuration of IPIPS is shown. The I(2)S is the principal interactive display allowing interaction via a trackball, four buttons under program control, or a touch tablet. Simple image processing operations such as contrast enhancing, pseudocoloring, histogram equalization, and multispectral combinations, can all be executed at the push of a button.

  2. On the ``Matrix Approach'' to Interacting Particle Systems

    NASA Astrophysics Data System (ADS)

    de Sanctis, L.; Isopi, M.

    2004-04-01

    Derrida et al. and Schütz and Stinchcombe gave algebraic formulas for the correlation functions of the partially asymmetric simple exclusion process. Here we give a fairly general recipe of how to get these formulas and extend them to the whole time evolution (starting from the generator of the process), for a certain class of interacting systems. We then analyze the algebraic relations obtained to show that the matrix approach does not work with some models such as the voter and the contact processes.

  3. Software engineering aspects of real-time programming concepts

    NASA Astrophysics Data System (ADS)

    Schoitsch, Erwin

    1986-08-01

    Real-time programming is a discipline of great importance not only in process control, but also in fields like communication, office automation, interactive databases, interactive graphics and operating systems development. General concepts of concurrent programming and constructs for process-synchronization are discussed in detail. Tasking and synchronization concepts, methods of process communication, interrupt and timeout handling in systems based on semaphores, signals, conditional critical regions or on real-time languages like Concurrent PASCAL, MODULA, CHILL and ADA are explained and compared with each other. The second part deals with structuring and modularization of technical processes to build reliable and maintainable real time systems. Software-quality and software engineering aspects are considered throughout the paper.

  4. HYPER-­TVT: Development and Implementation of an Interactive Learning Environment for Students of Chemical and Process Engineering

    ERIC Educational Resources Information Center

    Santoro, Marina; Mazzotti, Marco

    2006-01-01

    Hyper-TVT is a computer-aided education system that has been developed at the Institute of Process Engineering at the ETH Zurich. The aim was to create an interactive learning environment for chemical and process engineering students. The topics covered are the most important multistage separation processes, i.e. fundamentals of separation…

  5. Distraction or cognitive overload? Using modulations of the autonomic nervous system to discriminate the possible negative effects of advanced assistance system.

    PubMed

    Ruscio, D; Bos, A J; Ciceri, M R

    2017-06-01

    The interaction with Advanced Driver Assistance Systems has several positive implications for road safety, but also some potential downsides such as mental workload and automation complacency. Malleable attentional resources allocation theory describes two possible processes that can generate workload in interaction with advanced assisting devices. The purpose of the present study is to determine if specific analysis of the different modalities of autonomic control of nervous system can be used to discriminate different potential workload processes generated during assisted-driving tasks and automation complacency situations. Thirty-five drivers were tested in a virtual scenario while using head-up advanced warning assistance system. Repeated MANOVA were used to examine changes in autonomic activity across a combination of different user interactions generated by the advanced assistance system: (1) expected take-over request without anticipatory warning; (2) expected take-over request with two-second anticipatory warning; (3) unexpected take-over request with misleading warning; (4) unexpected take-over request without warning. Results shows that analysis of autonomic modulations can discriminate two different resources allocation processes, related to different behavioral performances. The user's interaction that required divided attention under expected situations produced performance enhancement and reciprocally-coupled parasympathetic inhibition with sympathetic activity. At the same time, supervising interactions that generated automation complacency were described specifically by uncoupled sympathetic activation. Safety implications for automated assistance systems developments are considered. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Architecting Systems for Human Space Flight

    NASA Technical Reports Server (NTRS)

    Wocken, Gerald

    2002-01-01

    Human-system interactions have been largely overlooked in the traditional systems engineering process. Awareness of human factors (HF) has increased in the past few years, but the involvement of HF specialists is still often too little and too late. In systems involving long-duration human space flight, it is essential that the human component be properly considered in the initial architectural definition phase, as well as throughout the system design process. HF analysis must include not only the strengths and limitations of humans in general, but the variability between individuals and within an individual over time, and the dynamics of group interactions.

  7. TRIIG - Time-lapse reproduction of images through interactive graphics. [digital processing of quality hard copy

    NASA Technical Reports Server (NTRS)

    Buckner, J. D.; Council, H. W.; Edwards, T. R.

    1974-01-01

    Description of the hardware and software implementing the system of time-lapse reproduction of images through interactive graphics (TRIIG). The system produces a quality hard copy of processed images in a fast and inexpensive manner. This capability allows for optimal development of processing software through the rapid viewing of many image frames in an interactive mode. Three critical optical devices are used to reproduce an image: an Optronics photo reader/writer, the Adage Graphics Terminal, and Polaroid Type 57 high speed film. Typical sources of digitized images are observation satellites, such as ERTS or Mariner, computer coupled electron microscopes for high-magnification studies, or computer coupled X-ray devices for medical research.

  8. Color graphics, interactive processing, and the supercomputer

    NASA Technical Reports Server (NTRS)

    Smith-Taylor, Rudeen

    1987-01-01

    The development of a common graphics environment for the NASA Langley Research Center user community and the integration of a supercomputer into this environment is examined. The initial computer hardware, the software graphics packages, and their configurations are described. The addition of improved computer graphics capability to the supercomputer, and the utilization of the graphic software and hardware are discussed. Consideration is given to the interactive processing system which supports the computer in an interactive debugging, processing, and graphics environment.

  9. Image reproduction with interactive graphics

    NASA Technical Reports Server (NTRS)

    Buckner, J. D.; Council, H. W.; Edwards, T. R.

    1974-01-01

    Software application or development in optical image digital data processing requires a fast, good quality, yet inexpensive hard copy of processed images. To achieve this, a Cambo camera with an f 2.8/150-mm Xenotar lens in a Copal shutter having a Graflok back for 4 x 5 Polaroid type 57 pack-film has been interfaced to an existing Adage, AGT-30/Electro-Mechanical Research, EMR 6050 graphic computer system. Time-lapse photography in conjunction with a log to linear voltage transformation has resulted in an interactive system capable of producing a hard copy in 54 sec. The interactive aspect of the system lies in a Tektronix 4002 graphic computer terminal and its associated hard copy unit.

  10. Interactive data-processing system for metallurgy

    NASA Technical Reports Server (NTRS)

    Rathz, T. J.

    1978-01-01

    Equipment indicates that system can rapidly and accurately process metallurgical and materials-processing data for wide range of applications. Advantages include increase in contract between areas on image, ability to analyze images via operator-written programs, and space available for storing images.

  11. Atmospheric and Oceanographic Information Processing System (AOIPS) system description

    NASA Technical Reports Server (NTRS)

    Bracken, P. A.; Dalton, J. T.; Billingsley, J. B.; Quann, J. J.

    1977-01-01

    The development of hardware and software for an interactive, minicomputer based processing and display system for atmospheric and oceanographic information extraction and image data analysis is described. The major applications of the system are discussed as well as enhancements planned for the future.

  12. Effective ergodicity breaking in an exclusion process with varying system length

    NASA Astrophysics Data System (ADS)

    Schultens, Christoph; Schadschneider, Andreas; Arita, Chikashi

    2015-09-01

    Stochastic processes of interacting particles in systems with varying length are relevant e.g. for several biological applications. We try to explore what kind of new physical effects one can expect in such systems. As an example, we extend the exclusive queueing process that can be viewed as a one-dimensional exclusion process with varying length, by introducing Langmuir kinetics. This process can be interpreted as an effective model for a queue that interacts with other queues by allowing incoming and leaving of customers in the bulk. We find surprising indications for breaking of ergodicity in a certain parameter regime, where the asymptotic growth behavior depends on the initial length. We show that a random walk with site-dependent hopping probabilities exhibits qualitatively the same behavior.

  13. Design of penicillin fermentation process simulation system

    NASA Astrophysics Data System (ADS)

    Qi, Xiaoyu; Yuan, Zhonghu; Qi, Xiaoxuan; Zhang, Wenqi

    2011-10-01

    Real-time monitoring for batch process attracts increasing attention. It can ensure safety and provide products with consistent quality. The design of simulation system of batch process fault diagnosis is of great significance. In this paper, penicillin fermentation, a typical non-linear, dynamic, multi-stage batch production process, is taken as the research object. A visual human-machine interactive simulation software system based on Windows operation system is developed. The simulation system can provide an effective platform for the research of batch process fault diagnosis.

  14. A systems view of mother-infant face-to-face communication.

    PubMed

    Beebe, Beatrice; Messinger, Daniel; Bahrick, Lorraine E; Margolis, Amy; Buck, Karen A; Chen, Henian

    2016-04-01

    Principles of a dynamic, dyadic systems view of mother-infant face-to-face communication, which considers self- and interactive processes in relation to one another, were tested. The process of interaction across time in a large low-risk community sample at infant age 4 months was examined. Split-screen videotape was coded on a 1-s time base for communication modalities of attention, affect, orientation, touch, and composite facial-visual engagement. Time-series approaches generated self- and interactive contingency estimates in each modality. Evidence supporting the following principles was obtained: (a) Significant moment-to-moment predictability within each partner (self-contingency) and between the partners (interactive contingency) characterizes mother-infant communication. (b) Interactive contingency is organized by a bidirectional, but asymmetrical, process: Maternal contingent coordination with infant is higher than infant contingent coordination with mother. (c) Self-contingency organizes communication to a far greater extent than interactive contingency. (d) Self- and interactive contingency processes are not separate; each affects the other in communication modalities of facial affect, facial-visual engagement, and orientation. Each person's self-organization exists in a dynamic, homoeostatic (negative feedback) balance with the degree to which the person coordinates with the partner. For example, those individuals who are less facially stable are likely to coordinate more strongly with the partner's facial affect and vice versa. Our findings support the concept that the dyad is a fundamental unit of analysis in the investigation of early interaction. Moreover, an individual's self-contingency is influenced by the way the individual coordinates with the partner. Our results imply that it is not appropriate to conceptualize interactive processes without simultaneously accounting for dynamically interrelated self-organizing processes. (c) 2016 APA, all rights reserved).

  15. A Systems View of Mother-Infant Face-to-Face Communication

    PubMed Central

    Beebe, Beatrice; Messinger, Daniel; Bahrick, Lorraine E.; Margolis, Amy; Buck, Karen A.; Chen, Henian

    2016-01-01

    Principles of a dynamic, dyadic systems view of mother-infant face-to-face communication, which considers self- and interactive processes in relation to one another, were tested. We examined the process of interaction across time in a large, low-risk community sample, at infant age 4 months. Split-screen videotape was coded on a 1-s time base for communication modalities of attention, affect, orientation, touch and composite facial-visual engagement. Time-series approaches generated self- and interactive contingency estimates in each modality. Evidence supporting the following principles was obtained: (1) Significant moment-to-moment predictability within each partner (self-contingency) and between the partners (interactive contingency) characterizes mother-infant communication. (2) Interactive contingency is organized by a bi-directional, but asymmetrical, process: maternal contingent coordination with infant is higher than infant contingent coordination with mother. (3) Self-contingency organizes communication to a far greater extent than interactive contingency. (4) Self-and interactive contingency processes are not separate; each affects the other, in communication modalities of facial affect, facial-visual engagement, and orientation. Each person’s self-organization exists in a dynamic, homoeostatic (negative feedback) balance with the degree to which the person coordinates with the partner. For example, those individuals who are less facially stable are likely to coordinate more strongly with the partner’s facial affect; and vice-versa. Our findings support the concept that the dyad is a fundamental unit of analysis in the investigation of early interaction. Moreover, an individual’s self-contingency is influenced by the way the individual coordinates with the partner. Our results imply that it is not appropriate to conceptualize interactive processes without simultaneously accounting for dynamically inter-related self-organizing processes. PMID:26882118

  16. Interactive Scripting for Analysis and Visualization of Arbitrarily Large, Disparately Located Climate Data Ensembles Using a Progressive Runtime Server

    NASA Astrophysics Data System (ADS)

    Christensen, C.; Summa, B.; Scorzelli, G.; Lee, J. W.; Venkat, A.; Bremer, P. T.; Pascucci, V.

    2017-12-01

    Massive datasets are becoming more common due to increasingly detailed simulations and higher resolution acquisition devices. Yet accessing and processing these huge data collections for scientific analysis is still a significant challenge. Solutions that rely on extensive data transfers are increasingly untenable and often impossible due to lack of sufficient storage at the client side as well as insufficient bandwidth to conduct such large transfers, that in some cases could entail petabytes of data. Large-scale remote computing resources can be useful, but utilizing such systems typically entails some form of offline batch processing with long delays, data replications, and substantial cost for any mistakes. Both types of workflows can severely limit the flexible exploration and rapid evaluation of new hypotheses that are crucial to the scientific process and thereby impede scientific discovery. In order to facilitate interactivity in both analysis and visualization of these massive data ensembles, we introduce a dynamic runtime system suitable for progressive computation and interactive visualization of arbitrarily large, disparately located spatiotemporal datasets. Our system includes an embedded domain-specific language (EDSL) that allows users to express a wide range of data analysis operations in a simple and abstract manner. The underlying runtime system transparently resolves issues such as remote data access and resampling while at the same time maintaining interactivity through progressive and interruptible processing. Computations involving large amounts of data can be performed remotely in an incremental fashion that dramatically reduces data movement, while the client receives updates progressively thereby remaining robust to fluctuating network latency or limited bandwidth. This system facilitates interactive, incremental analysis and visualization of massive remote datasets up to petabytes in size. Our system is now available for general use in the community through both docker and anaconda.

  17. Interactive information processing for NASA's mesoscale analysis and space sensor program

    NASA Technical Reports Server (NTRS)

    Parker, K. G.; Maclean, L.; Reavis, N.; Wilson, G.; Hickey, J. S.; Dickerson, M.; Karitani, S.; Keller, D.

    1985-01-01

    The Atmospheric Sciences Division (ASD) of the Systems Dynamics Laboratory at NASA's Marshall Space Flight Center (MSFC) is currently involved in interactive information processing for the Mesoscale Analysis and Space Sensor (MASS) program. Specifically, the ASD is engaged in the development and implementation of new space-borne remote sensing technology to observe and measure mesoscale atmospheric processes. These space measurements and conventional observational data are being processed together to gain an improved understanding of the mesoscale structure and the dynamical evolution of the atmosphere relative to cloud development and precipitation processes. To satisfy its vast data processing requirements, the ASD has developed a Researcher Computer System consiting of three primary computer systems which provides over 20 scientists with a wide range of capabilities for processing and displaying a large volumes of remote sensing data. Each of the computers performs a specific function according to its unique capabilities.

  18. Modeling and Analysis of Power Processing Systems. [use of a digital computer for designing power plants

    NASA Technical Reports Server (NTRS)

    Fegley, K. A.; Hayden, J. H.; Rehmann, D. W.

    1974-01-01

    The feasibility of formulating a methodology for the modeling and analysis of aerospace electrical power processing systems is investigated. It is shown that a digital computer may be used in an interactive mode for the design, modeling, analysis, and comparison of power processing systems.

  19. On the Concept of Information and Its Role in Nature

    NASA Astrophysics Data System (ADS)

    Roederer, Juan G.

    2003-03-01

    In this article we address some fundamental questions concerning information: Can the existing laws of physics adequately deal with the most striking property of information, namely to cause specific changes in the structure and energy flows of a complex system, without the information in itself representing fields, forces or energy in any of their characteristic forms? Or is information irreducible to the laws of physics and chemistry? Are information and complexity related concepts? Does the Universe, in its evolution, constantly generate new information? Or are information and information-processing exclusive attributes of living systems, related to the very definition of life? If that were the case, what happens with the physical meanings of entropy in statistical mechanics or wave function in quantum mechanics? How many distinct classes of information and information processing do exist in the biological world? How does information appear in Darwinian evolution? Does the human brain have unique properties or capabilities in terms of information processing? In what ways does information processing bring about human self-consciousness? We shall introduce the meaning of "information" in a way that is detached from human technological systems and related algorithms and semantics, and that is not based on any mathematical formula. To accomplish this we turn to the concept of interaction as the basic departing point, and identify two fundamentally different classes, with information and information-processing appearing as the key discriminator: force-field driven interactions between elementary particles and ensembles of particles in the macroscopic physical domain, and information-based interactions between certain kinds of complex systems that form the biological domain. We shall show that in an abiotic world, information plays no role; physical interactions just happen, they are driven by energy exchange between the interacting parts and do not require any operations of information processing. Information only enters the non-living physical world when a living thing interacts with it-and when a scientist extracts information through observation and measurement. But for living organisms, information is the very essence of their existence: to maintain a long-term state of unstable thermodynamic equilibrium with its surroundings, consistently increase its organization and reproduce, an organism has to rely on information-based interactions in which form or pattern, not energy, is the controlling factor. This latter class comprises biomolecular information processes controlling the metabolism, growth, multiplication and differentiation of cells, and neural information processes controlling animal behavior and intelligence. The only way new information can appear is through the process of biological evolution and, in the short term, through sensory acquisition and the manipulation of images in the nervous system. Non-living informational systems such as books, computers, AI systems and other artifacts, as well as living organisms that are the result of breeding or cloning, are planned by human beings and will not be considered here.

  20. Embedded image processing engine using ARM cortex-M4 based STM32F407 microcontroller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samaiya, Devesh, E-mail: samaiya.devesh@gmail.com

    2014-10-06

    Due to advancement in low cost, easily available, yet powerful hardware and revolution in open source software, urge to make newer, more interactive machines and electronic systems have increased manifold among engineers. To make system more interactive, designers need easy to use sensor systems. Giving the boon of vision to machines was never easy, though it is not impossible these days; it is still not easy and expensive. This work presents a low cost, moderate performance and programmable Image processing engine. This Image processing engine is able to capture real time images, can store the images in the permanent storagemore » and can perform preprogrammed image processing operations on the captured images.« less

  1. Human Engineering Operations and Habitability Assessment: A Process for Advanced Life Support Ground Facility Testbeds

    NASA Technical Reports Server (NTRS)

    Connolly, Janis H.; Arch, M.; Elfezouaty, Eileen Schultz; Novak, Jennifer Blume; Bond, Robert L. (Technical Monitor)

    1999-01-01

    Design and Human Engineering (HE) processes strive to ensure that the human-machine interface is designed for optimal performance throughout the system life cycle. Each component can be tested and assessed independently to assure optimal performance, but it is not until full integration that the system and the inherent interactions between the system components can be assessed as a whole. HE processes (which are defining/app lying requirements for human interaction with missions/systems) are included in space flight activities, but also need to be included in ground activities and specifically, ground facility testbeds such as Bio-Plex. A unique aspect of the Bio-Plex Facility is the integral issue of Habitability which includes qualities of the environment that allow humans to work and live. HE is a process by which Habitability and system performance can be assessed.

  2. Automated process planning system

    NASA Technical Reports Server (NTRS)

    Mann, W.

    1978-01-01

    Program helps process engineers set up manufacturing plans for machined parts. System allows one to develop and store library of similar parts characteristics, as related to particular facility. Information is then used in interactive system to help develop manufacturing plans that meet required standards.

  3. NSF Support for Information Science Research.

    ERIC Educational Resources Information Center

    Brownstein, Charles N.

    1986-01-01

    Major research opportunities and needs are expected by the National Science Foundation in six areas of information science: models of adaptive information processing, learning, searching, and recognition; knowledge resource systems, particularly intelligent systems; user-system interaction; augmentation of human information processing tasks;…

  4. NASA's MERBoard: An Interactive Collaborative Workspace Platform. Chapter 4

    NASA Technical Reports Server (NTRS)

    Trimble, Jay; Wales, Roxana; Gossweiler, Rich

    2003-01-01

    This chapter describes the ongoing process by which a multidisciplinary group at NASA's Ames Research Center is designing and implementing a large interactive work surface called the MERBoard Collaborative Workspace. A MERBoard system involves several distributed, large, touch-enabled, plasma display systems with custom MERBoard software. A centralized server and database back the system. We are continually tuning MERBoard to support over two hundred scientists and engineers during the surface operations of the Mars Exploration Rover Missions. These scientists and engineers come from various disciplines and are working both in small and large groups over a span of space and time. We describe the multidisciplinary, human-centered process by which this h4ERBoard system is being designed, the usage patterns and social interactions that we have observed, and issues we are currently facing.

  5. Design and implementation of laser target simulator in hardware-in-the-loop simulation system based on LabWindows/CVI and RTX

    NASA Astrophysics Data System (ADS)

    Tong, Qiujie; Wang, Qianqian; Li, Xiaoyang; Shan, Bin; Cui, Xuntai; Li, Chenyu; Peng, Zhong

    2016-11-01

    In order to satisfy the requirements of the real-time and generality, a laser target simulator in semi-physical simulation system based on RTX+LabWindows/CVI platform is proposed in this paper. Compared with the upper-lower computers simulation platform architecture used in the most of the real-time system now, this system has better maintainability and portability. This system runs on the Windows platform, using Windows RTX real-time extension subsystem to ensure the real-time performance of the system combining with the reflective memory network to complete some real-time tasks such as calculating the simulation model, transmitting the simulation data, and keeping real-time communication. The real-time tasks of simulation system run under the RTSS process. At the same time, we use the LabWindows/CVI to compile a graphical interface, and complete some non-real-time tasks in the process of simulation such as man-machine interaction, display and storage of the simulation data, which run under the Win32 process. Through the design of RTX shared memory and task scheduling algorithm, the data interaction between the real-time tasks process of RTSS and non-real-time tasks process of Win32 is completed. The experimental results show that this system has the strongly real-time performance, highly stability, and highly simulation accuracy. At the same time, it also has the good performance of human-computer interaction.

  6. Social regulation of emotion: messy layers

    PubMed Central

    Kappas, Arvid

    2013-01-01

    Emotions are evolved systems of intra- and interpersonal processes that are regulatory in nature, dealing mostly with issues of personal or social concern. They regulate social interaction and in extension, the social sphere. In turn, processes in the social sphere regulate emotions of individuals and groups. In other words, intrapersonal processes project in the interpersonal space, and inversely, interpersonal experiences deeply influence intrapersonal processes. Thus, I argue that the concepts of emotion generation and regulation should not be artificially separated. Similarly, interpersonal emotions should not be reduced to interacting systems of intraindividual processes. Instead, we can consider emotions at different social levels, ranging from dyads to large scale e-communities. The interaction between these levels is complex and does not only involve influences from one level to the next. In this sense the levels of emotion/regulation are messy and a challenge for empirical study. In this article, I discuss the concepts of emotions and regulation at different intra- and interpersonal levels. I extend the concept of auto-regulation of emotions (Kappas, 2008, 2011a,b) to social processes. Furthermore, I argue for the necessity of including mediated communication, particularly in cyberspace in contemporary models of emotion/regulation. Lastly, I suggest the use of concepts from systems dynamics and complex systems to tackle the challenge of the “messy layers.” PMID:23424049

  7. Working on the Boundaries: Philosophies and Practices of the Design Process

    NASA Technical Reports Server (NTRS)

    Ryan, R.; Blair, J.; Townsend, J.; Verderaime, V.

    1996-01-01

    While systems engineering process is a program formal management technique and contractually binding, the design process is the informal practice of achieving the design project requirements throughout all design phases of the systems engineering process. The design process and organization are systems and component dependent. Informal reviews include technical information meetings and concurrent engineering sessions, and formal technical discipline reviews are conducted through the systems engineering process. This paper discusses and references major philosophical principles in the design process, identifies its role in interacting systems and disciplines analyses and integrations, and illustrates the process application in experienced aerostructural designs.

  8. Biotic Interactions in Microbial Communities as Modulators of Biogeochemical Processes: Methanotrophy as a Model System

    PubMed Central

    Ho, Adrian; Angel, Roey; Veraart, Annelies J.; Daebeler, Anne; Jia, Zhongjun; Kim, Sang Yoon; Kerckhof, Frederiek-Maarten; Boon, Nico; Bodelier, Paul L. E.

    2016-01-01

    Microbial interaction is an integral component of microbial ecology studies, yet the role, extent, and relevance of microbial interaction in community functioning remains unclear, particularly in the context of global biogeochemical cycles. While many studies have shed light on the physico-chemical cues affecting specific processes, (micro)biotic controls and interactions potentially steering microbial communities leading to altered functioning are less known. Yet, recent accumulating evidence suggests that the concerted actions of a community can be significantly different from the combined effects of individual microorganisms, giving rise to emergent properties. Here, we exemplify the importance of microbial interaction for ecosystem processes by analysis of a reasonably well-understood microbial guild, namely, aerobic methane-oxidizing bacteria (MOB). We reviewed the literature which provided compelling evidence for the relevance of microbial interaction in modulating methane oxidation. Support for microbial associations within methane-fed communities is sought by a re-analysis of literature data derived from stable isotope probing studies of various complex environmental settings. Putative positive interactions between active MOB and other microbes were assessed by a correlation network-based analysis with datasets covering diverse environments where closely interacting members of a consortium can potentially alter the methane oxidation activity. Although, methanotrophy is used as a model system, the fundamentals of our postulations may be applicable to other microbial guilds mediating other biogeochemical processes. PMID:27602021

  9. The roles of cannabinoid and dopamine receptor systems in neural emotional learning circuits: implications for schizophrenia and addiction.

    PubMed

    Laviolette, S R; Grace, A A

    2006-07-01

    Cannabinoids represent one of the most widely used hallucinogenic drugs and induce profound alterations in sensory perception and emotional processing. Similarly, the dopamine (DA) neurotransmitter system is critical for the central processing of emotion and motivation. Functional disturbances in either of these neurotransmitter systems are well-established correlates of the psychopathological symptoms and behavioral manifestations observed in addiction and schizophrenia. Increasing evidence from the anatomical, pharmacological and behavioral neuroscience fields points to complex functional interactions between these receptor systems at the anatomical, pharmacological and neural systems levels. An important question relates to whether these systems act in an orchestrated manner to produce the emotional processing and sensory perception deficits underlying addiction and schizophrenia. This review describes evidence for functional neural interactions between cannabinoid and DA receptor systems and how disturbances in this neural circuitry may underlie the aberrant emotional learning and processing observed in disorders such as addiction and schizophrenia.

  10. Leveraging Terminology Services for Extract-Transform-Load Processes: A User-Centered Approach

    PubMed Central

    Peterson, Kevin J.; Jiang, Guoqian; Brue, Scott M.; Liu, Hongfang

    2016-01-01

    Terminology services serve an important role supporting clinical and research applications, and underpin a diverse set of processes and use cases. Through standardization efforts, terminology service-to-system interactions can leverage well-defined interfaces and predictable integration patterns. Often, however, users interact more directly with terminologies, and no such blueprints are available for describing terminology service-to-user interactions. In this work, we explore the main architecture principles necessary to build a user-centered terminology system, using an Extract-Transform-Load process as our primary usage scenario. To analyze our architecture, we present a prototype implementation based on the Common Terminology Services 2 (CTS2) standard using the Patient-Centered Network of Learning Health Systems (LHSNet) project as a concrete use case. We perform a preliminary evaluation of our prototype architecture using three architectural quality attributes: interoperability, adaptability and usability. We find that a design-time focus on user needs, cognitive models, and existing patterns is essential to maximize system utility. PMID:28269898

  11. An Interactive Teaching System for Bond Graph Modeling and Simulation in Bioengineering

    ERIC Educational Resources Information Center

    Roman, Monica; Popescu, Dorin; Selisteanu, Dan

    2013-01-01

    The objective of the present work was to implement a teaching system useful in modeling and simulation of biotechnological processes. The interactive system is based on applications developed using 20-sim modeling and simulation software environment. A procedure for the simulation of bioprocesses modeled by bond graphs is proposed and simulators…

  12. Figure-ground organization and object recognition processes: an interactive account.

    PubMed

    Vecera, S P; O'Reilly, R C

    1998-04-01

    Traditional bottom-up models of visual processing assume that figure-ground organization precedes object recognition. This assumption seems logically necessary: How can object recognition occur before a region is labeled as figure? However, some behavioral studies find that familiar regions are more likely to be labeled figure than less familiar regions, a problematic finding for bottom-up models. An interactive account is proposed in which figure-ground processes receive top-down input from object representations in a hierarchical system. A graded, interactive computational model is presented that accounts for behavioral results in which familiarity effects are found. The interactive model offers an alternative conception of visual processing to bottom-up models.

  13. Supporting Data for Fiscal Year 1994. Budget Estimate Submission

    DTIC Science & Technology

    1993-04-01

    0603401F 405 36 Space Systems Environmental Interactions Technology 0603410F 416 38 Conventional Weapons Technology 0603601F 423 39 Advanced Radiation...Transfer Pilot Program (SBIR/STTR) 0603302F Space and Missile Rocket Propulsion 31 392 060341OF Space Systems Environmental Interactions Technology 36...Deliver Interactive Decode (Rapid Message Processing) capability in Communications Element. - (U) Conduct maintainability demonstration. - (U) Begin Initial

  14. Interaction between Paracoccidioides brasiliensis conidia and the coagulation system: involvement of fibrinogen

    PubMed Central

    Tamayo, Diana; Hernández, Orville; Muñoz-Cadavid, Cesar; Cano, Luz Elena; González, Angel

    2013-01-01

    The infectious process starts with an initial contact between pathogen and host. We have previously demonstrated that Paracoccidioides brasiliensis conidia interact with plasma proteins including fibrinogen, which is considered the major component of the coagulation system. In this study, we evaluated the in vitro capacity of P. brasiliensis conidia to aggregate with plasma proteins and compounds involved in the coagulation system. We assessed the aggregation of P. brasiliensis conidia after incubation with human serum or plasma in the presence or absence of anticoagulants, extracellular matrix (ECM) proteins, metabolic and protein inhibitors, monosaccharides and other compounds. Additionally, prothrombin and partial thromboplastin times were determined after the interaction of P. brasiliensis conidia with human plasma. ECM proteins, monosaccharides and human plasma significantly induced P. brasiliensis conidial aggregation; however, anticoagulants and metabolic and protein inhibitors diminished the aggregation process. The extrinsic coagulation pathway was not affected by the interaction between P. brasiliensis conidia and plasma proteins, while the intrinsic pathway was markedly altered. These results indicate that P. brasiliensis conidia interact with proteins involved in the coagulation system. This interaction may play an important role in the initial inflammatory response, as well as fungal disease progression caused by P. brasiliensis dissemination. PMID:23827999

  15. The human mirror neuron system: A link between action observation and social skills

    PubMed Central

    Pineda, Jaime A.; Ramachandran, Vilayanur S.

    2007-01-01

    The discovery of the mirror neuron system (MNS) has led researchers to speculate that this system evolved from an embodied visual recognition apparatus in monkey to a system critical for social skills in humans. It is accepted that the MNS is specialized for processing animate stimuli, although the degree to which social interaction modulates the firing of mirror neurons has not been investigated. In the current study, EEG mu wave suppression was used as an index of MNS activity. Data were collected while subjects viewed four videos: (1) Visual White Noise: baseline, (2) Non-interacting: three individuals tossed a ball up in the air to themselves, (3) Social Action, Spectator: three individuals tossed a ball to each other and (4) Social Action, Interactive: similar to video 3 except occasionally the ball would be thrown off the screen toward the viewer. The mu wave was modulated by the degree of social interaction, with the Non-interacting condition showing the least suppression, followed by the Social Action, Spectator condition and the Social Action, Interactive condition showing the most suppression. These data suggest that the human MNS is specialized not only for processing animate stimuli, but specifically stimuli with social relevance. PMID:18985120

  16. Interactive Image Analysis System Design,

    DTIC Science & Technology

    1982-12-01

    This report describes a design for an interactive image analysis system (IIAS), which implements terrain data extraction techniques. The design... analysis system. Additionally, the system is fully capable of supporting many generic types of image analysis and data processing, and is modularly...employs commercially available, state of the art minicomputers and image display devices with proven software to achieve a cost effective, reliable image

  17. Towards understanding the dynamic behaviour of floodplains as human-water systems

    NASA Astrophysics Data System (ADS)

    Di Baldassarre, G.; Kooy, M.; Kemerink, J. S.; Brandimarte, L.

    2013-03-01

    This paper offers a conceptual approach to explore the complex dynamics of floodplains as fully coupled human-water systems. A number of hydrologists have recently investigated the impact of human activities (such as flood control measures, land-use changes, and settlement patterns) on the frequency and severity of floods. Meanwhile, social scientists have shown how interactions between society and waters in floodplain areas, including the frequency and severity of floods, have an impact on the ways in which social relations unfold (in terms of governance processes, policies, and institutions) and societies are organised (spatially, politically, and socially). However, we argue that the interactions and associated feedback mechanisms between hydrological and social processes remain largely unexplored and poorly understood. Thus, there is a need to better understand how the institutions and governance processes interact with hydrological processes in floodplains to influence the frequency and severity of floods, while (in turn) hydrological processes co-constitute the social realm and make a difference for how social relations unfold to shape governance processes and institutions. Our research goal, therefore, is not in identifying one or the other side of the cycle (hydrological or social), but in explaining the relationship between them: how, when, where, and why they interact, and to what result for both social relations and hydrological processes? We argue that long time series of hydrological and social data, along with remote sensing data, can be used to observe floodplain dynamics from unconventional approaches, and understand the complex interactions between water and human systems taking place in floodplain areas, across scales and levels of human impacts, and within different hydro-climatic conditions, socio-cultural settings, and modes of governance.

  18. Towards understanding the dynamic behaviour of floodplains as human-water systems

    NASA Astrophysics Data System (ADS)

    Di Baldassarre, G.; Kooy, M.; Kemerink, J. S.; Brandimarte, L.

    2013-08-01

    This paper offers a conceptual approach to explore the complex dynamics of floodplains as fully coupled human-water systems. A number of hydrologists have recently investigated the impact of human activities (such as flood control measures, land-use changes, and settlement patterns) on the frequency and severity of floods. Meanwhile, social scientists have shown how interactions between society and waters in deltas and floodplain areas, including the frequency and severity of floods, have an impact on the ways in which social relations unfold (in terms of governance processes, policies, and institutions) and societies are organised (spatially, politically, and socially). However, we argue that the interactions and associated feedback mechanisms between hydrological and social processes remain largely unexplored and poorly understood. Thus, there is a need to better understand how the institutions and governance processes interact with hydrological processes in deltas and floodplains to influence the frequency and severity of floods, while (in turn) hydrological processes co-constitute the social realm and make a difference for how social relations unfold to shape governance processes and institutions. Our research goal, therefore, is not in identifying one or the other side of the cycle (hydrological or social), but in explaining the relationship between them: how, when, where, and why they interact, and to what result for both social relations and hydrological processes? We argue that long time series of hydrological and social data, along with remote sensing data, can be used to observe floodplain dynamics from unconventional approaches, and understand the complex interactions between water and human systems taking place in floodplain areas, across scales and levels of human impacts, and within different hydro-climatic conditions, socio-cultural settings, and modes of governance.

  19. Interaction with Machine Improvisation

    NASA Astrophysics Data System (ADS)

    Assayag, Gerard; Bloch, George; Cont, Arshia; Dubnov, Shlomo

    We describe two multi-agent architectures for an improvisation oriented musician-machine interaction systems that learn in real time from human performers. The improvisation kernel is based on sequence modeling and statistical learning. We present two frameworks of interaction with this kernel. In the first, the stylistic interaction is guided by a human operator in front of an interactive computer environment. In the second framework, the stylistic interaction is delegated to machine intelligence and therefore, knowledge propagation and decision are taken care of by the computer alone. The first framework involves a hybrid architecture using two popular composition/performance environments, Max and OpenMusic, that are put to work and communicate together, each one handling the process at a different time/memory scale. The second framework shares the same representational schemes with the first but uses an Active Learning architecture based on collaborative, competitive and memory-based learning to handle stylistic interactions. Both systems are capable of processing real-time audio/video as well as MIDI. After discussing the general cognitive background of improvisation practices, the statistical modelling tools and the concurrent agent architecture are presented. Then, an Active Learning scheme is described and considered in terms of using different improvisation regimes for improvisation planning. Finally, we provide more details about the different system implementations and describe several performances with the system.

  20. Business Performer-Centered Design of User Interfaces

    NASA Astrophysics Data System (ADS)

    Sousa, Kênia; Vanderdonckt, Jean

    Business Performer-Centered Design of User Interfaces is a new design methodology that adopts business process (BP) definition and a business performer perspective for managing the life cycle of user interfaces of enterprise systems. In this methodology, when the organization has a business process culture, the business processes of an organization are firstly defined according to a traditional methodology for this kind of artifact. These business processes are then transformed into a series of task models that represent the interactive parts of the business processes that will ultimately lead to interactive systems. When the organization has its enterprise systems, but not yet its business processes modeled, the user interfaces of the systems help derive tasks models, which are then used to derive the business processes. The double linking between a business process and a task model, and between a task model and a user interface model makes it possible to ensure traceability of the artifacts in multiple paths and enables a more active participation of business performers in analyzing the resulting user interfaces. In this paper, we outline how a human-perspective is used tied to a model-driven perspective.

  1. A Grammar-based Approach for Modeling User Interactions and Generating Suggestions During the Data Exploration Process.

    PubMed

    Dabek, Filip; Caban, Jesus J

    2017-01-01

    Despite the recent popularity of visual analytics focusing on big data, little is known about how to support users that use visualization techniques to explore multi-dimensional datasets and accomplish specific tasks. Our lack of models that can assist end-users during the data exploration process has made it challenging to learn from the user's interactive and analytical process. The ability to model how a user interacts with a specific visualization technique and what difficulties they face are paramount in supporting individuals with discovering new patterns within their complex datasets. This paper introduces the notion of visualization systems understanding and modeling user interactions with the intent of guiding a user through a task thereby enhancing visual data exploration. The challenges faced and the necessary future steps to take are discussed; and to provide a working example, a grammar-based model is presented that can learn from user interactions, determine the common patterns among a number of subjects using a K-Reversible algorithm, build a set of rules, and apply those rules in the form of suggestions to new users with the goal of guiding them along their visual analytic process. A formal evaluation study with 300 subjects was performed showing that our grammar-based model is effective at capturing the interactive process followed by users and that further research in this area has the potential to positively impact how users interact with a visualization system.

  2. Beyond feedback control: the interactive use of performance management systems. Implications for process innovation in Italian healthcare organizations.

    PubMed

    Demartini, Chiara; Mella, Piero

    2014-01-01

    This paper shows how the use of performance management systems affects managers' perception of satisfaction, the effectiveness of the control system and the performance related to process innovation. An exploratory empirical research has been conducted on 85 managers operating in Italian healthcare organizations. Empirical findings put forward that the interactive--as opposed to diagnostic--use of performance management systems enhances managerial satisfaction with the control system and managerial perception of effectiveness. The present study then showed that it is not the control itself that is an obstacle to innovation in organizations in general (and in health organizations in particular) but the diagnostic use of the control mechanisms, which impedes the interaction between the control personnel and those subject to the control. Finally, this paper addresses managerial implications and further research avenues. Copyright © 2013 John Wiley & Sons, Ltd.

  3. MIDAS - ESO's new image processing system

    NASA Astrophysics Data System (ADS)

    Banse, K.; Crane, P.; Grosbol, P.; Middleburg, F.; Ounnas, C.; Ponz, D.; Waldthausen, H.

    1983-03-01

    The Munich Image Data Analysis System (MIDAS) is an image processing system whose heart is a pair of VAX 11/780 computers linked together via DECnet. One of these computers, VAX-A, is equipped with 3.5 Mbytes of memory, 1.2 Gbytes of disk storage, and two tape drives with 800/1600 bpi density. The other computer, VAX-B, has 4.0 Mbytes of memory, 688 Mbytes of disk storage, and one tape drive with 1600/6250 bpi density. MIDAS is a command-driven system geared toward the interactive user. The type and number of parameters in a command depends on the unique parameter invoked. MIDAS is a highly modular system that provides building blocks for the undertaking of more sophisticated applications. Presently, 175 commands are available. These include the modification of the color-lookup table interactively, to enhance various image features, and the interactive extraction of subimages.

  4. Reduced-Density-Matrix Description of Decoherence and Relaxation Processes for Electron-Spin Systems

    NASA Astrophysics Data System (ADS)

    Jacobs, Verne

    2017-04-01

    Electron-spin systems are investigated using a reduced-density-matrix description. Applications of interest include trapped atomic systems in optical lattices, semiconductor quantum dots, and vacancy defect centers in solids. Complimentary time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations are self-consistently developed. The general non-perturbative and non-Markovian formulations provide a fundamental framework for systematic evaluations of corrections to the standard Born (lowest-order-perturbation) and Markov (short-memory-time) approximations. Particular attention is given to decoherence and relaxation processes, as well as spectral-line broadening phenomena, that are induced by interactions with photons, phonons, nuclear spins, and external electric and magnetic fields. These processes are treated either as coherent interactions or as environmental interactions. The environmental interactions are incorporated by means of the general expressions derived for the time-domain and frequency-domain Liouville-space self-energy operators, for which the tetradic-matrix elements are explicitly evaluated in the diagonal-resolvent, lowest-order, and Markov (short-memory time) approximations. Work supported by the Office of Naval Research through the Basic Research Program at The Naval Research Laboratory.

  5. Computer simulation of surface and film processes

    NASA Technical Reports Server (NTRS)

    Tiller, W. A.; Halicioglu, M. T.

    1983-01-01

    Adequate computer methods, based on interactions between discrete particles, provide information leading to an atomic level understanding of various physical processes. The success of these simulation methods, however, is related to the accuracy of the potential energy function representing the interactions among the particles. The development of a potential energy function for crystalline SiO2 forms that can be employed in lengthy computer modelling procedures was investigated. In many of the simulation methods which deal with discrete particles, semiempirical two body potentials were employed to analyze energy and structure related properties of the system. Many body interactions are required for a proper representation of the total energy for many systems. Many body interactions for simulations based on discrete particles are discussed.

  6. Line-Drawing Enhanced Interactive Mural Restoration for Dunhuang Mogao Grottoes

    NASA Astrophysics Data System (ADS)

    Fu, X. Y.; Han, Y.; Sun, Z. J.; Ma, X. J.; Xu, Y. Q.

    2017-08-01

    Dunhuang Mogao Grottoes in western China is one of the most famous World Cultural Heritage Sites, known for its glorious Chinese Buddhist art spanning a period of 1,000 years. However, it has been suffering from damage and degradation caused by man-made and natural factors. In this article, we present a novel line-drawing enhanced interactive system for digital restoration of damaged murals in Mogao Grottoes. Our system consists of four components, namely data pre-processing, damaged area selection, line-drawing segmentation, and mural restoration. Each component is a hybrid of efficient algorithms and user interactions. We introduce the infrastructure and process of using our system, from data capture and collection, database establishment, to interactive restoration. We conduct a user study with 15 participants who have varied experiences with and skills on repairing murals and editing images. Results and feedback suggest that our system can achieve satisfactory restoration results without overburdening the users. It can benefit both experts trained in restoration and amateurs interested in cultural heritage conservation.

  7. User Localization During Human-Robot Interaction

    PubMed Central

    Alonso-Martín, F.; Gorostiza, Javi F.; Malfaz, María; Salichs, Miguel A.

    2012-01-01

    This paper presents a user localization system based on the fusion of visual information and sound source localization, implemented on a social robot called Maggie. One of the main requisites to obtain a natural interaction between human-human and human-robot is an adequate spatial situation between the interlocutors, that is, to be orientated and situated at the right distance during the conversation in order to have a satisfactory communicative process. Our social robot uses a complete multimodal dialog system which manages the user-robot interaction during the communicative process. One of its main components is the presented user localization system. To determine the most suitable allocation of the robot in relation to the user, a proxemic study of the human-robot interaction is required, which is described in this paper. The study has been made with two groups of users: children, aged between 8 and 17, and adults. Finally, at the end of the paper, experimental results with the proposed multimodal dialog system are presented. PMID:23012577

  8. System Design of One-chip Wave Particle Interaction Analyzer for SCOPE mission.

    NASA Astrophysics Data System (ADS)

    Fukuhara, Hajime; Ueda, Yoshikatsu; Kojima, Hiro; Yamakawa, Hiroshi

    In past science spacecrafts such like GEOTAIL, we usually capture electric and magnetic field waveforms and observe energetic eletron and ion particles as velocity distributions by each sensor. We analyze plasma wave-particle interactions by these respective data and the discussions are sometimes restricted by the difference of time resolution and by the data loss in desired regions. One-chip Wave Particle Interaction Analyzer (OWPIA) conducts direct quantitative observations of wave-particle interaction by direct 'E dot v' calculation on-board. This new instruments have a capability to use all plasma waveform data and electron particle informations. In the OWPIA system, we have to calibrate the digital observation data and transform the same coordinate system. All necessary calculations are processed in Field Programmable Gate Array(FPGA). In our study, we introduce a basic concept of the OWPIA system and a optimization method for each calculation functions installed in FPGA. And we also discuss the process speed, the FPGA utilization efficiency, the total power consumption.

  9. User localization during human-robot interaction.

    PubMed

    Alonso-Martín, F; Gorostiza, Javi F; Malfaz, María; Salichs, Miguel A

    2012-01-01

    This paper presents a user localization system based on the fusion of visual information and sound source localization, implemented on a social robot called Maggie. One of the main requisites to obtain a natural interaction between human-human and human-robot is an adequate spatial situation between the interlocutors, that is, to be orientated and situated at the right distance during the conversation in order to have a satisfactory communicative process. Our social robot uses a complete multimodal dialog system which manages the user-robot interaction during the communicative process. One of its main components is the presented user localization system. To determine the most suitable allocation of the robot in relation to the user, a proxemic study of the human-robot interaction is required, which is described in this paper. The study has been made with two groups of users: children, aged between 8 and 17, and adults. Finally, at the end of the paper, experimental results with the proposed multimodal dialog system are presented.

  10. Modeling hospital surgical delivery process design using system simulation: optimizing patient flow and bed capacity as an illustration.

    PubMed

    Kumar, Sameer

    2011-01-01

    It is increasingly recognized that hospital operation is an intricate system with limited resources and many interacting sources of both positive and negative feedback. The purpose of this study is to design a surgical delivery process in a county hospital in the U.S where patient flow through a surgical ward is optimized. The system simulation modeling is used to address questions of capacity planning, throughput management and interacting resources which constitute the constantly changing complexity that characterizes designing a contemporary surgical delivery process in a hospital. The steps in building a system simulation model is demonstrated using an example of building a county hospital in a small city in the US. It is used to illustrate a modular system simulation modeling of patient surgery process flows. The system simulation model development will enable planners and designers how they can build in overall efficiencies in a healthcare facility through optimal bed capacity for peak patient flow of emergency and routine patients.

  11. Identifying thresholds in pattern-process relationships: a new cross-scale interactions experiment at the Jornada Basin LTER

    USDA-ARS?s Scientific Manuscript database

    Interactions among ecological patterns and processes at multiple scales play a significant role in threshold behaviors in arid systems. Black grama grasslands and mesquite shrublands are hypothesized to operate under unique sets of feedbacks: grasslands are maintained by fine-scale biotic feedbacks ...

  12. Validation of a Communication Process Measure for Coding Control in Counseling.

    ERIC Educational Resources Information Center

    Heatherington, Laurie

    The increasingly popular view of the counseling process from an interactional perspective necessitates the development of new measurement instruments which are suitable to the study of the reciprocal interaction between people. The validity of the Relational Communication Coding System, an instrument which operationalizes the constructs of…

  13. Infinite Systems of Interacting Chains with Memory of Variable Length—A Stochastic Model for Biological Neural Nets

    NASA Astrophysics Data System (ADS)

    Galves, A.; Löcherbach, E.

    2013-06-01

    We consider a new class of non Markovian processes with a countable number of interacting components. At each time unit, each component can take two values, indicating if it has a spike or not at this precise moment. The system evolves as follows. For each component, the probability of having a spike at the next time unit depends on the entire time evolution of the system after the last spike time of the component. This class of systems extends in a non trivial way both the interacting particle systems, which are Markovian (Spitzer in Adv. Math. 5:246-290, 1970) and the stochastic chains with memory of variable length which have finite state space (Rissanen in IEEE Trans. Inf. Theory 29(5):656-664, 1983). These features make it suitable to describe the time evolution of biological neural systems. We construct a stationary version of the process by using a probabilistic tool which is a Kalikow-type decomposition either in random environment or in space-time. This construction implies uniqueness of the stationary process. Finally we consider the case where the interactions between components are given by a critical directed Erdös-Rényi-type random graph with a large but finite number of components. In this framework we obtain an explicit upper-bound for the correlation between successive inter-spike intervals which is compatible with previous empirical findings.

  14. Effective stochastic generator with site-dependent interactions

    NASA Astrophysics Data System (ADS)

    Khamehchi, Masoumeh; Jafarpour, Farhad H.

    2017-11-01

    It is known that the stochastic generators of effective processes associated with the unconditioned dynamics of rare events might consist of non-local interactions; however, it can be shown that there are special cases for which these generators can include local interactions. In this paper, we investigate this possibility by considering systems of classical particles moving on a one-dimensional lattice with open boundaries. The particles might have hard-core interactions similar to the particles in an exclusion process, or there can be many arbitrary particles at a single site in a zero-range process. Assuming that the interactions in the original process are local and site-independent, we will show that under certain constraints on the microscopic reaction rules, the stochastic generator of an unconditioned process can be local but site-dependent. As two examples, the asymmetric zero-temperature Glauber model and the A-model with diffusion are presented and studied under the above-mentioned constraints.

  15. Important drug-nutrient interactions in the elderly.

    PubMed

    Thomas, J A; Burns, R A

    1998-09-01

    Several drug-nutrient interactions can occur, but their prevalence may be accentuated in the elderly. Geriatric patients may experience age-related changes in the pharmacokinetics of a drug-absorption, distribution, metabolism and excretion. When drug-nutrient interactions occur, they usually affect absorptive processes more frequently. Specific transporter systems facilitate the absorption of many drugs. Little is known about how these transporter systems are affected by aging. Co-existing disease states in the elderly may exaggerate the action of a drug and represent a confounding factor in drug-nutrient interactions. While several different drug-nutrient interactions are important in the elderly, those affecting the cardiovascular system warrant special attention.

  16. Spacelab user interaction

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The results of the third and final phase of a study undertaken to define means of optimizing the Spacelab experiment data system by interactively manipulating the flow of data were presented. A number of payload applicable interactive techniques and an integrated interaction system for each of two possible payloads are described. These interaction systems have been functionally defined and are accompanied with block diagrams, hardware specifications, software sizing and speed requirements, operational procedures and cost/benefits analysis data for both onboard and ground based system elements. It is shown that accrued benefits are attributable to a reduction in data processing costs obtained by, generally, a considerable reduction in the quantity of data that might otherwise be generated without interaction. One other additional anticipated benefit includes the increased scientific value obtained by the quicker return of all useful data.

  17. Extraction of CYP chemical interactions from biomedical literature using natural language processing methods.

    PubMed

    Jiao, Dazhi; Wild, David J

    2009-02-01

    This paper proposes a system that automatically extracts CYP protein and chemical interactions from journal article abstracts, using natural language processing (NLP) and text mining methods. In our system, we employ a maximum entropy based learning method, using results from syntactic, semantic, and lexical analysis of texts. We first present our system architecture and then discuss the data set for training our machine learning based models and the methods in building components in our system, such as part of speech (POS) tagging, Named Entity Recognition (NER), dependency parsing, and relation extraction. An evaluation of the system is conducted at the end, yielding very promising results: The POS, dependency parsing, and NER components in our system have achieved a very high level of accuracy as measured by precision, ranging from 85.9% to 98.5%, and the precision and the recall of the interaction extraction component are 76.0% and 82.6%, and for the overall system are 68.4% and 72.2%, respectively.

  18. A 'user friendly' geographic information system in a color interactive digital image processing system environment

    NASA Technical Reports Server (NTRS)

    Campbell, W. J.; Goldberg, M.

    1982-01-01

    NASA's Eastern Regional Remote Sensing Applications Center (ERRSAC) has recognized the need to accommodate spatial analysis techniques in its remote sensing technology transfer program. A computerized Geographic Information System to incorporate remotely sensed data, specifically Landsat, with other relevant data was considered a realistic approach to address a given resource problem. Questions arose concerning the selection of a suitable available software system to demonstrate, train, and undertake demonstration projects with ERRSAC's user community. The very specific requirements for such a system are discussed. The solution found involved the addition of geographic information processing functions to the Interactive Digital Image Manipulation System (IDIMS). Details regarding the functions of the new integrated system are examined along with the characteristics of the software.

  19. Dual process interaction model of HIV-risk behaviors among drug offenders.

    PubMed

    Ames, Susan L; Grenard, Jerry L; Stacy, Alan W

    2013-03-01

    This study evaluated dual process interaction models of HIV-risk behavior among drug offenders. A dual process approach suggests that decisions to engage in appetitive behaviors result from a dynamic interplay between a relatively automatic associative system and an executive control system. One synergistic type of interplay suggests that executive functions may dampen or block effects of spontaneously activated associations. Consistent with this model, latent variable interaction analyses revealed that drug offenders scoring higher in affective decision making were relatively protected from predictive effects of spontaneous sex associations promoting risky sex. Among drug offenders with lower levels of affective decision making ability, spontaneous sexually-related associations more strongly predicted risky sex (lack of condom use and greater number of sex partners). These findings help elucidate associative and control process effects on appetitive behaviors and are important for explaining why some individuals engage in risky sex, while others are relatively protected.

  20. Dual Process Interaction Model of HIV-Risk Behaviors Among Drug Offenders

    PubMed Central

    Grenard, Jerry L.; Stacy, Alan W.

