Science.gov

Sample records for interactive protein manipulation

  1. Interactive protein manipulation

    SciTech Connect

    SNCrivelli@lbl.gov

    2003-07-01

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures.

  2. ProteinShop: A tool for interactive protein manipulation and steering

    NASA Astrophysics Data System (ADS)

    Crivelli, Silvia; Kreylos, Oliver; Hamann, Bernd; Max, Nelson; Bethel, Wes

    2004-04-01

    We describe ProteinShop, a new visualization tool that streamlines and simplifies the process of determining optimal protein folds. ProteinShop may be used at different stages of a protein structure prediction process. First, it can create protein configurations containing secondary structures specified by the user. Second, it can interactively manipulate protein fragments to achieve desired folds by adjusting the dihedral angles of selected coil regions using an Inverse Kinematics method. Last, it serves as a visual framework to monitor and steer a protein structure prediction process that may be running on a remote machine. ProteinShop was used to create initial configurations for a protein structure prediction method developed by a team that competed in CASP5. ProteinShop's use accelerated the process of generating initial configurations, reducing the time required from days to hours. This paper describes the structure of ProteinShop and discusses its main features.

  3. ProteinShop: A tool for interactive protein manipulation and steering

    SciTech Connect

    Crivelli, Silvia; Kreylos, Oliver; Max, Nelson; Hamann, Bernd; Bethel, Wes

    2004-05-25

    We describe ProteinShop, a new visualization tool that streamlines and simplifies the process of determining optimal protein folds. ProteinShop may be used at different stages of a protein structure prediction process. First, it can create protein configurations containing secondary structures specified by the user. Second, it can interactively manipulate protein fragments to achieve desired folds by adjusting the dihedral angles of selected coil regions using an Inverse Kinematics method. Last, it serves as a visual framework to monitor and steer a protein structure prediction process that may be running on a remote machine. ProteinShop was used to create initial configurations for a protein structure prediction method developed by a team that competed in CASP5. ProteinShop's use accelerated the process of generating initial configurations, reducing the time required from days to hours. This paper describes the structure of ProteinShop and discusses its main features.

  4. Manipulating Fatty Acid Biosynthesis in Microalgae for Biofuel through Protein-Protein Interactions

    PubMed Central

    Blatti, Jillian L.; Beld, Joris; Behnke, Craig A.; Mendez, Michael; Mayfield, Stephen P.; Burkart, Michael D.

    2012-01-01

    Microalgae are a promising feedstock for renewable fuels, and algal metabolic engineering can lead to crop improvement, thus accelerating the development of commercially viable biodiesel production from algae biomass. We demonstrate that protein-protein interactions between the fatty acid acyl carrier protein (ACP) and thioesterase (TE) govern fatty acid hydrolysis within the algal chloroplast. Using green microalga Chlamydomonas reinhardtii (Cr) as a model, a structural simulation of docking CrACP to CrTE identifies a protein-protein recognition surface between the two domains. A virtual screen reveals plant TEs with similar in silico binding to CrACP. Employing an activity-based crosslinking probe designed to selectively trap transient protein-protein interactions between the TE and ACP, we demonstrate in vitro that CrTE must functionally interact with CrACP to release fatty acids, while TEs of vascular plants show no mechanistic crosslinking to CrACP. This is recapitulated in vivo, where overproduction of the endogenous CrTE increased levels of short-chain fatty acids and engineering plant TEs into the C. reinhardtii chloroplast did not alter the fatty acid profile. These findings highlight the critical role of protein-protein interactions in manipulating fatty acid biosynthesis for algae biofuel engineering as illuminated by activity-based probes. PMID:23028438

  5. Manipulating fatty acid biosynthesis in microalgae for biofuel through protein-protein interactions.

    PubMed

    Blatti, Jillian L; Beld, Joris; Behnke, Craig A; Mendez, Michael; Mayfield, Stephen P; Burkart, Michael D

    2012-01-01

    Microalgae are a promising feedstock for renewable fuels, and algal metabolic engineering can lead to crop improvement, thus accelerating the development of commercially viable biodiesel production from algae biomass. We demonstrate that protein-protein interactions between the fatty acid acyl carrier protein (ACP) and thioesterase (TE) govern fatty acid hydrolysis within the algal chloroplast. Using green microalga Chlamydomonas reinhardtii (Cr) as a model, a structural simulation of docking CrACP to CrTE identifies a protein-protein recognition surface between the two domains. A virtual screen reveals plant TEs with similar in silico binding to CrACP. Employing an activity-based crosslinking probe designed to selectively trap transient protein-protein interactions between the TE and ACP, we demonstrate in vitro that CrTE must functionally interact with CrACP to release fatty acids, while TEs of vascular plants show no mechanistic crosslinking to CrACP. This is recapitulated in vivo, where overproduction of the endogenous CrTE increased levels of short-chain fatty acids and engineering plant TEs into the C. reinhardtii chloroplast did not alter the fatty acid profile. These findings highlight the critical role of protein-protein interactions in manipulating fatty acid biosynthesis for algae biofuel engineering as illuminated by activity-based probes.

  6. The Potato leafroll virus structural proteins manipulate overlapping, yet distinct protein interaction networks during infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato leafroll virus (PLRV) produces a readthrough protein (RTP) via translational readthrough of the coat protein amber stop codon. The RTP functions as a structural component of the virion and as a non-incorporated protein in concert with numerous insect and plant proteins to regulate virus movem...

  7. Manipulating and Visualizing Proteins

    SciTech Connect

    Simon, Horst D.

    2003-12-05

    ProteinShop Gives Researchers a Hands-On Tool for Manipulating, Visualizing Protein Structures. The Human Genome Project and other biological research efforts are creating an avalanche of new data about the chemical makeup and genetic codes of living organisms. But in order to make sense of this raw data, researchers need software tools which let them explore and model data in a more intuitive fashion. With this in mind, researchers at Lawrence Berkeley National Laboratory and the University of California, Davis, have developed ProteinShop, a visualization and modeling program which allows researchers to manipulate protein structures with pinpoint control, guided in large part by their own biological and experimental instincts. Biologists have spent the last half century trying to unravel the ''protein folding problem,'' which refers to the way chains of amino acids physically fold themselves into three-dimensional proteins. This final shape, which resembles a crumpled ribbon or piece of origami, is what determines how the protein functions and translates genetic information. Understanding and modeling this geometrically complex formation is no easy matter. ProteinShop takes a given sequence of amino acids and uses visualization guides to help generate predictions about the secondary structures, identifying alpha helices and flat beta strands, and the coil regions that bind them. Once secondary structures are in place, researchers can twist and turn these pre-configurations until they come up with a number of possible tertiary structure conformations. In turn, these are fed into a computationally intensive optimization procedure that tries to find the final, three-dimensional protein structure. Most importantly, ProteinShop allows users to add human knowledge and intuition to the protein structure prediction process, thus bypassing bad configurations that would otherwise be fruitless for optimization. This saves compute cycles and accelerates the entire process, so

  8. Combining single-molecule manipulation and imaging for the study of protein-DNA interactions.

    PubMed

    Monico, Carina; Belcastro, Gionata; Vanzi, Francesco; Pavone, Francesco S; Capitanio, Marco

    2014-08-27

    The paper describes the combination of optical tweezers and single molecule fluorescence detection for the study of protein-DNA interaction. The method offers the opportunity of investigating interactions occurring in solution (thus avoiding problems due to closeby surfaces as in other single molecule methods), controlling the DNA extension and tracking interaction dynamics as a function of both mechanical parameters and DNA sequence. The methods for establishing successful optical trapping and nanometer localization of single molecules are illustrated. We illustrate the experimental conditions allowing the study of interaction of lactose repressor (lacI), labeled with Atto532, with a DNA molecule containing specific target sequences (operators) for LacI binding. The method allows the observation of specific interactions at the operators, as well as one-dimensional diffusion of the protein during the process of target search. The method is broadly applicable to the study of protein-DNA interactions but also to molecular motors, where control of the tension applied to the partner track polymer (for example actin or microtubules) is desirable.

  9. Combining Single-molecule Manipulation and Imaging for the Study of Protein-DNA Interactions

    PubMed Central

    Monico, Carina; Belcastro, Gionata; Vanzi, Francesco; Pavone, Francesco S.; Capitanio, Marco

    2014-01-01

    The paper describes the combination of optical tweezers and single molecule fluorescence detection for the study of protein-DNA interaction. The method offers the opportunity of investigating interactions occurring in solution (thus avoiding problems due to closeby surfaces as in other single molecule methods), controlling the DNA extension and tracking interaction dynamics as a function of both mechanical parameters and DNA sequence. The methods for establishing successful optical trapping and nanometer localization of single molecules are illustrated. We illustrate the experimental conditions allowing the study of interaction of lactose repressor (lacI), labeled with Atto532, with a DNA molecule containing specific target sequences (operators) for LacI binding. The method allows the observation of specific interactions at the operators, as well as one-dimensional diffusion of the protein during the process of target search. The method is broadly applicable to the study of protein-DNA interactions but also to molecular motors, where control of the tension applied to the partner track polymer (for example actin or microtubules) is desirable. PMID:25226304

  10. Surface manipulation of protein filaments

    NASA Astrophysics Data System (ADS)

    Kreplak, Laurent; Staple, Douglas; Loparic, Marko; Kreuzer, Hans-Juergen

    2009-03-01

    Within mammalian tissues, cells move by actively remodeling a dense network of collagen fibrils. In order to study this situation, we analyze the force response of two types of filamentous protein structures, desmin intermediate filaments 12 nm in diameter and collagen fibrils 80 nm in diameter. Both types of filaments were adsorbed at a solid-liquid interface and locally moved with an AFM tip at constant velocity against surface friction in the interfacial plane. In the case of collagen fibrils, that have an extensibility below 30% extension, we observed that microns long fibrils could be moved by the tip and deformed into shapes that could not be explain by the linear elastic theory for a stiff rod. In the case of desmin filaments that can be stretched up to 3.5 times there length, we observed local stretching of the filaments and discreet steps in the torsional force measured with the cantilever. In order to describe both types of filaments' behaviors, we described the protein filaments as a chain of beads of mass m linked together by a mass-less polymer linker. By solving the Newtonian equations of motions for the coupled beads in the presence of a point load and a viscous drag due to the surface-filament interactions we were able to reproduced our experimental data and extract information on friction.

  11. Interactive digital image manipulation system

    NASA Technical Reports Server (NTRS)

    Henze, J.; Dezur, R.

    1975-01-01

    The system is designed for manipulation, analysis, interpretation, and processing of a wide variety of image data. LANDSAT (ERTS) and other data in digital form can be input directly into the system. Photographic prints and transparencies are first converted to digital form with an on-line high-resolution microdensitometer. The system is implemented on a Hewlett-Packard 3000 computer with 128 K bytes of core memory and a 47.5 megabyte disk. It includes a true color display monitor, with processing memories, graphics overlays, and a movable cursor. Image data formats are flexible so that there is no restriction to a given set of remote sensors. Conversion between data types is available to provide a basis for comparison of the various data. Multispectral data is fully supported, and there is no restriction on the number of dimensions. In this way multispectral data collected at more than one point in time may simply be treated as a data collected with twice (three times, etc.) the number of sensors. There are various libraries of functions available to the user: processing functions, display functions, system functions, and earth resources applications functions.

  12. Exploring protein-DNA interactions in 3D using in situ construction, manipulation, and visualization of individual DNA-dumbbells with optical traps, microfluidics, and fluorescence microscopy

    PubMed Central

    Forget, Anthony L.; Dombrowski, Christopher C.; Amitani, Ichiro; Kowalczykowski, Stephen C.

    2015-01-01

    In this Protocol, we describe a procedure to generate ‘DNA-dumbbells’ — single molecules of DNA with a microscopic bead attached at each end — and techniques for manipulating individual DNA-dumbbells. We also detail the design and fabrication of a microfluidic device (flow cell) used in conjunction with dual optical trapping to manipulate DNA-dumbbells and to visualize individual protein–DNA complexes by single-molecule epifluorescence microscopy. Our design of the flow cell enables the rapid movement of trapped molecules between laminar flow channels and a flow-free ‘reservoir’. The reservoir provides the means to examine formation of DNA–protein complexes in solution in the absence of external flow forces, while still maintaining a predetermined end-to-end extension of the DNA. These features facilitate examination of the role of three-dimensional DNA conformation and dynamics in protein–DNA interactions. Preparation of flow cells and reagents requires two days each; in situ DNA-dumbbell assembly and imaging of single protein–DNA complexes requires another day. PMID:23411634

  13. Manipulation or capitulation: virus interactions with autophagy

    PubMed Central

    Jordan, Tristan X.; Randall, Glenn

    2011-01-01

    Autophagy is a homeostatic process that functions to balance cellular metabolism and promote cell survival during stressful conditions by delivering cytoplasmic components for lysosomal degradation and subsequent recycling. During viral infection, autophagy can act as a surveillance mechanism that delivers viral antigens to the endosomal/lysosomal compartments that are enriched in immune sensors. Additionally, activated immune sensors can signal to activate autophagy. To evade this antiviral activity, many viruses elaborate functions to block the autophagy pathway at a variety of steps. Alternatively, some viruses actively subvert autophagy for their own benefit. Manipulated autophagy has been proposed to facilitate nearly every stage of the viral lifecycle in direct and indirect ways. In this review, we synthesize the extensive literature on virus-autophagy interactions, emphasizing the role of autophagy in antiviral immunity and the mechanisms by which viruses subvert autophagy for their own benefit. PMID:22051604

  14. Virtual Manipulatives on the Interactive Whiteboard: A Preliminary Investigation

    ERIC Educational Resources Information Center

    Mildenhall, Paula; Swan, Paul; Northcote, Maria; Marshall, Linda

    2008-01-01

    As part of the project titled "Hands-On Heads-On: The Effective Use of Manipulatives Both Virtual and Physical" being undertaken at Edith Cowan University, there was an investigation into the use of virtual manipulatives and the interactive whiteboard (IWB). Virtual manipulatives may be defined as a virtual representation of a physical…

  15. Manipulating Spin-Orbit Interaction in Semiconductors

    NASA Astrophysics Data System (ADS)

    Kohda, Makoto; Bergsten, Tobias; Nitta, Junsaku

    2008-03-01

    Spin-orbit interaction (SOI), where the orbital motion of electrons is coupled with the orientation of electron spins, originates from a relativistic effect. Generally, in nonrelativistic momentum, p = \\hbar k≪ m0c, the SOI is negligible. However, in a semiconductor heterostructure, the small energy-band gap (Eg ≪ m0c2) and the electron wave modulated by the atomic core potential markedly enhance the SOI. Since the SOI acts as an effective magnetic field, it may offer novel functionalities for controlling the spin degree of freedom such as the electrical spin generation and the electrical control of the spin precession in a semiconductor heterojunction. Here, we review recent experimental studies on the manipulation of the SOI in a semiconductor two-dimensional electron gas. We first present a theoretical overview of the Rashba SOI, which lifts the spin degeneracy due to structural inversion asymmetry. We then present experimental results on the quantum well (QW) thickness dependences of the Rashba SOI in InP/InGaAs/InAlAs asymmetric QWs by analyzing the weak antilocalization. Finally, we show quantum interference effects due to the spin precession in a small array of mesoscopic InGaAs rings, which is an experimental demonstration of the time-reversal Aharonov-Casher effect and the electromagnetic dual to the Al’tshuler-Aronov-Spivak effect.

  16. PIC: Protein Interactions Calculator

    PubMed Central

    Tina, K. G.; Bhadra, R.; Srinivasan, N.

    2007-01-01

    Interactions within a protein structure and interactions between proteins in an assembly are essential considerations in understanding molecular basis of stability and functions of proteins and their complexes. There are several weak and strong interactions that render stability to a protein structure or an assembly. Protein Interactions Calculator (PIC) is a server which, given the coordinate set of 3D structure of a protein or an assembly, computes various interactions such as disulphide bonds, interactions between hydrophobic residues, ionic interactions, hydrogen bonds, aromatic–aromatic interactions, aromatic–sulphur interactions and cation–π interactions within a protein or between proteins in a complex. Interactions are calculated on the basis of standard, published criteria. The identified interactions between residues can be visualized using a RasMol and Jmol interface. The advantage with PIC server is the easy availability of inter-residue interaction calculations in a single site. It also determines the accessible surface area and residue-depth, which is the distance of a residue from the surface of the protein. User can also recognize specific kind of interactions, such as apolar–apolar residue interactions or ionic interactions, that are formed between buried or exposed residues or near the surface or deep inside. PMID:17584791

  17. PIC: Protein Interactions Calculator.

    PubMed

    Tina, K G; Bhadra, R; Srinivasan, N

    2007-07-01

    Interactions within a protein structure and interactions between proteins in an assembly are essential considerations in understanding molecular basis of stability and functions of proteins and their complexes. There are several weak and strong interactions that render stability to a protein structure or an assembly. Protein Interactions Calculator (PIC) is a server which, given the coordinate set of 3D structure of a protein or an assembly, computes various interactions such as disulphide bonds, interactions between hydrophobic residues, ionic interactions, hydrogen bonds, aromatic-aromatic interactions, aromatic-sulphur interactions and cation-pi interactions within a protein or between proteins in a complex. Interactions are calculated on the basis of standard, published criteria. The identified interactions between residues can be visualized using a RasMol and Jmol interface. The advantage with PIC server is the easy availability of inter-residue interaction calculations in a single site. It also determines the accessible surface area and residue-depth, which is the distance of a residue from the surface of the protein. User can also recognize specific kind of interactions, such as apolar-apolar residue interactions or ionic interactions, that are formed between buried or exposed residues or near the surface or deep inside.

  18. Interactive Streamline Exploration and Manipulation Using Deformation

    SciTech Connect

    Tong, Xin; Chen, Chun-Ming; Shen, Han-Wei; Wong, Pak C.

    2015-01-12

    Occlusion presents a major challenge in visualizing three-dimensional flow fields with streamlines. Displaying too many streamlines at once makes it difficult to locate interesting regions, but displaying too few streamlines risks missing important features. A more ideal streamline exploration model is to allow the viewer to freely move across the field that has been populated with interesting streamlines and pull away the streamlines that cause occlusion so that the viewer can inspect the hidden ones in detail. In this paper, we present a streamline deformation algorithm that supports such user-driven interaction with three-dimensional flow fields. We define a view-dependent focus+context technique that moves the streamlines occluding the focus area using a novel displacement model. To preserve the context surrounding the user-chosen focus area, we propose two shape models to define the transition zone for the surrounding streamlines, and the displacement of the contextual streamlines is solved interactively with a goal of preserving their shapes as much as possible. Based on our deformation model, we design an interactive streamline exploration tool using a lens metaphor. Our system runs interactively so that users can move their focus and examine the flow field freely.

  19. MONA – Interactive manipulation of molecule collections

    PubMed Central

    2013-01-01

    Working with small‐molecule datasets is a routine task for cheminformaticians and chemists. The analysis and comparison of vendor catalogues and the compilation of promising candidates as starting points for screening campaigns are but a few very common applications. The workflows applied for this purpose usually consist of multiple basic cheminformatics tasks such as checking for duplicates or filtering by physico‐chemical properties. Pipelining tools allow to create and change such workflows without much effort, but usually do not support interventions once the pipeline has been started. In many contexts, however, the best suited workflow is not known in advance, thus making it necessary to take the results of the previous steps into consideration before proceeding. To support intuition‐driven processing of compound collections, we developed MONA, an interactive tool that has been designed to prepare and visualize large small‐molecule datasets. Using an SQL database common cheminformatics tasks such as analysis and filtering can be performed interactively with various methods for visual support. Great care was taken in creating a simple, intuitive user interface which can be instantly used without any setup steps. MONA combines the interactivity of molecule database systems with the simplicity of pipelining tools, thus enabling the case‐to‐case application of chemistry expert knowledge. The current version is available free of charge for academic use and can be downloaded at http://www.zbh.uni‐hamburg.de/mona. PMID:23985157

  20. Complex interactions of multiple aquatic consumers: an experimental mesocosm manipulation

    USGS Publications Warehouse

    Richardson, William B.; Threlkeld, Stephen T.

    1993-01-01

    In 7-m3 outdoor tanks filled with lake water, the presence/absence of omnivorous young-of-the- year Micropterus salmoides), zooplanktivorous Menidia beryllina , and herbivorous larval Hyla chrysocelis was experimentally manipulated. A cross-classified design was used to assess the interactive effects of these vertebrate consumers on the experimental food webs. The primary effects of the experimental manipulations on food web components were two- and three-way interactions in which the effect of a given treatment was dependent on the presence of another treatment. Results suggest that the addition or removal of consumers may not cause linear, additive changes in food webs.

  1. A 3D isodose manipulation tool for interactive dose shaping

    NASA Astrophysics Data System (ADS)

    Kamerling, C. P.; Ziegenhein, P.; Heinrich, H.; Oelfke, U.

    2014-03-01

    The interactive dose shaping (IDS) planning paradigm aims to perform interactive local dose adaptations of an IMRT plan without compromising already established valuable dose features in real-time. In this work we introduce an interactive 3D isodose manipulation tool which enables local modifications of a dose distribution intuitively by direct manipulation of an isodose surface. We developed an in-house IMRT TPS framework employing an IDS engine as well as a 3D GUI for dose manipulation and visualization. In our software an initial dose distribution can be interactively modified through an isodose surface manipulation tool by intuitively clicking on an isodose surface. To guide the user interaction, the position of the modification is indicated by a sphere while the mouse cursor hovers the isodose surface. The sphere's radius controls the locality of the modification. The tool induces a dose modification as a direct change of dose in one or more voxels, which is incrementally obtained by fluence adjustments. A subsequent recovery step identifies voxels with violated dose features and aims to recover their original dose. We showed a proof of concept study for the proposed tool by adapting the dose distribution of a prostate case (9 beams, coplanar). Single dose modifications take less than 2 seconds on an actual desktop PC.

  2. Object Manipulation: An Interactional Strategy with Autistic Children.

    ERIC Educational Resources Information Center

    Tiegerman, Ellen Morris; Primavera, Louis

    1981-01-01

    The research compared the effect of three play procedures upon the frequency and duration of object manipulation by six autistic children (four to six years old). The interaction procedure, in which the experimenter imitated both the material and the method of play chosen by the autistic child, resulted in greater frequency and duration of object…

  3. AFM Manipulation of Viruses: Substrate Interactions and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Falvo, M. R.; Superfine, R.; Washburn, S.; Finch, M.; Taylor, R. M.; Chi, V.; Brooks, F. P.; Ferrari, F.; Samulski, R.

    1996-03-01

    Using an AFM tip as a manipulation tool, we have translated, rotated, and dissected individual Tobacco Mosaic Virus (TMV) and Adenovirus particles. We have implemented a teleoperation system which allows manual control of the relative tip-sample position while also allowing conventional AFM operation for imaging resulting structure. Using simple tip trajectories to bend the rod-shaped TMV, we observed a variety of resulting structures and mechanical failures. The distributed adhesive interaction between the virus and the sample surface, as well as the local tip-virus interaction affect the distortion in the shape of the virus. Experiments were performed in air as well as in liquid on graphite and Si substrates. The in-liquid experiments allow tuning of the environmental conditions, including osmolarity and pH, which are known to profoundly affect the virus structure. A continuum mechanical model relating mechanical properties to observations provides insight into the constraints for successful nondestructive manipulation.

  4. Manipulating nanoscale atom-atom interactions with cavity QED

    NASA Astrophysics Data System (ADS)

    Pal, Arpita; Saha, Subrata; Deb, Bimalendu

    2016-12-01

    We theoretically explore the manipulation of interactions between excited and ground-state atoms at nanoscale separations by using cavity quantum electrodynamics (CQED). We develop an adiabatic molecular dressed-state formalism and show that it is possible to generate Fano-Feshbach resonances between ground and long-lived excited-state atoms inside a cavity. The resonances are shown to arise due to nonadiabatic coupling near a pseudo-crossing between the dressed-state potentials. We illustrate our results with a model study using fermionic 171Yb atoms in a two-modal cavity. Our study is important for the manipulation of interatomic interactions at low energy by using a cavity field.

  5. Single-molecule manipulation measurements of polymer/solution interactions

    NASA Astrophysics Data System (ADS)

    Dittmore, Andrew N.

    Because the properties of soft materials emerge from the physics of the constituent polymers, we are motivated to characterize chain molecules at a fundamental level. We build upon the magnetic tweezers single-molecule manipulation technique, which involves measuring the distance between the ends of a polymer in real time and with nanometer precision while applying stable magnetic stretching forces in the piconewton range. Here we demonstrate new applications of this technique, specifically by measuring the interactions between a polymer and the surrounding solvent. First, through low-force elastic measurements, we determine a range of fundamental parameters that quantify solvent quality and chain structure. We present a force-solvent phase diagram to summarize these parameters and our experimental data, and discuss where PEG, DNA, RNA, and proteins fit into the diagram. The unstructured and structured states of a biomolecule reside at opposite ends of the diagram, indicating that folding is accompanied by a change in the character of the solvent. We therefore chose to investigate the local solvent change that occurs when a charged biomolecule folds. We present a thermodynamic framework for measuring the uptake of counterions that accompanies nucleic acid folding. Our measurements of a simple DNA hairpin identify potential shortcomings in thermodynamic parameters of MFOLD, the most widely used predictive software for nucleic acids. Finally, we present a variety of polymer immobilization schemes, achieve low-noise measurements with a strong magnet design, identify new assays, and provide technical guidance that may be useful to those interested in pursuing future magnetic tweezers experiments.

  6. Drugging Membrane Protein Interactions

    PubMed Central

    Yin, Hang; Flynn, Aaron D.

    2016-01-01

    The majority of therapeutics target membrane proteins, accessible on the surface of cells, to alter cellular signaling. Cells use membrane proteins to transduce signals into cells, transport ions and molecules, bind the cell to a surface or substrate, and catalyze reactions. Newly devised technologies allow us to drug conventionally “undruggable” regions of membrane proteins, enabling modulation of protein–protein, protein–lipid, and protein–nucleic acid interactions. In this review, we survey the state of the art in high-throughput screening and rational design in drug discovery, and we evaluate the advances in biological understanding and technological capacity that will drive pharmacotherapy forward against unorthodox membrane protein targets. PMID:26863923

  7. Cotton and Protein Interactions

    SciTech Connect

    Goheen, Steven C.; Edwards, J. V.; Rayburn, Alfred R.; Gaither, Kari A.; Castro, Nathan J.

    2006-06-30

    The adsorbent properties of important wound fluid proteins and cotton cellulose are reviewed. This review focuses on the adsorption of albumin to cotton-based wound dressings and some chemically modified derivatives targeted for chronic wounds. Adsorption of elastase in the presence of albumin was examined as a model to understand the interactive properties of these wound fluid components with cotton fibers. In the chronic non-healing wound, elastase appears to be over-expressed, and it digests tissue and growth factors, interfering with the normal healing process. Albumin is the most prevalent protein in wound fluid, and in highly to moderately exudative wounds, it may bind significantly to the fibers of wound dressings. Thus, the relative binding properties of both elastase and albumin to wound dressing fibers are of interest in the design of more effective wound dressings. The present work examines the binding of albumin to two different derivatives of cotton, and quantifies the elastase binding to the same derivatives following exposure of albumin to the fiber surface. An HPLC adsorption technique was employed coupled with a colorimetric enzyme assay to quantify the relative binding properties of albumin and elastase to cotton. The results of wound protein binding are discussed in relation to the porosity and surface chemistry interactions of cotton and wound proteins. Studies are directed to understanding the implications of protein adsorption phenomena in terms of fiber-protein models that have implications for rationally designing dressings for chronic wounds.

  8. Exploring novel structures for manipulating relativistic laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Ji, Liangliang

    2016-10-01

    The prospect of realizing compact particle accelerators and x-ray sources based on high power lasers has gained numerous attention. Utilization of all the proposed schemes in the field requires the laser-matter-interaction process to be repeatable or moreover, controllable. This has been very challenging at ultra-high light intensities due to the pre-pulse issue and the limitation on target manufacturing. With recent development on pulse cleaning technique, such as XPW and the use of plasma mirror, we now propose a novel approach that leverages recent advancements in 3D nano-printing of materials and high contrast lasers to manipulate the laser-matter interactions on the micro-scales. The current 3D direct laser-writing (DLW) technique can produce repeatable structures with at a resolution as high as 100 nm. Based on 3D PIC simulations, we explored two typical structures, the micro-cylinder and micro-tube targets. The former serves to enhance and control laser-electron acceleration and the latter is dedicated to manipulate relativistic light intensity. First principle-of-proof experiments were carried out in the SCARLET laser facility and confirmed some of our predictions on enhancing direct laser acceleration of electrons and ion acceleration. We believe that the use of the micro-structured elements provides another degree of freedom in LPI and these new results will open new paths towards micro-engineering interaction process that will benefit high field science, laser-based proton therapy, near-QED physics, and relativistic nonlinear optics. This work is supported by the AFOSR Basic Research Initiative (FA9550-14-1-0085).

  9. Tracking protein aggregate interactions

    PubMed Central

    Bartz, Jason C; Nilsson, K Peter R

    2011-01-01

    Amyloid fibrils share a structural motif consisting of highly ordered β-sheets aligned perpendicular to the fibril axis.1, 2 At each fibril end, β-sheets provide a template for recruiting and converting monomers.3 Different amyloid fibrils often co-occur in the same individual, yet whether a protein aggregate aids or inhibits the assembly of a heterologous protein is unclear. In prion disease, diverse prion aggregate structures, known as strains, are thought to be the basis of disparate disease phenotypes in the same species expressing identical prion protein sequences.4–7 Here we explore the interactions reported to occur when two distinct prion strains occur together in the central nervous system. PMID:21597336

  10. Length, protein protein interactions, and complexity

    NASA Astrophysics Data System (ADS)

    Tan, Taison; Frenkel, Daan; Gupta, Vishal; Deem, Michael W.

    2005-05-01

    The evolutionary reason for the increase in gene length from archaea to prokaryotes to eukaryotes observed in large-scale genome sequencing efforts has been unclear. We propose here that the increasing complexity of protein-protein interactions has driven the selection of longer proteins, as they are more able to distinguish among a larger number of distinct interactions due to their greater average surface area. Annotated protein sequences available from the SWISS-PROT database were analyzed for 13 eukaryotes, eight bacteria, and two archaea species. The number of subcellular locations to which each protein is associated is used as a measure of the number of interactions to which a protein participates. Two databases of yeast protein-protein interactions were used as another measure of the number of interactions to which each S. cerevisiae protein participates. Protein length is shown to correlate with both number of subcellular locations to which a protein is associated and number of interactions as measured by yeast two-hybrid experiments. Protein length is also shown to correlate with the probability that the protein is encoded by an essential gene. Interestingly, average protein length and number of subcellular locations are not significantly different between all human proteins and protein targets of known, marketed drugs. Increased protein length appears to be a significant mechanism by which the increasing complexity of protein-protein interaction networks is accommodated within the natural evolution of species. Consideration of protein length may be a valuable tool in drug design, one that predicts different strategies for inhibiting interactions in aberrant and normal pathways.

  11. Parallel algorithms for interactive manipulation of digital terrain models

    NASA Technical Reports Server (NTRS)

    Davis, E. W.; Mcallister, D. F.; Nagaraj, V.

    1988-01-01

    Interactive three-dimensional graphics applications, such as terrain data representation and manipulation, require extensive arithmetic processing. Massively parallel machines are attractive for this application since they offer high computational rates, and grid connected architectures provide a natural mapping for grid based terrain models. Presented here are algorithms for data movement on the massive parallel processor (MPP) in support of pan and zoom functions over large data grids. It is an extension of earlier work that demonstrated real-time performance of graphics functions on grids that were equal in size to the physical dimensions of the MPP. When the dimensions of a data grid exceed the processing array size, data is packed in the array memory. Windows of the total data grid are interactively selected for processing. Movement of packed data is needed to distribute items across the array for efficient parallel processing. Execution time for data movement was found to exceed that for arithmetic aspects of graphics functions. Performance figures are given for routines written in MPP Pascal.

  12. Detection of peptides, proteins, and drugs that selectively interact with protein targets.

    PubMed

    Serebriiskii, Ilya G; Mitina, Olga; Pugacheva, Elena N; Benevolenskaya, Elizaveta; Kotova, Elena; Toby, Garabet G; Khazak, Vladimir; Kaelin, William G; Chernoff, Jonathan; Golemis, Erica A

    2002-11-01

    Genome sequencing has been completed for multiple organisms, and pilot proteomic analyses reported for yeast and higher eukaryotes. This work has emphasized the facts that proteins are frequently engaged in multiple interactions, and that governance of protein interaction specificity is a primary means of regulating biological systems. In particular, the ability to deconvolute complex protein interaction networks to identify which interactions govern specific signaling pathways requires the generation of biological tools that allow the distinction of critical from noncritical interactions. We report the application of an enhanced Dual Bait two-hybrid system to allow detection and manipulation of highly specific protein-protein interactions. We summarize the use of this system to detect proteins and peptides that target well-defined specific motifs in larger protein structures, to facilitate rapid identification of specific interactors from a pool of putative interacting proteins obtained in a library screen, and to score specific drug-mediated disruption of protein-protein interaction.

  13. PREFACE: Protein protein interactions: principles and predictions

    NASA Astrophysics Data System (ADS)

    Nussinov, Ruth; Tsai, Chung-Jung

    2005-06-01

    Proteins are the `workhorses' of the cell. Their roles span functions as diverse as being molecular machines and signalling. They carry out catalytic reactions, transport, form viral capsids, traverse membranes and form regulated channels, transmit information from DNA to RNA, making possible the synthesis of new proteins, and they are responsible for the degradation of unnecessary proteins and nucleic acids. They are the vehicles of the immune response and are responsible for viral entry into the cell. Given their importance, considerable effort has been centered on the prediction of protein function. A prime way to do this is through identification of binding partners. If the function of at least one of the components with which the protein interacts is known, that should let us assign its function(s) and the pathway(s) in which it plays a role. This holds since the vast majority of their chores in the living cell involve protein-protein interactions. Hence, through the intricate network of these interactions we can map cellular pathways, their interconnectivities and their dynamic regulation. Their identification is at the heart of functional genomics; their prediction is crucial for drug discovery. Knowledge of the pathway, its topology, length, and dynamics may provide useful information for forecasting side effects. The goal of predicting protein-protein interactions is daunting. Some associations are obligatory, others are continuously forming and dissociating. In principle, from the physical standpoint, any two proteins can interact, but under what conditions and at which strength? The principles of protein-protein interactions are general: the non-covalent interactions of two proteins are largely the outcome of the hydrophobic effect, which drives the interactions. In addition, hydrogen bonds and electrostatic interactions play important roles. Thus, many of the interactions observed in vitro are the outcome of experimental overexpression. Protein disorder

  14. Elizabethkingia anophelis: molecular manipulation and interactions with mosquito hosts.

    PubMed

    Chen, Shicheng; Bagdasarian, Michael; Walker, Edward D

    2015-03-01

    Flavobacteria (members of the family Flavobacteriaceae) dominate the bacterial community in the Anopheles mosquito midgut. One such commensal, Elizabethkingia anophelis, is closely associated with Anopheles mosquitoes through transstadial persistence (i.e., from one life stage to the next); these and other properties favor its development for paratransgenic applications in control of malaria parasite transmission. However, the physiological requirements of E. anophelis have not been investigated, nor has its capacity to perpetuate despite digestion pressure in the gut been quantified. To this end, we first developed techniques for genetic manipulation of E. anophelis, including selectable markers, reporter systems (green fluorescent protein [GFP] and NanoLuc), and transposons that function in E. anophelis. A flavobacterial expression system based on the promoter PompA was integrated into the E. anophelis chromosome and showed strong promoter activity to drive GFP and NanoLuc reporter production. Introduced, GFP-tagged E. anophelis associated with mosquitoes at successive developmental stages and propagated in Anopheles gambiae and Anopheles stephensi but not in Aedes triseriatus mosquitoes. Feeding NanoLuc-tagged cells to A. gambiae and A. stephensi in the larval stage led to infection rates of 71% and 82%, respectively. In contrast, a very low infection rate (3%) was detected in Aedes triseriatus mosquitoes under the same conditions. Of the initial E. anophelis cells provided to larvae, 23%, 71%, and 85% were digested in A. stephensi, A. gambiae, and Aedes triseriatus, respectively, demonstrating that E. anophelis adapted to various mosquito midgut environments differently. Bacterial cell growth increased up to 3-fold when arginine was supplemented in the defined medium. Furthermore, the number of NanoLuc-tagged cells in A. stephensi significantly increased when arginine was added to a sugar diet, showing it to be an important amino acid for E. anophelis. Animal

  15. Elizabethkingia anophelis: Molecular Manipulation and Interactions with Mosquito Hosts

    PubMed Central

    Bagdasarian, Michael; Walker, Edward D.

    2015-01-01

    Flavobacteria (members of the family Flavobacteriaceae) dominate the bacterial community in the Anopheles mosquito midgut. One such commensal, Elizabethkingia anophelis, is closely associated with Anopheles mosquitoes through transstadial persistence (i.e., from one life stage to the next); these and other properties favor its development for paratransgenic applications in control of malaria parasite transmission. However, the physiological requirements of E. anophelis have not been investigated, nor has its capacity to perpetuate despite digestion pressure in the gut been quantified. To this end, we first developed techniques for genetic manipulation of E. anophelis, including selectable markers, reporter systems (green fluorescent protein [GFP] and NanoLuc), and transposons that function in E. anophelis. A flavobacterial expression system based on the promoter PompA was integrated into the E. anophelis chromosome and showed strong promoter activity to drive GFP and NanoLuc reporter production. Introduced, GFP-tagged E. anophelis associated with mosquitoes at successive developmental stages and propagated in Anopheles gambiae and Anopheles stephensi but not in Aedes triseriatus mosquitoes. Feeding NanoLuc-tagged cells to A. gambiae and A. stephensi in the larval stage led to infection rates of 71% and 82%, respectively. In contrast, a very low infection rate (3%) was detected in Aedes triseriatus mosquitoes under the same conditions. Of the initial E. anophelis cells provided to larvae, 23%, 71%, and 85% were digested in A. stephensi, A. gambiae, and Aedes triseriatus, respectively, demonstrating that E. anophelis adapted to various mosquito midgut environments differently. Bacterial cell growth increased up to 3-fold when arginine was supplemented in the defined medium. Furthermore, the number of NanoLuc-tagged cells in A. stephensi significantly increased when arginine was added to a sugar diet, showing it to be an important amino acid for E. anophelis. Animal

  16. Discovering interacting domains and motifs in protein-protein interactions.

    PubMed

    Hugo, Willy; Sung, Wing-Kin; Ng, See-Kiong

    2013-01-01

    Many important biological processes, such as the signaling pathways, require protein-protein interactions (PPIs) that are designed for fast response to stimuli. These interactions are usually transient, easily formed, and disrupted, yet specific. Many of these transient interactions involve the binding of a protein domain to a short stretch (3-10) of amino acid residues, which can be characterized by a sequence pattern, i.e., a short linear motif (SLiM). We call these interacting domains and motifs domain-SLiM interactions. Existing methods have focused on discovering SLiMs in the interacting proteins' sequence data. With the recent increase in protein structures, we have a new opportunity to detect SLiMs directly from the proteins' 3D structures instead of their linear sequences. In this chapter, we describe a computational method called SLiMDIet to directly detect SLiMs on domain interfaces extracted from 3D structures of PPIs. SLiMDIet comprises two steps: (1) interaction interfaces belonging to the same domain are extracted and grouped together using structural clustering and (2) the extracted interaction interfaces in each cluster are structurally aligned to extract the corresponding SLiM. Using SLiMDIet, de novo SLiMs interacting with protein domains can be computationally detected from structurally clustered domain-SLiM interactions for PFAM domains which have available 3D structures in the PDB database.

  17. Regulating the interactions of adsorbates on surfaces by scanning tunneling microscopy manipulation.

    PubMed

    Sun, Qiang; Xu, Wei

    2014-09-15

    Scanning tunneling microscopy (STM) manipulation has received wide attention in the surface science community since the pioneering work of Eigler to construct surface nanostructures in an atom by atom fashion. Lots of scientists have been inspired and devoted to study the surface issues with the help of STM manipulations and great achievements have been obtained. In this Minireview, we mainly describe the recent progress in applying STM manipulations to regulate the inter-adsorbate and adsorbate-substrate interactions on solid surfaces. It was shown that this technique could not only differentiate intermolecular interactions but also construct molecular nanostructures by regulating different kinds of inter-adsorbate interactions or adsorbate-substrate interactions.

  18. Protopia: a protein-protein interaction tool

    PubMed Central

    Real-Chicharro, Alejandro; Ruiz-Mostazo, Iván; Navas-Delgado, Ismael; Kerzazi, Amine; Chniber, Othmane; Sánchez-Jiménez, Francisca; Medina, Miguel Ángel; Aldana-Montes, José F

    2009-01-01

    Background Protein-protein interactions can be considered the basic skeleton for living organism self-organization and homeostasis. Impressive quantities of experimental data are being obtained and computational tools are essential to integrate and to organize this information. This paper presents Protopia, a biological tool that offers a way of searching for proteins and their interactions in different Protein Interaction Web Databases, as a part of a multidisciplinary initiative of our institution for the integration of biological data . Results The tool accesses the different Databases (at present, the free version of Transfac, DIP, Hprd, Int-Act and iHop), and results are expressed with biological protein names or databases codes and can be depicted as a vector or a matrix. They can be represented and handled interactively as an organic graph. Comparison among databases is carried out using the Uniprot codes annotated for each protein. Conclusion The tool locates and integrates the current information stored in the aforementioned databases, and redundancies among them are detected. Results are compatible with the most important network analysers, so that they can be compared and analysed by other world-wide known tools and platforms. The visualization possibilities help to attain this goal and they are especially interesting for handling multiple-step or complex networks. PMID:19828077

  19. Aeolotopic interactions of globular proteins

    PubMed Central

    Lomakin, Aleksey; Asherie, Neer; Benedek, George B.

    1999-01-01

    Protein crystallization, aggregation, liquid–liquid phase separation, and self-assembly are important in protein structure determination in the industrial processing of proteins and in the inhibition of protein condensation diseases. To fully describe such phase transformations in globular protein solutions, it is necessary to account for the strong spatial variation of the interactions on the protein surface. One difficulty is that each globular protein has its own unique surface, which is crucial for its biological function. However, the similarities amongst the macroscopic properties of different protein solutions suggest that there may exist a generic model that is capable of describing the nonuniform interactions between globular proteins. In this paper we present such a model, which includes the short-range interactions that vary from place to place on the surface of the protein. We show that this aeolotopic model [from the Greek aiolos (“variable”) and topos (“place”)] describes the phase diagram of globular proteins and provides insight into protein aggregation and crystallization. PMID:10449715

  20. Protein-protein interactions in multienzyme megasynthetases.

    PubMed

    Weissman, Kira J; Müller, Rolf

    2008-04-14

    The multienzyme polyketide synthases (PKSs), nonribosomal polypeptide synthetases (NRPSs), and their hybrids are responsible for the construction in bacteria of numerous natural products of clinical value. These systems generate high structural complexity by using a simple biosynthetic logic--that of the assembly line. Each of the individual steps in building the metabolites is designated to an independently folded domain within gigantic polypeptides. The domains are clustered into functional modules, and the modules are strung out along the proteins in the order in which they act. Every metabolite results, therefore, from the successive action of up to 100 individual catalysts. Despite the conceptual simplicity of this division-of-labor organization, we are only beginning to decipher the molecular details of the numerous protein-protein interactions that support assembly-line biosynthesis, and which are critical to attempts to re-engineer these systems as a tool in drug discovery. This review aims to summarize the state of knowledge about several aspects of protein-protein interactions, including current architectural models for PKS and NRPS systems, the central role of carrier proteins, and the structural basis for intersubunit recognition.

  1. 3D Manipulation of Protein Microcrystals with Optical Tweezers for X-ray Crystallography

    NASA Astrophysics Data System (ADS)

    Hikima, T.; Hashimoto, K.; Murakami, H.; Ueno, G.; Kawano, Y.; Hirata, K.; Hasegawa, K.; Kumasaka, T.; Yamamoto, M.

    2013-03-01

    In some synchrotron facilities such as SPring-8, X-ray microbeams have been utilized for protein crystallography, allowing users to collect diffraction data from a protein microcrystal. Usually, a protein crystal is picked up manually from a crystallization droplet. However it is very difficult to manipulate the protein microcrystals which are very small and fragile against a shock and changes of temperature and solvent condition. We have been developing an automatic system applying the optical tweezers with two lensed fiber probes to manipulate the fragile protein microcrystal. The system succeeded in trapping a crystal and levitating it onto the cryoloop in the solvent. X-ray diffraction measurement for the manipulated protein microcrystals indicated that laser irradiation and trap with 1064nm wavelength hardly affected the result of X-ray structural analysis.

  2. Manipulating Cognitive Complexity across Task Types and Its Impact on Learners' Interaction during Oral Performance

    ERIC Educational Resources Information Center

    Gilabert, Roger; Baron, Julia; Llanes, Angels

    2009-01-01

    The goal of this study is to investigate the impact of manipulating the cognitive complexity of three different types of oral tasks on interaction. The study first considers the concepts of task complexity and interaction and then examines the specific studies that have looked at the effects of increasing task complexity on conversational…

  3. Microelectromechanical (MEMS) manipulators for control of nanoparticle coupling interactions

    DOEpatents

    Lopez, Daniel; Wiederrecht, Gary; Gosztola, David J.; Mancini, Derrick C.

    2017-01-17

    A nanopositioning system for producing a coupling interaction between a first nanoparticle and a second nanoparticle. A first MEMS positioning assembly includes an electrostatic comb drive actuator configured to selectively displace a first nanoparticle in a first dimension and an electrode configured to selectively displace the first nanoparticle in a second dimensions. Accordingly, the first nanoparticle may be selectively positioned in two dimensions to modulate the distance between the first nanoparticle and a second nanoparticle that may be coupled to a second MEMS positioning assembly. Modulating the distance between the first and second nanoparticles obtains a coupling interaction between the nanoparticles that alters at least one material property of the nanoparticles applicable to a variety of sensing and control applications.

  4. Hierarchical modeling of protein interactions.

    PubMed

    Kurcinski, Mateusz; Kolinski, Andrzej

    2007-07-01

    A novel approach to hierarchical peptide-protein and protein-protein docking is described and evaluated. Modeling procedure starts from a reduced space representation of proteins and peptides. Polypeptide chains are represented by strings of alpha-carbon beads restricted to a fine-mesh cubic lattice. Side chains are represented by up to two centers of interactions, corresponding to beta-carbons and the centers of mass of the remaining portions of the side groups, respectively. Additional pseudoatoms are located in the centers of the virtual bonds connecting consecutive alpha carbons. These pseudoatoms support a model of main-chain hydrogen bonds. Docking starts from a collection of random configurations of modeled molecules. Interacting molecules are flexible; however, higher accuracy models are obtained when the conformational freedom of one (the larger one) of the assembling molecules is limited by a set of weak distance restraints extracted from the experimental (or theoretically predicted) structures. Sampling is done by means of Replica Exchange Monte Carlo method. Afterwards, the set of obtained structures is subject to a hierarchical clustering. Then, the centroids of the resulting clusters are used as scaffolds for the reconstruction of the atomic details. Finally, the all-atom models are energy minimized and scored using classical tools of molecular mechanics. The method is tested on a set of macromolecular assemblies consisting of proteins and peptides. It is demonstrated that the proposed approach to the flexible docking could be successfully applied to prediction of protein-peptide and protein-protein interactions. The obtained models are almost always qualitatively correct, although usually of relatively low (or moderate) resolution. In spite of this limitation, the proposed method opens new possibilities of computational studies of macromolecular recognition and mechanisms of assembly of macromolecular complexes.