    2012-01-01

    This study evaluated dual process interaction models of HIV-risk behavior among drug offenders. A dual process approach suggests that decisions to engage in appetitive behaviors result from a dynamic interplay between a relatively automatic associative system and an executive control system. One synergistic type of interplay suggests that executive functions may dampen or block effects of spontaneously activated associations. Consistent with this model, latent variable interaction analyses revealed that drug offenders scoring higher in affective decision making were relatively protected from predictive effects of spontaneous sex associations promoting risky sex. Among drug offenders with lower levels of affective decision making ability, spontaneous sexually-related associations more strongly predicted risky sex (lack of condom use and greater number of sex partners). These findings help elucidate associative and control process effects on appetitive behaviors and are important for explaining why some individuals engage in risky sex, while others are relatively protected. PMID:22331391

  1. Interactions between neural networks: a mechanism for tuning chaos and oscillations.

    PubMed

    Wang, Lipo

    2007-06-01

    We show that chaos and oscillations in a higher-order binary neural network can be tuned effectively using interactions between neural networks. Our results suggest that network interactions may be useful as a means of adjusting the level of dynamic activities in systems that employ chaos and oscillations for information processing, or as a means of suppressing oscillatory behaviors in systems that require stability.

  2. Simulating the decentralized processes of the human immune system in a virtual anatomy model.

    PubMed

    Sarpe, Vladimir; Jacob, Christian

    2013-01-01

    Many physiological processes within the human body can be perceived and modeled as large systems of interacting particles or swarming agents. The complex processes of the human immune system prove to be challenging to capture and illustrate without proper reference to the spatial distribution of immune-related organs and systems. Our work focuses on physical aspects of immune system processes, which we implement through swarms of agents. This is our first prototype for integrating different immune processes into one comprehensive virtual physiology simulation. Using agent-based methodology and a 3-dimensional modeling and visualization environment (LINDSAY Composer), we present an agent-based simulation of the decentralized processes in the human immune system. The agents in our model - such as immune cells, viruses and cytokines - interact through simulated physics in two different, compartmentalized and decentralized 3-dimensional environments namely, (1) within the tissue and (2) inside a lymph node. While the two environments are separated and perform their computations asynchronously, an abstract form of communication is allowed in order to replicate the exchange, transportation and interaction of immune system agents between these sites. The distribution of simulated processes, that can communicate across multiple, local CPUs or through a network of machines, provides a starting point to build decentralized systems that replicate larger-scale processes within the human body, thus creating integrated simulations with other physiological systems, such as the circulatory, endocrine, or nervous system. Ultimately, this system integration across scales is our goal for the LINDSAY Virtual Human project. Our current immune system simulations extend our previous work on agent-based simulations by introducing advanced visualizations within the context of a virtual human anatomy model. We also demonstrate how to distribute a collection of connected simulations over a network of computers. As a future endeavour, we plan to use parameter tuning techniques on our model to further enhance its biological credibility. We consider these in silico experiments and their associated modeling and optimization techniques as essential components in further enhancing our capabilities of simulating a whole-body, decentralized immune system, to be used both for medical education and research as well as for virtual studies in immunoinformatics.

  3. Mathematical approach to nonlocal interactions using a reaction-diffusion system.

    PubMed

    Tanaka, Yoshitaro; Yamamoto, Hiroko; Ninomiya, Hirokazu

    2017-06-01

    In recent years, spatial long range interactions during developmental processes have been introduced as a result of the integration of microscopic information, such as molecular events and signaling networks. They are often called nonlocal interactions. If the profile of a nonlocal interaction is determined by experiments, we can easily investigate how patterns generate by numerical simulations without detailed microscopic events. Thus, nonlocal interactions are useful tools to understand complex biosystems. However, nonlocal interactions are often inconvenient for observing specific mechanisms because of the integration of information. Accordingly, we proposed a new method that could convert nonlocal interactions into a reaction-diffusion system with auxiliary unknown variables. In this review, by introducing biological and mathematical studies related to nonlocal interactions, we will present the heuristic understanding of nonlocal interactions using a reaction-diffusion system. © 2017 Japanese Society of Developmental Biologists.

  4. Multipurpose Interactive NASA Information Systems (MINIS)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Multipurpose Interactive NASA Information System was developed to provide remote, interactive information retrieval capability for various types of data bases to be processed on different types of small and medium size computers. Use of the system for three different data bases is decribed: (1) LANDSAT photo look-up, (2) land use, and (3) census/socioeconomic. Each of the data base elements is shown together with other detailed information that a user would require to contact the system remotely, to transmit inquiries on commands, and to receive the results of the queries or commands.

  5. System and method for deriving a process-based specification

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael Gerard (Inventor); Rouff, Christopher A. (Inventor); Rash, James Larry (Inventor)

    2009-01-01

    A system and method for deriving a process-based specification for a system is disclosed. The process-based specification is mathematically inferred from a trace-based specification. The trace-based specification is derived from a non-empty set of traces or natural language scenarios. The process-based specification is mathematically equivalent to the trace-based specification. Code is generated, if applicable, from the process-based specification. A process, or phases of a process, using the features disclosed can be reversed and repeated to allow for an interactive development and modification of legacy systems. The process is applicable to any class of system, including, but not limited to, biological and physical systems, electrical and electro-mechanical systems in addition to software, hardware and hybrid hardware-software systems.

  6. The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data

    NASA Technical Reports Server (NTRS)

    Kruse, F. A.; Lefkoff, A. B.; Boardman, J. W.; Heidebrecht, K. B.; Shapiro, A. T.; Barloon, P. J.; Goetz, A. F. H.

    1993-01-01

    The Center for the Study of Earth from Space (CSES) at the University of Colorado, Boulder, has developed a prototype interactive software system called the Spectral Image Processing System (SIPS) using IDL (the Interactive Data Language) on UNIX-based workstations. SIPS is designed to take advantage of the combination of high spectral resolution and spatial data presentation unique to imaging spectrometers. It streamlines analysis of these data by allowing scientists to rapidly interact with entire datasets. SIPS provides visualization tools for rapid exploratory analysis and numerical tools for quantitative modeling. The user interface is X-Windows-based, user friendly, and provides 'point and click' operation. SIPS is being used for multidisciplinary research concentrating on use of physically based analysis methods to enhance scientific results from imaging spectrometer data. The objective of this continuing effort is to develop operational techniques for quantitative analysis of imaging spectrometer data and to make them available to the scientific community prior to the launch of imaging spectrometer satellite systems such as the Earth Observing System (EOS) High Resolution Imaging Spectrometer (HIRIS).

  7. Method and system for nanoscale plasma processing of objects

    DOEpatents

    Oehrlein, Gottlieb S [Clarksville, MD; Hua, Xuefeng [Hyattsville, MD; Stolz, Christian [Baden-Wuerttemberg, DE

    2008-12-30

    A plasma processing system includes a source of plasma, a substrate and a shutter positioned in close proximity to the substrate. The substrate/shutter relative disposition is changed for precise control of substrate/plasma interaction. This way, the substrate interacts only with a fully established, stable plasma for short times required for nanoscale processing of materials. The shutter includes an opening of a predetermined width, and preferably is patterned to form an array of slits with dimensions that are smaller than the Debye screening length. This enables control of the substrate/plasma interaction time while avoiding the ion bombardment of the substrate in an undesirable fashion. The relative disposition between the shutter and the substrate can be made either by moving the shutter or by moving the substrate.

  8. Design Guidelines for CAI Authoring Systems.

    ERIC Educational Resources Information Center

    Hunka, S.

    1989-01-01

    Discussion of the use of authoring systems for courseware development focuses on guidelines to be considered when designing authoring systems. Topics discussed include allowing a variety of instructional strategies; interaction with peripheral processes such as student records; the editing process; and human factors in computer interface design,…

  9. Computer-Assisted Learning for the Hearing Impaired: An Interactive Written Language Enviroment.

    ERIC Educational Resources Information Center

    Ward, R. D.; Rostron, A. B.

    1983-01-01

    To help hearing-impaired children develop their linguistic competence, a computer system that can process sentences and give feedback about their acceptability was developed. Suggestions are made of ways to use the system as an environment for interactive written communication. (Author/CL)

  10. Classroom Response Systems for Implementing "Interactive Inquiry" in Large Organic Chemistry Classes

    ERIC Educational Resources Information Center

    Morrison, Richard W.; Caughran, Joel A.; Sauers, Angela L.

    2014-01-01

    The authors have developed "sequence response applications" for classroom response systems (CRSs) that allow instructors to engage and actively involve students in the learning process, probe for common misconceptions regarding lecture material, and increase interaction between instructors and students. "Guided inquiry" and…

  11. Affective loop experiences: designing for interactional embodiment.

    PubMed

    Höök, Kristina

    2009-12-12

    Involving our corporeal bodies in interaction can create strong affective experiences. Systems that both can be influenced by and influence users corporeally exhibit a use quality we name an affective loop experience. In an affective loop experience, (i) emotions are seen as processes, constructed in the interaction, starting from everyday bodily, cognitive or social experiences; (ii) the system responds in ways that pull the user into the interaction, touching upon end users' physical experiences; and (iii) throughout the interaction the user is an active, meaning-making individual choosing how to express themselves-the interpretation responsibility does not lie with the system. We have built several systems that attempt to create affective loop experiences with more or less successful results. For example, eMoto lets users send text messages between mobile phones, but in addition to text, the messages also have colourful and animated shapes in the background chosen through emotion-gestures with a sensor-enabled stylus pen. Affective Diary is a digital diary with which users can scribble their notes, but it also allows for bodily memorabilia to be recorded from body sensors mapping to users' movement and arousal and placed along a timeline. Users can see patterns in their bodily reactions and relate them to various events going on in their lives. The experiences of building and deploying these systems gave us insights into design requirements for addressing affective loop experiences, such as how to design for turn-taking between user and system, how to create for 'open' surfaces in the design that can carry users' own meaning-making processes, how to combine modalities to create for a 'unity' of expression, and the importance of mirroring user experience in familiar ways that touch upon their everyday social and corporeal experiences. But a more important lesson gained from deploying the systems is how emotion processes are co-constructed and experienced inseparable from all other aspects of everyday life. Emotion processes are part of our social ways of being in the world; they dye our dreams, hopes and bodily experiences of the world. If we aim to design for affective interaction experiences, we need to place them into this larger picture.

  12. Affective loop experiences: designing for interactional embodiment

    PubMed Central

    Höök, Kristina

    2009-01-01

    Involving our corporeal bodies in interaction can create strong affective experiences. Systems that both can be influenced by and influence users corporeally exhibit a use quality we name an affective loop experience. In an affective loop experience, (i) emotions are seen as processes, constructed in the interaction, starting from everyday bodily, cognitive or social experiences; (ii) the system responds in ways that pull the user into the interaction, touching upon end users' physical experiences; and (iii) throughout the interaction the user is an active, meaning-making individual choosing how to express themselves—the interpretation responsibility does not lie with the system. We have built several systems that attempt to create affective loop experiences with more or less successful results. For example, eMoto lets users send text messages between mobile phones, but in addition to text, the messages also have colourful and animated shapes in the background chosen through emotion-gestures with a sensor-enabled stylus pen. Affective Diary is a digital diary with which users can scribble their notes, but it also allows for bodily memorabilia to be recorded from body sensors mapping to users' movement and arousal and placed along a timeline. Users can see patterns in their bodily reactions and relate them to various events going on in their lives. The experiences of building and deploying these systems gave us insights into design requirements for addressing affective loop experiences, such as how to design for turn-taking between user and system, how to create for ‘open’ surfaces in the design that can carry users' own meaning-making processes, how to combine modalities to create for a ‘unity’ of expression, and the importance of mirroring user experience in familiar ways that touch upon their everyday social and corporeal experiences. But a more important lesson gained from deploying the systems is how emotion processes are co-constructed and experienced inseparable from all other aspects of everyday life. Emotion processes are part of our social ways of being in the world; they dye our dreams, hopes and bodily experiences of the world. If we aim to design for affective interaction experiences, we need to place them into this larger picture. PMID:19884153

  13. Assessment of Spacecraft Systems Integration Using the Electric Propulsion Interactions Code (EPIC)

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Kuharski, Robert A.; Mandell, Myron J.; Gardner, Barbara M.; Kauffman, William J. (Technical Monitor)

    2002-01-01

    SAIC is currently developing the Electric Propulsion Interactions Code 'EPIC', an interactive computer tool that allows the construction of a 3-D spacecraft model, and the assessment of interactions between its subsystems and the plume from an electric thruster. EPIC unites different computer tools to address the complexity associated with the interaction processes. This paper describes the overall architecture and capability of EPIC including the physics and algorithms that comprise its various components. Results from selected modeling efforts of different spacecraft-thruster systems are also presented.

  14. Incorporating ecogeomorphic feedbacks to better understand resiliency in streams: A review and directions forward

    NASA Astrophysics Data System (ADS)

    Atkinson, Carla L.; Allen, Daniel C.; Davis, Lisa; Nickerson, Zachary L.

    2018-03-01

    Decades of interdisciplinary research show river form and function depends on interactions between the living and nonliving world, but a dominant paradigm underlying ecogeomorphic work consists of a top-down, unidirectional approach with abiotic forces driving biotic systems. Stream form and location within the stream network does dictate the habitat and resources available for organisms and overall community structure. Yet this traditional hierarchal framework on its own is inadequate in communicating information regarding the influence of biological systems on fluvial geomorphology that lead to changes in channel morphology, sediment cycling, and system-scale functions (e.g., sediment yield, biogeochemical nutrient cycling). Substantial evidence that organisms influence fluvial geomorphology exists, specifically the ability of aquatic vegetation and lotic animals to modify flow velocities and sediment deposition and transport - thus challenging the traditional hierarchal framework. Researchers recognize the need for ecogeomorphic frameworks that conceptualize feedbacks between organisms, sediment transport, and geomorphic structure. Furthermore, vital ecosystem processes, such as biogeochemical nutrient cycling represent the conversations that are occurring between geomorphological and biological systems. Here we review and synthesize selected case studies highlighting the role organisms play in moderating geomorphic processes and likely interact with these processes to have an impact on an essential ecosystem process, biogeochemical nutrient recycling. We explore whether biophysical interactions can provide information essential to improving predictions of system-scale river functions, specifically sediment transport and biogeochemical cycling, and discuss tools used to study these interactions. We suggest that current conceptual frameworks should acknowledge that hydrologic, geomorphologic, and ecologic processes operate on different temporal scales, generating bidirectional feedback loops over space and time. Hydro- and geomorphologic processes, operating episodically during bankfull conditions, influence ecological processes (e.g., biogeochemical cycling) occurring over longer time periods during base-flow conditions. This ecological activity generates the antecedent conditions that influence the hydro- and geomorphologic processes occurring during the next high flow event, creating a bidirectional feedback. This feedback should enhance the resiliency of fluvial landforms and ecosystem processes, allowing physical and biological processes to pull and push against each other over time.

  15. Space Shuttle third flight /STS-3/ entry RCS analysis. [Reaction Control System

    NASA Technical Reports Server (NTRS)

    Scallion, W. I.; Compton, H. R.; Suit, W. T.; Powell, R. W.; Blackstock, T. A.; Bates, B. L.

    1983-01-01

    Flight data obtained from three Space Transportation System orbiter entries (STS-1, 2, and 3) are processed and analyzed to determine the roll interactions caused by the firing of the entry reaction control system (RCS). Comparisons between the flight-derived parameters and the predicted derivatives without interaction effects are made. The flight-derived RCS Plume flow-field interaction effects are independently deduced by direct integration of the incremental changes in the wing upper surface pressures induced by RCS side thruster firings. The separately obtained interaction effects are compared to the predicted values and the differences are discussed.

  16. Neutral-neutral and neutral-ion collision integrals for Y2O3-Ar plasma system

    NASA Astrophysics Data System (ADS)

    Dhamale, Gayatri D.; Nath, Swastik; Mathe, Vikas L.; Ghorui, Srikumar

    2017-06-01

    A detailed investigation on the neutral-neutral and neutral-ion collision integrals is reported for Y2O3-Ar plasma, an important system of functional material with unique properties having a wide range of processing applications. The calculated integrals are indispensible pre-requisite for the estimation of transport properties needed in CFD modelling of associated plasma processes. Polarizability plays an important role in determining the integral values. Ambiguity in selecting appropriate polarizability data available in the literature and calculating effective number of electrons in the ionized species contributing to the polarizability are addressed. The integrals are evaluated using Lennard-Jones like phenomenological potential up to (l,s) = (4,4). Used interaction potential is suitable for both neutral-neutral and neutral-ion interactions. For atom-parent ion interactions, contribution coming from the inelastic resonant charge transfer process has been accounted properly together with that coming from the elastic counterpart. A total of 14 interacting species and 60 different interactions are considered. Key contributing factors like basic electronic properties of the interacting species and associated polarizability values are accounted carefully. Adopted methodology is first benchmarked against data reported in the literature and then applied to the Y2O3-Ar plasma system for estimating the collision integrals. Results are presented in the temperature range of 100 K-100 000 K.

  17. System enhancements of Mesoscale Analysis and Space Sensor (MASS) computer system

    NASA Technical Reports Server (NTRS)

    Hickey, J. S.; Karitani, S.

    1985-01-01

    The interactive information processing for the mesoscale analysis and space sensor (MASS) program is reported. The development and implementation of new spaceborne remote sensing technology to observe and measure atmospheric processes is described. The space measurements and conventional observational data are processed together to gain an improved understanding of the mesoscale structure and dynamical evolution of the atmosphere relative to cloud development and precipitation processes. A Research Computer System consisting of three primary computers was developed (HP-1000F, Perkin-Elmer 3250, and Harris/6) which provides a wide range of capabilities for processing and displaying interactively large volumes of remote sensing data. The development of a MASS data base management and analysis system on the HP-1000F computer and extending these capabilities by integration with the Perkin-Elmer and Harris/6 computers using the MSFC's Apple III microcomputer workstations is described. The objectives are: to design hardware enhancements for computer integration and to provide data conversion and transfer between machines.

  18. The explicit and implicit dance in psychoanalytic change.

    PubMed

    Fosshage, James L

    2004-02-01

    How the implicit/non-declarative and explicit/declarative cognitive domains interact is centrally important in the consideration of effecting change within the psychoanalytic arena. Stern et al. (1998) declare that long-lasting change occurs in the domain of implicit relational knowledge. In the view of this author, the implicit and explicit domains are intricately intertwined in an interactive dance within a psychoanalytic process. The author views that a spirit of inquiry (Lichtenberg, Lachmann & Fosshage 2002) serves as the foundation of the psychoanalytic process. Analyst and patient strive to explore, understand and communicate and, thereby, create a 'spirit' of interaction that contributes, through gradual incremental learning, to new implicit relational knowledge. This spirit, as part of the implicit relational interaction, is a cornerstone of the analytic relationship. The 'inquiry' more directly brings explicit/declarative processing to the foreground in the joint attempt to explore and understand. The spirit of inquiry in the psychoanalytic arena highlights both the autobiographical scenarios of the explicit memory system and the mental models of the implicit memory system as each contributes to a sense of self, other, and self with other. This process facilitates the extrication and suspension of the old models, so that new models based on current relational experience can be gradually integrated into both memory systems for lasting change.

  19. Interactivity vs. fairness in networked linux systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wenji; Crawford, Matt; /Fermilab

    In general, the Linux 2.6 scheduler can ensure fairness and provide excellent interactive performance at the same time. However, our experiments and mathematical analysis have shown that the current Linux interactivity mechanism tends to incorrectly categorize non-interactive network applications as interactive, which can lead to serious fairness or starvation issues. In the extreme, a single process can unjustifiably obtain up to 95% of the CPU! The root cause is due to the facts that: (1) network packets arrive at the receiver independently and discretely, and the 'relatively fast' non-interactive network process might frequently sleep to wait for packet arrival. Thoughmore » each sleep lasts for a very short period of time, the wait-for-packet sleeps occur so frequently that they lead to interactive status for the process. (2) The current Linux interactivity mechanism provides the possibility that a non-interactive network process could receive a high CPU share, and at the same time be incorrectly categorized as 'interactive.' In this paper, we propose and test a possible solution to address the interactivity vs. fairness problems. Experiment results have proved the effectiveness of the proposed solution.« less

  20. Dynamics Explorer twin spacecraft under evaluation tests

    NASA Technical Reports Server (NTRS)

    Redmond, C.

    1981-01-01

    The Dynamics Explorer A and B satellites designed to explore the interactive processes occuring between the magnetosphere and Earth's ionosphere, upper atmosphere, and plasmasphere are described. Effects of these interactions, satellite orbits, data collecting antennas, solar power systems, axes, configurations, and Earth based command, control and data display systems are mentioned.

  1. School-Family Relationships, School Satisfaction and the Academic Achievement of Young People

    ERIC Educational Resources Information Center

    Hampden-Thompson, Gillian; Galindo, Claudia

    2017-01-01

    Families' perceptions of, and interactions with, schools and teachers can play an essential role in young people's educational outcomes. According to Bronfenbrenner's ecological systems theory, young people grow within multiple nested systems of influence interacting with each other. Thus, their development is affected by persons, processes, and…

  2. Application of Semantic Approaches and Interactive Virtual Technology to Improve Teaching Effectiveness

    ERIC Educational Resources Information Center

    Jou, Min; Liu, Chi-Chia

    2012-01-01

    This article describes an implementation of interactive virtual environments that have been designed for supporting the education of technical skills in material processing technology. The developed web-based systems provide the capability to train students in the technical skills of material processing technology without the need to work on…

  3. A Finnish Concept for Academic Entrepreneurship: The Case of Satakunta University of Applied Sciences

    ERIC Educational Resources Information Center

    Lain, Kari

    2008-01-01

    In a knowledge-driven economy there is a growing need for deeper and more productive interaction between higher education and industry. The full exploitation of knowledge requires strategies, incentives, appropriate systems and strong interaction between the transfer processes and the main processes in higher education. In a knowledge-based…

  4. The chemical basis for the origin of the genetic code and the process of protein synthesis

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The principles upon which the process of protein synthesis and the genetic code were established are elucidated. Extensive work on nuclear magnetic resonance studies of both monomermonomer and monoamino acid polynucleotide interactions is included. A new method of general utility for studying any amino acid interacting with any polynucleotide was developed. This system involves the use of methyl esters of amino acids interacting with polynucleotides.

  5. Dynamic nuclear polarization assisted spin diffusion for the solid effect case.

    PubMed

    Hovav, Yonatan; Feintuch, Akiva; Vega, Shimon

    2011-02-21

    The dynamic nuclear polarization (DNP) process in solids depends on the magnitudes of hyperfine interactions between unpaired electrons and their neighboring (core) nuclei, and on the dipole-dipole interactions between all nuclei in the sample. The polarization enhancement of the bulk nuclei has been typically described in terms of a hyperfine-assisted polarization of a core nucleus by microwave irradiation followed by a dipolar-assisted spin diffusion process in the core-bulk nuclear system. This work presents a theoretical approach for the study of this combined process using a density matrix formalism. In particular, solid effect DNP on a single electron coupled to a nuclear spin system is considered, taking into account the interactions between the spins as well as the main relaxation mechanisms introduced via the electron, nuclear, and cross-relaxation rates. The basic principles of the DNP-assisted spin diffusion mechanism, polarizing the bulk nuclei, are presented, and it is shown that the polarization of the core nuclei and the spin diffusion process should not be treated separately. To emphasize this observation the coherent mechanism driving the pure spin diffusion process is also discussed. In order to demonstrate the effects of the interactions and relaxation mechanisms on the enhancement of the nuclear polarization, model systems of up to ten spins are considered and polarization buildup curves are simulated. A linear chain of spins consisting of a single electron coupled to a core nucleus, which in turn is dipolar coupled to a chain of bulk nuclei, is considered. The interaction and relaxation parameters of this model system were chosen in a way to enable a critical analysis of the polarization enhancement of all nuclei, and are not far from the values of (13)C nuclei in frozen (glassy) organic solutions containing radicals, typically used in DNP at high fields. Results from the simulations are shown, demonstrating the complex dependences of the DNP-assisted spin diffusion process on variations of the relevant parameters. In particular, the effect of the spin lattice relaxation times on the polarization buildup times and the resulting end polarization are discussed, and the quenching of the polarizations by the hyperfine interaction is demonstrated.

  6. Interactive specification acquisition via scenarios: A proposal

    NASA Technical Reports Server (NTRS)

    Hall, Robert J.

    1992-01-01

    Some reactive systems are most naturally specified by giving large collections of behavior scenarios. These collections not only specify the behavior of the system, but also provide good test suites for validating the implemented system. Due to the complexity of the systems and the number of scenarios, however, it appears that automated assistance is necessary to make this software development process workable. Interactive Specification Acquisition Tool (ISAT) is a proposed interactive system for supporting the acquisition and maintenance of a formal system specification from scenarios, as well as automatic synthesis of control code and automated test generation. This paper discusses the background, motivation, proposed functions, and implementation status of ISAT.

  7. Storing and managing information artifacts collected by information analysts using a computing device

    DOEpatents

    Pike, William A; Riensche, Roderick M; Best, Daniel M; Roberts, Ian E; Whyatt, Marie V; Hart, Michelle L; Carr, Norman J; Thomas, James J

    2012-09-18

    Systems and computer-implemented processes for storage and management of information artifacts collected by information analysts using a computing device. The processes and systems can capture a sequence of interactive operation elements that are performed by the information analyst, who is collecting an information artifact from at least one of the plurality of software applications. The information artifact can then be stored together with the interactive operation elements as a snippet on a memory device, which is operably connected to the processor. The snippet comprises a view from an analysis application, data contained in the view, and the sequence of interactive operation elements stored as a provenance representation comprising operation element class, timestamp, and data object attributes for each interactive operation element in the sequence.

  8. Coercion in the Evolution of Plant-Microbe Communication: A Perspective.

    PubMed

    Rowe, S L; Norman, J S; Friesen, M L

    2018-06-06

    Plants and microbes are dependent on chemical signals as a means of interkingdom communication. There are two predicted paths for the evolution of these signals. Ritualization is the oft-assumed pathway for the evolution of plant-microbe communication systems. In this process, chemical signals, which benefit both receiver and sender, evolve from chemical cues, which benefit only the receiver. However, plant-microbe signaling may evolve from coercive interactions as well, a process known as sensory manipulation. Here, we aim to highlight the prevalence of coercive interactions and discuss sensory manipulation in the context of plant-microbe interactions. We present two examples of stabilized coercion: microbial coercion of plants via the release of phytohormones and plant coercion of microbes via manipulation of quorum-sensing compounds. Furthermore, we provide an evolutionary framework for the emergence of signaling from coercive plant-microbe interactions through the process of sensory manipulation. We hope that researchers will recognize the relevance of coercive interactions in plant-microbe systems and consider sensory manipulation as a plausible evolutionary trajectory for the emergence of plant-microbe signaling.

  9. The MNESIS model: Memory systems and processes, identity and future thinking.

    PubMed

    Eustache, Francis; Viard, Armelle; Desgranges, Béatrice

    2016-07-01

    The Memory NEo-Structural Inter-Systemic model (MNESIS; Eustache and Desgranges, Neuropsychology Review, 2008) is a macromodel based on neuropsychological data which presents an interactive construction of memory systems and processes. Largely inspired by Tulving's SPI model, MNESIS puts the emphasis on the existence of different memory systems in humans and their reciprocal relations, adding new aspects, such as the episodic buffer proposed by Baddeley. The more integrative comprehension of brain dynamics offered by neuroimaging has contributed to rethinking the existence of memory systems. In the present article, we will argue that understanding the concept of memory by dividing it into systems at the functional level is still valid, but needs to be considered in the light of brain imaging. Here, we reinstate the importance of this division in different memory systems and illustrate, with neuroimaging findings, the links that operate between memory systems in response to task demands that constrain the brain dynamics. During a cognitive task, these memory systems interact transiently to rapidly assemble representations and mobilize functions to propose a flexible and adaptative response. We will concentrate on two memory systems, episodic and semantic memory, and their links with autobiographical memory. More precisely, we will focus on interactions between episodic and semantic memory systems in support of 1) self-identity in healthy aging and in brain pathologies and 2) the concept of the prospective brain during future projection. In conclusion, this MNESIS global framework may help to get a general representation of human memory and its brain implementation with its specific components which are in constant interaction during cognitive processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Interactions between neural networks: a mechanism for tuning chaos and oscillations

    PubMed Central

    2007-01-01

    We show that chaos and oscillations in a higher-order binary neural network can be tuned effectively using interactions between neural networks. Our results suggest that network interactions may be useful as a means of adjusting the level of dynamic activities in systems that employ chaos and oscillations for information processing, or as a means of suppressing oscillatory behaviors in systems that require stability. PMID:19003511

  11. Bonn eXperimental System (BoXS): An open-source platform for interactive experiments in psychology and economics.

    PubMed

    Seithe, Mirko; Morina, Jeronim; Glöckner, Andreas

    2016-12-01

    The increased interest in complex-interactive behavior on the one hand and the cognitive and affective processes underlying behavior on the other are a challenge for researchers in psychology and behavioral economics. Research often necessitates that participants strategically interact with each other in dyads or groups. At the same time, to investigate the underlying cognitive and affective processes in a fine-grained manner, not only choices but also other variables such as decision time, information search, and pupil dilation should be recorded. The Bonn eXperimental System (BoXS) introduced in this article is an open-source platform that allows interactive as well as non-interactive experiments to be conducted while recording process measures very efficiently and completely browser-based. In the current version, BoXS has particularly been extended to enable conducting interactive eye-tracking and mouse-tracking experiments. One core advantage of BoXS is its simplicity. Using BoXS does not require prior installation for both experimenters and participants, which allows for running studies outside the laboratory and over the internet. Learning to program for BoXS is easy even for researchers without previous programming experience.

  12. Automated Simulation For Analysis And Design

    NASA Technical Reports Server (NTRS)

    Cantwell, E.; Shenk, Tim; Robinson, Peter; Upadhye, R.

    1992-01-01

    Design Assistant Workstation (DAWN) software being developed to facilitate simulation of qualitative and quantitative aspects of behavior of life-support system in spacecraft, chemical-processing plant, heating and cooling system of large building, or any of variety of systems including interacting process streams and processes. Used to analyze alternative design scenarios or specific designs of such systems. Expert system will automate part of design analysis: reason independently by simulating design scenarios and return to designer with overall evaluations and recommendations.

  13. Image-Processing Software For A Hypercube Computer

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Mazer, Alan S.; Groom, Steven L.; Williams, Winifred I.

    1992-01-01

    Concurrent Image Processing Executive (CIPE) is software system intended to develop and use image-processing application programs on concurrent computing environment. Designed to shield programmer from complexities of concurrent-system architecture, it provides interactive image-processing environment for end user. CIPE utilizes architectural characteristics of particular concurrent system to maximize efficiency while preserving architectural independence from user and programmer. CIPE runs on Mark-IIIfp 8-node hypercube computer and associated SUN-4 host computer.

  14. Complete active space configuration interaction from state-averaged configuration interaction singles natural orbitals: Analytic first derivatives and derivative coupling vectors

    NASA Astrophysics Data System (ADS)

    Fales, B. Scott; Shu, Yinan; Levine, Benjamin G.; Hohenstein, Edward G.

    2017-09-01

    A new complete active space configuration interaction (CASCI) method was recently introduced that uses state-averaged natural orbitals from the configuration interaction singles method (configuration interaction singles natural orbital CASCI, CISNO-CASCI). This method has been shown to perform as well or better than state-averaged complete active space self-consistent field for a variety of systems. However, further development and testing of this method have been limited by the lack of available analytic first derivatives of the CISNO-CASCI energy as well as the derivative coupling between electronic states. In the present work, we present a Lagrangian-based formulation of these derivatives as well as a highly efficient implementation of the resulting equations accelerated with graphical processing units. We demonstrate that the CISNO-CASCI method is practical for dynamical simulations of photochemical processes in molecular systems containing hundreds of atoms.

  15. Complete active space configuration interaction from state-averaged configuration interaction singles natural orbitals: Analytic first derivatives and derivative coupling vectors.

    PubMed

    Fales, B Scott; Shu, Yinan; Levine, Benjamin G; Hohenstein, Edward G

    2017-09-07

    A new complete active space configuration interaction (CASCI) method was recently introduced that uses state-averaged natural orbitals from the configuration interaction singles method (configuration interaction singles natural orbital CASCI, CISNO-CASCI). This method has been shown to perform as well or better than state-averaged complete active space self-consistent field for a variety of systems. However, further development and testing of this method have been limited by the lack of available analytic first derivatives of the CISNO-CASCI energy as well as the derivative coupling between electronic states. In the present work, we present a Lagrangian-based formulation of these derivatives as well as a highly efficient implementation of the resulting equations accelerated with graphical processing units. We demonstrate that the CISNO-CASCI method is practical for dynamical simulations of photochemical processes in molecular systems containing hundreds of atoms.

  16. Video Analysis and Remote Digital Ethnography: Approaches to understanding user perspectives and processes involving healthcare information technology.

    PubMed

    Kushniruk, Andre W; Borycki, Elizabeth M

    2015-01-01

    Innovations in healthcare information systems promise to revolutionize and streamline healthcare processes worldwide. However, the complexity of these systems and the need to better understand issues related to human-computer interaction have slowed progress in this area. In this chapter the authors describe their work in using methods adapted from usability engineering, video ethnography and analysis of digital log files for improving our understanding of complex real-world healthcare interactions between humans and technology. The approaches taken are cost-effective and practical and can provide detailed ethnographic data on issues health professionals and consumers encounter while using systems as well as potential safety problems. The work is important in that it can be used in techno-anthropology to characterize complex user interactions with technologies and also to provide feedback into redesign and optimization of improved healthcare information systems.

  17. Effect of interactions for one-dimensional asymmetric exclusion processes under periodic and bath-adapted coupling environment

    NASA Astrophysics Data System (ADS)

    Midha, Tripti; Kolomeisky, Anatoly B.; Gupta, Arvind Kumar

    2018-04-01

    Stimulated by the effect of the nearest neighbor interactions in vehicular traffic and motor proteins, we study a 1D driven lattice gas model, in which the nearest neighbor particle interactions are taken in accordance with the thermodynamic concepts. The non-equilibrium steady-state properties of the system are analyzed under both open and periodic boundary conditions using a combination of cluster mean-field analysis and Monte Carlo simulations. Interestingly, the fundamental diagram of current versus density shows a complex behavior with a unimodal dependence for attractions and weak repulsions that turns into the bimodal behavior for stronger repulsive interactions. Specific details of system-reservoir coupling for the open system have a strong effect on the stationary phases. We produce the steady-state phase diagrams for the bulk-adapted coupling to the reservoir using the minimum and maximum current principles. The strength and nature of interaction energy has a striking influence on the number of stationary phases. We observe that interactions lead to correlations having a strong impact on the system dynamical properties. The correlation between any two sites decays exponentially as the distance between the sites increases. Moreover, they are found to be short-range for repulsions and long-range for attractions. Our results also suggest that repulsions and attractions asymmetrically modify the dynamics of interacting particles in exclusion processes.

  18. Knowledge elicitation for an operator assistant system in process control tasks

    NASA Technical Reports Server (NTRS)

    Boy, Guy A.

    1988-01-01

    A knowledge based system (KBS) methodology designed to study human machine interactions and levels of autonomy in allocation of process control tasks is presented. Users are provided with operation manuals to assist them in normal and abnormal situations. Unfortunately, operation manuals usually represent only the functioning logic of the system to be controlled. The user logic is often totally different. A method is focused on which illicits user logic to refine a KBS shell called an Operator Assistant (OA). If the OA is to help the user, it is necessary to know what level of autonomy gives the optimal performance of the overall man-machine system. For example, for diagnoses that must be carried out carefully by both the user and the OA, interactions are frequent, and processing is mostly sequential. Other diagnoses can be automated, in which the case the OA must be able to explain its reasoning in an appropriate level of detail. OA structure was used to design a working KBS called HORSES (Human Orbital Refueling System Expert System). Protocol analysis of pilots interacting with this system reveals that the a-priori analytical knowledge becomes more structured with training and the situation patterns more complex and dynamic. This approach can improve the a-priori understanding of human and automatic reasoning.

  19. Evidence for the Modulation of Sub-Lexical Processing in Go No-Go Naming: The Elimination of the Frequency x Regularity Interaction

    ERIC Educational Resources Information Center

    Cummine, Jacqueline; Amyotte, Josee; Pancheshen, Brent; Chouinard, Brea

    2011-01-01

    The Frequency (high vs. low) x Regularity (regular vs. exception) interaction found on naming response times is often taken as evidence for parallel processing of sub-lexical and lexical systems. Using a Go/No-go naming task, we investigated the effect of nonword versus pseudohomophone foils on sub-lexical processing and the subsequent Frequency x…

  20. Comparisons of social interaction and activities of daily living between long-term care facility and community-dwelling stroke patients.

    PubMed

    Yoon, Jeong-Ae; Park, Se-Gwan; Roh, Hyo-Lyun

    2015-10-01

    [Purpose] This study was conducted to compare the correlation between social interaction and activities of daily living (ADL) between community-dwelling and long-term care facility stroke patients. [Subjects and Methods] The Subjects were 65 chronic stroke patients (32 facility-residing, 33 community-dwelling). The Evaluation Social Interaction (ESI) tool was used to evaluate social interaction and the Assessment of Motor and Process Skills (AMPS) measure was used to evaluate ADL. [Results] Both social interaction and ADL were higher in community-dwelling than facility-residing stroke patients. There was a correlation between ESI and ADL for both motor and process skills among facility-residing patients, while only ADL process skills and ESI correlated among community-dwelling patients. In a partial correlation analysis using ADL motor and process skills as control variables, only process skills correlated with ESI. [Conclusion] For rehabilitation of stroke patients, an extended treatment process that combines ADL and social activities is likely to be required. Furthermore, treatment programs and institutional systems that can improve social interaction and promote health maintenance for community-dwelling and facility-residing chronic stroke patients are needed throughout the rehabilitation process.

  1. CLIMLAB: a Python-based software toolkit for interactive, process-oriented climate modeling

    NASA Astrophysics Data System (ADS)

    Rose, B. E. J.

    2015-12-01

    Global climate is a complex emergent property of the rich interactions between simpler components of the climate system. We build scientific understanding of this system by breaking it down into component process models (e.g. radiation, large-scale dynamics, boundary layer turbulence), understanding each components, and putting them back together. Hands-on experience and freedom to tinker with climate models (whether simple or complex) is invaluable for building physical understanding. CLIMLAB is an open-ended software engine for interactive, process-oriented climate modeling. With CLIMLAB you can interactively mix and match model components, or combine simpler process models together into a more comprehensive model. It was created primarily to support classroom activities, using hands-on modeling to teach fundamentals of climate science at both undergraduate and graduate levels. CLIMLAB is written in Python and ties in with the rich ecosystem of open-source scientific Python tools for numerics and graphics. The IPython notebook format provides an elegant medium for distributing interactive example code. I will give an overview of the current capabilities of CLIMLAB, the curriculum we have developed thus far, and plans for the future. Using CLIMLAB requires some basic Python coding skills. We consider this an educational asset, as we are targeting upper-level undergraduates and Python is an increasingly important language in STEM fields. However CLIMLAB is well suited to be deployed as a computational back-end for a graphical gaming environment based on earth-system modeling.

  2. Dissociations and Interactions between Time, Numerosity and Space Processing

    ERIC Educational Resources Information Center

    Cappelletti, Marinella; Freeman, Elliot D.; Cipolotti, Lisa

    2009-01-01

    This study investigated time, numerosity and space processing in a patient (CB) with a right hemisphere lesion. We tested whether these magnitude dimensions share a common magnitude system or whether they are processed by dimension-specific magnitude systems. Five experimental tasks were used: Tasks 1-3 assessed time and numerosity independently…

  3. Vortex information display system program description manual. [data acquisition from laser Doppler velocimeters and real time operation

    NASA Technical Reports Server (NTRS)

    Conway, R.; Matuck, G. N.; Roe, J. M.; Taylor, J.; Turner, A.

    1975-01-01

    A vortex information display system is described which provides flexible control through system-user interaction for collecting wing-tip-trailing vortex data, processing this data in real time, displaying the processed data, storing raw data on magnetic tape, and post processing raw data. The data is received from two asynchronous laser Doppler velocimeters (LDV's) and includes position, velocity, and intensity information. The raw data is written onto magnetic tape for permanent storage and is also processed in real time to locate vortices and plot their positions as a function of time. The interactive capability enables the user to make real time adjustments in processing data and provides a better definition of vortex behavior. Displaying the vortex information in real time produces a feedback capability to the LDV system operator allowing adjustments to be made in the collection of raw data. Both raw data and processing can be continually upgraded during flyby testing to improve vortex behavior studies. The post-analysis capability permits the analyst to perform in-depth studies of test data and to modify vortex behavior models to improve transport predictions.

  4. Protein crowding in solution, frozen and freeze-dried states: small-angle neutron and X-ray scattering study of lysozyme/sorbitol/water systems

    NASA Astrophysics Data System (ADS)

    Krueger, Susan; Khodadadi, Sheila; Clark, Nicholas; McAuley, Arnold; Cristiglio, Viviana; Theyencheri, Narayanan; Curtis, Joseph; Shalaev, Evgenyi

    2015-03-01

    For effective preservation, proteins are often stored as frozen solutions or in glassy states using a freeze-drying process. However, aggregation is often observed after freeze-thaw or reconstitution of freeze-dried powder and the stability of the protein is no longer assured. In this study, small-angle neutron and X-ray scattering (SANS and SAXS) have been used to investigate changes in protein-protein interaction distances of a model protein/cryoprotectant system of lysozyme/sorbitol/water, under representative pharmaceutical processing conditions. The results demonstrate the utility of SAXS and SANS methods to monitor protein crowding at different stages of freezing and drying. The SANS measurements of solution samples showed at least one protein interaction peak corresponding to an interaction distance of ~ 90 Å. In the frozen state, two protein interaction peaks were observed by SANS with corresponding interaction distances at 40 Å as well as 90 Å. On the other hand, both SAXS and SANS data for freeze-dried samples showed three peaks, suggesting interaction distances ranging from ~ 15 Å to 170 Å. Possible interpretations of these interaction peaks will be discussed, as well as the role of sorbitol as a cryoprotectant during the freezing and drying process.

  5. Systems view on spatial planning and perception based on invariants in agent-environment dynamics

    PubMed Central

    Mettler, Bérénice; Kong, Zhaodan; Li, Bin; Andersh, Jonathan

    2015-01-01

    Modeling agile and versatile spatial behavior remains a challenging task, due to the intricate coupling of planning, control, and perceptual processes. Previous results have shown that humans plan and organize their guidance behavior by exploiting patterns in the interactions between agent or organism and the environment. These patterns, described under the concept of Interaction Patterns (IPs), capture invariants arising from equivalences and symmetries in the interaction with the environment, as well as effects arising from intrinsic properties of human control and guidance processes, such as perceptual guidance mechanisms. The paper takes a systems' perspective, considering the IP as a unit of organization, and builds on its properties to present a hierarchical model that delineates the planning, control, and perceptual processes and their integration. The model's planning process is further elaborated by showing that the IP can be abstracted, using spatial time-to-go functions. The perceptual processes are elaborated from the hierarchical model. The paper provides experimental support for the model's ability to predict the spatial organization of behavior and the perceptual processes. PMID:25628524

  6. Socio-Technical Perspective on Interdisciplinary Interactions During the Development of Complex Engineered Systems

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria R.; Daly, Shanna; Baker, Wayne; Papalambros, panos; Seifert, Colleen

    2013-01-01

    This study investigates interdisciplinary interactions that take place during the research, development, and early conceptual design phases in the design of large-scale complex engineered systems (LaCES) such as aerospace vehicles. These interactions, that take place throughout a large engineering development organization, become the initial conditions of the systems engineering process that ultimately leads to the development of a viable system. This paper summarizes some of the challenges and opportunities regarding social and organizational issues that emerged from a qualitative study using ethnographic and survey data. The analysis reveals several socio-technical couplings between the engineered system and the organization that creates it. Survey respondents noted the importance of interdisciplinary interactions and their benefits to the engineered system as well as substantial challenges in interdisciplinary interactions. Noted benefits included enhanced knowledge and problem mitigation and noted obstacles centered on organizational and human dynamics. Findings suggest that addressing the social challenges may be a critical need in enabling interdisciplinary interactions

  7. Systems of Multiple Planets

    NASA Astrophysics Data System (ADS)

    Marcy, G. W.; Fischer, D. A.; Butler, R. P.; Vogt, S. S.

    To date, 10 stars are known which harbor two or three planets. These systems reveal secular and mean motion resonances in some systems and consist of widely separated, eccentric orbits in others. Both of the triple planet systems, namely Upsilon And and 55 Cancri, exhibit evidence of resonances. The two planets orbiting GJ 876 exhibit both mean-motion and secular resonances and they perturb each other so strongly that the evolution of the orbits is revealed in the Doppler measurements. The common occurrence of resonances suggests that delicate dynamical processes often shape the architecture of planetary systems. Likely processes include planet migration in a viscous disk, eccentricity pumping by the planet-disk interaction, and resonance capture of two planets. We find a class of "hierarchical" double-planet systems characterized by two planets in widely separated orbits, defined to have orbital period ratios greater than 5 to 1. In such systems, resonant interactions are weak, leaving high-order interactions and Kozai resonances plausibly important. We compare the planets that are single with those in multiple systems. We find that neither the two mass distributions nor the two eccentricity distributions are significantly different. This similarity in single and multiple systems suggests that similar dynamical processes may operate in both. The origin of eccentricities may stem from a multi-planet past or from interactions between planets and disk. Multiple planets in resonances can pump their eccentricities pumping resulting in one planet being ejected from the system or sent into the star, leaving a (more massive) single planet in an eccentric orbit. The distribution of semimajor axes of all known extrasolar planets shows a rise toward larger orbits, portending a population of gas-giant planets that reside beyond 3 AU, arguably in less perturbed, more circular orbits.

  8. Computational Models of Neuron-Astrocyte Interactions Lead to Improved Efficacy in the Performance of Neural Networks

    PubMed Central

    Alvarellos-González, Alberto; Pazos, Alejandro; Porto-Pazos, Ana B.

    2012-01-01

    The importance of astrocytes, one part of the glial system, for information processing in the brain has recently been demonstrated. Regarding information processing in multilayer connectionist systems, it has been shown that systems which include artificial neurons and astrocytes (Artificial Neuron-Glia Networks) have well-known advantages over identical systems including only artificial neurons. Since the actual impact of astrocytes in neural network function is unknown, we have investigated, using computational models, different astrocyte-neuron interactions for information processing; different neuron-glia algorithms have been implemented for training and validation of multilayer Artificial Neuron-Glia Networks oriented toward classification problem resolution. The results of the tests performed suggest that all the algorithms modelling astrocyte-induced synaptic potentiation improved artificial neural network performance, but their efficacy depended on the complexity of the problem. PMID:22649480

  9. Computational models of neuron-astrocyte interactions lead to improved efficacy in the performance of neural networks.

    PubMed

    Alvarellos-González, Alberto; Pazos, Alejandro; Porto-Pazos, Ana B

    2012-01-01

    The importance of astrocytes, one part of the glial system, for information processing in the brain has recently been demonstrated. Regarding information processing in multilayer connectionist systems, it has been shown that systems which include artificial neurons and astrocytes (Artificial Neuron-Glia Networks) have well-known advantages over identical systems including only artificial neurons. Since the actual impact of astrocytes in neural network function is unknown, we have investigated, using computational models, different astrocyte-neuron interactions for information processing; different neuron-glia algorithms have been implemented for training and validation of multilayer Artificial Neuron-Glia Networks oriented toward classification problem resolution. The results of the tests performed suggest that all the algorithms modelling astrocyte-induced synaptic potentiation improved artificial neural network performance, but their efficacy depended on the complexity of the problem.

  10. Software-safety and software quality assurance in real-time applications Part 2: Real-time structures and languages

    NASA Astrophysics Data System (ADS)

    Schoitsch, Erwin

    1988-07-01

    Our society is depending more and more on the reliability of embedded (real-time) computer systems even in every-day life. Considering the complexity of the real world, this might become a severe threat. Real-time programming is a discipline important not only in process control and data acquisition systems, but also in fields like communication, office automation, interactive databases, interactive graphics and operating systems development. General concepts of concurrent programming and constructs for process-synchronization are discussed in detail. Tasking and synchronization concepts, methods of process communication, interrupt- and timeout handling in systems based on semaphores, signals, conditional critical regions or on real-time languages like Concurrent PASCAL, MODULA, CHILL and ADA are explained and compared with each other and with respect to their potential to quality and safety.

  11. Interactions of Top-Down and Bottom-Up Mechanisms in Human Visual Cortex

    PubMed Central

    McMains, Stephanie; Kastner, Sabine

    2011-01-01

    Multiple stimuli present in the visual field at the same time compete for neural representation by mutually suppressing their evoked activity throughout visual cortex, providing a neural correlate for the limited processing capacity of the visual system. Competitive interactions among stimuli can be counteracted by top-down, goal-directed mechanisms such as attention, and by bottom-up, stimulus-driven mechanisms. Because these two processes cooperate in everyday life to bias processing toward behaviorally relevant or particularly salient stimuli, it has proven difficult to study interactions between top-down and bottom-up mechanisms. Here, we used an experimental paradigm in which we first isolated the effects of a bottom-up influence on neural competition by parametrically varying the degree of perceptual grouping in displays that were not attended. Second, we probed the effects of directed attention on the competitive interactions induced with the parametric design. We found that the amount of attentional modulation varied linearly with the degree of competition left unresolved by bottom-up processes, such that attentional modulation was greatest when neural competition was little influenced by bottom-up mechanisms and smallest when competition was strongly influenced by bottom-up mechanisms. These findings suggest that the strength of attentional modulation in the visual system is constrained by the degree to which competitive interactions have been resolved by bottom-up processes related to the segmentation of scenes into candidate objects. PMID:21228167

  12. Behavioural conditioning of immune functions: how the central nervous system controls peripheral immune responses by evoking associative learning processes.

    PubMed

    Riether, Carsten; Doenlen, Raphaël; Pacheco-López, Gustavo; Niemi, Maj-Britt; Engler, Andrea; Engler, Harald; Schedlowski, Manfred

    2008-01-01

    During the last 30 years of psychoneuroimmunology research the intense bi-directional communication between the central nervous system (CNS) and the immune system has been demonstrated in studies on the interaction between the nervous-endocrine-immune systems. One of the most intriguing examples of such interaction is the capability of the CNS to associate an immune status with specific environmental stimuli. In this review, we systematically summarize experimental evidence demonstrating the behavioural conditioning of peripheral immune functions. In particular, we focus on the mechanisms underlying the behavioural conditioning process and provide a theoretical framework that indicates the potential feasibility of behaviourally conditioned immune changes in clinical situations.

  13. A broadband multimedia TeleLearning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ruiping; Karmouch, A.

    1996-12-31

    In this paper we discuss a broadband multimedia TeleLearning system under development in the Multimedia Information Research Laboratory at the University of Ottawa. The system aims at providing a seamless environment for TeleLearning using the latest telecommunication and multimedia information processing technology. It basically consists of a media production center, a courseware author site, a courseware database, a courseware user site, and an on-line facilitator site. All these components are distributed over an ATM network and work together to offer a multimedia interactive courseware service. An MHEG-based model is exploited in designing the system architecture to achieve the real-time, interactive,more » and reusable information interchange through heterogeneous platforms. The system architecture, courseware processing strategies, courseware document models are presented.« less

  14. The interactive evolution of human communication systems.

    PubMed

    Fay, Nicolas; Garrod, Simon; Roberts, Leo; Swoboda, Nik

    2010-04-01

    This paper compares two explanations of the process by which human communication systems evolve: iterated learning and social collaboration. It then reports an experiment testing the social collaboration account. Participants engaged in a graphical communication task either as a member of a community, where they interacted with seven different partners drawn from the same pool, or as a member of an isolated pair, where they interacted with the same partner across the same number of games. Participants' horizontal, pair-wise interactions led "bottom up" to the creation of an effective and efficient shared sign system in the community condition. Furthermore, the community-evolved sign systems were as effective and efficient as the local sign systems developed by isolated pairs. Finally, and as predicted by a social collaboration account, and not by an iterated learning account, interaction was critical to the creation of shared sign systems, with different isolated pairs establishing different local sign systems and different communities establishing different global sign systems. Copyright © 2010 Cognitive Science Society, Inc.

  15. Monthly and seasonal variability of the land-atmosphere system

    Treesearch

    Yong-Qiang Liu

    2003-01-01

    The land surface and the atmosphere can interact with each other through exchanges of energy, water, and momentum. With the capacity of long memory, land surface processes can contribute to long-term variability of atmospheric processes. Great efforts have been made in the past three decades to study land-atmosphere interactions and their importance to long-term...

  16. Stimulation of Hippocampal Adenylyl Cyclase Activity Dissociates Memory Consolidation Processes for Response and Place Learning

    ERIC Educational Resources Information Center

    Martel, Guillaume; Millard, Annabelle; Jaffard, Robert; Guillou, Jean-Louis

    2006-01-01

    Procedural and declarative memory systems are postulated to interact in either a synergistic or a competitive manner, and memory consolidation appears to be a highly critical stage for this process. However, the precise cellular mechanisms subserving these interactions remain unknown. To investigate this issue, 24-h retention performances were…

  17. Concept-Based Grammatical Errors of Arab EFL Learners

    ERIC Educational Resources Information Center

    Al-Quran, Majed

    2010-01-01

    Building up messages as a cognitive activity within the linguistic multi-level system is the result of the interaction between the various components of this system. Yet, this interactive process occurring in the language user's mind while encoding can vary from person to person. Likewise, it also differs in different recipients while decoding.…

  18. Physical Foundations for Socio-Economic Modeling for Transportation Planning : Part 1. Interaction Between Urban Centers as a Potential Process.

    DOT National Transportation Integrated Search

    1977-09-01

    The objective of this research is to make use of a physically based social system model to study the determinants of city sizes and their interactions in a nation. In particular, it was required that attention be paid to how new transportation system...

  19. Expert Students in Social Learning Management Systems

    ERIC Educational Resources Information Center

    Avogadro, Paolo; Calegari, Silvia; Dominoni, Matteo Alessandro

    2016-01-01

    Purpose: A social learning management system (social LMS) is a tool which favors social interactions and allows scholastic institutions to supervise and guide the learning process. The inclusion of the social feature to a "normal" LMS leads to the creation of educational social networks (EduSN), where the students interact and learn. The…

  20. Instructional Videos for Supporting Older Adults Who Use Interactive Systems

    ERIC Educational Resources Information Center

    Gramss, Denise; Struve, Doreen

    2009-01-01

    The study reported in this paper investigated the usefulness of different instructions for guiding inexperienced older adults through interactive systems. It was designed to compare different media in relation to their social as well as their motivational impact on the elderly during the learning process. Precisely, the video was compared with…

  1. Novel approach using DNA-RNA hybrids in RNA nanotechnology | Center for Cancer Research

    Cancer.gov

    Developing simple approaches to detect interactions, modifications, and cellular locations of macromolecules is essential for understanding biochemical processes. The use of protein fragment complementation assays, also called split-protein systems, is a highly sensitive approach for studying protein interactions in biological systems. In this approach, functional proteins are

  2. Social-ecological outcomes in recreational fisheries: The interaction of lakeshore development and stocking

    USGS Publications Warehouse

    Ziegler, Jacob P.; Golebie, Elizabeth J.; Jones, Stuart E.; Weidel, Brian C.; Solomon, Christopher T.

    2017-01-01

    Many ecosystems continue to experience rapid transformations due to processes like land use change and resource extraction. A systems approach to maintaining natural resources focuses on how interactions and feedbacks among components of complex social‐ecological systems generate social and ecological outcomes. In recreational fisheries, residential shoreline development and fish stocking are two widespread human behaviors that influence fisheries, yet emergent social‐ecological outcomes from these potentially interacting behaviors remain under explored. We applied a social‐ecological systems framework using a simulation model and empirical data to determine whether lakeshore development is likely to promote stocking through its adverse effects on coarse woody habitat and thereby also on survival of juvenile and adult fish. We demonstrate that high lakeshore development is likely to generate dependency of the ecosystem on the social system, in the form of stocking. Further, lakeshore development can interact with social‐ecological processes to create deficits for state‐level governments, which threatens the ability to fund further ecosystem subsidies. Our results highlight the value of a social‐ecological framework for maintaining ecosystem services like recreational fisheries.

  3. Interactive access to LP DAAC satellite data archives through a combination of open-source and custom middleware web services

    USGS Publications Warehouse

    Davis, Brian N.; Werpy, Jason; Friesz, Aaron M.; Impecoven, Kevin; Quenzer, Robert; Maiersperger, Tom; Meyer, David J.

    2015-01-01

    Current methods of searching for and retrieving data from satellite land remote sensing archives do not allow for interactive information extraction. Instead, Earth science data users are required to download files over low-bandwidth networks to local workstations and process data before science questions can be addressed. New methods of extracting information from data archives need to become more interactive to meet user demands for deriving increasingly complex information from rapidly expanding archives. Moving the tools required for processing data to computer systems of data providers, and away from systems of the data consumer, can improve turnaround times for data processing workflows. The implementation of middleware services was used to provide interactive access to archive data. The goal of this middleware services development is to enable Earth science data users to access remote sensing archives for immediate answers to science questions instead of links to large volumes of data to download and process. Exposing data and metadata to web-based services enables machine-driven queries and data interaction. Also, product quality information can be integrated to enable additional filtering and sub-setting. Only the reduced content required to complete an analysis is then transferred to the user.

  4. Interactive, process-oriented climate modeling with CLIMLAB

    NASA Astrophysics Data System (ADS)

    Rose, B. E. J.

    2016-12-01

    Global climate is a complex emergent property of the rich interactions between simpler components of the climate system. We build scientific understanding of this system by breaking it down into component process models (e.g. radiation, large-scale dynamics, boundary layer turbulence), understanding each components, and putting them back together. Hands-on experience and freedom to tinker with climate models (whether simple or complex) is invaluable for building physical understanding. CLIMLAB is an open-ended software engine for interactive, process-oriented climate modeling. With CLIMLAB you can interactively mix and match model components, or combine simpler process models together into a more comprehensive model. It was created primarily to support classroom activities, using hands-on modeling to teach fundamentals of climate science at both undergraduate and graduate levels. CLIMLAB is written in Python and ties in with the rich ecosystem of open-source scientific Python tools for numerics and graphics. The Jupyter Notebook format provides an elegant medium for distributing interactive example code. I will give an overview of the current capabilities of CLIMLAB, the curriculum we have developed thus far, and plans for the future. Using CLIMLAB requires some basic Python coding skills. We consider this an educational asset, as we are targeting upper-level undergraduates and Python is an increasingly important language in STEM fields.

  5. Identification of Modules in Protein-Protein Interaction Networks

    NASA Astrophysics Data System (ADS)

    Erten, Sinan; Koyutürk, Mehmet

    In biological systems, most processes are carried out through orchestration of multiple interacting molecules. These interactions are often abstracted using network models. A key feature of cellular networks is their modularity, which contributes significantly to the robustness, as well as adaptability of biological systems. Therefore, modularization of cellular networks is likely to be useful in obtaining insights into the working principles of cellular systems, as well as building tractable models of cellular organization and dynamics. A common, high-throughput source of data on molecular interactions is in the form of physical interactions between proteins, which are organized into protein-protein interaction (PPI) networks. This chapter provides an overview on identification and analysis of functional modules in PPI networks, which has been an active area of research in the last decade.

  6. Science-Grade Observing Systems as Process Observatories: Mapping and Understanding Nonlinearity and Multiscale Memory with Models and Observations

    NASA Astrophysics Data System (ADS)

    Barros, A. P.; Wilson, A. M.; Miller, D. K.; Tao, J.; Genereux, D. P.; Prat, O.; Petersen, W. A.; Brunsell, N. A.; Petters, M. D.; Duan, Y.

    2015-12-01

    Using the planet as a study domain and collecting observations over unprecedented ranges of spatial and temporal scales, NASA's EOS (Earth Observing System) program was an agent of transformational change in Earth Sciences over the last thirty years. The remarkable space-time organization and variability of atmospheric and terrestrial moist processes that emerged from the analysis of comprehensive satellite observations provided much impetus to expand the scope of land-atmosphere interaction studies in Hydrology and Hydrometeorology. Consequently, input and output terms in the mass and energy balance equations evolved from being treated as fluxes that can be used as boundary conditions, or forcing, to being viewed as dynamic processes of a coupled system interacting at multiple scales. Measurements of states or fluxes are most useful if together they map, reveal and/or constrain the underlying physical processes and their interactions. This can only be accomplished through an integrated observing system designed to capture the coupled physics, including nonlinear feedbacks and tipping points. Here, we first review and synthesize lessons learned from hydrometeorology studies in the Southern Appalachians and in the Southern Great Plains using both ground-based and satellite observations, physical models and data-assimilation systems. We will specifically focus on mapping and understanding nonlinearity and multiscale memory of rainfall-runoff processes in mountainous regions. It will be shown that beyond technical rigor, variety, quantity and duration of measurements, the utility of observing systems is determined by their interpretive value in the context of physical models to describe the linkages among different observations. Second, we propose a framework for designing science-grade and science-minded process-oriented integrated observing and modeling platforms for hydrometeorological studies.

  7. DEEP SPACE: High Resolution VR Platform for Multi-user Interactive Narratives

    NASA Astrophysics Data System (ADS)

    Kuka, Daniela; Elias, Oliver; Martins, Ronald; Lindinger, Christopher; Pramböck, Andreas; Jalsovec, Andreas; Maresch, Pascal; Hörtner, Horst; Brandl, Peter

    DEEP SPACE is a large-scale platform for interactive, stereoscopic and high resolution content. The spatial and the system design of DEEP SPACE are facing constraints of CAVETM-like systems in respect to multi-user interactive storytelling. To be used as research platform and as public exhibition space for many people, DEEP SPACE is capable to process interactive, stereoscopic applications on two projection walls with a size of 16 by 9 meters and a resolution of four times 1080p (4K) each. The processed applications are ranging from Virtual Reality (VR)-environments to 3D-movies to computationally intensive 2D-productions. In this paper, we are describing DEEP SPACE as an experimental VR platform for multi-user interactive storytelling. We are focusing on the system design relevant for the platform, including the integration of the Apple iPod Touch technology as VR control, and a special case study that is demonstrating the research efforts in the field of multi-user interactive storytelling. The described case study, entitled "Papyrate's Island", provides a prototypical scenario of how physical drawings may impact on digital narratives. In this special case, DEEP SPACE helps us to explore the hypothesis that drawing, a primordial human creative skill, gives us access to entirely new creative possibilities in the domain of interactive storytelling.

  8. Hazard interactions and interaction networks (cascades) within multi-hazard methodologies

    NASA Astrophysics Data System (ADS)

    Gill, Joel C.; Malamud, Bruce D.

    2016-08-01

    This paper combines research and commentary to reinforce the importance of integrating hazard interactions and interaction networks (cascades) into multi-hazard methodologies. We present a synthesis of the differences between multi-layer single-hazard approaches and multi-hazard approaches that integrate such interactions. This synthesis suggests that ignoring interactions between important environmental and anthropogenic processes could distort management priorities, increase vulnerability to other spatially relevant hazards or underestimate disaster risk. In this paper we proceed to present an enhanced multi-hazard framework through the following steps: (i) description and definition of three groups (natural hazards, anthropogenic processes and technological hazards/disasters) as relevant components of a multi-hazard environment, (ii) outlining of three types of interaction relationship (triggering, increased probability, and catalysis/impedance), and (iii) assessment of the importance of networks of interactions (cascades) through case study examples (based on the literature, field observations and semi-structured interviews). We further propose two visualisation frameworks to represent these networks of interactions: hazard interaction matrices and hazard/process flow diagrams. Our approach reinforces the importance of integrating interactions between different aspects of the Earth system, together with human activity, into enhanced multi-hazard methodologies. Multi-hazard approaches support the holistic assessment of hazard potential and consequently disaster risk. We conclude by describing three ways by which understanding networks of interactions contributes to the theoretical and practical understanding of hazards, disaster risk reduction and Earth system management. Understanding interactions and interaction networks helps us to better (i) model the observed reality of disaster events, (ii) constrain potential changes in physical and social vulnerability between successive hazards, and (iii) prioritise resource allocation for mitigation and disaster risk reduction.

  9. Continued use of an interactive computer game-based visual perception learning system in children with developmental delay.

    PubMed

    Lin, Hsien-Cheng; Chiu, Yu-Hsien; Chen, Yenming J; Wuang, Yee-Pay; Chen, Chiu-Ping; Wang, Chih-Chung; Huang, Chien-Ling; Wu, Tang-Meng; Ho, Wen-Hsien

    2017-11-01

    This study developed an interactive computer game-based visual perception learning system for special education children with developmental delay. To investigate whether perceived interactivity affects continued use of the system, this study developed a theoretical model of the process in which learners decide whether to continue using an interactive computer game-based visual perception learning system. The technology acceptance model, which considers perceived ease of use, perceived usefulness, and perceived playfulness, was extended by integrating perceived interaction (i.e., learner-instructor interaction and learner-system interaction) and then analyzing the effects of these perceptions on satisfaction and continued use. Data were collected from 150 participants (rehabilitation therapists, medical paraprofessionals, and parents of children with developmental delay) recruited from a single medical center in Taiwan. Structural equation modeling and partial-least-squares techniques were used to evaluate relationships within the model. The modeling results indicated that both perceived ease of use and perceived usefulness were positively associated with both learner-instructor interaction and learner-system interaction. However, perceived playfulness only had a positive association with learner-system interaction and not with learner-instructor interaction. Moreover, satisfaction was positively affected by perceived ease of use, perceived usefulness, and perceived playfulness. Thus, satisfaction positively affects continued use of the system. The data obtained by this study can be applied by researchers, designers of computer game-based learning systems, special education workers, and medical professionals. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Grasping objects by their handles: a necessary interaction between cognition and action

    NASA Technical Reports Server (NTRS)

    Creem, S. H.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)

    2001-01-01

    Research has illustrated dissociations between "cognitive" and "action" systems, suggesting that different representations may underlie phenomenal experience and visuomotor behavior. However, these systems also interact. The present studies show a necessary interaction when semantic processing of an object is required for an appropriate action. Experiment 1 demonstrated that a semantic task interfered with grasping objects appropriately by their handles, but a visuospatial task did not. Experiment 2 assessed performance on a visuomotor task that had no semantic component and showed a reversal of the effects of the concurrent tasks. In Experiment 3, variations on concurrent word tasks suggested that retrieval of semantic information was necessary for appropriate grasping. In all, without semantic processing, the visuomotor system can direct the effective grasp of an object, but not in a manner that is appropriate for its use.

  11. Information Interaction: Providing a Framework for Information Architecture.

    ERIC Educational Resources Information Center

    Toms, Elaine G.

    2002-01-01

    Discussion of information architecture focuses on a model of information interaction that bridges the gap between human and computer and between information behavior and information retrieval. Illustrates how the process of information interaction is affected by the user, the system, and the content. (Contains 93 references.) (LRW)

  12. Development of integrated programs for Aerospace-vehicle Design (IPAD): Product program management systems

    NASA Technical Reports Server (NTRS)

    Isenberg, J. M.; Southall, J. W.

    1979-01-01

    The Integrated Programs for Aerospace Vehicle Design (IPAD) is a computing system to support company-wide design information processing. This document presents a brief description of the management system used to direct and control a product-oriented program. This document, together with the reference design process (CR 2981) and the manufacture interactions with the design process (CR 2982), comprises the reference information that forms the basis for specifying IPAD system requirements.

  13. Social interaction enhances motor resonance for observed human actions.

    PubMed

    Hogeveen, Jeremy; Obhi, Sukhvinder S

    2012-04-25

    Understanding the neural basis of social behavior has become an important goal for cognitive neuroscience and a key aim is to link neural processes observed in the laboratory to more naturalistic social behaviors in real-world contexts. Although it is accepted that mirror mechanisms contribute to the occurrence of motor resonance (MR) and are common to action execution, observation, and imitation, questions remain about mirror (and MR) involvement in real social behavior and in processing nonhuman actions. To determine whether social interaction primes the MR system, groups of participants engaged or did not engage in a social interaction before observing human or robotic actions. During observation, MR was assessed via motor-evoked potentials elicited with transcranial magnetic stimulation. Compared with participants who did not engage in a prior social interaction, participants who engaged in the social interaction showed a significant increase in MR for human actions. In contrast, social interaction did not increase MR for robot actions. Thus, naturalistic social interaction and laboratory action observation tasks appear to involve common MR mechanisms, and recent experience tunes the system to particular agent types.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, Ashley; Hunt, Kristopher; Bernstein, Hans C.

    Interest in microbial communities for bioprocessing has surged in recent years based on the potential to optimize multiple tasks simultaneously and to enhance process productivity and stability. The presence and magnitude of these desirable system properties often result from interactions between functionally distinct community members. The importance of interactions, while appreciated by some disciplines for decades, has gained interest recently due to the development of ‘omics techniques, polymicrobial culturing approaches, and computational methods which has made the systems-level analysis of interacting components more tractable. This review defines and categorizes natural and engineered system components, interactions, and emergent properties, as wellmore » as presents three ecological theories relevant to microbial communities. Case studies are interpreted to illustrate components, interactions, emergent properties and agreement with theoretical concepts. A general foundation is laid to facilitate interpretation of current systems and to aid in future design of microbial systems for the next generation of bioprocesses.« less

  15. Revealing complex function, process and pathway interactions with high-throughput expression and biological annotation data.

    PubMed

    Singh, Nitesh Kumar; Ernst, Mathias; Liebscher, Volkmar; Fuellen, Georg; Taher, Leila

    2016-10-20

    The biological relationships both between and within the functions, processes and pathways that operate within complex biological systems are only poorly characterized, making the interpretation of large scale gene expression datasets extremely challenging. Here, we present an approach that integrates gene expression and biological annotation data to identify and describe the interactions between biological functions, processes and pathways that govern a phenotype of interest. The product is a global, interconnected network, not of genes but of functions, processes and pathways, that represents the biological relationships within the system. We validated our approach on two high-throughput expression datasets describing organismal and organ development. Our findings are well supported by the available literature, confirming that developmental processes and apoptosis play key roles in cell differentiation. Furthermore, our results suggest that processes related to pluripotency and lineage commitment, which are known to be critical for development, interact mainly indirectly, through genes implicated in more general biological processes. Moreover, we provide evidence that supports the relevance of cell spatial organization in the developing liver for proper liver function. Our strategy can be viewed as an abstraction that is useful to interpret high-throughput data and devise further experiments.

  16. Dynamics of binary and planetary-system interaction with disks - Eccentricity changes

    NASA Technical Reports Server (NTRS)

    Atrymowicz, Pawel

    1992-01-01

    Protostellar and protoplanetary systems, as well as merging galactic nuclei, often interact tidally and resonantly with the astrophysical disks via gravity. Underlying our understanding of the formation processes of stars, planets, and some galaxies is a dynamical theory of such interactions. Its main goals are to determine the geometry of the binary-disk system and, through the torque calculations, the rate of change of orbital elements of the components. We present some recent developments in this field concentrating on eccentricity driving mechanisms in protoplanetary and protobinary systems. In those two types of systems the result of the interaction is opposite. A small body embedded in a disk suffers a decrease of orbital eccentricity, whereas newly formed binary stars surrounded by protostellar disks may undergo a significant orbital evolution increasing their eccentricities.

  17. Oceans 2.0: Interactive tools for the Visualization of Multi-dimensional Ocean Sensor Data

    NASA Astrophysics Data System (ADS)

    Biffard, B.; Valenzuela, M.; Conley, P.; MacArthur, M.; Tredger, S.; Guillemot, E.; Pirenne, B.

    2016-12-01

    Ocean Networks Canada (ONC) operates ocean observatories on all three of Canada's coasts. The instruments produce 280 gigabytes of data per day with 1/2 petabyte archived so far. In 2015, 13 terabytes were downloaded by over 500 users from across the world. ONC's data management system is referred to as "Oceans 2.0" owing to its interactive, participative features. A key element of Oceans 2.0 is real time data acquisition and processing: custom device drivers implement the input-output protocol of each instrument. Automatic parsing and calibration takes place on the fly, followed by event detection and quality control. All raw data are stored in a file archive, while the processed data are copied to fast databases. Interactive access to processed data is provided through data download and visualization/quick look features that are adapted to diverse data types (scalar, acoustic, video, multi-dimensional, etc). Data may be post or re-processed to add features, analysis or correct errors, update calibrations, etc. A robust storage structure has been developed consisting of an extensive file system and a no-SQL database (Cassandra). Cassandra is a node-based open source distributed database management system. It is scalable and offers improved performance for big data. A key feature is data summarization. The system has also been integrated with web services and an ERDDAP OPeNDAP server, capable of serving scalar and multidimensional data from Cassandra for fixed or mobile devices.A complex data viewer has been developed making use of the big data capability to interactively display live or historic echo sounder and acoustic Doppler current profiler data, where users can scroll, apply processing filters and zoom through gigabytes of data with simple interactions. This new technology brings scientists one step closer to a comprehensive, web-based data analysis environment in which visual assessment, filtering, event detection and annotation can be integrated.

  18. Interactions between Depression and Facilitation within Neural Networks: Updating the Dual-Process Theory of Plasticity

    PubMed Central

    Prescott, Steven A.

    1998-01-01

    Repetitive stimulation often results in habituation of the elicited response. However, if the stimulus is sufficiently strong, habituation may be preceded by transient sensitization or even replaced by enduring sensitization. In 1970, Groves and Thompson formulated the dual-process theory of plasticity to explain these characteristic behavioral changes on the basis of competition between decremental plasticity (depression) and incremental plasticity (facilitation) occurring within the neural network. Data from both vertebrate and invertebrate systems are reviewed and indicate that the effects of depression and facilitation are not exclusively additive but, rather, that those processes interact in a complex manner. Serial ordering of induction of learning, in which a depressing locus precedes the modulatory system responsible for inducing facilitation, causes the facilitation to wane. The parallel and/or serial expression of depression and waning facilitation within the stimulus–response pathway culminates in the behavioral changes that characterize dual-process learning. A mathematical model is presented to formally express and extend understanding of the interactions between depression and facilitation. PMID:10489261

  19. Assessment of geometry in 2D immune systems using high accuracy laser-based bioprinting techniques (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lauzurica, Sara; Márquez, Andrés.; Molpeceres, Carlos; Notario, Laura; Gómez-Fontela, Miguel; Lauzurica, Pilar

    2017-02-01

    The immune system is a very complex system that comprises a network of genetic and signaling pathways subtending a network of interacting cells. The location of the cells in a network, along with the gene products they interact with, rules the behavior of the immune system. Therefore, there is a great interest in understanding properly the role of a cell in such networks to increase our knowledge of the immune system response. In order to acquire a better understanding of these processes, cell printing with high spatial resolution emerges as one of the promising approaches to organize cells in two and three-dimensional patterns to enable the study the geometry influence in these interactions. In particular, laser assisted bio-printing techniques using sub-nanosecond laser sources have better characteristics for application in this field, mainly due to its higher spatial resolution, cell viability percentage and process automation. This work presents laser assisted bio-printing of antigen-presenting cells (APCs) in two-dimensional geometries, placing cellular components on a matrix previously generated on demand, permitting to test the molecular interactions between APCs and lymphocytes; as well as the generation of two-dimensional structures designed ad hoc in order to study the mechanisms of mobilization of immune system cells. The use of laser assisted bio-printing, along with APCs and lymphocytes emulate the structure of different niches of the immune system so that we can analyse functional requirement of these interaction.

  20. Building Interactive Simulations in Web Pages without Programming.

    PubMed

    Mailen Kootsey, J; McAuley, Grant; Bernal, Julie

    2005-01-01

    A software system is described for building interactive simulations and other numerical calculations in Web pages. The system is based on a new Java-based software architecture named NumberLinX (NLX) that isolates each function required to build the simulation so that a library of reusable objects could be assembled. The NLX objects are integrated into a commercial Web design program for coding-free page construction. The model description is entered through a wizard-like utility program that also functions as a model editor. The complete system permits very rapid construction of interactive simulations without coding. A wide range of applications are possible with the system beyond interactive calculations, including remote data collection and processing and collaboration over a network.

  1. Request queues for interactive clients in a shared file system of a parallel computing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bent, John M.; Faibish, Sorin

    Interactive requests are processed from users of log-in nodes. A metadata server node is provided for use in a file system shared by one or more interactive nodes and one or more batch nodes. The interactive nodes comprise interactive clients to execute interactive tasks and the batch nodes execute batch jobs for one or more batch clients. The metadata server node comprises a virtual machine monitor; an interactive client proxy to store metadata requests from the interactive clients in an interactive client queue; a batch client proxy to store metadata requests from the batch clients in a batch client queue;more » and a metadata server to store the metadata requests from the interactive client queue and the batch client queue in a metadata queue based on an allocation of resources by the virtual machine monitor. The metadata requests can be prioritized, for example, based on one or more of a predefined policy and predefined rules.« less

  2. Dynamics of relaxation to a stationary state for interacting molecular motors

    NASA Astrophysics Data System (ADS)

    Gomes, Luiza V. F.; Kolomeisky, Anatoly B.

    2018-01-01

    Motor proteins are active enzymatic molecules that drive a variety of biological processes, including transfer of genetic information, cellular transport, cell motility and muscle contraction. It is known that these biological molecular motors usually perform their cellular tasks by acting collectively, and there are interactions between individual motors that specify the overall collective behavior. One of the fundamental issues related to the collective dynamics of motor proteins is the question if they function at stationary-state conditions. To investigate this problem, we analyze a relaxation to the stationary state for the system of interacting molecular motors. Our approach utilizes a recently developed theoretical framework, which views the collective dynamics of motor proteins as a totally asymmetric simple exclusion process of interacting particles, where interactions are taken into account via a thermodynamically consistent approach. The dynamics of relaxation to the stationary state is analyzed using a domain-wall method that relies on a mean-field description, which takes into account some correlations. It is found that the system quickly relaxes for repulsive interactions, while attractive interactions always slow down reaching the stationary state. It is also predicted that for some range of parameters the fastest relaxation might be achieved for a weak repulsive interaction. Our theoretical predictions are tested with Monte Carlo computer simulations. The implications of our findings for biological systems are briefly discussed.

  3. Using Mobile Phones to Increase Classroom Interaction

    ERIC Educational Resources Information Center

    Cobb, Stephanie; Heaney, Rose; Corcoran, Olivia; Henderson-Begg, Stephanie

    2010-01-01

    This study examines the possible benefits of using mobile phones to increase interaction and promote active learning in large classroom settings. First year undergraduate students studying Cellular Processes at the University of East London took part in a trial of a new text-based classroom interaction system and evaluated their experience by…

  4. Five Papers on Human-Machine Interaction.

    ERIC Educational Resources Information Center

    Norman, Donald A.

    Different aspects of human-machine interaction are discussed in the five brief papers that comprise this report. The first paper, "Some Observations on Mental Models," discusses the role of a person's mental model in the interaction with systems. The second paper, "A Psychologist Views Human Processing: Human Errors and Other…

  5. Interactions between spatially explicit conservation and management measures: implications for the governance of marine protected areas.

    PubMed

    Cárcamo, P Francisco; Gaymer, Carlos F

    2013-12-01

    Marine protected areas are not established in an institutional and governance vacuum and managers should pay attention to the wider social-ecological system in which they are immersed. This article examines Islas Choros-Damas Marine Reserve, a small marine protected area located in a highly productive and biologically diverse coastal marine ecosystem in northern Chile, and the interactions between human, institutional, and ecological dimensions beyond those existing within its boundaries. Through documents analysis, surveys, and interviews, we described marine reserve implementation (governing system) and the social and natural ecosystem-to-be-governed. We analyzed the interactions and the connections between the marine reserve and other spatially explicit conservation and/or management measures existing in the area and influencing management outcomes and governance. A top-down approach with poor stakeholder involvement characterized the implementation process. The marine reserve is highly connected with other spatially explicit measures and with a wider social-ecological system through various ecological processes and socio-economic interactions. Current institutional interactions with positive effects on the management and governance are scarce, although several potential interactions may be developed. For the study area, any management action must recognize interferences from outside conditions and consider some of them (e.g., ecotourism management) as cross-cutting actions for the entire social-ecological system. We consider that institutional interactions and the development of social networks are opportunities to any collective effort aiming to improve governance of Islas Choros-Damas marine reserve. Communication of connections and interactions between marine protected areas and the wider social-ecological system (as described in this study) is proposed as a strategy to improve stakeholder participation in Chilean marine protected areas.

  6. Interactions Between Spatially Explicit Conservation and Management Measures: Implications for the Governance of Marine Protected Areas

    NASA Astrophysics Data System (ADS)

    Cárcamo, P. Francisco; Gaymer, Carlos F.

    2013-12-01

    Marine protected areas are not established in an institutional and governance vacuum and managers should pay attention to the wider social-ecological system in which they are immersed. This article examines Islas Choros-Damas Marine Reserve, a small marine protected area located in a highly productive and biologically diverse coastal marine ecosystem in northern Chile, and the interactions between human, institutional, and ecological dimensions beyond those existing within its boundaries. Through documents analysis, surveys, and interviews, we described marine reserve implementation (governing system) and the social and natural ecosystem-to-be-governed. We analyzed the interactions and the connections between the marine reserve and other spatially explicit conservation and/or management measures existing in the area and influencing management outcomes and governance. A top-down approach with poor stakeholder involvement characterized the implementation process. The marine reserve is highly connected with other spatially explicit measures and with a wider social-ecological system through various ecological processes and socio-economic interactions. Current institutional interactions with positive effects on the management and governance are scarce, although several potential interactions may be developed. For the study area, any management action must recognize interferences from outside conditions and consider some of them (e.g., ecotourism management) as cross-cutting actions for the entire social-ecological system. We consider that institutional interactions and the development of social networks are opportunities to any collective effort aiming to improve governance of Islas Choros-Damas marine reserve. Communication of connections and interactions between marine protected areas and the wider social-ecological system (as described in this study) is proposed as a strategy to improve stakeholder participation in Chilean marine protected areas.

  7. Linking Findings in Microfluidics to Membrane Emulsification Process Design: The Importance of Wettability and Component Interactions with Interfaces

    PubMed Central

    Schroën, Karin; Ferrando, Montse; de Lamo-Castellví, Silvia; Sahin, Sami; Güell, Carme

    2016-01-01

    In microfluidics and other microstructured devices, wettability changes, as a result of component interactions with the solid wall, can have dramatic effects. In emulsion separation and emulsification applications, the desired behavior can even be completely lost. Wettability changes also occur in one phase systems, but the effect is much more far-reaching when using two-phase systems. For microfluidic emulsification devices, this can be elegantly demonstrated and quantified for EDGE (Edge-base Droplet GEneration) devices that have a specific behavior that allows us to distinguish between surfactant and liquid interactions with the solid surface. Based on these findings, design rules can be defined for emulsification with any micro-structured emulsification device, such as direct and premix membrane emulsification. In general, it can be concluded that mostly surface interactions increase the contact angle toward 90°, either through the surfactant, or the oil that is used. This leads to poor process stability, and very limited pressure ranges at which small droplets can be made in microfluidic systems, and cross-flow membrane emulsification. In a limited number of cases, surface interactions can also lead to lower contact angles, thereby increasing the operational stability. This paper concludes with a guideline that can be used to come to the appropriate combination of membrane construction material (or any micro-structured device), surfactants and liquids, in combination with process conditions. PMID:27187484

  8. Designing visual displays and system models for safe reactor operations based on the user`s perspective of the system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown-VanHoozer, S.A.

    Most designers are not schooled in the area of human-interaction psychology and therefore tend to rely on the traditional ergonomic aspects of human factors when designing complex human-interactive workstations related to reactor operations. They do not take into account the differences in user information processing behavior and how these behaviors may affect individual and team performance when accessing visual displays or utilizing system models in process and control room areas. Unfortunately, by ignoring the importance of the integration of the user interface at the information process level, the result can be sub-optimization and inherently error- and failure-prone systems. Therefore, tomore » minimize or eliminate failures in human-interactive systems, it is essential that the designers understand how each user`s processing characteristics affects how the user gathers information, and how the user communicates the information to the designer and other users. A different type of approach in achieving this understanding is Neuro Linguistic Programming (NLP). The material presented in this paper is based on two studies involving the design of visual displays, NLP, and the user`s perspective model of a reactor system. The studies involve the methodology known as NLP, and its use in expanding design choices from the user`s ``model of the world,`` in the areas of virtual reality, workstation design, team structure, decision and learning style patterns, safety operations, pattern recognition, and much, much more.« less

  9. Comparative Study on Interaction of Form and Motion Processing Streams by Applying Two Different Classifiers in Mechanism for Recognition of Biological Movement

    PubMed Central

    2014-01-01

    Research on psychophysics, neurophysiology, and functional imaging shows particular representation of biological movements which contains two pathways. The visual perception of biological movements formed through the visual system called dorsal and ventral processing streams. Ventral processing stream is associated with the form information extraction; on the other hand, dorsal processing stream provides motion information. Active basic model (ABM) as hierarchical representation of the human object had revealed novelty in form pathway due to applying Gabor based supervised object recognition method. It creates more biological plausibility along with similarity with original model. Fuzzy inference system is used for motion pattern information in motion pathway creating more robustness in recognition process. Besides, interaction of these paths is intriguing and many studies in various fields considered it. Here, the interaction of the pathways to get more appropriated results has been investigated. Extreme learning machine (ELM) has been implied for classification unit of this model, due to having the main properties of artificial neural networks, but crosses from the difficulty of training time substantially diminished in it. Here, there will be a comparison between two different configurations, interactions using synergetic neural network and ELM, in terms of accuracy and compatibility. PMID:25276860

  10. On Roles of Models in Information Systems

    NASA Astrophysics Data System (ADS)

    Sølvberg, Arne

    The increasing penetration of computers into all aspects of human activity makes it desirable that the interplay among software, data and the domains where computers are applied is made more transparent. An approach to this end is to explicitly relate the modeling concepts of the domains, e.g., natural science, technology and business, to the modeling concepts of software and data. This may make it simpler to build comprehensible integrated models of the interactions between computers and non-computers, e.g., interaction among computers, people, physical processes, biological processes, and administrative processes. This chapter contains an analysis of various facets of the modeling environment for information systems engineering. The lack of satisfactory conceptual modeling tools seems to be central to the unsatisfactory state-of-the-art in establishing information systems. The chapter contains a proposal for defining a concept of information that is relevant to information systems engineering.

  11. Dissociations and interactions between time, numerosity and space processing

    PubMed Central

    Cappelletti, Marinella; Freeman, Elliot D.; Cipolotti, Lisa

    2009-01-01

    This study investigated time, numerosity and space processing in a patient (CB) with a right hemisphere lesion. We tested whether these magnitude dimensions share a common magnitude system or whether they are processed by dimension-specific magnitude systems. Five experimental tasks were used: Tasks 1–3 assessed time and numerosity independently and time and numerosity jointly. Tasks 4 and 5 investigated space processing independently and space and numbers jointly. Patient CB was impaired at estimating time and at discriminating between temporal intervals, his errors being underestimations. In contrast, his ability to process numbers and space was normal. A unidirectional interaction between numbers and time was found in both the patient and the control subjects. Strikingly, small numbers were perceived as lasting shorter and large numbers as lasting longer. In contrast, number processing was not affected by time, i.e. short durations did not result in perceiving fewer numbers and long durations in perceiving more numbers. Numbers and space also interacted, with small numbers answered faster when presented on the left side of space, and the reverse for large numbers. Our results demonstrate that time processing can be selectively impaired. This suggests that mechanisms specific for time processing may be partially independent from those involved in processing numbers and space. However, the interaction between numbers and time and between numbers and space also suggests that although independent, there maybe some overlap between time, numbers and space. These data suggest a partly shared mechanism between time, numbers and space which may be involved in magnitude processing or may be recruited to perform cognitive operations on magnitude dimensions. PMID:19501604

  12. Fuzzy adaptive interacting multiple model nonlinear filter for integrated navigation sensor fusion.

    PubMed

    Tseng, Chien-Hao; Chang, Chih-Wen; Jwo, Dah-Jing

    2011-01-01

    In this paper, the application of the fuzzy interacting multiple model unscented Kalman filter (FUZZY-IMMUKF) approach to integrated navigation processing for the maneuvering vehicle is presented. The unscented Kalman filter (UKF) employs a set of sigma points through deterministic sampling, such that a linearization process is not necessary, and therefore the errors caused by linearization as in the traditional extended Kalman filter (EKF) can be avoided. The nonlinear filters naturally suffer, to some extent, the same problem as the EKF for which the uncertainty of the process noise and measurement noise will degrade the performance. As a structural adaptation (model switching) mechanism, the interacting multiple model (IMM), which describes a set of switching models, can be utilized for determining the adequate value of process noise covariance. The fuzzy logic adaptive system (FLAS) is employed to determine the lower and upper bounds of the system noise through the fuzzy inference system (FIS). The resulting sensor fusion strategy can efficiently deal with the nonlinear problem for the vehicle navigation. The proposed FUZZY-IMMUKF algorithm shows remarkable improvement in the navigation estimation accuracy as compared to the relatively conventional approaches such as the UKF and IMMUKF.

  13. Effect of short range hydrodynamic on bimodal colloidal gel systems

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Jamali, Safa; Maia, Joao

    2015-03-01

    Colloidal Gels and disordered arrested systems has been studied extensively during the past decades. Although, they have found their place in multiple industries such as cosmetic, food and so on, their physical principals are still far beyond being understood. The interplay between different types of interactions from quantum scale, Van der Waals interaction, to short range interactions, depletion interaction, and long range interactions such as electrostatic double layer makes this systems challenging from simulation point of view. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation of colloidal system with short range attractive force. However, BD is not capable to include multi-body hydrodynamic interaction and MD is limited by the computational resources and is limited to short time and length scales. In this presentation we used Core-modified dissipative particle dynamics (CM-DPD) with modified depletion potential, as a coarse-grain model, to address the gel formation process in short ranged-attractive colloidal suspensions. Due to the possibility to include and separate short and long ranged-hydrodynamic forces in this method we studied the effect of each of those forces on the final morphology and report one of the controversial question in this field on the effect of hydrodynamics on the cluster formation process on bimodal, soft-hard colloidal mixtures.

  14. Specifying the behavior of concurrent systems

    NASA Technical Reports Server (NTRS)

    Furtek, F. C.

    1984-01-01

    A framework for rigorously specifying the behavior of concurrent systems is proposed. It is based on the view of a concurrent system as a collection of interacting processes but no assumptions are made about the mechanisms for process synchronization and communication. A formal language is described that permits the expression of a broad range of logical and timing dependencies.

  15. Cerebral interactions of pain and reward and their relevance for chronic pain.

    PubMed

    Becker, Susanne; Gandhi, Wiebke; Schweinhardt, Petra

    2012-06-29

    Pain and reward are opponent, interacting processes. Such interactions are enabled by neuroanatomical and neurochemical overlaps of brain systems that process pain and reward. Cerebral processing of hedonic ('liking') and motivational ('wanting') aspects of reward can be separated: the orbitofrontal cortex and opioids play an important role for the hedonic experience, and the ventral striatum and dopamine predominantly process motivation for reward. Supported by neuroimaging studies, we present here the hypothesis that the orbitofrontal cortex and opioids are responsible for pain modulation by hedonic experience, while the ventral striatum and dopamine mediate motivational effects on pain. A rewarding stimulus that appears to be particularly important in the context of pain is pain relief. Further, reward, including pain relief, leads to operant learning, which can affect pain sensitivity. Indirect evidence points at brain mechanisms that might underlie pain relief as a reward and related operant learning but studies are scarce. Investigating the cerebral systems underlying pain-reward interactions as well as related operant learning holds the potential of better understanding mechanisms that contribute to the development and maintenance of chronic pain, as detailed in the last section of this review. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. [Tumor Data Interacted System Design Based on Grid Platform].

    PubMed

    Liu, Ying; Cao, Jiaji; Zhang, Haowei; Zhang, Ke

    2016-06-01

    In order to satisfy demands of massive and heterogeneous tumor clinical data processing and the multi-center collaborative diagnosis and treatment for tumor diseases,a Tumor Data Interacted System(TDIS)was established based on grid platform,so that an implementing virtualization platform of tumor diagnosis service was realized,sharing tumor information in real time and carrying on standardized management.The system adopts Globus Toolkit 4.0tools to build the open grid service framework and encapsulats data resources based on Web Services Resource Framework(WSRF).The system uses the middleware technology to provide unified access interface for heterogeneous data interaction,which could optimize interactive process with virtualized service to query and call tumor information resources flexibly.For massive amounts of heterogeneous tumor data,the federated stored and multiple authorized mode is selected as security services mechanism,real-time monitoring and balancing load.The system can cooperatively manage multi-center heterogeneous tumor data to realize the tumor patient data query,sharing and analysis,and compare and match resources in typical clinical database or clinical information database in other service node,thus it can assist doctors in consulting similar case and making up multidisciplinary treatment plan for tumors.Consequently,the system can improve efficiency of diagnosis and treatment for tumor,and promote the development of collaborative tumor diagnosis model.

  17. A review of human-automation interaction and lessons learned

    DOT National Transportation Integrated Search

    2006-10-01

    This report reviews 37 accidents in aviation, other vehicles, process control and other complex systems where human-automation interaction is involved. Implications about causality with respect to design, procedures, management and training are drawn...

  18. An Interactive Computer-Aided Instructional Strategy and Assessment Methods for System Identification and Adaptive Control Laboratory

    ERIC Educational Resources Information Center

    Özbek, Necdet Sinan; Eker, Ilyas

    2015-01-01

    This study describes a set of real-time interactive experiments that address system identification and model reference adaptive control (MRAC) techniques. In constructing laboratory experiments that contribute to efficient teaching, experimental design and instructional strategy are crucial, but a process for doing this has yet to be defined. This…

  19. The Interactivity Effect in Multimedia Learning

    ERIC Educational Resources Information Center

    Evans, Chris; Gibbons, Nicola J.

    2007-01-01

    The aim of this study was to determine whether the addition of interactivity to a computer-based learning package enhances the learning process. A sample of 33 (22 male and 11 female) undergraduates on a Business and Management degree used a multimedia system to learn about the operation of a bicycle pump. The system consisted of a labelled…

  20. Playing the (Sexual) Field: The Interactional Basis of Systems of Sexual Stratification

    ERIC Educational Resources Information Center

    Green, Adam Isaiah

    2011-01-01

    Recently, scholars have used a Bourdieusian theory of practice to analyze systems of sexual stratification, including an examination of sexual fields and sexual (or erotic) capital. While the broad structural features of the sexual field have been a point of focus in this latter research, a systematic analysis of the interactional processes that…

  1. Customizable Computer-Based Interaction Analysis for Coaching and Self-Regulation in Synchronous CSCL Systems

    ERIC Educational Resources Information Center

    Lonchamp, Jacques

    2010-01-01

    Computer-based interaction analysis (IA) is an automatic process that aims at understanding a computer-mediated activity. In a CSCL system, computer-based IA can provide information directly to learners for self-assessment and regulation and to tutors for coaching support. This article proposes a customizable computer-based IA approach for a…

  2. Distinct Brain Systems Underlie the Processing of Valence and Arousal of Affective Pictures

    ERIC Educational Resources Information Center

    Nielen, M. M. A.; Heslenfeld, D. J.; Heinen, K.; Van Strien, J. W.; Witter, M. P.; Jonker, C.; Veltman, D. J.

    2009-01-01

    Valence and arousal are thought to be the primary dimensions of human emotion. However, the degree to which valence and arousal interact in determining brain responses to emotional pictures is still elusive. This functional MRI study aimed to delineate neural systems responding to valence and arousal, and their interaction. We measured neural…

  3. Intelligent Case Based Decision Support System for Online Diagnosis of Automated Production System

    NASA Astrophysics Data System (ADS)

    Ben Rabah, N.; Saddem, R.; Ben Hmida, F.; Carre-Menetrier, V.; Tagina, M.

    2017-01-01

    Diagnosis of Automated Production System (APS) is a decision-making process designed to detect, locate and identify a particular failure caused by the control law. In the literature, there are three major types of reasoning for industrial diagnosis: the first is model-based, the second is rule-based and the third is case-based. The common and major limitation of the first and the second reasonings is that they do not have automated learning ability. This paper presents an interactive and effective Case Based Decision Support System for online Diagnosis (CB-DSSD) of an APS. It offers a synergy between the Case Based Reasoning (CBR) and the Decision Support System (DSS) in order to support and assist Human Operator of Supervision (HOS) in his/her decision process. Indeed, the experimental evaluation performed on an Interactive Training System for PLC (ITS PLC) that allows the control of a Programmable Logic Controller (PLC), simulating sensors or/and actuators failures and validating the control algorithm through a real time interactive experience, showed the efficiency of our approach.

  4. Chronic Motivational State Interacts with Task Reward Structure in Dynamic Decision-Making

    PubMed Central

    Cooper, Jessica A.; Worthy, Darrell A.; Maddox, W. Todd

    2015-01-01

    Research distinguishes between a habitual, model-free system motivated toward immediately rewarding actions, and a goal-directed, model-based system motivated toward actions that improve future state. We examined the balance of processing in these two systems during state-based decision-making. We tested a regulatory fit hypothesis (Maddox & Markman, 2010) that predicts that global trait motivation affects the balance of habitual- vs. goal-directed processing but only through its interaction with the task framing as gain-maximization or loss-minimization. We found support for the hypothesis that a match between an individual’s chronic motivational state and the task framing enhances goal-directed processing, and thus state-based decision-making. Specifically, chronic promotion-focused individuals under gain-maximization and chronic prevention-focused individuals under loss-minimization both showed enhanced state-based decision-making. Computational modeling indicates that individuals in a match between global chronic motivational state and local task reward structure engaged more goal-directed processing, whereas those in a mismatch engaged more habitual processing. PMID:26520256

  5. The TRIDEC System-of-Systems; Choreography of large-scale concurrent tasks in Natural Crisis Management

    NASA Astrophysics Data System (ADS)

    Häner, R.; Wächter, J.

    2012-04-01

    The project Collaborative, Complex, and Critical Decision-Support in Evolving Crises (TRIDEC), co-funded by the European Commission in its Seventh Framework Programme aims at establishing a network of dedicated, autonomous legacy systems for large-scale concurrent management of natural crises utilising heterogeneous information resources. TRIDEC's architecture reflects the System-of- Systems (SoS) approach which is based on task-oriented systems, cooperatively interacting as a collective in a common environment. The design of the TRIDEC-SoS follows the principles of service-oriented and event-driven architectures (SOA & EDA) exceedingly focusing on a loose coupling of the systems. The SoS approach in combination with SOA and EDA has the distinction of being able to provide novel and coherent behaviours and features resulting from a process of dynamic self-organisation. Self-organisation is a process without the need for a central or external coordinator controlling it through orchestration. It is the result of enacted concurrent tasks in a collaborative environment of geographically distributed systems. Although the individual systems act completely autonomously, their interactions expose emergent structures of evolving nature. Particularly, the fact is important that SoS are inherently able to evolve on all facets of intelligent information management. This includes adaptive properties, e.g. seamless integration of new resource types or the adoption of new fields in natural crisis management. In the case of TRIDEC with various heterogeneous participants involved, concurrent information processing is of fundamental importance because of the achievable improvements regarding cooperative decision making. Collaboration within TRIDEC will be implemented with choreographies and conversations. Choreographies specify the expected behaviour between two or more participants; conversations describe the message exchange between all participants emphasising their logical relation. The TRIDEC choreography will be based on the definition of Behavioural Interfaces and Service Level Agreements, which describe the interactions of all participants involved in the collaborative process by binding the tasks of dedicated systems to high-level business processes. All methods of a Behavioural Interfaces can be assigned dynamically to the activities of a business process. This allows it to utilise a system during the run-time of a business process and thus, for example enabling task balancing or the delegation of responsibilities. Since the individual parts of a SoS are normally managed independently and operate autonomously because of their geographical distribution it is of vital importance to ensure the reliability (robustness and correctness) of their interactions which will be achieved by applying the Design by Contract (DbC) approach to the TRIDEC architecture. Key challenge for TRIDEC is establishing a reliable adaptive system which exposes an emergent behaviour, for example intelligent monitoring strategies or dynamic system adaptions even in case of partly system failures. It is essential for TRIDEC that for example redundant parts of the system can take over tasks from defect components in a process of re-organising its network.

  6. The Social Neuroscience of Interpersonal Emotions.

    PubMed

    Müller-Pinzler, Laura; Krach, Sören; Krämer, Ulrike M; Paulus, Frieder M

    In our daily lives, we constantly engage in reciprocal interactions with other individuals and represent ourselves in the context of our surrounding social world. Within social interactions, humans often experience interpersonal emotions such as embarrassment, shame, guilt, or pride. How interpersonal emotions are processed on the neural systems level is of major interest for social neuroscience research. While the configuration of laboratory settings in general is constraining for emotion research, recent neuroimaging investigations came up with new approaches to implement socially interactive and immersive scenarios for the real-life investigation of interpersonal emotions. These studies could show that among other brain regions the so-called mentalizing network, which is typically involved when we represent and make sense of others' states of mind, is associated with interpersonal emotions. The anterior insula/anterior cingulate cortex network at the same time processes one's own bodily arousal during such interpersonal emotional experiences. Current research aimed to explore how we make sense of others' emotional states during social interactions and investigates the modulating factors of our emotional experiences during social interactions. Understanding how interpersonal emotions are processed on the neural systems level may yield significant implications for neuropsychiatric disorders that affect social behavior such as social anxiety disorders or autism.

  7. Anticancer drug-DNA interactions measured using a photoinduced electron-transfer mechanism based on luminescent quantum dots.

    PubMed

    Yuan, Jipei; Guo, Weiwei; Yang, Xiurong; Wang, Erkang

    2009-01-01

    A sensing system based on the photoinduced electron transfer of quantum dots (QDs) was designed to measure the interaction of anticancer drug and DNA, taking mitoxantrone (MTX) as a model drug. MTX adsorbed on the surface of QDs can quench the photoluminescence (PL) of QDs through the photoinduced electron-transfer process; and then the addition of DNA will bring the restoration of QDs PL intensity, as DNA can bind with MTX and remove it from QDs. Sensitive detection of MTX with the detection limit of 10 nmol L(-1) and a linear detection range from 10 nmol L(-1) to 4.5 micromol L(-1) was achieved. The dependence of PL intensity on DNA amount was successfully utilized to investigate the interactions between MTX and DNA. Both the binding constants and the sizes of binding site of MTX-DNA interactions were calculated based on the equations deduced for the PL recovery process. The binding constant obtained in our experiment was generally consistent with previous reports. The sensitive and speedy detection of MTX as well as the avoidance of modification or immobilization process made this system suitable and promising in the drug-DNA interaction studies.

  8. Virtual embryology: a 3D library reconstructed from human embryo sections and animation of development process.

    PubMed

    Komori, M; Miura, T; Shiota, K; Minato, K; Takahashi, T

    1995-01-01

    The volumetric shape of a human embryo and its development is hard to comprehend as they have been viewed as a 2D schemes in a textbook or microscopic sectional image. In this paper, a CAI and research support system for human embryology using multimedia presentation techniques is described. In this system, 3D data is acquired from a series of sliced specimens. Its 3D structure can be viewed interactively by rotating, extracting, and truncating its whole body or organ. Moreover, the development process of embryos can be animated using a morphing technique applied to the specimen in several stages. The system is intended to be used interactively, like a virtual reality system. Hence, the system is called Virtual Embryology.

  9. Formal mechanization of device interactions with a process algebra

    NASA Technical Reports Server (NTRS)

    Schubert, E. Thomas; Levitt, Karl; Cohen, Gerald C.

    1992-01-01

    The principle emphasis is to develop a methodology to formally verify correct synchronization communication of devices in a composed hardware system. Previous system integration efforts have focused on vertical integration of one layer on top of another. This task examines 'horizontal' integration of peer devices. To formally reason about communication, we mechanize a process algebra in the Higher Order Logic (HOL) theorem proving system. Using this formalization we show how four types of device interactions can be represented and verified to behave as specified. The report also describes the specification of a system consisting of an AVM-1 microprocessor and a memory management unit which were verified in previous work. A proof of correct communication is presented, and the extensions to the system specification to add a direct memory device are discussed.

  10. Stress Effects on Multiple Memory System Interactions

    PubMed Central

    Ness, Deborah; Calabrese, Pasquale

    2016-01-01

    Extensive behavioural, pharmacological, and neurological research reports stress effects on mammalian memory processes. While stress effects on memory quantity have been known for decades, the influence of stress on multiple memory systems and their distinct contributions to the learning process have only recently been described. In this paper, after summarizing the fundamental biological aspects of stress/emotional arousal and recapitulating functionally and anatomically distinct memory systems, we review recent animal and human studies exploring the effects of stress on multiple memory systems. Apart from discussing the interaction between distinct memory systems in stressful situations, we will also outline the fundamental role of the amygdala in mediating such stress effects. Additionally, based on the methods applied in the herein discussed studies, we will discuss how memory translates into behaviour. PMID:27034845

  11. Multiple-User, Multitasking, Virtual-Memory Computer System

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.; Roth, Don J.; Stang, David B.

    1993-01-01

    Computer system designed and programmed to serve multiple users in research laboratory. Provides for computer control and monitoring of laboratory instruments, acquisition and anlaysis of data from those instruments, and interaction with users via remote terminals. System provides fast access to shared central processing units and associated large (from megabytes to gigabytes) memories. Underlying concept of system also applicable to monitoring and control of industrial processes.

  12. Information for Successful Interaction with Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Johnson, Kathy A.

    2003-01-01

    Interaction in heterogeneous mission operations teams is not well matched to classical models of coordination with autonomous systems. We describe methods of loose coordination and information management in mission operations. We describe an information agent and information management tool suite for managing information from many sources, including autonomous agents. We present an integrated model of levels of complexity of agent and human behavior, which shows types of information processing and points of potential error in agent activities. We discuss the types of information needed for diagnosing problems and planning interactions with an autonomous system. We discuss types of coordination for which designs are needed for autonomous system functions.

  13. Comparisons of Attacks on Honeypots With Those on Real Networks

    DTIC Science & Technology

    2006-03-01

    Oracle , MySQL , or PostgreSQL. Figure 2 shows an incoming packet and the process involved before and after the Snort engine detects the suspicious...stored on a separate, secured system.”[2]. Honeypots have several other uses besides monitoring attackers. They serve to protect real networks and...interaction vs . high-interaction. Although, both low-interaction and high-interaction honeypots are effective in soliciting attacks, high-interaction

  14. A Mechanical Model of Brownian Motion for One Massive Particle Including Slow Light Particles

    NASA Astrophysics Data System (ADS)

    Liang, Song

    2018-01-01

    We provide a connection between Brownian motion and a classical mechanical system. Precisely, we consider a system of one massive particle interacting with an ideal gas, evolved according to non-random mechanical principles, via interaction potentials, without any assumption requiring that the initial velocities of the environmental particles should be restricted to be "fast enough". We prove the convergence of the (position, velocity)-process of the massive particle under a certain scaling limit, such that the mass of the environmental particles converges to 0 while the density and the velocities of them go to infinity, and give the precise expression of the limiting process, a diffusion process.