  5. Compatible plant-aphid interactions: how aphids manipulate plant responses.

    PubMed

    Giordanengo, Philippe; Brunissen, Laurence; Rusterucci, Christine; Vincent, Charles; van Bel, Aart; Dinant, Sylvie; Girousse, Christine; Faucher, Mireille; Bonnemain, Jean-Louis

    2010-01-01

    To access phloem sap, aphids have developed a furtive strategy, their stylets progressing towards sieve tubes mainly through the apoplasmic compartment. Aphid feeding requires that they overcome a number of plant responses, ranging from sieve tube occlusion and activation of phytohormone-signalling pathways to expression of anti-insect molecules. In addition to bypassing plant defences, aphids have been shown to affect plant primary metabolism, which could be a strategy to improve phloem sap composition in nutrients required for their growth. During compatible interactions, leading to successful feeding and reproduction, aphids cause alterations in their host plant, including morphological changes, modified resource allocation and various local as well as systemic symptoms. Repeated salivary secretions injected from the first probe in the epidermal tissue up to ingestion of sieve-tube sap may play a crucial role in the compatibility between the aphid and the plant.

  6. Direct Probing of Protein-Protein Interactions

    SciTech Connect

    Noy, A; Sulchek, T A; Friddle, R W

    2005-03-10

    This project aimed to establish feasibility of using experimental techniques based on direct measurements of interaction forces on the single molecule scale to characterize equilibrium interaction potentials between individual biological molecules. Such capability will impact several research areas, ranging from rapid interaction screening capabilities to providing verifiable inputs for computational models. It should be one of the enabling technologies for modern proteomics research. This study used a combination of Monte-Carlo simulations, theoretical considerations, and direct experimental measurements to investigate two model systems that represented typical experimental situations: force-induced melting of DNA rigidly attached to the tip, and force-induced unbinding of a protein-antibody pair connected to flexible tethers. Our results establish that for both systems researchers can use force spectroscopy measurements to extract reliable information about equilibrium interaction potentials. However, the approaches necessary to extract these potentials in each case--Jarzynski reconstruction and Dynamic Force Spectroscopy--are very different. We also show how the thermodynamics and kinetics of unbinding process dictates the choice between in each case.

  7. Single-Molecule Manipulation Studies of a Mechanically Activated Protein

    NASA Astrophysics Data System (ADS)

    Botello, Eric; Harris, Nolan; Choi, Huiwan; Bergeron, Angela; Dong, Jing-Fei; Kiang, Ching-Hwa

    2009-10-01

    Plasma von Willebrand factor (pVWF) is the largest multimeric adhesion ligand found in human blood and must be adhesively activated by exposure to shear stress, like at sites of vascular injury, to initiate blood clotting. Sheared pVWF (sVWF) will undergo a conformational change from a loose tangled coil to elongated strings forming adhesive fibers by binding with other sVWF. VWF's adhesion activity is also related to its length, with the ultra-large form of VWF (ULVWF) being hyper-actively adhesive without exposure to shear stress; it has also been shown to spontaneously form fibers. We used single molecule manipulation techniques with the AFM to stretch pVWF, sVWF and ULVWF and monitor the forces as a function of molecular extension. We showed a similar increase in resistance to unfolding for sVWF and ULVWF when compared to pVWF. This mechanical resistance to forced unfolding is reduced when other molecules known to disrupt their fibril formation are present. Our results show that sVWF and ULVWF domains unfold at higher forces than pVWF, which is consistent with the hypothesis that shear stress induces lateral association that alters adhesion activity of pVWF.

  8. Protein- protein interaction detection system using fluorescent protein microdomains

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2010-02-23

    The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.

  9. A web-based protein interaction network visualizer

    PubMed Central

    2014-01-01

    Background Interaction between proteins is one of the most important mechanisms in the execution of cellular functions. The study of these interactions has provided insight into the functioning of an organism’s processes. As of October 2013, Homo sapiens had over 170000 Protein-Protein interactions (PPI) registered in the Interologous Interaction Database, which is only one of the many public resources where protein interactions can be accessed. These numbers exemplify the volume of data that research on the topic has generated. Visualization of large data sets is a well known strategy to make sense of information, and protein interaction data is no exception. There are several tools that allow the exploration of this data, providing different methods to visualize protein network interactions. However, there is still no native web tool that allows this data to be explored interactively online. Results Given the advances that web technologies have made recently it is time to bring these interactive views to the web to provide an easily accessible forum to visualize PPI. We have created a Web-based Protein Interaction Network Visualizer: PINV, an open source, native web application that facilitates the visualization of protein interactions (http://biosual.cbio.uct.ac.za/pinv.html). We developed PINV as a set of components that follow the protocol defined in BioJS and use the D3 library to create the graphic layouts. We demonstrate the use of PINV with multi-organism interaction networks for a predicted target from Mycobacterium tuberculosis, its interacting partners and its orthologs. Conclusions The resultant tool provides an attractive view of complex, fully interactive networks with components that allow the querying, filtering and manipulation of the visible subset. Moreover, as a web resource, PINV simplifies sharing and publishing, activities which are vital in today’s research collaborative environments. The source code is freely available for download at

  10. Molecular modelling of protein-protein/protein-solvent interactions

    NASA Astrophysics Data System (ADS)

    Luchko, Tyler

    The inner workings of individual cells are based on intricate networks of protein-protein interactions. However, each of these individual protein interactions requires a complex physical interaction between proteins and their aqueous environment at the atomic scale. In this thesis, molecular dynamics simulations are used in three theoretical studies to gain insight at the atomic scale about protein hydration, protein structure and tubulin-tubulin (protein-protein) interactions, as found in microtubules. Also presented, in a fourth project, is a molecular model of solvation coupled with the Amber molecular modelling package, to facilitate further studies without the need of explicitly modelled water. Basic properties of a minimally solvated protein were calculated through an extended study of myoglobin hydration with explicit solvent, directly investigating water and protein polarization. Results indicate a close correlation between polarization of both water and protein and the onset of protein function. The methodology of explicit solvent molecular dynamics was further used to study tubulin and microtubules. Extensive conformational sampling of the carboxy-terminal tails of 8-tubulin was performed via replica exchange molecular dynamics, allowing the characterisation of the flexibility, secondary structure and binding domains of the C-terminal tails through statistical analysis methods. Mechanical properties of tubulin and microtubules were calculated with adaptive biasing force molecular dynamics. The function of the M-loop in microtubule stability was demonstrated in these simulations. The flexibility of this loop allowed constant contacts between the protofilaments to be maintained during simulations while the smooth deformation provided a spring-like restoring force. Additionally, calculating the free energy profile between the straight and bent tubulin configurations was used to test the proposed conformational change in tubulin, thought to cause microtubule

  11. Manipulating corn germplasm to increase recombinant protein accumulation.

    PubMed

    Hood, Elizabeth E; Devaiah, Shivakumar P; Fake, Gina; Egelkrout, Erin; Teoh, Keat Thomas; Requesens, Deborah Vicuna; Hayden, Celine; Hood, Kendall R; Pappu, Kameshwari M; Carroll, Jennifer; Howard, John A

    2012-01-01

    Using plants as biofactories for industrial enzymes is a developing technology. The application of this technology to plant biomass conversion for biofuels and biobased products has potential for significantly lowering the cost of these products because of lower enzyme production costs. However, the concentration of the enzymes in plant tissue must be high to realize this goal. We describe the enhancement of the accumulation of cellulases in transgenic maize seed as a part of the process to lower the cost of these dominant enzymes for the bioconversion process. We have used breeding to move these genes into elite and high oil germplasm to enhance protein accumulation in grain. We have also explored processing of the grain to isolate the germ, which preferentially contains the enzymes, to further enhance recovery of enzyme on a dry weight basis of raw materials. The enzymes are active on microcrystalline cellulose to release glucose and cellobiose.

  12. Probing protein-sugar interactions.

    PubMed

    Ebel, C; Eisenberg, H; Ghirlando, R

    2000-01-01

    We have investigated the partial specific volumes (2) (ml/g), hydration, and cosolvent interactions of rabbit muscle aldolase by equilibrium sedimentation in the analytical ultracentrifuge and by direct density increment (partial differential/partial differentialc(2))(mu) measurements over a range of sugar concentrations and temperature. In a series of sugars increasing in size, glucose, sucrose, raffinose, and alpha-cyclodextrin, (partial differential/ partial differentialc(2))(mu) decreases linearly with the solvent density rho(0). These sugar cosolvents do not interact with the protein; however, the interaction parameter B(1) (g water/g protein) mildly increases with increasing sugar size. The experimental B(1) values are smaller than values calculated by excluded volume (rolling ball) considerations. B(1) relates to hydration in this and in other instances studied. It decreases with increasing temperature, leading to an increase in (2) due to reduced water of hydration electrostriction. The density increments (partial differential/ partial differentialc(2))(mu), however, decrease in concave up form in the case of glycerol and in concave down form for trehalose, leading to more complex behavior in the case of carbohydrates playing a biological role as osmolytes and antifreeze agents. A critical discussion, based on the thermodynamics of multicomponent solutions, is presented.

  13. Examination and Manipulation of Protein Surface Charge in Solution with Electrospray Ionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Gross, Deborah S.; Van Ryswyk, Hal

    2014-01-01

    Electrospray ionization mass spectrometry (ESI-MS) is a powerful tool for examining the charge of proteins in solution. The charge can be manipulated through choice of solvent and pH. Furthermore, solution-accessible, protonated lysine side chains can be specifically tagged with 18-crown-6 ether to form noncovalent adducts. Chemical derivatization…

  14. Detection of Peptides, Proteins, and Drugs That Selectively Interact With Protein Targets

    PubMed Central

    Serebriiskii, Ilya G.; Mitina, Olga; Pugacheva, Elena N.; Benevolenskaya, Elizaveta; Kotova, Elena; Toby, Garabet G.; Khazak, Vladimir; Kaelin, William G.; Chernoff, Jonathan; Golemis, Erica A.

    2002-01-01

    Genome sequencing has been completed for multiple organisms, and pilot proteomic analyses reported for yeast and higher eukaryotes. This work has emphasized the facts that proteins are frequently engaged in multiple interactions, and that governance of protein interaction specificity is a primary means of regulating biological systems. In particular, the ability to deconvolute complex protein interaction networks to identify which interactions govern specific signaling pathways requires the generation of biological tools that allow the distinction of critical from noncritical interactions. We report the application of an enhanced Dual Bait two-hybrid system to allow detection and manipulation of highly specific protein–protein interactions. We summarize the use of this system to detect proteins and peptides that target well-defined specific motifs in larger protein structures, to facilitate rapid identification of specific interactors from a pool of putative interacting proteins obtained in a library screen, and to score specific drug-mediated disruption of protein–protein interaction. [Supplemental material is available online at http://www.genome.org. The following individuals kindly provided reagents, samples, or unpublished information as indicated in the paper: A. Taliana, M. Russell, M. Berman, and R. Finley.] PMID:12421766

  15. Manipulating the fragile X mental retardation proteins in the frog.

    PubMed

    Huot, Marc-Etienne; Bisson, Nicolas; Moss, Thomas; Khandjian, Edouard W

    2012-01-01

    The frog is a model of choice to study gene function during early development, since a large number of eggs are easily obtained and rapidly develop external to the mother. This makes it a highly flexible model system in which direct tests of gene function can be investigated by microinjecting RNA antisense reagents. Two members of the Fragile X Related (FXR) gene family, namely xFmr1 and xFxr1 have been identified in Xenopus. While the tissue distribution of their products was found to be identical to that in mammals, the pattern of isoform expression is less complex. Translational silencing of the xFmr1 and xFxr1 mRNAs by microinjection of antisense morpholino oligonucleotides (MO) induced dramatic morphological alterations, revealing tissue-specific requirements for each protein during development and in maintaining the steady state levels of a range of transcripts in these tissues. The power and versatility of the frog model is that the MO-induced phenotypes can be rescued by microinjection of the corresponding MO-insensitive mRNAs. Most importantly, this animal model allows one rapidly to determine whether any member of the FXR family can compensate for the absence of another, an approach that cannot be performed in other animal models.

  16. Evolutionary reprograming of protein-protein interaction specificity.

    PubMed

    Akiva, Eyal; Babbitt, Patricia C

    2015-10-22

    Using mutation libraries and deep sequencing, Aakre et al. study the evolution of protein-protein interactions using a toxin-antitoxin model. The results indicate probable trajectories via "intermediate" proteins that are promiscuous, thus avoiding transitions via non-interactions. These results extend observations about other biological interactions and enzyme evolution, suggesting broadly general principles.

  17. Protein-Inhibitor Interaction Studies Using NMR

    PubMed Central

    Ishima, Rieko

    2015-01-01

    Solution-state NMR has been widely applied to determine the three-dimensional structure, dynamics, and molecular interactions of proteins. The designs of experiments used in protein NMR differ from those used for small-molecule NMR, primarily because the information available prior to an experiment, such as molecular mass and knowledge of the primary structure, is unique for proteins compared to small molecules. In this review article, protein NMR for structural biology is introduced with comparisons to small-molecule NMR, such as descriptions of labeling strategies and the effects of molecular dynamics on relaxation. Next, applications for protein NMR are reviewed, especially practical aspects for protein-observed ligand-protein interaction studies. Overall, the following topics are described: (1) characteristics of protein NMR, (2) methods to detect protein-ligand interactions by NMR, and (3) practical aspects of carrying out protein-observed inhibitor-protein interaction studies. PMID:26361636

  18. Coevolution of gene expression among interacting proteins

    SciTech Connect

    Fraser, Hunter B.; Hirsh, Aaron E.; Wall, Dennis P.; Eisen,Michael B.

    2004-03-01

    Physically interacting proteins or parts of proteins are expected to evolve in a coordinated manner that preserves proper interactions. Such coevolution at the amino acid-sequence level is well documented and has been used to predict interacting proteins, domains, and amino acids. Interacting proteins are also often precisely coexpressed with one another, presumably to maintain proper stoichiometry among interacting components. Here, we show that the expression levels of physically interacting proteins coevolve. We estimate average expression levels of genes from four closely related fungi of the genus Saccharomyces using the codon adaptation index and show that expression levels of interacting proteins exhibit coordinated changes in these different species. We find that this coevolution of expression is a more powerful predictor of physical interaction than is coevolution of amino acid sequence. These results demonstrate previously uncharacterized coevolution of gene expression, adding a different dimension to the study of the coevolution of interacting proteins and underscoring the importance of maintaining coexpression of interacting proteins over evolutionary time. Our results also suggest that expression coevolution can be used for computational prediction of protein protein interactions.

  19. PSAIA – Protein Structure and Interaction Analyzer

    PubMed Central

    Mihel, Josip; Šikić, Mile; Tomić, Sanja; Jeren, Branko; Vlahoviček, Kristian

    2008-01-01

    Background PSAIA (Protein Structure and Interaction Analyzer) was developed to compute geometric parameters for large sets of protein structures in order to predict and investigate protein-protein interaction sites. Results In addition to most relevant established algorithms, PSAIA offers a new method PIADA (Protein Interaction Atom Distance Algorithm) for the determination of residue interaction pairs. We found that PIADA produced more satisfactory results than comparable algorithms implemented in PSAIA. Particular advantages of PSAIA include its capacity to combine different methods to detect the locations and types of interactions between residues and its ability, without any further automation steps, to handle large numbers of protein structures and complexes. Generally, the integration of a variety of methods enables PSAIA to offer easier automation of analysis and greater reliability of results. PSAIA can be used either via a graphical user interface or from the command-line. Results are generated in either tabular or XML format. Conclusion In a straightforward fashion and for large sets of protein structures, PSAIA enables the calculation of protein geometric parameters and the determination of location and type for protein-protein interaction sites. XML formatted output enables easy conversion of results to various formats suitable for statistic analysis. Results from smaller data sets demonstrated the influence of geometry on protein interaction sites. Comprehensive analysis of properties of large data sets lead to new information useful in the prediction of protein-protein interaction sites. PMID:18400099

  20. Proteins interacting with cloning scars: a source of false positive protein-protein interactions.

    PubMed

    Banks, Charles A S; Boanca, Gina; Lee, Zachary T; Florens, Laurence; Washburn, Michael P

    2015-02-23

    A common approach for exploring the interactome, the network of protein-protein interactions in cells, uses a commercially available ORF library to express affinity tagged bait proteins; these can be expressed in cells and endogenous cellular proteins that copurify with the bait can be identified as putative interacting proteins using mass spectrometry. Control experiments can be used to limit false-positive results, but in many cases, there are still a surprising number of prey proteins that appear to copurify specifically with the bait. Here, we have identified one source of false-positive interactions in such studies. We have found that a combination of: 1) the variable sequence of the C-terminus of the bait with 2) a C-terminal valine "cloning scar" present in a commercially available ORF library, can in some cases create a peptide motif that results in the aberrant co-purification of endogenous cellular proteins. Control experiments may not identify false positives resulting from such artificial motifs, as aberrant binding depends on sequences that vary from one bait to another. It is possible that such cryptic protein binding might occur in other systems using affinity tagged proteins; this study highlights the importance of conducting careful follow-up studies where novel protein-protein interactions are suspected.

  1. An application of the MPP to the interactive manipulation of stereo images of digital terrain models

    NASA Technical Reports Server (NTRS)

    Pol, Sanjay; Mcallister, David; Davis, Edward

    1987-01-01

    Massively Parallel Processor algorithms were developed for the interactive manipulation of flat shaded digital terrain models defined over grids. The emphasis is on real time manipulation of stereo images. Standard graphics transformations are applied to a 128 x 128 grid of elevations followed by shading and a perspective projection to produce the right eye image. The surface is then rendered using a simple painter's algorithm for hidden surface removal. The left eye image is produced by rotating the surface 6 degs about the viewer's y axis followed by a perspective projection and rendering of the image as described above. The left and right eye images are then presented on a graphics device using standard stereo technology. Performance evaluations and comparisons are presented.

  2. Phytophthora infestans RXLR Effector AVR1 Interacts with Exocyst Component Sec5 to Manipulate Plant Immunity1[OPEN

    PubMed Central

    Du, Yu; Mpina, Mohamed H.; Birch, Paul R.J.; Bouwmeester, Klaas; Govers, Francine

    2015-01-01

    Phytophthora infestans secretes numerous RXLR effectors that modulate host defense and thereby pave the way for successful invasion. Here, we show that the RXLR effector AVR1 is a virulence factor that promotes colonization and suppresses callose deposition, a hallmark of basal defense. To identify host targets of AVR1, we performed yeast two-hybrid screens and selected Sec5 as a candidate. Sec5 is a subunit of the exocyst, a protein complex that is involved in vesicle trafficking. AVR1-like (A-L), a close homolog of AVR1, also acts as a virulence factor, but unlike AVR1, A-L does not suppress CRINKLER2 (CRN2)-induced cell death or interact with Sec5. Compared with AVR1, A-L is shorter and lacks the carboxyl-terminal tail, the T-region that is crucial for CRN2-induced cell death suppression and Sec5 interaction. In planta analyses revealed that AVR1 and Sec5 are in close proximity, and coimmunoprecipitation confirmed the interaction. Sec5 is required for secretion of the pathogenesis-related protein PR-1 and callose deposition and also plays a role in CRN2-induced cell death. Our findings show that P. infestans manipulates an exocyst subunit and thereby potentially disturbs vesicle trafficking, a cellular process that is important for basal defense. This is a novel strategy that oomycete pathogens exploit to modulate host defense. PMID:26336092

  3. Protein-protein interactions in the synaptonemal complex.

    PubMed Central

    Tarsounas, M; Pearlman, R E; Gasser, P J; Park, M S; Moens, P B

    1997-01-01

    In mammalian systems, an approximately M(r) 30,000 Cor1 protein has been identified as a major component of the meiotic prophase chromosome cores, and a M(r) 125,000 Syn1 protein is present between homologue cores where they are synapsed and form the synaptonemal complex (SC). Immunolocalization of these proteins during meiosis suggests possible homo- and heterotypic interactions between the two as well as possible interactions with yet unrecognized proteins. We used the two-hybrid system in the yeast Saccharomyces cerevisiae to detect possible protein-protein associations. Segments of hamsters Cor1 and Syn1 proteins were tested in various combinations for homo- and heterotypic interactions. In the cause of Cor1, homotypic interactions involve regions capable of coiled-coil formation, observation confirmed by in vitro affinity coprecipitation experiments. The two-hybrid assay detects no interaction of Cor1 protein with central and C-terminal fragments of Syn1 protein and no homotypic interactions involving these fragments of Syn1. Hamster Cor1 and Syn1 proteins both associate with the human ubiquitin-conjugation enzyme Hsubc9 as well as with the hamster Ubc9 homologue. The interactions between SC proteins and the Ubc9 protein may be significant for SC disassembly, which coincides with the repulsion of homologs by late prophase I, and also for the termination of sister centromere cohesiveness at anaphase II. Images PMID:9285814

  4. Prediction of protein-protein interactions: unifying evolution and structure at protein interfaces.

    PubMed

    Tuncbag, Nurcan; Gursoy, Attila; Keskin, Ozlem

    2011-06-01

    The vast majority of the chores in the living cell involve protein-protein interactions. Providing details of protein interactions at the residue level and incorporating them into protein interaction networks are crucial toward the elucidation of a dynamic picture of cells. Despite the rapid increase in the number of structurally known protein complexes, we are still far away from a complete network. Given experimental limitations, computational modeling of protein interactions is a prerequisite to proceed on the way to complete structural networks. In this work, we focus on the question 'how do proteins interact?' rather than 'which proteins interact?' and we review structure-based protein-protein interaction prediction approaches. As a sample approach for modeling protein interactions, PRISM is detailed which combines structural similarity and evolutionary conservation in protein interfaces to infer structures of complexes in the protein interaction network. This will ultimately help us to understand the role of protein interfaces in predicting bound conformations.

  5. Protein Synthesis--An Interactive Game.

    ERIC Educational Resources Information Center

    Clements, Lee Ann J.; Jackson, Karen E.

    1998-01-01

    Describes an interactive game designed to help students see and understand the dynamic relationship between DNA, RNA, and proteins. Appropriate for either a class or laboratory setting, following a lecture session about protein synthesis. (DDR)

  6. Remote Manipulator System (RMS)-based Controls-Structures Interaction (CSI) flight experiment feasibility study

    NASA Technical Reports Server (NTRS)

    Demeo, Martha E.

    1990-01-01

    The feasibility of an experiment which will provide an on-orbit validation of Controls-Structures Interaction (CSI) technology, was investigated. The experiment will demonstrate the on-orbit characterization and flexible-body control of large flexible structure dynamics using the shuttle Remote Manipulator System (RMS) with an attached payload as a test article. By utilizing existing hardware as well as establishing integration, operation and safety algorithms, techniques and procedures, the experiment will minimize the costs and risks of implementing a flight experiment. The experiment will also offer spin-off enhancement to both the Shuttle RMS (SRMS) and the Space Station RMS (SSRMS).

  7. Protein interactions in human genetic diseases

    PubMed Central

    Schuster-Böckler, Benjamin; Bateman, Alex

    2008-01-01

    We present a novel method that combines protein structure information with protein interaction data to identify residues that form part of an interaction interface. Our prediction method can retrieve interaction hotspots with an accuracy of 60% (at a 20% false positive rate). The method was applied to all mutations in the Online Mendelian Inheritance in Man (OMIM) database, predicting 1,428 mutations to be related to an interaction defect. Combining predicted and hand-curated sets, we discuss how mutations affect protein interactions in general. PMID:18199329

  8. Dissecting protein-protein interactions using directed evolution.

    PubMed

    Bonsor, Daniel A; Sundberg, Eric J

    2011-04-05

    Protein-protein interactions are essential for life. They are responsible for most cellular functions and when they go awry often lead to disease. Proteins are inherently complex. They are flexible macromolecules whose constituent amino acid components act in combinatorial and networked ways when they engage one another in binding interactions. It is just this complexity that allows them to conduct such a broad array of biological functions. Despite decades of intense study of the molecular basis of protein-protein interactions, key gaps in our understanding remain, hindering our ability to accurately predict the specificities and affinities of their interactions. Until recently, most protein-protein investigations have been probed experimentally at the single-amino acid level, making them, by definition, incapable of capturing the combinatorial nature of, and networked communications between, the numerous residues within and outside of the protein-protein interface. This aspect of protein-protein interactions, however, is emerging as a major driving force for protein affinity and specificity. Understanding a combinatorial process necessarily requires a combinatorial experimental tool. Much like the organisms in which they reside, proteins naturally evolve over time, through a combinatorial process of mutagenesis and selection, to functionally associate. Elucidating the process by which proteins have evolved may be one of the keys to deciphering the molecular rules that govern their interactions with one another. Directed evolution is a technique performed in the laboratory that mimics natural evolution on a tractable time scale that has been utilized widely to engineer proteins with novel capabilities, including altered binding properties. In this review, we discuss directed evolution as an emerging tool for dissecting protein-protein interactions.

  9. Protein-protein interactions: methods for detection and analysis.

    PubMed Central

    Phizicky, E M; Fields, S

    1995-01-01

    The function and activity of a protein are often modulated by other proteins with which it interacts. This review is intended as a practical guide to the analysis of such protein-protein interactions. We discuss biochemical methods such as protein affinity chromatography, affinity blotting, coimmunoprecipitation, and cross-linking; molecular biological methods such as protein probing, the two-hybrid system, and phage display: and genetic methods such as the isolation of extragenic suppressors, synthetic mutants, and unlinked noncomplementing mutants. We next describe how binding affinities can be evaluated by techniques including protein affinity chromatography, sedimentation, gel filtration, fluorescence methods, solid-phase sampling of equilibrium solutions, and surface plasmon resonance. Finally, three examples of well-characterized domains involved in multiple protein-protein interactions are examined. The emphasis of the discussion is on variations in the approaches, concerns in evaluating the results, and advantages and disadvantages of the techniques. PMID:7708014

  10. Effects of Early Separation, Interactive Deficits and Experimental Manipulations on Mother-Infant Interaction.

    ERIC Educational Resources Information Center

    Field, Tiffany

    Filmed were interactions in a variety of situations of approximately 150 infants from three groups: a preterm respiratory distress syndrome group, a postterm postmature group, and a normal term group. Videotapes were made of interactions involving the infant, mother, father or sibling, a raggedy ann doll, and a mirror. Among findings were that the…

  11. Protein-protein Interactions using Radiolytic Footprinting

    SciTech Connect

    Takamoto,K.; Chance, M.

    2006-01-01

    Structural proteomics approaches using mass spectrometry are increasingly used in biology to examine the composition and structure of macromolecules. Hydroxyl radical-mediated protein footprinting using mass spectrometry has recently been developed to define structure, assembly, and conformational changes of macromolecules in solution based on measurements of reactivity of amino acid side chain groups with covalent modification reagents. Accurate measurements of side chain reactivity are achieved using quantitative liquid-chromatography-coupled mass spectrometry, whereas the side chain modification sites are identified using tandem mass spectrometry. In addition, the use of footprinting data in conjunction with computational modeling approaches is a powerful new method for testing and refining structural models of macromolecules and their complexes. In this review, we discuss the basic chemistry of hydroxyl radical reactions with peptides and proteins, highlight various approaches to map protein structure using radical oxidation methods, and describe state-of-the-art approaches to combine computational and footprinting data.

  12. Precise Manipulation and Patterning of Protein Crystals for Macromolecular Crystallography Using Surface Acoustic Waves.

    PubMed

    Guo, Feng; Zhou, Weijie; Li, Peng; Mao, Zhangming; Yennawar, Neela H; French, Jarrod B; Huang, Tony Jun

    2015-06-01

    Advances in modern X-ray sources and detector technology have made it possible for crystallographers to collect usable data on crystals of only a few micrometers or less in size. Despite these developments, sample handling techniques have significantly lagged behind and often prevent the full realization of current beamline capabilities. In order to address this shortcoming, a surface acoustic wave-based method for manipulating and patterning crystals is developed. This method, which does not damage the fragile protein crystals, can precisely manipulate and pattern micrometer and submicrometer-sized crystals for data collection and screening. The technique is robust, inexpensive, and easy to implement. This method not only promises to significantly increase efficiency and throughput of both conventional and serial crystallography experiments, but will also make it possible to collect data on samples that were previously intractable.

  13. Precise Manipulation and Patterning of Protein Crystals for Macromolecular Crystallography using Surface Acoustic Waves

    PubMed Central

    Guo, Feng; Zhou, Weijie; Li, Peng; Mao, Zhangming; Yennawar, Neela; French, Jarrod B.; Jun Huang, Tony

    2015-01-01

    Advances in modern X-ray sources and detector technology have made it possible for crystallographers to collect usable data on crystals of only a few micrometers or less in size. Despite these developments, sample handling techniques have significantly lagged behind and often prevent the full realization of current beamline capabilities. In order to address this shortcoming we have developed a surface acoustic wave-based method for manipulating and patterning crystals. This method, which does not damage the fragile protein crystals, can precisely manipulate and pattern micrometer and sub-micrometer sized crystals for data collection and screening. The technique is robust, inexpensive, and easy to implement. This method not only promises to significantly increase efficiency and throughput of both conventional and serial crystallography experiments, but also will make it possible to collect data on samples that were previously intractable. PMID:25641793

  14. Manipulating perfume delivery to the interface using polymer-surfactant interactions.

    PubMed

    Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig

    2016-03-15

    Enhanced delivery of perfumes to interfaces is an important element of their effectiveness in a range of home and personal care products. The role of polyelectrolyte-surfactant mixtures to promote perfume adsorption at interfaces is explored here. Neutron reflectivity, NR, was used to quantify the adsorption of the model perfumes phenylethanol, PE, and linalool, LL, at the air-water interface in the presence of the anionic surfactant sodium dodecylsulfate, SDS, and the cationic polyelectrolytes, poly(dimethyldiallyl ammonium chloride), polydmdaac, and poly(ethyleneimine), PEI. The strong SDS-polydmdaac interaction dominates the surface adsorption in SDS-polymer-perfume (PE, LL) mixtures, such that the PE and LL adsorption is greatly suppressed. For PEI-SDS-perfume mixtures the PEI-LL interaction competes with the SDS-PEI interaction at all pH at the surface and significant LL adsorption occurs, whereas for PE the PEI-SDS interaction dominates and the PE adsorption is greatly reduced. The use of the strong surface polyelectrolyte-ionic surfactant interaction to manipulate perfume adsorption at the air-water interface has been demonstrated. In particular the results show how the competition between polyelectrolyte, surfactant and perfume interactions at the surface and in solution affect the partitioning of perfumes to the surface.

  15. Annexin A2 complexes with S100 proteins: structure, function and pharmacological manipulation

    PubMed Central

    Liu, Yidong; Myrvang, Helene K; Dekker, Lodewijk V

    2015-01-01

    Annexin A2 (AnxA2) was originally identified as a substrate of the pp60v-src oncoprotein in transformed chicken embryonic fibroblasts. It is an abundant protein that associates with biological membranes as well as the actin cytoskeleton, and has been implicated in intracellular vesicle fusion, the organization of membrane domains, lipid rafts and membrane-cytoskeleton contacts. In addition to an intracellular role, AnxA2 has been reported to participate in processes localized to the cell surface including extracellular protease regulation and cell-cell interactions. There are many reports showing that AnxA2 is differentially expressed between normal and malignant tissue and potentially involved in tumour progression. An important aspect of AnxA2 function relates to its interaction with small Ca2+-dependent adaptor proteins called S100 proteins, which is the topic of this review. The interaction between AnxA2 and S100A10 has been very well characterized historically; more recently, other S100 proteins have been shown to interact with AnxA2 as well. The biochemical evidence for the occurrence of these protein interactions will be discussed, as well as their function. Recent studies aiming to generate inhibitors of S100 protein interactions will be described and the potential of these inhibitors to further our understanding of AnxA2 S100 protein interactions will be discussed. PMID:25303710

  16. Protein interaction networks from literature mining

    NASA Astrophysics Data System (ADS)

    Ihara, Sigeo

    2005-03-01

    The ability to accurately predict and understand physiological changes in the biological network system in response to disease or drug therapeutics is of crucial importance in life science. The extensive amount of gene expression data generated from even a single microarray experiment often proves difficult to fully interpret and comprehend the biological significance. An increasing knowledge of protein interactions stored in the PubMed database, as well as the advancement of natural language processing, however, makes it possible to construct protein interaction networks from the gene expression information that are essential for understanding the biological meaning. From the in house literature mining system we have developed, the protein interaction network for humans was constructed. By analysis based on the graph-theoretical characterization of the total interaction network in literature, we found that the network is scale-free and semantic long-ranged interactions (i.e. inhibit, induce) between proteins dominate in the total interaction network, reducing the degree exponent. Interaction networks generated based on scientific text in which the interaction event is ambiguously described result in disconnected networks. In contrast interaction networks based on text in which the interaction events are clearly stated result in strongly connected networks. The results of protein-protein interaction networks obtained in real applications from microarray experiments are discussed: For example, comparisons of the gene expression data indicative of either a good or a poor prognosis for acute lymphoblastic leukemia with MLL rearrangements, using our system, showed newly discovered signaling cross-talk.

  17. Optical manipulation of a single human virus for study of viral-cell interactions.

    PubMed

    Hou, Ximiao; DeSantis, Michael C; Tian, Chunjuan; Cheng, Wei

    2016-08-01

    Although Ashkin and Dziedzic first demonstrated optical trapping of individual tobacco mosaic viruses in suspension as early as 1987, this pioneering work has not been followed up only until recently. Using human immunodeficiency virus type 1 (HIV-1) as a model virus, we have recently demonstrated that a single HIV-1 virion can be stabled trapped, manipulated and measured in physiological media with high precision. The capability to optically trap a single virion in suspension not only allows us to determine, for the first time, the refractive index of a single virus with high precision, but also quantitate the heterogeneity among individual virions with single-molecule resolution, the results of which shed light on the molecular mechanisms of virion infectivity. Here we report the further development of a set of microscopic techniques to physically deliver a single HIV-1 virion to a single host cell in solution. Combined with simultaneous epifluorescence imaging, the attachment and dissociation events of individual manipulated virions on host cell surface can be measured and the results help us understand the role of diffusion in mediating viral attachment to host cells. The establishment of these techniques opens up new ways for investigation of a wide range of virion-cell interactions, and should be applicable for study of B cell interactions with particulate antigens such as viruses.

  18. Optical manipulation of a single human virus for study of viral-cell interactions

    PubMed Central

    Hou, Ximiao; DeSantis, Michael C.; Tian, Chunjuan; Cheng, Wei

    2016-01-01

    Although Ashkin and Dziedzic first demonstrated optical trapping of individual tobacco mosaic viruses in suspension as early as 1987, this pioneering work has not been followed up only until recently. Using human immunodeficiency virus type 1 (HIV-1) as a model virus, we have recently demonstrated that a single HIV-1 virion can be stabled trapped, manipulated and measured in physiological media with high precision. The capability to optically trap a single virion in suspension not only allows us to determine, for the first time, the refractive index of a single virus with high precision, but also quantitate the heterogeneity among individual virions with single-molecule resolution, the results of which shed light on the molecular mechanisms of virion infectivity. Here we report the further development of a set of microscopic techniques to physically deliver a single HIV-1 virion to a single host cell in solution. Combined with simultaneous epifluorescence imaging, the attachment and dissociation events of individual manipulated virions on host cell surface can be measured and the results help us understand the role of diffusion in mediating viral attachment to host cells. The establishment of these techniques opens up new ways for investigation of a wide range of virion-cell interactions, and should be applicable for study of B cell interactions with particulate antigens such as viruses. PMID:27746582

  19. Optical manipulation of a single human virus for study of viral-cell interactions

    NASA Astrophysics Data System (ADS)

    Hou, Ximiao; DeSantis, Michael C.; Tian, Chunjuan; Cheng, Wei

    2016-09-01

    Although Ashkin and Dziedzic first demonstrated optical trapping of individual tobacco mosaic viruses in suspension as early as 1987, this pioneering work has not been followed up only until recently. Using human immunodeficiency virus type 1 (HIV-1) as a model virus, we have recently demonstrated that a single HIV-1 virion can be stabled trapped, manipulated and measured in physiological media with high precision. The capability to optically trap a single virion in suspension not only allows us to determine, for the first time, the refractive index of a single virus with high precision, but also quantitate the heterogeneity among individual virions with single-molecule resolution, the results of which shed light on the molecular mechanisms of virion infectivity. Here we report the further development of a set of microscopic techniques to physically deliver a single HIV-1 virion to a single host cell in solution. Combined with simultaneous epifluorescence imaging, the attachment and dissociation events of individual manipulated virions on host cell surface can be measured and the results help us understand the role of diffusion in mediating viral attachment to host cells. The establishment of these techniques opens up new ways for investigation of a wide range of virion-cell interactions, and should be applicable for study of B cell interactions with particulate antigens such as viruses.

  20. Geminivirus C3 Protein: Replication Enhancement and Protein Interactions

    PubMed Central

    Settlage, Sharon B.; See, Renee G.; Hanley-Bowdoin, Linda

    2005-01-01

    Most dicot-infecting geminiviruses encode a replication enhancer protein (C3, AL3, or REn) that is required for optimal replication of their small, single-stranded DNA genomes. C3 interacts with C1, the essential viral replication protein that initiates rolling circle replication. C3 also homo-oligomerizes and interacts with at least two host-encoded proteins, proliferating cell nuclear antigen (PCNA) and the retinoblastoma-related protein (pRBR). It has been proposed that protein interactions contribute to C3 function. Using the C3 protein of Tomato yellow leaf curl virus, we examined the impact of mutations to amino acids that are conserved across the C3 protein family on replication enhancement and protein interactions. Surprisingly, many of the mutations did not affect replication enhancement activity of C3 in tobacco protoplasts. Other mutations either enhanced or were detrimental to C3 replication activity. Analysis of mutated proteins in yeast two-hybrid assays indicated that mutations that inactivate C3 replication enhancement activity also reduce or inactivate C3 oligomerization and interaction with C1 and PCNA. In contrast, mutated C3 proteins impaired for pRBR binding are fully functional in replication assays. Hydrophobic residues in the middle of the C3 protein were implicated in C3 interaction with itself, C1, and PCNA, while polar resides at both the N and C termini of the protein are important for C3-pRBR interaction. These experiments established the importance of C3-C3, C3-C1, and C3-PCNA interactions in geminivirus replication. While C3-pRBR interaction is not required for viral replication in cycling cells, it may play a role during infection of differentiated cells in intact plants. PMID:16014949

  1. Computational Prediction of Protein-Protein Interactions of Human Tyrosinase

    PubMed Central

    Wang, Su-Fang; Oh, Sangho; Si, Yue-Xiu; Wang, Zhi-Jiang; Han, Hong-Yan; Lee, Jinhyuk; Qian, Guo-Ying

    2012-01-01

    The various studies on tyrosinase have recently gained the attention of researchers due to their potential application values and the biological functions. In this study, we predicted the 3D structure of human tyrosinase and simulated the protein-protein interactions between tyrosinase and three binding partners, four and half LIM domains 2 (FHL2), cytochrome b-245 alpha polypeptide (CYBA), and RNA-binding motif protein 9 (RBM9). Our interaction simulations showed significant binding energy scores of −595.3 kcal/mol for FHL2, −859.1 kcal/mol for CYBA, and −821.3 kcal/mol for RBM9. We also investigated the residues of each protein facing toward the predicted site of interaction with tyrosinase. Our computational predictions will be useful for elucidating the protein-protein interactions of tyrosinase and studying its binding mechanisms. PMID:22577521

  2. Mapping interactions of Chikungunya virus nonstructural proteins.

    PubMed

    Sreejith, R; Rana, Jyoti; Dudha, Namrata; Kumar, Kapila; Gabrani, Reema; Sharma, Sanjeev K; Gupta, Amita; Vrati, Sudhanshu; Chaudhary, Vijay K; Gupta, Sanjay

    2012-10-01

    The four nonstructural proteins (nsPs1-4) of Chikungunya virus (CHIKV) play important roles involving enzymatic activities and specific interactions with both viral and host components, during different stages of viral pathogenesis. Elucidation of the presence and/or absence of interactions among nsPs in a systematic manner is thus of scientific interest. In the current study, each pair-wise combination among the four nonstructural proteins of CHIKV was systematically analyzed for possible interactions. Six novel protein interactions were identified for CHIKV, using systems such as yeast two-hybrid, GST pull down and ELISA, three of which have not been previously reported for the genus Alphavirus. These interactions form a network of organized associations that suggest the spatial arrangement of nonstructural proteins in the late replicase complex. The study identified novel interactions as well as concurred with previously described associations in related alphaviruses.

  3. Curvature-mediated interactions between membrane proteins.

    PubMed Central

    Kim, K S; Neu, J; Oster, G

    1998-01-01

    Membrane proteins can deform the lipid bilayer in which they are embedded. If the bilayer is treated as an elastic medium, then these deformations will generate elastic interactions between the proteins. The interaction between a single pair is repulsive. However, for three or more proteins, we show that there are nonpairwise forces whose magnitude is similar to the pairwise forces. When there are five or more proteins, we show that the nonpairwise forces permit the existence of stable protein aggregates, despite their pairwise repulsions. PMID:9788923

  4. Protein-protein interactions in complex cosolvent solutions.

    PubMed

    Javid, Nadeem; Vogtt, Karsten; Krywka, Chris; Tolan, Metin; Winter, Roland

    2007-04-02

    The effects of various kosmotropic and chaotropic cosolvents and salts on the intermolecular interaction potential of positively charged lysozyme is evaluated at varying protein concentrations by using synchrotron small-angle X-ray scattering in combination with liquid-state theoretical approaches. The experimentally derived static structure factors S(Q) obtained without and with added cosolvents and salts are analysed with a statistical mechanical model based on the Derjaguin-Landau-Verwey-Overbeek (DLVO) potential, which accounts for repulsive and attractive interactions between the protein molecules. Different cosolvents and salts influence the interactions between protein molecules differently as a result of changes in the hydration level or solvation, in charge screening, specific adsorption of the additives at the protein surface, or increased hydrophobic interactions. Intermolecular interaction effects are significant above protein concentrations of 1 wt %, and with increasing protein concentration, the repulsive nature of the intermolecular pair potential V(r) increases markedly. Kosmotropic cosolvents like glycerol and sucrose exhibit strong concentration-dependent effects on the interaction potential, leading to an increase of repulsive forces between the protein molecules at low to medium high osmolyte concentrations. Addition of trifluoroethanol exhibits a multiphasic effect on V(r) when changing its concentration. Salts like sodium chloride and potassium sulfate exhibit strong concentration-dependent changes of the interaction potential due to charge screening of the positively charged protein molecules. Guanidinium chloride (GdmCl) at low concentrations exhibits a similar charge-screening effect, resulting in increased attractive interactions between the protein molecules. At higher GdmCl concentrations, V(r) becomes more repulsive in nature due to the presence of high concentrations of Gdm(+) ions binding to the protein molecules. Our findings also

  5. An Interactive Introduction to Protein Structure

    ERIC Educational Resources Information Center

    Lee, W. Theodore

    2004-01-01

    To improve student understanding of protein structure and the significance of noncovalent interactions in protein structure and function, students are assigned a project to write a paper complemented with computer-generated images. The assignment provides an opportunity for students to select a protein structure that is of interest and detail…

  6. Inferring interaction partners from protein sequences

    PubMed Central

    Bitbol, Anne-Florence; Dwyer, Robert S.; Colwell, Lucy J.; Wingreen, Ned S.

    2016-01-01

    Specific protein−protein interactions are crucial in the cell, both to ensure the formation and stability of multiprotein complexes and to enable signal transduction in various pathways. Functional interactions between proteins result in coevolution between the interaction partners, causing their sequences to be correlated. Here we exploit these correlations to accurately identify, from sequence data alone, which proteins are specific interaction partners. Our general approach, which employs a pairwise maximum entropy model to infer couplings between residues, has been successfully used to predict the 3D structures of proteins from sequences. Thus inspired, we introduce an iterative algorithm to predict specific interaction partners from two protein families whose members are known to interact. We first assess the algorithm’s performance on histidine kinases and response regulators from bacterial two-component signaling systems. We obtain a striking 0.93 true positive fraction on our complete dataset without any a priori knowledge of interaction partners, and we uncover the origin of this success. We then apply the algorithm to proteins from ATP-binding cassette (ABC) transporter complexes, and obtain accurate predictions in these systems as well. Finally, we present two metrics that accurately distinguish interacting protein families from noninteracting ones, using only sequence data. PMID:27663738

  7. DIP: The Database of Interacting Proteins

    DOE Data Explorer

    The DIP Database catalogs experimentally determined interactions between proteins. It combines information from a variety of sources to create a single, consistent set of protein-protein interactions. By interaction, the DIP Database creators mean that two amino acid chains were experimentally identified to bind to each other. The database lists such pairs to aid those studying a particular protein-protein interaction but also those investigating entire regulatory and signaling pathways as well as those studying the organisation and complexity of the protein interaction network at the cellular level. The data stored within the DIP database were curated, both, manually by expert curators and also automatically using computational approaches that utilize the knowledge about the protein-protein interaction networks extracted from the most reliable, core subset of the DIP data. It is a relational database that can be searched by protein, sequence, motif, article information, and pathBLAST. The website also serves as an access point to a number of projects related to DIP, such as LiveDIP, The Database of Ligand-Receptor Partners (DLRP) and JDIP. Users have free and open access to DIP after login. [Taken from the DIP Guide and the DIP website] (Specialized Interface) (Registration Required)

  8. Cation-pi interactions in protein-protein interfaces.

    PubMed

    Crowley, Peter B; Golovin, Adel

    2005-05-01

    Arginine is an abundant residue in protein-protein interfaces. The importance of this residue relates to the versatility of its side chain in intermolecular interactions. Different classes of protein-protein interfaces were surveyed for cation-pi interactions. Approximately half of the protein complexes and one-third of the homodimers analyzed were found to contain at least one intermolecular cation-pi pair. Interactions between arginine and tyrosine were found to be the most abundant. The electrostatic interaction energy was calculated to be approximately 3 kcal/mol, on average. A distance-based search of guanidinium:aromatic interactions was also performed using the Macromolecular Structure Database (MSD). This search revealed that half of the guanidinium:aromatic pairs pack in a coplanar manner. Furthermore, it was found that the cationic group of the cation-pi pair is frequently involved in intermolecular hydrogen bonds. In this manner the arginine side chain can participate in multiple interactions, providing a mechanism for inter-protein specificity. Thus, the cation-pi interaction is established as an important contributor to protein-protein interfaces.

  9. Retention and interference of learned dexterous manipulation: interaction between multiple sensorimotor processes.

    PubMed

    Fu, Qiushi; Santello, Marco

    2015-01-01

    An object can be used in multiple contexts, each requiring different hand actions. How the central nervous system builds and maintains memory of such dexterous manipulations remains unclear. We conducted experiments in which human subjects had to learn and recall manipulations performed in two contexts, A and B. Both contexts involved lifting the same L-shaped object whose geometry cued its asymmetrical mass distribution. Correct performance required producing a torque on the vertical handle at object lift onset to prevent it from tilting. The torque direction depended on the context, i.e., object orientation, which was changed by 180° object rotation about a vertical axis. With an A1B1A2 context switching paradigm, subjects learned A1 in the first block of eight trials as indicated by a torque approaching the required one. However, subjects made large errors in anticipating the required torque when switching to B1 immediately after A1 (negative transfer), as well as when they had to recall A1 when switching to A2 after learning B through another block of eight lifts (retrieval interference). Classic sensorimotor learning theories attribute such interferences to multi-rate, multi-state error-driven updates of internal models. However, by systematically changing the interblock break duration and within-block number of trials, our results suggest an alternative explanation underlying interference and retention of dexterous manipulation. Specifically, we identified and quantified through a novel computational model the nonlinear interaction between two sensorimotor mechanisms: a short-lived, context-independent, use-dependent sensorimotor memory and a context-sensitive, error-based learning process.