  15. Phantom-based interactive simulation system for dental treatment training.

    PubMed

    Sae-Kee, Bundit; Riener, Robert; Frey, Martin; Pröll, Thomas; Burgkart, Rainer

    2004-01-01

    In this paper, we propose a new interactive simulation system for dental treatment training. The system comprises a virtual reality environment and a force-torque measuring device to enhance the capabilities of a passive phantom of tooth anatomy in dental treatment training processes. The measuring device is connected to the phantom, and provides essential input data for generating the graphic animations of physical behaviors such as drilling and bleeding. The animation methods of those physical behaviors are also presented. This system is not only able to enhance interactivity and accessibility of the training system compared to conventional methods but it also provides possibilities of recording, evaluating, and verifying the training results.

  16. Sulfur and carbon geochemistry of the Santa Elena peridotites: Comparing oceanic and continental processes during peridotite alteration

    NASA Astrophysics Data System (ADS)

    Schwarzenbach, Esther M.; Gill, Benjamin C.; Gazel, Esteban; Madrigal, Pilar

    2016-05-01

    Ultramafic rocks exposed on the continent serve as a window into oceanic and continental processes of water-peridotite interaction, so called serpentinization. In both environments there are active carbon and sulfur cycles that contain abiogenic and biogenic processes, which are eventually imprinted in the geochemical signatures of the basement rocks and the calcite and magnesite deposits associated with fluids that issue from these systems. Here, we present the carbon and sulfur geochemistry of ultramafic rocks and carbonate deposits from the Santa Elena ophiolite in Costa Rica. The aim of this study is to leverage the geochemistry of the ultramafic sequence and associated deposits to distinguish between processes that were dominant during ocean floor alteration and those dominant during low-temperature, continental water-peridotite interaction. The peridotites are variably serpentinized with total sulfur concentrations up to 877 ppm that is typically dominated by sulfide over sulfate. With the exception of one sample the ultramafic rocks are characterized by positive δ34Ssulfide (up to + 23.1‰) and δ34Ssulfate values (up to + 35.0‰). Carbon contents in the peridotites are low and are isotopically distinct from typical oceanic serpentinites. In particular, δ13C of the inorganic carbon suggests that the carbon is not derived from seawater, but rather the product of the interaction of meteoric water with the ultramafic rocks. In contrast, the sulfur isotope data from sulfide minerals in the peridotites preserve evidence for interaction with a hydrothermal fluid. Specifically, they indicate closed system abiogenic sulfate reduction suggesting that oceanic serpentinization occurred with limited input of seawater. Overall, the geochemical signatures preserve evidence for both oceanic and continental water-rock interaction with the majority of carbon (and possibly sulfate) being incorporated during continental water-rock interaction. Furthermore, there is evidence for microbial activity that was possibly stimulated by carbon sourced from water-rock interaction with adjacent sediments or fluid inclusions. This study provides detailed insight into the complex hydrothermal history of continental serpentinization systems and adds to our understanding of the carbon and sulfur cycling within peridotite-hosted hydrothermal systems.

  17. Protein-Protein Interactions of Azurin Complex by Coarse-Grained Simulations with a Gō-Like Model

    NASA Astrophysics Data System (ADS)

    Rusmerryani, Micke; Takasu, Masako; Kawaguchi, Kazutomo; Saito, Hiroaki; Nagao, Hidemi

    Proteins usually perform their biological functions by forming a complex with other proteins. It is very important to study the protein-protein interactions since these interactions are crucial in many processes of a living organism. In this study, we develop a coarse grained model to simulate protein complex in liquid system. We carry out molecular dynamics simulations with topology-based potential interactions to simulate dynamical properties of Pseudomonas Aeruginosa azurin complex systems. Azurin is known to play an essential role as an anticancer agent and bind many important intracellular molecules. Some physical properties are monitored during simulation time to get a better understanding of the influence of protein-protein interactions to the azurin complex dynamics. These studies will provide valuable insights for further investigation on protein-protein interactions in more realistic system.

  18. Real-time hierarchically distributed processing network interaction simulation

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Wu, C.

    1987-01-01

    The Telerobot Testbed is a hierarchically distributed processing system which is linked together through a standard, commercial Ethernet. Standard Ethernet systems are primarily designed to manage non-real-time information transfer. Therefore, collisions on the net (i.e., two or more sources attempting to send data at the same time) are managed by randomly rescheduling one of the sources to retransmit at a later time interval. Although acceptable for transmitting noncritical data such as mail, this particular feature is unacceptable for real-time hierarchical command and control systems such as the Telerobot. Data transfer and scheduling simulations, such as token ring, offer solutions to collision management, but do not appropriately characterize real-time data transfer/interactions for robotic systems. Therefore, models like these do not provide a viable simulation environment for understanding real-time network loading. A real-time network loading model is being developed which allows processor-to-processor interactions to be simulated, collisions (and respective probabilities) to be logged, collision-prone areas to be identified, and network control variable adjustments to be reentered as a means of examining and reducing collision-prone regimes that occur in the process of simulating a complete task sequence.

  19. Incorporating INTERACT II Clinical Decision Support Tools into Nursing Home Health Information Technology

    PubMed Central

    Handler, Steven M.; Sharkey, Siobhan S.; Hudak, Sandra; Ouslander, Joseph G.

    2012-01-01

    A substantial reduction in hospitalization rates has been associated with the implementation of the Interventions to Reduce Acute Care Transfers (INTERACT) quality improvement intervention using the accompanying paper-based clinical practice tools (INTERACT II). There is significant potential to further increase the impact of INTERACT by integrating INTERACT II tools into nursing home (NH) health information technology (HIT) via standalone or integrated clinical decision support (CDS) systems. This article highlights the process of translating INTERACT II tools from paper to NH HIT. The authors believe that widespread dissemination and integration of INTERACT II CDS tools into various NH HIT products could lead to sustainable improvement in resident and clinician process and outcome measures, including enhanced interclinician communication and a reduction in potentially avoidable hospitalizations. PMID:22267955

  20. The physicochemical process of bacterial attachment to abiotic surfaces: Challenges for mechanistic studies, predictability and the development of control strategies.

    PubMed

    Wang, Yi; Lee, Sui Mae; Dykes, Gary

    2015-01-01

    Bacterial attachment to abiotic surfaces can be explained as a physicochemical process. Mechanisms of the process have been widely studied but are not yet well understood due to their complexity. Physicochemical processes can be influenced by various interactions and factors in attachment systems, including, but not limited to, hydrophobic interactions, electrostatic interactions and substratum surface roughness. Mechanistic models and control strategies for bacterial attachment to abiotic surfaces have been established based on the current understanding of the attachment process and the interactions involved. Due to a lack of process control and standardization in the methodologies used to study the mechanisms of bacterial attachment, however, various challenges are apparent in the development of models and control strategies. In this review, the physicochemical mechanisms, interactions and factors affecting the process of bacterial attachment to abiotic surfaces are described. Mechanistic models established based on these parameters are discussed in terms of their limitations. Currently employed methods to study these parameters and bacterial attachment are critically compared. The roles of these parameters in the development of control strategies for bacterial attachment are reviewed, and the challenges that arise in developing mechanistic models and control strategies are assessed.

  1. apART: system for the acquisition, processing, archiving, and retrieval of digital images in an open, distributed imaging environment

    NASA Astrophysics Data System (ADS)

    Schneider, Uwe; Strack, Ruediger

    1992-04-01

    apART reflects the structure of an open, distributed environment. According to the general trend in the area of imaging, network-capable, general purpose workstations with capabilities of open system image communication and image input are used. Several heterogeneous components like CCD cameras, slide scanners, and image archives can be accessed. The system is driven by an object-oriented user interface where devices (image sources and destinations), operators (derived from a commercial image processing library), and images (of different data types) are managed and presented uniformly to the user. Browsing mechanisms are used to traverse devices, operators, and images. An audit trail mechanism is offered to record interactive operations on low-resolution image derivatives. These operations are processed off-line on the original image. Thus, the processing of extremely high-resolution raster images is possible, and the performance of resolution dependent operations is enhanced significantly during interaction. An object-oriented database system (APRIL), which can be browsed, is integrated into the system. Attribute retrieval is supported by the user interface. Other essential features of the system include: implementation on top of the X Window System (X11R4) and the OSF/Motif widget set; a SUN4 general purpose workstation, inclusive ethernet, magneto optical disc, etc., as the hardware platform for the user interface; complete graphical-interactive parametrization of all operators; support of different image interchange formats (GIF, TIFF, IIF, etc.); consideration of current IPI standard activities within ISO/IEC for further refinement and extensions.

  2. 3-D vision and figure-ground separation by visual cortex.

    PubMed

    Grossberg, S

    1994-01-01

    A neural network theory of three-dimensional (3-D) vision, called FACADE theory, is described. The theory proposes a solution of the classical figure-ground problem for biological vision. It does so by suggesting how boundary representations and surface representations are formed within a boundary contour system (BCS) and a feature contour system (FCS). The BCS and FCS interact reciprocally to form 3-D boundary and surface representations that are mutually consistent. Their interactions generate 3-D percepts wherein occluding and occluded object parts are separated, completed, and grouped. The theory clarifies how preattentive processes of 3-D perception and figure-ground separation interact reciprocally with attentive processes of spatial localization, object recognition, and visual search. A new theory of stereopsis is proposed that predicts how cells sensitive to multiple spatial frequencies, disparities, and orientations are combined by context-sensitive filtering, competition, and cooperation to form coherent BCS boundary segmentations. Several factors contribute to figure-ground pop-out, including: boundary contrast between spatially contiguous boundaries, whether due to scenic differences in luminance, color, spatial frequency, or disparity; partially ordered interactions from larger spatial scales and disparities to smaller scales and disparities; and surface filling-in restricted to regions surrounded by a connected boundary. Phenomena such as 3-D pop-out from a 2-D picture, Da Vinci stereopsis, 3-D neon color spreading, completion of partially occluded objects, and figure-ground reversals are analyzed. The BCS and FCS subsystems model aspects of how the two parvocellular cortical processing streams that join the lateral geniculate nucleus to prestriate cortical area V4 interact to generate a multiplexed representation of Form-And-Color-And-DEpth, or FACADE, within area V4. Area V4 is suggested to support figure-ground separation and to interact with cortical mechanisms of spatial attention, attentive object learning, and visual search. Adaptive resonance theory (ART) mechanisms model aspects of how prestriate visual cortex interacts reciprocally with a visual object recognition system in inferotemporal (IT) cortex for purposes of attentive object learning and categorization. Object attention mechanisms of the What cortical processing stream through IT cortex are distinguished from spatial attention mechanisms of the Where cortical processing stream through parietal cortex. Parvocellular BCS and FCS signals interact with the model What stream. Parvocellular FCS and magnocellular motion BCS signals interact with the model Where stream.(ABSTRACT TRUNCATED AT 400 WORDS)

  3. Multimedia And Internetworking Architecture Infrastructure On Interactive E-Learning System

    NASA Astrophysics Data System (ADS)

    Indah, K. A. T.; Sukarata, G.

    2018-01-01

    Interactive e-learning is a distance learning method that involves information technology, electronic system or computer as one means of learning system used for teaching and learning process that is implemented without having face to face directly between teacher and student. A strong dependence on emerging technologies greatly influences the way in which the architecture is designed to produce a powerful interactive e-learning network. In this paper analyzed an architecture model where learning can be done interactively, involving many participants (N-way synchronized distance learning) using video conferencing technology. Also used broadband internet network as well as multicast techniques as a troubleshooting method for bandwidth usage can be efficient.

  4. Kraus Operators for a Pair of Interacting Qubits: a Case Study

    NASA Astrophysics Data System (ADS)

    Arsenijević, M.; Jeknić-Dugić, J.; Dugić, M.

    2018-04-01

    The Kraus form of the completely positive dynamical maps is appealing from the mathematical and the point of the diverse applications of the open quantum systems theory. Unfortunately, the Kraus operators are poorly known for the two-qubit processes. In this paper, we derive the Kraus operators for a pair of interacting qubits, while the strength of the interaction is arbitrary. One of the qubits is subjected to the x-projection spin measurement. The obtained results are applied to calculate the dynamics of the entanglement in the qubits system. We obtain the loss of the correlations in the finite time interval; the stronger the inter-qubit interaction, the longer lasting entanglement in the system.

  5. Kraus Operators for a Pair of Interacting Qubits: a Case Study

    NASA Astrophysics Data System (ADS)

    Arsenijević, M.; Jeknić-Dugić, J.; Dugić, M.

    2018-06-01

    The Kraus form of the completely positive dynamical maps is appealing from the mathematical and the point of the diverse applications of the open quantum systems theory. Unfortunately, the Kraus operators are poorly known for the two-qubit processes. In this paper, we derive the Kraus operators for a pair of interacting qubits, while the strength of the interaction is arbitrary. One of the qubits is subjected to the x-projection spin measurement. The obtained results are applied to calculate the dynamics of the entanglement in the qubits system. We obtain the loss of the correlations in the finite time interval; the stronger the inter-qubit interaction, the longer lasting entanglement in the system.

  6. Multiparametric Imaging of Organ System Interfaces

    PubMed Central

    Vandoorne, Katrien; Nahrendorf, Matthias

    2017-01-01

    Cardiovascular diseases are a consequence of genetic and environmental risk factors that together generate arterial wall and cardiac pathologies. Blood vessels connect multiple systems throughout the entire body and allow organs to interact via circulating messengers. These same interactions facilitate nervous and metabolic system influence on cardiovascular health. Multiparametric imaging offers the opportunity to study these interfacing systems’ distinct processes, to quantify their interactions and to explore how these contribute to cardiovascular disease. Noninvasive multiparametric imaging techniques are emerging tools that can further our understanding of this complex and dynamic interplay. PET/MRI and multichannel optical imaging are particularly promising because they can simultaneously sample multiple biomarkers. Preclinical multiparametric diagnostics could help discover clinically relevant biomarker combinations pivotal for understanding cardiovascular disease. Interfacing systems important to cardiovascular disease include the immune, nervous and hematopoietic systems. These systems connect with ‘classical’ cardiovascular organs, like the heart and vasculature, and with the brain. The dynamic interplay between these systems and organs enables processes such as hemostasis, inflammation, angiogenesis, matrix remodeling, metabolism and fibrosis. As the opportunities provided by imaging expand, mapping interconnected systems will help us decipher the complexity of cardiovascular disease and monitor novel therapeutic strategies. PMID:28360260

  7. LVC interaction within a mixed-reality training system

    NASA Astrophysics Data System (ADS)

    Pollock, Brice; Winer, Eliot; Gilbert, Stephen; de la Cruz, Julio

    2012-03-01

    The United States military is increasingly pursuing advanced live, virtual, and constructive (LVC) training systems for reduced cost, greater training flexibility, and decreased training times. Combining the advantages of realistic training environments and virtual worlds, mixed reality LVC training systems can enable live and virtual trainee interaction as if co-located. However, LVC interaction in these systems often requires constructing immersive environments, developing hardware for live-virtual interaction, tracking in occluded environments, and an architecture that supports real-time transfer of entity information across many systems. This paper discusses a system that overcomes these challenges to empower LVC interaction in a reconfigurable, mixed reality environment. This system was developed and tested in an immersive, reconfigurable, and mixed reality LVC training system for the dismounted warfighter at ISU, known as the Veldt, to overcome LVC interaction challenges and as a test bed for cuttingedge technology to meet future U.S. Army battlefield requirements. Trainees interact physically in the Veldt and virtually through commercial and developed game engines. Evaluation involving military trained personnel found this system to be effective, immersive, and useful for developing the critical decision-making skills necessary for the battlefield. Procedural terrain modeling, model-matching database techniques, and a central communication server process all live and virtual entity data from system components to create a cohesive virtual world across all distributed simulators and game engines in real-time. This system achieves rare LVC interaction within multiple physical and virtual immersive environments for training in real-time across many distributed systems.

  8. Resolution-Adapted All-Atomic and Coarse-Grained Model for Biomolecular Simulations.

    PubMed

    Shen, Lin; Hu, Hao

    2014-06-10

    We develop here an adaptive multiresolution method for the simulation of complex heterogeneous systems such as the protein molecules. The target molecular system is described with the atomistic structure while maintaining concurrently a mapping to the coarse-grained models. The theoretical model, or force field, used to describe the interactions between two sites is automatically adjusted in the simulation processes according to the interaction distance/strength. Therefore, all-atomic, coarse-grained, or mixed all-atomic and coarse-grained models would be used together to describe the interactions between a group of atoms and its surroundings. Because the choice of theory is made on the force field level while the sampling is always carried out in the atomic space, the new adaptive method preserves naturally the atomic structure and thermodynamic properties of the entire system throughout the simulation processes. The new method will be very useful in many biomolecular simulations where atomistic details are critically needed.

  9. Healthcare provider and patient perspectives on diagnostic imaging investigations.

    PubMed

    Makanjee, Chandra R; Bergh, Anne-Marie; Hoffmann, Willem A

    2015-05-20

    Much has been written about the patient-centred approach in doctor-patient consultations. Little is known about interactions and communication processes regarding healthcare providers' and patients' perspectives on expectations and experiences of diagnostic imaging investigations within the medical encounter. Patients journey through the health system from the point of referral to the imaging investigation itself and then to the post-imaging consultation. AIM AND SETTING: To explore healthcare provider and patient perspectives on interaction and communication processes during diagnostic imaging investigations as part of their clinical journey through a healthcare complex. A qualitative study was conducted, with two phases of data collection. Twenty-four patients were conveniently selected at a public district hospital complex and were followed throughout their journey in the hospital system, from admission to discharge. The second phase entailed focus group interviews conducted with providers in the district hospital and adjacent academic hospital (medical officers and family physicians, nurses, radiographers, radiology consultants and registrars). Two main themes guided our analysis: (1) provider perspectives; and (2) patient dispositions and reactions. Golden threads that cut across these themes are interactions and communication processes in the context of expectations, experiences of the imaging investigations and the outcomes thereof. Insights from this study provide a better understanding of the complexity of the processes and interactions between providers and patients during the imaging investigations conducted as part of their clinical pathway. The interactions and communication processes are provider-patient centred when a referral for a diagnostic imaging investigation is included.

  10. Kinetic Framework for the Magnetosphere-Ionosphere-Plasmasphere-Polar Wind System: Modeling Ion Outflow

    NASA Astrophysics Data System (ADS)

    Schunk, R. W.; Barakat, A. R.; Eccles, V.; Karimabadi, H.; Omelchenko, Y.; Khazanov, G. V.; Glocer, A.; Kistler, L. M.

    2014-12-01

    A Kinetic Framework for the Magnetosphere-Ionosphere-Plasmasphere-Polar Wind System is being developed in order to provide a rigorous approach to modeling the interaction of hot and cold particle interactions. The framework will include ion and electron kinetic species in the ionosphere, plasmasphere and polar wind, and kinetic ion, super-thermal electron and fluid electron species in the magnetosphere. The framework is ideally suited to modeling ion outflow from the ionosphere and plasmasphere, where a wide range for fluid and kinetic processes are important. These include escaping ion interactions with (1) photoelectrons, (2) cusp/auroral waves, double layers, and field-aligned currents, (3) double layers in the polar cap due to the interaction of cold ionospheric and hot magnetospheric electrons, (4) counter-streaming ions, and (5) electromagnetic wave turbulence. The kinetic ion interactions are particularly strong during geomagnetic storms and substorms. The presentation will provide a brief description of the models involved and discuss the effect that kinetic processes have on the ion outflow.

  11. AOIPS water resources data management system

    NASA Technical Reports Server (NTRS)

    Vanwie, P.

    1977-01-01

    The text and computer-generated displays used to demonstrate the AOIPS (Atmospheric and Oceanographic Information Processing System) water resources data management system are investigated. The system was developed to assist hydrologists in analyzing the physical processes occurring in watersheds. It was designed to alleviate some of the problems encountered while investigating the complex interrelationships of variables such as land-cover type, topography, precipitation, snow melt, surface runoff, evapotranspiration, and streamflow rates. The system has an interactive image processing capability and a color video display to display results as they are obtained.

  12. Improvements in continuum modeling for biomolecular systems

    NASA Astrophysics Data System (ADS)

    Yu, Qiao; Ben-Zhuo, Lu

    2016-01-01

    Modeling of biomolecular systems plays an essential role in understanding biological processes, such as ionic flow across channels, protein modification or interaction, and cell signaling. The continuum model described by the Poisson- Boltzmann (PB)/Poisson-Nernst-Planck (PNP) equations has made great contributions towards simulation of these processes. However, the model has shortcomings in its commonly used form and cannot capture (or cannot accurately capture) some important physical properties of the biological systems. Considerable efforts have been made to improve the continuum model to account for discrete particle interactions and to make progress in numerical methods to provide accurate and efficient simulations. This review will summarize recent main improvements in continuum modeling for biomolecular systems, with focus on the size-modified models, the coupling of the classical density functional theory and the PNP equations, the coupling of polar and nonpolar interactions, and numerical progress. Project supported by the National Natural Science Foundation of China (Grant No. 91230106) and the Chinese Academy of Sciences Program for Cross & Cooperative Team of the Science & Technology Innovation.

  13. Multi-Objective Mission Route Planning Using Particle Swarm Optimization

    DTIC Science & Technology

    2002-03-01

    solutions to complex problems using particles that interact with each other. Both Particle Swarm Optimization (PSO) and the Ant System (AS) have been...EXPERIMENTAL DESING PROCESS..............................................................55 5.1. Introduction...46 18. Phenotype level particle interaction

  14. A unified approach to computer analysis and modeling of spacecraft environmental interactions

    NASA Technical Reports Server (NTRS)

    Katz, I.; Mandell, M. J.; Cassidy, J. J.

    1986-01-01

    A new, coordinated, unified approach to the development of spacecraft plasma interaction models is proposed. The objective is to eliminate the unnecessary duplicative work in order to allow researchers to concentrate on the scientific aspects. By streamlining the developmental process, the interchange between theories and experimentalists is enhanced, and the transfer of technology to the spacecraft engineering community is faster. This approach is called the UNIfied Spacecraft Interaction Model (UNISIM). UNISIM is a coordinated system of software, hardware, and specifications. It is a tool for modeling and analyzing spacecraft interactions. It will be used to design experiments, to interpret results of experiments, and to aid in future spacecraft design. It breaks a Spacecraft Ineraction analysis into several modules. Each module will perform an analysis for some physical process, using phenomenology and algorithms which are well documented and have been subject to review. This system and its characteristics are discussed.

  15. Comparative advantages of mechanical biosensors.

    PubMed

    Arlett, J L; Myers, E B; Roukes, M L

    2011-04-01

    Mechanical interactions are fundamental to biology. Mechanical forces of chemical origin determine motility and adhesion on the cellular scale, and govern transport and affinity on the molecular scale. Biological sensing in the mechanical domain provides unique opportunities to measure forces, displacements and mass changes from cellular and subcellular processes. Nanomechanical systems are particularly well matched in size with molecular interactions, and provide a basis for biological probes with single-molecule sensitivity. Here we review micro- and nanoscale biosensors, with a particular focus on fast mechanical biosensing in fluid by mass- and force-based methods, and the challenges presented by non-specific interactions. We explain the general issues that will be critical to the success of any type of next-generation mechanical biosensor, such as the need to improve intrinsic device performance, fabrication reproducibility and system integration. We also discuss the need for a greater understanding of analyte-sensor interactions on the nanoscale and of stochastic processes in the sensing environment.

  16. Predictive modeling of multicellular structure formation by using Cellular Particle Dynamics simulations

    NASA Astrophysics Data System (ADS)

    McCune, Matthew; Shafiee, Ashkan; Forgacs, Gabor; Kosztin, Ioan

    2014-03-01

    Cellular Particle Dynamics (CPD) is an effective computational method for describing and predicting the time evolution of biomechanical relaxation processes of multicellular systems. A typical example is the fusion of spheroidal bioink particles during post bioprinting structure formation. In CPD cells are modeled as an ensemble of cellular particles (CPs) that interact via short-range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through integration of their equations of motion. CPD was successfully applied to describe and predict the fusion of 3D tissue construct involving identical spherical aggregates. Here, we demonstrate that CPD can also predict tissue formation involving uneven spherical aggregates whose volumes decrease during the fusion process. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  17. Urban area delineation and detection of change along the urban-rural boundary as derived from LANDSAT digital data

    NASA Technical Reports Server (NTRS)

    Christenson, J. W.; Lachowski, H. M.

    1977-01-01

    LANDSAT digital multispectral scanner data, in conjunction with supporting ground truth, were investigated to determine their utility in delineation of urban-rural boundaries. The digital data for the metropolitan areas of Washington, D. C.; Austin, Texas; and Seattle, Washingtion; were processed using an interactive image processing system. Processing focused on identification of major land cover types typical of the zone of transition from urban to rural landscape, and definition of their spectral signatures. Census tract boundaries were input into the interactive image processing system along with the LANDSAT single and overlayed multiple date MSS data. Results of this investigation indicate that satellite collected information has a practical application to the problem of urban area delineation and to change detection.

  18. River conservation and terrestrial mammals: key ecological processes

    Treesearch

    Thomas A. Hanley

    2008-01-01

    Key ecological processes affecting interactions between rivers and terrestrial mammals are identified and explained, using flood plains of Alaska as examples of relatively pristine systems. Both coastal (southeast Alaska) and interior Alaska examples are used. Coastal Alaskan rivers tend to be relatively short, flashy, rain-driven systems, whereas interior Alaska...

  19. Systems Biophysics of Gene Expression

    PubMed Central

    Vilar, Jose M.G.; Saiz, Leonor

    2013-01-01

    Gene expression is a process central to any form of life. It involves multiple temporal and functional scales that extend from specific protein-DNA interactions to the coordinated regulation of multiple genes in response to intracellular and extracellular changes. This diversity in scales poses fundamental challenges to the use of traditional approaches to fully understand even the simplest gene expression systems. Recent advances in computational systems biophysics have provided promising avenues to reliably integrate the molecular detail of biophysical process into the system behavior. Here, we review recent advances in the description of gene regulation as a system of biophysical processes that extend from specific protein-DNA interactions to the combinatorial assembly of nucleoprotein complexes. There is now basic mechanistic understanding on how promoters controlled by multiple, local and distal, DNA binding sites for transcription factors can actively control transcriptional noise, cell-to-cell variability, and other properties of gene regulation, including precision and flexibility of the transcriptional responses. PMID:23790365

  20. Molecular dynamics studies on the interaction and encapsulation processes of the nucleotide and peptide chains inside of a carbon nanotube matrix with inclusion of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kholmurodov, Kholmirzo; Dushanov, Eric; Khusenov, Mirzoaziz; Rahmonov, Khaiyom; Zelenyak, Tatyana; Doroshkevich, Alexander; Majumder, Subrata

    2017-05-01

    Studying of molecular systems as single nucleotides, nucleotide and peptide chains, RNA and DNA interacting with metallic nanoparticles within a carbon nanotube matrix represents a great interest in modern research. In this respect it is worth mentioning the development of the electronics diagnostic apparatus, the biochemical and biotechnological application tools (nanorobotic design, facilities of drug delivery in a living cell), so on. In the present work using molecular dynamics (MD) simulation method the interaction process of small nucleotide chains (NCs) and elongated peptide chains with different sets of metallic nanoparticles (NPs) on a matrix from carbon nanotube (CNT) were simulated to study their mechanisms of encapsulation and folding processes. We have performed a series of the MD calculations with different NC,peptides-NP-CNT models that were aimed on the investigation of the peculiarities of NC,peptide-NP interactions, the formation of bonds and structures in the system, as well as the dynamical behavior in an environment confined by the CNT matrix.

  1. Improving aircraft conceptual design - A PHIGS interactive graphics interface for ACSYNT

    NASA Technical Reports Server (NTRS)

    Wampler, S. G.; Myklebust, A.; Jayaram, S.; Gelhausen, P.

    1988-01-01

    A CAD interface has been created for the 'ACSYNT' aircraft conceptual design code that permits the execution and control of the design process via interactive graphics menus. This CAD interface was coded entirely with the new three-dimensional graphics standard, the Programmer's Hierarchical Interactive Graphics System. The CAD/ACSYNT system is designed for use by state-of-the-art high-speed imaging work stations. Attention is given to the approaches employed in modeling, data storage, and rendering.

  2. Pareto-Zipf law in growing systems with multiplicative interactions

    NASA Astrophysics Data System (ADS)

    Ohtsuki, Toshiya; Tanimoto, Satoshi; Sekiyama, Makoto; Fujihara, Akihiro; Yamamoto, Hiroshi

    2018-06-01

    Numerical simulations of multiplicatively interacting stochastic processes with weighted selections were conducted. A feedback mechanism to control the weight w of selections was proposed. It becomes evident that when w is moderately controlled around 0, such systems spontaneously exhibit the Pareto-Zipf distribution. The simulation results are universal in the sense that microscopic details, such as parameter values and the type of control and weight, are irrelevant. The central ingredient of the Pareto-Zipf law is argued to be the mild control of interactions.

  3. Identifying Systems of Interaction in Mathematical Engagement

    ERIC Educational Resources Information Center

    Brown, Bruce J. L.

    2014-01-01

    Mathematical engagement is a complex process of interaction between the person and the world. This interaction is strongly influenced by the concepts and structure of the mathematical field, by the practical and symbolic tools of mathematics and by the focus of investigation in the world. This paper reports on research that involves a detailed…

  4. Exploring Student and Supervisor Interaction during the SciPro Thesis Process: Two Use Cases

    ERIC Educational Resources Information Center

    Hansen, Preben; Hansson, Henrik

    2017-01-01

    Common problems identified by students during their interaction with supervisors are too little instructions as well as infrequent and insufficient supervisor feedback. The SciPro system has been developed to tackle these problems. This paper describes, analyzes and discusses the interaction between students and supervisors using the SciPro…

  5. Multiparticle systems in κ -Poincaré inspired by (2 +1 )D gravity

    NASA Astrophysics Data System (ADS)

    Kowalski-Glikman, Jerzy; Rosati, Giacomo

    2015-04-01

    Inspired by a Chern-Simons description of 2 +1 -dimensional gravity coupled to point particles we propose a new Lagrangian of a multiparticle system living in κ -Minkowski/κ -Poincaré spacetime. We derive the dynamics of interacting particles with κ -momentum space, alternative to the one proposed in the "principle of relative locality" literature. The model that we obtain takes account of the nonlocal topological interactions between the particles, so that the effective multiparticle action is not a sum of their free actions. In this construction the locality of particle processes is naturally implemented, even for distant observers. In particular a particle process is characterized by a local deformed energy-momentum conservation law. The spacetime transformations are generated by total charges/generators for the composite particle system, and leave unaffected the locality of individual particle processes.

  6. An Integrated Nursing Management Information System: From Concept to Reality

    PubMed Central

    Pinkley, Connie L.; Sommer, Patricia K.

    1988-01-01

    This paper addresses the transition from the conceptualization of a Nursing Management Information System (NMIS) integrated and interdependent with the Hospital Information System (HIS) to its realization. Concepts of input, throughout, and output are presented to illustrate developmental strategies used to achieve nursing information products. Essential processing capabilities include: 1) ability to interact with multiple data sources; 2) database management, statistical, and graphics software packages; 3) online, batch and reporting; and 4) interactive data analysis. Challenges encountered in system construction are examined.

  7. Centralized Storm Information System (CSIS)

    NASA Technical Reports Server (NTRS)

    Norton, C. C.

    1985-01-01

    A final progress report is presented on the Centralized Storm Information System (CSIS). The primary purpose of the CSIS is to demonstrate and evaluate real time interactive computerized data collection, interpretation and display techniques as applied to severe weather forecasting. CSIS objectives pertaining to improved severe storm forecasting and warning systems are outlined. The positive impact that CSIS has had on the National Severe Storms Forecast Center (NSSFC) is discussed. The benefits of interactive processing systems on the forecasting ability of the NSSFC are described.

  8. Modeling multi-process connectivity in river deltas: extending the single layer network analysis to a coupled multilayer network framework

    NASA Astrophysics Data System (ADS)

    Tejedor, A.; Longjas, A.; Foufoula-Georgiou, E.

    2017-12-01

    Previous work [e.g. Tejedor et al., 2016 - GRL] has demonstrated the potential of using graph theory to study key properties of the structure and dynamics of river delta channel networks. Although the distribution of fluxes in river deltas is mostly driven by the connectivity of its channel network a significant part of the fluxes might also arise from connectivity between the channels and islands due to overland flow and seepage. This channel-island-subsurface interaction creates connectivity pathways which facilitate or inhibit transport depending on their degree of coupling. The question we pose here is how to collectively study system connectivity that emerges from the aggregated action of different processes (different in nature, intensity and time scales). Single-layer graphs as those introduced for delta channel networks are inadequate as they lack the ability to represent coupled processes, and neglecting across-process interactions can lead to mis-representation of the overall system dynamics. We present here a framework that generalizes the traditional representation of networks (single-layer graphs) to the so-called multi-layer networks or multiplex. A multi-layer network conceptualizes the overall connectivity arising from different processes as distinct graphs (layers), while allowing at the same time to represent interactions between layers by introducing interlayer links (across process interactions). We illustrate this framework using a study of the joint connectivity that arises from the coupling of the confined flow on the channel network and the overland flow on islands, on a prototype delta. We show the potential of the multi-layer framework to answer quantitatively questions related to the characteristic time scales to steady-state transport in the system as a whole when different levels of channel-island coupling are modulated by different magnitudes of discharge rates.

  9. Data exchange technology based on handshake protocol for industrial automation system

    NASA Astrophysics Data System (ADS)

    Astafiev, A. V.; Shardin, T. O.

    2018-05-01

    In the article, questions of data exchange technology based on the handshake protocol for industrial automation system are considered. The methods of organizing the technology in client-server applications are analyzed. In the process of work, the main threats of client-server applications that arise during the information interaction of users are indicated. Also, a comparative analysis of analogue systems was carried out, as a result of which the most suitable option was chosen for further use. The basic schemes for the operation of the handshake protocol are shown, as well as the general scheme of the implemented application, which describes the entire process of interaction between the client and the server.

  10. Robot graphic simulation testbed

    NASA Technical Reports Server (NTRS)

    Cook, George E.; Sztipanovits, Janos; Biegl, Csaba; Karsai, Gabor; Springfield, James F.

    1991-01-01

    The objective of this research was twofold. First, the basic capabilities of ROBOSIM (graphical simulation system) were improved and extended by taking advantage of advanced graphic workstation technology and artificial intelligence programming techniques. Second, the scope of the graphic simulation testbed was extended to include general problems of Space Station automation. Hardware support for 3-D graphics and high processing performance make high resolution solid modeling, collision detection, and simulation of structural dynamics computationally feasible. The Space Station is a complex system with many interacting subsystems. Design and testing of automation concepts demand modeling of the affected processes, their interactions, and that of the proposed control systems. The automation testbed was designed to facilitate studies in Space Station automation concepts.

  11. X-ray monitoring optical elements

    DOEpatents

    Stoupin, Stanislav; Shvydko, Yury; Katsoudas, John; Blank, Vladimir D.; Terentyev, Sergey A.

    2016-12-27

    An X-ray article and method for analyzing hard X-rays which have interacted with a test system. The X-ray article is operative to diffract or otherwise process X-rays from an input X-ray beam which have interacted with the test system and at the same time provide an electrical circuit adapted to collect photoelectrons emitted from an X-ray optical element of the X-ray article to analyze features of the test system.

  12. Automated Sequence Processor: Something Old, Something New

    NASA Technical Reports Server (NTRS)

    Streiffert, Barbara; Schrock, Mitchell; Fisher, Forest; Himes, Terry

    2012-01-01

    High productivity required for operations teams to meet schedules Risk must be minimized. Scripting used to automate processes. Scripts perform essential operations functions. Automated Sequence Processor (ASP) was a grass-roots task built to automate the command uplink process System engineering task for ASP revitalization organized. ASP is a set of approximately 200 scripts written in Perl, C Shell, AWK and other scripting languages.. ASP processes/checks/packages non-interactive commands automatically.. Non-interactive commands are guaranteed to be safe and have been checked by hardware or software simulators.. ASP checks that commands are non-interactive.. ASP processes the commands through a command. simulator and then packages them if there are no errors.. ASP must be active 24 hours/day, 7 days/week..

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busbey, A.B.

    Seismic Processing Workshop, a program by Parallel Geosciences of Austin, TX, is discussed in this column. The program is a high-speed, interactive seismic processing and computer analysis system for the Apple Macintosh II family of computers. Also reviewed in this column are three products from Wilkerson Associates of Champaign, IL. SubSide is an interactive program for basin subsidence analysis; MacFault and MacThrustRamp are programs for modeling faults.

  14. Quantum statistics and squeezing for a microwave-driven interacting magnon system.

    PubMed

    Haghshenasfard, Zahra; Cottam, Michael G

    2017-02-01

    Theoretical studies are reported for the statistical properties of a microwave-driven interacting magnon system. Both the magnetic dipole-dipole and the exchange interactions are included and the theory is developed for the case of parallel pumping allowing for the inclusion of the nonlinear processes due to the four-magnon interactions. The method of second quantization is used to transform the total Hamiltonian from spin operators to boson creation and annihilation operators. By using the coherent magnon state representation we have studied the magnon occupation number and the statistical behavior of the system. In particular, it is shown that the nonlinearities introduced by the parallel pumping field and the four-magnon interactions lead to non-classical quantum statistical properties of the system, such as magnon squeezing. Also control of the collapse-and-revival phenomena for the time evolution of the average magnon number is demonstrated by varying the parallel pumping amplitude and the four-magnon coupling.

  15. Collaborative simulation method with spatiotemporal synchronization process control

    NASA Astrophysics Data System (ADS)

    Zou, Yisheng; Ding, Guofu; Zhang, Weihua; Zhang, Jian; Qin, Shengfeng; Tan, John Kian

    2016-10-01

    When designing a complex mechatronics system, such as high speed trains, it is relatively difficult to effectively simulate the entire system's dynamic behaviors because it involves multi-disciplinary subsystems. Currently,a most practical approach for multi-disciplinary simulation is interface based coupling simulation method, but it faces a twofold challenge: spatial and time unsynchronizations among multi-directional coupling simulation of subsystems. A new collaborative simulation method with spatiotemporal synchronization process control is proposed for coupling simulating a given complex mechatronics system across multiple subsystems on different platforms. The method consists of 1) a coupler-based coupling mechanisms to define the interfacing and interaction mechanisms among subsystems, and 2) a simulation process control algorithm to realize the coupling simulation in a spatiotemporal synchronized manner. The test results from a case study show that the proposed method 1) can certainly be used to simulate the sub-systems interactions under different simulation conditions in an engineering system, and 2) effectively supports multi-directional coupling simulation among multi-disciplinary subsystems. This method has been successfully applied in China high speed train design and development processes, demonstrating that it can be applied in a wide range of engineering systems design and simulation with improved efficiency and effectiveness.

  16. Social-ecological outcomes in recreational fisheries: the interaction of lakeshore development and stocking.

    PubMed

    Ziegler, Jacob P; Golebie, Elizabeth J; Jones, Stuart E; Weidel, Brian C; Solomon, Christopher T

    2017-01-01

    Many ecosystems continue to experience rapid transformations due to processes like land use change and resource extraction. A systems approach to maintaining natural resources focuses on how interactions and feedbacks among components of complex social-ecological systems generate social and ecological outcomes. In recreational fisheries, residential shoreline development and fish stocking are two widespread human behaviors that influence fisheries, yet emergent social-ecological outcomes from these potentially interacting behaviors remain under explored. We applied a social-ecological systems framework using a simulation model and empirical data to determine whether lakeshore development is likely to promote stocking through its adverse effects on coarse woody habitat and thereby also on survival of juvenile and adult fish. We demonstrate that high lakeshore development is likely to generate dependency of the ecosystem on the social system, in the form of stocking. Further, lakeshore development can interact with social-ecological processes to create deficits for state-level governments, which threatens the ability to fund further ecosystem subsidies. Our results highlight the value of a social-ecological framework for maintaining ecosystem services like recreational fisheries. © 2016 by the Ecological Society of America.

  17. High-Performance Monitoring Architecture for Large-Scale Distributed Systems Using Event Filtering

    NASA Technical Reports Server (NTRS)

    Maly, K.

    1998-01-01

    Monitoring is an essential process to observe and improve the reliability and the performance of large-scale distributed (LSD) systems. In an LSD environment, a large number of events is generated by the system components during its execution or interaction with external objects (e.g. users or processes). Monitoring such events is necessary for observing the run-time behavior of LSD systems and providing status information required for debugging, tuning and managing such applications. However, correlated events are generated concurrently and could be distributed in various locations in the applications environment which complicates the management decisions process and thereby makes monitoring LSD systems an intricate task. We propose a scalable high-performance monitoring architecture for LSD systems to detect and classify interesting local and global events and disseminate the monitoring information to the corresponding end- points management applications such as debugging and reactive control tools to improve the application performance and reliability. A large volume of events may be generated due to the extensive demands of the monitoring applications and the high interaction of LSD systems. The monitoring architecture employs a high-performance event filtering mechanism to efficiently process the large volume of event traffic generated by LSD systems and minimize the intrusiveness of the monitoring process by reducing the event traffic flow in the system and distributing the monitoring computation. Our architecture also supports dynamic and flexible reconfiguration of the monitoring mechanism via its Instrumentation and subscription components. As a case study, we show how our monitoring architecture can be utilized to improve the reliability and the performance of the Interactive Remote Instruction (IRI) system which is a large-scale distributed system for collaborative distance learning. The filtering mechanism represents an Intrinsic component integrated with the monitoring architecture to reduce the volume of event traffic flow in the system, and thereby reduce the intrusiveness of the monitoring process. We are developing an event filtering architecture to efficiently process the large volume of event traffic generated by LSD systems (such as distributed interactive applications). This filtering architecture is used to monitor collaborative distance learning application for obtaining debugging and feedback information. Our architecture supports the dynamic (re)configuration and optimization of event filters in large-scale distributed systems. Our work represents a major contribution by (1) survey and evaluating existing event filtering mechanisms In supporting monitoring LSD systems and (2) devising an integrated scalable high- performance architecture of event filtering that spans several kev application domains, presenting techniques to improve the functionality, performance and scalability. This paper describes the primary characteristics and challenges of developing high-performance event filtering for monitoring LSD systems. We survey existing event filtering mechanisms and explain key characteristics for each technique. In addition, we discuss limitations with existing event filtering mechanisms and outline how our architecture will improve key aspects of event filtering.

  18. On the Risk Management and Auditing of SOA Based Business Processes

    NASA Astrophysics Data System (ADS)

    Orriens, Bart; Heuvel, Willem-Jan V./D.; Papazoglou, Mike

    SOA-enabled business processes stretch across many cooperating and coordinated systems, possibly crossing organizational boundaries, and technologies like XML and Web services are used for making system-to-system interactions commonplace. Business processes form the foundation for all organizations, and as such, are impacted by industry regulations. This requires organizations to review their business processes and ensure that they meet the compliance standards set forth in legislation. In this paper we sketch a SOA-based service risk management and auditing methodology including a compliance enforcement and verification system that assures verifiable business process compliance. This is done on the basis of a knowledge-based system that allows integration of internal control systems into business processes conform pre-defined compliance rules, monitor both the normal process behavior and those of the control systems during process execution, and log these behaviors to facilitate retrospective auditing.

  19. Analyses of requirements for computer control and data processing experiment subsystems. Volume 2: ATM experiment S-056 image data processing system software development

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The IDAPS (Image Data Processing System) is a user-oriented, computer-based, language and control system, which provides a framework or standard for implementing image data processing applications, simplifies set-up of image processing runs so that the system may be used without a working knowledge of computer programming or operation, streamlines operation of the image processing facility, and allows multiple applications to be run in sequence without operator interaction. The control system loads the operators, interprets the input, constructs the necessary parameters for each application, and cells the application. The overlay feature of the IBSYS loader (IBLDR) provides the means of running multiple operators which would otherwise overflow core storage.

  20. The Gemini Recipe System: a dynamic workflow for automated data reduction

    NASA Astrophysics Data System (ADS)

    Labrie, Kathleen; Allen, Craig; Hirst, Paul; Holt, Jennifer; Allen, River; Dement, Kaniela

    2010-07-01

    Gemini's next generation data reduction software suite aims to offer greater automation of the data reduction process without compromising the flexibility required by science programs using advanced or unusual observing strategies. The Recipe System is central to our new data reduction software. Developed in Python, it facilitates near-real time processing for data quality assessment, and both on- and off-line science quality processing. The Recipe System can be run as a standalone application or as the data processing core of an automatic pipeline. The data reduction process is defined in a Recipe written in a science (as opposed to computer) oriented language, and consists of a sequence of data reduction steps, called Primitives, which are written in Python and can be launched from the PyRAF user interface by users wishing to use them interactively for more hands-on optimization of the data reduction process. The fact that the same processing Primitives can be run within both the pipeline context and interactively in a PyRAF session is an important strength of the Recipe System. The Recipe System offers dynamic flow control allowing for decisions regarding processing and calibration to be made automatically, based on the pixel and the metadata properties of the dataset at the stage in processing where the decision is being made, and the context in which the processing is being carried out. Processing history and provenance recording are provided by the AstroData middleware, which also offers header abstraction and data type recognition to facilitate the development of instrument-agnostic processing routines.

  1. Suppressor cell hyperactivity relative to allogeneic lymphocyte proliferation as a manifestation of defective T-T-cell interactions in systemic lupus erythematosus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenina, M.A.; Potapova, A.A.; Biryukov, A.V.

    1987-01-01

    The authors study the state of immunoregulatory process in patients with systemic lupus erythematosus at the T-T-cell interaction level and seek to test the possibility of the pharmacological modulation of this process. The proliferative activity of mononuclear lymphocytes, extracted from the blood of ten lupus patients, was assessed by measuring the incorporation of tritiated thymidine into cultures stimulated by phytohemagglutinin, concanavalin, and theophylline. The comparative effects of each of these agents on the immunoregulatory and proliferative activity of the lymphocytes are reported.

  2. Isotropic–Nematic Phase Transitions in Gravitational Systems. II. Higher Order Multipoles

    NASA Astrophysics Data System (ADS)

    Takács, Ádám; Kocsis, Bence

    2018-04-01

    The gravitational interaction among bodies orbiting in a spherical potential leads to the rapid relaxation of the orbital planes’ distribution, a process called vector resonant relaxation. We examine the statistical equilibrium of this process for a system of bodies with similar semimajor axes and eccentricities. We extend the previous model of Roupas et al. by accounting for the multipole moments beyond the quadrupole, which dominate the interaction for radially overlapping orbits. Nevertheless, we find no qualitative differences between the behavior of the system with respect to the model restricted to the quadrupole interaction. The equilibrium distribution resembles a counterrotating disk at low temperature and a spherical structure at high temperature. The system exhibits a first-order phase transition between the disk and the spherical phase in the canonical ensemble if the total angular momentum is below a critical value. We find that the phase transition erases the high-order multipoles, i.e., small-scale structure in angular momentum space, most efficiently. The system admits a maximum entropy and a maximum energy, which lead to the existence of negative temperature equilibria.

  3. Teaching Human Poses Interactively to a Social Robot

    PubMed Central

    Gonzalez-Pacheco, Victor; Malfaz, Maria; Fernandez, Fernando; Salichs, Miguel A.

    2013-01-01

    The main activity of social robots is to interact with people. In order to do that, the robot must be able to understand what the user is saying or doing. Typically, this capability consists of pre-programmed behaviors or is acquired through controlled learning processes, which are executed before the social interaction begins. This paper presents a software architecture that enables a robot to learn poses in a similar way as people do. That is, hearing its teacher's explanations and acquiring new knowledge in real time. The architecture leans on two main components: an RGB-D (Red-, Green-, Blue- Depth) -based visual system, which gathers the user examples, and an Automatic Speech Recognition (ASR) system, which processes the speech describing those examples. The robot is able to naturally learn the poses the teacher is showing to it by maintaining a natural interaction with the teacher. We evaluate our system with 24 users who teach the robot a predetermined set of poses. The experimental results show that, with a few training examples, the system reaches high accuracy and robustness. This method shows how to combine data from the visual and auditory systems for the acquisition of new knowledge in a natural manner. Such a natural way of training enables robots to learn from users, even if they are not experts in robotics. PMID:24048336

  4. Teaching human poses interactively to a social robot.

    PubMed

    Gonzalez-Pacheco, Victor; Malfaz, Maria; Fernandez, Fernando; Salichs, Miguel A

    2013-09-17

    The main activity of social robots is to interact with people. In order to do that, the robot must be able to understand what the user is saying or doing. Typically, this capability consists of pre-programmed behaviors or is acquired through controlled learning processes, which are executed before the social interaction begins. This paper presents a software architecture that enables a robot to learn poses in a similar way as people do. That is, hearing its teacher's explanations and acquiring new knowledge in real time. The architecture leans on two main components: an RGB-D (Red-, Green-, Blue- Depth) -based visual system, which gathers the user examples, and an Automatic Speech Recognition (ASR) system, which processes the speech describing those examples. The robot is able to naturally learn the poses the teacher is showing to it by maintaining a natural interaction with the teacher. We evaluate our system with 24 users who teach the robot a predetermined set of poses. The experimental results show that, with a few training examples, the system reaches high accuracy and robustness. This method shows how to combine data from the visual and auditory systems for the acquisition of new knowledge in a natural manner. Such a natural way of training enables robots to learn from users, even if they are not experts in robotics.

  5. Role of Interactions and Correlations on Collective Dynamics of Molecular Motors Along Parallel Filaments

    NASA Astrophysics Data System (ADS)

    Midha, Tripti; Gupta, Arvind Kumar

    2017-11-01

    Cytoskeletal motors known as motor proteins are molecules that drive cellular transport along several parallel cytoskeletal filaments and support many biological processes. Experimental evidences suggest that they interact with the nearest molecules of their filament while performing any mechanical work. These interactions modify the microscopic level properties of motor proteins. In this work, a new version of two-channel totally asymmetric simple exclusion process, that incorporates the intra-channel interactions in a thermodynamically consistent way, is proposed. As the existing approaches for multi-channel systems deviate from analyzing the combined effect of inter and intra-channel interactions, a new approach known as modified vertical cluster mean field is developed. The approach along with Monte Carlo simulations successfully encounters some correlations and computes the complex dynamic properties of the system. Role of symmetry of interactions and inter-channel coupling is observed on the phase diagrams, maximal particle current and its corresponding optimal interaction strength. Surprisingly, for all values of coupling rate and most of the interaction splittings, the optimal interaction strength corresponding to maximal current belongs to the case of weak repulsive interactions. Moreover, for weak interaction splittings and with an increase in the coupling rate, the optimal interaction strength tends towards the known experimental results. The effect of coupling as well as interaction energy is also measured for correlations. They are found to be short-range and weaker for repulsive and weak attractive interactions while they are long-range and stronger for large attractions.

  6. Bioluminescence resonance energy transfer system for measuring dynamic protein-protein interactions in bacteria.

    PubMed

    Cui, Boyu; Wang, Yao; Song, Yunhong; Wang, Tietao; Li, Changfu; Wei, Yahong; Luo, Zhao-Qing; Shen, Xihui

    2014-05-20

    Protein-protein interactions are important for virtually every biological process, and a number of elegant approaches have been designed to detect and evaluate such interactions. However, few of these methods allow the detection of dynamic and real-time protein-protein interactions in bacteria. Here we describe a bioluminescence resonance energy transfer (BRET) system based on the bacterial luciferase LuxAB. We found that enhanced yellow fluorescent protein (eYFP) accepts the emission from LuxAB and emits yellow fluorescence. Importantly, BRET occurred when LuxAB and eYFP were fused, respectively, to the interacting protein pair FlgM and FliA. Furthermore, we observed sirolimus (i.e., rapamycin)-inducible interactions between FRB and FKBP12 and a dose-dependent abolishment of such interactions by FK506, the ligand of FKBP12. Using this system, we showed that osmotic stress or low pH efficiently induced multimerization of the regulatory protein OmpR and that the multimerization induced by low pH can be reversed by a neutralizing agent, further indicating the usefulness of this system in the measurement of dynamic interactions. This method can be adapted to analyze dynamic protein-protein interactions and the importance of such interactions in bacterial processes such as development and pathogenicity. Real-time measurement of protein-protein interactions in prokaryotes is highly desirable for determining the roles of protein complex in the development or virulence of bacteria, but methods that allow such measurement are not available. Here we describe the development of a bioluminescence resonance energy transfer (BRET) technology that meets this need. The use of endogenous excitation light in this strategy circumvents the requirement for the sophisticated instrument demanded by standard fluorescence resonance energy transfer (FRET). Furthermore, because the LuxAB substrate decanal is membrane permeable, the assay can be performed without lysing the bacterial cells, thus allowing the detection of protein-protein interactions in live bacterial cells. This BRET system added another useful tool to address important questions in microbiological studies. Copyright © 2014 Cui et al.

  7. The role of the apelinergic and vasopressinergic systems in the regulation of the cardiovascular system and the pathogenesis of cardiovascular disease.

    PubMed

    Czarzasta, Katarzyna; Cudnoch-Jedrzejewska, Agnieszka

    2014-01-01

    Research studies indicate a role of the apelinergic and vasopressinergic systems both in the regulation of the cardiovascular system and the pathogenesis of CVD, including in such settings as obesity and stress. Based on these data, it may be suggested that interactions between these systems underlie numerous physiological and pathophysiological processes, some of them related to the cardiovascular system. Better understanding of the role of these systems and their interactions, both physiological and related to the pathogenesis of CVD, will allow further advances in prevention and drug therapy.