  10. Noninvasive imaging of protein-protein interactions in living animals

    NASA Astrophysics Data System (ADS)

    Luker, Gary D.; Sharma, Vijay; Pica, Christina M.; Dahlheimer, Julie L.; Li, Wei; Ochesky, Joseph; Ryan, Christine E.; Piwnica-Worms, Helen; Piwnica-Worms, David

    2002-05-01

    Protein-protein interactions control transcription, cell division, and cell proliferation as well as mediate signal transduction, oncogenic transformation, and regulation of cell death. Although a variety of methods have been used to investigate protein interactions in vitro and in cultured cells, none can analyze these interactions in intact, living animals. To enable noninvasive molecular imaging of protein-protein interactions in vivo by positron-emission tomography and fluorescence imaging, we engineered a fusion reporter gene comprising a mutant herpes simplex virus 1 thymidine kinase and green fluorescent protein for readout of a tetracycline-inducible, two-hybrid system in vivo. By using micro-positron-emission tomography, interactions between p53 tumor suppressor and the large T antigen of simian virus 40 were visualized in tumor xenografts of HeLa cells stably transfected with the imaging constructs. Imaging protein-binding partners in vivo will enable functional proteomics in whole animals and provide a tool for screening compounds targeted to specific protein-protein interactions in living animals.

  11. Context-based retrieval of functional modules in protein-protein interaction networks.

    PubMed

    Dobay, Maria Pamela; Stertz, Silke; Delorenzi, Mauro

    2017-03-27

    Various techniques have been developed for identifying the most probable interactants of a protein under a given biological context. In this article, we dissect the effects of the choice of the protein-protein interaction network (PPI) and the manipulation of PPI settings on the network neighborhood of the influenza A virus (IAV) network, as well as hits in genome-wide small interfering RNA screen results for IAV host factors. We investigate the potential of context filtering, which uses text mining evidence linked to PPI edges, as a complement to the edge confidence scores typically provided in PPIs for filtering, for obtaining more biologically relevant network neighborhoods. Here, we estimate the maximum performance of context filtering to isolate a Kyoto Encyclopedia of Genes and Genomes (KEGG) network Ki from a union of KEGG networks and its network neighborhood. The work gives insights on the use of human PPIs in network neighborhood approaches for functional inference.

  12. A Social Exclusion Manipulation Interacts with Acquired Capability for Suicide to Predict Self-Aggressive Behaviors.

    PubMed

    Hames, Jennifer L; Rogers, Megan L; Silva, Caroline; Ribeiro, Jessica D; Teale, Nadia E; Joiner, Thomas E

    2017-03-13

    The interpersonal theory of suicide posits that individuals who simultaneously experience high levels of thwarted belongingness, perceived burdensomeness, and acquired capability for suicide are at high risk for a lethal or near-lethal suicide attempt. Although supported by self-report studies, no study has examined facets of the theory experimentally. The present study aimed to examine the belongingness and capability components of the theory by testing whether experimentally manipulated social exclusion interacts with self-reported acquired capability to predict higher self-administered shock levels on a self-aggression paradigm. A sample of 253 students completed self-report measures and were then randomly assigned to a social exclusion manipulation condition (future alone, future belonging, no feedback). Participants then participated in the self-aggression paradigm. The positive association between acquired capability and self-aggression was strongest among participants in the future alone social exclusion condition. In those assigned to the future belonging or no feedback conditions, the association between acquired capability and self-aggression was non-significant. These findings provide modest experimental support for the interpersonal theory of suicide and highlight a potential mechanism through which social exclusion may impact suicide risk. Limitations and future research directions are discussed.

  13. Sitewise manipulations and Mott insulator-superfluid transition of interacting photons using superconducting circuit simulators

    DOE PAGES

    Deng, Xiuhao; Jia, Chunjing; Chien, Chih-Chun

    2015-02-23

    We report that the Bose Hubbard model (BHM) of interacting bosons in a lattice has been a paradigm in many-body physics, and it exhibits a Mott insulator (MI)-superfluid (SF) transition at integer filling. Here a quantum simulator of the BHM using a superconducting circuit is proposed. Specifically, a superconducting transmission line resonator supporting microwave photons is coupled to a charge qubit to form one site of the BHM, and adjacent sites are connected by a tunable coupler. To obtain a mapping from the superconducting circuit to the BHM, we focus on the dispersive regime where the excitations remain photonlike. Standardmore » perturbation theory is implemented to locate the parameter range where the MI-SF transition may be simulated. This simulator allows single-site manipulations and we illustrate this feature by considering two scenarios where a single-site manipulation can drive a MI-SF transition. The transition can be analyzed by mean-field analyses, and the exact diagonalization was implemented to provide accurate results. The variance of the photon density and the fidelity metric clearly show signatures of the transition. Lastly, experimental realizations and other possible applications of this simulator are also discussed.« less

  14. Sitewise manipulations and Mott insulator-superfluid transition of interacting photons using superconducting circuit simulators

    SciTech Connect

    Deng, Xiuhao; Jia, Chunjing; Chien, Chih-Chun

    2015-02-23

    We report that the Bose Hubbard model (BHM) of interacting bosons in a lattice has been a paradigm in many-body physics, and it exhibits a Mott insulator (MI)-superfluid (SF) transition at integer filling. Here a quantum simulator of the BHM using a superconducting circuit is proposed. Specifically, a superconducting transmission line resonator supporting microwave photons is coupled to a charge qubit to form one site of the BHM, and adjacent sites are connected by a tunable coupler. To obtain a mapping from the superconducting circuit to the BHM, we focus on the dispersive regime where the excitations remain photonlike. Standard perturbation theory is implemented to locate the parameter range where the MI-SF transition may be simulated. This simulator allows single-site manipulations and we illustrate this feature by considering two scenarios where a single-site manipulation can drive a MI-SF transition. The transition can be analyzed by mean-field analyses, and the exact diagonalization was implemented to provide accurate results. The variance of the photon density and the fidelity metric clearly show signatures of the transition. Lastly, experimental realizations and other possible applications of this simulator are also discussed.

  15. The Complexity of the Affordance-Ability Relationship When Second-Grade Children Interact with Mathematics Virtual Manipulative Apps

    ERIC Educational Resources Information Center

    Tucker, Stephen I.; Moyer-Packenham, Patricia S.; Westenskow, Arla; Jordan, Kerry E.

    2016-01-01

    The purpose of this study was to explore relationships between app affordances and user abilities in second graders' interactions with mathematics virtual manipulative touchscreen tablet apps. The research questions focused on varying manifestations of affordance-ability relationships during children's interactions with mathematics virtual…

  16. Capturing the Interaction Potential of Amyloidogenic Proteins

    SciTech Connect

    Javid, Nadeem; Vogtt, Karsten; Winter, Roland; Krywka, Christina; Tolan, Metin

    2007-07-13

    Experimentally derived static structure factors obtained for the aggregation-prone protein insulin were analyzed with a statistical mechanical model based on the Derjaguin-Landau-Verwey-Overbeek potential. The data reveal that the protein self-assembles into equilibrium clusters already at low concentrations. Furthermore, striking differences regarding interaction forces between aggregation-prone proteins such as insulin in the preaggregated regime and natively stable globular proteins are found.

  17. PPIM: A Protein-Protein Interaction Database for Maize1

    PubMed Central

    Wu, Aibo; Xu, Xin-Jian; Lu, Le; Liu, Jingdong; Cao, Yongwei; Chen, Luonan; Wu, Jun; Zhao, Xing-Ming

    2016-01-01

    Maize (Zea mays) is one of the most important crops worldwide. To understand the biological processes underlying various traits of the crop (e.g. yield and response to stress), a detailed protein-protein interaction (PPI) network is highly demanded. Unfortunately, there are very few such PPIs available in the literature. Therefore, in this work, we present the Protein-Protein Interaction Database for Maize (PPIM), which covers 2,762,560 interactions among 14,000 proteins. The PPIM contains not only accurately predicted PPIs but also those molecular interactions collected from the literature. The database is freely available at http://comp-sysbio.org/ppim with a user-friendly powerful interface. We believe that the PPIM resource can help biologists better understand the maize crop. PMID:26620522

  18. Manipulating the Prion Protein Gene Sequence and Expression Levels with CRISPR/Cas9

    PubMed Central

    Kaczmarczyk, Lech; Mende, Ylva; Zevnik, Branko; Jackson, Walker S.

    2016-01-01

    The mammalian prion protein (PrP, encoded by Prnp) is most infamous for its central role in prion diseases, invariably fatal neurodegenerative diseases affecting humans, food animals, and animals in the wild. However, PrP is also hypothesized to be an important receptor for toxic protein conformers in Alzheimer's disease, and is associated with other clinically relevant processes such as cancer and stroke. Thus, key insights into important clinical areas, as well as into understanding PrP functions in normal physiology, can be obtained from studying transgenic mouse models and cell culture systems. However, the Prnp locus is difficult to manipulate by homologous recombination, making modifications of the endogenous locus rarely attempted. Fortunately in recent years genome engineering technologies, like TALENs or CRISPR/Cas9 (CC9), have brought exceptional new possibilities for manipulating Prnp. Herein, we present our observations made during systematic experiments with the CC9 system targeting the endogenous mouse Prnp locus, to either modify sequences or to boost PrP expression using CC9-based synergistic activation mediators (SAMs). It is our hope that this information will aid and encourage researchers to implement gene-targeting techniques into their research program. PMID:27128441

  19. Linkers in the structural biology of protein-protein interactions.

    PubMed

    Reddy Chichili, Vishnu Priyanka; Kumar, Veerendra; Sivaraman, J

    2013-02-01

    Linkers or spacers are short amino acid sequences created in nature to separate multiple domains in a single protein. Most of them are rigid and function to prohibit unwanted interactions between the discrete domains. However, Gly-rich linkers are flexible, connecting various domains in a single protein without interfering with the function of each domain. The advent of recombinant DNA technology made it possible to fuse two interacting partners with the introduction of artificial linkers. Often, independent proteins may not exist as stable or structured proteins until they interact with their binding partner, following which they gain stability and the essential structural elements. Gly-rich linkers have been proven useful for these types of unstable interactions, particularly where the interaction is weak and transient, by creating a covalent link between the proteins to form a stable protein-protein complex. Gly-rich linkers are also employed to form stable covalently linked dimers, and to connect two independent domains that create a ligand-binding site or recognition sequence. The lengths of linkers vary from 2 to 31 amino acids, optimized for each condition so that the linker does not impose any constraints on the conformation or interactions of the linked partners. Various structures of covalently linked protein complexes have been described using X-ray crystallography, nuclear magnetic resonance and cryo-electron microscopy techniques. In this review, we evaluate several structural studies where linkers have been used to improve protein quality, to produce stable protein-protein complexes, and to obtain protein dimers.

  20. Predicting the fission yeast protein interaction network.

    PubMed

    Pancaldi, Vera; Saraç, Omer S; Rallis, Charalampos; McLean, Janel R; Převorovský, Martin; Gould, Kathleen; Beyer, Andreas; Bähler, Jürg

    2012-04-01

    A systems-level understanding of biological processes and information flow requires the mapping of cellular component interactions, among which protein-protein interactions are particularly important. Fission yeast (Schizosaccharomyces pombe) is a valuable model organism for which no systematic protein-interaction data are available. We exploited gene and protein properties, global genome regulation datasets, and conservation of interactions between budding and fission yeast to predict fission yeast protein interactions in silico. We have extensively tested our method in three ways: first, by predicting with 70-80% accuracy a selected high-confidence test set; second, by recapitulating interactions between members of the well-characterized SAGA co-activator complex; and third, by verifying predicted interactions of the Cbf11 transcription factor using mass spectrometry of TAP-purified protein complexes. Given the importance of the pathway in cell physiology and human disease, we explore the predicted sub-networks centered on the Tor1/2 kinases. Moreover, we predict the histidine kinases Mak1/2/3 to be vital hubs in the fission yeast stress response network, and we suggest interactors of argonaute 1, the principal component of the siRNA-mediated gene silencing pathway, lost in budding yeast but preserved in S. pombe. Of the new high-quality interactions that were discovered after we started this work, 73% were found in our predictions. Even though any predicted interactome is imperfect, the protein network presented here can provide a valuable basis to explore biological processes and to guide wet-lab experiments in fission yeast and beyond. Our predicted protein interactions are freely available through PInt, an online resource on our website (www.bahlerlab.info/PInt).

  1. Intraviral protein interactions of Chandipura virus.

    PubMed

    Kumar, Kapila; Rana, Jyoti; Sreejith, R; Gabrani, Reema; Sharma, Sanjeev K; Gupta, Amita; Chaudhary, Vijay K; Gupta, Sanjay

    2012-10-01

    Chandipura virus (CHPV) is an emerging rhabdovirus responsible for several outbreaks of fatal encephalitis among children in India. The characteristic structure of the virus is a result of extensive and specific interplay among its five encoded proteins. The revelation of interactions among CHPV proteins can help in gaining insight into viral architecture and pathogenesis. In the current study, we carried out comprehensive yeast two-hybrid (Y2H) analysis to elucidate intraviral protein-protein interactions. All of the interactions identified by Y2H were assessed for reliability by GST pull-down and ELISA. A total of eight interactions were identified among four viral proteins. Five of these interactions are being reported for the first time for CHPV. Among these, the glycoprotein (G)-nucleocapsid (N) interaction could be considered novel, as this has not been reported for any members of the family Rhabdoviridae. This study provides a framework within which the roles of the identified protein interactions can be explored further for understanding the biology of this virus at the molecular level.

  2. Van der Waals Interactions Involving Proteins

    NASA Technical Reports Server (NTRS)

    Roth, Charles M.; Neal, Brian L.; Lenhoff, Abraham M.

    1996-01-01

    Van der Waals (dispersion) forces contribute to interactions of proteins with other molecules or with surfaces, but because of the structural complexity of protein molecules, the magnitude of these effects is usually estimated based on idealized models of the molecular geometry, e.g., spheres or spheroids. The calculations reported here seek to account for both the geometric irregularity of protein molecules and the material properties of the interacting media. Whereas the latter are found to fall in the generally accepted range, the molecular shape is shown to cause the magnitudes of the interactions to differ significantly from those calculated using idealized models. with important consequences. First, the roughness of the molecular surface leads to much lower average interaction energies for both protein-protein and protein-surface cases relative to calculations in which the protein molecule is approximated as a sphere. These results indicate that a form of steric stabilization may be an important effect in protein solutions. Underlying this behavior is appreciable orientational dependence, one reflection of which is that molecules of complementary shape are found to exhibit very strong attractive dispersion interactions. Although this has been widely discussed previously in the context of molecular recognition processes, the broader implications of these phenomena may also be important at larger molecular separations, e.g., in the dynamics of aggregation, precipitation, and crystal growth.

  3. Van der Waals interactions involving proteins.

    PubMed Central

    Roth, C M; Neal, B L; Lenhoff, A M

    1996-01-01

    Van der Waals (dispersion) forces contribute to interactions of proteins with other molecules or with surfaces, but because of the structural complexity of protein molecules, the magnitude of these effects is usually estimated based on idealized models of the molecular geometry, e.g., spheres or spheroids. The calculations reported here seek to account for both the geometric irregularity of protein molecules and the material properties of the interacting media. Whereas the latter are found to fall in the generally accepted range, the molecular shape is shown to cause the magnitudes of the interactions to differ significantly from those calculated using idealized models, with important consequences. First, the roughness of the molecular surface leads to much lower average interaction energies for both protein-protein and protein-surface cases relative to calculations in which the protein molecule is approximated as a sphere. These results indicate that a form of steric stabilization may be an important effect in protein solutions. Underlying this behavior is appreciable orientational dependence, one reflection of which is that molecules of complementary shape are found to exhibit very strong attractive dispersion interactions. Although this has been widely discussed previously in the context of molecular recognition processes, the broader implications of these phenomena may also be important at larger molecular separations, e.g., in the dynamics of aggregation, precipitation, and crystal growth. Images FIGURE 3 PMID:8789115

  4. Characterization of protein-protein interactions by isothermal titration calorimetry.

    PubMed

    Velazquez-Campoy, Adrian; Leavitt, Stephanie A; Freire, Ernesto

    2015-01-01

    The analysis of protein-protein interactions has attracted the attention of many researchers from both a fundamental point of view and a practical point of view. From a fundamental point of view, the development of an understanding of the signaling events triggered by the interaction of two or more proteins provides key information to elucidate the functioning of many cell processes. From a practical point of view, understanding protein-protein interactions at a quantitative level provides the foundation for the development of antagonists or agonists of those interactions. Isothermal Titration Calorimetry (ITC) is the only technique with the capability of measuring not only binding affinity but the enthalpic and entropic components that define affinity. Over the years, isothermal titration calorimeters have evolved in sensitivity and accuracy. Today, TA Instruments and MicroCal market instruments with the performance required to evaluate protein-protein interactions. In this methods paper, we describe general procedures to analyze heterodimeric (porcine pancreatic trypsin binding to soybean trypsin inhibitor) and homodimeric (bovine pancreatic α-chymotrypsin) protein associations by ITC.

  5. STITCH: interaction networks of chemicals and proteins

    PubMed Central

    Kuhn, Michael; von Mering, Christian; Campillos, Monica; Jensen, Lars Juhl; Bork, Peer

    2008-01-01

    The knowledge about interactions between proteins and small molecules is essential for the understanding of molecular and cellular functions. However, information on such interactions is widely dispersed across numerous databases and the literature. To facilitate access to this data, STITCH (‘search tool for interactions of chemicals’) integrates information about interactions from metabolic pathways, crystal structures, binding experiments and drug–target relationships. Inferred information from phenotypic effects, text mining and chemical structure similarity is used to predict relations between chemicals. STITCH further allows exploring the network of chemical relations, also in the context of associated binding proteins. Each proposed interaction can be traced back to the original data sources. Our database contains interaction information for over 68 000 different chemicals, including 2200 drugs, and connects them to 1.5 million genes across 373 genomes and their interactions contained in the STRING database. STITCH is available at http://stitch.embl.de/ PMID:18084021

  6. Contribution of Hydrophobic Interactions to Protein Stability

    PubMed Central

    Pace, C. Nick; Fu, Hailong; Fryar, Katrina Lee; Landua, John; Trevino, Saul R.; Shirley, Bret A.; Hendricks, Marsha McNutt; Iimura, Satoshi; Gajiwala, Ketan; Scholtz, J. Martin; Grimsley, Gerald R.

    2011-01-01

    Our goal was to gain a better understanding of the contribution of hydrophobic interactions to protein stability. We measured the change in conformational stability, Δ(ΔG), for hydrophobic mutants of four proteins: villin head piece subdomain (VHP) with 36 residues, a surface protein from Borrelia burgdorferi (VlsE) with 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa and T1. We compare our results with previous studies and reach the following conclusions. 1. Hydrophobic interactions contribute less to the stability of a small protein, VHP (0.6 ± 0.3 kcal/mole per –CH2– group), than to the stability of a large protein, VlsE (1.6 ± 0.3 kcal/mol per –CH2– group). 2. Hydrophobic interactions make the major contribution to the stability of VHP (40 kcal/mol) and the major contributors are (in kcal/mol): Phe 18 (3.9), Met 13 (3.1), Phe 7 (2.9), Phe 11 (2.7), and Leu 21 (2.7). 3. Based on Δ(ΔG) values for 148 hydrophobic mutants in 13 proteins, burying a –CH2– group on folding contributes, on average, 1.1 ± 0.5 kcal/mol to protein stability. 4. The experimental Δ(ΔG) values for aliphatic side chains (Ala, Val, Ile, and Leu) are in good agreement with their ΔGtr values from water to cyclohexane. 5. For 22 proteins with 36 to 534 residues, hydrophobic interactions contribute 60 ± 4% and hydrogen bonds 40 ± 4% to protein stability. 6. Conformational entropy contributes about 2.4 kcal/mol per residue to protein instability. The globular conformation of proteins is stabilized predominately by hydrophobic interactions. PMID:21377472

  7. Evolvability of yeast protein-protein interaction interfaces.

    PubMed

    Talavera, David; Williams, Simon G; Norris, Matthew G S; Robertson, David L; Lovell, Simon C

    2012-06-22

    The functional importance of protein-protein interactions indicates that there should be strong evolutionary constraint on their interaction interfaces. However, binding interfaces are frequently affected by amino acid replacements. Change due to coevolution within interfaces can contribute to variability but is not ubiquitous. An alternative explanation for the ability of surfaces to accept replacements may be that many residues can be changed without affecting the interaction. Candidates for these types of residues are those that make interchain interaction only through the protein main chain, β-carbon, or associated hydrogen atoms. Since almost all residues have these atoms, we hypothesize that this subset of interface residues may be more easily substituted than those that make interactions through other atoms. We term such interactions "residue type independent." Investigating this hypothesis, we find that nearly a quarter of residues in protein interaction interfaces make exclusively interchain residue-type-independent contacts. These residues are less structurally constrained and less conserved than residues making residue-type-specific interactions. We propose that residue-type-independent interactions allow substitutions in binding interfaces while the specificity of binding is maintained.

  8. Moonlighting proteins in sperm-egg interactions.

    PubMed

    Petit, François M; Serres, Catherine; Auer, Jana

    2014-12-01

    Sperm-egg interaction is a highly species-specific step during the fertilization process. The first steps consist of recognition between proteins on the sperm head and zona pellucida (ZP) glycoproteins, the acellular coat that protects the oocyte. We aimed to determine which sperm head proteins interact with ZP2, ZP3 and ZP4 in humans. Two approaches were combined to identify these proteins: immunoblotting human spermatozoa targeted by antisperm antibodies (ASAs) from infertile men and far-Western blotting of human sperm proteins overlaid by each of the human recombinant ZP (hrZP) proteins. We used a proteomic approach with 2D electrophoretic separation of sperm protein revealed using either ASAs eluted from infertile patients or recombinant human ZP glycoproteins expressed in Chinese-hamster ovary (CHO) cells. Only spots highlighted by both methods were analysed by MALDI-MS/MS for identification. We identified proteins already described in human spermatozoa, but implicated in different metabolic pathways such as glycolytic enzymes [phosphokinase type 3 (PK3), enolase 1 (ENO1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), aldolase A (ALDOA) and triose phosphate isomerase (TPI)], detoxification enzymes [GST Mu (GSTM) and phospholipid hydroperoxide glutathione peroxidase (PHGPx) 4], ion channels [voltage-dependent anion channel 2 (VDAC2)] or structural proteins (outer dense fibre 2). Several proteins were localized on the sperm head by indirect immunofluorescence, and their interaction with ZP proteins was confirmed by co-precipitation experiments. These results confirm the complexity of the sperm-ZP recognition process in humans with the implication of different proteins interacting with the main three ZP glycoproteins. The multiple roles of these proteins suggest that they are multifaceted or moonlighting proteins.

  9. Predicting the Fission Yeast Protein Interaction Network

    PubMed Central

    Pancaldi, Vera; Saraç, Ömer S.; Rallis, Charalampos; McLean, Janel R.; Převorovský, Martin; Gould, Kathleen; Beyer, Andreas; Bähler, Jürg

    2012-01-01

    A systems-level understanding of biological processes and information flow requires the mapping of cellular component interactions, among which protein–protein interactions are particularly important. Fission yeast (Schizosaccharomyces pombe) is a valuable model organism for which no systematic protein-interaction data are available. We exploited gene and protein properties, global genome regulation datasets, and conservation of interactions between budding and fission yeast to predict fission yeast protein interactions in silico. We have extensively tested our method in three ways: first, by predicting with 70–80% accuracy a selected high-confidence test set; second, by recapitulating interactions between members of the well-characterized SAGA co-activator complex; and third, by verifying predicted interactions of the Cbf11 transcription factor using mass spectrometry of TAP-purified protein complexes. Given the importance of the pathway in cell physiology and human disease, we explore the predicted sub-networks centered on the Tor1/2 kinases. Moreover, we predict the histidine kinases Mak1/2/3 to be vital hubs in the fission yeast stress response network, and we suggest interactors of argonaute 1, the principal component of the siRNA-mediated gene silencing pathway, lost in budding yeast but preserved in S. pombe. Of the new high-quality interactions that were discovered after we started this work, 73% were found in our predictions. Even though any predicted interactome is imperfect, the protein network presented here can provide a valuable basis to explore biological processes and to guide wet-lab experiments in fission yeast and beyond. Our predicted protein interactions are freely available through PInt, an online resource on our website (www.bahlerlab.info/PInt). PMID:22540037

  10. Interface-Resolved Network of Protein-Protein Interactions

    PubMed Central

    Johnson, Margaret E.; Hummer, Gerhard

    2013-01-01

    We define an interface-interaction network (IIN) to capture the specificity and competition between protein-protein interactions (PPI). This new type of network represents interactions between individual interfaces used in functional protein binding and thereby contains the detail necessary to describe the competition and cooperation between any pair of binding partners. Here we establish a general framework for the construction of IINs that merges computational structure-based interface assignment with careful curation of available literature. To complement limited structural data, the inclusion of biochemical data is critical for achieving the accuracy and completeness necessary to analyze the specificity and competition between the protein interactions. Firstly, this procedure provides a means to clarify the information content of existing data on purported protein interactions and to remove indirect and spurious interactions. Secondly, the IIN we have constructed here for proteins involved in clathrin-mediated endocytosis (CME) exhibits distinctive topological properties. In contrast to PPI networks with their global and relatively dense connectivity, the fragmentation of the IIN into distinctive network modules suggests that different functional pressures act on the evolution of its topology. Large modules in the IIN are formed by interfaces sharing specificity for certain domain types, such as SH3 domains distributed across different proteins. The shared and distinct specificity of an interface is necessary for effective negative and positive design of highly selective binding targets. Lastly, the organization of detailed structural data in a network format allows one to identify pathways of specific binding interactions and thereby predict effects of mutations at specific surfaces on a protein and of specific binding inhibitors, as we explore in several examples. Overall, the endocytosis IIN is remarkably complex and rich in features masked in the coarser

  11. Brownian dynamics simulation of electrostatically interacting proteins

    NASA Astrophysics Data System (ADS)

    Ermakova, E.; Krushelnitsky, A. G.; Fedotov, V. D.

    Brownian dynamics simulation software has been developed to study the dynamics of proteins as a whole in solution. The proteins were modelled as spheres with point dipoles embedded in the centre of sphere. A set of Brownian dynamics simulations at different values of the dipole moments, protein concentration and translational diffusion coefficient was performed to investigate the influence of interprotein electrostatic interactions on dynamic protein behaviour in solution. It was shown that these interactions led to the slowing down of protein rotation and a complex non-exponential shape of the rotational correlation function. Analysis of the correlation functions was performed within the frame of the model of electrostatic interprotein interactions advanced earlier on the basis of NMR and dielectric spectroscopy data. This model assumes that, due to electrostatic interactions, protein Brownian rotation becomes anisotropic. The lifetime of this anisotropy is controlled mainly by translational diffusion of proteins. Thus, the correlation function can be decomposed into two components corresponding to anisotropic Brownian rotation and an isotropic motion of an external electric field vector produced by the surrounding proteins.

  12. Protein-Protein Interaction Reagents | Office of Cancer Genomics

    Cancer.gov

    The CTD2 Center at Emory University has a library of genes used to study protein-protein interactions in mammalian cells. These genes are cloned in different mammalian expression vectors. A list of available cancer-associated genes can be accessed below. Emory_CTD^2_PPI_Reagents.xlsx Emory_CTD^2_PPI_Reagents.xlsx Contact: Haian Fu

  13. Website on Protein Interaction and Protein Structure Related Work

    NASA Technical Reports Server (NTRS)

    Samanta, Manoj; Liang, Shoudan; Biegel, Bryan (Technical Monitor)

    2003-01-01

    In today's world, three seemingly diverse fields - computer information technology, nanotechnology and biotechnology are joining forces to enlarge our scientific knowledge and solve complex technological problems. Our group is dedicated to conduct theoretical research exploring the challenges in this area. The major areas of research include: 1) Yeast Protein Interactions; 2) Protein Structures; and 3) Current Transport through Small Molecules.

  14. Protein-Protein Interactions (PPI) reagents: | Office of Cancer Genomics

    Cancer.gov

    The CTD2 Center at Emory University has a library of genes used to study protein-protein interactions in mammalian cells. These genes are cloned in different mammalian expression vectors. A list of available cancer-associated genes can be accessed below.

  15. Protein-Protein Interaction Reagents | Office of Cancer Genomics

    Cancer.gov

    The CTD2 Center at Emory University has a library of genes used to study protein-protein interactions in mammalian cells. These genes are cloned in different mammalian expression vectors. A list of available cancer-associated genes can be accessed below. Emory_CTD^2_PPI_Reagents.xlsx Contact: Haian Fu

  16. Protein-protein interaction networks in the spinocerebellar ataxias

    PubMed Central

    Rubinsztein, David C

    2006-01-01

    A large yeast two-hybrid study investigating whether the proteins mutated in different forms of spinocerebellar ataxia have interacting protein partners in common suggests that some forms do share common pathways, and will provide a valuable resource for future work on these diseases. PMID:16904001

  17. Identifying the adaptive mechanism in globular proteins: Fluctuations in densely packed regions manipulate flexible parts

    NASA Astrophysics Data System (ADS)

    Yilmaz, Lutfu Safak; Atilgan, Ali Rana

    2000-09-01

    A low-resolution structural model based on the packing geometry of α-carbons is utilized to establish a connection between the flexible and rigid parts of a folded protein. The former commonly recognizes a complementing molecule for making a complex, while the latter manipulates the necessary conformational change for binding. We attempt analytically to distinguish this control architecture that intrinsically exists in globular proteins. First with two-dimensional simple models, then for a native protein, bovine pancreatic trypsin inhibitor, we explicitly demonstrate that inserting fluctuations in tertiary contacts supported by the stable core, one can regulate the displacement of residues on loop regions. The positional fluctuations of the flexible regions are annihilated by the rest of the protein in conformity with the Le Chatelier-Braun principle. The results indicate that the distortion of the principal nonbonded contacts between highly packed residues is accompanied by that of the slavery fluctuations that are widely distributed over the native structure. These positional arrangements do not appear in a reciprocal relation between a perturbation and the associated response; the effect of a movement of residue i on residue j is not equal to that of the same movement of residue j on residue i.

  18. Teaching Noncovalent Interactions Using Protein Molecular Evolution

    ERIC Educational Resources Information Center

    Fornasari, Maria Silvina; Parisi, Gustavo; Echave, Julian

    2008-01-01

    Noncovalent interactions and physicochemical properties of amino acids are important topics in biochemistry courses. Here, we present a computational laboratory where the capacity of each of the 20 amino acids to maintain different noncovalent interactions are used to investigate the stabilizing forces in a set of proteins coming from organisms…

  19. Roadmap to cellular reprogramming--manipulating transcriptional networks with DNA, RNA, proteins and small molecules.

    PubMed

    Wörsdörfer, P; Thier, M; Kadari, A; Edenhofer, F

    2013-06-01

    Recent reports demonstrate that the plasticity of mammalian somatic cells is much higher than previously assumed and that ectopic expression of transcription factors may have the potential to induce the conversion of any cell type into another. Fibroblast cells can be converted into embryonic stem cell-like cells, neural cells, cardiomyocytes, macrophage-like cells as well as blood progenitors. Additionally, the conversion of astrocytes into neurons or neural stem cells into monocytes has been demonstrated. Nowadays, in the era of systems biology, continuously growing holistic data sets are providing increasing insights into core transcriptional networks and cellular signaling pathways. This knowledge enables cell biologists to understand how cellular fate is determined and how it could be manipulated. As a consequence for biomedical applications, it might be soon possible to convert patient specific somatic cells directly into desired transplantable other cell types. The clinical value, however, of such reprogrammed cells is currently limited due to the invasiveness of methods applied to induce reprogramming factor activity. This review will focus on experimental strategies to ectopically induce cell fate modulators. We will emphasize those strategies that enable efficient and robust overexpression of transcription factors by minimal genetic alterations of the host genome. Furthermore, we will discuss procedures devoid of any genomic manipulation, such as the direct delivery of mRNA, proteins, or the use of small molecules. By this, we aim to give a comprehensive overview on state of the art techniques that harbor the potential to generate safe reprogrammed cells for clinical applications.

  20. Graphical models of protein-protein interaction specificity from correlated mutations and interaction data.

    PubMed

    Thomas, John; Ramakrishnan, Naren; Bailey-Kellogg, Chris

    2009-09-01

    Protein-protein interactions are mediated by complementary amino acids defining complementary surfaces. Typically not all members of a family of related proteins interact equally well with all members of a partner family; thus analysis of the sequence record can reveal the complementary amino acid partners that confer interaction specificity. This article develops methods for learning and using probabilistic graphical models of such residue "cross-coupling" constraints between interacting protein families, based on multiple sequence alignments and information about which pairs of proteins are known to interact. Our models generalize traditional consensus sequence binding motifs, and provide a probabilistic semantics enabling sound evaluation of the plausibility of new possible interactions. Furthermore, predictions made by the models can be explained in terms of the underlying residue interactions. Our approach supports different levels of prior knowledge regarding interactions, including both one-to-one (e.g., pairs of proteins from the same organism) and many-to-many (e.g., experimentally identified interactions), and we present a technique to account for possible bias in the represented interactions. We apply our approach in studies of PDZ domains and their ligands, fundamental building blocks in a number of protein assemblies. Our algorithms are able to identify biologically interesting cross-coupling constraints, to successfully identify known interactions, and to make explainable predictions about novel interactions.

  1. An evaluation of in vitro protein-protein interaction techniques: assessing contaminating background proteins.

    PubMed

    Howell, Jenika M; Winstone, Tara L; Coorssen, Jens R; Turner, Raymond J

    2006-04-01

    Determination of protein-protein interactions is an important component in assigning function and discerning the biological relevance of proteins within a broader cellular context. In vitro protein-protein interaction methodologies, including affinity chromatography, coimmunoprecipitation, and newer approaches such as protein chip arrays, hold much promise in the detection of protein interactions, particularly in well-characterized organisms with sequenced genomes. However, each of these approaches attracts certain background proteins that can thwart detection and identification of true interactors. In addition, recombinant proteins expressed in Escherichia coli are also extensively used to assess protein-protein interactions, and background proteins in these isolates can thus contaminate interaction studies. Rigorous validation of a true interaction thus requires not only that an interaction be found by alternate techniques, but more importantly that researchers be aware of and control for matrix/support dependence. Here, we evaluate these methods for proteins interacting with DmsD (an E. coli redox enzyme maturation protein chaperone), in vitro, using E. coli subcellular fractions as prey sources. We compare and contrast the various in vitro interaction methods to identify some of the background proteins and protein profiles that are inherent to each of the methods in an E. coli system.

  2. CHARMM-GUI PDB manipulator for advanced modeling and simulations of proteins containing nonstandard residues.

    PubMed

    Jo, Sunhwan; Cheng, Xi; Islam, Shahidul M; Huang, Lei; Rui, Huan; Zhu, Allen; Lee, Hui Sun; Qi, Yifei; Han, Wei; Vanommeslaeghe, Kenno; MacKerell, Alexander D; Roux, Benoît; Im, Wonpil

    2014-01-01

    CHARMM-GUI, http://www.charmm-gui.org, is a web-based graphical user interface to prepare molecular simulation systems and input files to facilitate the usage of common and advanced simulation techniques. Since it is originally developed in 2006, CHARMM-GUI has been widely adopted for various purposes and now contains a number of different modules designed to setup a broad range of simulations including free energy calculation and large-scale coarse-grained representation. Here, we describe functionalities that have recently been integrated into CHARMM-GUI PDB Manipulator, such as ligand force field generation, incorporation of methanethiosulfonate spin labels and chemical modifiers, and substitution of amino acids with unnatural amino acids. These new features are expected to be useful in advanced biomolecular modeling and simulation of proteins.

  3. Interaction of melanosomal proteins with melanin.

    PubMed

    Donatien, P D; Orlow, S J

    1995-08-15

    Melanin is deposited in melanosomes upon a proteinaceous matrix enveloped by a melanosomal membrane. Since melanin is highly detergent insoluble, we hypothesized that the detergent solubility of proteins of the melanosomal matrix might be inversely related to the state of melanosomal melanization. Immunoblotting analyses were performed on extracts of albino and black melanocytes to test this hypothesis. The protein products of the silver (si) and the pink-eyed-dilution (p) loci as well as other matrix constituents were present at twofold higher levels in extracts of albino cells. When black cells were rendered amelanotic by growing cultures in the presence of the tyrosinase inhibitor phenylthiourea, the apparent levels of these proteins were also increased. To obviate the potential role of different levels of synthesis in contributing to these differences, we developed a cell-free melanosomal melanization assay. Upon incubation of a melanosome-rich fraction with the melanin precursor L-3,4-dihydroxyphenylalanine (Dopa) followed by immunoblot analysis, the si locus protein, the p locus protein, and other putative matrix constituents became rapidly insoluble in SDS when compared with the members of the tyrosinase-related family of melanosomal membrane proteins. Our results suggest that melanosomal proteins that interact with melanin may be identified by their relative insolubility in SDS under conditions of increasing melanization. In addition to the si locus protein and other putative melanosomal matrix proteins, the membrane-bound p locus protein may also interact closely with melanin.

  4. Geometric de-noising of protein-protein interaction networks.

    PubMed

    Kuchaiev, Oleksii; Rasajski, Marija; Higham, Desmond J; Przulj, Natasa

    2009-08-01

    Understanding complex networks of protein-protein interactions (PPIs) is one of the foremost challenges of the post-genomic era. Due to the recent advances in experimental bio-technology, including yeast-2-hybrid (Y2H), tandem affinity purification (TAP) and other high-throughput methods for protein-protein interaction (PPI) detection, huge amounts of PPI network data are becoming available. Of major concern, however, are the levels of noise and incompleteness. For example, for Y2H screens, it is thought that the false positive rate could be as high as 64%, and the false negative rate may range from 43% to 71%. TAP experiments are believed to have comparable levels of noise.We present a novel technique to assess the confidence levels of interactions in PPI networks obtained from experimental studies. We use it for predicting new interactions and thus for guiding future biological experiments. This technique is the first to utilize currently the best fitting network model for PPI networks, geometric graphs. Our approach achieves specificity of 85% and sensitivity of 90%. We use it to assign confidence scores to physical protein-protein interactions in the human PPI network downloaded from BioGRID. Using our approach, we predict 251 interactions in the human PPI network, a statistically significant fraction of which correspond to protein pairs sharing common GO terms. Moreover, we validate a statistically significant portion of our predicted interactions in the HPRD database and the newer release of BioGRID. The data and Matlab code implementing the methods are freely available from the web site: http://www.kuchaev.com/Denoising.

  5. Protein-protein interaction network analysis of cirrhosis liver disease

    PubMed Central

    Safaei, Akram; Rezaei Tavirani, Mostafa; Arefi Oskouei, Afsaneh; Zamanian Azodi, Mona; Mohebbi, Seyed Reza; Nikzamir, Abdol Rahim

    2016-01-01

    Aim: Evaluation of biological characteristics of 13 identified proteins of patients with cirrhotic liver disease is the main aim of this research. Background: In clinical usage, liver biopsy remains the gold standard for diagnosis of hepatic fibrosis. Evaluation and confirmation of liver fibrosis stages and severity of chronic diseases require a precise and noninvasive biomarkers. Since the early detection of cirrhosis is a clinical problem, achieving a sensitive, specific and predictive novel method based on biomarkers is an important task. Methods: Essential analysis, such as gene ontology (GO) enrichment and protein-protein interactions (PPI) was undergone EXPASy, STRING Database and DAVID Bioinformatics Resources query. Results: Based on GO analysis, most of proteins are located in the endoplasmic reticulum lumen, intracellular organelle lumen, membrane-enclosed lumen, and extracellular region. The relevant molecular functions are actin binding, metal ion binding, cation binding and ion binding. Cell adhesion, biological adhesion, cellular amino acid derivative, metabolic process and homeostatic process are the related processes. Protein-protein interaction network analysis introduced five proteins (fibroblast growth factor receptor 4, tropomyosin 4, tropomyosin 2 (beta), lectin, Lectin galactoside-binding soluble 3 binding protein and apolipoprotein A-I) as hub and bottleneck proteins. Conclusion: Our result indicates that regulation of lipid metabolism and cell survival are important biological processes involved in cirrhosis disease. More investigation of above mentioned proteins will provide a better understanding of cirrhosis disease. PMID:27099671

  6. Enhancing interacting residue prediction with integrated contact matrix prediction in protein-protein interaction.

    PubMed

    Du, Tianchuan; Liao, Li; Wu, Cathy H

    2016-12-01

    Identifying the residues in a protein that are involved in protein-protein interaction and identifying the contact matrix for a pair of interacting proteins are two computational tasks at different levels of an in-depth analysis of protein-protein interaction. Various methods for solving these two problems have been reported in the literature. However, the interacting residue prediction and contact matrix prediction were handled by and large independently in those existing methods, though intuitively good prediction of interacting residues will help with predicting the contact matrix. In this work, we developed a novel protein interacting residue prediction system, contact matrix-interaction profile hidden Markov model (CM-ipHMM), with the integration of contact matrix prediction and the ipHMM interaction residue prediction. We propose to leverage what is learned from the contact matrix prediction and utilize the predicted contact matrix as "feedback" to enhance the interaction residue prediction. The CM-ipHMM model showed significant improvement over the previous method that uses the ipHMM for predicting interaction residues only. It indicates that the downstream contact matrix prediction could help the interaction site prediction.

  7. Molecular manipulation of G-protein-coupled receptors: a new avenue into drug discovery.

    PubMed

    Sautel, M; Milligan, G

    2000-09-01

    During the past 10 years or so, associated with the introduction of molecular biology techniques to G protein-coupled receptor (GPCR) research, outstanding progress has been made in understanding the mechanisms of action of these key proteins and their physiological functions. in-vivo manipulation of levels of GPCRs using transgenic and gene knock-out approaches have been particularly successful in assessing the roles of specific GPCRs in animal physiology. Drug discovery is aiming to produce highly specific compounds based on subtle definition of receptor subtypes which can best be studied using heterologous expression of wild type or mutated forms of cDNA or genes encoding these proteins. Furthermore, new therapeutic opportunities may be provided by investigation of orphan receptors, the natural ligands for which remain unidentified. Some human diseases have been shown to be associated with rare mutations of GPCRs and the possibility that widely distributed polymorphisms in GPCR genes may allow selective therapeutic strategies for population subgroups is driving the development of the science of pharmacogenetics.

  8. Effect of the quality of the interaction data on predicting protein function from protein-protein interactions.

    PubMed

    Ni, Qing-Shan; Wang, Zheng-Zhi; Li, Gang-Guo; Wang, Guang-Yun; Zhao, Ying-Jie

    2009-03-01

    Protein function prediction is an important issue in the post-genomic era. When protein function is deduced from protein interaction data, the traditional methods treat each interaction sample equally, where the qualities of the interaction samples are seldom taken into account. In this paper, we investigate the effect of the quality of protein-protein interaction data on predicting protein function. Moreover, two improved methods, weight neighbour counting method (WNC) and weight chi-square method (WCHI), are proposed by considering the quality of interaction samples with the neighbour counting method (NC) and chi-square method (CHI). Experimental results have shown that the qualities of interaction samples affect the performances of protein function prediction methods seriously. It is also demonstrated that WNC and WCHI methods outperform NC and CHI methods in protein function prediction when example weights are chosen properly.

  9. A Bayesian Framework for Combining Protein and Network Topology Information for Predicting Protein-Protein Interactions.

    PubMed

    Birlutiu, Adriana; d'Alché-Buc, Florence; Heskes, Tom

    2015-01-01

    Computational methods for predicting protein-protein interactions are important tools that can complement high-throughput technologies and guide biologists in designing new laboratory experiments. The proteins and the interactions between them can be described by a network which is characterized by several topological properties. Information about proteins and interactions between them, in combination with knowledge about topological properties of the network, can be used for developing computational methods that can accurately predict unknown protein-protein interactions. This paper presents a supervised learning framework based on Bayesian inference for combining two types of information: i) network topology information, and ii) information related to proteins and the interactions between them. The motivation of our model is that by combining these two types of information one can achieve a better accuracy in predicting protein-protein interactions, than by using models constructed from these two types of information independently.

  10. Predicting protein-peptide interactions from scratch

    NASA Astrophysics Data System (ADS)

    Yan, Chengfei; Xu, Xianjin; Zou, Xiaoqin; Zou lab Team

    Protein-peptide interactions play an important role in many cellular processes. The ability to predict protein-peptide complex structures is valuable for mechanistic investigation and therapeutic development. Due to the high flexibility of peptides and lack of templates for homologous modeling, predicting protein-peptide complex structures is extremely challenging. Recently, we have developed a novel docking framework for protein-peptide structure prediction. Specifically, given the sequence of a peptide and a 3D structure of the protein, initial conformations of the peptide are built through protein threading. Then, the peptide is globally and flexibly docked onto the protein using a novel iterative approach. Finally, the sampled modes are scored and ranked by a statistical potential-based energy scoring function that was derived for protein-peptide interactions from statistical mechanics principles. Our docking methodology has been tested on the Peptidb database and compared with other protein-peptide docking methods. Systematic analysis shows significantly improved results compared to the performances of the existing methods. Our method is computationally efficient and suitable for large-scale applications. Nsf CAREER Award 0953839 (XZ) NIH R01GM109980 (XZ).

  11. Evolution of protein-protein interaction networks in yeast.

    PubMed

    Schoenrock, Andrew; Burnside, Daniel; Moteshareie, Houman; Pitre, Sylvain; Hooshyar, Mohsen; Green, James R; Golshani, Ashkan; Dehne, Frank; Wong, Alex

    2017-01-01

    Interest in the evolution of protein-protein and genetic interaction networks has been rising in recent years, but the lack of large-scale high quality comparative datasets has acted as a barrier. Here, we carried out a comparative analysis of computationally predicted protein-protein interaction (PPI) networks from five closely related yeast species. We used the Protein-protein Interaction Prediction Engine (PIPE), which uses a database of known interactions to make sequence-based PPI predictions, to generate high quality predicted interactomes. Simulated proteomes and corresponding PPI networks were used to provide null expectations for the extent and nature of PPI network evolution. We found strong evidence for conservation of PPIs, with lower than expected levels of change in PPIs for about a quarter of the proteome. Furthermore, we found that changes in predicted PPI networks are poorly predicted by sequence divergence. Our analyses identified a number of functional classes experiencing fewer PPI changes than expected, suggestive of purifying selection on PPIs. Our results demonstrate the added benefit of considering predicted PPI networks when studying the evolution of closely related organisms.

  12. Topology of Protein Interaction Network Shapes Protein Abundances and Strengths of Their Functional and Nonspecific Interactions

    SciTech Connect

    Maslov, S.; Heo, M.; Shakhnovich, E.