  8. Update of KDBI: Kinetic Data of Bio-molecular Interaction database

    PubMed Central

    Kumar, Pankaj; Han, B. C.; Shi, Z.; Jia, J.; Wang, Y. P.; Zhang, Y. T.; Liang, L.; Liu, Q. F.; Ji, Z. L.; Chen, Y. Z.

    2009-01-01

    Knowledge of the kinetics of biomolecular interactions is important for facilitating the study of cellular processes and underlying molecular events, and is essential for quantitative study and simulation of biological systems. Kinetic Data of Bio-molecular Interaction database (KDBI) has been developed to provide information about experimentally determined kinetic data of protein–protein, protein–nucleic acid, protein–ligand, nucleic acid–ligand binding or reaction events described in the literature. To accommodate increasing demand for studying and simulating biological systems, numerous improvements and updates have been made to KDBI, including new ways to access data by pathway and molecule names, data file in System Biology Markup Language format, more efficient search engine, access to published parameter sets of simulation models of 63 pathways, and 2.3-fold increase of data (19 263 entries of 10 532 distinctive biomolecular binding and 11 954 interaction events, involving 2635 proteins/protein complexes, 847 nucleic acids, 1603 small molecules and 45 multi-step processes). KDBI is publically available at http://bidd.nus.edu.sg/group/kdbi/kdbi.asp. PMID:18971255

  9. REVIEW ARTICLE: How do biomolecular systems speed up and regulate rates?

    NASA Astrophysics Data System (ADS)

    Zhou, Huan-Xiang

    2005-09-01

    The viability of a biological system depends upon careful regulation of the rates of various processes. These rates have limits imposed by intrinsic chemical or physical steps (e.g., diffusion). These limits can be expanded by interactions and dynamics of the biomolecules. For example, (a) a chemical reaction is catalyzed when its transition state is preferentially bound to an enzyme; (b) the folding of a protein molecule is speeded up by specific interactions within the transition-state ensemble and may be assisted by molecular chaperones; (c) the rate of specific binding of a protein molecule to a cellular target can be enhanced by mechanisms such as long-range electrostatic interactions, nonspecific binding and folding upon binding; (d) directional movement of motor proteins is generated by capturing favorable Brownian motion through intermolecular binding energy; and (e) conduction and selectivity of ions through membrane channels are controlled by interactions and the dynamics of channel proteins. Simple physical models are presented here to illustrate these processes and provide a unifying framework for understanding speed attainment and regulation in biomolecular systems.

  10. Fluvial biogeomorphology in the Anthropocene: Managing rivers and managing landscapes.

    NASA Astrophysics Data System (ADS)

    Viles, Heather

    2015-04-01

    Biogeomorphology considers the many, and often complex, interactions between ecological and geomorphological processes. The concept of the Anthropocene deserves greater attention by scientists working on biogeomorphology, as will be demonstrated in this talk though a focus on fluvial environments. Rivers and river systems have been the subject of long-term human interference and management across the world, often in the form of direct manipulation of biogeomorphic interactions. Up to the present three broadly-defined phases of the Anthropocene can be identified - the Palaeoanthropocene, the Industrial Revolution and the Great Acceleration. Each of these broad phases of the Anthropocene has different implications for fluvial biogeomorphology and river management. The nature and dynamics of tufa-depositing systems provide good examples of the differing Anthropocene situations and will be focused on in this talk. We may now be entering a fourth phase of the Anthropocene called 'Earth system stewardship'. In terms of better understanding and managing the biogeomorphic interactions within rivers in such a phase, an improved conceptualisation of the Anthropocene and the complex web of interactions between human, ecological and geomorphological processes is needed.

  11. Interactive Genetic Algorithm - An Adaptive and Interactive Decision Support Framework for Design of Optimal Groundwater Monitoring Plans

    NASA Astrophysics Data System (ADS)

    Babbar-Sebens, M.; Minsker, B. S.

    2006-12-01

    In the water resources management field, decision making encompasses many kinds of engineering, social, and economic constraints and objectives. Representing all of these problem dependant criteria through models (analytical or numerical) and various formulations (e.g., objectives, constraints, etc.) within an optimization- simulation system can be a very non-trivial issue. Most models and formulations utilized for discerning desirable traits in a solution can only approximate the decision maker's (DM) true preference criteria, and they often fail to consider important qualitative and incomputable phenomena related to the management problem. In our research, we have proposed novel decision support frameworks that allow DMs to actively participate in the optimization process. The DMs explicitly indicate their true preferences based on their subjective criteria and the results of various simulation models and formulations. The feedback from the DMs is then used to guide the search process towards solutions that are "all-rounders" from the perspective of the DM. The two main research questions explored in this work are: a) Does interaction between the optimization algorithm and a DM assist the system in searching for groundwater monitoring designs that are robust from the DM's perspective?, and b) How can an interactive search process be made more effective when human factors, such as human fatigue and cognitive learning processes, affect the performance of the algorithm? The application of these frameworks on a real-world groundwater long-term monitoring (LTM) case study in Michigan highlighted the following salient advantages: a) in contrast to the non-interactive optimization methodology, the proposed interactive frameworks were able to identify low cost monitoring designs whose interpolation maps respected the expected spatial distribution of the contaminants, b) for many same-cost designs, the interactive methodologies were able to propose multiple alternatives that met the DM's preference criteria, therefore allowing the expert to select among several strong candidate designs depending on her/his LTM budget, c) two of the methodologies - Case-Based Micro Interactive Genetic Algorithm (CBMIGA) and Interactive Genetic Algorithm with Mixed Initiative Interaction (IGAMII) - were also able to assist in controlling human fatigue and adapt to the DM's learning process.

  12. Elaborating on systems thinking in health promotion practice.

    PubMed

    Naaldenberg, Jenneken; Vaandrager, Lenneke; Koelen, Maria; Wagemakers, Anne-Marie; Saan, Hans; de Hoog, Kees

    2009-03-01

    Health and well-being are the result of a series of complex processes in which an individual interacts with other people and the environment. A systematic approach ensures incorporation of individual, ecological, social and political factors. However, interactions between these factors can be overlooked within a systematical approach. A systemic approach can provide additional information by incorporating interactions and communication. The opportunities of a systems thinking perspective for health promotion were investigated for this paper. Although others have also made attempts to explore systems thinking in the field of health promotion, the implications of systems thinking in practice need attention. Other fields such as agricultural extension studies, organizational studies and development studies provide useful experiences with the use of a systems thinking perspective in practice. Building on experiences from these fields, we give a theoretical background in which processes of social learning and innovation play an important role. From this background, we derive an overview of important concepts for the practical application of a systems thinking perspective. These concepts are the structure of the system, meanings attached to actions, and power relations between actors. To make these concepts more explicit and reduce the theoretical character of systems thinking, we use an illustration to elaborate on these concepts in practice. For this purpose, we describe a health promotion partnership in The Netherlands using the concepts structure, meaning and power relations. We show how a systems perspective increases insight in the functioning of a partnership and how this can facilitate processes of social learning and innovation. This article concludes by identifying future opportunities and challenges in adopting systems thinking for health promotion practice. A systems perspective towards health promotion can help projects reaching a more integral and sustainable approach in which the complex nature of health promotion processes is supported. Practical applications of systems thinking are necessary to adapt this perspective.

  13. Real-time flight test data distribution and display

    NASA Technical Reports Server (NTRS)

    Nesel, Michael C.; Hammons, Kevin R.

    1988-01-01

    Enhancements to the real-time processing and display systems of the NASA Western Aeronautical Test Range are described. Display processing has been moved out of the telemetry and radar acquisition processing systems super-minicomputers into user/client interactive graphic workstations. Real-time data is provided to the workstations by way of Ethernet. Future enhancement plans include use of fiber optic cable to replace the Ethernet.

  14. Multiple tipping points and optimal repairing in interacting networks

    PubMed Central

    Majdandzic, Antonio; Braunstein, Lidia A.; Curme, Chester; Vodenska, Irena; Levy-Carciente, Sary; Eugene Stanley, H.; Havlin, Shlomo

    2016-01-01

    Systems composed of many interacting dynamical networks—such as the human body with its biological networks or the global economic network consisting of regional clusters—often exhibit complicated collective dynamics. Three fundamental processes that are typically present are failure, damage spread and recovery. Here we develop a model for such systems and find a very rich phase diagram that becomes increasingly more complex as the number of interacting networks increases. In the simplest example of two interacting networks we find two critical points, four triple points, ten allowed transitions and two ‘forbidden' transitions, as well as complex hysteresis loops. Remarkably, we find that triple points play the dominant role in constructing the optimal repairing strategy in damaged interacting systems. To test our model, we analyse an example of real interacting financial networks and find evidence of rapid dynamical transitions between well-defined states, in agreement with the predictions of our model. PMID:26926803

  15. Thermodynamics of Interaction between Some Cellulose Ethers and SDS by Titration Microcalorimetry.

    PubMed

    Singh; Nilsson

    1999-05-01

    The interaction between certain nonionic cellulose ethers (ethyl hydroxyethyl cellulose and hydroxypropyl methyl cellulose) and sodium dodecyl sulphate (SDS) has been investigated using isothermal titration microcalorimetry at temperatures between 25-50 degrees C. The observed heat flow curves have been interpreted in terms of a plausible mechanism of the interaction of the substituent groups with SDS monomers and clusters. The data have been related to changes occuring in the system at the macro- and microscopic levels with the addition of surfactants and with temperature. The process consists predominantly of polymer-surfactant interactions initially and surfactant-surfactant interactions at the later stages. A phenomenological model of the cooperative interaction (adsorption) process has been derived, and earlier published equilibrium binding data have been used to recover binding constants and Gibbs energy changes for this process. The adsorption enthalpies and entropies have been recovered along with the heat capacity change. The enthalpic cost of confining the nonpolar regions of the polymers in surfactant clusters is high, but the entropy gain from release of hydration shell water molecules as well as increased freedom of movement of these nonpolar regions in the clusters gives the process a strong entropic driving force. The process is entropy-driven initially and converts to being both enthalpy and entropy-driven at high SDS concentrations. An enthalpy-entropy compensation behavior is seen. Strongly negative heat capacity changes have been obtained resulting from the transfer of nonpolar groups from aqueous into nonpolar environments, as well as a reduction of conformational domains that the chains can populate. Changes in these two components cause the heat capacity change to become less negative at the higher binding levels. The system can be classified as exhibiting nonclassical hydrophobic binding at the later stages of binding. Copyright 1999 Academic Press.

  16. Aging processes in disordered materials: High-Tc superconductors and ferromagnets

    NASA Astrophysics Data System (ADS)

    Pleimling, Michel

    2013-03-01

    Physical aging is generically encountered in systems far from equilibrium that evolve with slow dynamics. Well known examples can be found in structural glasses, spin glasses, magnetic systems, and colloids. Recent years have seen major breakthroughs in our understanding of aging processes in non-disordered systems. Progress in understanding aging in disordered systems has been much slower though. In this talk I discuss non-equilibrium relaxation in two different types of disordered systems: coarsening ferromagnets with disorder, characterized by a crossover from an initial power-law like growth of domains to a slower logarithmic growth regime, and interacting vortex lines in disordered type-II superconductors, where the interplay of vortex-vortex interaction and pinning results in a very rich non-equilibrium behavior. This work is supported by the US Department of Energy through grant DE-FG02-09ER46613.

  17. The Herschel Data Processing System - Hipe And Pipelines - During The Early Mission Phase

    NASA Astrophysics Data System (ADS)

    Ardila, David R.; Herschel Science Ground Segment Consortium

    2010-01-01

    The Herschel Space Observatory, the fourth cornerstone mission in the ESA science program, was launched 14th of May 2009. With a 3.5 m telescope, it is the largest space telescope ever launched. Herschel's three instruments (HIFI, PACS, and SPIRE) perform photometry and spectroscopy in the 55 - 672 micron range and will deliver exciting science for the astronomical community during at least three years of routine observations. Here we summarize the state of the Herschel Data Processing System and give an overview about future development milestones and plans. The development of the Herschel Data Processing System started seven years ago to support the data analysis for Instrument Level Tests. Resources were made available to implement a freely distributable Data Processing System capable of interactively and automatically reduce Herschel data at different processing levels. The system combines data retrieval, pipeline execution and scientific analysis in one single environment. The software is coded in Java and Jython to be platform independent and to avoid the need for commercial licenses. The Herschel Interactive Processing Environment (HIPE) is the user-friendly face of Herschel Data Processing. The first PACS preview observation of M51 was processed with HIPE, using basic pipeline scripts to a fantastic image within 30 minutes of data reception. Also the first HIFI observations on DR-21 were successfully reduced to high quality spectra, followed by SPIRE observations on M66 and M74. The Herschel Data Processing System is a joint development by the Herschel Science Ground Segment Consortium, consisting of ESA, the NASA Herschel Science Center, and the HIFI, PACS and SPIRE consortium members.

  18. Detailed requirements document for the Interactive Financial Management System (IFMS), volume 1

    NASA Technical Reports Server (NTRS)

    Dodson, D. B.

    1975-01-01

    The detailed requirements for phase 1 (online fund control, subauthorization accounting, and accounts receivable functional capabilities) of the Interactive Financial Management System (IFMS) are described. This includes information on the following: systems requirements, performance requirements, test requirements, and production implementation. Most of the work is centered on systems requirements, and includes discussions on the following processes: resources authority, allotment, primary work authorization, reimbursable order acceptance, purchase request, obligation, cost accrual, cost distribution, disbursement, subauthorization performance, travel, accounts receivable, payroll, property, edit table maintenance, end-of-year, backup input. Other subjects covered include: external systems interfaces, general inquiries, general report requirements, communication requirements, and miscellaneous. Subjects covered under performance requirements include: response time, processing volumes, system reliability, and accuracy. Under test requirements come test data sources, general test approach, and acceptance criteria. Under production implementation come data base establishment, operational stages, and operational requirements.

  19. Research and Development for an Operational Information Ecology: The User-System Interface Agent Project

    NASA Technical Reports Server (NTRS)

    Srivastava, Sadanand; deLamadrid, James

    1998-01-01

    The User System Interface Agent (USIA) is a special type of software agent which acts as the "middle man" between a human user and an information processing environment. USIA consists of a group of cooperating agents which are responsible for assisting users in obtaining information processing services intuitively and efficiently. Some of the main features of USIA include: (1) multiple interaction modes and (2) user-specific and stereotype modeling and adaptation. This prototype system provides us with a development platform towards the realization of an operational information ecology. In the first phase of this project we focus on the design and implementation of prototype system of the User-System Interface Agent (USIA). The second face of USIA allows user interaction via a restricted query language as well as through a taxonomy of windows. In third phase the USIA system architecture was revised.

  20. Use of the self-organising map network (SOMNet) as a decision support system for regional mental health planning.

    PubMed

    Chung, Younjin; Salvador-Carulla, Luis; Salinas-Pérez, José A; Uriarte-Uriarte, Jose J; Iruin-Sanz, Alvaro; García-Alonso, Carlos R

    2018-04-25

    Decision-making in mental health systems should be supported by the evidence-informed knowledge transfer of data. Since mental health systems are inherently complex, involving interactions between its structures, processes and outcomes, decision support systems (DSS) need to be developed using advanced computational methods and visual tools to allow full system analysis, whilst incorporating domain experts in the analysis process. In this study, we use a DSS model developed for interactive data mining and domain expert collaboration in the analysis of complex mental health systems to improve system knowledge and evidence-informed policy planning. We combine an interactive visual data mining approach, the self-organising map network (SOMNet), with an operational expert knowledge approach, expert-based collaborative analysis (EbCA), to develop a DSS model. The SOMNet was applied to the analysis of healthcare patterns and indicators of three different regional mental health systems in Spain, comprising 106 small catchment areas and providing healthcare for over 9 million inhabitants. Based on the EbCA, the domain experts in the development team guided and evaluated the analytical processes and results. Another group of 13 domain experts in mental health systems planning and research evaluated the model based on the analytical information of the SOMNet approach for processing information and discovering knowledge in a real-world context. Through the evaluation, the domain experts assessed the feasibility and technology readiness level (TRL) of the DSS model. The SOMNet, combined with the EbCA, effectively processed evidence-based information when analysing system outliers, explaining global and local patterns, and refining key performance indicators with their analytical interpretations. The evaluation results showed that the DSS model was feasible by the domain experts and reached level 7 of the TRL (system prototype demonstration in operational environment). This study supports the benefits of combining health systems engineering (SOMNet) and expert knowledge (EbCA) to analyse the complexity of health systems research. The use of the SOMNet approach contributes to the demonstration of DSS for mental health planning in practice.

  1. Bell Laboratories Book Acquisition, Accounting and Cataloging System (BELLTIP).

    ERIC Educational Resources Information Center

    Sipfle, William K.

    BELLTIP is an on-line library processing system concerned with book acquisitions, cataloging, and financial accounting for a newwork of 26 technical libraries. At its center is an interactively updated and queried set of files concerned with all items currently in process. Principal products include all purchase orders, claims, and cancellations;…

  2. Proceedings of the Fourth Annual Workshop on the Use of Digital Computers in Process Control.

    ERIC Educational Resources Information Center

    Smith, Cecil L., Ed.

    Contents: Computer hardware testing (results of vendor-user interaction); CODIL (a new language for process control programing); the design and implementation of control systems utilizing CRT display consoles; the systems contractor - valuable professional or unnecessary middle man; power station digital computer applications; from inspiration to…

  3. Maximum entropy production in environmental and ecological systems.

    PubMed

    Kleidon, Axel; Malhi, Yadvinder; Cox, Peter M

    2010-05-12

    The coupled biosphere-atmosphere system entails a vast range of processes at different scales, from ecosystem exchange fluxes of energy, water and carbon to the processes that drive global biogeochemical cycles, atmospheric composition and, ultimately, the planetary energy balance. These processes are generally complex with numerous interactions and feedbacks, and they are irreversible in their nature, thereby producing entropy. The proposed principle of maximum entropy production (MEP), based on statistical mechanics and information theory, states that thermodynamic processes far from thermodynamic equilibrium will adapt to steady states at which they dissipate energy and produce entropy at the maximum possible rate. This issue focuses on the latest development of applications of MEP to the biosphere-atmosphere system including aspects of the atmospheric circulation, the role of clouds, hydrology, vegetation effects, ecosystem exchange of energy and mass, biogeochemical interactions and the Gaia hypothesis. The examples shown in this special issue demonstrate the potential of MEP to contribute to improved understanding and modelling of the biosphere and the wider Earth system, and also explore limitations and constraints to the application of the MEP principle.

  4. Living in the branches: population dynamics and ecological processes in dendritic networks

    USGS Publications Warehouse

    Grant, E.H.C.; Lowe, W.H.; Fagan, W.F.

    2007-01-01

    Spatial structure regulates and modifies processes at several levels of ecological organization (e.g. individual/genetic, population and community) and is thus a key component of complex systems, where knowledge at a small scale can be insufficient for understanding system behaviour at a larger scale. Recent syntheses outline potential applications of network theory to ecological systems, but do not address the implications of physical structure for network dynamics. There is a specific need to examine how dendritic habitat structure, such as that found in stream, hedgerow and cave networks, influences ecological processes. Although dendritic networks are one type of ecological network, they are distinguished by two fundamental characteristics: (1) both the branches and the nodes serve as habitat, and (2) the specific spatial arrangement and hierarchical organization of these elements interacts with a species' movement behaviour to alter patterns of population distribution and abundance, and community interactions. Here, we summarize existing theory relating to ecological dynamics in dendritic networks, review empirical studies examining the population- and community-level consequences of these networks, and suggest future research integrating spatial pattern and processes in dendritic systems.

  5. Interaction of the Human Contact System with Pathogens-An Update.

    PubMed

    Oehmcke-Hecht, Sonja; Köhler, Juliane

    2018-01-01

    The name human contact system is related to its mode of action, as "contact" with artificial negatively charged surfaces triggers its activation. Today, it is generally believed that the contact system is an inflammatory response mechanism not only against artificial material but also against misfolded proteins and foreign organisms. Upon activation, the contact system is involved in at least two distinct (patho)physiologic processes: i . the trigger of the intrinsic coagulation via factor XI and ii . the cleavage of high molecular weight kininogen with release of bradykinin and antimicrobial peptides (AMPs). Bradykinin is involved in the regulation of inflammatory processes, vascular permeability, and blood pressure. Due to the release of AMPs, the contact system is regarded as a branch of the innate immune defense against microorganisms. There is an increasing list of pathogens that interact with contact factors, in addition to bacteria also fungi and viruses bind and activate the system. In spite of that, pathogens have developed their own mechanisms to activate the contact system, resulting in manipulation of this host immune response. In this up-to-date review, we summarize present research on the interaction of pathogens with the human contact system, focusing particularly on bacterial and viral mechanisms that trigger inflammation via contact system activation.

  6. Collective Phenomena Emerging from the Interactions between Dynamical Processes in Multiplex Networks

    NASA Astrophysics Data System (ADS)

    Nicosia, Vincenzo; Skardal, Per Sebastian; Arenas, Alex; Latora, Vito

    2017-03-01

    We introduce a framework to intertwine dynamical processes of different nature, each with its own distinct network topology, using a multilayer network approach. As an example of collective phenomena emerging from the interactions of multiple dynamical processes, we study a model where neural dynamics and nutrient transport are bidirectionally coupled in such a way that the allocation of the transport process at one layer depends on the degree of synchronization at the other layer, and vice versa. We show numerically, and we prove analytically, that the multilayer coupling induces a spontaneous explosive synchronization and a heterogeneous distribution of allocations, otherwise not present in the two systems considered separately. Our framework can find application to other cases where two or more dynamical processes such as synchronization, opinion formation, information diffusion, or disease spreading, are interacting with each other.

  7. Designing Interaction as a Learning Process: Supporting Users' Domain Knowledge Development in Interaction

    ERIC Educational Resources Information Center

    Choi, Jung-Min

    2010-01-01

    The primary concern in current interaction design is focused on how to help users solve problems and achieve goals more easily and efficiently. While users' sufficient knowledge acquisition of operating a product or system is considered important, their acquisition of problem-solving knowledge in the task domain has largely been disregarded. As a…

  8. Uncertainty Reduction for Stochastic Processes on Complex Networks

    NASA Astrophysics Data System (ADS)

    Radicchi, Filippo; Castellano, Claudio

    2018-05-01

    Many real-world systems are characterized by stochastic dynamical rules where a complex network of interactions among individual elements probabilistically determines their state. Even with full knowledge of the network structure and of the stochastic rules, the ability to predict system configurations is generally characterized by a large uncertainty. Selecting a fraction of the nodes and observing their state may help to reduce the uncertainty about the unobserved nodes. However, choosing these points of observation in an optimal way is a highly nontrivial task, depending on the nature of the stochastic process and on the structure of the underlying interaction pattern. In this paper, we introduce a computationally efficient algorithm to determine quasioptimal solutions to the problem. The method leverages network sparsity to reduce computational complexity from exponential to almost quadratic, thus allowing the straightforward application of the method to mid-to-large-size systems. Although the method is exact only for equilibrium stochastic processes defined on trees, it turns out to be effective also for out-of-equilibrium processes on sparse loopy networks.

  9. More than a feeling: The bidirectional convergence of semantic visual object and somatosensory processing.

    PubMed

    Ekstrand, Chelsea; Neudorf, Josh; Lorentz, Eric; Gould, Layla; Mickleborough, Marla; Borowsky, Ron

    2017-11-01

    Prevalent theories of semantic processing assert that the sensorimotor system plays a functional role in the semantic processing of manipulable objects. While motor execution has been shown to impact object processing, involvement of the somatosensory system has remained relatively unexplored. Therefore, we developed two novel priming paradigms. In Experiment 1, participants received a vibratory hand prime (on half the trials) prior to viewing a picture of either an object interacted primarily with the hand (e.g., a cup) or the foot (e.g., a soccer ball) and reported how they would interact with it. In Experiment 2, the same objects became the prime and participants were required to identify whether the vibratory stimulation occurred to their hand or foot. In both experiments, somatosensory priming effects arose for the hand objects, while foot objects showed no priming benefits. These results suggest that object semantic knowledge bidirectionally converges with the somatosensory system. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Proceedings of the First International Research Workshop for Process Improvement in Small Settings, 2005

    DTIC Science & Technology

    2006-01-01

    at TrialStat Corporation, a software company that develops applications for clinical research and drug development, and a senior consultant with...Research.” Proceedings of the conference on Designing interactive systems: processes, practices, methods, and techniques. New York, NY: ACM Press, 2000...Rogers 97] Rogers, Yvonne & Victoria. Bellotti. "Grounding Blue-Sky Research: How can Ethnography Help." ACM Interactions Magazine (May-June 1997

  11. Interactive Structure (EUCLID) For Static And Dynamic Representation Of Human Body

    NASA Astrophysics Data System (ADS)

    Renaud, Ch.; Steck, R.

    1983-07-01

    A specific software (EUCLID) for static and dynamic representation of human models is described. The data processing system is connected with ERGODATA and used in interactive mode by intrinsic or specific functions. More or less complex representations in 3-D view of models of the human body are developed. Biostereometric and conventional anthropometric raw data from the data bank are processed for different applications in ergonomy.

  12. Robustness of Greenbergerendash Horneendash Zeilinger and W states against Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Sharma, Kapil K.; Pandey, S. N.

    2016-12-01

    In this article, the robustness of tripartite Greenberger-Horne-Zeilinger (GHZ) and W states is investigated against Dzyaloshinskii-Moriya (i.e. DM) interaction. We consider a closed system of three qubits and an environmental qubit. The environmental qubit interacts with any one of the three qubits through DM interaction. The tripartite system is initially prepared in GHZ and W states, respectively. The composite four qubits system evolve with unitary dynamics. We detach the environmental qubit by tracing out from four qubits, and profound impact of DM interaction is studied on the initial entanglement of the system. As a result, we find that the bipartite partitions of W states suffer from entanglement sudden death (i.e. ESD), while tripartite entanglement does not. On the other hand, bipartite partitions and tripartite entanglement in GHZ states do not feel any influence of DM interaction. So, we find that GHZ states have robust character than W states. In this work, we consider generalised GHZ and W states, and three π is used as an entanglement measure. This study can be useful in quantum information processing where unwanted DM interaction takes place.

  13. IMAGE 100: The interactive multispectral image processing system

    NASA Technical Reports Server (NTRS)

    Schaller, E. S.; Towles, R. W.

    1975-01-01

    The need for rapid, cost-effective extraction of useful information from vast quantities of multispectral imagery available from aircraft or spacecraft has resulted in the design, implementation and application of a state-of-the-art processing system known as IMAGE 100. Operating on the general principle that all objects or materials possess unique spectral characteristics or signatures, the system uses this signature uniqueness to identify similar features in an image by simultaneously analyzing signatures in multiple frequency bands. Pseudo-colors, or themes, are assigned to features having identical spectral characteristics. These themes are displayed on a color CRT, and may be recorded on tape, film, or other media. The system was designed to incorporate key features such as interactive operation, user-oriented displays and controls, and rapid-response machine processing. Owing to these features, the user can readily control and/or modify the analysis process based on his knowledge of the input imagery. Effective use can be made of conventional photographic interpretation skills and state-of-the-art machine analysis techniques in the extraction of useful information from multispectral imagery. This approach results in highly accurate multitheme classification of imagery in seconds or minutes rather than the hours often involved in processing using other means.

  14. Constraint processing in our extensible language for cooperative imaging system

    NASA Astrophysics Data System (ADS)

    Aoki, Minoru; Murao, Yo; Enomoto, Hajime

    1996-02-01

    The extensible WELL (Window-based elaboration language) has been developed using the concept of common platform, where both client and server can communicate with each other with support from a communication manager. This extensible language is based on an object oriented design by introducing constraint processing. Any kind of services including imaging in the extensible language is controlled by the constraints. Interactive functions between client and server are extended by introducing agent functions including a request-respond relation. Necessary service integrations are satisfied with some cooperative processes using constraints. Constraints are treated similarly to data, because the system should have flexibilities in the execution of many kinds of services. The similar control process is defined by using intentional logic. There are two kinds of constraints, temporal and modal constraints. Rendering the constraints, the predicate format as the relation between attribute values can be a warrant for entities' validity as data. As an imaging example, a processing procedure of interaction between multiple objects is shown as an image application for the extensible system. This paper describes how the procedure proceeds in the system, and that how the constraints work for generating moving pictures.

  15. Goddard Cumulus Ensemble (GCE) Model: Application for Understanding Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2002-01-01

    One of the most promising methods to test the representation of cloud processes used in climate models is to use observations together with Cloud Resolving Models (CRMs). The CRMs use more sophisticated and realistic representations of cloud microphysical processes, and they can reasonably well resolve the time evolution, structure, and life cycles of clouds and cloud systems (size about 2-200 km). The CRMs also allow explicit interaction between out-going longwave (cooling) and incoming solar (heating) radiation with clouds. Observations can provide the initial conditions and validation for CRM results. The Goddard Cumulus Ensemble (GCE) Model, a cloud-resolving model, has been developed and improved at NASA/Goddard Space Flight Center over the past two decades. Dr. Joanne Simpson played a central role in GCE modeling developments and applications. She was the lead author or co-author on more than forty GCE modeling papers. In this paper, a brief discussion and review of the application of the GCE model to (1) cloud interactions and mergers, (2) convective and stratiform interaction, (3) mechanisms of cloud-radiation interaction, (4) latent heating profiles and TRMM, and (5) responses of cloud systems to large-scale processes are provided. Comparisons between the GCE model's results, other cloud-resolving model results and observations are also examined.

  16. Modeling and evaluating user behavior in exploratory visual analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reda, Khairi; Johnson, Andrew E.; Papka, Michael E.

    Empirical evaluation methods for visualizations have traditionally focused on assessing the outcome of the visual analytic process as opposed to characterizing how that process unfolds. There are only a handful of methods that can be used to systematically study how people use visualizations, making it difficult for researchers to capture and characterize the subtlety of cognitive and interaction behaviors users exhibit during visual analysis. To validate and improve visualization design, however, it is important for researchers to be able to assess and understand how users interact with visualization systems under realistic scenarios. This paper presents a methodology for modeling andmore » evaluating the behavior of users in exploratory visual analysis. We model visual exploration using a Markov chain process comprising transitions between mental, interaction, and computational states. These states and the transitions between them can be deduced from a variety of sources, including verbal transcripts, videos and audio recordings, and log files. This model enables the evaluator to characterize the cognitive and computational processes that are essential to insight acquisition in exploratory visual analysis, and reconstruct the dynamics of interaction between the user and the visualization system. We illustrate this model with two exemplar user studies, and demonstrate the qualitative and quantitative analytical tools it affords.« less

  17. Development of a prototype multi-processing interactive software invocation system

    NASA Technical Reports Server (NTRS)

    Berman, W. J.

    1983-01-01

    The Interactive Software Invocation System (NASA-ISIS) was first transported to the M68000 microcomputer, and then rewritten in the programming language Path Pascal. Path Pascal is a significantly enhanced derivative of Pascal, allowing concurrent algorithms to be expressed using the simple and elegant concept of Path Expressions. The primary results of this contract was to verify the viability of Path Pascal as a system's development language. The NASA-ISIS implementation using Path Pascal is a prototype of a large, interactive system in Path Pascal. As such, it is an excellent demonstration of the feasibility of using Path Pascal to write even more extensive systems. It is hoped that future efforts will build upon this research and, ultimately, that a full Path Pascal/ISIS Operating System (PPIOS) might be developed.

  18. The Effects of Word Processing Software on User Satisfaction: An Empirical Study of Micro, Mini, and Mainframe Computers Using an Interactive Artificial Intelligence Expert-System.

    ERIC Educational Resources Information Center

    Rushinek, Avi; Rushinek, Sara

    1984-01-01

    Describes results of a system rating study in which users responded to WPS (word processing software) questions. Study objectives were data collection and evaluation of variables; statistical quantification of WPS's contribution (along with other variables) to user satisfaction; design of an expert system to evaluate WPS; and database update and…

  19. Brain-computer interface signal processing at the Wadsworth Center: mu and sensorimotor beta rhythms.

    PubMed

    McFarland, Dennis J; Krusienski, Dean J; Wolpaw, Jonathan R

    2006-01-01

    The Wadsworth brain-computer interface (BCI), based on mu and beta sensorimotor rhythms, uses one- and two-dimensional cursor movement tasks and relies on user training. This is a real-time closed-loop system. Signal processing consists of channel selection, spatial filtering, and spectral analysis. Feature translation uses a regression approach and normalization. Adaptation occurs at several points in this process on the basis of different criteria and methods. It can use either feedforward (e.g., estimating the signal mean for normalization) or feedback control (e.g., estimating feature weights for the prediction equation). We view this process as the interaction between a dynamic user and a dynamic system that coadapt over time. Understanding the dynamics of this interaction and optimizing its performance represent a major challenge for BCI research.

  20. Simulation of Asia Dust and Cloud Interaction Over Pacific Ocean During Pacdex

    NASA Astrophysics Data System (ADS)

    Long, X.; Huang, J.; Cheng, C.; Wang, W.

    2007-12-01

    The effect of dust plume on the Pacific cloud systems and the associated radiative forcing is an outstanding problem for understanding climate change. Many studies showing that dust aerosol might be a good absorber for solar radiation, at the same time dust aerosols could affect the cloud's formation and precipitation by its capability as cloud condensation nuclei (CCN) and ice forming nuclei (IFN). But the role of aerosols in clouds and precipitation is very complex. Simulation of interaction between cloud and dust aerosols requires recognition that the aerosol cloud system comprises coupled components of dynamics, aerosol and cloud microphysics, radiation processes. In this study, we investigated the interaction between dust aerosols and cloud with WRF which coupled with detailed cloud microphysics processes and dust process. The observed data of SACOL (Semi-Arid Climate and Environment Observatory of Lanzhou University) and PACDEX (Pacific Dust Experiment) is used as the initialization which include the vertical distributions and concentration of dust particles. Our results show that dust aerosol not only impacts cloud microphysical processes but also cloud microstructure; Dust aerosols can act as effective ice nuclei and intensify the ice-forming processes.

  1. AOIPS water resources data management system

    NASA Technical Reports Server (NTRS)

    Merritt, E. S.; Shotwell, R. L.; Place, M. C.; Belknap, N. J.

    1976-01-01

    A geocoded data management system applicable for hydrological applications was designed to demonstrate the utility of the Atmospheric and Oceanographic Information Processing System (AOIPS) for hydrological applications. Within that context, the geocoded hydrology data management system was designed to take advantage of the interactive capability of the AOIPS hardware. Portions of the Water Resource Data Management System which best demonstrate the interactive nature of the hydrology data management system were implemented on the AOIPS. A hydrological case study was prepared using all data supplied for the Bear River watershed located in northwest Utah, southeast Idaho, and western Wyoming.

  2. Revealing physical interaction networks from statistics of collective dynamics

    PubMed Central

    Nitzan, Mor; Casadiego, Jose; Timme, Marc

    2017-01-01

    Revealing physical interactions in complex systems from observed collective dynamics constitutes a fundamental inverse problem in science. Current reconstruction methods require access to a system’s model or dynamical data at a level of detail often not available. We exploit changes in invariant measures, in particular distributions of sampled states of the system in response to driving signals, and use compressed sensing to reveal physical interaction networks. Dynamical observations following driving suffice to infer physical connectivity even if they are temporally disordered, are acquired at large sampling intervals, and stem from different experiments. Testing various nonlinear dynamic processes emerging on artificial and real network topologies indicates high reconstruction quality for existence as well as type of interactions. These results advance our ability to reveal physical interaction networks in complex synthetic and natural systems. PMID:28246630

  3. PCPPI: a comprehensive database for the prediction of Penicillium-crop protein-protein interactions.

    PubMed

    Yue, Junyang; Zhang, Danfeng; Ban, Rongjun; Ma, Xiaojing; Chen, Danyang; Li, Guangwei; Liu, Jia; Wisniewski, Michael; Droby, Samir; Liu, Yongsheng

    2017-01-01

    Penicillium expansum , the causal agent of blue mold, is one of the most prevalent post-harvest pathogens, infecting a wide range of crops after harvest. In response, crops have evolved various defense systems to protect themselves against this and other pathogens. Penicillium -crop interaction is a multifaceted process and mediated by pathogen- and host-derived proteins. Identification and characterization of the inter-species protein-protein interactions (PPIs) are fundamental to elucidating the molecular mechanisms underlying infection processes between P. expansum and plant crops. Here, we have developed PCPPI, the Penicillium -Crop Protein-Protein Interactions database, which is constructed based on the experimentally determined orthologous interactions in pathogen-plant systems and available domain-domain interactions (DDIs) in each PPI. Thus far, it stores information on 9911 proteins, 439 904 interactions and seven host species, including apple, kiwifruit, maize, pear, rice, strawberry and tomato. Further analysis through the gene ontology (GO) annotation indicated that proteins with more interacting partners tend to execute the essential function. Significantly, semantic statistics of the GO terms also provided strong support for the accuracy of our predicted interactions in PCPPI. We believe that all the PCPPI datasets are helpful to facilitate the study of pathogen-crop interactions and freely available to the research community. : http://bdg.hfut.edu.cn/pcppi/index.html. © The Author(s) 2017. Published by Oxford University Press.

  4. The Design, Implementation, and Evaluation of a Digital Interactive Globe System Integrated into an Earth Science Course

    ERIC Educational Resources Information Center

    Liou, Wei-Kai; Bhagat, Kaushal Kumar; Chang, Chun-Yen

    2018-01-01

    The aim of this study is to design and implement a digital interactive globe system (DIGS), by integrating low-cost equipment to make DIGS cost-effective. DIGS includes a data processing unit, a wireless control unit, an image-capturing unit, a laser emission unit, and a three-dimensional hemispheric body-imaging screen. A quasi-experimental study…

  5. Developing models that analyze the economic/environmental trade-offs implicit in water resource management

    NASA Astrophysics Data System (ADS)

    Howitt, R. E.

    2016-12-01

    Hydro-economic models have been used to analyze optimal supply management and groundwater use for the past 25 years. They are characterized by an objective function that usually maximizes economic measures such as consumer and producer surplus subject to hydrologic equations of motion or water distribution systems. The hydrologic and economic components are sometimes fully integrated. Alternatively they may use an iterative interactive process. Environmental considerations have been included in hydro-economic models as inequality constraints. Representing environmental requirements as constraints is a rigid approximation of the range of management alternatives that could be used to implement environmental objectives. The next generation of hydro-economic models, currently being developed, require that the environmental alternatives be represented by continuous or semi-continuous functions which relate water resource use allocated to the environment with the probabilities of achieving environmental objectives. These functions will be generated by process models of environmental and biological systems which are now advanced to the state that they can realistically represent environmental systems and flexibility to interact with economic models. Examples are crop growth models, climate modeling, and biological models of forest, fish, and fauna systems. These process models can represent environmental outcomes in a form that is similar to economic production functions. When combined with economic models the interacting process models can reproduce a range of trade-offs between economic and environmental objectives, and thus optimize social value of many water and environmental resources. Some examples of this next-generation of hydro-enviro- economic models are reviewed. In these models implicit production functions for environmental goods are combined with hydrologic equations of motion and economic response functions. We discuss models that show interaction between environmental goods and agricultural production, and others that address alternative climate change policies, or habitat provision.

  6. Do early sensory cortices integrate cross-modal information?

    PubMed

    Kayser, Christoph; Logothetis, Nikos K

    2007-09-01

    Our different senses provide complementary evidence about the environment and their interaction often aids behavioral performance or alters the quality of the sensory percept. A traditional view defers the merging of sensory information to higher association cortices, and posits that a large part of the brain can be reduced into a collection of unisensory systems that can be studied in isolation. Recent studies, however, challenge this view and suggest that cross-modal interactions can already occur in areas hitherto regarded as unisensory. We review results from functional imaging and electrophysiology exemplifying cross-modal interactions that occur early during the evoked response, and at the earliest stages of sensory cortical processing. Although anatomical studies revealed several potential origins of these cross-modal influences, there is yet no clear relation between particular functional observations and specific anatomical connections. In addition, our view on sensory integration at the neuronal level is coined by many studies on subcortical model systems of sensory integration; yet, the patterns of cross-modal interaction in cortex deviate from these model systems in several ways. Consequently, future studies on cortical sensory integration need to leave the descriptive level and need to incorporate cross-modal influences into models of the organization of sensory processing. Only then will we be able to determine whether early cross-modal interactions truly merit the label sensory integration, and how they increase a sensory system's ability to scrutinize its environment and finally aid behavior.

  7. Unravelling networks in local public health policymaking in three European countries - a systems analysis.

    PubMed

    Spitters, Hilde P E M; Lau, Cathrine J; Sandu, Petru; Quanjel, Marcel; Dulf, Diana; Glümer, Charlotte; van Oers, Hans A M; van de Goor, Ien A M

    2017-02-03

    Facilitating and enhancing interaction between stakeholders involved in the policymaking process to stimulate collaboration and use of evidence, is important to foster the development of effective Health Enhancing Physical Activity (HEPA) policies. Performing an analysis of real-world policymaking processes will help reveal the complexity of a network of stakeholders. Therefore, the main objectives were to unravel the stakeholder network in the policy process by conducting three systems analyses, and to increase insight into the similarities and differences in the policy processes of these European country cases. A systems analysis of the local HEPA policymaking process was performed in three European countries involved in the 'REsearch into POlicy to enhance Physical Activity' (REPOPA) project, resulting in three schematic models showing the main stakeholders and their relationships. The models were used to compare the systems, focusing on implications with respect to collaboration and use of evidence in local HEPA policymaking. Policy documents and relevant webpages were examined and main stakeholders were interviewed. The systems analysis in each country identified the main stakeholders involved and their position and relations in the policymaking process. The Netherlands and Denmark were the most similar and both differed most from Romania, especially at the level of accountability of the local public authorities for local HEPA policymaking. The categories of driving forces underlying the relations between stakeholders were formal relations, informal interaction and knowledge exchange. A systems analysis providing detailed descriptions of positions and relations in the stakeholder network in local level HEPA policymaking is rather unique in this area. The analyses are useful when a need arises for increased interaction, collaboration and use of knowledge between stakeholders in the local HEPA network, as they provide an overview of the stakeholders involved and their mutual relations. This information can be an important starting point to enhance the uptake of evidence and build more effective public health policies.

  8. Understanding human management of automation errors

    PubMed Central

    McBride, Sara E.; Rogers, Wendy A.; Fisk, Arthur D.

    2013-01-01

    Automation has the potential to aid humans with a diverse set of tasks and support overall system performance. Automated systems are not always reliable, and when automation errs, humans must engage in error management, which is the process of detecting, understanding, and correcting errors. However, this process of error management in the context of human-automation interaction is not well understood. Therefore, we conducted a systematic review of the variables that contribute to error management. We examined relevant research in human-automation interaction and human error to identify critical automation, person, task, and emergent variables. We propose a framework for management of automation errors to incorporate and build upon previous models. Further, our analysis highlights variables that may be addressed through design and training to positively influence error management. Additional efforts to understand the error management process will contribute to automation designed and implemented to support safe and effective system performance. PMID:25383042

  9. Interaction-induced decay of a heteronuclear two-atom system

    PubMed Central

    Xu, Peng; Yang, Jiaheng; Liu, Min; He, Xiaodong; Zeng, Yong; Wang, Kunpeng; Wang, Jin; Papoular, D. J.; Shlyapnikov, G. V.; Zhan, Mingsheng

    2015-01-01

    Two-atom systems in small traps are of fundamental interest for understanding the role of interactions in degenerate cold gases and for the creation of quantum gates in quantum information processing with single-atom traps. One of the key quantities is the inelastic relaxation (decay) time when one of the atoms or both are in a higher hyperfine state. Here we measure this quantity in a heteronuclear system of 87Rb and 85Rb in a micro optical trap and demonstrate experimentally and theoretically the presence of both fast and slow relaxation processes, depending on the choice of the initial hyperfine states. This experimental method allows us to single out a particular relaxation process thus provides an extremely clean platform for collisional physics studies. Our results have also implications for engineering of quantum states via controlled collisions and creation of two-qubit quantum gates. PMID:26199051

  10. Understanding human management of automation errors.

    PubMed

    McBride, Sara E; Rogers, Wendy A; Fisk, Arthur D

    2014-01-01

    Automation has the potential to aid humans with a diverse set of tasks and support overall system performance. Automated systems are not always reliable, and when automation errs, humans must engage in error management, which is the process of detecting, understanding, and correcting errors. However, this process of error management in the context of human-automation interaction is not well understood. Therefore, we conducted a systematic review of the variables that contribute to error management. We examined relevant research in human-automation interaction and human error to identify critical automation, person, task, and emergent variables. We propose a framework for management of automation errors to incorporate and build upon previous models. Further, our analysis highlights variables that may be addressed through design and training to positively influence error management. Additional efforts to understand the error management process will contribute to automation designed and implemented to support safe and effective system performance.

  11. MEMORY MODULATION

    PubMed Central

    Roozendaal, Benno; McGaugh, James L.

    2011-01-01

    Our memories are not all created equally strong: Some experiences are well remembered while others are remembered poorly, if at all. Research on memory modulation investigates the neurobiological processes and systems that contribute to such differences in the strength of our memories. Extensive evidence from both animal and human research indicates that emotionally significant experiences activate hormonal and brain systems that regulate the consolidation of newly acquired memories. These effects are integrated through noradrenergic activation of the basolateral amygdala which regulates memory consolidation via interactions with many other brain regions involved in consolidating memories of recent experiences. Modulatory systems not only influence neurobiological processes underlying the consolidation of new information, but also affect other mnemonic processes, including memory extinction, memory recall and working memory. In contrast to their enhancing effects on consolidation, adrenal stress hormones impair memory retrieval and working memory. Such effects, as with memory consolidation, require noradrenergic activation of the basolateral amygdala and interactions with other brain regions. PMID:22122145

  12. Automated Interactive Simulation Model (AISIM) VAX Version 5.0 Training Manual.

    DTIC Science & Technology

    1987-05-29

    action, activity, decision , etc. that consumes time. The entity is automatically created by the system when an ACTION Primitive is placed. 1.3.2.4 The...MODELED SYSTEM 1.3.2.1 The Process Entity. A Process is used to represent the operations, decisions , actions or activities that can be decomposed and...is associated with the Action entity described below, is included in Process definitions to indicate the time a certain Action (or process, decision

  13. Mixed Initiative Visual Analytics Using Task-Driven Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Kristin A.; Cramer, Nicholas O.; Israel, David

    2015-12-07

    Visual data analysis is composed of a collection of cognitive actions and tasks to decompose, internalize, and recombine data to produce knowledge and insight. Visual analytic tools provide interactive visual interfaces to data to support tasks involved in discovery and sensemaking, including forming hypotheses, asking questions, and evaluating and organizing evidence. Myriad analytic models can be incorporated into visual analytic systems, at the cost of increasing complexity in the analytic discourse between user and system. Techniques exist to increase the usability of interacting with such analytic models, such as inferring data models from user interactions to steer the underlying modelsmore » of the system via semantic interaction, shielding users from having to do so explicitly. Such approaches are often also referred to as mixed-initiative systems. Researchers studying the sensemaking process have called for development of tools that facilitate analytic sensemaking through a combination of human and automated activities. However, design guidelines do not exist for mixed-initiative visual analytic systems to support iterative sensemaking. In this paper, we present a candidate set of design guidelines and introduce the Active Data Environment (ADE) prototype, a spatial workspace supporting the analytic process via task recommendations invoked by inferences on user interactions within the workspace. ADE recommends data and relationships based on a task model, enabling users to co-reason with the system about their data in a single, spatial workspace. This paper provides an illustrative use case, a technical description of ADE, and a discussion of the strengths and limitations of the approach.« less

  14. Interdisciplinary and multilevel optimum design

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.

    1986-01-01

    Interactions among engineering disciplines and subsystems in engineering system design are surveyed and specific instances of such interactions are described. Examination of the interactions that a traditional design process in which the numerical values of major design variables are decided consecutively is likely to lead to a suboptimal design. Supporting numerical examples are a glider and a space antenna. Under an alternative approach introduced, the design and its sensitivity data from the subsystems and disciplines are generated concurrently and then made available to the system designer enabling him to modify the system design so as to improve its performance. Examples of a framework structure and an airliner wing illustrate that approach.

  15. Chronic motivational state interacts with task reward structure in dynamic decision-making.

    PubMed

    Cooper, Jessica A; Worthy, Darrell A; Maddox, W Todd

    2015-12-01

    Research distinguishes between a habitual, model-free system motivated toward immediately rewarding actions, and a goal-directed, model-based system motivated toward actions that improve future state. We examined the balance of processing in these two systems during state-based decision-making. We tested a regulatory fit hypothesis (Maddox & Markman, 2010) that predicts that global trait motivation affects the balance of habitual- vs. goal-directed processing but only through its interaction with the task framing as gain-maximization or loss-minimization. We found support for the hypothesis that a match between an individual's chronic motivational state and the task framing enhances goal-directed processing, and thus state-based decision-making. Specifically, chronic promotion-focused individuals under gain-maximization and chronic prevention-focused individuals under loss-minimization both showed enhanced state-based decision-making. Computational modeling indicates that individuals in a match between global chronic motivational state and local task reward structure engaged more goal-directed processing, whereas those in a mismatch engaged more habitual processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Development of an Intelligent Digital Watershed to understand water-human interaction for a sustainable Agroeconomy in Midwest USA

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Rapolu, U.; Ding, D.; Muste, M.; Bennett, D.; Schnoor, J. L.

    2011-12-01

    Human activity is intricately linked to the quality and quantity of water resources. Although many studies have examined water-human interaction, the complexity of such coupled systems is not well understood largely because of gaps in our knowledge of water-cycle processes which are heavily influenced by socio-economic drivers. Considerable research has been performed to develop an understanding of the impact of local land use decisions on field and catchment processes at an annual basis. Still less is known about the impact of economic and environmental outcomes on decision-making processes at the local and national level. Traditional geographic information management systems lack the ability to support the modeling and analysis of complex spatial processes. New frameworks are needed to track, query, and analyze the massive amounts of data generated by ensembles of simulations produced by multiple models that couple socioeconomic and natural system processes. On this context, we propose to develop an Intelligent Digital Watershed (IDW) which fuses emerging concepts of Digital Watershed (DW). DW is a comprehensive characterization of the eco hydrologic systems based on the best available digital data generated by measurements and simulations models. Prototype IDW in the form of a cyber infrastructure based engineered system will facilitate novel insights into human/environment interactions through multi-disciplinary research focused on watershed-related processes at multiple spatio-temporal scales. In ongoing effort, the prototype IDW is applied to Clear Creek watershed, an agricultural dominating catchment in Iowa, to understand water-human processes relevant to management decisions by farmers regarding agro ecosystems. This paper would also lay out the database design that stores metadata about simulation scenarios, scenario inputs and outputs, and connections among these elements- essentially the database. The paper describes the cyber infrastructure and workflows developed for connecting the IDW modeling tools: ABM, Data-Driven Modeling, and SWAT.

  17. Experimental Investigation and Thermodynamic Assessment of Phase Equilibria in the PLLA/Dioxane/Water Ternary System for Applications in the Biomedical Field.

    PubMed

    Ruggiero, Flavia; Netti, Paolo Antonio; Torino, Enza

    2015-12-01

    Fundamental understanding of thermodynamic of phase separation plays a key role in tuning the desired features of biomedical devices. In particular, phase separation of ternary solution is of remarkable interest in processes to obtain biodegradable and biocompatible architectures applied as artificial devices to repair, replace, or support damaged tissues or organs. In these perspectives, thermally induced phase separation (TIPS) is the most widely used technique to obtained porous morphologies and, in addition, among different ternary systems, polylactic acid (PLLA)/dioxane/water has given promising results and has been largely studied. However, to increase the control of TIPS-based processes and architectures, an investigation of the basic energetic phenomena occurring during phase separation is still required. Here we propose an experimental investigation of the selected ternary system by using isothermal titration calorimetric approach at different solvent/antisolvent ratio and a thermodynamic explanation related to the polymer-solvents interactions in terms of energetic contribution to the phase separation process. Furthermore, relevant information about the phase diagrams and interaction parameters of the studied systems are furnished in terms of liquid-liquid miscibility gap. Indeed, polymer-solvents interactions are responsible for the mechanism of the phase separation process and, therefore, of the final features of the morphologies; the knowledge of such data is fundamental to control processes for the production of membranes, scaffolds and several nanostructures. The behavior of the polymer at different solvent/nonsolvent ratios is discussed in terms of solvation mechanism and a preliminary contribution to the understanding of the role of the hydrogen bonding in the interface phenomena is also reported. It is the first time that thermodynamic data of a ternary system are collected by mean of nano-isothermal titration calorimetry (nano-ITC). Supporting Information is available.

  18. Deciphering molecular interactions of native membrane proteins by single-molecule force spectroscopy.

    PubMed

    Kedrov, Alexej; Janovjak, Harald; Sapra, K Tanuj; Müller, Daniel J

    2007-01-01

    Molecular interactions are the basic language of biological processes. They establish the forces interacting between the building blocks of proteins and other macromolecules, thus determining their functional roles. Because molecular interactions trigger virtually every biological process, approaches to decipher their language are needed. Single-molecule force spectroscopy (SMFS) has been used to detect and characterize different types of molecular interactions that occur between and within native membrane proteins. The first experiments detected and localized molecular interactions that stabilized membrane proteins, including how these interactions were established during folding of alpha-helical secondary structure elements into the native protein and how they changed with oligomerization, temperature, and mutations. SMFS also enables investigators to detect and locate molecular interactions established during ligand and inhibitor binding. These exciting applications provide opportunities for studying the molecular forces of life. Further developments will elucidate the origins of molecular interactions encoded in their lifetimes, interaction ranges, interplay, and dynamics characteristic of biological systems.