    2011-03-08

    How do living cells achieve sufficient abundances of functional protein complexes while minimizing promiscuous nonfunctional interactions? Here we study this problem using a first-principle model of the cell whose phenotypic traits are directly determined from its genome through biophysical properties of protein structures and binding interactions in a crowded cellular environment. The model cell includes three independent prototypical pathways, whose topologies of protein-protein interaction (PPI) subnetworks are different, but whose contributions to the cell fitness are equal. Model cells evolve through genotypic mutations and phenotypic protein copy number variations. We found a strong relationship between evolved physical-chemical properties of protein interactions and their abundances due to a 'frustration' effect: Strengthening of functional interactions brings about hydrophobic interfaces, which make proteins prone to promiscuous binding. The balancing act is achieved by lowering concentrations of hub proteins while raising solubilities and abundances of functional monomers. On the basis of these principles we generated and analyzed a possible realization of the proteome-wide PPI network in yeast. In this simulation we found that high-throughput affinity capture-mass spectroscopy experiments can detect functional interactions with high fidelity only for high-abundance proteins while missing most interactions for low-abundance proteins.

  13. Non-interacting proteins may resemble interacting proteins: prevalence and implications

    PubMed Central

    Launay, Guillaume; Ceres, Nicoletta; Martin, Juliette

    2017-01-01

    The vast majority of proteins do not form functional interactions in physiological conditions. We have considered several sets of protein pairs from S. cerevisiae with no functional interaction reported, denoted as non-interacting pairs, and compared their 3D structures to available experimental complexes. We identified some non-interacting pairs with significant structural similarity with experimental complexes, indicating that, even though they do not form functional interactions, they have compatible structures. We estimate that up to 8.7% of non-interacting protein pairs could have compatible structures. This number of interactions exceeds the number of functional interactions (around 0.2% of the total interactions) by a factor 40. Network analysis suggests that the interactions formed by non-interacting pairs with compatible structures could be particularly hazardous to the protein-protein interaction network. From a structural point of view, these interactions display no aberrant structural characteristics, and are even predicted as relatively stable and enriched in potential physical interactors, suggesting a major role of regulation to prevent them. PMID:28084410

  14. Protein-protein interaction network of celiac disease

    PubMed Central

    Zamanian Azodi, Mona; Peyvandi, Hassan; Rostami-Nejad, Mohammad; Safaei, Akram; Rostami, Kamran; Vafaee, Reza; Heidari, Mohammadhossein; Hosseini, Mostafa; Zali, Mohammad Reza

    2016-01-01

    Aim: The aim of this study is to investigate the Protein-Protein Interaction Network of Celiac Disease. Background: Celiac disease (CD) is an autoimmune disease with susceptibility of individuals to gluten of wheat, rye and barley. Understanding the molecular mechanisms and involved pathway may lead to the development of drug target discovery. The protein interaction network is one of the supportive fields to discover the pathogenesis biomarkers for celiac disease. Material and methods: In the present study, we collected the articles that focused on the proteomic data in celiac disease. According to the gene expression investigations of these articles, 31 candidate proteins were selected for this study. The networks of related differentially expressed protein were explored using Cytoscape 3.3 and the PPI analysis methods such as MCODE and ClueGO. Results: According to the network analysis Ubiquitin C, Heat shock protein 90kDa alpha (cytosolic and Grp94); class A, B and 1 member, Heat shock 70kDa protein, and protein 5 (glucose-regulated protein, 78kDa), T-complex, Chaperon in containing TCP1; subunit 7 (beta) and subunit 4 (delta) and subunit 2 (beta), have been introduced as hub-bottlnecks proteins. HSP90AA1, MKKS, EZR, HSPA14, APOB and CAD have been determined as seed proteins. Conclusion: Chaperons have a bold presentation in curtail area in network therefore these key proteins beside the other hub-bottlneck proteins may be a suitable candidates biomarker panel for diagnosis, prognosis and treatment processes in celiac disease. PMID:27895852

  15. [Methods for analysis of protein-protein and protein-ligand interactions].

    PubMed

    Durech, M; Trčka, F; Vojtěšek, B; Müller, P

    2014-01-01

    In order to maintain cellular homeostasis, cellular proteins coexist in complex and variable molecular assemblies. Therefore, understanding of major physiological processes at molecular level is based on analysis of protein-protein interaction networks. Firstly, composition of the molecular assembly has to be qualitatively analyzed. In the next step, quantitative bio-chemical properties of the identified protein-protein interactions are determined. Detailed information about the protein-protein interaction interface can be obtained by crystallographic methods. Accordingly, the insight into the molecular architecture of these protein-protein complexes allows us to rationally design new synthetic compounds that specifically influence various physiological or pathological processes by targeted modulation of protein interactions. This review is focused on description of the most used methods applied in both qualitative and quantitative analysis of protein-protein interactions. Co- immunoprecipitation and affinity co- precipitation are basic methods designed for qualitative analysis of protein binding partners. Further bio-chemical analysis of the interaction requires definition of kinetic and thermodynamic parameters. Surface plasmon resonance (SPR) is used for description of affinity and kinetic profile of the interaction, fluorescence polarization (FP) method for fast determination of inhibition potential of inhibitors and isothermal titration calorimetry (ITC) for definition of thermodynamic parameters of the interaction (G, H and S). Besides the importance of uncovering the molecular basis of protein interactions for basic research, the same methodological approaches open new possibilities in rational design of novel therapeutic agents.

  16. Learning compliant manipulation through kinesthetic and tactile human-robot interaction.

    PubMed

    Kronander, Klas; Billard, Aude

    2014-01-01

    Robot Learning from Demonstration (RLfD) has been identified as a key element for making robots useful in daily lives. A wide range of techniques has been proposed for deriving a task model from a set of demonstrations of the task. Most previous works use learning to model the kinematics of the task, and for autonomous execution the robot then relies on a stiff position controller. While many tasks can and have been learned this way, there are tasks in which controlling the position alone is insufficient to achieve the goals of the task. These are typically tasks that involve contact or require a specific response to physical perturbations. The question of how to adjust the compliance to suit the need of the task has not yet been fully treated in Robot Learning from Demonstration. In this paper, we address this issue and present interfaces that allow a human teacher to indicate compliance variations by physically interacting with the robot during task execution. We validate our approach in two different experiments on the 7 DoF Barrett WAM and KUKA LWR robot manipulators. Furthermore, we conduct a user study to evaluate the usability of our approach from a non-roboticists perspective.

  17. Thermosensing via transmembrane protein-lipid interactions.

    PubMed

    Saita, Emilio A; de Mendoza, Diego

    2015-09-01

    Cell membranes are composed of a lipid bilayer containing proteins that cross and/or interact with lipids on either side of the two leaflets. The basic structure of cell membranes is this bilayer, composed of two opposing lipid monolayers with fascinating properties designed to perform all the functions the cell requires. To coordinate these functions, lipid composition of cellular membranes is tailored to suit their specialized tasks. In this review, we describe the general mechanisms of membrane-protein interactions and relate them to some of the molecular strategies organisms use to adjust the membrane lipid composition in response to a decrease in environmental temperature. While the activities of all biomolecules are altered as a function of temperature, the thermosensors we focus on here are molecules whose temperature sensitivity appears to be linked to changes in the biophysical properties of membrane lipids. This article is part of a Special Issue entitled: Lipid-protein interactions.

  18. Lethality and entropy of protein interaction networks.

    PubMed

    Manke, Thomas; Demetrius, Lloyd; Vingron, Martin

    2005-01-01

    We characterize protein interaction networks in terms of network entropy. This approach suggests a ranking principle, which strongly correlates with elements of functional importance, such as lethal proteins. Our combined analysis of protein interaction networks and functional profiles in single cellular yeast and multi-cellular worm shows that proteins with large contribution to network entropy are preferentially lethal. While entropy is inherently a dynamical concept, the present analysis incorporates only structural information. Our result therefore highlights the importance of topological features, which appear as correlates of an underlying dynamical property, and which in turn determine functional traits. We argue that network entropy is a natural extension of previously studied observables, such as pathway multiplicity and centrality. It is also applicable to networks in which the processes can be quantified and therefore serves as a link to study questions of structural and dynamical robustness in a unified way.

  19. Hash subgraph pairwise kernel for protein-protein interaction extraction.

    PubMed

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Li, Yanpeng

    2012-01-01

    Extracting protein-protein interaction (PPI) from biomedical literature is an important task in biomedical text mining (BioTM). In this paper, we propose a hash subgraph pairwise (HSP) kernel-based approach for this task. The key to the novel kernel is to use the hierarchical hash labels to express the structural information of subgraphs in a linear time. We apply the graph kernel to compute dependency graphs representing the sentence structure for protein-protein interaction extraction task, which can efficiently make use of full graph structural information, and particularly capture the contiguous topological and label information ignored before. We evaluate the proposed approach on five publicly available PPI corpora. The experimental results show that our approach significantly outperforms all-path kernel approach on all five corpora and achieves state-of-the-art performance.

  20. Manipulation of the infectious bronchitis coronavirus genome for vaccine development and analysis of the accessory proteins.

    PubMed

    Cavanagh, Dave; Casais, Rosa; Armesto, Maria; Hodgson, Teri; Izadkhasti, Sousan; Davies, Marc; Lin, Fengsheng; Tarpey, Ian; Britton, Paul

    2007-07-26

    Infectious bronchitis coronavirus (IBV) is the cause of the single most economically costly infectious disease of domestic fowl in the UK--and probably so in many countries that have a developed poultry industry. A major reason for its continued dominance is its existence as many serotypes, determined by the surface spike protein (S), cross-protection being poor. Although controlled to some degree by live and inactivated vaccines, a new generation of IB vaccines is called for. Reverse genetic or 'infectious clone' systems, which allow the manipulation of the IBV genome, are key to this development. New vaccines would ideally be: genetically stable (i.e. maintain a stable attenuated phenotype); administered in ovo; and be flexible with respect to the source of the spike protein gene. Rational attenuation of IBV requires the identification of genes that are simultaneously not essential for replication and whose absence would reduce pathogenicity. Being able to modify a 'core' vaccine strain to make it applicable to a prevailing serotype requires a procedure for doing so, and the demonstration that 'spike-swapping' is sufficient to induce good immunity. We have demonstrated that four small IBV proteins, encoded by genes 3 and 5, are not essential for replication; failure to produce these proteins had little detrimental affect on the titre of virus produced. Our current molecularly cloned IBV, strain Beaudette, is non-pathogenic, so we do not know what effect the absence of these proteins would have on pathogenicity. That said, plaque size and composition of various gene 3/5 recombinant IBVs in cell culture, and reduced output and ciliostasis in tracheal organ cultures, shows that they are less aggressive than the wild-type Beaudette. Consequently these genes remain targets for rational attenuation. We have recently obtained evidence that one or more of the 15 proteins encoded by gene 1 are also determinants of pathogenicity. Hence gene 1 is also a target for rational

  1. Potential disruption of protein-protein interactions by graphene oxide

    NASA Astrophysics Data System (ADS)

    Feng, Mei; Kang, Hongsuk; Yang, Zaixing; Luan, Binquan; Zhou, Ruhong

    2016-06-01

    Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.

  2. Optical methods in the study of protein-protein interactions.

    PubMed

    Masi, Alessio; Cicchi, Riccardo; Carloni, Adolfo; Pavone, Francesco Saverio; Arcangeli, Annarosa

    2010-01-01

    Förster (or Fluorescence) resonance energy transfer (FRET) is a physical process in which energy is transferred nonradiatively from an excited fluorophore, serving as a donor, to another chromophore (acceptor). Among the techniques related to fluorescence microscopy, FRET is unique in providing signals sensitive to intra- and intermolecular distances in the 1-10 nm range. Because of its potency, FRET is increasingly used to visualize and quantify the dynamics of protein-protein interaction in living cells, with high spatio-temporal resolution. Here we describe the physical bases of FRET, detailing the principal methods applied: (1) measurement of signal intensity and (2) analysis of fluorescence lifetime (FLIM). Although several technical complications must be carefully considered, both methods can be applied fruitfully to specific fields. For example, FRET based on intensity detection is more suitable to follow biological phenomena at a finely tuned spatial and temporal scale. Furthermore, a specific fluorescence signal occurring close to the plasma membrane (< or = 100 nm) can be obtained using a total internal reflection fluorescence (TIRF) microscopy system. When performing FRET experiments, care must be also taken to the method chosen for labeling interacting proteins. Two principal tools can be applied: (1) fluorophore tagged antibodies; (2) recombinant fluorescent fusion proteins. The latter method essentially takes advantage of the discovery and use of spontaneously fluorescent proteins, like the green fluorescent protein (GFP). Until now, FRET has been widely used to analyze the structural characteristics of several proteins, including integrins and ion channels. More recently, this method has been applied to clarify the interaction dynamics of these classes of membrane proteins with cytosolic signaling proteins. We report two examples in which the interaction dynamics between integrins and ion channels have been studied with FRET methods. Using

  3. Targeting Protein–Protein Interactions in the HIF System

    PubMed Central

    Abboud, Martine I.; Hancock, Rebecca L.

    2016-01-01

    Abstract Animals respond to chronic hypoxia by increasing the levels of a transcription factor known as the hypoxia‐inducible factor (HIF). HIF upregulates multiple genes, the products of which work to ameliorate the effects of limited oxygen at cellular and systemic levels. Hypoxia sensing by the HIF system involves hydroxylase‐catalysed post‐translational modifications of the HIF α‐subunits, which 1) signal for degradation of HIF‐α and 2) limit binding of HIF to transcriptional coactivator proteins. Because the hypoxic response is relevant to multiple disease states, therapeutic manipulation of the HIF‐mediated response has considerable medicinal potential. In addition to modulation of catalysis by the HIF hydroxylases, the HIF system manifests other possibilities for therapeutic intervention involving protein–protein and protein–nucleic acid interactions. Recent advances in our understanding of the structural biology and biochemistry of the HIF system are facilitating medicinal chemistry efforts. Herein we give an overview of the HIF system, focusing on structural knowledge of protein–protein interactions and how this might be used to modulate the hypoxic response for therapeutic benefit. PMID:26997519

  4. Manipulation of the mechanical properties of a virus by protein engineering

    PubMed Central

    Carrasco, Carolina; Castellanos, Milagros; de Pablo, Pedro J.; Mateu, Mauricio G.

    2008-01-01

    In a previous study, we showed that the DNA molecule within a spherical virus (the minute virus of mice) plays an architectural role by anisotropically increasing the mechanical stiffness of the virus. A finite element model predicted that this mechanical reinforcement is a consequence of the interaction between crystallographically visible, short DNA patches and the inner capsid wall. We have now tested this model by using protein engineering. Selected amino acid side chains have been truncated to specifically remove major interactions between the capsid and the visible DNA patches, and the effect of the mutations on the stiffness of virus particles has been measured using atomic force microscopy. The mutations do not affect the stiffness of the empty capsid; however, they significantly reduce the difference in stiffness between the DNA-filled virion and the empty capsid. The results (i) reveal that intermolecular interactions between individual chemical groups contribute to the mechanical properties of a supramolecular assembly and (ii) identify specific protein–DNA interactions as the origin of the anisotropic increase in the rigidity of a virus. This study also demonstrates that it is possible to control the mechanical properties of a protein nanoparticle by the rational application of protein engineering based on a mechanical model. PMID:18334651

  5. Structural biology and drug discovery for protein-protein interactions.

    PubMed

    Jubb, Harry; Higueruelo, Alicia P; Winter, Anja; Blundell, Tom L

    2012-05-01

    Although targeting protein-protein interfaces of regulatory multiprotein complexes has become a significant focus in drug discovery, it continues to pose major challenges. Most interfaces would be classed as 'undruggable' by conventional analyses, as they tend to be large, flat and featureless. Over the past decade, encouragement has come from the discovery of hotspots that contribute much of the free energy of interaction, and this has led to the development of tethering methods that target small molecules to these sites, often inducing adaptive changes. Equally important has been the recognition that many protein-protein interactions involve a continuous epitope of one partner and a well-defined groove or series of specific small pockets. These observations have stimulated the development of stapled α-helical peptides and other proteomimetic approaches. They have also led to the realisation that fragments might gain low-affinity 'footholds' on some protein-protein interfaces, and that these fragments might be elaborated to useful modulators of the interactions.

  6. Experimental evolution of protein–protein interaction networks

    PubMed Central

    Kaçar, Betül; Gaucher, Eric A.

    2013-01-01

    The modern synthesis of evolutionary theory and genetics has enabled us to discover underlying molecular mechanisms of organismal evolution. We know that in order to maximize an organism's fitness in a particular environment, individual interactions among components of protein and nucleic acid networks need to be optimized by natural selection, or sometimes through random processes, as the organism responds to changes and/or challenges in the environment. Despite the significant role of molecular networks in determining an organism's adaptation to its environment, we still do not know how such inter- and intra-molecular interactions within networks change over time and contribute to an organism's evolvability while maintaining overall network functions. One way to address this challenge is to identify connections between molecular networks and their host organisms, to manipulate these connections, and then attempt to understand how such perturbations influence molecular dynamics of the network and thus influence evolutionary paths and organismal fitness. In the present review, we discuss how integrating evolutionary history with experimental systems that combine tools drawn from molecular evolution, synthetic biology and biochemistry allow us to identify the underlying mechanisms of organismal evolution, particularly from the perspective of protein interaction networks. PMID:23849056

  7. Integrating structure to protein-protein interaction networks that drive metastasis to brain and lung in breast cancer.

    PubMed

    Engin, H Billur; Guney, Emre; Keskin, Ozlem; Oliva, Baldo; Gursoy, Attila

    2013-01-01

    Blocking specific protein interactions can lead to human diseases. Accordingly, protein interactions and the structural knowledge on interacting surfaces of proteins (interfaces) have an important role in predicting the genotype-phenotype relationship. We have built the phenotype specific sub-networks of protein-protein interactions (PPIs) involving the relevant genes responsible for lung and brain metastasis from primary tumor in breast cancer. First, we selected the PPIs most relevant to metastasis causing genes (seed genes), by using the "guilt-by-association" principle. Then, we modeled structures of the interactions whose complex forms are not available in Protein Databank (PDB). Finally, we mapped mutations to interface structures (real and modeled), in order to spot the interactions that might be manipulated by these mutations. Functional analyses performed on these sub-networks revealed the potential relationship between immune system-infectious diseases and lung metastasis progression, but this connection was not observed significantly in the brain metastasis. Besides, structural analyses showed that some PPI interfaces in both metastasis sub-networks are originating from microbial proteins, which in turn were mostly related with cell adhesion. Cell adhesion is a key mechanism in metastasis, therefore these PPIs may be involved in similar molecular pathways that are shared by infectious disease and metastasis. Finally, by mapping the mutations and amino acid variations on the interface regions of the proteins in the metastasis sub-networks we found evidence for some mutations to be involved in the mechanisms differentiating the type of the metastasis.

  8. Self diffusion of interacting membrane proteins.

    PubMed Central

    Abney, J R; Scalettar, B A; Owicki, J C

    1989-01-01

    A two-dimensional version of the generalized Smoluchowski equation is used to analyze the time (or distance) dependent self diffusion of interacting membrane proteins in concentrated membrane systems. This equation provides a well established starting point for descriptions of the diffusion of particles that interact through both direct and hydrodynamic forces; in this initial work only the effects of direct interactions are explicitly considered. Data describing diffusion in the presence of hard-core repulsions, soft repulsions, and soft repulsions with weak attractions are presented. The effect that interactions have on the self-diffusion coefficient of a real protein molecule from mouse liver gap junctions is also calculated. The results indicate that self diffusion is always inhibited by direct interactions; this observation is interpreted in terms of the caging that will exist at finite protein concentration. It is also noted that, over small distance scales, the diffusion coefficient is determined entirely by the very strong Brownian forces; therefore, as a function of displacement the self-diffusion coefficient decays (rapidly) from its value at infinite dilution to its steady-state interaction-averaged value. The steady-state self-diffusion coefficient describes motion over distance scales that range from approximately 10 nm to cellular dimensions and is the quantity measured in fluorescence recovery after photobleaching experiments. The short-ranged behavior of the diffusion coefficient is important on the interparticle-distance scale and may therefore influence the rate at which nearest-neighbor collisional processes take place. The hard-disk theoretical results presented here are in excellent agreement with lattice Monte-Carlo results obtained by other workers. The concentration dependence of experimentally measured diffusion coefficients of antibody-hapten complexes bound to the membrane surface is consistent with that predicted by the theory. The

  9. Host interactions of Chandipura virus matrix protein.

    PubMed

    Rajasekharan, Sreejith; Kumar, Kapila; Rana, Jyoti; Gupta, Amita; Chaudhary, Vijay K; Gupta, Sanjay

    2015-09-01

    The rhabdovirus matrix (M) protein is a multifunctional virion protein that plays major role in virus assembly and budding, virus-induced inhibition of host gene expression and cytopathic effects observed in infected cells. The myriad roles played by this protein in the virus biology make it a critical player in viral pathogenesis. Therefore, discerning the interactions of this protein with host can greatly facilitate our understanding of virus infections, ultimately leading to both improved therapeutics and insight into cellular processes. Chandipura virus (CHPV; Family Rhabdoviridae, Genus Vesiculovirus) is an emerging rhabdovirus responsible for several outbreaks of fatal encephalitis among children in India. The present study aims to screen the human fetal brain cDNA library for interactors of CHPV M protein using yeast two-hybrid system. Ten host protein interactors were identified, three of which were further validated by affinity pull down and protein interaction ELISA. The study identified novel human host interactors for CHPV which concurred with previously described associations in other human viruses.

  10. PCorral--interactive mining of protein interactions from MEDLINE.

    PubMed

    Li, Chen; Jimeno-Yepes, Antonio; Arregui, Miguel; Kirsch, Harald; Rebholz-Schuhmann, Dietrich

    2013-01-01

    The extraction of information from the scientific literature is a complex task-for researchers doing manual curation and for automatic text processing solutions. The identification of protein-protein interactions (PPIs) requires the extraction of protein named entities and their relations. Semi-automatic interactive support is one approach to combine both solutions for efficient working processes to generate reliable database content. In principle, the extraction of PPIs can be achieved with different methods that can be combined to deliver high precision and/or high recall results in different combinations at the same time. Interactive use can be achieved, if the analytical methods are fast enough to process the retrieved documents. PCorral provides interactive mining of PPIs from the scientific literature allowing curators to skim MEDLINE for PPIs at low overheads. The keyword query to PCorral steers the selection of documents, and the subsequent text analysis generates high recall and high precision results for the curator. The underlying components of PCorral process the documents on-the-fly and are available, as well, as web service from the Whatizit infrastructure. The human interface summarizes the identified PPI results, and the involved entities are linked to relevant resources and databases. Altogether, PCorral serves curator at both the beginning and the end of the curation workflow for information retrieval and information extraction. Database URL: http://www.ebi.ac.uk/Rebholz-srv/pcorral.

  11. Measuring Protein Interactions by Optical Biosensors.

    PubMed

    Zhao, Huaying; Boyd, Lisa F; Schuck, Peter

    2017-04-03

    This unit gives an introduction to the basic techniques of optical biosensing for measuring equilibrium and kinetics of reversible protein interactions. Emphasis is placed on description of robust approaches that will provide reliable results with few assumptions. How to avoid the most commonly encountered problems and artifacts is also discussed. © 2017 by John Wiley & Sons, Inc.

  12. Comparative interactomics for virus-human protein-protein interactions: DNA viruses versus RNA viruses.

    PubMed

    Durmuş, Saliha; Ülgen, Kutlu Ö

    2017-01-01

    Viruses are obligatory intracellular pathogens and completely depend on their hosts for survival and reproduction. The strategies adopted by viruses to exploit host cell processes and to evade host immune systems during infections may differ largely with the type of the viral genetic material. An improved understanding of these viral infection mechanisms is only possible through a better understanding of the pathogen-host interactions (PHIs) that enable viruses to enter into the host cells and manipulate the cellular mechanisms to their own advantage. Experimentally-verified protein-protein interaction (PPI) data of pathogen-host systems only became available at large scale within the last decade. In this study, we comparatively analyzed the current PHI networks belonging to DNA and RNA viruses and their human host, to get insights into the infection strategies used by these viral groups. We investigated the functional properties of human proteins in the PHI networks, to observe and compare the attack strategies of DNA and RNA viruses. We observed that DNA viruses are able to attack both human cellular and metabolic processes simultaneously during infections. On the other hand, RNA viruses preferentially interact with human proteins functioning in specific cellular processes as well as in intracellular transport and localization within the cell. Observing virus-targeted human proteins, we propose heterogeneous nuclear ribonucleoproteins and transporter proteins as potential antiviral therapeutic targets. The observed common and specific infection mechanisms in terms of viral strategies to attack human proteins may provide crucial information for further design of broad and specific next-generation antiviral therapeutics.

  13. Experimental and bioinformatic approaches for interrogating protein-protein interactions to determine protein function.

    PubMed

    Droit, Arnaud; Poirier, Guy G; Hunter, Joanna M

    2005-04-01

    An ambitious goal of proteomics is to elucidate the structure, interactions and functions of all proteins within cells and organisms. One strategy to determine protein function is to identify the protein-protein interactions. The increasing use of high-throughput and large-scale bioinformatics-based studies has generated a massive amount of data stored in a number of different databases. A challenge for bioinformatics is to explore this disparate data and to uncover biologically relevant interactions and pathways. In parallel, there is clearly a need for the development of approaches that can predict novel protein-protein interaction networks in silico. Here, we present an overview of different experimental and bioinformatic methods to elucidate protein-protein interactions.

  14. Manipulating the affiliative interactions of group-housed rhesus macaques using positive reinforcement training techniques.

    PubMed

    Schapiro, S J; Perlman, J E; Boudreau, B A

    2001-11-01

    Social housing, whether continuous, intermittent, or partial contact, typically provides many captive primates with opportunities to express affiliative behaviors, important components of the species-typical behavioral repertoire. Positive reinforcement training techniques have been successfully employed to shape many behaviors important for achieving primate husbandry goals. The present study was conducted to determine whether positive reinforcement training techniques could also be employed to alter levels of affiliative interactions among group-housed rhesus macaques. Twenty-eight female rhesus were divided into high (n = 14) and low (n = 14) affiliators based on a median split of the amount of time they spent affiliating during the baseline phase of the study. During the subsequent training phase, half of the low affiliators (n = 7) were trained to increase their time spent affiliating, and half of the high affiliators (n = 7) were trained to decrease their time spent affiliating. Trained subjects were observed both during and outside of training sessions. Low affiliators significantly increased the amount of time they spent affiliating, but only during nontraining sessions. High affiliators on the other hand, significantly decreased the amount of time they spent affiliating, but only during training sessions. These data suggest that positive reinforcement techniques can be used to alter the affiliative behavior patterns of group-housed, female rhesus monkeys, although the two subgroups of subjects responded differently to the training process. Low affiliators changed their overall behavioral repertoire, while high affiliators responded to the reinforcement contingencies of training, altering their proximity patterns but not their overall behavior patterns. Thus, positive reinforcement training can be used not only as a means to promote species-typical or beneficial behavior patterns, but also as an important experimental manipulation to facilitate systematic

  15. Functional manipulation of a calcium-binding protein from Entamoeba histolytica guided by paramagnetic NMR.

    PubMed

    Rout, Ashok K; Patel, Sunita; Somlata; Shukla, Manish; Saraswathi, Deepa; Bhattacharya, Alok; Chary, Kandala V R

    2013-08-09

    EhCaBP1, one of the calcium-binding proteins from Entamoeba histolytica, is a two-domain EF-hand protein. The two domains of EhCaBP1 are structurally and functionally different from each other. However, both domains are required for structural stability and a full range of functional diversity. Analysis of sequence and structure of EhCaBP1 and other CaBPs indicates that the C-terminal domain of EhCaBP1 possesses a unique structure compared with other family members. This had been attributed to the absence of a Phe-Phe interaction between highly conserved Phe residues at the -4 position in EF-hand III (F[-4]; Tyr(81)) and at the 13th position in EF-hand IV (F[+13]; Phe(129)) of the C-terminal domain. Against this backdrop, we mutated the Tyr residue at the -4th position of EF III to the Phe residue (Y81F), to bring in the Phe-Phe interaction and understand the nature of structural and functional changes in the protein by NMR spectroscopy, molecular dynamics (MD) simulation, isothermal titration calorimetry (ITC), and biological assays, such as imaging and actin binding. The Y81F mutation in EhCaBP1 resulted in a more compact structure for the C-terminal domain of the mutant as in the case of calmodulin and troponin C. The compact structure is favored by the presence of a π-π interaction between Phe(81) and Phe(129) along with several hydrophobic interactions of Phe(81), which are not seen in the wild-type protein. Furthermore, the biological assays reveal preferential membrane localization of the mutant, loss of its colocalization with actin in the phagocytic cups, whereas retaining its ability to bind G- and F-actin.

  16. Finding protein-protein interaction patterns by contact map matching.

    PubMed

    Melo, R C; Ribeiro, C; Murray, C S; Veloso, C J M; da Silveira, C H; Neshich, G; Meira, W; Carceroni, R L; Santoro, M M

    2007-10-05

    We propose a novel method for defining patterns of contacts present in protein-protein complexes. A new use of the traditional contact maps (more frequently used for representation of the intra-chain contacts) is presented for analysis of inter-chain contacts. Using an algorithm based on image processing techniques, we can compare protein-protein interaction maps and also obtain a dissimilarity score between them. The same algorithm used to compare the maps can align the contacts of all the complexes and be helpful in the determination of a pattern of conserved interactions at the interfaces. We present an example for the application of this method by analyzing the pattern of interaction of bovine pancreatic trypsin inhibitors and trypsins, chymotrypsins, a thrombin, a matriptase, and a kallikrein - all classified as serine proteases. We found 20 contacts conserved in trypsins and chymotrypsins and 3 specific ones are present in all the serine protease complexes studied. The method was able to identify important contacts for the protein family studied and the results are in agreement with the literature.

  17. Optoelectronic tweezers integrated with lensfree holographic microscopy for wide-field interactive cell and particle manipulation on a chip.

    PubMed

    Huang, Kuo-Wei; Su, Ting-Wei; Ozcan, Aydogan; Chiou, Pei-Yu

    2013-06-21

    We demonstrate an optoelectronic tweezer (OET) coupled to a lensfree holographic microscope for real-time interactive manipulation of cells and micro-particles over a large field-of-view (FOV). This integrated platform can record the holographic images of cells and particles over the entire active area of a CCD sensor array, perform digital image reconstruction to identify target cells, dynamically track the positions of cells and particles, and project light beams to trigger light-induced dielectrophoretic forces to pattern and sort cells on a chip. OET technology has been previously shown to be capable of performing parallel single cell manipulation over a large area. However, its throughput has been bottlenecked by the number of cells that can be imaged within the limited FOV of a conventional microscope objective lens. Integrating lensfree holographic imaging with OET solves this fundamental FOV barrier, while also creating a compact on-chip cell/particle manipulation platform. Using this unique platform, we have successfully demonstrated real-time interactive manipulation of thousands of single cells and micro-particles over an ultra-large area of e.g., 240 mm(2) (i.e. 17.96 mm × 13.52 mm).

  18. Detection of protein-protein interactions using tandem affinity purification.

    PubMed

    Goodfellow, Ian; Bailey, Dalan

    2014-01-01

    Tandem affinity purification (TAP) is an invaluable technique for identifying interaction partners for an affinity tagged bait protein. The approach relies on the fusion of dual tags to the bait before separate rounds of affinity purification and precipitation. Frequently two specific elution steps are also performed to increase the specificity of the overall technique. In the method detailed here, the two tags used are protein G and a short streptavidin binding peptide; however, many variations can be employed. In our example the tags are separated by a cleavable tobacco etch virus protease target sequence, allowing for specific elution after the first round of affinity purification. Proteins isolated after the final elution step in this process are concentrated before being identified by mass spectrometry. The use of dual affinity tags and specific elution in this technique dramatically increases both the specificity and stringency of the pull-downs, ensuring a low level of background nonspecific interactions.

  19. Integrating protein-protein interaction networks with phenotypes reveals signs of interactions

    PubMed Central

    Vinayagam, Arunachalam; Zirin, Jonathan; Roesel, Charles; Hu, Yanhui; Yilmazel, Bahar; Samsonova, Anastasia A.; Neumüller, Ralph A.; Mohr, Stephanie E.; Perrimon, Norbert

    2013-01-01

    A major objective of systems biology is to organize molecular interactions as networks and to characterize information-flow within networks. We describe a computational framework to integrate protein-protein interaction (PPI) networks and genetic screens to predict the “signs” of interactions (i.e. activation/inhibition relationships). We constructed a Drosophila melanogaster signed PPI network, consisting of 6,125 signed PPIs connecting 3,352 proteins that can be used to identify positive and negative regulators of signaling pathways and protein complexes. We identified an unexpected role for the metabolic enzymes Enolase and Aldo-keto reductase as positive and negative regulators of proteolysis, respectively. Characterization of the activation/inhibition relationships between physically interacting proteins within signaling pathways will impact our understanding of many biological functions, including signal transduction and mechanisms of disease. PMID:24240319

  20. RAID: a comprehensive resource for human RNA-associated (RNA-RNA/RNA-protein) interaction.

    PubMed

    Zhang, Xiaomeng; Wu, Deng; Chen, Liqun; Li, Xiang; Yang, Jinxurong; Fan, Dandan; Dong, Tingting; Liu, Mingyue; Tan, Puwen; Xu, Jintian; Yi, Ying; Wang, Yuting; Zou, Hua; Hu, Yongfei; Fan, Kaili; Kang, Juanjuan; Huang, Yan; Miao, Zhengqiang; Bi, Miaoman; Jin, Nana; Li, Kongning; Li, Xia; Xu, Jianzhen; Wang, Dong

    2014-07-01

    Transcriptomic analyses have revealed an unexpected complexity in the eukaryote transcriptome, which includes not only protein-coding transcripts but also an expanding catalog of noncoding RNAs (ncRNAs). Diverse coding and noncoding RNAs (ncRNAs) perform functions through interaction with each other in various cellular processes. In this project, we have developed RAID (http://www.rna-society.org/raid), an RNA-associated (RNA-RNA/RNA-protein) interaction database. RAID intends to provide the scientific community with all-in-one resources for efficient browsing and extraction of the RNA-associated interactions in human. This version of RAID contains more than 6100 RNA-associated interactions obtained by manually reviewing more than 2100 published papers, including 4493 RNA-RNA interactions and 1619 RNA-protein interactions. Each entry contains detailed information on an RNA-associated interaction, including RAID ID, RNA/protein symbol, RNA/protein categories, validated method, expressing tissue, literature references (Pubmed IDs), and detailed functional description. Users can query, browse, analyze, and manipulate RNA-associated (RNA-RNA/RNA-protein) interaction. RAID provides a comprehensive resource of human RNA-associated (RNA-RNA/RNA-protein) interaction network. Furthermore, this resource will help in uncovering the generic organizing principles of cellular function network.

  1. Investigation of plasma–surface interaction effects on pulsed electrostatic manipulation for reentry blackout alleviation

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, S.; Close, S.

    2017-03-01

    The reentry blackout phenomenon affects most spacecraft entering a dense planetary atmosphere from space, due to the presence of a plasma layer that surrounds the spacecraft. This plasma layer is created by ionization of ambient air due to shock and frictional heating, and in some cases is further enhanced due to contamination by ablation products. This layer causes a strong attenuation of incoming and outgoing electromagnetic waves including those used for command and control, communication and telemetry over a period referred to as the ‘blackout period’. The blackout period may last up to several minutes and is a major contributor to the landing error ellipse at best, and a serious safety hazard in the worst case, especially in the context of human spaceflight. In this work, we present a possible method for alleviation of reentry blackout using electronegative DC pulses applied from insulated electrodes on the reentry vehicle’s surface. We study the reentry plasma’s interaction with a DC pulse using a particle-in-cell (PIC) model. Detailed models of plasma–insulator interaction are included in our simulations. The absorption and scattering of ions and electrons at the plasma–dielectric interface are taken into account. Secondary emission from the insulating surface is also considered, and its implications on various design issues is studied. Furthermore, we explore the effect of changing the applied voltage and the impact of surface physics on the creation and stabilization of communication windows. The primary aim of this analysis is to examine the possibility of restoring L- and S-band communication from the spacecraft to a ground station. Our results provide insight into the effect of key design variables on the response of the plasma to the applied voltage pulse. Simulations show the creation of pockets where electron density in the plasma layer is reduced three orders of magnitude or more in the vicinity of the electrodes. These pockets extend to

  2. Quantification of the Influence of Protein-Protein Interactions on Adsorbed Protein Structure and Bioactivity

    PubMed Central

    Wei, Yang; Thyparambil, Aby A.; Latour, Robert A.

    2013-01-01

    While protein-surface interactions have been widely studied, relatively little is understood at this time regarding how protein-surface interaction effects are influenced by protein-protein interactions and how these effects combine with the internal stability of a protein to influence its adsorbed-state structure and bioactivity. The objectives of this study were to develop a method to study these combined effects under widely varying protein-protein interaction conditions using hen egg-white lysozyme (HEWL) adsorbed on silica glass, poly(methyl methacrylate), and polyethylene as our model systems. In order to vary protein-protein interaction effects over a wide range, HEWL was first adsorbed to each surface type under widely varying protein solution concentrations for 2 h to saturate the surface, followed by immersion in pure buffer solution for 15 h to equilibrate the adsorbed protein layers in the absence of additionally adsorbing protein. Periodic measurements were made at selected time points of the areal density of the adsorbed protein layer as an indicator of the level of protein-protein interaction effects within the layer, and these values were then correlated with measurements of the adsorbed protein’s secondary structure and bioactivity. The results from these studies indicate that protein-protein interaction effects help stabilize the structure of HEWL adsorbed on silica glass, have little influence on the structural behavior of HEWL on HDPE, and actually serve to destabilize HEWL’s structure on PMMA. The bioactivity of HEWL on silica glass and HDPE was found to decrease in direct proportion to the degree of adsorption-induce protein unfolding. A direct correlation between bioactivity and the conformational state of adsorbed HEWL was less apparent on PMMA, thus suggesting that other factors influenced HEWL’s bioactivity on this surface, such as the accessibility of HEWL’s bioactive site being blocked by neighboring proteins or the surface

  3. Tools for controlling protein interactions using light.

    PubMed

    Tucker, Chandra L; Vrana, Justin D; Kennedy, Matthew J

    2014-09-02

    Genetically encoded actuators that allow control of protein-protein interactions using light, termed 'optical dimerizers', are emerging as new tools for experimental biology. In recent years, numerous new and versatile dimerizer systems have been developed. Here we discuss the design of optical dimerizer experiments, including choice of a dimerizer system, photoexcitation sources, and the coordinate use of imaging reporters. We provide detailed protocols for experiments using two dimerization systems we previously developed, CRY2/CIB and UVR8/UVR8, for use in controlling transcription, protein localization, and protein secretion using light. Additionally, we provide instructions and software for constructing a pulse-controlled LED device for use in experiments requiring extended light treatments.

  4. Protein Phosphatase 1α Interacting Proteins in the Human Brain

    PubMed Central

    Esteves, Sara L.C.; Domingues, Sara C.; da Cruz e Silva, Odete A.B.; da Cruz e Silva, Edgar F.

    2012-01-01

    Abstract Protein Phosphatase 1 (PP1) is a major serine/threonine-phosphatase whose activity is dependent on its binding to regulatory subunits known as PP1 interacting proteins (PIPs), responsible for targeting PP1 to a specific cellular location, specifying its substrate or regulating its action. Today, more than 200 PIPs have been described involving PP1 in panoply of cellular mechanisms. Moreover, several PIPs have been identified that are tissue and event specific. In addition, the diversity of PP1/PIP complexes can further be achieved by the existence of several PP1 isoforms that can bind preferentially to a certain PIP. Thus, PP1/PIP complexes are highly specific for a particular function in the cell, and as such, they are excellent pharmacological targets. Hence, an in-depth survey was taken to identify specific PP1α PIPs in human brain by a high-throughput Yeast Two-Hybrid approach. Sixty-six proteins were recognized to bind PP1α, 39 being novel PIPs. A large protein interaction databases search was also performed to integrate with the results of the PP1α Human Brain Yeast Two-Hybrid and a total of 246 interactions were retrieved. PMID:22321011

  5. Identification of Protein-Protein Interactions and Topologies in Living Cells with Chemical Cross-linking and Mass Spectrometry*S⃞

    PubMed Central

    Zhang, Haizhen; Tang, Xiaoting; Munske, Gerhard R.; Tolic, Nikola; Anderson, Gordon A.; Bruce, James E.

    2009-01-01

    We present results from a novel strategy that enables concurrent identification of protein-protein interactions and topologies in living cells without specific antibodies or genetic manipulations for immuno-/affinity purifications. The strategy consists of (i) a chemical cross-linking reaction: intact cell labeling with a novel class of chemical cross-linkers, protein interaction reporters (PIRs); (ii) two-stage mass spectrometric analysis: stage 1 identification of PIR-labeled proteins and construction of a restricted database by two-dimensional LC/MSMS and stage 2 analysis of PIR-labeled peptides by multiplexed LC/FTICR-MS; and (iii) data analysis: identification of cross-linked peptides and proteins of origin using accurate mass and other constraints. The primary advantage of the PIR approach and distinction from current technology is that protein interactions together with topologies are detected in native biological systems by stabilizing protein complexes with new covalent bonds while the proteins are present in the original cellular environment. Thus, weak or transient interactions or interactions that require properly folded, localized, or membrane-bound proteins can be labeled and identified through the PIR approach. This strategy was applied to Shewanella oneidensis bacterial cells, and initial studies resulted in identification of a set of protein-protein interactions and their contact/binding regions. Furthermore most identified interactions involved membrane proteins, suggesting that the PIR approach is particularly suited for studies of membrane protein-protein interactions, an area under-represented with current widely used approaches. PMID:18936057

  6. Using support vector machine for improving protein-protein interaction prediction utilizing domain interactions

    SciTech Connect

    Singhal, Mudita; Shah, Anuj R.; Brown, Roslyn N.; Adkins, Joshua N.

    2010-10-02

    Understanding protein interactions is essential to gain insights into the biological processes at the whole cell level. The high-throughput experimental techniques for determining protein-protein interactions (PPI) are error prone and expensive with low overlap amongst them. Although several computational methods have been proposed for predicting protein interactions there is definite room for improvement. Here we present DomainSVM, a predictive method for PPI that uses computationally inferred domain-domain interaction values in a Support Vector Machine framework to predict protein interactions. DomainSVM method utilizes evidence of multiple interacting domains to predict a protein interaction. It outperforms existing methods of PPI prediction by achieving very high explanation ratios, precision, specificity, sensitivity and F-measure values in a 10 fold cross-validation study conducted on the positive and negative PPIs in yeast. A Functional comparison study using GO annotations on the positive and the negative test sets is presented in addition to discussing novel PPI predictions in Salmonella Typhimurium.

  7. Characterization and modeling of protein protein interaction networks

    NASA Astrophysics Data System (ADS)

    Colizza, Vittoria; Flammini, Alessandro; Maritan, Amos; Vespignani, Alessandro

    2005-07-01

    The recent availability of high-throughput gene expression and proteomics techniques has created an unprecedented opportunity for a comprehensive study of the structure and dynamics of many biological networks. Global proteomic interaction data, in particular, are synthetically represented as undirected networks exhibiting features far from the random paradigm which has dominated past effort in network theory. This evidence, along with the advances in the theory of complex networks, has triggered an intense research activity aimed at exploiting the evolutionary and biological significance of the resulting network's topology. Here we present a review of the results obtained in the characterization and modeling of the yeast Saccharomyces Cerevisiae protein interaction networks obtained with different experimental techniques. We provide a comparative assessment of the topological properties and discuss possible biases in interaction networks obtained with different techniques. We report on dynamical models based on duplication mechanisms that cast the protein interaction networks in the family of dynamically growing complex networks. Finally, we discuss various results and analysis correlating the networks’ topology with the biological function of proteins.

  8. Protease-inhibitor interaction predictions: Lessons on the complexity of protein-protein interactions.

    PubMed

    Fortelny, Nikolaus; Butler, Georgina S; Overall, Christopher Mark; Pavlidis, Paul

    2017-04-06

    Protein interactions shape proteome function and thus biology. Identification of protein interactions is a major goal in molecular biology, but biochemical methods, although improving, remain limited in coverage and accuracy. Whereas computational predictions can guide biochemical experiments, low validation rates of predictions remain a major limitation. Here, we investigated computational methods in the prediction of a specific type of interaction, the inhibitory interactions between proteases and their inhibitors. Proteases generate thousands of proteoforms that dynamically shape the functional state of proteomes. Despite the important regulatory role of proteases, knowledge of their inhibitors remains largely incomplete with the vast majority of proteases lacking an annotated inhibitor. To link inhibitors to their target proteases on a large scale, we applied computational methods to predict inhibitory interactions between proteases and their inhibitors based on complementary data including coexpression, phylogenetic similarity, structural information, co-annotation, and colocalization, and also surveyed general protein interaction networks for potential inhibitory interactions. In testing nine predicted interactions biochemically, we validated the inhibition of kallikrein 5 by serpin B12. Despite the use of a wide array of complementary data, we found a high false positive rate of computational predictions in biochemical follow-up. Based on a protease-specific definition of true negatives derived from the biochemical classification of proteases and inhibitors, we analyzed prediction accuracy of individual features. Thereby we identified feature-specific limitations, which also affected general protein interaction prediction methods. Interestingly, proteases were often not coexpressed with most of their functional inhibitors, contrary to what is commonly assumed and extrapolated predominantly from cell culture experiments. Predictions of inhibitory interactions

  9. The interactions of peripheral membrane proteins with biological membranes

    DOE PAGES

    Johs, Alexander; Whited, A. M.

    2015-01-01

    The interactions of peripheral proteins with membrane surfaces are critical to many biological processes, including signaling, recognition, membrane trafficking, cell division and cell structure. On a molecular level, peripheral membrane proteins can modulate lipid composition, membrane dynamics and protein-protein interactions. Biochemical and biophysical studies have shown that these interactions are in fact highly complex, dominated by several different types of interactions, and have an interdependent effect on both the protein and membrane. Here we examine three major mechanisms underlying the interactions between peripheral membrane proteins and membranes: electrostatic interactions, hydrophobic interactions, and fatty acid modification of proteins. While experimental approachesmore » continue to provide critical insights into specific interaction mechanisms, emerging bioinformatics resources and tools contribute to a systems-level picture of protein-lipid interactions. Through these recent advances, we begin to understand the pivotal role of protein-lipid interactions underlying complex biological functions at membrane interfaces.« less

  10. The interactions of peripheral membrane proteins with biological membranes

    SciTech Connect

    Johs, Alexander; Whited, A. M.

    2015-01-01

    The interactions of peripheral proteins with membrane surfaces are critical to many biological processes, including signaling, recognition, membrane trafficking, cell division and cell structure. On a molecular level, peripheral membrane proteins can modulate lipid composition, membrane dynamics and protein-protein interactions. Biochemical and biophysical studies have shown that these interactions are in fact highly complex, dominated by several different types of interactions, and have an interdependent effect on both the protein and membrane. Here we examine three major mechanisms underlying the interactions between peripheral membrane proteins and membranes: electrostatic interactions, hydrophobic interactions, and fatty acid modification of proteins. While experimental approaches continue to provide critical insights into specific interaction mechanisms, emerging bioinformatics resources and tools contribute to a systems-level picture of protein-lipid interactions. Through these recent advances, we begin to understand the pivotal role of protein-lipid interactions underlying complex biological functions at membrane interfaces.