  19. Genetic background effects in quantitative genetics: gene-by-system interactions.

    PubMed

    Sardi, Maria; Gasch, Audrey P

    2018-04-11

    Proper cell function depends on networks of proteins that interact physically and functionally to carry out physiological processes. Thus, it seems logical that the impact of sequence variation in one protein could be significantly influenced by genetic variants at other loci in a genome. Nonetheless, the importance of such genetic interactions, known as epistasis, in explaining phenotypic variation remains a matter of debate in genetics. Recent work from our lab revealed that genes implicated from an association study of toxin tolerance in Saccharomyces cerevisiae show extensive interactions with the genetic background: most implicated genes, regardless of allele, are important for toxin tolerance in only one of two tested strains. The prevalence of background effects in our study adds to other reports of widespread genetic-background interactions in model organisms. We suggest that these effects represent many-way interactions with myriad features of the cellular system that vary across classes of individuals. Such gene-by-system interactions may influence diverse traits and require new modeling approaches to accurately represent genotype-phenotype relationships across individuals.

  20. Search strategy using LHC pileup interactions as a zero bias sample

    NASA Astrophysics Data System (ADS)

    Nachman, Benjamin; Rubbo, Francesco

    2018-05-01

    Due to a limited bandwidth and a large proton-proton interaction cross section relative to the rate of interesting physics processes, most events produced at the Large Hadron Collider (LHC) are discarded in real time. A sophisticated trigger system must quickly decide which events should be kept and is very efficient for a broad range of processes. However, there are many processes that cannot be accommodated by this trigger system. Furthermore, there may be models of physics beyond the standard model (BSM) constructed after data taking that could have been triggered, but no trigger was implemented at run time. Both of these cases can be covered by exploiting pileup interactions as an effective zero bias sample. At the end of high-luminosity LHC operations, this zero bias dataset will have accumulated about 1 fb-1 of data from which a bottom line cross section limit of O (1 ) fb can be set for BSM models already in the literature and those yet to come.

  1. Modelling of human-machine interaction in equipment design of manufacturing cells

    NASA Astrophysics Data System (ADS)

    Cochran, David S.; Arinez, Jorge F.; Collins, Micah T.; Bi, Zhuming

    2017-08-01

    This paper proposes a systematic approach to model human-machine interactions (HMIs) in supervisory control of machining operations; it characterises the coexistence of machines and humans for an enterprise to balance the goals of automation/productivity and flexibility/agility. In the proposed HMI model, an operator is associated with a set of behavioural roles as a supervisor for multiple, semi-automated manufacturing processes. The model is innovative in the sense that (1) it represents an HMI based on its functions for process control but provides the flexibility for ongoing improvements in the execution of manufacturing processes; (2) it provides a computational tool to define functional requirements for an operator in HMIs. The proposed model can be used to design production systems at different levels of an enterprise architecture, particularly at the machine level in a production system where operators interact with semi-automation to accomplish the goal of 'autonomation' - automation that augments the capabilities of human beings.

  2. Usability Guidelines for Product Recommenders Based on Example Critiquing Research

    NASA Astrophysics Data System (ADS)

    Pu, Pearl; Faltings, Boi; Chen, Li; Zhang, Jiyong; Viappiani, Paolo

    Over the past decade, our group has developed a suite of decision tools based on example critiquing to help users find their preferred products in e-commerce environments. In this chapter, we survey important usability research work relative to example critiquing and summarize the major results by deriving a set of usability guidelines. Our survey is focused on three key interaction activities between the user and the system: the initial preference elicitation process, the preference revision process, and the presentation of the systems recommendation results. To provide a basis for the derivation of the guidelines, we developed a multi-objective framework of three interacting criteria: accuracy, confidence, and effort (ACE). We use this framework to analyze our past work and provide a specific context for each guideline: when the system should maximize its ability to increase users' decision accuracy, when to increase user confidence, and when to minimize the interaction effort for the users. Due to the general nature of this multi-criteria model, the set of guidelines that we propose can be used to ease the usability engineering process of other recommender systems, especially those used in e-commerce environments. The ACE framework presented here is also the first in the field to evaluate the performance of preference-based recommenders from a user-centric point of view.

  3. Minimization In Digital Design As A Meta-Planning Problem

    NASA Astrophysics Data System (ADS)

    Ho, William P. C.; Wu, Jung-Gen

    1987-05-01

    In our model-based expert system for automatic digital system design, we formalize the design process into three sub-processes - compiling high-level behavioral specifications into primitive behavioral operations, grouping primitive operations into behavioral functions, and grouping functions into modules. Consideration of design minimization explicitly controls decision-making in the last two subprocesses. Design minimization, a key task in the automatic design of digital systems, is complicated by the high degree of interaction among the time sequence and content of design decisions. In this paper, we present an AI approach which directly addresses these interactions and their consequences by modeling the minimization prob-lem as a planning problem, and the management of design decision-making as a meta-planning problem.

  4. Development of a body motion interactive system with a weight voting mechanism and computer vision technology

    NASA Astrophysics Data System (ADS)

    Lin, Chern-Sheng; Chen, Chia-Tse; Shei, Hung-Jung; Lay, Yun-Long; Chiu, Chuang-Chien

    2012-09-01

    This study develops a body motion interactive system with computer vision technology. This application combines interactive games, art performing, and exercise training system. Multiple image processing and computer vision technologies are used in this study. The system can calculate the characteristics of an object color, and then perform color segmentation. When there is a wrong action judgment, the system will avoid the error with a weight voting mechanism, which can set the condition score and weight value for the action judgment, and choose the best action judgment from the weight voting mechanism. Finally, this study estimated the reliability of the system in order to make improvements. The results showed that, this method has good effect on accuracy and stability during operations of the human-machine interface of the sports training system.

  5. Theoretical study on the interactions between chlordecone hydrate and acidic surface groups of activated carbon under basic pH conditions.

    PubMed

    Melchor-Rodríguez, Kenia; Gamboa-Carballo, Juan José; Ferino-Pérez, Anthuan; Passé-Coutrin, Nady; Gaspard, Sarra; Jáuregui-Haza, Ulises Javier

    2018-05-01

    A theoretical study of the influence of acidic surface groups (SG) of activated carbon (AC) on chlordecone hydrate (CLDh) adsorption is presented, in order to help understanding the adsorption process under basic pH conditions. A seven rings aromatic system (coronene) with a functional group in the edge was used as a simplified model of AC to evaluate the influence of SG in the course of adsorption from aqueous solution at basic pH conditions. Two SG were modeled in their deprotonated form: carboxyl and hydroxyl (COO - and O - ), interacting with CLDh. In order to model the solvation process, all systems under study were calculated with up to three water molecules. Multiple Minima Hypersurface (MMH) methodology was employed to study the interactions of CLDh with SG on AC using PM7 semiempirical Hamiltonian, to explore the potential energy surfaces of the systems and evaluate their thermodynamic association energies. The re-optimization of representative structures obtained from MMH was done using M06-2X Density Functional Theory. The Quantum Theory of Atoms in Molecules (QTAIM) was used to characterize the interaction types. As result, the association of CLDh with acidic SG at basic pH conditions preferentially occurs between the two alcohol groups of CLDh with COO - and O - groups and by dispersive interactions of chlorine atoms of CLDh with the graphitic surface. On the other hand, the presence of covalent interactions between the negatively charged oxygen of SG and one hydrogen atom of CLDh alcohol groups (O - ⋯HO interactions) without water molecules, was confirmed by QTAIM study. It can be concluded that the interactions of CLDh with acidic SG of AC under basic pH conditions confirms the physical mechanisms of adsorption process. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Radiative interactions in transient energy transfer in gaseous systems

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.

    1985-01-01

    Analyses and numerical procedures are presented to investigate the radiative interactions in transient energy transfer processes in gaseous systems. The nongray radiative formulations are based on the wide-band model correlations for molecular absorption. Various relations for the radiative flux are developed; these are useful for different flow conditions and physical problems. Specific plans for obtaining extensive results for different cases are presented. The methods presented in this study can be extended easily to investigate the radiative interactions in realistic flows of hydrogen-air species in the scramjet engine.

  7. Chondroitin sulfates and their binding molecules in the central nervous system.

    PubMed

    Djerbal, L; Lortat-Jacob, H; Kwok, Jcf

    2017-06-01

    Chondroitin sulfate (CS) is the most abundant glycosaminoglycan (GAG) in the central nervous system (CNS) matrix. Its sulfation and epimerization patterns give rise to different forms of CS, which enables it to interact specifically and with a significant affinity with various signalling molecules in the matrix including growth factors, receptors and guidance molecules. These interactions control numerous biological and pathological processes, during development and in adulthood. In this review, we describe the specific interactions of different families of proteins involved in various physiological and cognitive mechanisms with CSs in CNS matrix. A better understanding of these interactions could promote a development of inhibitors to treat neurodegenerative diseases.

  8. The transcendent function, moments of meeting and dyadic consciousness: constructive and destructive co-creation in the analytic dyad.

    PubMed

    Carter, Linda

    2010-04-01

    In reading the work of Beebe (2002), Sander (Amadei & Bianchi 2008), Tronick (2007) and Stern and the Boston Change Process Study Group (1998), resonances to the transcendent function can be registered but these researchers seem to be more focused on the interpersonal domain. In particular Tronick's concept of 'dyadic expansion of consciousness' and 'moments of meeting' from the Boston Change Process Study Group describe external dyadic interactions between mothers and babies and therapists and patients while, in contrast, Jung's early focus was on the intrapsychic process of internal interaction between conscious and unconscious within an individual. From an overall perspective, the interpersonal process of change described by infant researchers, when held in conjunction with Jung's internal process of change, together form a transcendent whole that could also be called a complex adaptive system. Such new theoretical perspectives from other fields confirm and elaborate long held Jungian notions such as the transcendent function which is, in many ways, harmonious with a systems perspective. Throughout this paper, clinical vignettes of interactive moments along with sand play and dreams will be used to illustrate theoretical points regarding the healthy process of the transcendent function along with descriptions of failures of such conjunctive experiences.

  9. Auditory Scene Analysis: An Attention Perspective

    PubMed Central

    2017-01-01

    Purpose This review article provides a new perspective on the role of attention in auditory scene analysis. Method A framework for understanding how attention interacts with stimulus-driven processes to facilitate task goals is presented. Previously reported data obtained through behavioral and electrophysiological measures in adults with normal hearing are summarized to demonstrate attention effects on auditory perception—from passive processes that organize unattended input to attention effects that act at different levels of the system. Data will show that attention can sharpen stream organization toward behavioral goals, identify auditory events obscured by noise, and limit passive processing capacity. Conclusions A model of attention is provided that illustrates how the auditory system performs multilevel analyses that involve interactions between stimulus-driven input and top-down processes. Overall, these studies show that (a) stream segregation occurs automatically and sets the basis for auditory event formation; (b) attention interacts with automatic processing to facilitate task goals; and (c) information about unattended sounds is not lost when selecting one organization over another. Our results support a neural model that allows multiple sound organizations to be held in memory and accessed simultaneously through a balance of automatic and task-specific processes, allowing flexibility for navigating noisy environments with competing sound sources. Presentation Video http://cred.pubs.asha.org/article.aspx?articleid=2601618 PMID:29049599

  10. Testing for context-dependence in a processing chain interaction among detritus-feeding aquatic insects

    PubMed Central

    DAUGHERTY, MATTHEW P.; JULIANO, STEVEN A.

    2008-01-01

    Scirtid beetles may benefit mosquitoes Ochlerotatus triseriatus (Say) by consuming whole leaves and leaving behind fine particles required by mosquito larvae. Such interactions based on the sequential use of a resource that occurs in multiple forms are known as processing chains.Models of processing chains predict that interactions can vary from commensal (0, +) to amensal (0, −), depending on how quickly resource is processed in the absence of consumers.The scirtid-O. triseriatus system was used to test the prediction derived from processing chain models that, as consumer-independent processing increases, scirtids benefit mosquitoes less. Consumer-independent processing rate was manipulated by using different leaf species that vary in decay rate, or by physically crushing a single leaf type to different degrees.Although scirtids increased the production of fine particles, the effects of scirtids on mosquitoes were weak and were not dependent on consumer-independent processing rate.In the leaf manipulation experiment, a correlation between scirtid feeding and consumer-independent processing was detected. Numerical simulations suggest that such a correlation may eliminate shifts from commensal to amensal at equilibrium; because mosquito populations are typically not at equilibrium, however, this correlation may not be important.There was evidence that mosquitoes affected scirtids negatively, which is inconsistent with the structure of processing chain interactions in models. Processing chain models need to incorporate more detail on the biology of scirtids and O. triseriatus, especially alternative mechanisms of interaction, if they are to describe scirtid-O. triseriatus dynamics accurately. PMID:19060960

  11. Evaluation of coal feed systems being developed by the Energy Research and Development administration

    NASA Technical Reports Server (NTRS)

    Phen, R. L.; Luckow, W. K.; Mattson, L.; Otth, D.; Tsou, P.

    1977-01-01

    Development criteria and recommendations for coal feed system selections that include supporting data are presented. Considered are the areas of coal feed coasts, coal feed system reliability, and the interaction of the feed system with the conversion process.

  12. Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 1A: Summary

    NASA Technical Reports Server (NTRS)

    Miller, R. E., Jr.; Redhed, D. D.; Kawaguchi, A. S.; Hansen, S. D.; Southall, J. W.

    1973-01-01

    IPAD was defined as a total system oriented to the product design process. This total system was designed to recognize the product design process, individuals and their design process tasks, and the computer-based IPAD System to aid product design. Principal elements of the IPAD System include the host computer and its interactive system software, new executive and data management software, and an open-ended IPAD library of technical programs to match the intended product design process. The basic goal of the IPAD total system is to increase the productivity of the product design organization. Increases in individual productivity were feasible through automation and computer support of routine information handling. Such proven automation can directly decrease cost and flowtime in the product design process.

  13. Preliminary Investigation of Keyhole Phenomena during Single Layer Fabrication in Laser Additive Manufacturing of Stainless Steel

    NASA Astrophysics Data System (ADS)

    Matilainen, Ville-Pekka; Piili, Heidi; Salminen, Antti; Nyrhilä, Olli

    Laser additive manufacturing (LAM) is a fabrication technology that enables production of complex parts from metallic materials with mechanical properties comparable to conventionally manufactured parts. In the LAM process, parts are manufactured by melting metallic powder layer-by-layer with a laser beam. This manufacturing technology is nowadays called powder bed fusion (PBF) according to the ASTM F2792-12a standard. This strategy involves several different independent and dependent thermal cycles, all of which have an influence on the final properties of the manufactured part. The quality of PBF parts depends strongly on the characteristics of each single laser-melted track and each single layer. This study consequently concentrates on investigating the effects of process parameters such as laser power on single track and layer formation and laser-material interaction phenomena occurring during the PBF process. Experimental tests were done with two different machines: a modified research machine based on an EOS EOSINT M-series system and an EOS EOSINT M280 system. The material used was EOS stainless steel 17-4 PH. Process monitoring was done with an active illuminated high speed camera system. After microscopy analysis, it was concluded that a keyhole can form during laser additive manufacturing of stainless steel. It was noted that heat input has an important effect on the likelihood of keyhole formation. The threshold intensity value for keyhole formation of 106 W/cm2 was exceeded in all manufactured single tracks. Laser interaction time was found to have an effect on penetration depth and keyhole formation, since the penetration depth increased with increased laser interaction time. It was also concluded that active illuminated high speed camera systems are suitable for monitoring of the manufacturing process and facilitate process control.

  14. Review of Aerosol–Cloud Interactions: Mechanisms, Significance, and Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Jiwen; Wang, Yuan; Rosenfeld, Daniel

    2016-11-01

    Over the past decade, the number of studies that investigate aerosol-cloud interactions has increased considerably. Although tremendous progress has been made to improve our understanding of basic physical mechanisms of aerosol-cloud interactions and reduce their uncertainties in climate forcing, we are still in poor understanding of (1) some of the mechanisms that interact with each other over multiple spatial and temporal scales, (2) the feedback between microphysical and dynamical processes and between local-scale processes and large-scale circulations, and (3) the significance of cloud-aerosol interactions on weather systems as well as regional and global climate. This review focuses on recent theoreticalmore » studies and important mechanisms on aerosol-cloud interactions, and discusses the significances of aerosol impacts on raditative forcing and precipitation extremes associated with different cloud systems. Despite significant understanding has been gained about aerosol impacts on the main cloud types, there are still many unknowns especially associated with various deep convective systems. Therefore, large efforts are needed to escalate our understanding. Future directions should focus on obtaining concurrent measurements of aerosol properties, cloud microphysical and dynamic properties over a range of temporal and spatial scales collected over typical climate regimes and closure studies, as well as improving understanding and parameterizations of cloud microphysics such as ice nucleation, mixed-phase properties, and hydrometeor size and fall speed« less

  15. Finding Waldo: Learning about Users from their Interactions.

    PubMed

    Brown, Eli T; Ottley, Alvitta; Zhao, Helen; Quan Lin; Souvenir, Richard; Endert, Alex; Chang, Remco

    2014-12-01

    Visual analytics is inherently a collaboration between human and computer. However, in current visual analytics systems, the computer has limited means of knowing about its users and their analysis processes. While existing research has shown that a user's interactions with a system reflect a large amount of the user's reasoning process, there has been limited advancement in developing automated, real-time techniques that mine interactions to learn about the user. In this paper, we demonstrate that we can accurately predict a user's task performance and infer some user personality traits by using machine learning techniques to analyze interaction data. Specifically, we conduct an experiment in which participants perform a visual search task, and apply well-known machine learning algorithms to three encodings of the users' interaction data. We achieve, depending on algorithm and encoding, between 62% and 83% accuracy at predicting whether each user will be fast or slow at completing the task. Beyond predicting performance, we demonstrate that using the same techniques, we can infer aspects of the user's personality factors, including locus of control, extraversion, and neuroticism. Further analyses show that strong results can be attained with limited observation time: in one case 95% of the final accuracy is gained after a quarter of the average task completion time. Overall, our findings show that interactions can provide information to the computer about its human collaborator, and establish a foundation for realizing mixed-initiative visual analytics systems.

  16. A dedicated network for social interaction processing in the primate brain.

    PubMed

    Sliwa, J; Freiwald, W A

    2017-05-19

    Primate cognition requires interaction processing. Interactions can reveal otherwise hidden properties of intentional agents, such as thoughts and feelings, and of inanimate objects, such as mass and material. Where and how interaction analyses are implemented in the brain is unknown. Using whole-brain functional magnetic resonance imaging in macaque monkeys, we discovered a network centered in the medial and ventrolateral prefrontal cortex that is exclusively engaged in social interaction analysis. Exclusivity of specialization was found for no other function anywhere in the brain. Two additional networks, a parieto-premotor and a temporal one, exhibited both social and physical interaction preference, which, in the temporal lobe, mapped onto a fine-grain pattern of object, body, and face selectivity. Extent and location of a dedicated system for social interaction analysis suggest that this function is an evolutionary forerunner of human mind-reading capabilities. Copyright © 2017, American Association for the Advancement of Science.

  17. A CAD approach to magnetic bearing design

    NASA Technical Reports Server (NTRS)

    Jeyaseelan, M.; Anand, D. K.; Kirk, J. A.

    1988-01-01

    A design methodology has been developed at the Magnetic Bearing Research Laboratory for designing magnetic bearings using a CAD approach. This is used in the algorithm of an interactive design software package. The package is a design tool developed to enable the designer to simulate the entire process of design and analysis of the system. Its capabilities include interactive input/modification of geometry, finding any possible saturation at critical sections of the system, and the design and analysis of a control system that stabilizes and maintains magnetic suspension.

  18. Tracking the course of the manufacturing process in selective laser melting

    NASA Astrophysics Data System (ADS)

    Thombansen, U.; Gatej, A.; Pereira, M.

    2014-02-01

    An innovative optical train for a selective laser melting based manufacturing system (SLM) has been designed under the objective to track the course of the SLM process. In this, the thermal emission from the melt pool and the geometric properties of the interaction zone are addressed by applying a pyrometer and a camera system respectively. The optical system is designed such that all three radiations from processing laser, thermal emission and camera image are coupled coaxially and that they propagate on the same optical axis. As standard f-theta lenses for high power applications inevitably lead to aberrations and divergent optical axes for increasing deflection angles in combination with multiple wavelengths, a pre-focus system is used to implement a focusing unit which shapes the beam prior to passing the scanner. The sensor system records synchronously the current position of the laser beam, the current emission from the melt pool and an image of the interaction zone. Acquired data of the thermal emission is being visualized after processing which allows an instant evaluation of the course of the process at any position of each layer. As such, it provides a fully detailed history of the product This basic work realizes a first step towards self-optimization of the manufacturing process by providing information about quality relevant events during manufacture. The deviation from the planned course of the manufacturing process to the actual course of the manufacturing process can be used to adapt the manufacturing strategy from one layer to the next. In the current state, the system can be used to facilitate the setup of the manufacturing system as it allows identification of false machine settings without having to analyze the work piece.

  19. STRUTEX: A prototype knowledge-based system for initially configuring a structure to support point loads in two dimensions

    NASA Technical Reports Server (NTRS)

    Robers, James L.; Sobieszczanski-Sobieski, Jaroslaw

    1989-01-01

    Only recently have engineers begun making use of Artificial Intelligence (AI) tools in the area of conceptual design. To continue filling this void in the design process, a prototype knowledge-based system, called STRUTEX has been developed to initially configure a structure to support point loads in two dimensions. This prototype was developed for testing the application of AI tools to conceptual design as opposed to being a testbed for new methods for improving structural analysis and optimization. This system combines numerical and symbolic processing by the computer with interactive problem solving aided by the vision of the user. How the system is constructed to interact with the user is described. Of special interest is the information flow between the knowledge base and the data base under control of the algorithmic main program. Examples of computed and refined structures are presented during the explanation of the system.

  20. Science with society in the anthropocene.

    PubMed

    Seidl, Roman; Brand, Fridolin Simon; Stauffacher, Michael; Krütli, Pius; Le, Quang Bao; Spörri, Andy; Meylan, Grégoire; Moser, Corinne; González, Monica Berger; Scholz, Roland Werner

    2013-02-01

    Interdisciplinary scientific knowledge is necessary but not sufficient when it comes to addressing sustainable transformations, as science increasingly has to deal with normative and value-related issues. A systems perspective on coupled human-environmental systems (HES) helps to address the inherent complexities. Additionally, a thorough interaction between science and society (i.e., transdisciplinarity = TD) is necessary, as sustainable transitions are sometimes contested and can cause conflicts. In order to navigate complexities regarding the delicate interaction of scientific research with societal decisions these processes must proceed in a structured and functional way. We thus propose HES-based TD processes to provide a basis for reorganizing science in coming decades.

  1. Farm to Table and beyond: Helping Students Make Sense of the Global Food System

    ERIC Educational Resources Information Center

    Koch, Pamela; Barton, Angela Calabrese; Contento, Isobel; Crabtree, Margo

    2008-01-01

    It is not enough for students to acquire knowledge about how food is produced and processed; they must also come to understand the biological and environmental contexts in which food production, processing, and transportation take place. Through diagramming, students begin to understand that our food system has a series of interacting parts and…

  2. Development of a novel coding scheme (SABICS) to record nurse-child interactive behaviours in a community dental preventive intervention.

    PubMed

    Zhou, Yuefang; Cameron, Elaine; Forbes, Gillian; Humphris, Gerry

    2012-08-01

    To develop and validate the St Andrews Behavioural Interaction Coding Scheme (SABICS): a tool to record nurse-child interactive behaviours. The SABICS was developed primarily from observation of video recorded interactions; and refined through an iterative process of applying the scheme to new data sets. Its practical applicability was assessed via implementation of the scheme on specialised behavioural coding software. Reliability was calculated using Cohen's Kappa. Discriminant validity was assessed using logistic regression. The SABICS contains 48 codes. Fifty-five nurse-child interactions were successfully coded through administering the scheme on The Observer XT8.0 system. Two visualization results of interaction patterns demonstrated the scheme's capability of capturing complex interaction processes. Cohen's Kappa was 0.66 (inter-coder) and 0.88 and 0.78 (two intra-coders). The frequency of nurse behaviours, such as "instruction" (OR = 1.32, p = 0.027) and "praise" (OR = 2.04, p = 0.027), predicted a child receiving the intervention. The SABICS is a unique system to record interactions between dental nurses and 3-5 years old children. It records and displays complex nurse-child interactive behaviours. It is easily administered and demonstrates reasonable psychometric properties. The SABICS has potential for other paediatric settings. Its development procedure may be helpful for other similar coding scheme development. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Electronic Health Object

    PubMed Central

    Almunawar, Mohammad Nabil; Anshari, Muhammad; Younis, Mustafa Z.; Kisa, Adnan

    2015-01-01

    Electronic health records (EHRs) store health-related patient information in an electronic format, improving the quality of health care management and increasing efficiency of health care processes. However, in existing information systems, health-related records are generated, managed, and controlled by health care organizations. Patients are perceived as recipients of care and normally cannot directly interact with the system that stores their health-related records; their participation in enriching this information is not possible. Many businesses now allow customers to participate in generating information for their systems, strengthening customer relationships. This trend is supported by Web 2.0, which enables interactivity through various means, including social networks. Health care systems should be able to take advantage of this development. This article proposes a novel framework in addressing the emerging need for interactivity while preserving and extending existing electronic medical data. The framework has 3 dimensions of patient health record: personal, social, and medical dimensions. The framework is designed to empower patients, changing their roles from static recipient of health care services to dynamic and active partners in health care processes. PMID:26660486

  4. CISN ShakeAlert Earthquake Early Warning System Monitoring Tools

    NASA Astrophysics Data System (ADS)

    Henson, I. H.; Allen, R. M.; Neuhauser, D. S.

    2015-12-01

    CISN ShakeAlert is a prototype earthquake early warning system being developed and tested by the California Integrated Seismic Network. The system has recently been expanded to support redundant data processing and communications. It now runs on six machines at three locations with ten Apache ActiveMQ message brokers linking together 18 waveform processors, 12 event association processes and 4 Decision Module alert processes. The system ingests waveform data from about 500 stations and generates many thousands of triggers per day, from which a small portion produce earthquake alerts. We have developed interactive web browser system-monitoring tools that display near real time state-of-health and performance information. This includes station availability, trigger statistics, communication and alert latencies. Connections to regional earthquake catalogs provide a rapid assessment of the Decision Module hypocenter accuracy. Historical performance can be evaluated, including statistics for hypocenter and origin time accuracy and alert time latencies for different time periods, magnitude ranges and geographic regions. For the ElarmS event associator, individual earthquake processing histories can be examined, including details of the transmission and processing latencies associated with individual P-wave triggers. Individual station trigger and latency statistics are available. Detailed information about the ElarmS trigger association process for both alerted events and rejected events is also available. The Google Web Toolkit and Map API have been used to develop interactive web pages that link tabular and geographic information. Statistical analysis is provided by the R-Statistics System linked to a PostgreSQL database.

  5. Quantifying electron transfer reactions in biological systems: what interactions play the major role?

    NASA Astrophysics Data System (ADS)

    Sjulstok, Emil; Olsen, Jógvan Magnus Haugaard; Solov'Yov, Ilia A.

    2015-12-01

    Various biological processes involve the conversion of energy into forms that are usable for chemical transformations and are quantum mechanical in nature. Such processes involve light absorption, excited electronic states formation, excitation energy transfer, electrons and protons tunnelling which for example occur in photosynthesis, cellular respiration, DNA repair, and possibly magnetic field sensing. Quantum biology uses computation to model biological interactions in light of quantum mechanical effects and has primarily developed over the past decade as a result of convergence between quantum physics and biology. In this paper we consider electron transfer in biological processes, from a theoretical view-point; namely in terms of quantum mechanical and semi-classical models. We systematically characterize the interactions between the moving electron and its biological environment to deduce the driving force for the electron transfer reaction and to establish those interactions that play the major role in propelling the electron. The suggested approach is seen as a general recipe to treat electron transfer events in biological systems computationally, and we utilize it to describe specifically the electron transfer reactions in Arabidopsis thaliana cryptochrome-a signaling photoreceptor protein that became attractive recently due to its possible function as a biological magnetoreceptor.

  6. Towards Co-Engineering Communicating Autonomous Cyber-Physical Systems

    NASA Technical Reports Server (NTRS)

    Bujorianu, Marius C.; Bujorianu, Manuela L.

    2009-01-01

    In this paper, we sketch a framework for interdisciplinary modeling of space systems, by proposing a holistic view. We consider different system dimensions and their interaction. Specifically, we study the interactions between computation, physics, communication, uncertainty and autonomy. The most comprehensive computational paradigm that supports a holistic perspective on autonomous space systems is given by cyber-physical systems. For these, the state of art consists of collaborating multi-engineering efforts that prompt for an adequate formal foundation. To achieve this, we propose a leveraging of the traditional content of formal modeling by a co-engineering process.

  7. The Use of a UNIX-Based Workstation in the Information Systems Laboratory

    DTIC Science & Technology

    1989-03-01

    system. The conclusions of the research and the resulting recommendations are presented in Chapter III. These recommendations include how to manage...required to run the program on a new system, these should not be significant changes. 2. Processing Environment The UNIX processing environment is...interactive with multi-tasking and multi-user capabilities. Multi-tasking refers to the fact that many programs can be run concurrently. This capability

  8. Social interaction in synthetic and natural microbial communities.

    PubMed

    Xavier, Joao B

    2011-04-12

    Social interaction among cells is essential for multicellular complexity. But how do molecular networks within individual cells confer the ability to interact? And how do those same networks evolve from the evolutionary conflict between individual- and population-level interests? Recent studies have dissected social interaction at the molecular level by analyzing both synthetic and natural microbial populations. These studies shed new light on the role of population structure for the evolution of cooperative interactions and revealed novel molecular mechanisms that stabilize cooperation among cells. New understanding of populations is changing our view of microbial processes, such as pathogenesis and antibiotic resistance, and suggests new ways to fight infection by exploiting social interaction. The study of social interaction is also challenging established paradigms in cancer evolution and immune system dynamics. Finding similar patterns in such diverse systems suggests that the same 'social interaction motifs' may be general to many cell populations.

  9. Adaptive Correction from Virtually Complex Dynamic Libraries: The Role of Noncovalent Interactions in Structural Selection and Folding.

    PubMed

    Lafuente, Maria; Atcher, Joan; Solà, Jordi; Alfonso, Ignacio

    2015-11-16

    The hierarchical self-assembling of complex molecular systems is dictated by the chemical and structural information stored in their components. This information can be expressed through an adaptive process that determines the structurally fittest assembly under given environmental conditions. We have set up complex disulfide-based dynamic covalent libraries of chemically and topologically diverse pseudopeptidic compounds. We show how the reaction evolves from very complex mixtures at short reaction times to the almost exclusive formation of a major compound, through the establishment of intramolecular noncovalent interactions. Our experiments demonstrate that the systems evolve through error-check and error-correction processes. The nature of these interactions, the importance of the folding and the effects of the environment are also discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. SABRINA - an interactive geometry modeler for MCNP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, J.T.; Murphy, J.

    One of the most difficult tasks when analyzing a complex three-dimensional system with Monte Carlo is geometry model development. SABRINA attempts to make the modeling process more user-friendly and less of an obstacle. It accepts both combinatorial solid bodies and MCNP surfaces and produces MCNP cells. The model development process in SABRINA is highly interactive and gives the user immediate feedback on errors. Users can view their geometry from arbitrary perspectives while the model is under development and interactively find and correct modeling errors. An example of a SABRINA display is shown. It represents a complex three-dimensional shape.

  11. Computer graphics application in the engineering design integration system

    NASA Technical Reports Server (NTRS)

    Glatt, C. R.; Abel, R. W.; Hirsch, G. N.; Alford, G. E.; Colquitt, W. N.; Stewart, W. A.

    1975-01-01

    The computer graphics aspect of the Engineering Design Integration (EDIN) system and its application to design problems were discussed. Three basic types of computer graphics may be used with the EDIN system for the evaluation of aerospace vehicles preliminary designs: offline graphics systems using vellum-inking or photographic processes, online graphics systems characterized by direct coupled low cost storage tube terminals with limited interactive capabilities, and a minicomputer based refresh terminal offering highly interactive capabilities. The offline line systems are characterized by high quality (resolution better than 0.254 mm) and slow turnaround (one to four days). The online systems are characterized by low cost, instant visualization of the computer results, slow line speed (300 BAUD), poor hard copy, and the early limitations on vector graphic input capabilities. The recent acquisition of the Adage 330 Graphic Display system has greatly enhanced the potential for interactive computer aided design.

  12. A network-based training environment: a medical image processing paradigm.

    PubMed

    Costaridou, L; Panayiotakis, G; Sakellaropoulos, P; Cavouras, D; Dimopoulos, J

    1998-01-01

    The capability of interactive multimedia and Internet technologies is investigated with respect to the implementation of a distance learning environment. The system is built according to a client-server architecture, based on the Internet infrastructure, composed of server nodes conceptually modelled as WWW sites. Sites are implemented by customization of available components. The environment integrates network-delivered interactive multimedia courses, network-based tutoring, SIG support, information databases of professional interest, as well as course and tutoring management. This capability has been demonstrated by means of an implemented system, validated with digital image processing content, specifically image enhancement. Image enhancement methods are theoretically described and applied to mammograms. Emphasis is given to the interactive presentation of the effects of algorithm parameters on images. The system end-user access depends on available bandwidth, so high-speed access can be achieved via LAN or local ISDN connections. Network based training offers new means of improved access and sharing of learning resources and expertise, as promising supplements in training.

  13. Categorisation of visualisation methods to support the design of Human-Computer Interaction Systems.

    PubMed

    Li, Katie; Tiwari, Ashutosh; Alcock, Jeffrey; Bermell-Garcia, Pablo

    2016-07-01

    During the design of Human-Computer Interaction (HCI) systems, the creation of visual artefacts forms an important part of design. On one hand producing a visual artefact has a number of advantages: it helps designers to externalise their thought and acts as a common language between different stakeholders. On the other hand, if an inappropriate visualisation method is employed it could hinder the design process. To support the design of HCI systems, this paper reviews the categorisation of visualisation methods used in HCI. A keyword search is conducted to identify a) current HCI design methods, b) approaches of selecting these methods. The resulting design methods are filtered to create a list of just visualisation methods. These are then categorised using the approaches identified in (b). As a result 23 HCI visualisation methods are identified and categorised in 5 selection approaches (The Recipient, Primary Purpose, Visual Archetype, Interaction Type, and The Design Process). Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Ames interactive molecular model building system - A 3-D computer modelling system applied to the study of the origin of life

    NASA Technical Reports Server (NTRS)

    Coeckelenbergh, Y.; Macelroy, R. D.; Rein, R.

    1978-01-01

    The investigation of specific interactions among biological molecules must take into consideration the stereochemistry of the structures. Thus, models of the molecules are essential for describing the spatial organization of potentially interacting groups, and estimations of conformation are required for a description of spatial organization. Both the function of visualizing molecules, and that of estimating conformation through calculations of energy, are part of the molecular modeling system described in the present paper. The potential uses of the system in investigating some aspects of the origin of life rest on the assumption that translation of conformation from genetic elements to catalytic elements would have been required for the development of the first replicating systems subject to the process of biological evolution.

  15. APPLEPIPS /Apple Personal Image Processing System/ - An interactive digital image processing system for the Apple II microcomputer

    NASA Technical Reports Server (NTRS)

    Masuoka, E.; Rose, J.; Quattromani, M.

    1981-01-01

    Recent developments related to microprocessor-based personal computers have made low-cost digital image processing systems a reality. Image analysis systems built around these microcomputers provide color image displays for images as large as 256 by 240 pixels in sixteen colors. Descriptive statistics can be computed for portions of an image, and supervised image classification can be obtained. The systems support Basic, Fortran, Pascal, and assembler language. A description is provided of a system which is representative of the new microprocessor-based image processing systems currently on the market. While small systems may never be truly independent of larger mainframes, because they lack 9-track tape drives, the independent processing power of the microcomputers will help alleviate some of the turn-around time problems associated with image analysis and display on the larger multiuser systems.

  16. Symbolic and Interactional Perspectives on Leadership: An Integrative Framework.

    DTIC Science & Technology

    1985-05-01

    RD-RI55 24? SYMBOLIC AND INTERACTIONAL PERSPECTIVES ON LEADERSHIP: 1/1 AN INTEGRATIVE FRA..(U) TEXAS A AND M UNIV COLLEGE STATION DEPT OF MANAGEMENT...Processing Systems Office of Naval Research Technical Report Series Symbolic and Interactional 11% Perspectives on Leadership: An Integrative Framework...Richard Daft -~ and Ricky Griffin CAs * Principal Investigators IThi. dmmu asbom apro 1W ~ ~ 1W ~ w 4 d a% f dkbsa Symbolic and Interactional Perspectives

  17. Standards for the Analysis and Processing of Surface-Water Data and Information Using Electronic Methods

    USGS Publications Warehouse

    Sauer, Vernon B.

    2002-01-01

    Surface-water computation methods and procedures are described in this report to provide standards from which a completely automated electronic processing system can be developed. To the greatest extent possible, the traditional U. S. Geological Survey (USGS) methodology and standards for streamflow data collection and analysis have been incorporated into these standards. Although USGS methodology and standards are the basis for this report, the report is applicable to other organizations doing similar work. The proposed electronic processing system allows field measurement data, including data stored on automatic field recording devices and data recorded by the field hydrographer (a person who collects streamflow and other surface-water data) in electronic field notebooks, to be input easily and automatically. A user of the electronic processing system easily can monitor the incoming data and verify and edit the data, if necessary. Input of the computational procedures, rating curves, shift requirements, and other special methods are interactive processes between the user and the electronic processing system, with much of this processing being automatic. Special computation procedures are provided for complex stations such as velocity-index, slope, control structures, and unsteady-flow models, such as the Branch-Network Dynamic Flow Model (BRANCH). Navigation paths are designed to lead the user through the computational steps for each type of gaging station (stage-only, stagedischarge, velocity-index, slope, rate-of-change in stage, reservoir, tide, structure, and hydraulic model stations). The proposed electronic processing system emphasizes the use of interactive graphics to provide good visual tools for unit values editing, rating curve and shift analysis, hydrograph comparisons, data-estimation procedures, data review, and other needs. Documentation, review, finalization, and publication of records are provided for with the electronic processing system, as well as archiving, quality assurance, and quality control.

  18. Comprehensive process model of clinical information interaction in primary care: results of a "best-fit" framework synthesis.

    PubMed

    Veinot, Tiffany C; Senteio, Charles R; Hanauer, David; Lowery, Julie C

    2018-06-01

    To describe a new, comprehensive process model of clinical information interaction in primary care (Clinical Information Interaction Model, or CIIM) based on a systematic synthesis of published research. We used the "best fit" framework synthesis approach. Searches were performed in PubMed, Embase, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), PsycINFO, Library and Information Science Abstracts, Library, Information Science and Technology Abstracts, and Engineering Village. Two authors reviewed articles according to inclusion and exclusion criteria. Data abstraction and content analysis of 443 published papers were used to create a model in which every element was supported by empirical research. The CIIM documents how primary care clinicians interact with information as they make point-of-care clinical decisions. The model highlights 3 major process components: (1) context, (2) activity (usual and contingent), and (3) influence. Usual activities include information processing, source-user interaction, information evaluation, selection of information, information use, clinical reasoning, and clinical decisions. Clinician characteristics, patient behaviors, and other professionals influence the process. The CIIM depicts the complete process of information interaction, enabling a grasp of relationships previously difficult to discern. The CIIM suggests potentially helpful functionality for clinical decision support systems (CDSSs) to support primary care, including a greater focus on information processing and use. The CIIM also documents the role of influence in clinical information interaction; influencers may affect the success of CDSS implementations. The CIIM offers a new framework for achieving CDSS workflow integration and new directions for CDSS design that can support the work of diverse primary care clinicians.

  19. Visualization and quantification of deformation processes controlling the mechanical response of alloys in aggressive environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Ian M.

    The overall objective of this program was to develop the technique of electron tomography for studies of defects and to couple it with real time dynamic experiments such that four-dimensional (time and three spatial dimensions) characterization of dislocation interactions with defects is feasible and apply it to discovery of the fundamental unit processes of dislocation-defect interactions in metallic systems. Strategies to overcome the restrictions normally associated with electron tomography and to make it practical within the constraints of conducting a dynamic experiment in the transmission electron microscope were developed. These methods were used to determine the mechanism controlling the transfermore » of slip across grain boundaries in FCC and HCP metals, dislocation precipitate interactions in Al alloys, and dislocation-dislocation interactions in HCP Ti. In addition, preliminary investigations of slip transfer across cube-on-cube and incoherent twin interfaces in a multi-layered system, thermal stability of grains in nanongrained Ni and Fe, and on corrosion of Fe films were conducted.« less

  20. Interplay of interaction and disorder in the steady state of an open quantum system

    NASA Astrophysics Data System (ADS)

    Xu, Xiansong; Guo, Chu; Poletti, Dario

    2018-04-01

    Many types of dissipative processes can be found in nature or be engineered, and their interplay with a system can give rise to interesting phases of matter. Here we study the interplay among interaction, tunneling, and disorder in the steady state of a spin chain coupled to a tailored bath. We consider a dissipation which, in contrast to disorder, tends to generate a homogeneously polarized steady state. We find that the steady state can be highly sensitive even to weak disorder. We also establish that, in the presence of such dissipation, even in the absence of interaction, a finite amount of disorder is needed for localization. Last, we show that for strong disorder the system reveals signatures of localization both in the weakly and strong interacting regimes.

  1. Social Information Processing Analysis (SIPA): Coding Ongoing Human Communication.

    ERIC Educational Resources Information Center

    Fisher, B. Aubrey; And Others

    1979-01-01

    The purpose of this paper is to present a new analytical system to be used in communication research. Unlike many existing systems devised ad hoc, this research tool, a system for interaction analysis, is embedded in a conceptual rationale based on modern systems theory. (Author)

  2. Process Network Approach to Understanding How Forest Ecosystems Adapt to Changes

    NASA Astrophysics Data System (ADS)

    Kim, J.; Yun, J.; Hong, J.; Kwon, H.; Chun, J.

    2011-12-01

    Sustainability challenges are transforming science and its role in society. Complex systems science has emerged as an inevitable field of education and research, which transcends disciplinary boundaries and focuses on understanding of the dynamics of complex social-ecological systems (SES). SES is a combined system of social and ecological components and drivers that interact and give rise to results, which could not be understood on the basis of sociological or ecological considerations alone. However, both systems may be viewed as a network of processes, and such a network hierarchy may serve as a hinge to bridge social and ecological systems. As a first step toward such effort, we attempted to delineate and interpret such process networks in forest ecosystems, which play a critical role in the cycles of carbon and water from local to global scales. These cycles and their variability, in turn, play an important role in the emergent and self-organizing interactions between forest ecosystems and their environment. Ruddell and Kumar (2009) define a process network as a network of feedback loops and the related time scales, which describe the magnitude and direction of the flow of energy, matter, and information between the different variables in a complex system. Observational evidence, based on micrometeorological eddy covariance measurements, suggests that heterogeneity and disturbances in forest ecosystems in monsoon East Asia may facilitate to build resilience for adaptation to change. Yet, the principles that characterize the role of variability in these interactions remain elusive. In this presentation, we report results from the analysis of multivariate ecohydrologic and biogeochemical time series data obtained from temperate forest ecosystems in East Asia based on information flow statistics.

  3. Real-time interactive projection system based on infrared structured-light method

    NASA Astrophysics Data System (ADS)

    Qiao, Xiaorui; Zhou, Qian; Ni, Kai; He, Liang; Wu, Guanhao; Mao, Leshan; Cheng, Xuemin; Ma, Jianshe

    2012-11-01

    Interactive technologies have been greatly developed in recent years, especially in projection field. However, at present, most interactive projection systems are based on special designed interactive pens or whiteboards, which is inconvenient and limits the improvement of user experience. In this paper, we introduced our recent progress on theoretically modeling a real-time interactive projection system. The system permits the user to easily operate or draw on the projection screen directly by fingers without any other auxiliary equipment. The projector projects infrared striping patterns onto the screen and the CCD captures the deformational image. We resolve the finger's position and track its movement by processing the deformational image in real-time. A new way to determine whether the finger touches the screen is proposed. The first deformational fringe on the fingertip and the first fringe at the finger shadow are the same one. The correspondence is obtained, so the location parameters can be decided by triangulation. The simulation results are given, and errors are analyzed.

  4. Recent directions taken in water, energy, and biogeochemical budgets research

    USGS Publications Warehouse

    Lins, Harry F.

    1994-01-01

    Understanding and predicting global change is a major scientific focus of the late 20th century. Although atmospheric scientists have made substantial progress in developing models that account for many components of the climate system, significant progress is needed in understanding processes associated with the exchange of water, energy, and carbon between terrestrial systems and the atmosphere.To strengthen terrestrial process research, especially research associated with the interactions of water, energy, gases, nutrients, and vegetation, the U.S. Geological Survey initiated an intensive study of Water, Energy, and Biogeochemical Budgets (WEBB). WEBB is aimed at improving understanding of processes controlling terrestrial water, energy, and biogeochemical fluxes, their interactions, and their relations to climatic variables; and the ability to predict continental water, energy, and biogeochemical budgets over a range of spatial and temporal scales.

  5. Protein–protein interactions and selection: yeast-based approaches that exploit guanine nucleotide-binding protein signaling.

    PubMed

    Ishii, Jun; Fukuda, Nobuo; Tanaka, Tsutomu; Ogino, Chiaki; Kondo, Akihiko

    2010-05-01

    For elucidating protein–protein interactions, many methodologies have been developed during the past two decades. For investigation of interactions inside cells under physiological conditions, yeast is an attractive organism with which to quickly screen for hopeful candidates using versatile genetic technologies, and various types of approaches are now available.Among them, a variety of unique systems using the guanine nucleotide-binding protein (G-protein) signaling pathway in yeast have been established to investigate the interactions of proteins for biological study and pharmaceutical research. G-proteins involved in various cellular processes are mainly divided into two groups: small monomeric G-proteins,and heterotrimeric G-proteins. In this minireview, we summarize the basic principles and applications of yeast-based screening systems, using these two types of G-protein, which are typically used for elucidating biological protein interactions but are differentiated from traditional yeast two-hybrid systems.

  6. Toshiba TDF-500 High Resolution Viewing And Analysis System

    NASA Astrophysics Data System (ADS)

    Roberts, Barry; Kakegawa, M.; Nishikawa, M.; Oikawa, D.

    1988-06-01

    A high resolution, operator interactive, medical viewing and analysis system has been developed by Toshiba and Bio-Imaging Research. This system provides many advanced features including high resolution displays, a very large image memory and advanced image processing capability. In particular, the system provides CRT frame buffers capable of update in one frame period, an array processor capable of image processing at operator interactive speeds, and a memory system capable of updating multiple frame buffers at frame rates whilst supporting multiple array processors. The display system provides 1024 x 1536 display resolution at 40Hz frame and 80Hz field rates. In particular, the ability to provide whole or partial update of the screen at the scanning rate is a key feature. This allows multiple viewports or windows in the display buffer with both fixed and cine capability. To support image processing features such as windowing, pan, zoom, minification, filtering, ROI analysis, multiplanar and 3D reconstruction, a high performance CPU is integrated into the system. This CPU is an array processor capable of up to 400 million instructions per second. To support the multiple viewer and array processors' instantaneous high memory bandwidth requirement, an ultra fast memory system is used. This memory system has a bandwidth capability of 400MB/sec and a total capacity of 256MB. This bandwidth is more than adequate to support several high resolution CRT's and also the fast processing unit. This fully integrated approach allows effective real time image processing. The integrated design of viewing system, memory system and array processor are key to the imaging system. It is the intention to describe the architecture of the image system in this paper.

  7. First- and second-order processing in transient stereopsis.

    PubMed

    Edwards, M; Pope, D R; Schor, C M

    2000-01-01

    Large-field stimuli were used to investigate the interaction of first- and second-order pathways in transient-stereo processing. Stimuli consisted of sinewave modulations in either the mean luminance (first-order stimulus) or the contrast (second-order stimulus) of a dynamic-random-dot field. The main results of the present study are that: (1) Depth could be extracted with both the first-order and second-order stimuli; (2) Depth could be extracted from dichoptically mixed first- and second-order stimuli, however, the same stimuli, when presented as a motion sequence, did not result in a motion percept. Based upon these findings we conclude that the transient-stereo system processes both first- and second-order signals, and that these two signals are pooled prior to the extraction of transient depth. This finding of interaction between first- and second-order stereoscopic processing is different from the independence that has been found with the motion system.

  8. Rule-based modeling: a computational approach for studying biomolecular site dynamics in cell signaling systems

    PubMed Central

    Chylek, Lily A.; Harris, Leonard A.; Tung, Chang-Shung; Faeder, James R.; Lopez, Carlos F.

    2013-01-01

    Rule-based modeling was developed to address the limitations of traditional approaches for modeling chemical kinetics in cell signaling systems. These systems consist of multiple interacting biomolecules (e.g., proteins), which themselves consist of multiple parts (e.g., domains, linear motifs, and sites of phosphorylation). Consequently, biomolecules that mediate information processing generally have the potential to interact in multiple ways, with the number of possible complexes and post-translational modification states tending to grow exponentially with the number of binary interactions considered. As a result, only large reaction networks capture all possible consequences of the molecular interactions that occur in a cell signaling system, which is problematic because traditional modeling approaches for chemical kinetics (e.g., ordinary differential equations) require explicit network specification. This problem is circumvented through representation of interactions in terms of local rules. With this approach, network specification is implicit and model specification is concise. Concise representation results in a coarse graining of chemical kinetics, which is introduced because all reactions implied by a rule inherit the rate law associated with that rule. Coarse graining can be appropriate if interactions are modular, and the coarseness of a model can be adjusted as needed. Rules can be specified using specialized model-specification languages, and recently developed tools designed for specification of rule-based models allow one to leverage powerful software engineering capabilities. A rule-based model comprises a set of rules, which can be processed by general-purpose simulation and analysis tools to achieve different objectives (e.g., to perform either a deterministic or stochastic simulation). PMID:24123887

  9. Thermo-optical interactions in a dye-microcavity photon Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Alaeian, Hadiseh; Schedensack, Mira; Bartels, Clara; Peterseim, Daniel; Weitz, Martin

    2017-11-01

    Superfluidity and Bose-Einstein condensation are usually considered as two closely related phenomena. Indeed, in most macroscopic quantum systems, like liquid helium, ultracold atomic Bose gases, and exciton-polaritons, condensation and superfluidity occur in parallel. In photon Bose-Einstein condensates realized in the dye microcavity system, thermalization does not occur by direct interaction of the condensate particles as in the above described systems, i.e. photon-photon interactions, but by absorption and re-emission processes on the dye molecules, which act as a heat reservoir. Currently, there is no experimental evidence for superfluidity in the dye microcavity system, though effective photon interactions have been observed from thermo-optic effects in the dye medium. In this work, we theoretically investigate the implications of effective thermo-optic photon interactions, a temporally delayed and spatially non-local effect, on the photon condensate, and derive the resulting Bogoliubov excitation spectrum. The calculations suggest a linear photon dispersion at low momenta, fulfilling the Landau’s criterion of superfluidity. We envision that the temporally delayed and long-range nature of the thermo-optic photon interaction offer perspectives for novel quantum fluid phenomena.

  10. Modes of Interaction between Individuals Dominate the Topologies of Real World Networks

    PubMed Central

    Lee, Insuk; Kim, Eiru; Marcotte, Edward M.

    2015-01-01

    We find that the topologies of real world networks, such as those formed within human societies, by the Internet, or among cellular proteins, are dominated by the mode of the interactions considered among the individuals. Specifically, a major dichotomy in previously studied networks arises from modeling networks in terms of pairwise versus group tasks. The former often intrinsically give rise to scale-free, disassortative, hierarchical networks, whereas the latter often give rise to single- or broad-scale, assortative, nonhierarchical networks. These dependencies explain contrasting observations among previous topological analyses of real world complex systems. We also observe this trend in systems with natural hierarchies, in which alternate representations of the same networks, but which capture different levels of the hierarchy, manifest these signature topological differences. For example, in both the Internet and cellular proteomes, networks of lower-level system components (routers within domains or proteins within biological processes) are assortative and nonhierarchical, whereas networks of upper-level system components (internet domains or biological processes) are disassortative and hierarchical. Our results demonstrate that network topologies of complex systems must be interpreted in light of their hierarchical natures and interaction types. PMID:25793969

  11. Novel Web-based Education Platforms for Information Communication utilizing Gamification, Virtual and Immersive Reality

    NASA Astrophysics Data System (ADS)

    Demir, I.

    2015-12-01

    Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. This presentation showcase information communication interfaces, games, and virtual and immersive reality applications for supporting teaching and learning of concepts in atmospheric and hydrological sciences. The information communication platforms utilizes latest web technologies and allow accessing and visualizing large scale data on the web. The simulation system is a web-based 3D interactive learning environment for teaching hydrological and atmospheric processes and concepts. The simulation systems provides a visually striking platform with realistic terrain and weather information, and water simulation. The web-based simulation system provides an environment for students to learn about the earth science processes, and effects of development and human activity on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users.