  11. Exploring NMR ensembles of calcium binding proteins: Perspectives to design inhibitors of protein-protein interactions

    PubMed Central

    2011-01-01

    Background Disrupting protein-protein interactions by small organic molecules is nowadays a promising strategy employed to block protein targets involved in different pathologies. However, structural changes occurring at the binding interfaces make difficult drug discovery processes using structure-based drug design/virtual screening approaches. Here we focused on two homologous calcium binding proteins, calmodulin and human centrin 2, involved in different cellular functions via protein-protein interactions, and known to undergo important conformational changes upon ligand binding. Results In order to find suitable protein conformations of calmodulin and centrin for further structure-based drug design/virtual screening, we performed in silico structural/energetic analysis and molecular docking of terphenyl (a mimicking alpha-helical molecule known to inhibit protein-protein interactions of calmodulin) into X-ray and NMR ensembles of calmodulin and centrin. We employed several scoring methods in order to find the best protein conformations. Our results show that docking on NMR structures of calmodulin and centrin can be very helpful to take into account conformational changes occurring at protein-protein interfaces. Conclusions NMR structures of protein-protein complexes nowadays available could efficiently be exploited for further structure-based drug design/virtual screening processes employed to design small molecule inhibitors of protein-protein interactions. PMID:21569443

  12. Protein-protein interactions as druggable targets: recent technological advances.

    PubMed

    Higueruelo, Alicia P; Jubb, Harry; Blundell, Tom L

    2013-10-01

    Classical target-based drug discovery, where large chemical libraries are screened using inhibitory assays for a single target, has struggled to find ligands that inhibit protein-protein interactions (PPI). Nevertheless, in the past decade there have been successes that have demonstrated that PPI can be useful drug targets, and the field is now evolving fast. This review focuses on the new approaches and concepts that are being developed to tackle these challenging targets: the use of fragment based methods to explore the chemical space, stapled peptides to regulate intracellular PPI, alternatives to competitive inhibition and the use of antibodies to enable small molecule discovery for these targets.

  13. A reliability measure of protein-protein interactions and a reliability measure-based search engine.

    PubMed

    Park, Byungkyu; Han, Kyungsook

    2010-02-01

    Many methods developed for estimating the reliability of protein-protein interactions are based on the topology of protein-protein interaction networks. This paper describes a new reliability measure for protein-protein interactions, which does not rely on the topology of protein interaction networks, but expresses biological information on functional roles, sub-cellular localisations and protein classes as a scoring schema. The new measure is useful for filtering many spurious interactions, as well as for estimating the reliability of protein interaction data. In particular, the reliability measure can be used to search protein-protein interactions with the desired reliability in databases. The reliability-based search engine is available at http://yeast.hpid.org. We believe this is the first search engine for interacting proteins, which is made available to public. The search engine and the reliability measure of protein interactions should provide useful information for determining proteins to focus on.

  14. Predicting disease-related proteins based on clique backbone in protein-protein interaction network.

    PubMed

    Yang, Lei; Zhao, Xudong; Tang, Xianglong

    2014-01-01

    Network biology integrates different kinds of data, including physical or functional networks and disease gene sets, to interpret human disease. A clique (maximal complete subgraph) in a protein-protein interaction network is a topological module and possesses inherently biological significance. A disease-related clique possibly associates with complex diseases. Fully identifying disease components in a clique is conductive to uncovering disease mechanisms. This paper proposes an approach of predicting disease proteins based on cliques in a protein-protein interaction network. To tolerate false positive and negative interactions in protein networks, extending cliques and scoring predicted disease proteins with gene ontology terms are introduced to the clique-based method. Precisions of predicted disease proteins are verified by disease phenotypes and steadily keep to more than 95%. The predicted disease proteins associated with cliques can partly complement mapping between genotype and phenotype, and provide clues for understanding the pathogenesis of serious diseases.

  15. Interaction of acupuncture treatment and manipulation laterality modulated by the default mode network

    PubMed Central

    Niu, Xuan; Zhang, Ming; Liu, Zhenyu; Sun, Chuanzhu; Wang, Shan; Wang, Xiaocui; Chen, Zhen; Chen, Hongyan; Tian, Jie

    2016-01-01

    Appropriate selection of ipsilateral or contralateral electroacupuncture (corresponding to the pain site) plays an important role in reaching its better curative effect; however, the involving brain mechanism still remains unclear. Compared with the heat pain model generally established in previous study, capsaicin pain model induces reversible cutaneous allodynia and is proved to be better simulating aspects of clinical nociceptive and neuropathic pain. In the current study, 24 subjects were randomly divided into two groups with a 2 × 2 factorial design: laterality (ipsi- or contralateral side, inter-subject) × treatment with counter-balanced at an interval of one week (verum and placebo electroacupuncture, within-subject). We observed subjective pain intensity and brain activations changes induced by capsaicin allodynia pain stimuli before and after electroacupuncture treatment at acupoint LI4 for 30 min. Analysis of variance results indicated that ipsilateral electroacupuncture treatment produced significant pain relief and wide brain signal suppressions in pain-related brain areas compared with contralateral electroacupuncture. We also found that verum electroacupuncture at either ipsi- or contralateral side to the pain site exhibited comparable significant magnitudes of analgesic effect. By contrast, placebo electroacupuncture elicited significant pain reductions only on the ipsilateral rather than contralateral side. It was inferred that placebo analgesia maybe attenuated on the region of the body (opposite to pain site) where attention was less focused, suggesting that analgesic effect of placebo electroacupuncture mainly rely on the motivation of its spatial-specific placebo responses via attention mechanism. This inference can be further supported by the evidence that the significant interaction effect of manipulation laterality and treatment was exclusively located within the default mode network, including the bilateral superior parietal

  16. Interaction of acupuncture treatment and manipulation laterality modulated by the default mode network.

    PubMed

    Niu, Xuan; Zhang, Ming; Liu, Zhenyu; Bai, Lijun; Sun, Chuanzhu; Wang, Shan; Wang, Xiaocui; Chen, Zhen; Chen, Hongyan; Tian, Jie

    2017-01-01

    Appropriate selection of ipsilateral or contralateral electroacupuncture (corresponding to the pain site) plays an important role in reaching its better curative effect; however, the involving brain mechanism still remains unclear. Compared with the heat pain model generally established in previous study, capsaicin pain model induces reversible cutaneous allodynia and is proved to be better simulating aspects of clinical nociceptive and neuropathic pain. In the current study, 24 subjects were randomly divided into two groups with a 2 × 2 factorial design: laterality (ipsi- or contralateral side, inter-subject) × treatment with counter-balanced at an interval of one week (verum and placebo electroacupuncture, within-subject). We observed subjective pain intensity and brain activations changes induced by capsaicin allodynia pain stimuli before and after electroacupuncture treatment at acupoint LI4 for 30 min. Analysis of variance results indicated that ipsilateral electroacupuncture treatment produced significant pain relief and wide brain signal suppressions in pain-related brain areas compared with contralateral electroacupuncture. We also found that verum electroacupuncture at either ipsi- or contralateral side to the pain site exhibited comparable significant magnitudes of analgesic effect. By contrast, placebo electroacupuncture elicited significant pain reductions only on the ipsilateral rather than contralateral side. It was inferred that placebo analgesia maybe attenuated on the region of the body (opposite to pain site) where attention was less focused, suggesting that analgesic effect of placebo electroacupuncture mainly rely on the motivation of its spatial-specific placebo responses via attention mechanism. This inference can be further supported by the evidence that the significant interaction effect of manipulation laterality and treatment was exclusively located within the default mode network, including the bilateral superior parietal

  17. Protein self-interaction chromatography on a microchip.

    PubMed

    Deshpande, Kedar; Ahamed, Tangir; van der Wielen, Luuk A M; Horst, Joop H Ter; Jansens, Peter J; Ottens, Marcel

    2009-02-21

    This paper presents the development of a novel miniaturized experimental procedure for the measurement of protein-protein interactions through Self-Interaction Chromatography (SIC) on a microchip, without the use of chromatographic resins. SIC was recently demonstrated to be a relatively easy method to obtain quantitative thermodynamic information about protein-protein interactions, like the osmotic second virial coefficient B(22), which relates to protein phase behavior including protein crystallization. This successful miniaturization to microchip level of a measurement device for protein self-interaction data is a first key step to a complete microfluidic screening platform for the rational design of protein crystallizations, using substantially less expensive protein and experimentation time.

  18. Ultra-fast optical manipulation of single proteins binding to the actin cytoskeleton

    NASA Astrophysics Data System (ADS)

    Capitanio, Marco; Gardini, Lucia; Pavone, Francesco Saverio

    2014-02-01

    In the last decade, forces and mechanical stresses acting on biological systems are emerging as regulatory factors essential for cell life. Emerging evidences indicate that factors such as applied forces or the rigidity of the extracellular matrix (ECM) determine the shape and function of cells and organisms1. Classically, the regulation of biological systems is described through a series of biochemical signals and enzymatic reactions, which direct the processes and cell fate. However, mechanotransduction, i.e. the conversion of mechanical forces into biochemical and biomolecular signals, is at the basis of many biological processes fundamental for the development and differentiation of cells, for their correct function and for the development of pathologies. We recently developed an in vitro system that allows the investigation of force-dependence of the interaction of proteins binding the actin cytoskeleton, at the single molecule level. Our system displays a delay of only ~10 μs between formation of the molecular bond and application of the force and is capable of detecting interactions as short as 100 μs. Our assay allows direct measurements of load-dependence of lifetimes of single molecular bonds and conformational changes of single proteins and molecular motors. We demonstrate our technique on molecular motors, using myosin II from fast skeletal muscle and on protein-DNA interaction, specifically on Lactose repressor (LacI). The apparatus is stabilized to less than 1 nm with both passive and active stabilization, allowing resolving specific binding regions along the actin filament and DNA molecule. Our technique extends single-molecule force-clamp spectroscopy to molecular complexes that have been inaccessible up to now, opening new perspectives for the investigation of the effects of forces on biological processes.

  19. Notable Aspects of Glycan-Protein Interactions

    PubMed Central

    Cohen, Miriam

    2015-01-01

    This mini review highlights several interesting aspects of glycan-mediated interactions that are common between cells, bacteria, and viruses. Glycans are ubiquitously found on all living cells, and in the extracellular milieu of multicellular organisms. They are known to mediate initial binding and recognition events of both immune cells and pathogens with their target cells or tissues. The host target tissues are hidden under a layer of secreted glycosylated decoy targets. In addition, pathogens can utilize and display host glycans to prevent identification as foreign by the host’s immune system (molecular mimicry). Both the host and pathogens continually evolve. The host evolves to prevent infection and the pathogens evolve to evade host defenses. Many pathogens express both glycan-binding proteins and glycosidases. Interestingly, these proteins are often located at the tip of elongated protrusions in bacteria, or in the leading edge of the cell. Glycan-protein interactions have low affinity and, as a result, multivalent interactions are often required to achieve biologically relevant binding. These enable dynamic forms of adhesion mechanisms, reviewed here, and include rolling (cells), stick and roll (bacteria) or surfacing (viruses). PMID:26340640

  20. Heparan sulfate and heparin interactions with proteins

    PubMed Central

    Meneghetti, Maria C. Z.; Hughes, Ashley J.; Rudd, Timothy R.; Nader, Helena B.; Powell, Andrew K.; Yates, Edwin A.; Lima, Marcelo A.

    2015-01-01

    Heparan sulfate (HS) polysaccharides are ubiquitous components of the cell surface and extracellular matrix of all multicellular animals, whereas heparin is present within mast cells and can be viewed as a more sulfated, tissue-specific, HS variant. HS and heparin regulate biological processes through interactions with a large repertoire of proteins. Owing to these interactions and diverse effects observed during in vitro, ex vivo and in vivo experiments, manifold biological/pharmacological activities have been attributed to them. The properties that have been thought to bestow protein binding and biological activity upon HS and heparin vary from high levels of sequence specificity to a dependence on charge. In contrast to these opposing opinions, we will argue that the evidence supports both a level of redundancy and a degree of selectivity in the structure–activity relationship. The relationship between this apparent redundancy, the multi-dentate nature of heparin and HS polysaccharide chains, their involvement in protein networks and the multiple binding sites on proteins, each possessing different properties, will also be considered. Finally, the role of cations in modulating HS/heparin activity will be reviewed and some of the implications for structure–activity relationships and regulation will be discussed. PMID:26289657

  1. Heparan sulfate and heparin interactions with proteins.

    PubMed

    Meneghetti, Maria C Z; Hughes, Ashley J; Rudd, Timothy R; Nader, Helena B; Powell, Andrew K; Yates, Edwin A; Lima, Marcelo A

    2015-09-06

    Heparan sulfate (HS) polysaccharides are ubiquitous components of the cell surface and extracellular matrix of all multicellular animals, whereas heparin is present within mast cells and can be viewed as a more sulfated, tissue-specific, HS variant. HS and heparin regulate biological processes through interactions with a large repertoire of proteins. Owing to these interactions and diverse effects observed during in vitro, ex vivo and in vivo experiments, manifold biological/pharmacological activities have been attributed to them. The properties that have been thought to bestow protein binding and biological activity upon HS and heparin vary from high levels of sequence specificity to a dependence on charge. In contrast to these opposing opinions, we will argue that the evidence supports both a level of redundancy and a degree of selectivity in the structure-activity relationship. The relationship between this apparent redundancy, the multi-dentate nature of heparin and HS polysaccharide chains, their involvement in protein networks and the multiple binding sites on proteins, each possessing different properties, will also be considered. Finally, the role of cations in modulating HS/heparin activity will be reviewed and some of the implications for structure-activity relationships and regulation will be discussed.

  2. Free energy decomposition of protein-protein interactions.

    PubMed Central

    Noskov, S Y; Lim, C

    2001-01-01

    A free energy decomposition scheme has been developed and tested on antibody-antigen and protease-inhibitor binding for which accurate experimental structures were available for both free and bound proteins. Using the x-ray coordinates of the free and bound proteins, the absolute binding free energy was computed assuming additivity of three well-defined, physical processes: desolvation of the x-ray structures, isomerization of the x-ray conformation to a nearby local minimum in the gas-phase, and subsequent noncovalent complex formation in the gas phase. This free energy scheme, together with the Generalized Born model for computing the electrostatic solvation free energy, yielded binding free energies in remarkable agreement with experimental data. Two assumptions commonly used in theoretical treatments; viz., the rigid-binding approximation (which assumes no conformational change upon complexation) and the neglect of vdW interactions, were found to yield large errors in the binding free energy. Protein-protein vdW and electrostatic interactions between complementary surfaces over a relatively large area (1400--1700 A(2)) were found to drive antibody-antigen and protease-inhibitor binding. PMID:11463622

  3. An Interactive, Versatile, Three-Dimensional Display, Manipulation and Plotting System for Biomedical Research

    ERIC Educational Resources Information Center

    Feldmann, Richard J.; And Others

    1972-01-01

    Computer graphics provides a valuable tool for the representation and a better understanding of structures, both small and large. Accurate and rapid construction, manipulation, and plotting of structures, such as macromolecules as complex as hemoglobin, are performed by a collection of computer programs and a time-sharing computer. (21 references)…

  4. Comprehensive peptidomimetic libraries targeting protein-protein interactions.

    PubMed

    Whitby, Landon R; Boger, Dale L

    2012-10-16

    Transient protein-protein interactions (PPIs) are essential components in cellular signaling pathways as well as in important processes such as viral infection, replication, and immune suppression. The unknown or uncharacterized PPIs involved in such interaction networks often represent compelling therapeutic targets for drug discovery. To date, however, the main strategies for discovery of small molecule modulators of PPIs are typically limited to structurally characterized targets. Recent developments in molecular scaffolds that mimic the side chain display of peptide secondary structures have yielded effective designs, but few screening libraries of such mimetics are available to interrogate PPI targets. We initiated a program to prepare a comprehensive small molecule library designed to mimic the three major recognition motifs that mediate PPIs (α-helix, β-turn, and β-strand). Three libraries would be built around templates designed to mimic each such secondary structure and substituted with all triplet combinations of groups representing the 20 natural amino acid side chains. When combined, the three libraries would contain a member capable of mimicking the key interaction and recognition residues of most targetable PPIs. In this Account, we summarize the results of the design, synthesis, and validation of an 8000 member α-helix mimetic library and a 4200 member β-turn mimetic library. We expect that the screening of these libraries will not only provide lead structures against α-helix- or β-turn-mediated protein-protein or peptide-receptor interactions, even if the nature of the interaction is unknown, but also yield key insights into the recognition motif (α-helix or β-turn) and identify the key residues mediating the interaction. Consistent with this expectation, the screening of the libraries against p53/MDM2 and HIV-1 gp41 (α-helix mimetic library) or the opioid receptors (β-turn mimetic library) led to the discovery of library members expected

  5. In Vivo Proximity Labeling for the Detection of Protein–Protein and Protein–RNA Interactions

    PubMed Central

    2015-01-01

    Accurate and sensitive detection of protein–protein and protein–RNA interactions is key to understanding their biological functions. Traditional methods to identify these interactions require cell lysis and biochemical manipulations that exclude cellular compartments that cannot be solubilized under mild conditions. Here, we introduce an in vivo proximity labeling (IPL) technology that employs an affinity tag combined with a photoactivatable probe to label polypeptides and RNAs in the vicinity of a protein of interest in vivo. Using quantitative mass spectrometry and deep sequencing, we show that IPL correctly identifies known protein–protein and protein–RNA interactions in the nucleus of mammalian cells. Thus, IPL provides additional temporal and spatial information for the characterization of biological interactions in vivo. PMID:25311790

  6. Identification of essential proteins based on ranking edge-weights in protein-protein interaction networks.

    PubMed

    Wang, Yan; Sun, Huiyan; Du, Wei; Blanzieri, Enrico; Viero, Gabriella; Xu, Ying; Liang, Yanchun

    2014-01-01

    Essential proteins are those that are indispensable to cellular survival and development. Existing methods for essential protein identification generally rely on knock-out experiments and/or the relative density of their interactions (edges) with other proteins in a Protein-Protein Interaction (PPI) network. Here, we present a computational method, called EW, to first rank protein-protein interactions in terms of their Edge Weights, and then identify sub-PPI-networks consisting of only the highly-ranked edges and predict their proteins as essential proteins. We have applied this method to publicly-available PPI data on Saccharomyces cerevisiae (Yeast) and Escherichia coli (E. coli) for essential protein identification, and demonstrated that EW achieves better performance than the state-of-the-art methods in terms of the precision-recall and Jackknife measures. The highly-ranked protein-protein interactions by our prediction tend to be biologically significant in both the Yeast and E. coli PPI networks. Further analyses on systematically perturbed Yeast and E. coli PPI networks through randomly deleting edges demonstrate that the proposed method is robust and the top-ranked edges tend to be more associated with known essential proteins than the lowly-ranked edges.

  7. Reversible manipulation of the G-quadruplex structures and enzymatic reactions through supramolecular host-guest interactions.

    PubMed

    Tian, Tian; Song, Yanyan; Wei, Lai; Wang, Jiaqi; Fu, Boshi; He, Zhiyong; Yang, Xi-Ran; Wu, Fan; Xu, Guohua; Liu, Si-Min; Li, Conggang; Wang, Shaoru; Zhou, Xiang

    2017-01-23

    Supramolecular chemistry addresses intermolecular forces and consequently promises great flexibility and precision. Biological systems are often the inspirations for supramolecular research. The G-quadruplex (G4) belongs to one of the most important secondary structures in nucleic acids. Until recently, the supramolecular manipulation of the G4 has not been reported. The present study is the first to disclose a supramolecular switch for the reversible control of human telomere G4s. Moreover, this supramolecular switch has been successfully used to manipulate an enzymatic reaction. Using various methods, we show that cucurbit[7]uril preferably locks and encapsulates the positively charged piperidines of Razo through supramolecular interactions. They can switch the conformations of the DNA inhibitor between a flexible state and the rigid G4 and are therefore responsible for the reversible control of the thrombin activity. Thus, our findings open a promising route and exhibit potential applications in future studies of chemical biology.

  8. Small-Molecule Stabilization of 14-3-3 Protein-Protein Interactions Stimulates Axon Regeneration.

    PubMed

    Kaplan, Andrew; Morquette, Barbara; Kroner, Antje; Leong, SooYuen; Madwar, Carolin; Sanz, Ricardo; Banerjee, Sara L; Antel, Jack; Bisson, Nicolas; David, Samuel; Fournier, Alyson E

    2017-03-08

    Damaged central nervous system (CNS) neurons have a poor ability to spontaneously regenerate, causing persistent functional deficits after injury. Therapies that stimulate axon growth are needed to repair CNS damage. 14-3-3 adaptors are hub proteins that are attractive targets to manipulate cell signaling. We identify a positive role for 14-3-3s in axon growth and uncover a developmental regulation of the phosphorylation and function of 14-3-3s. We show that fusicoccin-A (FC-A), a small-molecule stabilizer of 14-3-3 protein-protein interactions, stimulates axon growth in vitro and regeneration in vivo. We show that FC-A stabilizes a complex between 14-3-3 and the stress response regulator GCN1, inducing GCN1 turnover and neurite outgrowth. These findings show that 14-3-3 adaptor protein complexes are druggable targets and identify a new class of small molecules that may be further optimized for the repair of CNS damage.

  9. Quantifying the Molecular Origins of Opposite Solvent Effects on Protein-Protein Interactions

    PubMed Central

    Vagenende, Vincent; Han, Alvin X.; Pek, Han B.; Loo, Bernard L. W.

    2013-01-01

    Although the nature of solvent-protein interactions is generally weak and non-specific, addition of cosolvents such as denaturants and osmolytes strengthens protein-protein interactions for some proteins, whereas it weakens protein-protein interactions for others. This is exemplified by the puzzling observation that addition of glycerol oppositely affects the association constants of two antibodies, D1.3 and D44.1, with lysozyme. To resolve this conundrum, we develop a methodology based on the thermodynamic principles of preferential interaction theory and the quantitative characterization of local protein solvation from molecular dynamics simulations. We find that changes of preferential solvent interactions at the protein-protein interface quantitatively account for the opposite effects of glycerol on the antibody-antigen association constants. Detailed characterization of local protein solvation in the free and associated protein states reveals how opposite solvent effects on protein-protein interactions depend on the extent of dewetting of the protein-protein contact region and on structural changes that alter cooperative solvent-protein interactions at the periphery of the protein-protein interface. These results demonstrate the direct relationship between macroscopic solvent effects on protein-protein interactions and atom-scale solvent-protein interactions, and establish a general methodology for predicting and understanding solvent effects on protein-protein interactions in diverse biological environments. PMID:23696727

  10. Deciphering Supramolecular Structures with Protein-Protein Interaction Network Modeling

    PubMed Central

    Tsuji, Toshiyuki; Yoda, Takao; Shirai, Tsuyoshi

    2015-01-01

    Many biological molecules are assembled into supramolecules that are essential to perform complicated functions in the cell. However, experimental information about the structures of supramolecules is not sufficient at this point. We developed a method of predicting and modeling the structures of supramolecules in a biological network by combining structural data of the Protein Data Bank (PDB) and interaction data in IntAct databases. Templates for binary complexes in IntAct were extracted from PDB. Modeling was attempted by assembling binary complexes with superposed shared subunits. A total of 3,197 models were constructed, and 1,306 (41% of the total) contained at least one subunit absent from experimental structures. The models also suggested 970 (25% of the total) experimentally undetected subunit interfaces, and 41 human disease-related amino acid variants were mapped onto these model-suggested interfaces. The models demonstrated that protein-protein interaction network modeling is useful to fill the information gap between biological networks and structures. PMID:26549015

  11. Parallel Force Assay for Protein-Protein Interactions

    PubMed Central

    Aschenbrenner, Daniela; Pippig, Diana A.; Klamecka, Kamila; Limmer, Katja; Leonhardt, Heinrich; Gaub, Hermann E.

    2014-01-01

    Quantitative proteome research is greatly promoted by high-resolution parallel format assays. A characterization of protein complexes based on binding forces offers an unparalleled dynamic range and allows for the effective discrimination of non-specific interactions. Here we present a DNA-based Molecular Force Assay to quantify protein-protein interactions, namely the bond between different variants of GFP and GFP-binding nanobodies. We present different strategies to adjust the maximum sensitivity window of the assay by influencing the binding strength of the DNA reference duplexes. The binding of the nanobody Enhancer to the different GFP constructs is compared at high sensitivity of the assay. Whereas the binding strength to wild type and enhanced GFP are equal within experimental error, stronger binding to superfolder GFP is observed. This difference in binding strength is attributed to alterations in the amino acids that form contacts according to the crystal structure of the initial wild type GFP-Enhancer complex. Moreover, we outline the potential for large-scale parallelization of the assay. PMID:25546146

  12. Modeling Cable and Guide Channel Interaction in a High-Strength Cable-Driven Continuum Manipulator

    PubMed Central

    Moses, Matthew S.; Murphy, Ryan J.; Kutzer, Michael D. M.; Armand, Mehran

    2016-01-01

    This paper presents several mechanical models of a high-strength cable-driven dexterous manipulator designed for surgical procedures. A stiffness model is presented that distinguishes between contributions from the cables and the backbone. A physics-based model incorporating cable friction is developed and its predictions are compared with experimental data. The data show that under high tension and high curvature, the shape of the manipulator deviates significantly from a circular arc. However, simple parametric models can fit the shape with good accuracy. The motivating application for this study is to develop a model so that shape can be predicted using easily measured quantities such as tension, so that real-time navigation may be performed, especially in minimally-invasive surgical procedures, while reducing the need for hazardous imaging methods such as fluoroscopy. PMID:27818607

  13. Modeling Cable and Guide Channel Interaction in a High-Strength Cable-Driven Continuum Manipulator.

    PubMed

    Moses, Matthew S; Murphy, Ryan J; Kutzer, Michael D M; Armand, Mehran

    2015-12-01

    This paper presents several mechanical models of a high-strength cable-driven dexterous manipulator designed for surgical procedures. A stiffness model is presented that distinguishes between contributions from the cables and the backbone. A physics-based model incorporating cable friction is developed and its predictions are compared with experimental data. The data show that under high tension and high curvature, the shape of the manipulator deviates significantly from a circular arc. However, simple parametric models can fit the shape with good accuracy. The motivating application for this study is to develop a model so that shape can be predicted using easily measured quantities such as tension, so that real-time navigation may be performed, especially in minimally-invasive surgical procedures, while reducing the need for hazardous imaging methods such as fluoroscopy.

  14. Tetramer formation in Arabidopsis MADS domain proteins: analysis of a protein-protein interaction network

    PubMed Central

    2014-01-01

    Background MADS domain proteins are transcription factors that coordinate several important developmental processes in plants. These proteins interact with other MADS domain proteins to form dimers, and it has been proposed that they are able to associate as tetrameric complexes that regulate transcription of target genes. Whether the formation of functional tetramers is a widespread property of plant MADS domain proteins, or it is specific to few of these transcriptional regulators remains unclear. Results We analyzed the structure of the network of physical interactions among MADS domain proteins in Arabidopsis thaliana. We determined the abundance of subgraphs that represent the connection pattern expected for a MADS domain protein heterotetramer. These subgraphs were significantly more abundant in the MADS domain protein interaction network than in randomized analogous networks. Importantly, these subgraphs are not significantly frequent in a protein interaction network of TCP plant transcription factors, when compared to expectation by chance. In addition, we found that MADS domain proteins in tetramer-like subgraphs are more likely to be expressed jointly than proteins in other subgraphs. This effect is mainly due to proteins in the monophyletic MIKC clade, as there is no association between tetramer-like subgraphs and co-expression for proteins outside this clade. Conclusions Our results support that the tendency to form functional tetramers is widespread in the MADS domain protein-protein interaction network. Our observations also suggest that this trend is prevalent, or perhaps exclusive, for proteins in the MIKC clade. Because it is possible to retrodict several experimental results from our analyses, our work can be an important aid to make new predictions and facilitates experimental research on plant MADS domain proteins. PMID:24468197

  15. Interaction of Protein Inhibitor of Activated STAT (PIAS) Proteins with the TATA-binding Protein, TBP*

    PubMed Central

    Prigge, Justin R.; Schmidt, Edward E.

    2007-01-01

    Transcription activators often recruit promoter-targeted assembly of a pre-initiation complex; many repressors antagonize recruitment. These activities can involve direct interactions with proteins in the pre-initiation complex. We used an optimized yeast two-hybrid system to screen mouse pregnancy-associated libraries for proteins that interact with TATA-binding protein (TBP). Screens revealed an interaction between TBP and a single member of the zinc finger family of transcription factors, ZFP523. Two members of the protein inhibitor of activated STAT (PIAS) family, PIAS1 and PIAS3, also interacted with TBP in screens. Endogenous PIAS1 and TBP co-immunoprecipitated from nuclear extracts, suggesting the interaction occurred in vivo. In vitro-translated PIAS1 and TBP coimmunopreciptated, which indicated that other nuclear proteins were not required for the interaction. Deletion analysis mapped the PIAS-interacting domain of TBP to the conserved TBPCORE and the TBP-interacting domain on PIAS1 to a 39-amino acid C-terminal region. Mammals issue seven known PIAS proteins from four pias genes, pias1, pias3, piasx, and piasy, each with different cell type-specific expression patterns; the TBP-interacting domain reported here is the only part of the PIAS C-terminal region shared by all seven PIAS proteins. Direct analyses indicated that PIASx and PIASy also interacted with TBP. Our results suggest that all PIAS proteins might mediate situation-specific regulatory signaling at the TBP interface and that previously unknown levels of complexity could exist in the gene regulatory interplay between TBP, PIAS proteins, ZFP523, and other transcription factors. PMID:16522640

  16. Using visual cues of contact to improve interactive manipulation of virtual objects in industrial assembly/maintenance simulations.

    PubMed

    Sreng, Jean; Lécuyer, Anatole; Mégard, Christine; Andriot, Claude

    2006-01-01

    This paper describes a set of visual cues of contact designed to improve the interactive manipulation of virtual objects in industrial assembly/maintenance simulations. These visual cues display information of proximity, contact and effort between virtual objects when the user manipulates a part inside a digital mock-up. The set of visual cues encloses the apparition of glyphs (arrow, disk, or sphere) when the manipulated object is close or in contact with another part of the virtual environment. Light sources can also be added at the level of contact points. A filtering technique is proposed to decrease the number of glyphs displayed at the same time. Various effects--such as change in color, change in size, and deformation of shape- can be applied to the glyphs as a function of proximity with other objects or amplitude of the contact forces. A preliminary evaluation was conducted to gather the subjective preference of a group of participants during the simulation of an automotive assembly operation. The collected questionnaires showed that participants globally appreciated our visual cues of contact. The changes in color appeared to be preferred concerning the display of distances and proximity information. Size changes and deformation effects appeared to be preferred in terms of perception of contact forces between the parts. Last, light sources were selected to focus the attention of the user on the contact areas.

  17. Protein-protein interactions of tandem affinity purification-tagged protein kinases in rice.

    PubMed

    Rohila, Jai S; Chen, Mei; Chen, Shuo; Chen, Johann; Cerny, Ronald; Dardick, Chris; Canlas, Patrick; Xu, Xia; Gribskov, Michael; Kanrar, Siddhartha; Zhu, Jian-Kang; Ronald, Pamela; Fromm, Michael E

    2006-04-01

    Forty-one rice cDNAs encoding protein kinases were fused to the tandem affinity purification (TAP) tag and expressed in transgenic rice plants. The TAP-tagged kinases and interacting proteins were purified from the T1 progeny of the transgenic rice plants and identified by mass spectrometry. Ninety-five percent of the TAP-tagged kinases were recovered. Fifty-six percent of the TAP-tagged kinases were found to interact with other rice proteins. A number of these interactions were consistent with known protein complexes found in other species, validating the TAP-tag method in rice plants. Phosphorylation sites were identified on four of the kinases that interacted with either 14-3-3 proteins or cyclins.

  18. Fluorescence Studies of Protein Crystallization Interactions

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Smith, Lori; Forsythe, Elizabeth

    1999-01-01

    We are investigating protein-protein interactions in under- and over-saturated crystallization solution conditions using fluorescence methods. The use of fluorescence requires fluorescent derivatives where the probe does not markedly affect the crystal packing. A number of chicken egg white lysozyme (CEWL) derivatives have been prepared, with the probes covalently attached to one of two different sites on the protein molecule; the side chain carboxyl of ASP 101, within the active site cleft, and the N-terminal amine. The ASP 101 derivatives crystallize while the N-terminal amine derivatives do not. However, the N-terminal amine is part of the contact region between adjacent 43 helix chains, and blocking this site does would not interfere with formation of these structures in solution. Preliminary FRET data have been obtained at pH 4.6, 0.1M NaAc buffer, at 5 and 7% NaCl, 4 C, using the N-terminal bound pyrene acetic acid (PAA, Ex 340 nm, Em 376 nm) and ASP 101 bound Lucifer Yellow (LY, Ex 425 nm, Em 525 nm) probe combination. The corresponding Csat values are 0.471 and 0.362 mg/ml (approximately 3.3 and approximately 2.5 x 10 (exp 5) M respectively), and all experiments were carried out at approximately Csat or lower total protein concentration. The data at both salt concentrations show a consistent trend of decreasing fluorescence yield of the donor species (PAA) with increasing total protein concentration. This decrease is apparently more pronounced at 7% NaCl, consistent with the expected increased intermolecular interactions at higher salt concentrations (reflected in the lower solubility). The estimated average distance between protein molecules at 5 x 10 (exp 6) M is approximately 70 nm, well beyond the range where any FRET can be expected. The calculated RO, where 50% of the donor energy is transferred to the acceptor, for the PAA-CEWL * LY-CEWL system is 3.28 nm, based upon a PAA-CEWL quantum efficiency of 0.41.

  19. Protein-protein interactions of tandem affinity purified protein kinases from rice.

    PubMed

    Rohila, Jai S; Chen, Mei; Chen, Shuo; Chen, Johann; Cerny, Ronald L; Dardick, Christopher; Canlas, Patrick; Fujii, Hiroaki; Gribskov, Michael; Kanrar, Siddhartha; Knoflicek, Lucas; Stevenson, Becky; Xie, Mingtang; Xu, Xia; Zheng, Xianwu; Zhu, Jian-Kang; Ronald, Pamela; Fromm, Michael E

    2009-08-19

    Eighty-eight rice (Oryza sativa) cDNAs encoding rice leaf expressed protein kinases (PKs) were fused to a Tandem Affinity Purification tag (TAP-tag) and expressed in transgenic rice plants. The TAP-tagged PKs and interacting proteins were purified from the T1 progeny of the transgenic rice plants and identified by tandem mass spectrometry. Forty-five TAP-tagged PKs were recovered in this study and thirteen of these were found to interact with other rice proteins with a high probability score. In vivo phosphorylated sites were found for three of the PKs. A comparison of the TAP-tagged data from a combined analysis of 129 TAP-tagged rice protein kinases with a concurrent screen using yeast two hybrid methods identified an evolutionarily new rice protein that interacts with the well conserved cell division cycle 2 (CDC2) protein complex.

  20. Protein-Protein Interactions of Tandem Affinity Purified Protein Kinases from Rice

    PubMed Central

    Rohila, Jai S.; Chen, Mei; Chen, Shuo; Chen, Johann; Cerny, Ronald L.; Dardick, Christopher; Canlas, Patrick; Fujii, Hiroaki; Gribskov, Michael; Kanrar, Siddhartha; Knoflicek, Lucas; Stevenson, Becky; Xie, Mingtang; Xu, Xia; Zheng, Xianwu; Zhu, Jian-Kang; Ronald, Pamela; Fromm, Michael E.

    2009-01-01

    Eighty-eight rice (Oryza sativa) cDNAs encoding rice leaf expressed protein kinases (PKs) were fused to a Tandem Affinity Purification tag (TAP-tag) and expressed in transgenic rice plants. The TAP-tagged PKs and interacting proteins were purified from the T1 progeny of the transgenic rice plants and identified by tandem mass spectrometry. Forty-five TAP-tagged PKs were recovered in this study and thirteen of these were found to interact with other rice proteins with a high probability score. In vivo phosphorylated sites were found for three of the PKs. A comparison of the TAP-tagged data from a combined analysis of 129 TAP-tagged rice protein kinases with a concurrent screen using yeast two hybrid methods identified an evolutionarily new rice protein that interacts with the well conserved cell division cycle 2 (CDC2) protein complex. PMID:19690613

  1. Predicting protein-protein interactions from sequence using correlation coefficient and high-quality interaction dataset.

    PubMed

    Shi, Ming-Guang; Xia, Jun-Feng; Li, Xue-Ling; Huang, De-Shuang

    2010-03-01

    Identifying protein-protein interactions (PPIs) is critical for understanding the cellular function of the proteins and the machinery of a proteome. Data of PPIs derived from high-throughput technologies are often incomplete and noisy. Therefore, it is important to develop computational methods and high-quality interaction dataset for predicting PPIs. A sequence-based method is proposed by combining correlation coefficient (CC) transformation and support vector machine (SVM). CC transformation not only adequately considers the neighboring effect of protein sequence but describes the level of CC between two protein sequences. A gold standard positives (interacting) dataset MIPS Core and a gold standard negatives (non-interacting) dataset GO-NEG of yeast Saccharomyces cerevisiae were mined to objectively evaluate the above method and attenuate the bias. The SVM model combined with CC transformation yielded the best performance with a high accuracy of 87.94% using gold standard positives and gold standard negatives datasets. The source code of MATLAB and the datasets are available on request under smgsmg@mail.ustc.edu.cn.

  2. Interaction graph mining for protein complexes using local clique merging.

    PubMed

    Li, Xiao-Li; Tan, Soon-Heng; Foo, Chuan-Sheng; Ng, See-Kiong

    2005-01-01

    While recent technological advances have made available large datasets of experimentally-detected pairwise protein-protein interactions, there is still a lack of experimentally-determined protein complex data. To make up for this lack of protein complex data, we explore the mining of existing protein interaction graphs for protein complexes. This paper proposes a novel graph mining algorithm to detect the dense neighborhoods (highly connected regions) in an interaction graph which may correspond to protein complexes. Our algorithm first locates local cliques for each graph vertex (protein) and then merge the detected local cliques according to their affinity to form maximal dense regions. We present experimental results with yeast protein interaction data to demonstrate the effectiveness of our proposed method. Compared with other existing techniques, our predicted complexes can match or overlap significantly better with the known protein complexes in the MIPS benchmark database. Novel protein complexes were also predicted to help biologists in their search for new protein complexes.

  3. Glycosphingolipid–Protein Interaction in Signal Transduction

    PubMed Central

    Russo, Domenico; Parashuraman, Seetharaman; D’Angelo, Giovanni

    2016-01-01

    Glycosphingolipids (GSLs) are a class of ceramide-based glycolipids essential for embryo development in mammals. The synthesis of specific GSLs depends on the expression of distinctive sets of GSL synthesizing enzymes that is tightly regulated during development. Several reports have described how cell surface receptors can be kept in a resting state or activate alternative signalling events as a consequence of their interaction with GSLs. Specific GSLs, indeed, interface with specific protein domains that are found in signalling molecules and which act as GSL sensors to modify signalling responses. The regulation exerted by GSLs on signal transduction is orthogonal to the ligand–receptor axis, as it usually does not directly interfere with the ligand binding to receptors. Due to their properties of adjustable production and orthogonal action on receptors, GSLs add a new dimension to the control of the signalling in development. GSLs can, indeed, dynamically influence progenitor cell response to morphogenetic stimuli, resulting in alternative differentiation fates. Here, we review the available literature on GSL–protein interactions and their effects on cell signalling and development. PMID:27754465

  4. Protein Cross-Linking Capillary Electrophoresis for Protein-Protein Interaction Analysis.

    PubMed

    Ouimet, Claire M; Shao, Hao; Rauch, Jennifer N; Dawod, Mohamed; Nordhues, Bryce; Dickey, Chad A; Gestwicki, Jason E; Kennedy, Robert T

    2016-08-16

    Capillary electrophoresis (CE) has been identified as a useful platform for detecting, quantifying, and screening for modulators of protein-protein interactions (PPIs). In this method, one protein binding partner is labeled with a fluorophore, the protein binding partners are mixed, and then, the complex is separated from free protein to allow direct determination of bound to free ratios. Although it possesses many advantages for PPI studies, the method is limited by the need to have separation conditions that both prevent protein adsorption to capillary and maintain protein interactions during the separation. In this work, we use protein cross-linking capillary electrophoresis (PXCE) to overcome this limitation. In PXCE, the proteins are cross-linked under binding conditions and then separated. This approach eliminates the need to maintain noncovalent interactions during electrophoresis and facilitates method development. We report PXCE methods for an antibody-antigen interaction and heterodimer and homodimer heat shock protein complexes. Complexes are cross-linked by short treatments with formaldehyde after reaching binding equilibrium. Cross-linked complexes are separated by electrophoretic mobility using free solution CE or by size using sieving electrophoresis of SDS complexes. The method gives good quantitative results; e.g., a lysozyme-antibody interaction was found to have Kd = 24 ± 3 nM by PXCE and Kd = 17 ± 2 nM using isothermal calorimetry (ITC). Heat shock protein 70 (Hsp70) in complex with bcl2 associated athanogene 3 (Bag3) was found to have Kd = 25 ± 5 nM by PXCE which agrees with Kd values reported without cross-linking. Hsp70-Bag3 binding site mutants and small molecule inhibitors of Hsp70-Bag3 were characterized by PXCE with good agreement to inhibitory constants and IC50 values obtained by a bead-based flow cytometry protein interaction assay (FCPIA). PXCE allows rapid method development for quantitative analysis of PPIs.

  5. Novel protein-protein interaction family proteins involved in chloroplast movement response.

    PubMed

    Kodama, Yutaka; Suetsugu, Noriyuki; Wada, Masamitsu

    2011-04-01

    To optimize photosynthetic activity, chloroplasts change their intracellular location in response to ambient light conditions; chloroplasts move toward low intensity light to maximize light capture, and away from high intensity light to avoid photodamage. Although several proteins have been reported to be involved in the chloroplast photorelocation movement response, any physical interaction among them was not found so far. We recently found a physical interaction between two plant-specific coiled-coil proteins, WEB1 (Weak Chloroplast Movement under Blue Light 1) and PMI2 (Plastid Movement Impaired 2), that were identified to regulate chloroplast movement velocity. Since the both coiled-coil regions of WEB1 and PMI2 were classified into an uncharacterized protein family having DUF827 (DUF: Domain of Unknown Function) domain, it was the first report that DUF827 proteins could mediate protein-protein interaction. In this mini-review article, we discuss regarding molecular function of WEB1 and PMI2, and also define a novel protein family composed of WEB1, PMI2 and WEB1/PMI2-like proteins for protein-protein interaction in land plants.

  6. Developing algorithms for predicting protein-protein interactions of homology modeled proteins.

    SciTech Connect

    Martin, Shawn Bryan; Sale, Kenneth L.; Faulon, Jean-Loup Michel; Roe, Diana C.

    2006-01-01

    The goal of this project was to examine the protein-protein docking problem, especially as it relates to homology-based structures, identify the key bottlenecks in current software tools, and evaluate and prototype new algorithms that may be developed to improve these bottlenecks. This report describes the current challenges in the protein-protein docking problem: correctly predicting the binding site for the protein-protein interaction and correctly placing the sidechains. Two different and complementary approaches are taken that can help with the protein-protein docking problem. The first approach is to predict interaction sites prior to docking, and uses bioinformatics studies of protein-protein interactions to predict theses interaction site. The second approach is to improve validation of predicted complexes after docking, and uses an improved scoring function for evaluating proposed docked poses, incorporating a solvation term. This scoring function demonstrates significant improvement over current state-of-the art functions. Initial studies on both these approaches are promising, and argue for full development of these algorithms.

  7. Protein function prediction using neighbor relativity in protein-protein interaction network.

    PubMed

    Moosavi, Sobhan; Rahgozar, Masoud; Rahimi, Amir

    2013-04-01

    There is a large gap between the number of discovered proteins and the number of functionally annotated ones. Due to the high cost of determining protein function by wet-lab research, function prediction has become a major task for computational biology and bioinformatics. Some researches utilize the proteins interaction information to predict function for un-annotated proteins. In this paper, we propose a novel approach called "Neighbor Relativity Coefficient" (NRC) based on interaction network topology which estimates the functional similarity between two proteins. NRC is calculated for each pair of proteins based on their graph-based features including distance, common neighbors and the number of paths between them. In order to ascribe function to an un-annotated protein, NRC estimates a weight for each neighbor to transfer its annotation to the unknown protein. Finally, the unknown protein will be annotated by the top score transferred functions. We also investigate the effect of using different coefficients for various types of functions. The proposed method has been evaluated on Saccharomyces cerevisiae and Homo sapiens interaction networks. The performance analysis demonstrates that NRC yields better results in comparison with previous protein function prediction approaches that utilize interaction network.

  8. Modulation of nociceptive ion channels and receptors via protein-protein interactions: implications for pain relief

    PubMed Central

    Rouwette, Tom; Avenali, Luca; Sondermann, Julia; Narayanan, Pratibha; Gomez-Varela, David; Schmidt, Manuela

    2015-01-01

    In the last 2 decades biomedical research has provided great insights into the molecular signatures underlying painful conditions. However, chronic pain still imposes substantial challenges to researchers, clinicians and patients alike. Under pathological conditions, pain therapeutics often lack efficacy and exhibit only minimal safety profiles, which can be largely attributed to the targeting of molecules with key physiological functions throughout the body. In light of these difficulties, the identification of molecules and associated protein complexes specifically involved in chronic pain states is of paramount importance for designing selective interventions. Ion channels and receptors represent primary targets, as they critically shape nociceptive signaling from the periphery to the brain. Moreover, their function requires tight control, which is usually implemented by protein-protein interactions (PPIs). Indeed, manipulation of such PPIs entails the modulation of ion channel activity with widespread implications for influencing nociceptive signaling in a more specific way. In this review, we highlight recent advances in modulating ion channels and receptors via their PPI networks in the pursuit of relieving chronic pain. Moreover, we critically discuss the potential of targeting PPIs for developing novel pain therapies exhibiting higher efficacy and improved safety profiles. PMID:26039491

  9. The Foundations of Protein-Ligand Interaction

    NASA Astrophysics Data System (ADS)

    Klebe, Gerhard

    For the specific design of a drug we must first answer the question: How does a drug achieve its activity? An active ingredient must, in order to develop its action, bind to a particular target molecule in the body. Usually this is a protein, but also nucleic acids in the form of RNA and DNA can be target structures for active agents. The most important condition for binding is at first that the active agent exhibits the correct size and shape in order to optimally fit into a cavity exposed to the surface of the protein, the "bindingpocket". It is further necessary for the surface properties of the ligand and protein to be mutually compatible to form specific interactions. In 1894 Emil Fischer compared the exact fit of a substrate for the catalytic centre of an enzyme with the picture of a "lock-and-key". Paul Ehrlich coined in 1913 "Corpora non agunt nisi fixata", literally "bodies do not work when they are not bound". He wanted to imply that active agents that are meant to kill bacteria or parasites must be "fixed" by them, i.e. linked to their structures. Both concepts form the starting point for any rational concept in the development of active pharmaceutical ingredients. In many respects they still apply today. A drug must, after being administered, reach its target and interact with a biological macromolecule. Specific agents have a large affinity and sufficient selectivity to bind to the macromolecule's active site. This is the only way they can develop the desired biological activity without side-effects.

  10. Sedimentation Patterns of Rapidly Reversible Protein Interactions

    PubMed Central

    Schuck, Peter

    2010-01-01

    Abstract The transport behavior of macromolecular mixtures with rapidly reversible complex formation is of great interest in the study of protein interactions by many different methods. Complicated transport patterns arise even for simple bimolecular reactions, when all species exhibit different migration velocities. Although partial differential equations are available to describe the spatial and temporal evolution of the interacting system given particular initial conditions, a general overview of the phase behavior of the systems in parameter space has not yet been reported. In the case of sedimentation of two-component mixtures, this study presents simple analytical solutions that solve the underlying equations in the diffusion-free limit previously subject to Gilbert-Jenkins theory. The new expressions describe, with high precision, the average sedimentation coefficients and composition of each boundary, which allow the examination of features of the whole parameter space at once, and may be used for experimental design and robust analysis of experimental boundary patterns to derive the stoichiometry and affinity of the complex. This study finds previously unrecognized features, including a phase transition between boundary patterns. The model reveals that the time-average velocities of all components in the reaction mixture must match—a condition that suggests an intuitive physical picture of an effective particle of the coupled cosedimentation of an interacting system. Adding to the existing numerical solutions of the relevant partial differential equations, the effective particle model provides physical insights into the relationships of the parameters that govern sedimentation patterns. PMID:20441765

  11. Methods for Mapping of Interaction Networks Involving Membrane Proteins

    SciTech Connect

    Hooker, Brian S.; Bigelow, Diana J.; Lin, Chiann Tso

    2007-11-23

    Numerous approaches have been taken to study protein interactions, such as tagged protein complex isolation followed by mass spectrometry, yeast two-hybrid methods, fluorescence resonance energy transfer, surface plasmon resonance, site-directed mutagenesis, and crystallography. Membrane protein interactions pose significant challenges due to the need to solubilize membranes without disrupting protein-protein interactions. Traditionally, analysis of isolated protein complexes by high-resolution 2D gel electrophoresis has been the main method used to obtain an overall picture of proteome constituents and interactions. However, this method is time consuming, labor intensive, detects only abundant proteins and is not suitable for the coverage required to elucidate large interaction networks. In this review, we discuss the application of various methods to elucidate interactions involving membrane proteins. These techniques include methods for the direct isolation of single complexes or interactors as well as methods for characterization of entire subcellular and cellular interactomes.

  12. Directional interactions and cooperativity between mechanosensitive membrane proteins

    NASA Astrophysics Data System (ADS)

    Haselwandter, Christoph A.; Phillips, Rob

    2013-03-01

    While modern structural biology has provided us with a rich and diverse picture of membrane proteins, the biological function of membrane proteins is often influenced by the mechanical properties of the surrounding lipid bilayer. Here we explore the relation between the shape of membrane proteins and the cooperative function of membrane proteins induced by membrane-mediated elastic interactions. For the experimental model system of mechanosensitive ion channels we find that the sign and strength of elastic interactions depend on the protein shape, yielding distinct cooperative gating curves for distinct protein orientations. Our approach predicts how directional elastic interactions affect the molecular structure, organization, and biological function of proteins in crowded membranes.

  13. Protein-protein interaction network-based detection of functionally similar proteins within species.

    PubMed

    Song, Baoxing; Wang, Fen; Guo, Yang; Sang, Qing; Liu, Min; Li, Dengyun; Fang, Wei; Zhang, Deli

    2012-07-01

    Although functionally similar proteins across species have been widely studied, functionally similar proteins within species showing low sequence similarity have not been examined in detail. Identification of these proteins is of significant importance for understanding biological functions, evolution of protein families, progression of co-evolution, and convergent evolution and others which cannot be obtained by detection of functionally similar proteins across species. Here, we explored a method of detecting functionally similar proteins within species based on graph theory. After denoting protein-protein interaction networks using graphs, we split the graphs into subgraphs using the 1-hop method. Proteins with functional similarities in a species were detected using a method of modified shortest path to compare these subgraphs and to find the eligible optimal results. Using seven protein-protein interaction networks and this method, some functionally similar proteins with low sequence similarity that cannot detected by sequence alignment were identified. By analyzing the results, we found that, sometimes, it is difficult to separate homologous from convergent evolution. Evaluation of the performance of our method by gene ontology term overlap showed that the precision of our method was excellent.

  14. The Use of Interactive Raster Graphics in the Display and Manipulation of Multidimensional Data

    NASA Technical Reports Server (NTRS)

    Anderson, D. C.

    1981-01-01

    Techniques for the review, display, and manipulation of multidimensional data are developed and described. Multidimensional data is meant in this context to describe scalar data associated with a three dimensional geometry or otherwise too complex to be well represented by traditional graphs. Raster graphics techniques are used to display a shaded image of a three dimensional geometry. The use of color to represent scalar data associated with the geometries in shaded images is explored. Distinct hues are associated with discrete data ranges, thus emulating the traditional representation of data with isarithms, or lines of constant numerical value. Data ranges are alternatively associated with a continuous spectrum of hues to show subtler data trends. The application of raster graphics techniques to the display of bivariate functions is explored.

  15. Power Relationships, Interactional Dominance and Manipulation Strategies in Group Conversations of Turkish-Danish Children.

    ERIC Educational Resources Information Center

    Madsen, Lian Malai

    2003-01-01

    Focuses on interactional dominance and power wielding in bilingual conversation among school children. Finds that different pragmatic strategies are used by bilingual children as a means of negotiating power relationships and identities, but that the social relations and the power bases brought into the conversations by interactants make the…

  16. Essential protein identification based on essential protein-protein interaction prediction by Integrated Edge Weights.

    PubMed

    Jiang, Yuexu; Wang, Yan; Pang, Wei; Chen, Liang; Sun, Huiyan; Liang, Yanchun; Blanzieri, Enrico

    2015-07-15

    Essential proteins play a crucial role in cellular survival and development process. Experimentally, essential proteins are identified by gene knockouts or RNA interference, which are expensive and often fatal to the target organisms. Regarding this, an alternative yet important approach to essential protein identification is through computational prediction. Existing computational methods predict essential proteins based on their relative densities in a protein-protein interaction (PPI) network. Degree, betweenness, and other appropriate criteria are often used to measure the relative density. However, no matter what criterion is used, a protein is actually ordered by the attributes of this protein per se. In this research, we presented a novel computational method, Integrated Edge Weights (IEW), to first rank protein-protein interactions by integrating their edge weights, and then identified sub PPI networks consisting of those highly-ranked edges, and finally regarded the nodes in these sub networks as essential proteins. We evaluated IEW on three model organisms: Saccharomyces cerevisiae (S. cerevisiae), Escherichia coli (E. coli), and Caenorhabditis elegans (C. elegans). The experimental results showed that IEW achieved better performance than the state-of-the-art methods in terms of precision-recall and Jackknife measures. We had also demonstrated that IEW is a robust and effective method, which can retrieve biologically significant modules by its highly-ranked protein-protein interactions for S. cerevisiae, E. coli, and C. elegans. We believe that, with sufficient data provided, IEW can be used to any other organisms' essential protein identification. A website about IEW can be accessed from http://digbio.missouri.edu/IEW/index.html.

  17. Mechanisms of peroxynitrite interactions with heme proteins.

    PubMed

    Su, Jia; Groves, John T

    2010-07-19

    Oxygenated heme proteins are known to react rapidly with nitric oxide (NO) to produce peroxynitrite (PN) at the heme site. This process could lead either to attenuation of the effects of NO or to nitrosative protein damage. PN is a powerful nitrating and oxidizing agent that has been implicated in a variety of cell injuries. Accordingly, it is important to delineate the nature and variety of reaction mechanisms of PN interactions with heme proteins. In this Forum, we survey the range of reactions of PN with heme proteins, with particular attention to myoglobin and cytochrome c. While these two proteins are textbook paradigms for oxygen binding and electron transfer, respectively, both have recently been shown to have other important functions that involve NO and PN. We have recently described direct evidence that ferrylmyolgobin (ferrylMb) and nitrogen dioxide (NO(2)) are both produced during the reaction of PN and metmyolgobin (metMb) (Su, J.; Groves, J. T. J. Am. Chem. Soc. 2009, 131, 12979-12988). Kinetic evidence indicates that these products evolve from the initial formation of a caged radical intermediate [Fe(IV) horizontal lineO.NO(2)]. This caged pair reacts mainly via internal return with a rate constant k(r) to form metMb and nitrate in an oxygen-rebound scenario. Detectable amounts of ferrylMb are observed by stopped-flow spectrophotometry, appearing at a rate consistent with the rate, k(obs), of heme-mediated PN decomposition. Freely diffusing NO(2), which is liberated concomitantly from the radical pair (k(e)), preferentially nitrates myoglobin Tyr103 and added fluorescein. For cytochrome c, Raman spectroscopy has revealed that a substantial fraction of cytochrome c converts to a beta-sheet structure, at the expense of turns and helices at low pH (Balakrishnan, G.; Hu, Y.; Oyerinde, O. F.; Su, J.; Groves, J. T.; Spiro, T. G. J. Am. Chem. Soc., 2007, 129, 504-505). It is proposed that a short beta-sheet segment, comprising residues 37-39 and 58

  18. Chemical manipulation of the mTORC1 pathway in industrially relevant CHOK1 cells enhances production of therapeutic proteins.

    PubMed

    Dadehbeigi, Nazanin; Dickson, Alan J

    2015-07-01

    The mammalian target of rapamycin complex 1 (mTORC1) is known as a central coordinator of protein synthesis and cell growth in response to the cellular environment. In this work, chemical manipulation of mTORC1 pathway was employed to enhance mAb production as well as increase understanding of intracellular pathways in GS-CHOK1 cells. Using the phosphorylation status of mTORC1 downstream targets, S6K1 and 4E-BP1, as read-outs of mTORC1 activity, we investigated the contribution of each target protein to growth and/or productivity. Inoculation of cultures in the presence of rapamycin, a specific inhibitor of mTORC1, increased viability and final titer. The initial increase in specific productivity and inhibition of growth by rapamycin correlated with diminished phospho-S6K1. However, inhibition was transient and cells recovered by unknown mechanisms. In contrast, phosphorylation of 4E-BP1 was preserved in response to rapamycin. Finally, we examined the activity of mTORC1 after addition of a custom-designed feed. Feeding led to substantial increase in growth and productivity and the phosphorylation of both targets was elevated. Though many details of mTORC1 signaling in CHO cells remain to be clarified, we have provided evidence that environmental manipulation of the mTORC1 pathway correlates with changes in cell growth and recombinant protein production.

  19. A logical molecular circuit for programmable and autonomous regulation of protein activity using DNA aptamer-protein interactions.

    PubMed

    Han, Da; Zhu, Zhi; Wu, Cuichen; Peng, Lu; Zhou, Leiji; Gulbakan, Basri; Zhu, Guizhi; Williams, Kathryn R; Tan, Weihong

    2012-12-26

    Researchers increasingly envision an important role for artificial biochemical circuits in biological engineering, much like electrical circuits in electrical engineering. Similar to electrical circuits, which control electromechanical devices, biochemical circuits could be utilized as a type of servomechanism to control nanodevices in vitro, monitor chemical reactions in situ, or regulate gene expressions in vivo. (1) As a consequence of their relative robustness and potential applicability for controlling a wide range of in vitro chemistries, synthetic cell-free biochemical circuits promise to be useful in manipulating the functions of biological molecules. Here, we describe the first logical circuit based on DNA-protein interactions with accurate threshold control, enabling autonomous, self-sustained and programmable manipulation of protein activity in vitro. Similar circuits made previously were based primarily on DNA hybridization and strand displacement reactions. This new design uses the diverse nucleic acid interactions with proteins. The circuit can precisely sense the local enzymatic environment, such as the concentration of thrombin, and when it is excessively high, a coagulation inhibitor is automatically released by a concentration-adjusted circuit module. To demonstrate the programmable and autonomous modulation, a molecular circuit with different threshold concentrations of thrombin was tested as a proof of principle. In the future, owing to tunable regulation, design modularity and target specificity, this prototype could lead to the development of novel DNA biochemical circuits to control the delivery of aptamer-based drugs in smart and personalized medicine, providing a more efficient and safer therapeutic strategy.

  20. Categorizing biases in high-confidence high-throughput protein-protein interaction data sets.

    PubMed

    Yu, Xueping; Ivanic, Joseph; Memisević, Vesna; Wallqvist, Anders; Reifman, Jaques

    2011-12-01

    We characterized and evaluated the functional attributes of three yeast high-confidence protein-protein interaction data sets derived from affinity purification/mass spectrometry, protein-fragment complementation assay, and yeast two-hybrid experiments. The interacting proteins retrieved from these data sets formed distinct, partially overlapping sets with different protein-protein interaction characteristics. These differences were primarily a function of the deployed experimental technologies used to recover these interactions. This affected the total coverage of interactions and was especially evident in the recovery of interactions among different functional classes of proteins. We found that the interaction data obtained by the yeast two-hybrid method was the least biased toward any particular functional characterization. In contrast, interacting proteins in the affinity purification/mass spectrometry and protein-fragment complementation assay data sets were over- and under-represented among distinct and different functional categories. We delineated how these differences affected protein complex organization in the network of interactions, in particular for strongly interacting complexes (e.g. RNA and protein synthesis) versus weak and transient interacting complexes (e.g. protein transport). We quantified methodological differences in detecting protein interactions from larger protein complexes, in the correlation of protein abundance among interacting proteins, and in their connectivity of essential proteins. In the latter case, we showed that minimizing inherent methodology biases removed many of the ambiguous conclusions about protein essentiality and protein connectivity. We used these findings to rationalize how biological insights obtained by analyzing data sets originating from different sources sometimes do not agree or may even contradict each other. An important corollary of this work was that discrepancies in biological insights did not

  1. Specificity and non-specificity in RNA–protein interactions

    PubMed Central

    Jankowsky, Eckhard; Harris, Michael E.

    2016-01-01

    Gene expression is regulated by complex networks of interactions between RNAs and proteins. Proteins that interact with RNA have been traditionally viewed as either specific or non-specific; specific proteins interact preferentially with defined RNA sequence or structure motifs, whereas non-specific proteins interact with RNA sites devoid of such characteristics. Recent studies indicate that the binary “specific vs. non-specific” classification is insufficient to describe the full spectrum of RNA–protein interactions. Here, we review new methods that enable quantitative measurements of protein binding to large numbers of RNA variants, and the concepts aimed as describing resulting binding spectra: affinity distributions, comprehensive binding models and free energy landscapes. We discuss how these new methodologies and associated concepts enable work towards inclusive, quantitative models for specific and non-specific RNA–protein interactions. PMID:26285679

  2. Lipid demixing and protein-protein interactions in the adsorption of charged proteins on mixed membranes.

    PubMed Central

    May, S; Harries, D; Ben-Shaul, A

    2000-01-01

    The adsorption free energy of charged proteins on mixed membranes, containing varying amounts of (oppositely) charged lipids, is calculated based on a mean-field free energy expression that accounts explicitly for the ability of the lipids to demix locally, and for lateral interactions between the adsorbed proteins. Minimization of this free energy functional yields the familiar nonlinear Poisson-Boltzmann equation and the boundary condition at the membrane surface that allows for lipid charge rearrangement. These two self-consistent equations are solved simultaneously. The proteins are modeled as uniformly charged spheres and the (bare) membrane as an ideal two-dimensional binary mixture of charged and neutral lipids. Substantial variations in the lipid charge density profiles are found when highly charged proteins adsorb on weakly charged membranes; the lipids, at a certain demixing entropy penalty, adjust their concentration in the vicinity of the adsorbed protein to achieve optimal charge matching. Lateral repulsive interactions between the adsorbed proteins affect the lipid modulation profile and, at high densities, result in substantial lowering of the binding energy. Adsorption isotherms demonstrating the importance of lipid mobility and protein-protein interactions are calculated using an adsorption equation with a coverage-dependent binding constant. Typically, at bulk-surface equilibrium (i.e., when the membrane surface is "saturated" by adsorbed proteins), the membrane charges are "overcompensated" by the protein charges, because only about half of the protein charges (those on the hemispheres facing the membrane) are involved in charge neutralization. Finally, it is argued that the formation of lipid-protein domains may be enhanced by electrostatic adsorption of proteins, but its origin (e.g., elastic deformations associated with lipid demixing) is not purely electrostatic. PMID:11023883

  3. Alterations of social interaction through genetic and environmental manipulation of the 22q11.2 gene Sept5 in the mouse brain.

    PubMed

    Harper, Kathryn M; Hiramoto, Takeshi; Tanigaki, Kenji; Kang, Gina; Suzuki, Go; Trimble, William; Hiroi, Noboru

    2012-08-01

    Social behavior dysfunction is a symptomatic element of schizophrenia and autism spectrum disorder (ASD). Although altered activities in numerous brain regions are associated with defective social cognition and perception, the causative relationship between these altered activities and social cognition and perception-and their genetic underpinnings-are not known in humans. To address these issues, we took advantage of the link between hemizygous deletion of human chromosome 22q11.2 and high rates of social behavior dysfunction, schizophrenia and ASD. We genetically manipulated Sept5, a 22q11.2 gene, and evaluated its role in social interaction in mice. Sept5 deficiency, against a high degree of homogeneity in a congenic genetic background, selectively impaired active affiliative social interaction in mice. Conversely, virally guided overexpression of Sept5 in the hippocampus or, to a lesser extent, the amygdala elevated levels of active affiliative social interaction in C57BL/6J mice. Congenic knockout mice and mice overexpressing Sept5 in the hippocampus or amygdala were indistinguishable from control mice in novelty and olfactory responses, anxiety or motor activity. Moreover, post-weaning individual housing, an environmental condition designed to reduce stress in male mice, selectively raised levels of Sept5 protein in the amygdala and increased active affiliative social interaction in C57BL/6J mice. These findings identify this 22q11.2 gene in the hippocampus and amygdala as a determinant of social interaction and suggest that defective social interaction seen in 22q11.2-associated schizophrenia and ASD can be genetically and environmentally modified by altering this 22q11.2 gene.

  4. Development of small molecules designed to modulate protein-protein interactions.

    PubMed

    Che, Ye; Brooks, Bernard R; Marshall, Garland R

    2006-02-01

    Protein-protein interactions are ubiquitous, essential to almost all known biological processes, and offer attractive opportunities for therapeutic intervention. Developing small molecules that modulate protein-protein interactions is challenging, owing to the large size of protein-complex interface, the lack of well-defined binding pockets, etc. We describe a general approach based on the "privileged-structure hypothesis" [Che, Ph.D. Thesis, Washington University, 2003] - that any organic templates capable of mimicking surfaces of protein-recognition motifs are potential privileged scaffolds as protein-complex antagonists--to address the challenges inherent in the discovery of small-molecule inhibitors of protein-protein interactions.

  5. Engineering modular protein interaction switches by sequence overlap.

    PubMed

    Sallee, Nathan A; Yeh, Brian J; Lim, Wendell A

    2007-04-18

    Many cellular signaling pathways contain proteins whose interactions change in response to upstream inputs, allowing for conditional activation or repression of the interaction based on the presence of the input molecule. The ability to engineer similar regulation into protein interaction elements would provide us with powerful tools for controlling cell signaling. Here we describe an approach for engineering diverse synthetic protein interaction switches. Specifically, by overlapping the sequences of pairs of protein interaction domains and peptides, we have been able to generate mutually exclusive regulation over their interactions. Thus, the hybrid protein (which is composed of the two overlapped interaction modules) can bind to either of the two respective ligands for those modules, but not to both simultaneously. We show that these synthetic switch proteins can be used to regulate specific protein-protein interactions in vivo. These switches allow us to disrupt an interaction with the addition or activation of a protein input that has no natural connection to the interaction in question. Therefore, they give us the ability to make novel connections between normally unrelated signaling pathways and to rewire the input/output relationships of cellular behaviors. Our experiments also suggest a possible mechanism by which complex regulatory proteins might have evolved from simpler components.

  6. Nanoparticle-target interactions parallel antibody-protein interactions.

    PubMed

    Koh, Isaac; Hong, Rui; Weissleder, Ralph; Josephson, Lee

    2009-05-01

    Magnetic particles can act as magnetic relaxation switches (MRSw's) when they bind to target analytes, and switch between their dispersed and aggregated states resulting in changes in the spin-spin relaxation time (T(2)) of their surrounding water protons. Both nanoparticles (NPs, 10-100 nm) and micrometer-sized particles (MPs) have been employed as MRSw's, to sense drugs, metabolites, oligonucleotides, proteins, bacteria, and mammalian cells. To better understand how NPs or MPs interact with targets, we employed as a molecular recognition system the reaction between the Tag peptide of the influenza virus hemagglutinin and a monoclonal antibody to that peptide (anti-Tag). To obtain targets of different size and valency, we attached the Tag peptide to BSA (M(w)= 65000 Daltons, diameter = 8 nm) and to Latex spheres (diameter = 900 nm). To obtain magnetic probes of very different sizes, anti-Tag was conjugated to 40 nm NPs and 1 microm MPs. MP and NP probes reacted with Tag peptide targets in a manner similar to antibody/antigen reactions in solution, exhibiting so-called Prozone effects. MPs detected all types of targets with higher sensitivity than NPs with targets of higher valency being better detected than those of lower valency. The Tag/anti Tag recognition system can be used to synthesize combinations of molecular targets and magnetic probes, to more fully understand the aggregation reaction that occurs when probes bind targets in solution and the ensuing changes in water relaxation times that result.

  7. Newcastle disease virus induces stable formation of bona fide stress granules to facilitate viral replication through manipulating host protein translation.

    PubMed

    Sun, Yingjie; Dong, Luna; Yu, Shengqing; Wang, Xiaoxu; Zheng, Hang; Zhang, Pin; Meng, Chunchun; Zhan, Yuan; Tan, Lei; Song, Cuiping; Qiu, Xusheng; Wang, Guijun; Liao, Ying; Ding, Chan

    2017-04-01

    Mammalian cells respond to various environmental stressors to form stress granules (SGs) by arresting cytoplasmic mRNA, protein translation element, and RNA binding proteins. Virus-induced SGs function in different ways, depending on the species of virus; however, the mechanism of SG regulation of virus replication is not well understood. In this study, Newcastle disease virus (NDV) triggered stable formation of bona fide SGs on HeLa cells through activating the protein kinase R (PKR)/eIF2α pathway. NDV-induced SGs contained classic SG markers T-cell internal antigen (TIA)-1, Ras GTPase-activating protein-binding protein (G3BP)-1, eukaryotic initiation factors, and small ribosomal subunit, which could be disassembled in the presence of cycloheximide. Treatment with nocodazole, a microtubule disruption drug, led to the formation of relatively small and circular granules, indicating that NDV infection induces canonical SGs. Furthermore, the role of SGs on NDV replication was investigated by knockdown of TIA-1 and TIA-1-related (TIAR) protein, the 2 critical components involved in SG formation from the HeLa cells, followed by NDV infection. Results showed that depletion of TIA-1 or TIAR inhibited viral protein synthesis, reduced extracellular virus yields, but increased global protein translation. FISH revealed that NDV-induced SGs contained predominantly cellular mRNA rather than viral mRNA. Deletion of TIA-1 or TIAR reduced NP mRNA levels in polysomes. These results demonstrate that NDV triggers stable formation of bona fide SGs, which benefit viral protein translation and virus replication by arresting cellular mRNA.-Sun, Y., Dong, L., Yu, S., Wang, X., Zheng, H., Zhang, P., Meng, C., Zhan, Y., Tan, L., Song, C., Qiu, X., Wang, G., Liao, Y., Ding, C. Newcastle disease virus induces stable formation of bona fide stress granules to facilitate viral replication through manipulating host protein translation.

  8. TULIPs: tunable, light-controlled interacting protein tags for cell biology.

    PubMed

    Strickland, Devin; Lin, Yuan; Wagner, Elizabeth; Hope, C Matthew; Zayner, Josiah; Antoniou, Chloe; Sosnick, Tobin R; Weiss, Eric L; Glotzer, Michael

    2012-03-04

    Naturally photoswitchable proteins offer a means of directly manipulating the formation of protein complexes that drive a diversity of cellular processes. We developed tunable light-inducible dimerization tags (TULIPs) based on a synthetic interaction between the LOV2 domain of Avena sativa phototropin 1 (AsLOV2) and an engineered PDZ domain (ePDZ). TULIPs can recruit proteins to diverse structures in living yeast and mammalian cells, either globally or with precise spatial control using a steerable laser. The equilibrium binding and kinetic parameters of the interaction are tunable by mutation, making TULIPs readily adaptable to signaling pathways with varying sensitivities and response times. We demonstrate the utility of TULIPs by conferring light sensitivity to functionally distinct components of the yeast mating pathway and by directing the site of cell polarization.

  9. MCLIP Detection of Novel Protein-Protein Interactions at the Nuclear Envelope.

    PubMed

    Jafferali, Mohammed Hakim; Figueroa, Ricardo A; Hallberg, Einar

    2016-01-01

    The organization and function of the nuclear envelope (NE) involves hundreds of nuclear membrane proteins and myriad protein-protein interactions, most of which are still uncharacterized. Many NE proteins interact stably or dynamically with the nuclear lamina or chromosomes. This can make them difficult to extract under nondenaturing conditions, and greatly limits our ability to explore and identify functional protein interactions at the NE. This knowledge is needed to understand nuclear envelope structure and the mechanisms of human laminopathy diseases. This chapter provides detailed protocols for MCLIP (membrane cross-linking immunoprecipitation) identification of novel protein-protein interactions in mammalian cells.

  10. Protein-Protein Interactions Suggest Novel Activities of Human Cytomegalovirus Tegument Protein pUL103

    PubMed Central

    Ortiz, Daniel A.; Glassbrook, James E.

    2016-01-01

    ABSTRACT Human cytomegalovirus (HCMV) is an enveloped double-stranded DNA virus that causes severe disease in newborns and immunocompromised patients. During infection, the host cell endosecretory system is remodeled to form the cytoplasmic virion assembly complex (cVAC). We and others previously identified the conserved, multifunctional HCMV virion tegument protein pUL103 as important for cVAC biogenesis and efficient secondary envelopment. To help define its mechanisms of action and predict additional functions, we used two complementary methods, coimmunoprecipitation (co-IP) and proximity biotinylation (BioID), to identify viral and cellular proteins that interact with pUL103. By using the two methods in parallel and applying stringent selection criteria, we identified potentially high-value interactions of pUL103 with 13 HCMV and 18 cellular proteins. Detection of the previously identified pUL103-pUL71 interaction, as well as verification of several interactions by reverse co-IP, supports the specificity of our screening process. As might be expected for a tegument protein, interactions were identified that suggest distinct roles for pUL103 across the arc of lytic infection, including interactions with proteins involved in cellular antiviral responses, nuclear activities, and biogenesis and transport of cytoplasmic vesicles. Further analysis of some of these interactions expands our understanding of the multifunctional repertoire of pUL103: we detected HCMV pUL103 in nuclei of infected cells and identified an ALIX-binding domain within the pUL103 sequence. IMPORTANCE Human cytomegalovirus (HCMV) is able to reconfigure the host cell machinery to establish a virion production factory, the cytoplasmic virion assembly complex (cVAC). cVAC biogenesis and operation represent targets for development of novel HCMV antivirals. We previously showed that the HCMV tegument protein pUL103 is required for cVAC biogenesis. Using pUL103 as bait, we investigated viral and

  11. S-linked protein homocysteinylation: identifying targets based on structural, physicochemical and protein-protein interactions of homocysteinylated proteins.

    PubMed

    Silla, Yumnam; Sundaramoorthy, Elayanambi; Talwar, Puneet; Sengupta, Shantanu

    2013-05-01

    An elevated level of homocysteine, a thiol-containing amino acid is associated with a wide spectrum of disease conditions. A majority (>80 %) of the circulating homocysteine exist in protein-bound form. Homocysteine can bind to free cysteine residues in the protein or could cleave accessible cysteine disulfide bonds via thiol disulfide exchange reaction. Binding of homocysteine to proteins could potentially alter the structure and/or function of the protein. To date only 21 proteins have been experimentally shown to bind homocysteine. In this study we attempted to identify other proteins that could potentially bind to homocysteine based on the criteria that such proteins will have significant 3D structural homology with the proteins that have been experimentally validated and have solvent accessible cysteine residues either with high dihedral strain energy (for cysteine-cysteine disulfide bonds) or low pKa (for free cysteine residues). This analysis led us to the identification of 78 such proteins of which 68 proteins had 154 solvent accessible disulfide cysteine pairs with high dihedral strain energy and 10 proteins had free cysteine residues with low pKa that could potentially bind to homocysteine. Further, protein-protein interaction network was built to identify the interacting partners of these putative homocysteine binding proteins. We found that the 21 experimentally validated proteins had 174 interacting partners while the 78 proteins identified in our analysis had 445 first interacting partners. These proteins are mainly involved in biological activities such as complement and coagulation pathway, focal adhesion, ECM-receptor, ErbB signalling and cancer pathways, etc. paralleling the disease-specific attributes associated with hyperhomocysteinemia.

  12. An interactive graphics program to retrieve, display, compare, manipulate, curve fit, difference and cross plot wind tunnel data

    NASA Technical Reports Server (NTRS)

    Elliott, R. D.; Werner, N. M.; Baker, W. M.

    1975-01-01

    The Aerodynamic Data Analysis and Integration System (ADAIS), developed as a highly interactive computer graphics program capable of manipulating large quantities of data such that addressable elements of a data base can be called up for graphic display, compared, curve fit, stored, retrieved, differenced, etc., was described. The general nature of the system is evidenced by the fact that limited usage has already occurred with data bases consisting of thermodynamic, basic loads, and flight dynamics data. Productivity using ADAIS of five times that for conventional manual methods of wind tunnel data analysis is routinely achieved. In wind tunnel data analysis, data from one or more runs of a particular test may be called up and displayed along with data from one or more runs of a different test. Curves may be faired through the data points by any of four methods, including cubic spline and least squares polynomial fit up to seventh order.

  13. Primary reaction control system/remote manipulator system interaction with loaded arm. Space shuttle engineering and operations support

    NASA Technical Reports Server (NTRS)

    Taylor, E. C.; Davis, J. D.

    1978-01-01

    A study of the interaction between the orbiter primary reaction control system (PRCS) and the remote manipulator system (RMS) with a loaded arm is documented. This analysis was performed with the Payload Deployment and Retrieval Systems Simulation (PDRSS) program with the passive arm bending option. The passive-arm model simulates the arm as massless elastic links with locked joints. The study was divided into two parts. The first part was the evaluation of the response of the arm to step inputs (i.e. constant jet torques) about each of the orbiter body axes. The second part of the study was the evaluation of the response of the arm to minimum impulse primary RCS jet firings with both single pulse and pulse train inputs.

  14. Magnetic Radial Vortex Stabilization and Efficient Manipulation Driven by the Dzyaloshinskii-Moriya Interaction and Spin-Transfer Torque

    NASA Astrophysics Data System (ADS)

    Siracusano, G.; Tomasello, R.; Giordano, A.; Puliafito, V.; Azzerboni, B.; Ozatay, O.; Carpentieri, M.; Finocchio, G.

    2016-08-01

    Solitons are very promising for the design of the next generation of ultralow power devices for storage and computation. The key ingredient to achieving this goal is the fundamental understanding of their stabilization and manipulation. Here, we show how the interfacial Dzyaloshinskii-Moriya Interaction (IDMI) is able to lift the energy degeneracy of a magnetic vortex state by stabilizing a topological soliton with radial chirality, hereafter called radial vortex. It has a noninteger Skyrmion number S (0.5 <|S |<1 ) due to both the vortex core polarity and the magnetization tilting induced by the IDMI boundary conditions. Micromagnetic simulations predict that a magnetoresistive memory based on the radial vortex state in both free and polarizer layers can be efficiently switched by a threshold current density smaller than 106 A /cm2 . The switching processes occur via the nucleation of topologically connected vortices and vortex-antivortex pairs, followed by spin-wave emissions due to vortex-antivortex annihilations.

  15. A Laboratory-Intensive Course on the Experimental Study of Protein-Protein Interactions

    ERIC Educational Resources Information Center

    Witherow, D. Scott; Carson, Sue

    2011-01-01

    The study of protein-protein interactions is important to scientists in a wide range of disciplines. We present here the assessment of a lab-intensive course that teaches students techniques used to identify and further study protein-protein interactions. One of the unique elements of the course is that students perform a yeast two-hybrid screen…

  16. Computational approaches for detecting protein complexes from protein interaction networks: a survey

    PubMed Central

    2010-01-01

    Background Most proteins form macromolecular complexes to perform their biological functions. However, experimentally determined protein complex data, especially of those involving more than two protein partners, are relatively limited in the current state-of-the-art high-throughput experimental techniques. Nevertheless, many techniques (such as yeast-two-hybrid) have enabled systematic screening of pairwise protein-protein interactions en masse. Thus computational approaches for detecting protein complexes from protein interaction data are useful complements to the limited experimental methods. They can be used together with the experimental methods for mapping the interactions of proteins to understand how different proteins are organized into higher-level substructures to perform various cellular functions. Results Given the abundance of pairwise protein interaction data from high-throughput genome-wide experimental screenings, a protein interaction network can be constructed from protein interaction data by considering individual proteins as the nodes, and the existence of a physical interaction between a pair of proteins as a link. This binary protein interaction graph can then be used for detecting protein complexes using graph clustering techniques. In this paper, we review and evaluate the state-of-the-art techniques for computational detection of protein complexes, and discuss some promising research directions in this field. Conclusions Experimental results with yeast protein interaction data show that the interaction subgraphs discovered by various computational methods matched well with actual protein complexes. In addition, the computational approaches have also improved in performance over the years. Further improvements could be achieved if the quality of the underlying protein interaction data can be considered adequately to minimize the undesirable effects from the irrelevant and noisy sources, and the various biological evidences can be better

  17. Manipulating Excited-State Dynamics of Individual Light-Harvesting Chromophores through Restricted Motions in a Hydrated Nanoscale Protein Cavity.

    PubMed

    Noriega, Rodrigo; Finley, Daniel T; Haberstroh, John; Geissler, Phillip L; Francis, Matthew B; Ginsberg, Naomi S

    2015-06-11

    Manipulating the photophysical properties of light-absorbing units is a crucial element in the design of biomimetic light-harvesting systems. Using a highly tunable synthetic platform combined with transient absorption and time-resolved fluorescence measurements and molecular dynamics simulations, we interrogate isolated chromophores covalently linked to different positions in the interior of the hydrated nanoscale cavity of a supramolecular protein assembly. We find that, following photoexcitation, the time scales over which these chromophores are solvated, undergo conformational rearrangements, and return to the ground state are highly sensitive to their position within this cavity and are significantly slower than in a bulk aqueous solution. Molecular dynamics simulations reveal the hindered translations and rotations of water molecules within the protein cavity with spatial specificity. The results presented herein show that fully hydrated nanoscale protein cavities are a promising way to mimic the tight protein pockets found in natural light-harvesting complexes. We also show that the interplay between protein, solvent, and chromophores can be used to substantially tune the relaxation processes within artificial light-harvesting assemblies in order to significantly improve the yield of interchromophore energy transfer and extend the range of excitation transport. Our observations have implications for other important, similarly sized bioinspired materials, such as nanoreactors and biocompatible targeted delivery agents.

  18. Microbial protein production in activated suspension tanks manipulating C:N ratio in feed and the implications for fish culture.

    PubMed

    Azim, M E; Little, D C; Bron, J E

    2008-06-01

    The present experiment investigated the possibility of microbial protein production in 250 l indoor tanks by manipulating C:N ratio in fish feed applied. Two different levels of protein feed (35% and 22% CP) resulting in C:N ratio of 8.4 and 11.6, respectively, were applied at 25 g daily in each tank. Tanks were aerated and agitated continuously using a dome diffuser. The experiment was carried out for eight weeks. The biofloc development in terms of VSS and BOD5 was better in the low protein fed tanks than in the high protein fed tanks. An estimated biofloc productivity ranged 3-5 g Cm(-3)day(-1). A 3-D image stained with DAPI indicates that the biofloc is comprised of hundreds of bacterial nuclei, size being ranged from 100 to 200 microm. Biofloc quality was independent of the quality of feed applied and contained more than 50% crude protein, 2.5% crude lipid, 4% fibre, 7% ash and 22 kJ g(-1) energy on dry matter basis. The dietary composition and size of biofloc can be considered as appropriate for all omnivorous fish species. The underlying ecological processes are explained through factor analysis. The potential of using biofloc in fish culture is also discussed.

  19. Three-dimensional visualization of protein interaction networks.

    PubMed

    Han, Kyungsook; Byun, Yanga

    2004-03-01

    Protein interaction networks provide us with contextual information within which protein function can be interpreted and will assist many biomedical studies. We have developed a new force-directed layout algorithm for visualizing protein interactions in three-dimensional space. Our algorithm divides nodes into three groups based on their interacting properties: bi-connected sub-graph in the center, terminal nodes at the outermost region, and the rest in between them. Experimental results show that our algorithm efficiently generates a clear and aesthetically pleasing drawing of large-scale protein interaction networks and that it is an order of magnitude faster than other force-directed layouts.

  20. Phage display library screening for identification of interacting protein partners.

    PubMed

    Addepalli, Balasubrahmanyam; Rao, Suryadevara; Hunt, Arthur G

    2015-01-01

    Phage display is a versatile high-throughput screening method employed to understand and improve the chemical biology, be it production of human monoclonal antibodies or identification of interacting protein partners. A majority of cell proteins operate in a concerted fashion either by stable or transient interactions. Such interactions can be mediated by recognition of small amino acid sequence motifs on the protein surface. Phage display can play a crucial role in identification of such motifs. This report describes the use of phage display for the identification of high affinity sequence motifs that could be responsible for interactions with a target (bait) protein.

  1. Human enterovirus 71 protein interaction network prompts antiviral drug repositioning

    PubMed Central

    Han, Lu; Li, Kang; Jin, Chaozhi; Wang, Jian; Li, Qingjun; Zhang, Qiling; Cheng, Qiyue; Yang, Jing; Bo, Xiaochen; Wang, Shengqi

    2017-01-01

    As a predominant cause of human hand, foot, and mouth disease, enterovirus 71 (EV71) infection may lead to serious diseases and result in severe consequences that threaten public health and cause widespread panic. Although the systematic identification of physical interactions between viral proteins and host proteins provides initial information for the recognition of the cellular mechanism involved in viral infection and the development of new therapies, EV71-host protein interactions have not been explored. Here, we identified interactions between EV71 proteins and host cellular proteins and confirmed the functional relationships of EV71-interacting proteins (EIPs) with virus proliferation and infection by integrating a human protein interaction network and by functional annotation. We found that most EIPs had known interactions with other viruses. We also predicted ATP6V0C as a broad-spectrum essential host factor and validated its essentiality for EV71 infection in vitro. EIPs and their interacting proteins were more likely to be targets of anti-inflammatory and neurological drugs, indicating their potential to serve as host-oriented antiviral targets. Thus, we used a connectivity map to find drugs that inhibited EIP expression. We predicted tanespimycin as a candidate and demonstrated its antiviral efficiency in vitro. These findings provide the first systematic identification of EV71-host protein interactions, an analysis of EIP protein characteristics and a demonstration of their value in developing host-oriented antiviral therapies. PMID:28220872

  2. Human enterovirus 71 protein interaction network prompts antiviral drug repositioning.

    PubMed

    Han, Lu; Li, Kang; Jin, Chaozhi; Wang, Jian; Li, Qingjun; Zhang, Qiling; Cheng, Qiyue; Yang, Jing; Bo, Xiaochen; Wang, Shengqi

    2017-02-21

    As a predominant cause of human hand, foot, and mouth disease, enterovirus 71 (EV71) infection may lead to serious diseases and result in severe consequences that threaten public health and cause widespread panic. Although the systematic identification of physical interactions between viral proteins and host proteins provides initial information for the recognition of the cellular mechanism involved in viral infection and the development of new therapies, EV71-host protein interactions have not been explored. Here, we identified interactions between EV71 proteins and host cellular proteins and confirmed the functional relationships of EV71-interacting proteins (EIPs) with virus proliferation and infection by integrating a human protein interaction network and by functional annotation. We found that most EIPs had known interactions with other viruses. We also predicted ATP6V0C as a broad-spectrum essential host factor and validated its essentiality for EV71 infection in vitro. EIPs and their interacting proteins were more likely to be targets of anti-inflammatory and neurological drugs, indicating their potential to serve as host-oriented antiviral targets. Thus, we used a connectivity map to find drugs that inhibited EIP expression. We predicted tanespimycin as a candidate and demonstrated its antiviral efficiency in vitro. These findings provide the first systematic identification of EV71-host protein interactions, an analysis of EIP protein characteristics and a demonstration of their value in developing host-oriented antiviral therapies.

  3. Detecting remotely related proteins by their interactions and sequence similarity

    PubMed Central

    Espadaler, Jordi; Aragüés, Ramón; Eswar, Narayanan; Marti-Renom, Marc A.; Querol, Enrique; Avilés, Francesc X.; Sali, Andrej; Oliva, Baldomero

    2005-01-01

    The function of an uncharacterized protein is usually inferred either from its homology to, or its interactions with, characterized proteins. Here, we use both sequence similarity and protein interactions to identify relationships between remotely related protein sequences. We rely on the fact that homologous sequences share similar interactions, and, therefore, the set of interacting partners of the partners of a given protein is enriched by its homologs. The approach was benchmarked by assigning the fold and functional family to test sequences of known structure. Specifically, we relied on 1,434 proteins with known folds, as defined in the Structural Classification of Proteins (SCOP) database, and with known interacting partners, as defined in the Database of Interacting Proteins (DIP). For this subset, the specificity of fold assignment was increased from 54% for position-specific iterative blast to 75% for our approach, with a concomitant increase in sensitivity for a few percentage points. Similarly, the specificity of family assignment at the e-value threshold of 10-8 was increased from 70% to 87%. The proposed method would be a useful tool for large-scale automated discovery of remote relationships between protein sequences, given its unique reliance on sequence similarity and protein-protein interactions. PMID:15883372

  4. All-optical manipulation and probing of the d-f exchange interaction in EuTe.

    PubMed

    Subkhangulov, R R; Henriques, A B; Rappl, P H O; Abramof, E; Rasing, Th; Kimel, A V

    2014-03-24

    We demonstrate that the ultrafast fast dynamics of the d-f exchange interaction, between conduction band electrons and lattice spins in EuTe, can be accessed using an all-optical technique. Our results reveal, in full detail, the time evolution of the d-f exchange interaction induced by a femtosecond laser pulse. Specifically, by monitoring the time resolved dynamics of the reflectivity changes and Kerr rotation of a weak light pulse reflected from the surface of the sample, it is shown that an intense femtosecond light pulse with photon energies higher than that of the bandgap, triggers spin waves in EuTe. The laser-induced spin waves modulate the d-f exchange interaction, and cause the bandgap to oscillate with an amplitude reaching 1 meV, at frequencies up to tens of GHz. The ability to control and monitor the dynamics of the exchange energy with our all-optical technique opens up new opportunities for the manipulation of magnetism at ultrafast time-scales.

  5. Manipulating energy and spin currents in non-equilibrium systems of interacting qubits

    NASA Astrophysics Data System (ADS)

    Popkov, V.; Livi, R.

    2013-02-01

    We consider a generic interacting chain of qubits, which are coupled at the edges to baths of fixed polarizations. We can determine the non-equilibrium steady states, described by the fixed point of the Lindblad master equation. Under rather general assumptions about local pumping and interactions, symmetries of the reduced density matrix are revealed. The symmetries drastically restrict the form of the steady density matrices in such a way that an exponentially large subset of one-point and many-point correlation functions are found to vanish. As an example we show how in a Heisenberg spin chain a suitable choice of the baths can completely switch off either the spin or the energy current, or both of them, despite the presence of large boundary gradients.

  6. Role of protein-protein interactions in cytochrome P450-mediated drug metabolism and toxicity.

    PubMed

    Kandel, Sylvie E; Lampe, Jed N

    2014-09-15

    Through their unique oxidative chemistry, cytochrome P450 monooxygenases (CYPs) catalyze the elimination of most drugs and toxins from the human body. Protein-protein interactions play a critical role in this process. Historically, the study of CYP-protein interactions has focused on their electron transfer partners and allosteric mediators, cytochrome P450 reductase and cytochrome b5. However, CYPs can bind other proteins that also affect CYP function. Some examples include the progesterone receptor membrane component 1, damage resistance protein 1, human and bovine serum albumin, and intestinal fatty acid binding protein, in addition to other CYP isoforms. Furthermore, disruption of these interactions can lead to altered paths of metabolism and the production of toxic metabolites. In this review, we summarize the available evidence for CYP protein-protein interactions from the literature and offer a discussion of the potential impact of future studies aimed at characterizing noncanonical protein-protein interactions with CYP enzymes.

  7. Encoding protein-ligand interaction patterns in fingerprints and graphs.

    PubMed

    Desaphy, Jérémy; Raimbaud, Eric; Ducrot, Pierre; Rognan, Didier

    2013-03-25

    We herewith present a novel and universal method to convert protein-ligand coordinates into a simple fingerprint of 210 integers registering the corresponding molecular interaction pattern. Each interaction (hydrophobic, aromatic, hydrogen bond, ionic bond, metal complexation) is detected on the fly and physically described by a pseudoatom centered either on the interacting ligand atom, the interacting protein atom, or the geometric center of both interacting atoms. Counting all possible triplets of interaction pseudoatoms within six distance ranges, and pruning the full integer vector to keep the most frequent triplets enables the definition of a simple (210 integers) and coordinate frame-invariant interaction pattern descriptor (TIFP) that can be applied to compare any pair of protein-ligand complexes. TIFP fingerprints have been calculated for ca. 10,000 druggable protein-ligand complexes therefore enabling a wide comparison of relationships between interaction pattern similarity and ligand or binding site pairwise similarity. We notably show that interaction pattern similarity strongly depends on binding site similarity. In addition to the TIFP fingerprint which registers intermolecular interactions between a ligand and its target protein, we developed two tools (Ishape, Grim) to align protein-ligand complexes from their interaction patterns. Ishape is based on the overlap of interaction pseudoatoms using a smooth Gaussian function, whereas Grim utilizes a standard clique detection algorithm to match interaction pattern graphs. Both tools are complementary and enable protein-ligand complex alignments capitalizing on both global and local pattern similarities. The new fingerprint and companion alignment tools have been successfully used in three scenarios: (i) interaction-biased alignment of protein-ligand complexes, (ii) postprocessing docking poses according to known interaction patterns for a particular target, and (iii) virtual screening for bioisosteric

  8. Carbene footprinting accurately maps binding sites in protein-ligand and protein-protein interactions.

    PubMed

    Manzi, Lucio; Barrow, Andrew S; Scott, Daniel; Layfield, Robert; Wright, Timothy G; Moses, John E; Oldham, Neil J

    2016-11-16

    Specific interactions between proteins and their binding partners are fundamental to life processes. The ability to detect protein complexes, and map their sites of binding, is crucial to understanding basic biology at the molecular level. Methods that employ sensitive analytical techniques such as mass spectrometry have the potential to provide valuable insights with very little material and on short time scales. Here we present a differential protein footprinting technique employing an efficient photo-activated probe for use with mass spectrometry. Using this methodology the location of a carbohydrate substrate was accurately mapped to the binding cleft of lysozyme, and in a more complex example, the interactions between a 100 kDa, multi-domain deubiquitinating enzyme, USP5 and a diubiquitin substrate were located to different functional domains. The much improved properties of this probe make carbene footprinting a viable method for rapid and accurate identification of protein binding sites utilizing benign, near-UV photoactivation.