  12. Endocannabinoids: Effectors of glucocorticoid signaling.

    PubMed

    Balsevich, Georgia; Petrie, Gavin N; Hill, Matthew N

    2017-10-01

    For decades, there has been speculation regarding the interaction of cannabinoids with glucocorticoid systems. Given the functional redundancy between many of the physiological effects of glucocorticoids and cannabinoids, it was originally speculated that the biological mechanisms of cannabinoids were mediated by direct interactions with glucocorticoid systems. With the discovery of the endocannabinoid system, additional research demonstrated that it was actually the opposite; glucocorticoids recruit endocannabinoid signaling, and that the engagement of endocannabinoid signaling mediated many of the neurobiological and physiological effects of glucocorticoids. With the development of advances in pharmacology and genetics, significant advances in this area have been made, and it is now clear that functional interactions between these systems are critical for a wide array of physiological processes. The current review acts a comprehensive summary of the contemporary state of knowledge regarding the biological interactions between glucocorticoids and endocannabinoids, and their potential role in health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Applying a visual language for image processing as a graphical teaching tool in medical imaging

    NASA Astrophysics Data System (ADS)

    Birchman, James J.; Tanimoto, Steven L.; Rowberg, Alan H.; Choi, Hyung-Sik; Kim, Yongmin

    1992-05-01

    Typical user interaction in image processing is with command line entries, pull-down menus, or text menu selections from a list, and as such is not generally graphical in nature. Although applying these interactive methods to construct more sophisticated algorithms from a series of simple image processing steps may be clear to engineers and programmers, it may not be clear to clinicians. A solution to this problem is to implement a visual programming language using visual representations to express image processing algorithms. Visual representations promote a more natural and rapid understanding of image processing algorithms by providing more visual insight into what the algorithms do than the interactive methods mentioned above can provide. Individuals accustomed to dealing with images will be more likely to understand an algorithm that is represented visually. This is especially true of referring physicians, such as surgeons in an intensive care unit. With the increasing acceptance of picture archiving and communications system (PACS) workstations and the trend toward increasing clinical use of image processing, referring physicians will need to learn more sophisticated concepts than simply image access and display. If the procedures that they perform commonly, such as window width and window level adjustment and image enhancement using unsharp masking, are depicted visually in an interactive environment, it will be easier for them to learn and apply these concepts. The software described in this paper is a visual programming language for imaging processing which has been implemented on the NeXT computer using NeXTstep user interface development tools and other tools in an object-oriented environment. The concept is based upon the description of a visual language titled `Visualization of Vision Algorithms' (VIVA). Iconic representations of simple image processing steps are placed into a workbench screen and connected together into a dataflow path by the user. As the user creates and edits a dataflow path, more complex algorithms can be built on the screen. Once the algorithm is built, it can be executed, its results can be reviewed, and operator parameters can be interactively adjusted until an optimized output is produced. The optimized algorithm can then be saved and added to the system as a new operator. This system has been evaluated as a graphical teaching tool for window width and window level adjustment, image enhancement using unsharp masking, and other techniques.

  14. Medical Information Management System

    NASA Technical Reports Server (NTRS)

    Alterescu, S.; Hipkins, K. R.; Friedman, C. A.

    1979-01-01

    On-line interactive information processing system easily and rapidly handles all aspects of data management related to patient care. General purpose system is flexible enough to be applied to other data management situations found in areas such as occupational safety data, judicial information, or personnel records.

  15. Software Prototyping: Designing Systems for Users.

    ERIC Educational Resources Information Center

    Spies, Phyllis Bova

    1983-01-01

    Reports on major change in computer software development process--the prototype model, i.e., implementation of skeletal system that is enhanced during interaction with users. Expensive and unreliable software, software design errors, traditional development approach, resources required for prototyping, success stories, and systems designer's role…

  16. Cellular Particle Dynamics simulation of biomechanical relaxation processes of multi-cellular systems

    NASA Astrophysics Data System (ADS)

    McCune, Matthew; Kosztin, Ioan

    2013-03-01

    Cellular Particle Dynamics (CPD) is a theoretical-computational-experimental framework for describing and predicting the time evolution of biomechanical relaxation processes of multi-cellular systems, such as fusion, sorting and compression. In CPD, cells are modeled as an ensemble of cellular particles (CPs) that interact via short range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through numerical integration of their equations of motion. Here we present CPD simulation results for the fusion of both spherical and cylindrical multi-cellular aggregates. First, we calibrate the relevant CPD model parameters for a given cell type by comparing the CPD simulation results for the fusion of two spherical aggregates to the corresponding experimental results. Next, CPD simulations are used to predict the time evolution of the fusion of cylindrical aggregates. The latter is relevant for the formation of tubular multi-cellular structures (i.e., primitive blood vessels) created by the novel bioprinting technology. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  17. Mass, Energy, Space And Time System Theory---MEST A way to help our earth

    NASA Astrophysics Data System (ADS)

    Cao, Dayong

    2009-03-01

    There are two danger to our earth. The first, the sun will expand to devour our earth, for example, the ozonosphere of our earth is be broken; The second, the asteroid will impact near our earth. According to MEST, there is a interaction between Black hole (and Dark matter-energy) and Solar system. The orbit of Jupiter is a boundary of the interaction between Black hole (and Dark matter-energy) and Solar system. Because there are four terrestrial planets which is mass-energy center as solar system, and there are four or five Jovian planets which is gas (space-time) center as black hole system. According to MEST, dark matter-energy take the velocity of Jupiter gose up. So there are a lot of asteroids and dark matter-energy near the orbit of Jupiter-the boundary. Dark matter-energy can change the orbit of asteroid, and take it impacted near our earth. Because the Dark matter-energy will pressure the Solar system. It is a inverse process with sun's expandedness. So the ``two danger'' is from a new process of the balance system between Black hole (and Dark matter-energy) and Solar system. According to MEST, We need to find the right point for our earth in the ``new process of the balance system.''

  18. System theoretic models for high density VLSI structures

    NASA Astrophysics Data System (ADS)

    Dickinson, Bradley W.; Hopkins, William E., Jr.

    This research project involved the development of mathematical models for analysis, synthesis, and simulation of large systems of interacting devices. The work was motivated by problems that may become important in high density VLSI chips with characteristic feature sizes less than 1 micron: it is anticipated that interactions of neighboring devices will play an important role in the determination of circuit properties. It is hoped that the combination of high device densities and such local interactions can somehow be exploited to increase circuit speed and to reduce power consumption. To address these issues from the point of view of system theory, research was pursued in the areas of nonlinear and stochastic systems and into neural network models. Statistical models were developed to characterize various features of the dynamic behavior of interacting systems. Random process models for studying the resulting asynchronous modes of operation were investigated. The local interactions themselves may be modeled as stochastic effects. The resulting behavior was investigated through the use of various scaling limits, and by a combination of other analytical and simulation techniques. Techniques arising in a variety of disciplines where models of interaction were formulated and explored were considered and adapted for use.

  19. A flexible flight display research system using a ground-based interactive graphics terminal

    NASA Technical Reports Server (NTRS)

    Hatfield, J. J.; Elkins, H. C.; Batson, V. M.; Poole, W. L.

    1975-01-01

    Requirements and research areas for the air transportation system of the 1980 to 1990's were reviewed briefly to establish the need for a flexible flight display generation research tool. Specific display capabilities required by aeronautical researchers are listed and a conceptual system for providing these capabilities is described. The conceptual system uses a ground-based interactive graphics terminal driven by real-time radar and telemetry data to generate dynamic, experimental flight displays. These displays are scan converted to television format, processed, and transmitted to the cockpits of evaluation aircraft. The attendant advantages of a Flight Display Research System (FDRS) designed to employ this concept are presented. The detailed implementation of an FDRS is described. The basic characteristics of the interactive graphics terminal and supporting display electronic subsystems are presented and the resulting system capability is summarized. Finally, the system status and utilization are reviewed.

  20. Energy Models

    EPA Science Inventory

    Energy models characterize the energy system, its evolution, and its interactions with the broader economy. The energy system consists of primary resources, including both fossil fuels and renewables; power plants, refineries, and other technologies to process and convert these r...

  1. Aberrant mesolimbic dopamine-opiate interaction in obesity.

    PubMed

    Tuominen, Lauri; Tuulari, Jetro; Karlsson, Henry; Hirvonen, Jussi; Helin, Semi; Salminen, Paulina; Parkkola, Riitta; Hietala, Jarmo; Nuutila, Pirjo; Nummenmaa, Lauri

    2015-11-15

    Dopamine and opioid neurotransmitter systems share many functions such as regulation of reward and pleasure. μ-Opioid receptors (MOR) modulate the mesolimbic dopamine system in ventral tegmental area and striatum, key areas implicated in reward. We hypothesized that dopamine and opioid receptor availabilities correlate in vivo and that this correlation is altered in obesity, a disease with altered reward processing. Twenty lean females (mean BMI 22) and 25 non-binge eating morbidly obese females (mean BMI 41) underwent two positron emission tomography scans with [(11)C]carfentanil and [(11)C]raclopride to measure the MOR and dopamine D2 receptor (DRD2) availability, respectively. In lean subjects, the MOR and DRD2 availabilities were positively associated in the ventral striatum (r=0.62, p=0.003) and dorsal caudate nucleus (r=0.62, p=0.004). Moreover, DRD2 availability in the ventral striatum was associated with MOR availability in other regions of the reward circuitry, particularly in the ventral tegmental area. In morbidly obese subjects, this receptor interaction was significantly weaker in ventral striatum but unaltered in the caudate nucleus. Finally, the association between DRD2 availability in the ventral striatum and MOR availability in the ventral tegmental area was abolished in the morbidly obese. The study demonstrates a link between DRD2 and MOR availabilities in living human brain. This interaction is selectively disrupted in mesolimbic dopamine system in morbid obesity. We propose that interaction between the dopamine and opioid systems is a prerequisite for normal reward processing and that disrupted cross-talk may underlie altered reward processing in obesity. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. MINIS: Multipurpose Interactive NASA Information System

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Multipurpose Interactive NASA Information Systems (MINIS) was developed in response to the need for a data management system capable of operation on several different minicomputer systems. The desired system had to be capable of performing the functions of a LANDSAT photo descriptive data retrieval system while remaining general in terms of other acceptable user definable data bases. The system also had to be capable of performing data base updates and providing user-formatted output reports. The resultant MINI System provides all of these capabilities and several other features to complement the data management system. The MINI System is currently implemented on two minicomputer systems and is in the process of being installed on another minicomputer system. The MINIS is operational on four different data bases.

  3. Towards Compensation Correctness in Interactive Systems

    NASA Astrophysics Data System (ADS)

    Vaz, Cátia; Ferreira, Carla

    One fundamental idea of service-oriented computing is that applications should be developed by composing already available services. Due to the long running nature of service interactions, a main challenge in service composition is ensuring correctness of failure recovery. In this paper, we use a process calculus suitable for modelling long running transactions with a recovery mechanism based on compensations. Within this setting, we discuss and formally state correctness criteria for compensable processes compositions, assuming that each process is correct with respect to failure recovery. Under our theory, we formally interpret self-healing compositions, that can detect and recover from failures, as correct compositions of compensable processes.

  4. Nonmaterialized Relations and the Support of Information Retrieval Applications by Relational Database Systems.

    ERIC Educational Resources Information Center

    Lynch, Clifford A.

    1991-01-01

    Describes several aspects of the problem of supporting information retrieval system query requirements in the relational database management system (RDBMS) environment and proposes an extension to query processing called nonmaterialized relations. User interactions with information retrieval systems are discussed, and nonmaterialized relations are…

  5. Spendency: Students' Propensity to Use System Currency

    ERIC Educational Resources Information Center

    Snow, Erica L.; Allen, Laura K.; Jackson, G. Tanner; McNamara, Danielle S.

    2015-01-01

    Using students' process data from the game-based Intelligent Tutoring System (ITS) iSTART-ME, the current study examines students' propensity to use system currency to unlock game-based features, (i.e., referred to here as "spendency"). This study examines how spendency relates to students' interaction preferences, in-system performance,…

  6. Hipe, Hipe, Hooray

    NASA Astrophysics Data System (ADS)

    Ott, Stephan; Herschel Science Ground Segment Consortium

    2010-05-01

    The Herschel Space Observatory, the fourth cornerstone mission in the ESA science program, was launched 14th of May 2009. With a 3.5 m telescope, it is the largest space telescope ever launched. Herschel's three instruments (HIFI, PACS, and SPIRE) perform photometry and spectroscopy in the 55 - 672 micron range and will deliver exciting science for the astronomical community during at least three years of routine observations. Since 2nd of December 2009 Herschel has been performing and processing observations in routine science mode. The development of the Herschel Data Processing System started eight years ago to support the data analysis for Instrument Level Tests. To fulfil the expectations of the astronomical community, additional resources were made available to implement a freely distributable Data Processing System capable of interactively and automatically reducing Herschel data at different processing levels. The system combines data retrieval, pipeline execution and scientific analysis in one single environment. The Herschel Interactive Processing Environment (HIPE) is the user-friendly face of Herschel Data Processing. The software is coded in Java and Jython to be platform independent and to avoid the need for commercial licenses. It is distributed under the GNU Lesser General Public License (LGPL), permitting everyone to access and to re-use its code. We will summarise the current capabilities of the Herschel Data Processing System and give an overview about future development milestones and plans, and how the astronomical community can contribute to HIPE. The Herschel Data Processing System is a joint development by the Herschel Science Ground Segment Consortium, consisting of ESA, the NASA Herschel Science Center, and the HIFI, PACS and SPIRE consortium members.

  7. Language Is a Complex Adaptive System: Position Paper

    ERIC Educational Resources Information Center

    Beckner, Clay; Blythe, Richard; Bybee, Joan; Christiansen, Morten H.; Croft, William; Ellis, Nick C.; Holland, John; Ke, Jinyun; Larsen-Freeman, Diane; Schoenemann, Tom

    2009-01-01

    Language has a fundamentally social function. Processes of human interaction along with domain-general cognitive processes shape the structure and knowledge of language. Recent research in the cognitive sciences has demonstrated that patterns of use strongly affect how language is acquired, is used, and changes. These processes are not independent…

  8. Negotiation Process Analysis: A Research and Training Tool.

    ERIC Educational Resources Information Center

    Williams, Timothy

    This paper proposes the use of interaction process analysis to study negotiation behaviors. Following a review of current literature in the field, the paper presents a theoretical framework for the analysis of both labor/management and social negotiation processes. Central to the framework described are two systems of activities that together…

  9. Testing interactive effects of automatic and conflict control processes during response inhibition - A system neurophysiological study.

    PubMed

    Chmielewski, Witold X; Beste, Christian

    2017-02-01

    In everyday life successful acting often requires to inhibit automatic responses that might not be appropriate in the current situation. These response inhibition processes have been shown to become aggravated with increasing automaticity of pre-potent response tendencies. Likewise, it has been shown that inhibitory processes are complicated by a concurrent engagement in additional cognitive control processes (e.g. conflicting monitoring). Therefore, opposing processes (i.e. automaticity and cognitive control) seem to strongly impact response inhibition. However, possible interactive effects of automaticity and cognitive control for the modulation of response inhibition processes have yet not been examined. In the current study we examine this question using a novel experimental paradigm combining a Go/NoGo with a Simon task in a system neurophysiological approach combining EEG recordings with source localization analyses. The results show that response inhibition is less accurate in non-conflicting than in conflicting stimulus-response mappings. Thus it seems that conflicts and the resulting engagement in conflict monitoring processes, as reflected in the N2 amplitude, may foster response inhibition processes. This engagement in conflict monitoring processes leads to an increase in cognitive control, as reflected by an increased activity in the anterior and posterior cingulate areas, while simultaneously the automaticity of response tendencies is decreased. Most importantly, this study suggests that the quality of conflict processes in anterior cingulate areas and especially the resulting interaction of cognitive control and automaticity of pre-potent response tendencies are important factors to consider, when it comes to the modulation of response inhibition processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Interdisciplinary and multilevel optimum design. [in aerospace structural engineering

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.

    1987-01-01

    Interactions among engineering disciplines and subsystems in engineering system design are surveyed and specific instances of such interactions are described. Examination of the interactions that a traditional design process in which the numerical values of major design variables are decided consecutively is likely to lead to a suboptimal design. Supporting numerical examples are a glider and a space antenna. Under an alternative approach introduced, the design and its sensitivity data from the subsystems and disciplines are generated concurrently and then made available to the system designer enabling him to modify the system design so as to improve its performance. Examples of a framework structure and an airliner wing illustrate that approach.

  11. High voltage system: Plasma interaction summary

    NASA Technical Reports Server (NTRS)

    Stevens, N. John

    1986-01-01

    The possible interactions that could exist between a high voltage system and the space plasma environment are reviewed. A solar array is used as an example of such a system. The emphasis in this review is on the discrepancies that exist in this technology in both flight and ground experiment data. It has been found that, in ground testing, there are facility effects, cell size effects and area scaling uncertainties. For space applications there are area scaling and discharge concerns for an array as well as the influence of the large space structures on the collection process. There are still considerable uncertainties in the high voltage-space plasma interaction technology even after several years of effort.

  12. Challenges for automatically extracting molecular interactions from full-text articles.

    PubMed

    McIntosh, Tara; Curran, James R

    2009-09-24

    The increasing availability of full-text biomedical articles will allow more biomedical knowledge to be extracted automatically with greater reliability. However, most Information Retrieval (IR) and Extraction (IE) tools currently process only abstracts. The lack of corpora has limited the development of tools that are capable of exploiting the knowledge in full-text articles. As a result, there has been little investigation into the advantages of full-text document structure, and the challenges developers will face in processing full-text articles. We manually annotated passages from full-text articles that describe interactions summarised in a Molecular Interaction Map (MIM). Our corpus tracks the process of identifying facts to form the MIM summaries and captures any factual dependencies that must be resolved to extract the fact completely. For example, a fact in the results section may require a synonym defined in the introduction. The passages are also annotated with negated and coreference expressions that must be resolved.We describe the guidelines for identifying relevant passages and possible dependencies. The corpus includes 2162 sentences from 78 full-text articles. Our corpus analysis demonstrates the necessity of full-text processing; identifies the article sections where interactions are most commonly stated; and quantifies the proportion of interaction statements requiring coherent dependencies. Further, it allows us to report on the relative importance of identifying synonyms and resolving negated expressions. We also experiment with an oracle sentence retrieval system using the corpus as a gold-standard evaluation set. We introduce the MIM corpus, a unique resource that maps interaction facts in a MIM to annotated passages within full-text articles. It is an invaluable case study providing guidance to developers of biomedical IR and IE systems, and can be used as a gold-standard evaluation set for full-text IR tasks.

  13. A Microbial Perspective on the Grand Challenges in Comparative Animal Physiology

    PubMed Central

    2018-01-01

    ABSTRACT Interactions with microbial communities can have profound influences on animal physiology, thereby impacting animal performance and fitness. Therefore, it is important to understand the diversity and nature of host-microbe interactions in various animal groups (invertebrates, fish, amphibians, reptiles, birds, and mammals). In this perspective, I discuss how the field of host-microbe interactions can be used to address topics that have been identified as grand challenges in comparative animal physiology: (i) horizontal integration of physiological processes across organisms, (ii) vertical integration of physiological processes across organizational levels within organisms, and (iii) temporal integration of physiological processes during evolutionary change. Addressing these challenges will require the use of a variety of animal models and the development of systems approaches that can integrate large, multiomic data sets from both microbial communities and animal hosts. Integrating host-microbe interactions into the established field of comparative physiology represents an exciting frontier for both fields. PMID:29556549

  14. Acceleration of Convergence to Equilibrium in Markov Chains by Breaking Detailed Balance

    NASA Astrophysics Data System (ADS)

    Kaiser, Marcus; Jack, Robert L.; Zimmer, Johannes

    2017-07-01

    We analyse and interpret the effects of breaking detailed balance on the convergence to equilibrium of conservative interacting particle systems and their hydrodynamic scaling limits. For finite systems of interacting particles, we review existing results showing that irreversible processes converge faster to their steady state than reversible ones. We show how this behaviour appears in the hydrodynamic limit of such processes, as described by macroscopic fluctuation theory, and we provide a quantitative expression for the acceleration of convergence in this setting. We give a geometrical interpretation of this acceleration, in terms of currents that are antisymmetric under time-reversal and orthogonal to the free energy gradient, which act to drive the system away from states where (reversible) gradient-descent dynamics result in slow convergence to equilibrium.

  15. Interactions among hydrogeomorphology, vegetation, and nutrient biogeochemistry in floodplain ecosystems

    USGS Publications Warehouse

    Noe, G.B.; Shroder, John F.

    2013-01-01

    Hydrogeomorphic, vegetative, and biogeochemical processes interact in floodplains resulting in great complexity that provides opportunities to better understand linkages among physical and biological processes in ecosystems. Floodplains and their associated river systems are structured by four-dimensional gradients of hydrogeomorphology: longitudinal, lateral, vertical, and temporal components. These four dimensions create dynamic hydrologic and geomorphologic mosaics that have a large imprint on the vegetation and nutrient biogeochemistry of floodplains. Plant physiology, population dynamics, community structure, and productivity are all very responsive to floodplain hydrogeomorphology. The strength of this relationship between vegetation and hydrogeomorphology is evident in the use of vegetation as an indicator of hydrogeomorphic processes. However, vegetation also influences hydrogeomorphology by modifying hydraulics and sediment entrainment and deposition that typically stabilize geomorphic patterns. Nitrogen and phosphorus biogeochemistry commonly influence plant productivity and community composition, although productivity is not limited by nutrient availability in all floodplains. Conversely, vegetation influences nutrient biogeochemistry through direct uptake and storage as well as production of organic matter that regulates microbial biogeochemical processes. The biogeochemistries of nitrogen and phosphorus cycling are very sensitive to spatial and temporal variation in hydrogeomorphology, in particular floodplain wetness and sedimentation. The least-studied interaction is the direct effect of biogeochemistry on hydrogeomorphology, but the control of nutrient availability over organic matter decomposition and thus soil permeability and elevation is likely important. Biogeochemistry also has the more documented but indirect control of hydrogeomorphology through regulation of plant biomass. In summary, the defining characteristics of floodplain ecosystems are determined by the many interactions among physical and biological processes. Conservation and restoration of the valuable ecosystem services that floodplains provide depend on improved understanding and predictive models of interactive system controls and behavior.

  16. Interactions among hydrogeomorphology, vegetation, and nutrient biogeochemistry in floodplain ecosystems

    USGS Publications Warehouse

    Noe, G.B.

    2013-01-01

    Hydrogeomorphic, vegetative, and biogeochemical processes interact in floodplains resulting in great complexity that provides opportunities to better understand linkages among physical and biological processes in ecosystems. Floodplains and their associated river systems are structured by four dimensional gradients of hydrogeomorphology: longitudinal, lateral, vertical, and temporal components. These four dimensions create dynamic hydrologic and geomorphologic mosaics that have a large imprint on the vegetation and nutrient biogeochemistry of floodplains. Plant physiology, population dynamics, community structure, and productivity are all very responsive to floodplain hydrogeomorphology. The strength of this relationship between vegetation and hydrogeomorphology is evident in the use of vegetation as an indicator of hydrogeomorphic processes. However, vegetation also influences hydrogeomorphology by modifying hydraulics and sediment entrainment and deposition that typically stabilize geomorphic patterns. Nitrogen and phosphorus biogeochemistry commonly influence plant productivity and community composition, although productivity is not limited by nutrient availability in all floodplains. Conversely, vegetation influences nutrient biogeochemistry through direct uptake and storage as well as production of organic matter that regulates microbial biogeochemical processes. The biogeochemistries of nitrogen and phosphorus cycling are very sensitive to spatial and temporal variation in hydrogeomorphology, in particular floodplain wetness and sedimentation. The least studied interaction is the direct effect of biogeochemistry on hydrogeomorphology, but the control of nutrient availability over organic matter decomposition and thus soil permeability and elevation is likely important. Biogeochemistry also has the more documented but indirect control of hydrogeomorphology through regulation of plant biomass. In summary, the defining characteristics of floodplain ecosystems are determined by the many interactions among physical and biological processes. Conservation and restoration of the valuable ecosystem services that floodplains provide depends on improved understanding and predictive models of interactive system controls and behavior.

  17. The Interaction of Spacecraft Cabin Atmospheric Quality and Water Processing System Performance

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Croomes, Scott D. (Technical Monitor)

    2002-01-01

    Although designed to remove organic contaminants from a variety of waste water streams, the planned U.S.- and present Russian-provided water processing systems onboard the International Space Station (ISS) have capacity limits for some of the more common volatile cleaning solvents used for housekeeping purposes. Using large quantities of volatile cleaning solvents during the ground processing and in-flight operational phases of a crewed spacecraft such as the ISS can lead to significant challenges to the water processing systems. To understand the challenges facing the management of water processing capacity, the relationship between cabin atmospheric quality and humidity condensate loading is presented. This relationship is developed as a tool to determine the cabin atmospheric loading that may compromise water processing system performance. A comparison of cabin atmospheric loading with volatile cleaning solvents from ISS, Mir, and Shuttle are presented to predict acceptable limits to maintain optimal water processing system performance.

  18. General and craniofacial development are complex adaptive processes influenced by diversity.

    PubMed

    Brook, A H; O'Donnell, M Brook; Hone, A; Hart, E; Hughes, T E; Smith, R N; Townsend, G C

    2014-06-01

    Complex systems are present in such diverse areas as social systems, economies, ecosystems and biology and, therefore, are highly relevant to dental research, education and practice. A Complex Adaptive System in biological development is a dynamic process in which, from interacting components at a lower level, higher level phenomena and structures emerge. Diversity makes substantial contributions to the performance of complex adaptive systems. It enhances the robustness of the process, allowing multiple responses to external stimuli as well as internal changes. From diversity comes variation in outcome and the possibility of major change; outliers in the distribution enhance the tipping points. The development of the dentition is a valuable, accessible model with extensive and reliable databases for investigating the role of complex adaptive systems in craniofacial and general development. The general characteristics of such systems are seen during tooth development: self-organization; bottom-up emergence; multitasking; self-adaptation; variation; tipping points; critical phases; and robustness. Dental findings are compatible with the Random Network Model, the Threshold Model and also with the Scale Free Network Model which has a Power Law distribution. In addition, dental development shows the characteristics of Modularity and Clustering to form Hierarchical Networks. The interactions between the genes (nodes) demonstrate Small World phenomena, Subgraph Motifs and Gene Regulatory Networks. Genetic mechanisms are involved in the creation and evolution of variation during development. The genetic factors interact with epigenetic and environmental factors at the molecular level and form complex networks within the cells. From these interactions emerge the higher level tissues, tooth germs and mineralized teeth. Approaching development in this way allows investigation of why there can be variations in phenotypes from identical genotypes; the phenotype is the outcome of perturbations in the cellular systems and networks, as well as of the genotype. Understanding and applying complexity theory will bring about substantial advances not only in dental research and education but also in the organization and delivery of oral health care. © 2014 Australian Dental Association.

  19. Numerical propulsion system simulation: An interdisciplinary approach

    NASA Technical Reports Server (NTRS)

    Nichols, Lester D.; Chamis, Christos C.

    1991-01-01

    The tremendous progress being made in computational engineering and the rapid growth in computing power that is resulting from parallel processing now make it feasible to consider the use of computer simulations to gain insights into the complex interactions in aerospace propulsion systems and to evaluate new concepts early in the design process before a commitment to hardware is made. Described here is a NASA initiative to develop a Numerical Propulsion System Simulation (NPSS) capability.

  20. Numerical propulsion system simulation - An interdisciplinary approach

    NASA Technical Reports Server (NTRS)

    Nichols, Lester D.; Chamis, Christos C.

    1991-01-01

    The tremendous progress being made in computational engineering and the rapid growth in computing power that is resulting from parallel processing now make it feasible to consider the use of computer simulations to gain insights into the complex interactions in aerospace propulsion systems and to evaluate new concepts early in the design process before a commitment to hardware is made. Described here is a NASA initiative to develop a Numerical Propulsion System Simulation (NPSS) capability.

  1. Expanding the scope of health information systems. Challenges and developments.

    PubMed

    Kuhn, K A; Wurst, S H R; Bott, O J; Giuse, D A

    2006-01-01

    To identify current challenges and developments in health information systems. Reports on HIS, eHealth and process support were analyzed, core problems and challenges were identified. Health information systems are extending their scope towards regional networks and health IT infrastructures. Integration, interoperability and interaction design are still today's core problems. Additional problems arise through the integration of genetic information into the health care process. There are noticeable trends towards solutions for these problems.

  2. Joint Force Quarterly. Number 5, Summer 1994

    DTIC Science & Technology

    1994-07-01

    terms of a matrix and have set it up to achieve things that matrix organizations facilitate. Matrices compel interaction across organizations; they...provide more joint, synergistic solutions to military problems. One primary result of this interaction between the assess- ment process and JROC is the...the Contingency Tactical Air Control Auto- mated Planning System (CTAPS) are both single-host computer sys- tems that do not support interactive data

  3. Problems of collaborative work of the automated process control system (APCS) and the its information security and solutions.

    NASA Astrophysics Data System (ADS)

    Arakelyan, E. K.; Andryushin, A. V.; Mezin, S. V.; Kosoy, A. A.; Kalinina, Ya V.; Khokhlov, I. S.

    2017-11-01

    The principle of interaction of the specified systems of technological protections by the Automated process control system (APCS) and information safety in case of incorrect execution of the algorithm of technological protection is offered. - checking the correctness of the operation of technological protection in each specific situation using the functional relationship between the monitored parameters. The methodology for assessing the economic feasibility of developing and implementing an information security system.

  4. Determining the Roles of Mentors in the Teachers' Use of Technology: Implementation of Systems-Based Mentoring Model

    ERIC Educational Resources Information Center

    Gökoglu, Seyfullah; Çakiroglu, Ünal

    2017-01-01

    The aim of this case study is to evaluate the effect of mentors on teachers' technology integration process into their classrooms. In integration process, interactions between the mentors and the teachers are implemented in terms of Systems-Based Mentoring Model (SBMM). Mentors' leadership roles were determined and changes in teachers' technology…

  5. [Noncovalent cation-π interactions--their role in nature].

    PubMed

    Fink, Krzysztof; Boratyński, Janusz

    2014-11-07

    Non-covalent interactions play an extremely important role in organisms. The main non-covalent interactions in nature are: ion-ion interactions, dipole-dipole interactions, hydrogen bonds, and van der Waals interactions. A new kind of intermolecular interactions--cation-π interactions--is gaining increasing attention. These interactions occur between a cation and a π system. The main contributors to cation-π interactions are electrostatic, polarization and, to a lesser extent, dispersion interactions. At first, cation-π interactions were studied in a gas phase, with metal cation-aromatic system complexes. The characteristics of these complexes are as follows: an increase of cation atomic number leads to a decrease of interaction energy, and an increase of cation charge leads to an increase of interaction energy. Aromatic amino acids bind with metal cations mainly through interactions with their main chain. Nevertheless, cation-π interaction with a hydrophobic side chain significantly enhances binding energy. In water solutions most cations preferentially interact with water molecules rather than aromatic systems. Cation-π interactions occur in environments with lower accessibility to a polar solvent. Cation-π interactions can have a stabilizing role on the secondary, tertiary and quaternary structure of proteins. These interactions play an important role in substrate or ligand binding sites in many proteins, which should be taken into consideration when the screening of effective inhibitors for these proteins is carried out. Cation-π interactions are abundant and play an important role in many biological processes.

  6. Pulsed electric field (PEF)-induced aggregation between lysozyme, ovalbumin and ovotransferrin in multi-protein system.

    PubMed

    Wu, Li; Zhao, Wei; Yang, Ruijin; Yan, Wenxu

    2015-05-15

    The aggregation of multi-proteins is of great interest in food processing and a good understanding of the formation of aggregates during PEF processing is needed for the application of the process to pasteurize protein-based foods. The aggregates formation of a multi-protein system (containing ovalbumin, ovotransferrin and lysozyme) was studied through turbidity, size exclusion chromatography and SDS-PAGE patterns for interaction studies and binding forces. Results from size exclusion chromatography indicated that there was no soluble aggregates formed during PEF processing. The existence of lysozyme was important to form insoluble aggregates in the chosen ovalbumin solution. The results of SDS-PAGE patterns indicated that lysozyme was prone to precipitate, and was relatively the higher component of aggregates. Citric acid could be effective in inhibiting lysozyme from interacting with other proteins during PEF processing. Blocking the free sulphydryl by N-ethylmaleimide (NEM) did not affect aggregation inhibition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Image Data Processing System (IDAPS) user manual, S-056 experiment. Volume 1: System description. Volume 2: Batch IDAPS. Volume 3: Interactive IDAPS

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Image data processing system (IDAPS) developed to satisfy the image processing requirements of the Skylab S-056 experiment is described. The S-056 experiment was designed to obtain high-resolution photographs of the sun in the far ultraviolet, or soft X-ray, portion of the electromagnetic spectrum. Thirty-five thousand photographs were obtained by the three flights of the program; and, faced with such a massive volume of imagery, the designers of the experiment decided to develop a computer-based system which would reduce the image processing workload. The purpose of the IDAPS User Manual is to give the IDAPS user the necessary information and instructions to effectively utilize the system.

  8. Scalable and Interactive Segmentation and Visualization of Neural Processes in EM Datasets

    PubMed Central

    Jeong, Won-Ki; Beyer, Johanna; Hadwiger, Markus; Vazquez, Amelio; Pfister, Hanspeter; Whitaker, Ross T.

    2011-01-01

    Recent advances in scanning technology provide high resolution EM (Electron Microscopy) datasets that allow neuroscientists to reconstruct complex neural connections in a nervous system. However, due to the enormous size and complexity of the resulting data, segmentation and visualization of neural processes in EM data is usually a difficult and very time-consuming task. In this paper, we present NeuroTrace, a novel EM volume segmentation and visualization system that consists of two parts: a semi-automatic multiphase level set segmentation with 3D tracking for reconstruction of neural processes, and a specialized volume rendering approach for visualization of EM volumes. It employs view-dependent on-demand filtering and evaluation of a local histogram edge metric, as well as on-the-fly interpolation and ray-casting of implicit surfaces for segmented neural structures. Both methods are implemented on the GPU for interactive performance. NeuroTrace is designed to be scalable to large datasets and data-parallel hardware architectures. A comparison of NeuroTrace with a commonly used manual EM segmentation tool shows that our interactive workflow is faster and easier to use for the reconstruction of complex neural processes. PMID:19834227

  9. Systems Thinking for the Enterprise: A Thought Piece

    NASA Astrophysics Data System (ADS)

    Rebovich, George

    This paper suggests a way of managing the acquisition of capabilities for large-scale government enterprises that is different from traditional "specify and build" approaches commonly employed by U.S. government agencies in acquiring individual systems or systems of systems (SoS). Enterprise capabilities evolve through the emergence and convergence of information and other technologies and their integration into social, institutional and operational organizations and processes. Enterprise capabilities evolve whether or not the enterprise has processes in place to actively manage them. Thus the critical role of enterprise system engineering (ESE) processes should be to shape, enhance and accelerate the "natural" evolution of enterprise capabilities. ESE processes do not replace or add a layer to traditional system engineering (TSE) processes used in developing individual systems or SoS. ESE processes should complement TSE processes by shaping outcome spaces and stimulating interactions among enterprise participants through marketlike mechanisms to reward those that create innovation which moves and accelerates the evolution of the enterprise.

  10. The co-creation of meaningful action: bridging enaction and interactional sociology.

    PubMed

    De Jaegher, Hanne; Peräkylä, Anssi; Stevanovic, Melisa

    2016-05-05

    What makes possible the co-creation of meaningful action? In this paper, we go in search of an answer to this question by combining insights from interactional sociology and enaction. Both research schools investigate social interactions as such, and conceptualize their organization in terms of autonomy. We ask what it could mean for an interaction to be autonomous, and discuss the structures and processes that contribute to and are maintained in the so-called interaction order. We also discuss the role played by individual vulnerability as well as the vulnerability of social interaction processes in the co-creation of meaningful action. Finally, we outline some implications of this interdisciplinary fraternization for the empirical study of social understanding, in particular in social neuroscience and psychology, pointing out the need for studies based on dynamic systems approaches on origins and references of coordination, and experimental designs to help understand human co-presence. © 2016 The Authors.

  11. The co-creation of meaningful action: bridging enaction and interactional sociology

    PubMed Central

    Peräkylä, Anssi; Stevanovic, Melisa

    2016-01-01

    What makes possible the co-creation of meaningful action? In this paper, we go in search of an answer to this question by combining insights from interactional sociology and enaction. Both research schools investigate social interactions as such, and conceptualize their organization in terms of autonomy. We ask what it could mean for an interaction to be autonomous, and discuss the structures and processes that contribute to and are maintained in the so-called interaction order. We also discuss the role played by individual vulnerability as well as the vulnerability of social interaction processes in the co-creation of meaningful action. Finally, we outline some implications of this interdisciplinary fraternization for the empirical study of social understanding, in particular in social neuroscience and psychology, pointing out the need for studies based on dynamic systems approaches on origins and references of coordination, and experimental designs to help understand human co-presence. PMID:27069055

  12. A computer system for processing data from routine pulmonary function tests.

    PubMed Central

    Pack, A I; McCusker, R; Moran, F

    1977-01-01

    In larger pulmonary function laboratories there is a need for computerised techniques of data processing. A flexible computer system, which is used routinely, is described. The system processes data from a relatively large range of tests. Two types of output are produced--one for laboratory purposes, and one for return to the referring physician. The system adds an automatic interpretative report for each set of results. In developing the interpretative system it has been necessary to utilise a number of arbitrary definitions. The present terminology for reporting pulmonary function tests has limitations. The computer interpretation system affords the opportunity to take account of known interaction between measurements of function and different pathological states. Images PMID:329462

  13. Engineering Design Thinking

    ERIC Educational Resources Information Center

    Lammi, Matthew; Becker, Kurt

    2013-01-01

    Engineering design thinking is "a complex cognitive process" including divergence-convergence, a systems perspective, ambiguity, and collaboration (Dym, Agogino, Eris, Frey, & Leifer, 2005, p. 104). Design is often complex, involving multiple levels of interacting components within a system that may be nested within or connected to other systems.…

  14. Expanding the role of reactive transport models in critical zone processes

    USGS Publications Warehouse

    Li, Li; Maher, Kate; Navarre-Sitchler, Alexis; Druhan, Jennifer; Meile, Christof; Lawrence, Corey; Moore, Joel; Perdrial, Julia; Sullivan, Pamela; Thompson, Aaron; Jin, Lixin; Bolton, Edward W.; Brantley, Susan L.; Dietrich, William E.; Mayer, K. Ulrich; Steefel, Carl; Valocchi, Albert J.; Zachara, John M.; Kocar, Benjamin D.; McIntosh, Jennifer; Tutolo, Benjamin M.; Kumar, Mukesh; Sonnenthal, Eric; Bao, Chen; Beisman, Joe

    2017-01-01

    Models test our understanding of processes and can reach beyond the spatial and temporal scales of measurements. Multi-component Reactive Transport Models (RTMs), initially developed more than three decades ago, have been used extensively to explore the interactions of geothermal, hydrologic, geochemical, and geobiological processes in subsurface systems. Driven by extensive data sets now available from intensive measurement efforts, there is a pressing need to couple RTMs with other community models to explore non-linear interactions among the atmosphere, hydrosphere, biosphere, and geosphere. Here we briefly review the history of RTM development, summarize the current state of RTM approaches, and identify new research directions, opportunities, and infrastructure needs to broaden the use of RTMs. In particular, we envision the expanded use of RTMs in advancing process understanding in the Critical Zone, the veneer of the Earth that extends from the top of vegetation to the bottom of groundwater. We argue that, although parsimonious models are essential at larger scales, process-based models offer tools to explore the highly nonlinear coupling that characterizes natural systems. We present seven testable hypotheses that emphasize the unique capabilities of process-based RTMs for (1) elucidating chemical weathering and its physical and biogeochemical drivers; (2) understanding the interactions among roots, micro-organisms, carbon, water, and minerals in the rhizosphere; (3) assessing the effects of heterogeneity across spatial and temporal scales; and (4) integrating the vast quantity of novel data, including “omics” data (genomics, transcriptomics, proteomics, metabolomics), elemental concentration and speciation data, and isotope data into our understanding of complex earth surface systems. With strong support from data-driven sciences, we are now in an exciting era where integration of RTM framework into other community models will facilitate process understanding across disciplines and across scales.

  15. Quasi-static analysis of elastic behavior for some systems having higher fracture densities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berryman, J.G.; Aydin, A.

    2009-10-15

    Elastic behavior of geomechanical systems with interacting (but not intersecting) fractures is treated using generalizations of the Backus and the Schoenberg-Muir methods for analyzing layered systems whose layers are intrinsically anisotropic due to locally aligned fractures. By permitting the axis of symmetry of the locally anisotropic compliance matrix for individual layers to differ from that of the layering direction, we derive analytical formulas for interacting fractured regions with arbitrary orientations to each other. This procedure provides a systematic tool for studying how contiguous, but not yet intersecting, fractured domains interact, and provides a direct (though approximate) means of predicting whenmore » and how such interactions lead to more dramatic weakening effects and ultimately to failure of these complicated systems. The method permits decomposition of the system elastic behavior into specific eigenmodes that can all be analyzed, and provides a better understanding about which of these specific modes are expected to be most important to the evolving failure process.« less

  16. Considerations of Socio-Economic and Global Change Effects on Eurasian Steppes Ecosystem and Land-Atmosphere Interactions

    NASA Astrophysics Data System (ADS)

    Ojima, D. S.; Chuluun, T.; Temirbekov, S. S.; Mahowald, N.; Hicke, J.

    2004-12-01

    Dramatic changes occurred in pastoral systems of Eurasia ranging from Mongolia, China and Central Asia for the past decades. Recently, evaluation of the pastoral systems has been conducted in the region. Pastoral systems, where humans depend on livestock, exist largely in arid or semi-arid ecosystems where climate is highly variable. Interaction between ecosystems and nomadic land use systems co-shaped them in mutual adaptive ways for hundreds of years, thus making both the Mongolian rangeland ecosystem and nomadic pastoral system resilient and sustainable. Current changes in environmental conditions are affecting land-atmosphere interactions. Regional dust events, changes in hydrological cycle, and land use changes contribute to changing interactions between ecosystem and landscape processes which affect regional climate. The general trend involves greater intensification of resource exploitation at the expense of traditional patterns of extensive range utilization. This set of drivers is orthogonal to the above described climate drivers. Thus we expect climate-land use-land cover relationships to be crucially modified by the socio-economic forces.

  17. Plasmon-modulated bistable four-wave mixing signals from a metal nanoparticle-monolayer MoS2 nanoresonator hybrid system.

    PubMed

    Li, Jian-Bo; Tan, Xiao-Long; Ma, Jin-Hong; Xu, Si-Qin; Kuang, Zhi-Wei; Liang, Shan; Xiao, Si; He, Meng-Dong; Kim, Nam-Chol; Luo, Jian-Hua; Chen, Li-Qun

    2018-06-22

    We present a study for the impact of exciton-phonon and exciton-plasmon interactions on bistable four-wave mixing (FWM) signals in a metal nanoparticle (MNP)-monolayer MoS 2 nanoresonator hybrid system. Via tracing the FWM response we predict that, depending on the excitation conditions and the system parameters, such a system exhibits 'U-shaped' bistable FWM signals. We also map out bistability phase diagrams within the system's parameter space. Especially, we show that compared with the exciton-phonon interaction, a strong exciton-plasmon interaction plays a dominant role in the generation of optical bistability, and the bistable region will be greatly broadened by shortening the distance between the MNP and the monolayer MoS 2 nanoresonator. In the weak exciton-plasmon coupling regime, the impact of exciton-phonon interaction on optical bistability will become obvious. The scheme proposed may be used for building optical switches and logic-gate devices for optical computing and quantum information processing.

  18. Systems medicine: a new approach to clinical practice.

    PubMed

    Cardinal-Fernández, Pablo; Nin, Nicolás; Ruíz-Cabello, Jesús; Lorente, José A

    2014-10-01

    Most respiratory diseases are considered complex diseases as their susceptibility and outcomes are determined by the interaction between host-dependent factors (genetic factors, comorbidities, etc.) and environmental factors (exposure to microorganisms or allergens, treatments received, etc.) The reductionist approach in the study of diseases has been of fundamental importance for the understanding of the different components of a system. Systems biology or systems medicine is a complementary approach aimed at analyzing the interactions between the different components within one organizational level (genome, transcriptome, proteome), and then between the different levels. Systems medicine is currently used for the interpretation and understanding of the pathogenesis and pathophysiology of different diseases, biomarker discovery, design of innovative therapeutic targets, and the drawing up of computational models for different biological processes. In this review we discuss the most relevant concepts of the theory underlying systems medicine, as well as its applications in the various biological processes in humans. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  19. The dynamics of human-water systems: comparing observations and simulations

    NASA Astrophysics Data System (ADS)

    Di Baldassarre, G.; Ciullo, A.; Castellarin, A.; Viglione, A.

    2016-12-01

    Real-word data of human-flood interactions are compared to the results of stylized socio-hydrological models. These models build on numerous examples from different parts of the world and consider two main prototypes of floodplain systems. Green systems, whereby societies cope with flood risk via non-structural measures, e.g. resettling out of floodplain areas ("living with floods" approach); and Technological systems, whereby societies cope with flood risk by also via structural measures, e.g. building levees ("fighting floods" approach). The floodplain systems of the Tiber River in Rome and the Ganges-Brahmaputra-Meghna Rivers in Bangladesh systems are used as case studies. The comparison of simulations and observations shows the potential of socio-hydrological models in capturing the dynamics of risk emerging from the interactions and feedbacks between social and hydrological processes, such as learning and forgetting effects. It is then discussed how the proposed approach can contribute to a better understanding of flood risk changes and therefore support the process of disaster risk reduction.

  20. Novel approach using DNA-RNA hybrids in RNA nanotechnology | Center for Cancer Research

    Cancer.gov

    Developing simple approaches to detect interactions, modifications, and cellular locations of macromolecules is essential for understanding biochemical processes. The use of protein fragment complementation assays, also called split-protein systems, is a highly sensitive approach for studying protein interactions in biological systems. In this approach, functional proteins are split into non-functional fragments, and when attached to possible interacting partners, can reassemble and become functional again. Use of split-protein assays can establish differences between a healthy and a diseased state in the cell as well as determine the outcome of a therapeutic intervention.

  1. Causality, Measurement, and Elementary Interactions

    NASA Astrophysics Data System (ADS)

    Gillis, Edward J.

    2011-12-01

    Signal causality, the prohibition of superluminal information transmission, is the fundamental property shared by quantum measurement theory and relativity, and it is the key to understanding the connection between nonlocal measurement effects and elementary interactions. To prevent those effects from transmitting information between the generating and observing process, they must be induced by the kinds of entangling interactions that constitute measurements, as implied in the Projection Postulate. They must also be nondeterministic as reflected in the Born Probability Rule. The nondeterminism of entanglement-generating processes explains why the relevant types of information cannot be instantiated in elementary systems, and why the sequencing of nonlocal effects is, in principle, unobservable. This perspective suggests a simple hypothesis about nonlocal transfers of amplitude during entangling interactions, which yields straightforward experimental consequences.

  2. 3D interactive augmented reality-enhanced digital learning systems for mobile devices

    NASA Astrophysics Data System (ADS)

    Feng, Kai-Ten; Tseng, Po-Hsuan; Chiu, Pei-Shuan; Yang, Jia-Lin; Chiu, Chun-Jie

    2013-03-01

    With enhanced processing capability of mobile platforms, augmented reality (AR) has been considered a promising technology for achieving enhanced user experiences (UX). Augmented reality is to impose virtual information, e.g., videos and images, onto a live-view digital display. UX on real-world environment via the display can be e ectively enhanced with the adoption of interactive AR technology. Enhancement on UX can be bene cial for digital learning systems. There are existing research works based on AR targeting for the design of e-learning systems. However, none of these work focuses on providing three-dimensional (3-D) object modeling for en- hanced UX based on interactive AR techniques. In this paper, the 3-D interactive augmented reality-enhanced learning (IARL) systems will be proposed to provide enhanced UX for digital learning. The proposed IARL systems consist of two major components, including the markerless pattern recognition (MPR) for 3-D models and velocity-based object tracking (VOT) algorithms. Realistic implementation of proposed IARL system is conducted on Android-based mobile platforms. UX on digital learning can be greatly improved with the adoption of proposed IARL systems.

  3. Partial automation of database processing of simulation outputs from L-systems models of plant morphogenesis.

    PubMed

    Chen, Yi- Ping Phoebe; Hanan, Jim

    2002-01-01

    Models of plant architecture allow us to explore how genotype environment interactions effect the development of plant phenotypes. Such models generate masses of data organised in complex hierarchies. This paper presents a generic system for creating and automatically populating a relational database from data generated by the widely used L-system approach to modelling plant morphogenesis. Techniques from compiler technology are applied to generate attributes (new fields) in the database, to simplify query development for the recursively-structured branching relationship. Use of biological terminology in an interactive query builder contributes towards making the system biologist-friendly.

  4. The Socialization of Virtual Teams: Implications for ISD

    NASA Astrophysics Data System (ADS)

    Mullally, Brenda; Stapleton, Larry

    Studies show that Information Systems Development (ISD) projects do not fulfil stakeholder expectations of completion time, quality and budget. (2005) study shows that development is more about social interaction and mutual understanding than following a prescribed method. Systems development is a social process where interactions help to make sense of the reality within which the system is developed (Hirschheirn et al., 1991). Research concentrates on methodology when in fact method may not be the primary problem. Authors have called for further research to investigate the true nature of the current systems development environment in real organisational situations (Fitzgerald, 2000).

  5. Complexity in electronic negotiation support systems.

    PubMed

    Griessmair, Michele; Strunk, Guido; Vetschera, Rudolf; Koeszegi, Sabine T

    2011-10-01

    It is generally acknowledged that the medium influences the way we communicate and negotiation research directs considerable attention to the impact of different electronic communication modes on the negotiation process and outcomes. Complexity theories offer models and methods that allow the investigation of how pattern and temporal sequences unfold over time in negotiation interactions. By focusing on the dynamic and interactive quality of negotiations as well as the information, choice, and uncertainty contained in the negotiation process, the complexity perspective addresses several issues of central interest in classical negotiation research. In the present study we compare the complexity of the negotiation communication process among synchronous and asynchronous negotiations (IM vs. e-mail) as well as an electronic negotiation support system including a decision support system (DSS). For this purpose, transcripts of 145 negotiations have been coded and analyzed with the Shannon entropy and the grammar complexity. Our results show that negotiating asynchronically via e-mail as well as including a DSS significantly reduces the complexity of the negotiation process. Furthermore, a reduction of the complexity increases the probability of reaching an agreement.

  6. Estimating the decomposition of predictive information in multivariate systems

    NASA Astrophysics Data System (ADS)

    Faes, Luca; Kugiumtzis, Dimitris; Nollo, Giandomenico; Jurysta, Fabrice; Marinazzo, Daniele

    2015-03-01

    In the study of complex systems from observed multivariate time series, insight into the evolution of one system may be under investigation, which can be explained by the information storage of the system and the information transfer from other interacting systems. We present a framework for the model-free estimation of information storage and information transfer computed as the terms composing the predictive information about the target of a multivariate dynamical process. The approach tackles the curse of dimensionality employing a nonuniform embedding scheme that selects progressively, among the past components of the multivariate process, only those that contribute most, in terms of conditional mutual information, to the present target process. Moreover, it computes all information-theoretic quantities using a nearest-neighbor technique designed to compensate the bias due to the different dimensionality of individual entropy terms. The resulting estimators of prediction entropy, storage entropy, transfer entropy, and partial transfer entropy are tested on simulations of coupled linear stochastic and nonlinear deterministic dynamic processes, demonstrating the superiority of the proposed approach over the traditional estimators based on uniform embedding. The framework is then applied to multivariate physiologic time series, resulting in physiologically well-interpretable information decompositions of cardiovascular and cardiorespiratory interactions during head-up tilt and of joint brain-heart dynamics during sleep.

  7. Modeling Human-Computer Decision Making with Covariance Structure Analysis.

    ERIC Educational Resources Information Center

    Coovert, Michael D.; And Others

    Arguing that sufficient theory exists about the interplay between human information processing, computer systems, and the demands of various tasks to construct useful theories of human-computer interaction, this study presents a structural model of human-computer interaction and reports the results of various statistical analyses of this model.…

  8. Threads of Mission Success

    NASA Technical Reports Server (NTRS)

    Gavin, Thomas R.

    2006-01-01

    This viewgraph presentation reviews the many parts of the JPL mission planning process that the project manager has to work with. Some of them are: NASA & JPL's institutional requirements, the mission systems design requirements, the science interactions, the technical interactions, financial requirements, verification and validation, safety and mission assurance, and independent assessment, review and reporting.

  9. System Quality Characteristics for Selecting Mobile Learning Applications

    ERIC Educational Resources Information Center

    Sarrab, Mohamed; Al-Shihi, Hafedh; Al-Manthari, Bader

    2015-01-01

    The majority of M-learning (Mobile learning) applications available today are developed for the formal learning and education environment. These applications are characterized by the improvement in the interaction between learners and instructors to provide high interaction and flexibility to the learning process. M-learning is gaining increased…

  10. Novel methodology to examine cognitive and experiential factors in language development: combining eye-tracking and LENA technology

    PubMed Central

    Odean, Rosalie; Nazareth, Alina; Pruden, Shannon M.

    2015-01-01

    Developmental systems theory posits that development cannot be segmented by influences acting in isolation, but should be studied through a scientific lens that highlights the complex interactions between these forces over time (Overton, 2013a). This poses a unique challenge for developmental psychologists studying complex processes like language development. In this paper, we advocate for the combining of highly sophisticated data collection technologies in an effort to move toward a more systemic approach to studying language development. We investigate the efficiency and appropriateness of combining eye-tracking technology and the LENA (Language Environment Analysis) system, an automated language analysis tool, in an effort to explore the relation between language processing in early development, and external dynamic influences like parent and educator language input in the home and school environments. Eye-tracking allows us to study language processing via eye movement analysis; these eye movements have been linked to both conscious and unconscious cognitive processing, and thus provide one means of evaluating cognitive processes underlying language development that does not require the use of subjective parent reports or checklists. The LENA system, on the other hand, provides automated language output that describes a child’s language-rich environment. In combination, these technologies provide critical information not only about a child’s language processing abilities but also about the complexity of the child’s language environment. Thus, when used in conjunction these technologies allow researchers to explore the nature of interacting systems involved in language development. PMID:26379591

  11. Complexity Theory

    USGS Publications Warehouse

    Lee, William H K.