  9. Carbene footprinting accurately maps binding sites in protein-ligand and protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Manzi, Lucio; Barrow, Andrew S.; Scott, Daniel; Layfield, Robert; Wright, Timothy G.; Moses, John E.; Oldham, Neil J.

    2016-11-01

    Specific interactions between proteins and their binding partners are fundamental to life processes. The ability to detect protein complexes, and map their sites of binding, is crucial to understanding basic biology at the molecular level. Methods that employ sensitive analytical techniques such as mass spectrometry have the potential to provide valuable insights with very little material and on short time scales. Here we present a differential protein footprinting technique employing an efficient photo-activated probe for use with mass spectrometry. Using this methodology the location of a carbohydrate substrate was accurately mapped to the binding cleft of lysozyme, and in a more complex example, the interactions between a 100 kDa, multi-domain deubiquitinating enzyme, USP5 and a diubiquitin substrate were located to different functional domains. The much improved properties of this probe make carbene footprinting a viable method for rapid and accurate identification of protein binding sites utilizing benign, near-UV photoactivation.

  10. Redox regulation of protein tyrosine phosphatase 1B by manipulation of dietary selenium affects the triglyceride concentration in rat liver.

    PubMed

    Mueller, Andreas S; Klomann, Sandra D; Wolf, Nicole M; Schneider, Sandra; Schmidt, Rupert; Spielmann, Julia; Stangl, Gabriele; Eder, Klaus; Pallauf, Josef

    2008-12-01

    Protein tyrosine phosphatase 1B (PTP1B) is a key enzyme in the counter-regulation of insulin signaling and in the stimulation of fatty acid synthesis. Selenium (Se), via the activities of glutathione peroxidase (GPx) and thioredoxin reductase (TrxR), is involved in the removal of H(2)O(2) and organic peroxides, which are critical compounds in the modulation of PTP1B activity via glutathionylation. Our study with growing rats investigated how the manipulation of dietary Se concentration influences the regulation of PTP1B and lipogenic effects mediated by PTP1B. Weanling albino rats were divided into 3 groups of 10. The negative control group (NC) was fed a Se-deficient diet for 8 wk. Rats in groups Se75 and Se150 received diets supplemented with 75 or 150 microg Se/kg. Se supplementation of the rats strongly influenced expression and activity of the selenoenzymes cytosolic GPx, plasma GPx, phospholipidhydroperoxide GPx, and cytosolic TrxR, and liver PTP1B. Liver PTP1B activity was significantly higher in groups Se75 and Se150 than in the NC group and this was attributed to a lowered inhibition of the enzyme by glutathionylation. The increased liver PTP1B activity in groups Se75 and Se150 resulted in 1.1- and 1.4-fold higher liver triglyceride concentrations than in the NC rats. The upregulation of the sterol regulatory element binding protein-1c and of fatty acid synthase, 2 PTP1B targets, provided a possible explanation for the lipogenic effect of PTP1B due to the manipulation of dietary Se. We therefore conclude that redox-regulated proteins, such as PTP1B, represent important interfaces between dietary antioxidants such as Se and the regulation of metabolic processes.

  11. The protein interaction landscape of the human CMGC kinase group.

    PubMed

    Varjosalo, Markku; Keskitalo, Salla; Van Drogen, Audrey; Nurkkala, Helka; Vichalkovski, Anton; Aebersold, Ruedi; Gstaiger, Matthias

    2013-04-25

    Cellular information processing via reversible protein phosphorylation requires tight control of the localization, activity, and substrate specificity of protein kinases, which to a large extent is accomplished by complex formation with other proteins. Despite their critical role in cellular regulation and pathogenesis, protein interaction information is available for only a subset of the 518 human protein kinases. Here we present a global proteomic analysis of complexes of the human CMGC kinase group. In addition to subgroup-specific functional enrichment and modularity, the identified 652 high-confidence kinase-protein interactions provide a specific biochemical context for many poorly studied CMGC kinases. Furthermore, the analysis revealed a kinase-kinase subnetwork and candidate substrates for CMGC kinases. Finally, the presented interaction proteome uncovered a large set of interactions with proteins genetically linked to a range of human diseases, including cancer, suggesting additional routes for analyzing the role of CMGC kinases in controlling human disease pathways.

  12. On Manipulating Nonverbal Interaction Style to Increase Anthropomorphic Computer Character Credibility

    SciTech Connect

    Cowell, Andrew J.; Stanney, Kay M.

    2003-09-01

    This study examined the effectiveness of enhancing humanagentinteraction through the use of nonverbal behaviors. Ataxonomy is described, which organizes nonverbal behaviorsinto functional categories and the manner in which they can beembodied (i.e. through gesture, posture, paralanguage, eyecontact and facial expression). Prototype computer characterswere created according to guidelines extracted from thetaxonomy and their efficacy was empirical evaluated. Theresults indicate that by including trusting nonverbal behaviors,the perceived credibility of a computer character was enhanced,although addition of trusting bodily nonverbal behaviorprovided little in addition to trusting facial nonverbal behavior.Perhaps more importantly, a character expressing non-trustingnonverbal behaviors was perceived to be the least credible of allcharacters examined (including a character that expressed nononverbal behavior). Participants that interacted with thispersona perceived the task to be more demanding, madesignificantly more errors, and rated their interaction lesspositively and more monotonous than those using trustingpersonas. They also rated this character to be less likable,accurate, and intelligent. Taken together, the results from thisstudy suggest that there may indeed be benefit to endowingcomputer characters with nonverbal trusting behaviors, as longas those behaviors are accurately and appropriately portrayed.Such behaviors may lead to a more trusting environment andpositive experience for users. Negative character behavior,however, such as non-trusting behavior, may squander theadvantages that embodiment brings.

  13. Manipulating Magnetism: Ru-2(5+) Paddlewheels Devoid of Axial Interactions

    SciTech Connect

    Chiarella, Gina M; Cotton, F. A.; Murillo, Carlos A; Ventura, Karen; Vilagran, Dino; Wang, Xiaoping

    2014-01-01

    Variable-temperature magnetic and structural data of two pairs of diruthenium isomers, one pair having an axial ligand and the formula Ru-2(DArF)(4)Cl (where DArF is the anion of a diarylformamidine isomer and Ar = p-anisyl or m-anisyl) and the other one being essentially identical but devoid of axial ligands and having the formula [Ru-2(DArF)(4)]BF4, show that the axial ligand has a significant effect on the electronic structure of the diruthenium unit. Variable temperature crystallographic and magnetic data as well as density functional theory calculations unequivocally demonstrate the occurrence of pi interactions between the p orbitals of the chlorine ligand and the pi* orbitals in the Ru-2(5+) units. The magnetic and structural data are consistent with the existence of combined ligand sigma/metal sigma and ligand p pi/metal-d pi interactions. Electron paramagnetic resonance data show unambiguously that the unpaired electrons are in metal-based molecular orbitals.

  14. Protein interactions in genome maintenance as novel antibacterial targets.

    PubMed

    Marceau, Aimee H; Bernstein, Douglas A; Walsh, Brian W; Shapiro, Walker; Simmons, Lyle A; Keck, James L

    2013-01-01

    Antibacterial compounds typically act by directly inhibiting essential bacterial enzyme activities. Although this general mechanism of action has fueled traditional antibiotic discovery efforts for decades, new antibiotic development has not kept pace with the emergence of drug resistant bacterial strains. These limitations have severely restricted the therapeutic tools available for treating bacterial infections. Here we test an alternative antibacterial lead-compound identification strategy in which essential protein-protein interactions are targeted rather than enzymatic activities. Bacterial single-stranded DNA-binding proteins (SSBs) form conserved protein interaction "hubs" that are essential for recruiting many DNA replication, recombination, and repair proteins to SSB/DNA nucleoprotein substrates. Three small molecules that block SSB/protein interactions are shown to have antibacterial activity against diverse bacterial species. Consistent with a model in which the compounds target multiple SSB/protein interactions, treatment of Bacillus subtilis cultures with the compounds leads to rapid inhibition of DNA replication and recombination, and ultimately to cell death. The compounds also have unanticipated effects on protein synthesis that could be due to a previously unknown role for SSB/protein interactions in translation or to off-target effects. Our results highlight the potential of targeting protein-protein interactions, particularly those that mediate genome maintenance, as a powerful approach for identifying new antibacterial compounds.

  15. Generating mammalian sirtuin tools for protein-interaction analysis.

    PubMed

    Hershberger, Kathleen A; Motley, Jonathan; Hirschey, Matthew D; Anderson, Kristin A

    2013-01-01

    The sirtuins are a family of NAD(+)-dependent deacylases with important effects on aging, cancer, and metabolism. Sirtuins exert their biological effects by catalyzing deacetylation and/or deacylation reactions in which Acyl groups are removed from lysine residues of specific proteins. A current challenge is to identify specific sirtuin target proteins against the high background of acetylated proteins recently identified by proteomic surveys. New evidence indicates that bona fide sirtuin substrate proteins form stable physical associations with their sirtuin regulator. Therefore, identification of sirtuin interacting proteins could be a useful aid in focusing the search for substrates. Described here is a method for identifying sirtuin protein interactors. Employing basic techniques of molecular cloning and immunochemistry, the method describes the generation of mammalian sirtuin protein expression plasmids and their use to overexpress and immunoprecipitate sirtuins with their interacting partners. Also described is the use of the Database for Annotation, Visualization, and Integrated Discovery for interpreting the sirtuin protein-interaction data obtained.

  16. Computational design of protein interactions: designing proteins that neutralize influenza by inhibiting its hemagglutinin surface protein

    NASA Astrophysics Data System (ADS)

    Fleishman, Sarel

    2012-02-01

    Molecular recognition underlies all life processes. Design of interactions not seen in nature is a test of our understanding of molecular recognition and could unlock the vast potential of subtle control over molecular interaction networks, allowing the design of novel diagnostics and therapeutics for basic and applied research. We developed the first general method for designing protein interactions. The method starts by computing a region of high affinity interactions between dismembered amino acid residues and the target surface and then identifying proteins that can harbor these residues. Designs are tested experimentally for binding the target surface and successful ones are affinity matured using yeast cell surface display. Applied to the conserved stem region of influenza hemagglutinin we designed two unrelated proteins that, following affinity maturation, bound hemagglutinin at subnanomolar dissociation constants. Co-crystal structures of hemagglutinin bound to the two designed binders were within 1Angstrom RMSd of their models, validating the accuracy of the design strategy. One of the designed proteins inhibits the conformational changes that underlie hemagglutinin's cell-invasion functions and blocks virus infectivity in cell culture, suggesting that such proteins may in future serve as diagnostics and antivirals against a wide range of pathogenic influenza strains. We have used this method to obtain experimentally validated binders of several other target proteins, demonstrating the generality of the approach. We discuss the combination of modeling and high-throughput characterization of design variants which has been key to the success of this approach, as well as how we have used the data obtained in this project to enhance our understanding of molecular recognition. References: Science 332:816 JMB, in press Protein Sci 20:753

  17. Interactions of nanoparticles with proteins: determination of equilibrium constants.

    PubMed

    Treuel, Lennart; Malissek, Marcelina

    2013-01-01

    The behavior of nanoparticles towards proteins is an important aspect across wide areas of nanotoxicology and nanomedicine. In this chapter, we describe a procedure to study the adsorption of proteins onto nanoparticle surfaces. Circular dichroism (CD) spectroscopy is utilized to quantify the amount of free protein in a solution, and the experimental information is evaluated to derive equilibrium constants for the protein adsorption/desorption equilibrium. These equilibrium constants are comparable parameters in describing the interactions between proteins and nanoparticles.

  18. Genome-wide protein-protein interactions and protein function exploration in cyanobacteria.

    PubMed

    Lv, Qi; Ma, Weimin; Liu, Hui; Li, Jiang; Wang, Huan; Lu, Fang; Zhao, Chen; Shi, Tieliu

    2015-10-22

    Genome-wide network analysis is well implemented to study proteins of unknown function. Here, we effectively explored protein functions and the biological mechanism based on inferred high confident protein-protein interaction (PPI) network in cyanobacteria. We integrated data from seven different sources and predicted 1,997 PPIs, which were evaluated by experiments in molecular mechanism, text mining of literatures in proved direct/indirect evidences, and "interologs" in conservation. Combined the predicted PPIs with known PPIs, we obtained 4,715 no-redundant PPIs (involving 3,231 proteins covering over 90% of genome) to generate the PPI network. Based on the PPI network, terms in Gene ontology (GO) were assigned to function-unknown proteins. Functional modules were identified by dissecting the PPI network into sub-networks and analyzing pathway enrichment, with which we investigated novel function of underlying proteins in protein complexes and pathways. Examples of photosynthesis and DNA repair indicate that the network approach is a powerful tool in protein function analysis. Overall, this systems biology approach provides a new insight into posterior functional analysis of PPIs in cyanobacteria.

  19. PPIevo: protein-protein interaction prediction from PSSM based evolutionary information.

    PubMed

    Zahiri, Javad; Yaghoubi, Omid; Mohammad-Noori, Morteza; Ebrahimpour, Reza; Masoudi-Nejad, Ali

    2013-10-01

    Protein-protein interactions regulate a variety of cellular processes. There is a great need for computational methods as a complement to experimental methods with which to predict protein interactions due to the existence of many limitations involved in experimental techniques. Here, we introduce a novel evolutionary based feature extraction algorithm for protein-protein interaction (PPI) prediction. The algorithm is called PPIevo and extracts the evolutionary feature from Position-Specific Scoring Matrix (PSSM) of protein with known sequence. The algorithm does not depend on the protein annotations, and the features are based on the evolutionary history of the proteins. This enables the algorithm to have more power for predicting protein-protein interaction than many sequence based algorithms. Results on the HPRD database show better performance and robustness of the proposed method. They also reveal that the negative dataset selection could lead to an acute performance overestimation which is the principal drawback of the available methods.

  20. Roles of intrinsic disorder in protein-nucleic acid interactions.

    PubMed

    Dyson, H Jane

    2012-01-01

    Interactions between proteins and nucleic acids typify the role of disordered segments, linkers, tails and other entities in the function of complexes that must form with high affinity and specificity but which must be capable of dissociating when no longer needed. While much of the emphasis in the literature has been on the interactions of disordered proteins with other proteins, disorder is also frequently observed in nucleic acids (particularly RNA) and in the proteins that interact with them. The interactions of disordered proteins with DNA most often manifest as molding of the protein onto the B-form DNA structure, although some well-known instances involve remodeling of the DNA structure that seems to require that the interacting proteins be disordered to various extents in the free state. By contrast, induced fit in RNA-protein interactions has been recognized for many years-the existence and prevalence of this phenomenon provides the clearest possible evidence that RNA and its interactions with proteins must be considered as highly dynamic, and the dynamic nature of RNA and its multiplicity of folded and unfolded states is an integral part of its nature and function.

  1. Verticillium dahliae manipulates plant immunity by glycoside hydrolase 12 proteins in conjuction with carbohydrate-binding module 1.

    PubMed

    Gui, Yue-Jing; Chen, Jie-Yin; Zhang, Dan-Dan; Li, Nan-Yang; Li, Ting-Gang; Zhang, Wen-Qi; Wang, Xin-Yan; Short, Dylan P G; Li, Lei; Guo, Wei; Kong, Zhi-Qiang; Bao, Yu-Ming; Subbarao, Krishna V; Dai, Xiao-Feng

    2017-02-15

    Glycoside hydrolase 12 (GH12) proteins act as virulence factors and pathogen-associated molecular patterns (PAMPs) in oomycetes. However, the pathogenic mechanisms of fungal GH12 proteins have not been characterized. In this study, we demonstrated that two of the six GH12 proteins produced by the fungus Verticillium dahliae Vd991, VdEG1 and VdEG3 acted as PAMPs to trigger cell death and PAMP-triggered immunity (PTI) independent of their enzymatic activity in Nicotiana benthamiana. A 63-amino-acid peptide of VdEG3 was sufficient for cell death-inducing activity, but this was not the case for the corresponding peptide of VdEG1. Further study indicated that VdEG1 and VdEG3 trigger PTI in different ways: BAK1 is required for VdEG1- and VdEG3-triggered immunity, while SOBIR1 is specifically required for VdEG1-triggered immunity in N. benthamiana. Unlike oomycetes, which employ RXLR effectors to suppress host immunity, a carbohydrate-binding module family 1 (CBM1) protein domain suppressed GH12 protein-induced cell death. Furthermore, during infection of N. benthamiana and cotton, VdEG1 and VdEG3 acted as PAMPs and virulence factors, respectively indicative of host-dependent molecular functions. These results suggest that VdEG1 and VdEG3 associate differently with BAK1 and SOBIR1 receptor-like kinases to trigger immunity in N. benthamiana, and together with CBM1-containing proteins manipulate plant immunity. This article is protected by copyright. All rights reserved.

  2. Protein-protein interactions and protein modules in the control of neurotransmitter release.

    PubMed Central

    Benfenati, F; Onofri, F; Giovedí, S

    1999-01-01

    Information transfer among neurons is operated by neurotransmitters stored in synaptic vesicles and released to the extracellular space by an efficient process of regulated exocytosis. Synaptic vesicles are organized into two distinct functional pools, a large reserve pool in which vesicles are restrained by the actin-based cytoskeleton, and a quantitatively smaller releasable pool in which vesicles approach the presynaptic membrane and eventually fuse with it on stimulation. Both synaptic vesicle trafficking and neurotransmitter release depend on a precise sequence of events that include release from the reserve pool, targeting to the active zone, docking, priming, fusion and endocytotic retrieval of synaptic vesicles. These steps are mediated by a series of specific interactions among cytoskeletal, synaptic vesicle, presynaptic membrane and cytosolic proteins that, by acting in concert, promote the spatial and temporal regulation of the exocytotic machinery. The majority of these interactions are mediated by specific protein modules and domains that are found in many proteins and are involved in numerous intracellular processes. In this paper, the possible physiological role of these multiple protein-protein interactions is analysed, with ensuing updating and clarification of the present molecular model of the process of neurotransmitter release. PMID:10212473

  3. Structural study of surfactant-dependent interaction with protein

    SciTech Connect

    Mehan, Sumit; Aswal, Vinod K.; Kohlbrecher, Joachim

    2015-06-24

    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.

  4. A convenient and adaptable microcomputer environment for DNA and protein sequence manipulation and analysis.

    PubMed Central

    Pustell, J; Kafatos, F C

    1986-01-01

    We describe the further development of a widely used package of DNA and protein sequence analysis programs for microcomputers (1,2,3). The package now provides a screen oriented user interface, and an enhanced working environment with powerful formatting, disk access, and memory management tools. The new GenBank floppy disk database is supported transparently to the user and a similar version of the NBRF protein database is provided. The programs can use sequence file annotation to automatically annotate printouts and translate or extract specified regions from sequences by name. The sequence comparison programs can now perform a 5000 X 5000 bp analysis in 12 minutes on an IBM PC. A program to locate potential protein coding regions in nucleic acids, a digitizer interface, and other additions are also described. PMID:3753784

  5. Manipulating the tunneling of ultracold atoms through a mazer cavity via vacuum-multiparticle interactions

    NASA Astrophysics Data System (ADS)

    Badshah, Fazal; Basit, Abdul; Ali, Hamad; Ge, Guo-Qin

    2017-02-01

    We study the tunneling and traversal time of ultracold two-level atoms through a high quality microwave cavity containing N  -  1 ground state atoms. The phase time of tunneling may be considered as a measure of the time required to traverse the cavity which exhibits both super and subclassical traversal behaviors. Here we examine that superclassical phase time behavior suppresses with the increase in the number of motionless ground state atoms inside the cavity. It happens due to the multipartite influence in the interaction that traps the incident atom into its upper state such that it does not observe any induced potential. Accordingly, for larger atomic samples, the incident atoms in the initial excited states get perfect transmission and tunnel through the cavity nearly with the same speed as they would have moved through a free space. This is true for any width of potential and the particle’s speed provided that the center-of-mass energy of the incident particle lies in the classically forbidden range.

  6. Influence of habitat manipulations on interactions between cutthroat trout and invertebrate drift. [Salmo clarki

    SciTech Connect

    Wilzbach, M.A.; Cummins, K.W.; Hall, J.D.

    1986-08-01

    The objectives of this study were to examine the interactions of the riparian setting (logged vs forested) and prey availability on the prey capture efficiency and growth of cutthroat trout, and to determine if the riparian setting influences the impact of trout predation on drift composition. Short-term relative growth rates of cutthroat trout, experimentally confined in stream pools, were greater in a logged than in a forested section of stream. Differences in growth rates were attributed to differences, among pools in invertebrate drift density, and to differences in trout foraging efficiency that were related to differences between the sections in the amount of overhead shading and substrate crevices. Mean percentages of introduced prey captured by trout were greater in logged control pools and pools of both sections whose bottoms were covered with fiberglass screening to eliminate substrate crevices than in forested control pools and logged pools that were artificially shaded. A logarithmic relationship was found between trout foraging efficiency and surface light of pools. Drift density significantly increased relative to controls in pools from which trout were removed in the logged reach, but not in the forested section. This may result from habitat features in the logged section that favor greater trout foraging success and the occurrence of behaviorally drifting prey taxa, which represent a predictable food supply for the trout.

  7. Opportunities for manipulating the seed protein composition of wheat and barley in order to improve quality.

    PubMed

    Shewry, P R; Tatham, A S; Halford, N G; Barker, J H; Hannappel, U; Gallois, P; Thomas, M; Kreis, M

    1994-01-01

    Wheat and barley are the major temperate cereals, being used for food, feed and industrial raw material. However, in all cases the quality may be limited by the amount, composition and properties of the grain storage proteins. We describe how a combination of biochemical and molecular studies has led to an understanding of the molecular basis for breadmaking quality in wheat and feed quality in barley, and also provided genes encoding key proteins that determine quality. The control of expression of these genes has been studied in transgenic tobacco plants and by transient expression in cereal protoplasts, providing the basis for the production of transgenic cereals with improved quality characteristics.

  8. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.

    PubMed

    He, J; Cooper, H M; Reyes, A; Di Re, M; Sembongi, H; Litwin, T R; Gao, J; Neuman, K C; Fearnley, I M; Spinazzola, A; Walker, J E; Holt, I J

    2012-07-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion.

  9. Interactions among tobacco sieve element occlusion (SEO) proteins.

    PubMed

    Jekat, Stephan B; Ernst, Antonia M; Zielonka, Sascia; Noll, Gundula A; Prüfer, Dirk

    2012-12-01

    Angiosperms transport their photoassimilates through sieve tubes, which comprise longitudinally-connected sieve elements. In dicots and also some monocots, the sieve elements contain parietal structural proteins known as phloem proteins or P-proteins. Following injury, P proteins disperse and accumulate as viscous plugs at the sieve plates to prevent the loss of valuable transport sugars. Tobacco (Nicotiana tabacum) P-proteins are multimeric complexes comprising subunits encoded by members of the SEO (sieve element occlusion) gene family. The existence of multiple subunits suggests that P-protein assembly involves interactions between SEO proteins, but this process is largely uncharacterized and it is unclear whether the different subunits perform unique roles or are redundant. We therefore extended our analysis of the tobacco P-proteins NtSEO1 and NtSEO2 to investigate potential interactions between them, and found that both proteins can form homomeric and heteromeric complexes in planta.

  10. Molecular interactions between proteins and synthetic membrane polymer films

    SciTech Connect

    Pincet, F.; Perez, E.; Belfort, G.

    1995-04-01

    To help understand the effects of protein adsorption on membrane filtration performance, we have measured the molecular interactions between cellulose acetate films and two proteins with different properties (ribonuclease A and human serum albumin) with a surface force apparatus. Comparison of forces between two protein layers with those between a protein layer and a cellulose acetate (CA) film shows that, at high pH, both proteins retained their native conformation on interacting with the CA film while at the isoelectric point (pI) or below the tertiary structure of proteins was disturbed. These measurements provide the first molecular evidence that disruption of protein tertiary structure could be responsible for the reduced permeation flows observed during membrane filtration of protein solutions and suggest that operating at high pH values away from the pI of proteins will reduce such fouling. 60 refs., 9 figs., 5 tabs.

  11. RAIN: RNA–protein Association and Interaction Networks

    PubMed Central

    Junge, Alexander; Refsgaard, Jan C.; Garde, Christian; Pan, Xiaoyong; Santos, Alberto; Alkan, Ferhat; Anthon, Christian; von Mering, Christian; Workman, Christopher T.; Jensen, Lars Juhl; Gorodkin, Jan

    2017-01-01

    Protein association networks can be inferred from a range of resources including experimental data, literature mining and computational predictions. These types of evidence are emerging for non-coding RNAs (ncRNAs) as well. However, integration of ncRNAs into protein association networks is challenging due to data heterogeneity. Here, we present a database of ncRNA–RNA and ncRNA–protein interactions and its integration with the STRING database of protein–protein interactions. These ncRNA associations cover four organisms and have been established from curated examples, experimental data, interaction predictions and automatic literature mining. RAIN uses an integrative scoring scheme to assign a confidence score to each interaction. We demonstrate that RAIN outperforms the underlying microRNA-target predictions in inferring ncRNA interactions. RAIN can be operated through an easily accessible web interface and all interaction data can be downloaded. Database URL: http://rth.dk/resources/rain PMID:28077569

  12. Making the LINC: SUN and KASH protein interactions

    PubMed Central

    Kim, Dae In; Birendra, KC; Roux, Kyle J.

    2015-01-01

    Cell nuclei are physically integrated with the cytoskeleton through the LINC complex (for LInker of Nucleoskeleton and Cytoskeleton), a structure that spans the nuclear envelope to link the nucleoskeleton and cytoskeleton. Outer nuclear membrane KASH domain proteins and inner nuclear membrane SUN domain proteins interact to form the core of the LINC complex. In this review we provide a comprehensive analysis of the reported protein-protein interactions for KASH and SUN domain proteins. This critical structure, directly connecting the genome with the rest of the cell, contributes to a myriad of cellular functions and, when perturbed, is associated with human disease. PMID:25720065

  13. Using Simple Manipulatives to Improve Student Comprehension of a Complex Biological Process: Protein Synthesis

    ERIC Educational Resources Information Center

    Guzman, Karen; Bartlett, John

    2012-01-01

    Biological systems and living processes involve a complex interplay of biochemicals and macromolecular structures that can be challenging for undergraduate students to comprehend and, thus, misconceptions abound. Protein synthesis, or translation, is an example of a biological process for which students often hold many misconceptions. This article…

  14. Experimental manipulation of compaction of the mouse embryo alters patterns of protein phosphorylation

    SciTech Connect

    Bloom, T. )

    1991-03-01

    Compaction, occurring at the eight-cell stage of mouse development, is the process of cell flattening and polarisation by which cellular asymmetry is first established. Changes in the pattern of protein phosphorylation have been correlated with this early event of development. In the study reported here, groups of embryos were treated in ways known to affect particular features of compaction and were then labeled with ({sup 32}P)orthophosphate; the phosphoproteins obtained were examined following electrophoresis in one and two dimensions. Four-cell embryos were treated with protein synthesis inhibitors, which advance cell flattening. This treatment resulted in only minor differences from the phosphoprotein profile of untreated four-cell embryos. Inhibition of protein synthesis at the eight-cell stage has little effect on cell flattening or polarisation. However, some phosphoproteins that are observed normally in eight-cell but not in four-cell embryos were no longer detectable if labeling took place in the presence of protein synthesis inhibitors. Eight-cell embryos incubated in phorbol 12-myristate 13-acetate, which disrupts various features of compaction, showed a relative increase in the phosphorylation of a group of phosphoprotein spots associated with the eight-cell but not with the four-cell stage. Embryos incubated in Ca2(+)-free medium, which prevents intercellular flattening and delays polarisation, showed a relative decrease in the phosphorylation of the same group of phosphoprotein spots. The behaviour of these phosphoproteins may therefore be correlated with some of the features of compaction.

  15. Protein interaction discovery using parallel analysis of translated ORFs (PLATO).

    PubMed

    Zhu, Jian; Larman, H Benjamin; Gao, Geng; Somwar, Romel; Zhang, Zijuan; Laserson, Uri; Ciccia, Alberto; Pavlova, Natalya; Church, George; Zhang, Wei; Kesari, Santosh; Elledge, Stephen J

    2013-04-01

    Identifying physical interactions between proteins and other molecules is a critical aspect of biological analysis. Here we describe PLATO, an in vitro method for mapping such interactions by affinity enrichment of a library of full-length open reading frames displayed on ribosomes, followed by massively parallel analysis using DNA sequencing. We demonstrate the broad utility of the method for human proteins by identifying known and previously unidentified interacting partners of LYN kinase, patient autoantibodies, and the small-molecules gefitinib and dasatinib.

  16. Protein-protein interactions: principles, techniques, and their potential role in new drug development.

    PubMed

    Khan, Shagufta H; Ahmad, Faizan; Ahmad, Nihal; Flynn, Daniel C; Kumar, Raj

    2011-06-01

    A vast network of genes is inter-linked through protein-protein interactions and is critical component of almost every biological process under physiological conditions. Any disruption of the biologically essential network leads to pathological conditions resulting into related diseases. Therefore, proper understanding of biological functions warrants a comprehensive knowledge of protein-protein interactions and the molecular mechanisms that govern such processes. The importance of protein-protein interaction process is highlighted by the fact that a number of powerful techniques/methods have been developed to understand how such interactions take place under various physiological and pathological conditions. Many of the key protein-protein interactions are known to participate in disease-associated signaling pathways, and represent novel targets for therapeutic intervention. Thus, controlling protein-protein interactions offers a rich dividend for the discovery of new drug targets. Availability of various tools to study and the knowledge of human genome have put us in a unique position to understand highly complex biological network, and the mechanisms involved therein. In this review article, we have summarized protein-protein interaction networks, techniques/methods of their binding/kinetic parameters, and the role of these interactions in the development of potential tools for drug designing.

  17. A Novel Secreted Protein, MYR1, Is Central to Toxoplasma’s Manipulation of Host Cells

    PubMed Central

    Franco, Magdalena; Panas, Michael W.; Marino, Nicole D.; Lee, Mei-Chong Wendy; Buchholz, Kerry R.; Kelly, Felice D.; Bednarski, Jeffrey J.; Sleckman, Barry P.; Pourmand, Nader

    2016-01-01

    ABSTRACT The intracellular protozoan Toxoplasma gondii dramatically reprograms the transcriptome of host cells it infects, including substantially up-regulating the host oncogene c-myc. By applying a flow cytometry-based selection to infected mouse cells expressing green fluorescent protein fused to c-Myc (c-Myc–GFP), we isolated mutant tachyzoites defective in this host c-Myc up-regulation. Whole-genome sequencing of three such mutants led to the identification of MYR1 (Myc regulation 1; TGGT1_254470) as essential for c-Myc induction. MYR1 is a secreted protein that requires TgASP5 to be cleaved into two stable portions, both of which are ultimately found within the parasitophorous vacuole and at the parasitophorous vacuole membrane. Deletion of MYR1 revealed that in addition to its requirement for c-Myc up-regulation, the MYR1 protein is needed for the ability of Toxoplasma tachyzoites to modulate several other important host pathways, including those mediated by the dense granule effectors GRA16 and GRA24. This result, combined with its location at the parasitophorous vacuole membrane, suggested that MYR1 might be a component of the machinery that translocates Toxoplasma effectors from the parasitophorous vacuole into the host cytosol. Support for this possibility was obtained by showing that transit of GRA24 to the host nucleus is indeed MYR1-dependent. As predicted by this pleiotropic phenotype, parasites deficient in MYR1 were found to be severely attenuated in a mouse model of infection. We conclude, therefore, that MYR1 is a novel protein that plays a critical role in how Toxoplasma delivers effector proteins to the infected host cell and that this is crucial to virulence. PMID:26838724

  18. Dendrimer-protein interactions versus dendrimer-based nanomedicine.

    PubMed

    Shcharbin, Dzmitry; Shcharbina, Natallia; Dzmitruk, Volha; Pedziwiatr-Werbicka, Elzbieta; Ionov, Maksim; Mignani, Serge; de la Mata, F Javier; Gómez, Rafael; Muñoz-Fernández, Maria Angeles; Majoral, Jean-Pierre; Bryszewska, Maria

    2017-04-01

    Dendrimers are hyperbranched polymers belonging to the huge class of nanomedical devices. Their wide application in biology and medicine requires understanding of the fundamental mechanisms of their interactions with biological systems. Summarizing, electrostatic force plays the predominant role in dendrimer-protein interactions, especially with charged dendrimers. Other kinds of interactions have been proven, such as H-bonding, van der Waals forces, and even hydrophobic interactions. These interactions depend on the characteristics of both participants: flexibility and surface charge of a dendrimer, rigidity of protein structure and the localization of charged amino acids at its surface. pH and ionic strength of solutions can significantly modulate interactions. Ligands and cofactors attached to a protein can also change dendrimer-protein interactions. Binding of dendrimers to a protein can change its secondary structure, conformation, intramolecular mobility and functional activity. However, this strongly depends on rigidity versus flexibility of a protein's structure. In addition, the potential applications of dendrimers to nanomedicine are reviwed related to dendrimer-protein interactions.

  19. Predicting Pharmacodynamic Drug-Drug Interactions through Signaling Propagation Interference on Protein-Protein Interaction Networks

    PubMed Central

    Park, Kyunghyun; Kim, Docyong; Ha, Suhyun; Lee, Doheon

    2015-01-01

    As pharmacodynamic drug-drug interactions (PD DDIs) could lead to severe adverse effects in patients, it is important to identify potential PD DDIs in drug development. The signaling starting from drug targets is propagated through protein-protein interaction (PPI) networks. PD DDIs could occur by close interference on the same targets or within the same pathways as well as distant interference through cross-talking pathways. However, most of the previous approaches have considered only close interference by measuring distances between drug targets or comparing target neighbors. We have applied a random walk with restart algorithm to simulate signaling propagation from drug targets in order to capture the possibility of their distant interference. Cross validation with DrugBank and Kyoto Encyclopedia of Genes and Genomes DRUG shows that the proposed method outperforms the previous methods significantly. We also provide a web service with which PD DDIs for drug pairs can be analyzed at http://biosoft.kaist.ac.kr/targetrw. PMID:26469276

  20. Molecular interactions of graphene oxide with human blood plasma proteins

    NASA Astrophysics Data System (ADS)

    Kenry, Affa Affb Affc; Loh, Kian Ping; Lim, Chwee Teck

    2016-04-01

    We investigate the molecular interactions between graphene oxide (GO) and human blood plasma proteins. To gain an insight into the bio-physico-chemical activity of GO in biological and biomedical applications, we performed a series of biophysical assays to quantify the molecular interactions between GO with different lateral size distributions and the three essential human blood plasma proteins. We elucidate the various aspects of the GO-protein interactions, particularly, the adsorption, binding kinetics and equilibrium, and conformational stability, through determination of quantitative parameters, such as GO-protein association constants, binding cooperativity, and the binding-driven protein structural changes. We demonstrate that the molecular interactions between GO and plasma proteins are significantly dependent on the lateral size distribution and mean lateral sizes of the GO nanosheets and their subtle variations may markedly influence the GO-protein interactions. Consequently, we propose the existence of size-dependent molecular interactions between GO nanosheets and plasma proteins, and importantly, the presence of specific critical mean lateral sizes of GO nanosheets in achieving very high association and fluorescence quenching efficiency of the plasma proteins. We anticipate that this work will provide a basis for the design of graphene-based and other related nanomaterials for a plethora of biological and biomedical applications.

  1. Dynamic proteomics in modeling of the living cell. Protein-protein interactions.

    PubMed

    Terentiev, A A; Moldogazieva, N T; Shaitan, K V

    2009-12-01

    This review is devoted to describing, summarizing, and analyzing of dynamic proteomics data obtained over the last few years and concerning the role of protein-protein interactions in modeling of the living cell. Principles of modern high-throughput experimental methods for investigation of protein-protein interactions are described. Systems biology approaches based on integrative view on cellular processes are used to analyze organization of protein interaction networks. It is proposed that finding of some proteins in different protein complexes can be explained by their multi-modular and polyfunctional properties; the different protein modules can be located in the nodes of protein interaction networks. Mathematical and computational approaches to modeling of the living cell with emphasis on molecular dynamics simulation are provided. The role of the network analysis in fundamental medicine is also briefly reviewed.

  2. Computational biology for target discovery and characterization: a feasibility study in protein-protein interaction detection

    SciTech Connect

    Zhou, C; Zemla, A

    2009-02-25

    In this work we developed new code for detecting putative multi-domain protein-protein interactions for a small network of bacterial pathogen proteins, and determined how structure-driven domain-fusion (DF) methods should be scaled up for whole-proteome analysis. Protein-protein interactions are of great interest in structural biology and are important for understanding the biology of pathogens. The ability to predict protein-protein interactions provides a means for development of anti-microbials that may interfer with key processes in pathogenicity. The function of a protein-protein complex can be elucidated through knowledge of its structure. The overall goal of this project was to determine the feasibility of extending current LLNL capabilities to produce a high-throughput systems bio-informatics capability for identification and characterization of putative interacting protein partners within known or suspected small protein networks. We extended an existing LLNL methodology for identification of putative protein-protein interacting partners (Chakicherla et al (in review)) by writing a new code to identify multi-domain-fusion linkages (3 or more per complex). We applied these codes to the proteins in the Yersinia pestis quorum sensing network, known as the lsr operon, which comprises a virulence mechanism in this pathogen. We determined that efficient application of our computational algorithms in high-throughput for detection of putative protein-protein complexes genome wide would require pre-computation of PDB domains and construction of a domain-domain association database.

  3. An ontology-based search engine for protein-protein interactions

    PubMed Central

    2010-01-01

    Background Keyword matching or ID matching is the most common searching method in a large database of protein-protein interactions. They are purely syntactic methods, and retrieve the records in the database that contain a keyword or ID specified in a query. Such syntactic search methods often retrieve too few search results or no results despite many potential matches present in the database. Results We have developed a new method for representing protein-protein interactions and the Gene Ontology (GO) using modified Gödel numbers. This representation is hidden from users but enables a search engine using the representation to efficiently search protein-protein interactions in a biologically meaningful way. Given a query protein with optional search conditions expressed in one or more GO terms, the search engine finds all the interaction partners of the query protein by unique prime factorization of the modified Gödel numbers representing the query protein and the search conditions. Conclusion Representing the biological relations of proteins and their GO annotations by modified Gödel numbers makes a search engine efficiently find all protein-protein interactions by prime factorization of the numbers. Keyword matching or ID matching search methods often miss the interactions involving a protein that has no explicit annotations matching the search condition, but our search engine retrieves such interactions as well if they satisfy the search condition with a more specific term in the ontology. PMID:20122195

  4. A Microfluidic Platform for Characterization of Protein—Protein Interactions

    PubMed Central

    Javanmard, Mehdi; Talasaz, Amirali H.; Nemat-Gorgani, Mohsen; Huber, David E.; Pease, Fabian; Ronaghi, Mostafa; Davis, Ronald W.

    2010-01-01

    Traditionally, expensive and time consuming techniques such as mass spectrometry and Western Blotting have been used for characterization of protein–protein interactions. In this paper, we describe the design, fabrication, and testing of a rapid and inexpensive sensor, involving the use of microelectrodes in a microchannel, which can be used for real-time electrical detection of specific interactions between proteins. We have successfully demonstrated detection of target glycoprotein–glycoprotein interactions, antigen-antibody interactions, and glycoprotein-antigen interactions. We have also demonstrated the ability of this technique to distinguish between strong and weak interactions. Using this approach, it may be possible to multiplex an array of these sensors onto a chip and probe a complex mixture for various types of interactions involving protein molecules. PMID:20467571

  5. Proteins interacting with Membranes: Protein Sorting and Membrane Shaping

    NASA Astrophysics Data System (ADS)

    Callan-Jones, Andrew

    2015-03-01

    Membrane-bound transport in cells requires generating membrane curvature. In addition, transport is selective, in order to establish spatial gradients of membrane components in the cell. The mechanisms underlying cell membrane shaping by proteins and the influence of curvature on membrane composition are active areas of study in cell biophysics. In vitro approaches using Giant Unilamellar Vesicles (GUVs) are a useful tool to identify the physical mechanisms that drive sorting of membrane components and membrane shape change by proteins. I will present recent work on the curvature sensing and generation of IRSp53, a protein belonging to the BAR family, whose members, sharing a banana-shaped backbone, are involved in endocytosis. Pulling membrane tubes with 10-100 nm radii from GUVs containing encapsulated IRSp53 have, unexpectedly, revealed a non-monotonic dependence of the protein concentration on the tube as a function of curvature. Experiments also show that bound proteins alter the tube mechanics and that protein phase separation along the tube occurs at low tensions. I will present accompanying theoretical work that can explain these findings based on the competition between the protein's intrinsic curvature and the effective rigidity of a membrane-protein patch.

  6. Differential Occurrence of Interactions and Interaction Domains in Proteins Containing Homopolymeric Amino Acid Repeats

    PubMed Central

    Pelassa, Ilaria; Fiumara, Ferdinando

    2015-01-01

    Homopolymeric amino acids repeats (AARs), which are widespread in proteomes, have often been viewed simply as spacers between protein domains, or even as “junk” sequences with no obvious function but with a potential to cause harm upon expansion as in genetic diseases associated with polyglutamine or polyalanine expansions, including Huntington disease and cleidocranial dysplasia. A growing body of evidence indicates however that at least some AARs can form organized, functional protein structures, and can regulate protein function. In particular, certain AARs can mediate protein-protein interactions, either through homotypic AAR-AAR contacts or through heterotypic contacts with other protein domains. It is still unclear however, whether AARs may have a generalized, proteome-wide role in shaping protein-protein interaction networks. Therefore, we have undertaken here a bioinformatics screening of the human proteome and interactome in search of quantitative evidence of such a role. We first identified the sets of proteins that contain repeats of any one of the 20 amino acids, as well as control sets of proteins chosen at random in the proteome. We then analyzed the connectivity between the proteins of the AAR-containing protein sets and we compared it with that observed in the corresponding control networks. We find evidence for different degrees of connectivity in the different AAR-containing protein networks. Indeed, networks of proteins containing polyglutamine, polyglutamate, polyproline, and other AARs show significantly increased levels of connectivity, whereas networks containing polyleucine and other hydrophobic repeats show lower degrees of connectivity. Furthermore, we observed that numerous protein-protein, -nucleic acid, and -lipid interaction domains are significantly enriched in specific AAR protein groups. These findings support the notion of a generalized, combinatorial role of AARs, together with conventional protein interaction domains, in

  7. Host-microbe protein interactions during bacterial infection

    PubMed Central

    Schweppe, Devin K.; Harding, Christopher; Chavez, Juan D.; Wu, Xia; Ramage, Elizabeth; Singh, Pradeep K.; Manoil, Colin; Bruce, James E.

    2015-01-01

    Summary Interspecies protein-protein interactions are essential mediators of infection. While bacterial proteins required for host cell invasion and infection can be identified through bacterial mutant library screens, information about host target proteins and interspecies complex structures has been more difficult to acquire. Using an unbiased chemical cross-linking/mass spectrometry approach, we identified interspecies protein-protein interactions in human lung epithelial cells infected with Acinetobacter baumannii. These efforts resulted in identification of 3076 total cross-linked peptide pairs and 46 interspecies protein-protein interactions. Most notably, the key A. baumannii virulence factor, OmpA, was identified cross-linked to host proteins involved in desmosomes, specialized structures that mediate host cell-to-cell adhesion. Co-immunoprecipitation and transposon mutant experiments were used to verify these interactions and demonstrate relevance for host cell invasion and acute murine lung infection. These results shed new light on A. baumannii-host protein interactions and their structural features and the presented approach is generally applicable to other systems. PMID:26548613

  8. Rosetta stone method for detecting protein function and protein-protein interactions from genome sequences

    DOEpatents

    Eisenberg, David; Marcotte, Edward M.; Pellegrini, Matteo; Thompson, Michael J.; Yeates, Todd O.

    2002-10-15

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  9. Probing and Manipulating Protein Conformation Changes by Time-Resolved Single-Molecule Spectroscopy and Site-Specific Ultramicroscopy

    DTIC Science & Technology

    2008-04-01

    Biomolecular Recognition with Single Molecule Dynamics,” Phys. Rev. Lett. 98, 128105 (2007). 4. V. Biju, D. Pan, Yuri A. Gorby , Jim Fredrickson, J. Mclean, D...Protein Interactions of Calmodulin by Single-Molecule Spectroscopy," J. Am. Chem. Soc. 128, 10034-10042 ( 2006 ).

  10. Mining the characteristic interaction patterns on protein-protein binding interfaces.

    PubMed

    Li, Yan; Liu, Zhihai; Han, Li; Li, Chengke; Wang, Renxiao

    2013-09-23

    Protein-protein interactions are observed in various biological processes. They are important for understanding the underlying molecular mechanisms and can be potential targets for developing small-molecule regulators of such processes. Previous studies suggest that certain residues on protein-protein binding interfaces are "hot spots". As an extension to this concept, we have developed a residue-based method to identify the characteristic interaction patterns (CIPs) on protein-protein binding interfaces, in which each pattern is a cluster of four contacting residues. Systematic analysis was conducted on a nonredundant set of 1,222 protein-protein binding interfaces selected out of the entire Protein Data Bank. Favored interaction patterns across different protein-protein binding interfaces were retrieved by considering both geometrical and chemical conservations. As demonstrated on two test tests, our method was able to predict hot spot residues on protein-protein binding interfaces with good recall scores and acceptable precision scores. By analyzing the function annotations and the evolutionary tree of the protein-protein complexes in our data set, we also observed that protein-protein interfaces sharing common characteristic interaction patterns are normally associated with identical or similar biological functions.

  11. ComPPI: a cellular compartment-specific database for protein-protein interaction network analysis.

    PubMed

    Veres, Daniel V; Gyurkó, Dávid M; Thaler, Benedek; Szalay, Kristóf Z; Fazekas, Dávid; Korcsmáros, Tamás; Csermely, Peter

    2015-01-01

    Here we present ComPPI, a cellular compartment-specific database of proteins and their interactions enabling an extensive, compartmentalized protein-protein interaction network analysis (URL: http://ComPPI.LinkGroup.hu). ComPPI enables the user to filter biologically unlikely interactions, where the two interacting proteins have no common subcellular localizations and to predict novel properties, such as compartment-specific biological functions. ComPPI is an integrated database covering four species (S. cerevisiae, C. elegans, D. melanogaster and H. sapiens). The compilation of nine protein-protein interaction and eight subcellular localization data sets had four curation steps including a manually built, comprehensive hierarchical structure of >1600 subcellular localizations. ComPPI provides confidence scores for protein subcellular localizations and protein-protein interactions. ComPPI has user-friendly search options for individual proteins giving their subcellular localization, their interactions and the likelihood of their interactions considering the subcellular localization of their interacting partners. Download options of search results, whole-proteomes, organelle-specific interactomes and subcellular localization data are available on its website. Due to its novel features, ComPPI is useful for the analysis of experimental results in biochemistry and molecular biology, as well as for proteome-wide studies in bioinformatics and network science helping cellular biology, medicine and drug design.