    2016-01-01

    A complex system consists of many interacting parts, generates new collective behavior through self organization, and adaptively evolves through time. Many theories have been developed to study complex systems, including chaos, fractals, cellular automata, self organization, stochastic processes, turbulence, and genetic algorithms.

  12. What can paper-based clinical information systems tell us about the design of computerized clinical information systems (CIS) in the ICU?

    PubMed

    Miller, A; Pilcher, D; Mercaldo, N; Leong, T; Scheinkestel, C; Schildcrout, J

    2010-08-01

    Screen designs in computerized clinical information systems (CIS) have been modeled on their paper predecessors. However, limited understanding about how paper forms support clinical work means that we risk repeating old mistakes and creating new opportunities for error and inefficiency as illustrated by problems associated with computerized provider order entry systems. This study was designed to elucidate principles underlying a successful ICU paper-based CIS. The research was guided by two exploratory hypotheses: (1) paper-based artefacts (charts, notes, equipment, order forms) are used differently by nurses, doctors and other healthcare professionals in different (formal and informal) conversation contexts and (2) different artefacts support different decision processes that are distributed across role-based conversations. All conversations undertaken at the bedsides of five patients were recorded with any supporting artefacts for five days per patient. Data was coded according to conversational role-holders, clinical decision process, conversational context and artefacts. 2133 data points were analyzed using Poisson logistic regression analyses. Results show significant interactions between artefacts used during different professional conversations in different contexts (chi(2)((df=16))=55.8, p<0.0001). The interaction between artefacts used during different professional conversations for different clinical decision processes was not statistically significant although all two-way interactions were statistically significant. Paper-based CIS have evolved to support complex interdisciplinary decision processes. The translation of two design principles - support interdisciplinary perspectives and integrate decision processes - from paper to computerized CIS may minimize the risks associated with computerization. 2010 Australian College of Critical Care Nurses Ltd. Published by Elsevier Ltd. All rights reserved.

  13. Imbalance between cognitive systems in alcohol-dependence and Korsakoff syndrome: An exploration using the Alcohol Flanker Task.

    PubMed

    Brion, Mélanie; Dormal, Valérie; Lannoy, Séverine; Mertens, Serge; de Timary, Philippe; Maurage, Pierre

    2018-03-06

    Alcohol-dependent individuals (ALC) simultaneously present decreased inhibitory control and increased attention towards alcohol-related cues. The dual-process models have proposed that these symptoms reflect an imbalance between prefrontal/reflective and limbic/automatic systems, respectively leading to cognitive dysfunctions in executive processes and to alcohol-related bias. However, most previous research has focused on a separate exploration of these systems among ALC, and the direct measure of their interactions remains to be conducted. Moreover, no study has explored the evolution of this imbalance across the successive stages of alcohol-related disorders, and particularly in Korsakoff syndrome (KS), the most frequent neurological complication of alcohol-dependence. Ten KS, 14 ALC, and 14 matched control participants performed a modified Flanker task, the "Alcohol Flanker Task," based on congruent, incongruent, and neutral conditions with alcohol-related stimuli. This task required inhibitory processing on alcohol-related stimuli and evaluated, through a behavioral approach, the interaction between reflective and automatic systems, as well as its evolution between ALC and KS. ALC and KS both presented high reactivity towards alcohol-related stimuli, confirming the presence of alcohol-related bias. KS showed increased omission rates (related to distractor interference) while ALC showed higher false-alarm rates (related to prepotent response inhibition). These results suggest that different inhibitory subcomponents might be altered at the successive stages of the pathology, and experimentally confirms the crucial role of the interaction between reflective and automatic processes in alcohol-use disorders. The present results reinforce the proposal that alcohol-related cues significantly impact inhibitory control in alcohol-related disorders. However, ALC and KS present different patterns of deficits depending on task complexity (i.e., executive load), thus suggesting a dissociation in inhibitory functions when processing alcohol-related cues.

  14. A Generic Approach for Pen-Based User Interface Development

    NASA Astrophysics Data System (ADS)

    Macé, Sébastien; Anquetil, Éric

    Pen-based interaction is an intuitive way to realize hand drawn structured documents, but few applications take advantage of it. Indeed, the interpretation of the user hand drawn strokes in the context of document is a complex problem. In this paper, we propose a new generic approach to develop such systems based on three independent components. The first one is a set of graphical and editing functions adapted to pen interaction. The second one is a rule-based formalism that models structured document composition and the corresponding interpretation process. The last one is a hand drawn stroke analyzer that is able to interpret strokes progressively, directly while the user is drawing. We highlight in particular the human-computer interaction induced from this progressive interpretation process. Thanks to this generic approach, three pen-based system prototypes have already been developed, for musical score editing, for graph editing, and for UML class diagram editing

  15. Cooperative polymerization of α-helices induced by macromolecular architecture

    NASA Astrophysics Data System (ADS)

    Baumgartner, Ryan; Fu, Hailin; Song, Ziyuan; Lin, Yao; Cheng, Jianjun

    2017-07-01

    Catalysis observed in enzymatic processes and protein polymerizations often relies on the use of supramolecular interactions and the organization of functional elements in order to gain control over the spatial and temporal elements of fundamental cellular processes. Harnessing these cooperative interactions to catalyse reactions in synthetic systems, however, remains challenging due to the difficulty in creating structurally controlled macromolecules. Here, we report a polypeptide-based macromolecule with spatially organized α-helices that can catalyse its own formation. The system consists of a linear polymeric scaffold containing a high density of initiating groups from which polypeptides are grown, forming a brush polymer. The folding of polypeptide side chains into α-helices dramatically enhances the polymerization rate due to cooperative interactions of macrodipoles between neighbouring α-helices. The parameters that affect the rate are elucidated by a two-stage kinetic model using principles from nucleation-controlled protein polymerizations; the key difference being the irreversible nature of this polymerization.

  16. The second laws of quantum thermodynamics.

    PubMed

    Brandão, Fernando; Horodecki, Michał; Ng, Nelly; Oppenheim, Jonathan; Wehner, Stephanie

    2015-03-17

    The second law of thermodynamics places constraints on state transformations. It applies to systems composed of many particles, however, we are seeing that one can formulate laws of thermodynamics when only a small number of particles are interacting with a heat bath. Is there a second law of thermodynamics in this regime? Here, we find that for processes which are approximately cyclic, the second law for microscopic systems takes on a different form compared to the macroscopic scale, imposing not just one constraint on state transformations, but an entire family of constraints. We find a family of free energies which generalize the traditional one, and show that they can never increase. The ordinary second law relates to one of these, with the remainder imposing additional constraints on thermodynamic transitions. We find three regimes which determine which family of second laws govern state transitions, depending on how cyclic the process is. In one regime one can cause an apparent violation of the usual second law, through a process of embezzling work from a large system which remains arbitrarily close to its original state. These second laws are relevant for small systems, and also apply to individual macroscopic systems interacting via long-range interactions. By making precise the definition of thermal operations, the laws of thermodynamics are unified in this framework, with the first law defining the class of operations, the zeroth law emerging as an equivalence relation between thermal states, and the remaining laws being monotonicity of our generalized free energies.

  17. The second laws of quantum thermodynamics

    PubMed Central

    Brandão, Fernando; Horodecki, Michał; Ng, Nelly; Oppenheim, Jonathan; Wehner, Stephanie

    2015-01-01

    The second law of thermodynamics places constraints on state transformations. It applies to systems composed of many particles, however, we are seeing that one can formulate laws of thermodynamics when only a small number of particles are interacting with a heat bath. Is there a second law of thermodynamics in this regime? Here, we find that for processes which are approximately cyclic, the second law for microscopic systems takes on a different form compared to the macroscopic scale, imposing not just one constraint on state transformations, but an entire family of constraints. We find a family of free energies which generalize the traditional one, and show that they can never increase. The ordinary second law relates to one of these, with the remainder imposing additional constraints on thermodynamic transitions. We find three regimes which determine which family of second laws govern state transitions, depending on how cyclic the process is. In one regime one can cause an apparent violation of the usual second law, through a process of embezzling work from a large system which remains arbitrarily close to its original state. These second laws are relevant for small systems, and also apply to individual macroscopic systems interacting via long-range interactions. By making precise the definition of thermal operations, the laws of thermodynamics are unified in this framework, with the first law defining the class of operations, the zeroth law emerging as an equivalence relation between thermal states, and the remaining laws being monotonicity of our generalized free energies. PMID:25675476

  18. Query2Question: Translating Visualization Interaction into Natural Language.

    PubMed

    Nafari, Maryam; Weaver, Chris

    2015-06-01

    Richly interactive visualization tools are increasingly popular for data exploration and analysis in a wide variety of domains. Existing systems and techniques for recording provenance of interaction focus either on comprehensive automated recording of low-level interaction events or on idiosyncratic manual transcription of high-level analysis activities. In this paper, we present the architecture and translation design of a query-to-question (Q2Q) system that automatically records user interactions and presents them semantically using natural language (written English). Q2Q takes advantage of domain knowledge and uses natural language generation (NLG) techniques to translate and transcribe a progression of interactive visualization states into a visual log of styled text that complements and effectively extends the functionality of visualization tools. We present Q2Q as a means to support a cross-examination process in which questions rather than interactions are the focus of analytic reasoning and action. We describe the architecture and implementation of the Q2Q system, discuss key design factors and variations that effect question generation, and present several visualizations that incorporate Q2Q for analysis in a variety of knowledge domains.

  19. Genes2Networks: connecting lists of gene symbols using mammalian protein interactions databases.

    PubMed

    Berger, Seth I; Posner, Jeremy M; Ma'ayan, Avi

    2007-10-04

    In recent years, mammalian protein-protein interaction network databases have been developed. The interactions in these databases are either extracted manually from low-throughput experimental biomedical research literature, extracted automatically from literature using techniques such as natural language processing (NLP), generated experimentally using high-throughput methods such as yeast-2-hybrid screens, or interactions are predicted using an assortment of computational approaches. Genes or proteins identified as significantly changing in proteomic experiments, or identified as susceptibility disease genes in genomic studies, can be placed in the context of protein interaction networks in order to assign these genes and proteins to pathways and protein complexes. Genes2Networks is a software system that integrates the content of ten mammalian interaction network datasets. Filtering techniques to prune low-confidence interactions were implemented. Genes2Networks is delivered as a web-based service using AJAX. The system can be used to extract relevant subnetworks created from "seed" lists of human Entrez gene symbols. The output includes a dynamic linkable three color web-based network map, with a statistical analysis report that identifies significant intermediate nodes used to connect the seed list. Genes2Networks is powerful web-based software that can help experimental biologists to interpret lists of genes and proteins such as those commonly produced through genomic and proteomic experiments, as well as lists of genes and proteins associated with disease processes. This system can be used to find relationships between genes and proteins from seed lists, and predict additional genes or proteins that may play key roles in common pathways or protein complexes.

  20. Finding Waldo: Learning about Users from their Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Eli T.; Ottley, Alvitta; Zhao, Helen

    Visual analytics is inherently a collaboration between human and computer. However, in current visual analytics systems, the computer has limited means of knowing about its users and their analysis processes. While existing research has shown that a user’s interactions with a system reflect a large amount of the user’s reasoning process, there has been limited advancement in developing automated, real-time techniques that mine interactions to learn about the user. In this paper, we demonstrate that we can accurately predict a user’s task performance and infer some user personality traits by using machine learning techniques to analyze interaction data. Specifically, wemore » conduct an experiment in which participants perform a visual search task and we apply well-known machine learning algorithms to three encodings of the users interaction data. We achieve, depending on algorithm and encoding, between 62% and 96% accuracy at predicting whether each user will be fast or slow at completing the task. Beyond predicting performance, we demonstrate that using the same techniques, we can infer aspects of the user’s personality factors, including locus of control, extraversion, and neuroticism. Further analyses show that strong results can be attained with limited observation time, in some cases, 82% of the final accuracy is gained after a quarter of the average task completion time. Overall, our findings show that interactions can provide information to the computer about its human collaborator, and establish a foundation for realizing mixed- initiative visual analytics systems.« less

  1. Exclusion processes: Short-range correlations induced by adhesion and contact interactions

    NASA Astrophysics Data System (ADS)

    Ascolani, Gianluca; Badoual, Mathilde; Deroulers, Christophe

    2013-01-01

    We analyze the out-of-equilibrium behavior of exclusion processes where agents interact with their nearest neighbors, and we study the short-range correlations which develop because of the exclusion and other contact interactions. The form of interactions we focus on, including adhesion and contact-preserving interactions, is especially relevant for migration processes of living cells. We show the local agent density and nearest-neighbor two-point correlations resulting from simulations on two-dimensional lattices in the transient regime where agents invade an initially empty space from a source and in the stationary regime between a source and a sink. We compare the results of simulations with the corresponding quantities derived from the master equation of the exclusion processes, and in both cases, we show that, during the invasion of space by agents, a wave of correlations travels with velocity v(t)˜t-1/2. The relative placement of this wave to the agent density front and the time dependence of its height may be used to discriminate between different forms of contact interactions or to quantitatively estimate the intensity of interactions. We discuss, in the stationary density profile between a full and an empty reservoir of agents, the presence of a discontinuity close to the empty reservoir. Then we develop a method for deriving approximate hydrodynamic limits of the processes. From the resulting systems of partial differential equations, we recover the self-similar behavior of the agent density and correlations during space invasion.

  2. Controlled exciton transfer between quantum dots with acoustic phonons taken into account

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovinski, P. A., E-mail: golovinski@bk.ru

    2015-09-15

    A system of excitons in two quantum dots coupled by the dipole–dipole interaction is investigated. The excitation transfer process controlled by the optical Stark effect at nonresonant frequencies is considered and the effect of the interaction between excitons and acoustic phonons in a medium on this process is taken into account. The system evolution is described using quantum Heisenberg equations. A truncated set of equations is obtained and the transfer dynamics is numerically simulated. High-efficiency picosecond switching of the excitation transfer by a laser pulse with a rectangular envelope is demonstrated. The dependence of picosecond switching on the quantum-dot parametersmore » and optical-pulse length is presented.« less

  3. Rivers are social–ecological systems: Time to integrate human dimensions into riverscape ecology and management

    USGS Publications Warehouse

    Dunham, Jason B.; Angermeier, Paul L.; Crausbay, Shelley D.; Cravens, Amanda; Gosnell, Hannah; McEvoy, Jamie; Moritz, Max A.; Raheem, Nejem; Sanford, Todd

    2018-01-01

    Incorporation of concepts from landscape ecology into understanding and managing riverine ecosystems has become widely known as riverscape ecology. Riverscape ecology emphasizes interactions among processes at different scales and their consequences for valued ecosystem components, such as riverine fishes. Past studies have focused strongly on understanding the ecological processes in riverscapes and how human actions modify those processes. It is increasingly clear, however, that an understanding of the drivers behind actions that lead to human modification also merit consideration, especially regarding how those drivers influence management efficacy. These indirect drivers of riverscape outcomes can be understood in the context of a diverse array of social processes, which we collectively refer to as human dimensions. Like ecological phenomena, social processes also exhibit complex interactions across spatiotemporal scales. Greater emphasis on feedbacks between social and ecological processes will lead scientists and managers to more completely understand riverscapes as complex, dynamic, interacting social–ecological systems. Emerging applications in riverscapes, as well as studies of other ecosystems, provide examples that can lead to stronger integration of social and ecological science. We argue that conservation successes within riverscapes may not come from better ecological science, improved ecosystem service analyses, or even economic incentives if the fundamental drivers of human behaviors are not understood and addressed in conservation planning and implementation.

  4. Multi-disciplinary coupling for integrated design of propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Effective computational simulation procedures are described for modeling the inherent multi-disciplinary interactions for determining the true response of propulsion systems. Results are presented for propulsion system responses including multi-discipline coupling effects via (1) coupled multi-discipline tailoring, (2) an integrated system of multidisciplinary simulators, (3) coupled material-behavior/fabrication-process tailoring, (4) sensitivities using a probabilistic simulator, and (5) coupled materials/structures/fracture/probabilistic behavior simulator. The results show that the best designs can be determined if the analysis/tailoring methods account for the multi-disciplinary coupling effects. The coupling across disciplines can be used to develop an integrated interactive multi-discipline numerical propulsion system simulator.

  5. Coherence protection in coupled quantum systems

    NASA Astrophysics Data System (ADS)

    Cammack, H. M.; Kirton, P.; Stace, T. M.; Eastham, P. R.; Keeling, J.; Lovett, B. W.

    2018-02-01

    The interaction of a quantum system with its environment causes decoherence, setting a fundamental limit on its suitability for quantum information processing. However, we show that if the system consists of coupled parts with different internal energy scales then the interaction of one part with a thermal bath need not lead to loss of coherence from the other. Remarkably, we find that the protected part can remain coherent for longer when the coupling to the bath becomes stronger or the temperature is raised. Our theory will enable the design of decoherence-resistant hybrid quantum computers.

  6. Interactive models of communication at the nanoscale using nanoparticles that talk to one another

    PubMed Central

    Llopis-Lorente, Antoni; Díez, Paula; Sánchez, Alfredo; Marcos, María D.; Sancenón, Félix; Martínez-Ruiz, Paloma; Villalonga, Reynaldo; Martínez-Máñez, Ramón

    2017-01-01

    ‘Communication' between abiotic nanoscale chemical systems is an almost-unexplored field with enormous potential. Here we show the design and preparation of a chemical communication system based on enzyme-powered Janus nanoparticles, which mimics an interactive model of communication. Cargo delivery from one nanoparticle is governed by the biunivocal communication with another nanoparticle, which involves two enzymatic processes and the interchange of chemical messengers. The conceptual idea of establishing communication between nanodevices opens the opportunity to develop complex nanoscale systems capable of sharing information and cooperating. PMID:28556828

  7. On the tidal interaction between protoplanets and the primordial solar nebula. II - Self-consistent nonlinear interaction

    NASA Technical Reports Server (NTRS)

    Lin, D. N. C.; Papaloizou, J.

    1986-01-01

    A method to analyze the full nonlinear response and physical processes associated with the tidal interaction between a binary system and a thin disk in the steady state is presented. Using this approach, density wave propagation, induced by tidal interaction, may be studied for a wide range of sound speeds and viscosities. The effect of self-gravity may also be incorporated. The results of several calculations relevant to the tidal interaction between a protoplanet and the primordial solar nebula are also presented.

  8. Simulation of the weakly interacting Bose gas relaxation for cases of various interaction types

    NASA Astrophysics Data System (ADS)

    Kartsev, P. F.; Kuznetsov, I. O.

    2017-12-01

    In this work, we investigate the role of interactions in the process of thermalization of a weakly interacting Bose gas. The system of kinetic equations based on the ‘Fermi’s golden rule’ is solved numerically using special transformation for calculation efficiency. We study the distribution function for particles in various conditions, including interaction with phonon subsystem, i.e. energy exchange with thermal bath. The possibility to achieve the state of Bose-Einstein condensation with specific values of parameters, is also discussed.

  9. Tracer techniques in aeolian research: Approaches, applications, and challenges

    USDA-ARS?s Scientific Manuscript database

    Aeolian processes, the entrainment, transport and deposition of sediments by wind, impacts climate, biogeochemical cycles, food security, environmental quality and human health. Considering the multitude of interactions between aeolian processes and all the major components of the Earth system, ther...

  10. Electron-Driven Processes: From Single Collision Experiments to High-Pressure Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Becker, Kurt

    2001-10-01

    Plasmas are complex systems which consist of various groups of interacting particles (neutral atoms and molecules in their ground states and in excite states, electrons, and positive and negative ions). In principle, one needs to understand and describe all interactions between these particles in order to model the properties of the plasma and to predict its behavior. However, two-body interactions are often the only processes of relevance and only a subset of all possible collisional interactions are important. The focus of this talk is on collisional and radiative processes in low-temperature plasmas, both at low and high pressures. We will limit the discussion (i) to ionization and dissociation processes in molecular low-pressure plasmas and (ii) to collisional and radiative processes in high-pressure plasmas in rare gases and mixtures of rare gases and N2, O2, and H2. Electron-impact dissociation processes can be divided into dissociative excitation and dissociation into neutral ground-state fragments. Neutral molecular dissociation has only recently received attention from experimentalists and theorists because of the serious difficulties associated with the investigation of these processes. Collisional and radiative processes in high-pressure plasmas provide a fertile environment to the study of interactions that go beyond binary collisions involving ground-state species. Step-wise processes and three-body collisions begin to dominate the behavior of such plasmas. We will discuss examples of such processes as they relate to high-pressure rare gas discharge plasmas. Work supported by NSF, DOE, DARPA, NASA, and ABA Inc.

  11. Application of advanced multidisciplinary analysis and optimization methods to vehicle design synthesis

    NASA Technical Reports Server (NTRS)

    Consoli, Robert David; Sobieszczanski-Sobieski, Jaroslaw

    1990-01-01

    Advanced multidisciplinary analysis and optimization methods, namely system sensitivity analysis and non-hierarchical system decomposition, are applied to reduce the cost and improve the visibility of an automated vehicle design synthesis process. This process is inherently complex due to the large number of functional disciplines and associated interdisciplinary couplings. Recent developments in system sensitivity analysis as applied to complex non-hierarchic multidisciplinary design optimization problems enable the decomposition of these complex interactions into sub-processes that can be evaluated in parallel. The application of these techniques results in significant cost, accuracy, and visibility benefits for the entire design synthesis process.

  12. The Effect of Shared Information on Pilot/Controller And Controller/Controller Interactions

    NASA Technical Reports Server (NTRS)

    Hansman, R. John

    1999-01-01

    In order to respond to the increasing demand on limited airspace system resources, a number of applications of information technology have been proposed, or are under investigation, to improve the efficiency, capacity and reliability of ATM (Asynchronous Transfer Mode) operations. Much of the attention in advanced ATM technology has focused on advanced automation systems or decision aiding systems to improve the performance of individual Pilots or Controllers. However, the most significant overall potential for information technology appears to he in increasing the shared information between human agents such as Pilots, Controllers or between interacting Controllers or traffic flow managers. Examples of proposed shared information systems in the US include; Controller Pilot Databank Communication (CPDLC), Traffic Management Advisor (TMA); Automatic Dependent Surveillance (ADS); Collaborative Decision Making (CDM) and NAS Level Common Information Exchange. Air Traffic Management is fundamentally a human centered process consisting of the negotiation, execution and monitoring of contracts between human agents for the allocation of limited airspace, runway and airport surface resources. The decision processes within ATM tend to be Semistructured. Many of the routine elements in ATM decision making on the part of the Controllers or Pilots are well Structured and can be represented by well defined rules or procedures. However in disrupted conditions, the ATM decision processes are often Unstructured and cannot be reduced to a set of discrete rules. As a consequence, the ability to automate ATM processes will be limited and ATM will continue to be a human centric process where the responsibility and the authority for the negotiation will continue to rest with human Controllers and Pilots. The use of information technology to support the human decision process will therefore be an important aspect of ATM modernization. The premise of many of the proposed shared information systems is that the performance of ATM operations will improve with an increase in Shared Situation Awareness between agents (Pilots, Controller, Dispatchers). This will allow better informed control decisions and an improved ability to negotiate between agents. A common information basis may reduce communication load and may increase the level of collaboration in the decision process. In general, information sharing is expected to have advantages for all agents within the system. However there are important questions which remain to be,addressed. For example: What shared information is most important for developing effective Shared Situation Awareness? Are there issues of information saturation? Does information parity create ambiguity in control authority? Will information sharing induce undesirable or unstable gaming behavior between agents? This paper will explore the effect of current and proposed information sharing between different ATM agents. The paper will primarily concentrate on bilateral tactical interactions between specific agents (Pilot/Controller; Controller/Controller; Pilot/Dispatcher; Controller/Dispatcher) however it will also briefly discuss multilateral interaction and more strategic interactions.

  13. Role of Osmolytes in Regulating Immune System.

    PubMed

    Kumar, Tarun; Yadav, Manisha; Singh, Laishram Rajendrakumar

    2016-01-01

    The immune system has evolved to protect the host organism from diverse range of pathogenic microbes that are themselves constantly evolving. It is a complex network of cells, humoral factors, chemokines and cytokines. Dysregulation of immune system results in various kinds of immunological disorders. There are several external agents which govern the regulation of immune system. Recent studies have indicated the role of osmolytes in regulation of various immunological processes such as Ag-Ab interaction, Ig assembly, Ag presentation etc. In this present review, we have systematically discussed the role of osmolytes involved in regulation of several key immunological processes. Osmolytes are involved in the regulation of several key immunological processes such as immunoglobulin assembly and folding, immune cells proliferation, regulation of immune cells function, Ag-Ab interaction, antigen presentation, inflammatory response and protection against photo-immunosuppression. Hence, osmolytes and their transporters might be used as potential drug and drug targets respectively. This review is therefore designed to help clinicians in development of osmolyte based therapeutic strategies in the treatment of various immunological disorders. Appropriate future perspectives have also been included.

  14. Graphics processing units in bioinformatics, computational biology and systems biology.

    PubMed

    Nobile, Marco S; Cazzaniga, Paolo; Tangherloni, Andrea; Besozzi, Daniela

    2017-09-01

    Several studies in Bioinformatics, Computational Biology and Systems Biology rely on the definition of physico-chemical or mathematical models of biological systems at different scales and levels of complexity, ranging from the interaction of atoms in single molecules up to genome-wide interaction networks. Traditional computational methods and software tools developed in these research fields share a common trait: they can be computationally demanding on Central Processing Units (CPUs), therefore limiting their applicability in many circumstances. To overcome this issue, general-purpose Graphics Processing Units (GPUs) are gaining an increasing attention by the scientific community, as they can considerably reduce the running time required by standard CPU-based software, and allow more intensive investigations of biological systems. In this review, we present a collection of GPU tools recently developed to perform computational analyses in life science disciplines, emphasizing the advantages and the drawbacks in the use of these parallel architectures. The complete list of GPU-powered tools here reviewed is available at http://bit.ly/gputools. © The Author 2016. Published by Oxford University Press.

  15. Integrated human-machine intelligence in space systems

    NASA Technical Reports Server (NTRS)

    Boy, Guy A.

    1992-01-01

    The integration of human and machine intelligence in space systems is outlined with respect to the contributions of artificial intelligence. The current state-of-the-art in intelligent assistant systems (IASs) is reviewed, and the requirements of some real-world applications of the technologies are discussed. A concept of integrated human-machine intelligence is examined in the contexts of: (1) interactive systems that tolerate human errors; (2) systems for the relief of workloads; and (3) interactive systems for solving problems in abnormal situations. Key issues in the development of IASs include the compatibility of the systems with astronauts in terms of inputs/outputs, processing, real-time AI, and knowledge-based system validation. Real-world applications are suggested such as the diagnosis, planning, and control of enginnered systems.

  16. Understanding the complexity of redesigning care around the clinical microsystem.

    PubMed

    Barach, P; Johnson, J K

    2006-12-01

    The microsystem is an organizing design construct in which social systems cut across traditional discipline boundaries. Because of its interdisciplinary focus, the clinical microsystem provides a conceptual and practical framework for simplifying complex organizations that deliver care. It also provides an important opportunity for organizational learning. Process mapping and microworld simulation may be especially useful for redesigning care around the microsystem concept. Process mapping, in which the core processes of the microsystem are delineated and assessed from the perspective of how the individual interacts with the system, is an important element of the continuous learning cycle of the microsystem and the healthcare organization. Microworld simulations are interactive computer based models that can be used as an experimental platform to test basic questions about decision making misperceptions, cause-effect inferences, and learning within the clinical microsystem. Together these tools offer the user and organization the ability to understand the complexity of healthcare systems and to facilitate the redesign of optimal outcomes.

  17. The epithelial-mesenchymal interactions: insights into physiological and pathological aspects of oral tissues.

    PubMed

    Santosh, Arvind Babu Rajendra; Jones, Thaon Jon

    2014-03-17

    In the human biological system, the individual cells divide and form tissues and organs. These tissues are hetero-cellular. Basically any tissue consists of an epithelium and the connective tissue. The latter contains mainly mesenchymally-derived tissues with a diversified cell population. The cell continues to grow and differentiate in a pre-programmed manner using a messenger system. The epithelium and the mesenchymal portion of each tissue have two different origins and perform specific functions, but there is a well-defined interaction mechanism, which mediates between them. Epithelial mesenchymal interactions (EMIs) are part of this mechanism, which can be regarded as a biological conversation between epithelial and mesenchymal cell populations involved in the cellular differentiation of one or both cell populations. EMIs represent a process that is essential for cell growth, cell differentiation and cell multiplication. EMIs are associated with normal physiological processes in the oral cavity, such as odontogenesis, dentino-enamel junction formation, salivary gland development, palatogenesis, and also pathological processes, such as oral cancer. This paper focuses the role EMIs in odontogenesis, salivary gland development, palatogenesis and oral cancer.

  18. PlotXY: A High Quality Plotting System for the Herschel Interactive Processing Environment (HIPE) and the Astronomical Community

    NASA Astrophysics Data System (ADS)

    Panuzzo, P.; Li, J.; Caux, E.

    2012-09-01

    The Herschel Interactive Processing Environment (HIPE) was developed by the European Space Agency (ESA) in collaboration with NASA and the Herschel Instrument Control Centres, to provide the astronomical community a complete environment to process and analyze the data gathered by the Herschel Space Observatory. One of the most important components of HIPE is the plotting system (named PlotXY) that we present here. With PlotXY it is possible to produce easily high quality publication-ready 2D plots. It provides a long list of features, with fully configurable components, and interactive zooming. The entire code of HIPE is written in Java and is open source released under the GNU Lesser General Public License version 3. A new version of PlotXY is being developed to be independent from the HIPE code base; it is available to the software development community for the inclusion in other projects at the URL http://code.google.com/p/jplot2d/.

  19. Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors

    NASA Astrophysics Data System (ADS)

    Kerr, Benjamin; Riley, Margaret A.; Feldman, Marcus W.; Bohannan, Brendan J. M.

    2002-07-01

    One of the central aims of ecology is to identify mechanisms that maintain biodiversity. Numerous theoretical models have shown that competing species can coexist if ecological processes such as dispersal, movement, and interaction occur over small spatial scales. In particular, this may be the case for non-transitive communities, that is, those without strict competitive hierarchies. The classic non-transitive system involves a community of three competing species satisfying a relationship similar to the children's game rock-paper-scissors, where rock crushes scissors, scissors cuts paper, and paper covers rock. Such relationships have been demonstrated in several natural systems. Some models predict that local interaction and dispersal are sufficient to ensure coexistence of all three species in such a community, whereas diversity is lost when ecological processes occur over larger scales. Here, we test these predictions empirically using a non-transitive model community containing three populations of Escherichia coli. We find that diversity is rapidly lost in our experimental community when dispersal and interaction occur over relatively large spatial scales, whereas all populations coexist when ecological processes are localized.

  20. What is health systems responsiveness? Review of existing knowledge and proposed conceptual framework.

    PubMed

    Mirzoev, Tolib; Kane, Sumit

    2017-01-01

    Responsiveness is a key objective of national health systems. Responsive health systems anticipate and adapt to existing and future health needs, thus contributing to better health outcomes. Of all the health systems objectives, responsiveness is the least studied, which perhaps reflects lack of comprehensive frameworks that go beyond the normative characteristics of responsive services. This paper contributes to a growing, yet limited, knowledge on this topic. Herewith, we review the current frameworks for understanding health systems responsiveness and drawing on these, as well as key frameworks from the wider public services literature, propose a comprehensive conceptual framework for health systems responsiveness. This paper should be of interest to different stakeholders who are engaged in analysing and improving health systems responsiveness. Our review shows that existing knowledge on health systems responsiveness can be extended along the three areas. First, responsiveness entails an actual experience of people's interaction with their health system, which confirms or disconfirms their initial expectations of the system. Second, the experience of interaction is shaped by both the people and the health systems sides of this interaction. Third, different influences shape people's interaction with their health system, ultimately affecting their resultant experiences. Therefore, recognition of both people and health systems sides of interaction and their key determinants would enhance the conceptualisations of responsiveness. Our proposed framework builds on, and advances, the core frameworks in the health systems literature. It positions the experience of interaction between people and health system as the centrepiece and recognises the determinants of responsiveness experience both from the health systems (eg, actors, processes) and the people (eg, initial expectations) sides. While we hope to trigger further thinking on the conceptualisation of health system responsiveness, the proposed framework can guide assessments of, and interventions to strengthen, health systems responsiveness.

  1. What is health systems responsiveness? Review of existing knowledge and proposed conceptual framework

    PubMed Central

    Mirzoev, Tolib; Kane, Sumit

    2017-01-01

    Responsiveness is a key objective of national health systems. Responsive health systems anticipate and adapt to existing and future health needs, thus contributing to better health outcomes. Of all the health systems objectives, responsiveness is the least studied, which perhaps reflects lack of comprehensive frameworks that go beyond the normative characteristics of responsive services. This paper contributes to a growing, yet limited, knowledge on this topic. Herewith, we review the current frameworks for understanding health systems responsiveness and drawing on these, as well as key frameworks from the wider public services literature, propose a comprehensive conceptual framework for health systems responsiveness. This paper should be of interest to different stakeholders who are engaged in analysing and improving health systems responsiveness. Our review shows that existing knowledge on health systems responsiveness can be extended along the three areas. First, responsiveness entails an actual experience of people’s interaction with their health system, which confirms or disconfirms their initial expectations of the system. Second, the experience of interaction is shaped by both the people and the health systems sides of this interaction. Third, different influences shape people’s interaction with their health system, ultimately affecting their resultant experiences. Therefore, recognition of both people and health systems sides of interaction and their key determinants would enhance the conceptualisations of responsiveness. Our proposed framework builds on, and advances, the core frameworks in the health systems literature. It positions the experience of interaction between people and health system as the centrepiece and recognises the determinants of responsiveness experience both from the health systems (eg, actors, processes) and the people (eg, initial expectations) sides. While we hope to trigger further thinking on the conceptualisation of health system responsiveness, the proposed framework can guide assessments of, and interventions to strengthen, health systems responsiveness. PMID:29225953

  2. Bioregenerative technologies for waste processing and resource recovery in advanced space life support system

    NASA Technical Reports Server (NTRS)

    Chamberland, Dennis

    1991-01-01

    The Controlled Ecological Life Support System (CELSS) for producing oxygen, water, and food in space will require an interactive facility to process and return wastes as resources to the system. This paper examines the bioregenerative techologies for waste processing and resource recovery considered for a CELSS Resource Recovery system. The components of this system consist of a series of biological reactors to treat the liquid and solid material fractions, in which the aerobic and anaerobic reactors are combined in a block called the Combined Reactor Equipment (CORE) block. The CORE block accepts the human wastes, kitchen wastes, inedible refractory plant materials, grey waters from the CELLS system, and aquaculture solids and processes these materials in either aerobic or anaerobic reactors depending on the desired product and the rates required by the integrated system.

  3. HIPE, HIPE, Hooray!

    NASA Astrophysics Data System (ADS)

    Ott, S.

    2011-07-01

    (On behalf of all contributors to the Herschel mission) The Herschel Space Observatory, the fourth cornerstone mission in the ESA science program, was launched 14th of May 2009. With a 3.5 m telescope, it is the largest space telescope ever launched. Herschel's three instruments (HIFI, PACS, and SPIRE) perform photometry and spectroscopy in the 55-671 micron range and will deliver exciting science for the astronomical community during at least three years of routine observations. Starting October 2009 Herschel has been performing and processing observations in routine science mode. The development of the Herschel Data Processing System (HIPE) started nine years ago to support the data analysis for Instrument Level Tests. To fulfil the expectations of the astronomical community, additional resources were made available to implement a freely distributable Data Processing System capable of interactively and automatically reducing Herschel data at different processing levels. The system combines data retrieval, pipeline execution, data quality checking and scientific analysis in one single environment. HIPE is the user-friendly face of Herschel interactive Data Processing. The software is coded in Java and Jython to be platform independent and to avoid the need for commercial licenses. It is distributed under the GNU Lesser General Public License (LGPL), permitting everyone to access and to re-use its code. We will summarise the current capabilities of the Herschel Data Processing system, highlight how the Herschel Data Processing system supported the Herschel observatory to meet the challenges of this large project, give an overview about future development milestones and plans, and how the astronomical community can contribute to HIPE.

  4. Evidence for a bimodal distribution in human communication.

    PubMed

    Wu, Ye; Zhou, Changsong; Xiao, Jinghua; Kurths, Jürgen; Schellnhuber, Hans Joachim

    2010-11-02

    Interacting human activities underlie the patterns of many social, technological, and economic phenomena. Here we present clear empirical evidence from Short Message correspondence that observed human actions are the result of the interplay of three basic ingredients: Poisson initiation of tasks and decision making for task execution in individual humans as well as interaction among individuals. This interplay leads to new types of interevent time distribution, neither completely Poisson nor power-law, but a bimodal combination of them. We show that the events can be separated into independent bursts which are generated by frequent mutual interactions in short times following random initiations of communications in longer times by the individuals. We introduce a minimal model of two interacting priority queues incorporating the three basic ingredients which fits well the distributions using the parameters extracted from the empirical data. The model can also embrace a range of realistic social interacting systems such as e-mail and letter communications when taking the time scale of processing into account. Our findings provide insight into various human activities both at the individual and network level. Our analysis and modeling of bimodal activity in human communication from the viewpoint of the interplay between processes of different time scales is likely to shed light on bimodal phenomena in other complex systems, such as interevent times in earthquakes, rainfall, forest fire, and economic systems, etc.

  5. Evidence for a bimodal distribution in human communication

    PubMed Central

    Wu, Ye; Zhou, Changsong; Xiao, Jinghua; Kurths, Jürgen; Schellnhuber, Hans Joachim

    2010-01-01

    Interacting human activities underlie the patterns of many social, technological, and economic phenomena. Here we present clear empirical evidence from Short Message correspondence that observed human actions are the result of the interplay of three basic ingredients: Poisson initiation of tasks and decision making for task execution in individual humans as well as interaction among individuals. This interplay leads to new types of interevent time distribution, neither completely Poisson nor power-law, but a bimodal combination of them. We show that the events can be separated into independent bursts which are generated by frequent mutual interactions in short times following random initiations of communications in longer times by the individuals. We introduce a minimal model of two interacting priority queues incorporating the three basic ingredients which fits well the distributions using the parameters extracted from the empirical data. The model can also embrace a range of realistic social interacting systems such as e-mail and letter communications when taking the time scale of processing into account. Our findings provide insight into various human activities both at the individual and network level. Our analysis and modeling of bimodal activity in human communication from the viewpoint of the interplay between processes of different time scales is likely to shed light on bimodal phenomena in other complex systems, such as interevent times in earthquakes, rainfall, forest fire, and economic systems, etc. PMID:20959414

  6. Coordinated Development of Muscles and Tendon-Like Structures: Early Interactions in the Drosophila Leg.

    PubMed

    Soler, Cedric; Laddada, Lilia; Jagla, Krzysztof

    2016-01-01

    The formation of the musculoskeletal system is a remarkable example of tissue assembly. In both vertebrates and invertebrates, precise connectivity between muscles and skeleton (or exoskeleton) via tendons or equivalent structures is fundamental for movement and stability of the body. The molecular and cellular processes underpinning muscle formation are well-established and significant advances have been made in understanding tendon development. However, the mechanisms contributing to proper connection between these two tissues have received less attention. Observations of coordinated development of tendons and muscles suggest these tissues may interact during the different steps in their development. There is growing evidence that, depending on animal model and muscle type, these interactions can take place from progenitor induction to the final step of the formation of the musculoskeletal system. Here, we briefly review and compare the mechanisms behind muscle and tendon interaction throughout the development of vertebrates and Drosophila before going on to discuss our recent findings on the coordinated development of muscles and tendon-like structures in Drosophila leg. By altering apodeme formation (the functional Drosophila equivalent of tendons in vertebrates) during the early steps of leg development, we affect the spatial localization of subsequent myoblasts. These findings provide the first evidence of the developmental impact of early interactions between muscle and tendon-like precursors, and confirm the appendicular Drosophila muscle system as a valuable model for studying these processes.

  7. Coordinated Development of Muscles and Tendon-Like Structures: Early Interactions in the Drosophila Leg

    PubMed Central

    Soler, Cedric; Laddada, Lilia; Jagla, Krzysztof

    2016-01-01

    The formation of the musculoskeletal system is a remarkable example of tissue assembly. In both vertebrates and invertebrates, precise connectivity between muscles and skeleton (or exoskeleton) via tendons or equivalent structures is fundamental for movement and stability of the body. The molecular and cellular processes underpinning muscle formation are well-established and significant advances have been made in understanding tendon development. However, the mechanisms contributing to proper connection between these two tissues have received less attention. Observations of coordinated development of tendons and muscles suggest these tissues may interact during the different steps in their development. There is growing evidence that, depending on animal model and muscle type, these interactions can take place from progenitor induction to the final step of the formation of the musculoskeletal system. Here, we briefly review and compare the mechanisms behind muscle and tendon interaction throughout the development of vertebrates and Drosophila before going on to discuss our recent findings on the coordinated development of muscles and tendon-like structures in Drosophila leg. By altering apodeme formation (the functional Drosophila equivalent of tendons in vertebrates) during the early steps of leg development, we affect the spatial localization of subsequent myoblasts. These findings provide the first evidence of the developmental impact of early interactions between muscle and tendon-like precursors, and confirm the appendicular Drosophila muscle system as a valuable model for studying these processes. PMID:26869938

  8. Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system

    NASA Astrophysics Data System (ADS)

    Huang, Ronghui; Chen, Jilong; Wang, Lin; Lin, Zhongda

    2012-09-01

    Recent advances in the study of the characteristics, processes, and causes of spatio-temporal variabilities of the East Asian monsoon (EAM) system are reviewed in this paper. The understanding of the EAM system has improved in many aspects: the basic characteristics of horizontal and vertical structures, the annual cycle of the East Asian summer monsoon (EASM) system and the East Asian winter monsoon (EAWM) system, the characteristics of the spatio-temporal variabilities of the EASM system and the EAWM system, and especially the multiple modes of the EAM system and their spatio-temporal variabilities. Some new results have also been achieved in understanding the atmosphere-ocean interaction and atmosphere-land interaction processes that affect the variability of the EAM system. Based on recent studies, the EAM system can be seen as more than a circulation system, it can be viewed as an atmosphere-ocean-land coupled system, namely, the EAM climate system. In addition, further progress has been made in diagnosing the internal physical mechanisms of EAM climate system variability, especially regarding the characteristics and properties of the East Asia-Pacific (EAP) teleconnection over East Asia and the North Pacific, the "Silk Road" teleconnection along the westerly jet stream in the upper troposphere over the Asian continent, and the dynamical effects of quasi-stationary planetary wave activity on EAM system variability. At the end of the paper, some scientific problems regarding understanding the EAM system variability are proposed for further study.

  9. Unified picture of strong-coupling stochastic thermodynamics and time reversals

    NASA Astrophysics Data System (ADS)

    Aurell, Erik

    2018-04-01

    Strong-coupling statistical thermodynamics is formulated as the Hamiltonian dynamics of an observed system interacting with another unobserved system (a bath). It is shown that the entropy production functional of stochastic thermodynamics, defined as the log ratio of forward and backward system path probabilities, is in a one-to-one relation with the log ratios of the joint initial conditions of the system and the bath. A version of strong-coupling statistical thermodynamics where the system-bath interaction vanishes at the beginning and at the end of a process is, as is also weak-coupling stochastic thermodynamics, related to the bath initially in equilibrium by itself. The heat is then the change of bath energy over the process, and it is discussed when this heat is a functional of the system history alone. The version of strong-coupling statistical thermodynamics introduced by Seifert and Jarzynski is related to the bath initially in conditional equilibrium with respect to the system. This leads to heat as another functional of the system history which needs to be determined by thermodynamic integration. The log ratio of forward and backward system path probabilities in a stochastic process is finally related to log ratios of the initial conditions of a combined system and bath. It is shown that the entropy production formulas of stochastic processes under a general class of time reversals are given by the differences of bath energies in a larger underlying Hamiltonian system. The paper highlights the centrality of time reversal in stochastic thermodynamics, also in the case of strong coupling.

  10. Interactive color display for multispectral imagery using correlation clustering

    NASA Technical Reports Server (NTRS)

    Haskell, R. E. (Inventor)

    1979-01-01

    A method for processing multispectral data is provided, which permits an operator to make parameter level changes during the processing of the data. The system is directed to production of a color classification map on a video display in which a given color represents a localized region in multispectral feature space. Interactive controls permit an operator to alter the size and change the location of these regions, permitting the classification of such region to be changed from a broad to a narrow classification.

  11. The legal system, the U.S. Forest Service, and human-caused wildfires.

    Treesearch

    Linda R. Donoghue; Donna M. Paananen

    1984-01-01

    Presents an overview of the American legal system; describes the relations and interactions between the Forest Service and legal system components and processes; discusses how individuals enter, move through, and leave the legal system; and describes the current status of Forest Service law enforcement efforts directed at wildfire violations.

  12. Cross-scale morphology

    USGS Publications Warehouse

    Allen, Craig R.; Holling, Crawford S.; Garmestani, Ahjond S.; El-Shaarawi, Abdel H.; Piegorsch, Walter W.

    2013-01-01

    The scaling of physical, biological, ecological and social phenomena is a major focus of efforts to develop simple representations of complex systems. Much of the attention has been on discovering universal scaling laws that emerge from simple physical and geometric processes. However, there are regular patterns of departures both from those scaling laws and from continuous distributions of attributes of systems. Those departures often demonstrate the development of self-organized interactions between living systems and physical processes over narrower ranges of scale.

  13. Parallel Visualization Co-Processing of Overnight CFD Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Edwards, David E.; Haimes, Robert

    1999-01-01

    An interactive visualization system pV3 is being developed for the investigation of advanced computational methodologies employing visualization and parallel processing for the extraction of information contained in large-scale transient engineering simulations. Visual techniques for extracting information from the data in terms of cutting planes, iso-surfaces, particle tracing and vector fields are included in this system. This paper discusses improvements to the pV3 system developed under NASA's Affordable High Performance Computing project.

  14. An error analysis of tropical cyclone divergence and vorticity fields derived from satellite cloud winds on the Atmospheric and Oceanographic Information Processing System (AOIPS)

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Rodgers, E. B.

    1977-01-01

    An advanced Man-Interactive image and data processing system (AOIPS) was developed to extract basic meteorological parameters from satellite data and to perform further analyses. The errors in the satellite derived cloud wind fields for tropical cyclones are investigated. The propagation of these errors through the AOIPS system and their effects on the analysis of horizontal divergence and relative vorticity are evaluated.

  15. Introductory lecture: interpreting and predicting Hofmeister salt ion and solute effects on biopolymer and model processes using the solute partitioning model.

    PubMed

    Record, M Thomas; Guinn, Emily; Pegram, Laurel; Capp, Michael

    2013-01-01

    Understanding how Hofmeister salt ions and other solutes interact with proteins, nucleic acids, other biopolymers and water and thereby affect protein and nucleic acid processes as well as model processes (e.g. solubility of model compounds) in aqueous solution is a longstanding goal of biophysical research. Empirical Hofmeister salt and solute "m-values" (derivatives of the observed standard free energy change for a model or biopolymer process with respect to solute or salt concentration m3) are equal to differences in chemical potential derivatives: m-value = delta(dmu2/dm3) = delta mu23, which quantify the preferential interactions of the solute or salt with the surface of the biopolymer or model system (component 2) exposed or buried in the process. Using the solute partitioning model (SPM), we dissect mu23 values for interactions of a solute or Hofmeister salt with a set of model compounds displaying the key functional groups of biopolymers to obtain interaction potentials (called alpha-values) that quantify the interaction of the solute or salt per unit area of each functional group or type of surface. Interpreted using the SPM, these alpha-values provide quantitative information about both the hydration of functional groups and the competitive interaction of water and the solute or salt with functional groups. The analysis corroborates and quantifies previous proposals that the Hofmeister anion and cation series for biopolymer processes are determined by ion-specific, mostly unfavorable interactions with hydrocarbon surfaces; the balance between these unfavorable nonpolar interactions and often-favorable interactions of ions with polar functional groups determine the series null points. The placement of urea and glycine betaine (GB) at opposite ends of the corresponding series of nonelectrolytes results from the favorable interactions of urea, and unfavorable interactions of GB, with many (but not all) biopolymer functional groups. Interaction potentials and local-bulk partition coefficients quantifying the distribution of solutes (e.g. urea, glycine betaine) and Hofmeister salt ions in the vicinity of each functional group make good chemical sense when interpreted in terms of competitive noncovalent interactions. These interaction potentials allow solute and Hofmeister (noncoulombic) salt effects on protein and nucleic acid processes to be interpreted or predicted, and allow the use of solutes and salts as probes of

  16. Working Memory Load Strengthens Reward Prediction Errors.

    PubMed

    Collins, Anne G E; Ciullo, Brittany; Frank, Michael J; Badre, David

    2017-04-19

    Reinforcement learning (RL) in simple instrumental tasks is usually modeled as a monolithic process in which reward prediction errors (RPEs) are used to update expected values of choice options. This modeling ignores the different contributions of different memory and decision-making systems thought to contribute even to simple learning. In an fMRI experiment, we investigated how working memory (WM) and incremental RL processes interact to guide human learning. WM load was manipulated by varying the number of stimuli to be learned across blocks. Behavioral results and computational modeling confirmed that learning was best explained as a mixture of two mechanisms: a fast, capacity-limited, and delay-sensitive WM process together with slower RL. Model-based analysis of fMRI data showed that striatum and lateral prefrontal cortex were sensitive to RPE, as shown previously, but, critically, these signals were reduced when the learning problem was within capacity of WM. The degree of this neural interaction related to individual differences in the use of WM to guide behavioral learning. These results indicate that the two systems do not process information independently, but rather interact during learning. SIGNIFICANCE STATEMENT Reinforcement learning (RL) theory has been remarkably productive at improving our understanding of instrumental learning as well as dopaminergic and striatal network function across many mammalian species. However, this neural network is only one contributor to human learning and other mechanisms such as prefrontal cortex working memory also play a key role. Our results also show that these other players interact with the dopaminergic RL system, interfering with its key computation of reward prediction errors. Copyright © 2017 the authors 0270-6474/17/374332-11$15.00/0.

  17. Affinity adsorption of cells to surfaces and strategies for cell detachment.

    PubMed

    Hubble, John

    2007-01-01

    The use of bio-specific interactions for the separation and recovery of bio-molecules is now widely established and in many cases the technique has successfully crossed the divide between bench and process scale operation. Although the major specificity advantage of affinity-based separations also applies to systems intended for cell fractionation, developments in this area have been slower. Many of the problems encountered result from attempts to take techniques developed for molecular systems and, with only minor modification to the conditions used, apply them for the separation of cells. This approach tends to ignore or at least trivialise the problems, which arise from the heterogeneous nature of a cell suspension and the multivalent nature of the cell/surface interaction. To develop viable separation processes on a larger scale, effective contacting strategies are required in separators that also allow detachment or recovery protocols that overcome the enhanced binding strength generated by multivalent interactions. The effects of interaction valency on interaction strength needs to be assessed and approaches developed to allow effective detachment and recovery of adsorbed cells without compromising cell viability. This article considers the influence of operating conditions on cell attachment and the extent to which multivalent interactions determine the strength of cell binding and subsequent detachment.

  18. Towards Automatic Treatment of Natural Language.

    ERIC Educational Resources Information Center

    Lonsdale, Deryle

    1984-01-01

    Because automated natural language processing relies heavily on the still developing fields of linguistics, knowledge representation, and computational linguistics, no system is capable of mimicking human linguistic capabilities. For the present, interactive systems may be used to augment today's technology. (MSE)

  19. AN ADVANCED SYSTEM FOR POLLUTION PREVENTION IN CHEMICAL COMPLEXES

    EPA Science Inventory

    One important accomplishment is that the system will give process engineers interactively and simultaneously use of programs for total cost analysis, life cycle assessment and sustainability metrics to provide direction for the optimal chemical complex analysis pro...

  20. Coordination dynamics in a socially situated nervous system

    PubMed Central

    Coey, Charles A.; Varlet, Manuel; Richardson, Michael J.

    2012-01-01

    Traditional theories of cognitive science have typically accounted for the organization of human behavior by detailing requisite computational/representational functions and identifying neurological mechanisms that might perform these functions. Put simply, such approaches hold that neural activity causes behavior. This same general framework has been extended to accounts of human social behavior via concepts such as “common-coding” and “co-representation” and much recent neurological research has been devoted to brain structures that might execute these social-cognitive functions. Although these neural processes are unquestionably involved in the organization and control of human social interactions, there is good reason to question whether they should be accorded explanatory primacy. Alternatively, we propose that a full appreciation of the role of neural processes in social interactions requires appropriately situating them in their context of embodied-embedded constraints. To this end, we introduce concepts from dynamical systems theory and review research demonstrating that the organization of human behavior, including social behavior, can be accounted for in terms of self-organizing processes and lawful dynamics of animal-environment systems. Ultimately, we hope that these alternative concepts can complement the recent advances in cognitive neuroscience and thereby provide opportunities to develop a complete and coherent account of human social interaction. PMID:22701413

Top