  12. Trifunctional cross-linker for mapping protein-protein interaction networks and comparing protein conformational states

    PubMed Central

    Tan, Dan; Li, Qiang; Zhang, Mei-Jun; Liu, Chao; Ma, Chengying; Zhang, Pan; Ding, Yue-He; Fan, Sheng-Bo; Tao, Li; Yang, Bing; Li, Xiangke; Ma, Shoucai; Liu, Junjie; Feng, Boya; Liu, Xiaohui; Wang, Hong-Wei; He, Si-Min; Gao, Ning; Ye, Keqiong; Dong, Meng-Qiu; Lei, Xiaoguang

    2016-01-01

    To improve chemical cross-linking of proteins coupled with mass spectrometry (CXMS), we developed a lysine-targeted enrichable cross-linker containing a biotin tag for affinity purification, a chemical cleavage site to separate cross-linked peptides away from biotin after enrichment, and a spacer arm that can be labeled with stable isotopes for quantitation. By locating the flexible proteins on the surface of 70S ribosome, we show that this trifunctional cross-linker is effective at attaining structural information not easily attainable by crystallography and electron microscopy. From a crude Rrp46 immunoprecipitate, it helped identify two direct binding partners of Rrp46 and 15 protein-protein interactions (PPIs) among the co-immunoprecipitated exosome subunits. Applying it to E. coli and C. elegans lysates, we identified 3130 and 893 inter-linked lysine pairs, representing 677 and 121 PPIs. Using a quantitative CXMS workflow we demonstrate that it can reveal changes in the reactivity of lysine residues due to protein-nucleic acid interaction. DOI: http://dx.doi.org/10.7554/eLife.12509.001 PMID:26952210

  13. Evolution of biomolecular networks: lessons from metabolic and protein interactions.

    PubMed

    Yamada, Takuji; Bork, Peer

    2009-11-01

    Despite only becoming popular at the beginning of this decade, biomolecular networks are now frameworks that facilitate many discoveries in molecular biology. The nodes of these networks are usually proteins (specifically enzymes in metabolic networks), whereas the links (or edges) are their interactions with other molecules. These networks are made up of protein-protein interactions or enzyme-enzyme interactions through shared metabolites in the case of metabolic networks. Evolutionary analysis has revealed that changes in the nodes and links in protein-protein interaction and metabolic networks are subject to different selection pressures owing to distinct topological features. However, many evolutionary constraints can be uncovered only if temporal and spatial aspects are included in the network analysis.

  14. The thermodynamic analysis of weak protein interactions using sedimentation equilibrium

    PubMed Central

    Dolinska, Monika B.; Wingfield, Paul T.

    2014-01-01

    Proteins self-associate to form dimers and tetramers. Purified proteins are used to study the thermodynamics of protein interactions using the analytical ultracentrifuge. In this approach, monomer – dimer equilibrium constants are directly measured at various temperatures. Data analysis is used to derive thermodynamic parameters such as Gibbs free energy, enthalpy and entropy which can predict which major forces are involved in protein association. PMID:25081741

  15. Multitask Matrix Completion for Learning Protein Interactions Across Diseases.

    PubMed

    Kshirsagar, Meghana; Murugesan, Keerthiram; Carbonell, Jaime G; Klein-Seetharaman, Judith

    2017-01-27

    Disease-causing pathogens such as viruses introduce their proteins into the host cells in which they interact with the host's proteins, enabling the virus to replicate inside the host. These interactions between pathogen and host proteins are key to understanding infectious diseases. Often multiple diseases involve phylogenetically related or biologically similar pathogens. Here we present a multitask learning method to jointly model interactions between human proteins and three different but related viruses: Hepatitis C, Ebola virus, and Influenza A. Our multitask matrix completion-based model uses a shared low-rank structure in addition to a task-specific sparse structure to incorporate the various interactions. We obtain between 7 and 39 percentage points improvement in predictive performance over prior state-of-the-art models. We show how our model's parameters can be interpreted to reveal both general and specific interaction-relevant characteristics of the viruses. Our code is available online.()

  16. Protein-surface interaction maps for ion-exchange chromatography.

    PubMed

    Freed, Alexander S; Cramer, Steven M

    2011-04-05

    In this paper, protein-surface interaction maps were generated by performing coarse-grained protein-surface calculations. This approach allowed for the rapid determination of the protein-surface interaction energies at a range of orientations and distances. Interaction maps of lysozyme indicated that there was a contiguous series of orientations corresponding to several adjacent preferred binding regions on the protein surface. Examination of these orientations provided insight into the residues involved in surface interactions, which qualitatively agreed with the retention data for single-site mutants. Interaction maps of lysozyme single-site mutants were also generated and provided significant insight into why these variants exhibited significant differences in their chromatographic behavior. This approach was also employed to study the binding behavior of CspB and related mutants. The results indicated that, in addition to describing general trends in the data, these maps provided significant insight into retention data of the single-site mutants. In particular, subtle retention trends observed with the K12 and K13 mutants were well-described using this interaction map approach. Finally, the number of interaction points with energies stronger than -2 kcal/mol was shown to be able to semi-quantitatively predict the behavior of most of the mutants. This rapid approach for calculating protein-surface interaction maps is expected to facilitate future method development for separating closely related protein variants in ion-exchange systems.

  17. Visualization of Host-Polerovirus Interaction Topologies Using Protein Interaction Reporter Technology

    PubMed Central

    DeBlasio, Stacy L.; Chavez, Juan D.; Alexander, Mariko M.; Ramsey, John; Eng, Jimmy K.; Mahoney, Jaclyn; Gray, Stewart M.; Bruce, James E.

    2015-01-01

    ABSTRACT Demonstrating direct interactions between host and virus proteins during infection is a major goal and challenge for the field of virology. Most protein interactions are not binary or easily amenable to structural determination. Using infectious preparations of a polerovirus (Potato leafroll virus [PLRV]) and protein interaction reporter (PIR), a revolutionary technology that couples a mass spectrometric-cleavable chemical cross-linker with high-resolution mass spectrometry, we provide the first report of a host-pathogen protein interaction network that includes data-derived, topological features for every cross-linked site that was identified. We show that PLRV virions have hot spots of protein interaction and multifunctional surface topologies, revealing how these plant viruses maximize their use of binding interfaces. Modeling data, guided by cross-linking constraints, suggest asymmetric packing of the major capsid protein in the virion, which supports previous epitope mapping studies. Protein interaction topologies are conserved with other species in the Luteoviridae and with unrelated viruses in the Herpesviridae and Adenoviridae. Functional analysis of three PLRV-interacting host proteins in planta using a reverse-genetics approach revealed a complex, molecular tug-of-war between host and virus. Structural mimicry and diversifying selection—hallmarks of host-pathogen interactions—were identified within host and viral binding interfaces predicted by our models. These results illuminate the functional diversity of the PLRV-host protein interaction network and demonstrate the usefulness of PIR technology for precision mapping of functional host-pathogen protein interaction topologies. IMPORTANCE The exterior shape of a plant virus and its interacting host and insect vector proteins determine whether a virus will be transmitted by an insect or infect a specific host. Gaining this information is difficult and requires years of experimentation. We used

  18. Manipulation of Goos-Hänchen shifts in the atomic configuration of mercury via interacting dark-state resonances

    NASA Astrophysics Data System (ADS)

    Hamedi, H. R.; Radmehr, Arash; Sahrai, M.

    2014-11-01

    We study the manipulation of Goos-Hänchen (GH) shifts for the reflected and transmitted probe light pulses injected into a cavity containing four-level configuration mercury atoms where the probe transition is in the ultraviolet (UV) region with a wavelength of 253.7 nm . Different behaviors of the GH shifts can be observed in the absence, or presence, of two driving fields as well as an incoherent pump field. When neither coherent driving fields nor incoherent pumping is turned on, we realize negative reflected GH shifts for anomalous dispersion. Including only one driving field leads to subluminal-based light propagation with positive lateral shifts at certain incident angles. Taking into account the impact of both driving fields, negative GH shifts reappear in the reflected part of the incident light. The origin of this defect is attributed to interacting double dark resonances due to a high-resolution absorption peaks with a very steep negative slope of dispersion in the susceptibility profile. We then show that one can surpass this defect by applying a weak incoherent pumping field to obtain positive GH shifts for both reflected and transmitted light beams. Finally, using the 6 1P1↔6 1S0 transition of Hg, we generalize our study to the case where the wavelength of the probe transition is 185 nm which is in the vacuum-ultraviolet domain. Although the number of oscillations is now increased, however, similar results are reported with respect to the case of UV transition.

  19. Crosslinking studies of protein-protein interactions in nonribosomal peptide biosynthesis.

    PubMed

    Hur, Gene H; Meier, Jordan L; Baskin, Jeremy; Codelli, Julian A; Bertozzi, Carolyn R; Marahiel, Mohamed A; Burkart, Michael D

    2009-04-24

    Selective protein-protein interactions between nonribosomal peptide synthetase (NRPS) proteins, governed by communication-mediating (COM) domains, are responsible for proper translocation of biosynthetic intermediates to produce the natural product. In this study, we developed a crosslinking assay, utilizing bioorthogonal probes compatible with carrier protein modification, for probing the protein interactions between COM domains of NRPS enzymes. Employing the Huisgen 1,3-dipolar cycloaddition of azides and alkynes, we examined crosslinking of cognate NRPS modules within the tyrocidine pathway and demonstrated the sensitivity of our panel of crosslinking probes toward the selective protein interactions of compatible COM domains. These studies indicate that copper-free crosslinking substrates uniquely offer a diagnostic probe for protein-protein interactions. Likewise, these crosslinking probes serve as ideal chemical tools for structural studies between NRPS modules where functional assays are lacking.

  20. Single-Molecule Study of Protein-Protein Interaction Dynamics in a Cell Signaling System

    SciTech Connect

    Tan, Xin; Nalbant, Perihan; Toutchkine, Alexei; Hu, Dehong; Vorpagel, Erich R.; Hahn, Klaus M.; Lu, H PETER.

    2004-01-15

    We report a combined single-molecule fluorescence and molecular dynamics (MD) simulation study of protein-protein interactions in a GTP-binding intracellular signaling protein Cdc42 in complex with a downstream effector protein WASP. A 13- kDa WASP fragment which binds only the activated GTP-loaded Cdc42 was labeled with a novel solvatochromic dye and used to probe hydrophobic interactions significant to Cdc42/WASP recognition. Our single-molecule fluorescence measurements have shown conformational fluctuations of the protein complex and suggested multiple conformational states at a wide range of time scales might be involved in protein interaction dynamics. Single-molecule experiments have revealed the dynamic disorder or protein-protein interactions within the Cdc42/WASP complex, which may be important for regulating downstream signaling events.

  1. Metabotropic Glutamate Receptors and Interacting Proteins in Epileptogenesis

    PubMed Central

    Qian, Feng; Tang, Feng-Ru

    2016-01-01

    Neurotransmitter and receptor systems are involved in different neurological and neuropsychological disorders such as Parkinson's disease, depression, Alzheimer’s disease and epilepsy. Recent advances in studies of signal transduction pathways or interacting proteins of neurotransmitter receptor systems suggest that different receptor systems may share the common signal transduction pathways or interacting proteins which may be better therapeutic targets for development of drugs to effectively control brain diseases. In this paper, we reviewed metabotropic glutamate receptors (mGluRs) and their related signal transduction pathways or interacting proteins in status epilepticus and temporal lobe epilepsy, and proposed some novel therapeutical drug targets for controlling epilepsy and epileptogenesis. PMID:27030135

  2. Microfluidics for manipulating cells.

    PubMed

    Mu, Xuan; Zheng, Wenfu; Sun, Jiashu; Zhang, Wei; Jiang, Xingyu

    2013-01-14

    Microfluidics, a toolbox comprising methods for precise manipulation of fluids at small length scales (micrometers to millimeters), has become useful for manipulating cells. Its uses range from dynamic management of cellular interactions to high-throughput screening of cells, and to precise analysis of chemical contents in single cells. Microfluidics demonstrates a completely new perspective and an excellent practical way to manipulate cells for solving various needs in biology and medicine. This review introduces and comments on recent achievements and challenges of using microfluidics to manipulate and analyze cells. It is believed that microfluidics will assume an even greater role in the mechanistic understanding of cell biology and, eventually, in clinical applications.

  3. BiopLib and BiopTools—a C programming library and toolset for manipulating protein structure

    PubMed Central

    Porter, Craig T.; Martin, Andrew C.R.

    2015-01-01

    Summary: We describe BiopLib, a mature C programming library for manipulating protein structure, and BiopTools, a set of command-line tools which exploit BiopLib. The library also provides a small number of functions for handling protein sequence and general purpose programming and mathematics. BiopLib transparently handles PDBML (XML) format and standard PDB files. BiopTools provides facilities ranging from renumbering atoms and residues to calculation of solvent accessibility. Availability and implementation: BiopLib and BiopTools are implemented in standard ANSI C. The core of the BiopLib library is a reliable PDB parser that handles alternate occupancies and deals with compressed PDB files and PDBML files automatically. The library is designed to be as flexible as possible, allowing users to handle PDB data as a simple list of atoms, or in a structured form using chains, residues and atoms. Many of the BiopTools command-line tools act as filters, taking a PDB (or PDBML) file as input and producing a PDB (or PDBML) file as output. All code is open source and documented using Doxygen. It is provided under the GNU Public Licence and is available from the authors’ web site or from GitHub. Contact: andrew@bioinf.org.uk PMID:26323716

  4. Composition-Gradient Static Light Scattering and the Quantification of Biomolecular Interactions in Therapeutic Proteins

    NASA Astrophysics Data System (ADS)

    Some, Daniel

    2010-03-01

    Macromolecular interactions of interest to the pharmaceutical industry cover a variety of phenomena: binding of proteins to form well-defined complexes; reversible and irreversible oligomerization; and non-specific intermolecular interactions. The analysis and manipulation of these phenomena are crucial to the successful development, manufacture, storage and delivery of biological drugs such as antibodies. Light scattering (LS) has proven to be one of the most versatile free-solution and label-free methods for studying proteins and their interactions. Previously limited primarily to assessing molar mass, size and oligomerization state, the recent emergence of automated Composition-Gradient Static Light Scattering (Attri, A.; Minton, A.P. Anal. Biochem. 2005; 346(1), 132--8), or CG-SLS, extends the range of biotech LS applications to equilibrium binding affinity and stoichiometry of bound complexes, kinetics of association and dissociation, and non-specific interactions (attractive and repulsive). In this talk I present progress in CG-SLS for biophysical characterization of pharmaceutical protein-protein interactions. In the drug development phase, CG-SLS studies of antibody-antigen complexes compliments other biomolecular interaction techniques commonly found in the biotech world such as surface plasmon resonance (SPR). In the formulation development stage, long-term stability of drug product is sought. Protein degradation modes include irreversible aggregation, which may lead to adverse physiological effects, and reversible self-association, which affects solution viscosity and hence injectable drug delivery. CG-SLS addresses both of these, the former via determination of virial coefficients, which describe the overall non-specific attraction or repulsion between molecules and may be used to optimize the formulation buffer to minimize aggregation, and the latter by binding affinity and stoichiometry of the associated complexes.

  5. Interaction networks: from protein functions to drug discovery. A review.

    PubMed

    Chautard, E; Thierry-Mieg, N; Ricard-Blum, S

    2009-06-01

    Most genes, proteins and other components carry out their functions within a complex network of interactions and a single molecule can affect a wide range of other cell components. A global, integrative, approach has been developed for several years, including protein-protein interaction networks (interactomes). In this review, we describe the high-throughput methods used to identify new interactions and to build large interaction datasets. The minimum information required for reporting a molecular interaction experiment (MIMIx) has been defined as a standard for storing data in publicly available interaction databases. Several examples of interaction networks from molecular machines (proteasome) or organelles (phagosome, mitochondrion) to whole organisms (viruses, bacteria, yeast, fly, and worm) are given and attempts to cover the entire human interaction network are discussed. The methods used to perform the topological analysis of interaction networks and to extract biological information from them are presented. These investigations have provided clues on protein functions, signalling and metabolic pathways, and physiological processes, unraveled the molecular basis of some diseases (cancer, infectious diseases), and will be very useful to identify new therapeutic targets and for drug discovery. A major challenge is now to integrate data from different sources (interactome, transcriptome, phenome, localization) to switch from static to dynamic interaction networks. The merging of a viral interactome and the human interactome has been used to simulate viral infection, paving the way for future studies aiming at providing molecular basis of human diseases.

  6. Circumventing the problems caused by protein diversity in microarrays: implications for protein interaction networks.

    PubMed

    Gordus, Andrew; MacBeath, Gavin

    2006-10-25

    Protein microarrays provide a well-controlled, high-throughput way to uncover protein-protein interactions. One problem with this and other standardized assays, however, is that proteins vary considerably with respect to their physical properties. If a simple threshold-based approach is used to define protein-protein interactions, the resulting binary networks can be strongly biased. Here, we investigate the extent to which even closely related protein interaction domains vary when printed as microarrays. We find that, when a collection of well behaved, monomeric Src homology 2 (SH2) domains are printed at the same concentration, they vary by up to 50-fold with respect to the resulting surface density of active protein. When a threshold-based binding assay is performed on these domains using fluorescently labeled phosphopeptides, a misleading picture of the underlying biophysical interactions emerges. This problem can be circumvented, however, by obtaining saturation binding curves for each protein-peptide interaction. Importantly, the equilibrium dissociation constants obtained from these curves are independent of the surface density of active protein. We submit that an increased emphasis should be placed on obtaining quantitative information from protein microarrays and that this should serve as a more general goal in all efforts to define large-scale protein interaction networks.

  7. Identification of brain-specific angiogenesis inhibitor 2 as an interaction partner of glutaminase interacting protein

    SciTech Connect

    Zencir, Sevil; Ovee, Mohiuddin; Dobson, Melanie J.; Banerjee, Monimoy; Topcu, Zeki; Mohanty, Smita

    2011-08-12

    Highlights: {yields} Brain-specific angiogenesis inhibitor 2 (BAI2) is a new partner protein for GIP. {yields} BAI2 interaction with GIP was revealed by yeast two-hybrid assay. {yields} Binding of BAI2 to GIP was characterized by NMR, CD and fluorescence. {yields} BAI2 and GIP binding was mediated through the C-terminus of BAI2. -- Abstract: The vast majority of physiological processes in living cells are mediated by protein-protein interactions often specified by particular protein sequence motifs. PDZ domains, composed of 80-100 amino acid residues, are an important class of interaction motif. Among the PDZ-containing proteins, glutaminase interacting protein (GIP), also known as Tax Interacting Protein TIP-1, is unique in being composed almost exclusively of a single PDZ domain. GIP has important roles in cellular signaling, protein scaffolding and modulation of tumor growth and interacts with a number of physiological partner proteins, including Glutaminase L, {beta}-Catenin, FAS, HTLV-1 Tax, HPV16 E6, Rhotekin and Kir 2.3. To identify the network of proteins that interact with GIP, a human fetal brain cDNA library was screened using a yeast two-hybrid assay with GIP as bait. We identified brain-specific angiogenesis inhibitor 2 (BAI2), a member of the adhesion-G protein-coupled receptors (GPCRs), as a new partner of GIP. BAI2 is expressed primarily in neurons, further expanding GIP cellular functions. The interaction between GIP and the carboxy-terminus of BAI2 was characterized using fluorescence, circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy assays. These biophysical analyses support the interaction identified in the yeast two-hybrid assay. This is the first study reporting BAI2 as an interaction partner of GIP.

  8. Mutual diffusion of interacting membrane proteins.

    PubMed Central

    Abney, J R; Scalettar, B A; Owicki, J C

    1989-01-01

    The generalized Stokes-Einstein equation is used, together with the two-dimensional pressure equation, to analyze mutual diffusion in concentrated membrane systems. These equations can be used to investigate the role that both direct and hydrodynamic interactions play in determining diffusive behavior. Here only direct interactions are explicitly incorporated into the theory at high densities; however, both direct and hydrodynamic interactions are analyzed for some dilute solutions. We look at diffusion in the presence of weak attractions, soft repulsions, and hard-core repulsions. It is found that, at low densities, attractions retard mutual diffusion while repulsions enhance it. Mechanistically, attractions tend to tether particles together and oppose the dissipation of gradients or fluctuations in concentration, while repulsions provide a driving force that pushes particles apart. At higher concentrations, changes in the structure of the fluid enhance mutual diffusion even in the presence of attractions. It is shown that the theoretical description of postelectrophoresis relaxation and fluorescence correlation spectroscopy experiments must be modified if interacting systems are studied. The effects of interactions on mutual diffusion coefficients have probably already been seen in postelectrophoresis relaxation experiments. PMID:2775829

  9. Bilayer-thickness-mediated interactions between integral membrane proteins.

    PubMed

    Kahraman, Osman; Koch, Peter D; Klug, William S; Haselwandter, Christoph A

    2016-04-01

    Hydrophobic thickness mismatch between integral membrane proteins and the surrounding lipid bilayer can produce lipid bilayer thickness deformations. Experiment and theory have shown that protein-induced lipid bilayer thickness deformations can yield energetically favorable bilayer-mediated interactions between integral membrane proteins, and large-scale organization of integral membrane proteins into protein clusters in cell membranes. Within the continuum elasticity theory of membranes, the energy cost of protein-induced bilayer thickness deformations can be captured by considering compression and expansion of the bilayer hydrophobic core, membrane tension, and bilayer bending, resulting in biharmonic equilibrium equations describing the shape of lipid bilayers for a given set of bilayer-protein boundary conditions. Here we develop a combined analytic and numerical methodology for the solution of the equilibrium elastic equations associated with protein-induced lipid bilayer deformations. Our methodology allows accurate prediction of thickness-mediated protein interactions for arbitrary protein symmetries at arbitrary protein separations and relative orientations. We provide exact analytic solutions for cylindrical integral membrane proteins with constant and varying hydrophobic thickness, and develop perturbative analytic solutions for noncylindrical protein shapes. We complement these analytic solutions, and assess their accuracy, by developing both finite element and finite difference numerical solution schemes. We provide error estimates of our numerical solution schemes and systematically assess their convergence properties. Taken together, the work presented here puts into place an analytic and numerical framework which allows calculation of bilayer-mediated elastic interactions between integral membrane proteins for the complicated protein shapes suggested by structural biology and at the small protein separations most relevant for the crowded membrane

  10. Interactions between Trypanosoma cruzi Secreted Proteins and Host Cell Signaling Pathways

    PubMed Central

    Watanabe Costa, Renata; da Silveira, Jose F.; Bahia, Diana

    2016-01-01

    Chagas disease is one of the prevalent neglected tropical diseases, affecting at least 6–7 million individuals in Latin America. It is caused by the protozoan parasite Trypanosoma cruzi, which is transmitted to vertebrate hosts by blood-sucking insects. After infection, the parasite invades and multiplies in the myocardium, leading to acute myocarditis that kills around 5% of untreated individuals. T. cruzi secretes proteins that manipulate multiple host cell signaling pathways to promote host cell invasion. The primary secreted lysosomal peptidase in T. cruzi is cruzipain, which has been shown to modulate the host immune response. Cruzipain hinders macrophage activation during the early stages of infection by interrupting the NF-kB P65 mediated signaling pathway. This allows the parasite to survive and replicate, and may contribute to the spread of infection in acute Chagas disease. Another secreted protein P21, which is expressed in all of the developmental stages of T. cruzi, has been shown to modulate host phagocytosis signaling pathways. The parasite also secretes soluble factors that exert effects on host extracellular matrix, such as proteolytic degradation of collagens. Finally, secreted phospholipase A from T. cruzi contributes to lipid modifications on host cells and concomitantly activates the PKC signaling pathway. Here, we present a brief review of the interaction between secreted proteins from T. cruzi and the host cells, emphasizing the manipulation of host signaling pathways during invasion. PMID:27065960

  11. Multiplex single-molecule interaction profiling of DNA barcoded proteins

    PubMed Central

    Gu, Liangcai; Li, Chao; Aach, John; Hill, David E.; Vidal, Marc; Church, George M.

    2014-01-01

    In contrast with advances in massively parallel DNA sequencing1, high-throughput protein analyses2-4 are often limited by ensemble measurements, individual analyte purification and hence compromised quality and cost-effectiveness. Single-molecule (SM) protein detection achieved using optical methods5 is limited by the number of spectrally nonoverlapping chromophores. Here, we introduce a single molecular interaction-sequencing (SMI-Seq) technology for parallel protein interaction profiling leveraging SM advantages. DNA barcodes are attached to proteins collectively via ribosome display6 or individually via enzymatic conjugation. Barcoded proteins are assayed en masse in aqueous solution and subsequently immobilized in a polyacrylamide (PAA) thin film to construct a random SM array, where barcoding DNAs are amplified into in situ polymerase colonies (polonies)7 and analyzed by DNA sequencing. This method allows precise quantification of various proteins with a theoretical maximum array density of over one million polonies per square millimeter. Furthermore, protein interactions can be measured based on the statistics of colocalized polonies arising from barcoding DNAs of interacting proteins. Two demanding applications, G-protein coupled receptor (GPCR) and antibody binding profiling, were demonstrated. SMI-Seq enables “library vs. library” screening in a one-pot assay, simultaneously interrogating molecular binding affinity and specificity. PMID:25252978

  12. Protein function prediction using guilty by association from interaction networks.

    PubMed

    Piovesan, Damiano; Giollo, Manuel; Ferrari, Carlo; Tosatto, Silvio C E

    2015-12-01

    Protein function prediction from sequence using the Gene Ontology (GO) classification is useful in many biological problems. It has recently attracted increasing interest, thanks in part to the Critical Assessment of Function Annotation (CAFA) challenge. In this paper, we introduce Guilty by Association on STRING (GAS), a tool to predict protein function exploiting protein-protein interaction networks without sequence similarity. The assumption is that whenever a protein interacts with other proteins, it is part of the same biological process and located in the same cellular compartment. GAS retrieves interaction partners of a query protein from the STRING database and measures enrichment of the associated functional annotations to generate a sorted list of putative functions. A performance evaluation based on CAFA metrics and a fair comparison with optimized BLAST similarity searches is provided. The consensus of GAS and BLAST is shown to improve overall performance. The PPI approach is shown to outperform similarity searches for biological process and cellular compartment GO predictions. Moreover, an analysis of the best practices to exploit protein-protein interaction networks is also provided.

  13. TIMBAL v2: update of a database holding small molecules modulating protein-protein interactions.

    PubMed

    Higueruelo, Alicia P; Jubb, Harry; Blundell, Tom L

    2013-01-01

    TIMBAL is a database holding molecules of molecular weight <1200 Daltons that modulate protein-protein interactions. Since its first release, the database has been extended to cover 50 known protein-protein interactions drug targets, including protein complexes that can be stabilized by small molecules with therapeutic effect. The resource contains 14 890 data points for 6896 distinct small molecules. UniProt codes and Protein Data Bank entries are also included. Database URL: http://www-cryst.bioc.cam.ac.uk/timbal

  14. A rapid method for detecting protein-nucleic acid interactions by protein induced fluorescence enhancement

    PubMed Central

    Valuchova, Sona; Fulnecek, Jaroslav; Petrov, Alexander P.; Tripsianes, Konstantinos; Riha, Karel

    2016-01-01

    Many fundamental biological processes depend on intricate networks of interactions between proteins and nucleic acids and a quantitative description of these interactions is important for understanding cellular mechanisms governing DNA replication, transcription, or translation. Here we present a versatile method for rapid and quantitative assessment of protein/nucleic acid (NA) interactions. This method is based on protein induced fluorescence enhancement (PIFE), a phenomenon whereby protein binding increases the fluorescence of Cy3-like dyes. PIFE has mainly been used in single molecule studies to detect protein association with DNA or RNA. Here we applied PIFE for steady state quantification of protein/NA interactions by using microwell plate fluorescence readers (mwPIFE). We demonstrate the general applicability of mwPIFE for examining various aspects of protein/DNA interactions with examples from the restriction enzyme BamHI, and the DNA repair complexes Ku and XPF/ERCC1. These include determination of sequence and structure binding specificities, dissociation constants, detection of weak interactions, and the ability of a protein to translocate along DNA. mwPIFE represents an easy and high throughput method that does not require protein labeling and can be applied to a wide range of applications involving protein/NA interactions. PMID:28008962

  15. Detecting Protein-Protein Interactions in Vesicular Stomatitis Virus Using a Cytoplasmic Yeast Two Hybrid System

    PubMed Central

    Moerdyk-Schauwecker, Megan; DeStephanis, Darla; Hastie, Eric; Grdzelishvili, Valery Z.

    2011-01-01

    Summary Protein-protein interactions play an important role in many virus-encoded functions and in virus-host interactions. While a “classical” yeast two-hybrid system (Y2H) is one of the most common techniques to detect such interactions, it has a number of limitations, including a requirement for the proteins of interest to be relocated to the nucleus. Modified Y2H, such as the Sos recruitment system (SRS), which detect interactions occurring in the cytoplasm rather than the nucleus, allow proteins from viruses replicating in the cytoplasm to be tested in a more natural context. In this study, a SRS was used to detect interactions involving proteins from vesicular stomatitis virus (VSV), a prototypic non-segmented negative strand RNA (NNS) virus. All five full-length VSV proteins, as well as several truncated proteins, were screened against each other. Using the SRS, most interactions demonstrated previously involving VSV phosphoprotein, nucleocapsid (N) and large polymerase proteins were confirmed independently, while difficulties were encountered using the membrane associated matrix and glycoproteins. A human cDNA library was also screened against VSV N protein and one cellular protein, SFRS18, was identified which interacted with N in this context. The system presented can be redesigned easily for studies in other less tractable NNS viruses. PMID:21320532

  16. Proteins differentially interact with grapefruit furanocoumarins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grapefruit juice (GFJ) interferes with the cytochrome P450 3A4 activity responsible for metabolizing certain medications. This interference is referred to as the "grapefruit-drug interaction". Grapefruit furanocoumarins (FCs), such as 6', 7'-dihydroxybergamottin (DHB) and bergamottin (BM), have been...

  17. Inferring High-Confidence Human Protein-Protein Interactions

    DTIC Science & Technology

    2012-01-01

    Similarly, the top-ranked interaction between L-threonine dehydrogenase ( TDH ) and aminoacetone synthetase (alias of GCAT) catalyzes the conversion of L...acetyltransferase TDH 2 L-threonine dehydrogenase 2 577.4 11.0 1328.0 CXCL16 4 Inducible T cell co-stimulator CXCR6 4 Inducible T cell co-stimulator

  18. Neurodegenerative diseases: quantitative predictions of protein-RNA interactions.

    PubMed

    Cirillo, Davide; Agostini, Federico; Klus, Petr; Marchese, Domenica; Rodriguez, Silvia; Bolognesi, Benedetta; Tartaglia, Gian Gaetano

    2013-02-01

    Increasing evidence indicates that RNA plays an active role in a number of neurodegenerative diseases. We recently introduced a theoretical framework, catRAPID, to predict the binding ability of protein and RNA molecules. Here, we use catRAPID to investigate ribonucleoprotein interactions linked to inherited intellectual disability, amyotrophic lateral sclerosis, Creutzfeuld-Jakob, Alzheimer's, and Parkinson's diseases. We specifically focus on (1) RNA interactions with fragile X mental retardation protein FMRP; (2) protein sequestration caused by CGG repeats; (3) noncoding transcripts regulated by TAR DNA-binding protein 43 TDP-43; (4) autogenous regulation of TDP-43 and FMRP; (5) iron-mediated expression of amyloid precursor protein APP and α-synuclein; (6) interactions between prions and RNA aptamers. Our results are in striking agreement with experimental evidence and provide new insights in processes associated with neuronal function and misfunction.

  19. Automated Analysis of Fluorescence Microscopy Images to Identify Protein-Protein Interactions

    PubMed Central

    Doktycz, M. J.; Qi, H.; Morrell-Falvey, J. L.

    2006-01-01

    The identification of protein interactions is important for elucidating biological networks. One obstacle in comprehensive interaction studies is the analyses of large datasets, particularly those containing images. Development of an automated system to analyze an image-based protein interaction dataset is needed. Such an analysis system is described here, to automatically extract features from fluorescence microscopy images obtained from a bacterial protein interaction assay. These features are used to relay quantitative values that aid in the automated scoring of positive interactions. Experimental observations indicate that identifying at least 50% positive cells in an image is sufficient to detect a protein interaction. Based on this criterion, the automated system presents 100% accuracy in detecting positive interactions for a dataset of 16 images. Algorithms were implemented using MATLAB and the software developed is available on request from the authors. PMID:23165043

  20. Automated Analysis of Fluorescence Microscopy Images to Identify Protein-Protein Interactions

    DOE PAGES

    Venkatraman, S.; Doktycz, M. J.; Qi, H.; ...

    2006-01-01

    The identification of protein interactions is important for elucidating biological networks. One obstacle in comprehensive interaction studies is the analyses of large datasets, particularly those containing images. Development of an automated system to analyze an image-based protein interaction dataset is needed. Such an analysis system is described here, to automatically extract features from fluorescence microscopy images obtained from a bacterial protein interaction assay. These features are used to relay quantitative values that aid in the automated scoring of positive interactions. Experimental observations indicate that identifying at least 50% positive cells in an image is sufficient to detect a protein interaction.more » Based on this criterion, the automated system presents 100% accuracy in detecting positive interactions for a dataset of 16 images. Algorithms were implemented using MATLAB and the software developed is available on request from the authors.« less

  1. PPISEARCHENGINE: gene ontology-based search for protein-protein interactions.

    PubMed

    Park, Byungkyu; Cui, Guangyu; Lee, Hyunjin; Huang, De-Shuang; Han, Kyungsook

    2013-01-01

    This paper presents a new search engine called PPISearchEngine which finds protein-protein interactions (PPIs) using the gene ontology (GO) and the biological relations of proteins. For efficient retrieval of PPIs, each GO term is assigned a prime number and the relation between the terms is represented by the product of prime numbers. This representation is hidden from users but facilitates the search for the interactions of a query protein by unique prime factorisation of the number that represents the query protein. For a query protein, PPISearchEngine considers not only the GO term associated with the query protein but also the GO terms at the lower level than the GO term in the GO hierarchy, and finds all the interactions of the query protein which satisfy the search condition. In contrast, the standard keyword-matching or ID-matching search method cannot find the interactions of a protein unless the interactions involve a protein with explicit annotations. To the best of our knowledge, this search engine is the first method that can process queries like 'for protein p with GO [Formula: see text], find p's interaction partners with GO [Formula: see text]'. PPISearchEngine is freely available to academics at http://search.hpid.org/.

  2. Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction

    NASA Astrophysics Data System (ADS)

    Yeger-Lotem, Esti; Sattath, Shmuel; Kashtan, Nadav; Itzkovitz, Shalev; Milo, Ron; Pinter, Ron Y.; Alon, Uri; Margalit, Hanah

    2004-04-01

    Genes and proteins generate molecular circuitry that enables the cell to process information and respond to stimuli. A major challenge is to identify characteristic patterns in this network of interactions that may shed light on basic cellular mechanisms. Previous studies have analyzed aspects of this network, concentrating on either transcription-regulation or protein-protein interactions. Here we search for composite network motifs: characteristic network patterns consisting of both transcription-regulation and protein-protein interactions that recur significantly more often than in random networks. To this end we developed algorithms for detecting motifs in networks with two or more types of interactions and applied them to an integrated data set of protein-protein interactions and transcription regulation in Saccharomyces cerevisiae. We found a two-protein mixed-feedback loop motif, five types of three-protein motifs exhibiting coregulation and complex formation, and many motifs involving four proteins. Virtually all four-protein motifs consisted of combinations of smaller motifs. This study presents a basic framework for detecting the building blocks of networks with multiple types of interactions.

  3. Protein surface-distribution and protein-protein interactions in the binding of peripheral proteins to charged lipid membranes.

    PubMed Central

    Heimburg, T; Marsh, D

    1995-01-01

    The binding of native cytochrome c to negatively charged lipid dispersions of dioleoyl phosphatidylglycerol has been studied over a wide range of ionic strengths. Not only is the strength of protein binding found to decrease rapidly with increasing ionic strength, but also the binding curves reach an apparent saturation level that decreases rapidly with increasing ionic strength. Analysis of the binding isotherms with a general statistical thermodynamic model that takes into account not only the free energy of the electrostatic double layer, but also the free energy of the surface distribution of the protein, demonstrates that the apparent saturation effects could arise from a competition between the out-of-plane binding reaction and the lateral in-plane interactions between proteins at the surface. It is found that association with nonlocalized sites results in binding isotherms that display the apparent saturation effect to a much more pronounced extent than does the Langmuir adsorption isotherm for binding to localized sites. With the model for nonlocalized sites, the binding isotherms of native cytochrome c can be described adequately by taking into account only the entropy of the surface distribution of the protein, without appreciable enthalpic interactions between the bound proteins. The binding of cytochrome c to dioleoyl phosphatidylglycerol dispersions at a temperature at which the bound protein is denatured on the lipid surface, but is nondenatured when free in solution, has also been studied. The binding curves for the surface-denatured protein differ from those for the native protein in that the apparent saturation at high ionic strength is less pronounced. This indicates the tendency of the denatured protein to aggregate on the lipid surface, and can be described by the binding isotherms for nonlocalized sites only if attractive interactions between the surface-bound proteins are included in addition to the distributional entropic terms. Additionally

  4. A method for investigating protein-protein interactions related to Salmonella typhimurium pathogenesis

    SciTech Connect

    Chowdhury, Saiful M.; Shi, Liang; Yoon, Hyunjin; Ansong, Charles; Rommereim, Leah M.; Norbeck, Angela D.; Auberry, Kenneth J.; Moore, R. J.; Adkins, Joshua N.; Heffron, Fred; Smith, Richard D.

    2009-02-10

    We successfully modified an existing method to investigate protein-protein interactions in the pathogenic bacterium Salmonella typhimurium (STM). This method includes i) addition of a histidine-biotin-histidine tag to the bait proteins via recombinant DNA techniques; ii) in vivo cross-linking with formaldehyde; iii) tandem affinity purification of bait proteins under fully denaturing conditions; and iv) identification of the proteins cross-linked to the bait proteins by liquid-chromatography in conjunction with tandem mass-spectrometry. In vivo cross-linking stabilized protein interactions permitted the subsequent two-step purification step conducted under denaturing conditions. The two-step purification greatly reduced nonspecific binding of non-cross-linked proteins to bait proteins. Two different negative controls were employed to reduce false-positive identification. In an initial demonstration of this approach, we tagged three selected STM proteins- HimD, PduB and PhoP- with known binding partners that ranged from stable (e.g., HimD) to transient (i.e., PhoP). Distinct sets of interacting proteins were identified with each bait protein, including the known binding partners such as HimA for HimD, as well as anticipated and unexpected binding partners. Our results suggest that novel protein-protein interactions may be critical to pathogenesis by Salmonella typhimurium. .

  5. Direct AKAP-mediated protein-protein interactions as potential drug targets.

    PubMed

    Hundsrucker, C; Klussmann, E

    2008-01-01

    A-kinase-anchoring proteins (AKAPs) are a diverse family of about 50 scaffolding proteins. They are defined by the presence of a structurally conserved protein kinase A (PKA)-binding domain. AKAPs tether PKA and other signalling proteins such as further protein kinases, protein phosphatases and phosphodiesterases by direct protein-protein interactions to cellular compartments. Thus, AKAPs form the basis of signalling modules that integrate cellular signalling processes and limit these to defined sites. Disruption of AKAP functions by gene targeting, knockdown approaches and, in particular, pharmacological disruption of defined AKAP-dependent protein-protein interactions has revealed key roles of AKAPs in numerous processes, including the regulation of cardiac myocyte contractility and vasopressin-mediated water reabsorption in the kidney. Dysregulation of such processes causes diseases, including cardiovascular and renal disorders. In this review, we discuss AKAP functions elucidated by gene targeting and knockdown approaches, but mainly focus on studies utilizing peptides for disruption of direct AKAP-mediated protein-protein interactions. The latter studies point to direct AKAP-mediated protein-protein interactions as targets for novel drugs.

  6. Biophysics of protein-DNA interactions and chromosome organization

    PubMed Central

    Marko, John F.

    2014-01-01

    The function of DNA in cells depends on its interactions with protein molecules, which recognize and act on base sequence patterns along the double helix. These notes aim to introduce basic polymer physics of DNA molecules, biophysics of protein-DNA interactions and their study in single-DNA experiments, and some aspects of large-scale chromosome structure. Mechanisms for control of chromosome topology will also be discussed. PMID:25419039

  7. Analytical applications of partitioning in aqueous two-phase systems: Exploring protein structural changes and protein-partner interactions in vitro and in vivo by solvent interaction analysis method.

    PubMed

    Zaslavsky, Boris Y; Uversky, Vladimir N; Chait, Arnon

    2016-05-01

    This review covers the fundamentals of protein partitioning in aqueous two-phase systems (ATPS). Included is a review of advancements in the analytical application of solute partitioning in ATPS over the last two decades, with multiple examples of experimental data providing evidence that phase-forming polymers do not interact with solutes partitioned in ATPS. The partitioning of solutes is governed by the differences in solute interactions with aqueous media in the two phases. Solvent properties of the aqueous media in these two phases may be characterized and manipulated. The solvent interaction analysis (SIA) method, based on the solute partitioning in ATPS, may be used for characterization and analysis of individual proteins and their interactions with different partners. The current state of clinical proteomics regarding the discovery and monitoring of new protein biomarkers is discussed, and it is argued that the protein expression level in a biological fluid may be not the optimal focus of clinical proteomic research. Multiple examples of application of the SIA method for discovery of changes in protein structure and protein-partner interactions in biological fluids are described. The SIA method reveals new opportunities for discovery and monitoring structure-based protein biomarkers.

  8. Single-Molecule Study of Protein-Protein Interaction Dynamics in a Cell Signaling System

    SciTech Connect

    Tan, Xin; Nalbant, Perihan; Toutchkine, Alexei; Hu, Dehong; Vorpagel, Erich R.; Hahn, Klaus M.; Lu, H. Peter

    2004-01-01

    We report a study on protein-protein noncovalent interactions in an intracellular signaling protein complex, using single-molecule spectroscopy and molecular dynamics (MD) simulations. A Wiskott-Aldrich Syndrome Protein (WASP) fragment that binds only the activated intracellular signaling protein Cdc42 was labeled with a novel solvatochromic dye and used to probe hydrophobic interactions significant to Cdc42/WASP recognition. The study shows static and dynamic inhomogeneous conformational fluctuations of the protein complex that involve bound and loosely bound states. A two-coupled, two-state Markovian kinetic model is proposed for the conformational dynamics. Finally, the MD simulations explore the origin of these conformational states and associated conformational fluctuations in this protein-protein interaction system.

  9. AAV Vectors for FRET-Based Analysis of Protein-Protein Interactions in Photoreceptor Outer Segments

    PubMed Central

    Becirovic, Elvir; Böhm, Sybille; Nguyen, Ong N. P.; Riedmayr, Lisa M.; Hammelmann, Verena; Schön, Christian; Butz, Elisabeth S.; Wahl-Schott, Christian; Biel, Martin; Michalakis, Stylianos

    2016-01-01

    Fluorescence resonance energy transfer (FRET) is a powerful method for the detection and quantification of stationary and dynamic protein-protein interactions. Technical limitations have hampered systematic in vivo FRET experiments to study protein-protein interactions in their native environment. Here, we describe a rapid and robust protocol that combines adeno-associated virus (AAV) vector-mediated in vivo delivery of genetically encoded FRET partners with ex vivo FRET measurements. The method was established on acutely isolated outer segments of murine rod and cone photoreceptors and relies on the high co-transduction efficiency of retinal photoreceptors by co-delivered AAV vectors. The procedure can be used for the systematic analysis of protein-protein interactions of wild type or mutant outer segment proteins in their native environment. Conclusively, our protocol can help to characterize the physiological and pathophysiological relevance of photoreceptor specific proteins and, in principle, should also be transferable to other cell types. PMID:27516733

  10. Sequence-based discrimination of protein-RNA interacting residues using a probabilistic approach.

    PubMed

    Pai, Priyadarshini P; Dash, Tirtharaj; Mondal, Sukanta

    2017-04-07

    Protein interactions with ribonucleic acids (RNA) are well-known to be crucial for a wide range of cellular processes such as transcriptional regulation, protein synthesis or translation, and post-translational modifications. Identification of the RNA-interacting residues can provide insights into these processes and aid in relevant biotechnological manipulations. Owing to their eventual potential in combating diseases and industrial production, several computational attempts have been made over years using sequence- and structure-based information. Recent comparative studies suggest that despite these developments, many problems are faced with respect to the usability, prerequisites, and accessibility of various tools, thereby calling for an alternative approach and perspective supplementation in the prediction scenario. With this motivation, in this paper, we propose the use of a simple-yet-efficient conditional probabilistic approach based on the application of local occurrence of amino acids in the interacting region in a non-numeric sequence feature space, for discriminating between RNA interacting and non-interacting residues. The proposed method has been meticulously tested for robustness using a cross-estimation method showing MCC of 0.341 and F- measure of 66.84%. Upon exploring large scale applications using benchmark datasets available to date, this approach showed an encouraging performance comparable with the state-of-art. The software is available at https://github.com/ABCgrp/DORAEMON.

  11. Assessing Energetic Contributions to Binding from a Disordered Region in a Protein-Protein Interaction

    SciTech Connect

    S Cho; C Swaminathan; D Bonsor; M Kerzic; R Guan; J Yang; C Kieke; P Anderson; D Kranz; et al.

    2011-12-31

    Many functional proteins are at least partially disordered prior to binding. Although the structural transitions upon binding of disordered protein regions can influence the affinity and specificity of protein complexes, their precise energetic contributions to binding are unknown. Here, we use a model protein-protein interaction system in which a locally disordered region has been modified by directed evolution to quantitatively assess the thermodynamic and structural contributions to binding of disorder-to-order transitions. Through X-ray structure determination of the protein binding partners before and after complex formation and isothermal titration calorimetry of the interactions, we observe a correlation between protein ordering and binding affinity for complexes along this affinity maturation pathway. Additionally, we show that discrepancies between observed and calculated heat capacities based on buried surface area changes in the protein complexes can be explained largely by heat capacity changes that would result solely from folding the locally disordered region. Previously developed algorithms for predicting binding energies of protein-protein interactions, however, are unable to correctly model the energetic contributions of the structural transitions in our model system. While this highlights the shortcomings of current computational methods in modeling conformational flexibility, it suggests that the experimental methods used here could provide training sets of molecular interactions for improving these algorithms and further rationalizing molecular recognition in protein-protein interactions.

  12. Identifying protein complexes in protein-protein interaction networks by using clique seeds and graph entropy.

    PubMed

    Chen, Bolin; Shi, Jinhong; Zhang, Shenggui; Wu, Fang-Xiang

    2013-01-01

    The identification of protein complexes plays a key role in understanding major cellular processes and biological functions. Various computational algorithms have been proposed to identify protein complexes from protein-protein interaction (PPI) networks. In this paper, we first introduce a new seed-selection strategy for seed-growth style algorithms. Cliques rather than individual vertices are employed as initial seeds. After that, a result-modification approach is proposed based on this seed-selection strategy. Predictions generated by higher order clique seeds are employed to modify results that are generated by lower order ones. The performance of this seed-selection strategy and the result-modification approach are tested by using the entropy-based algorithm, which is currently the best seed-growth style algorithm to detect protein complexes from PPI networks. In addition, we investigate four pairs of strategies for this algorithm in order to improve its accuracy. The numerical experiments are conducted on a Saccharomyces cerevisiae PPI network. The group of best predictions consists of 1711 clusters, with the average f-score at 0.68 after removing all similar and redundant clusters. We conclude that higher order clique seeds can generate predictions with higher accuracy and that our improved entropy-based algorithm outputs more reasonable predictions than the original one.

  13. Interaction of decavanadate polyanions with proteins.

    PubMed

    Ashraf, S M; Rajesh; Kaleem, S

    1995-09-01

    The binding of polymeric decavanadate anion [V10O28]6- with bovine serum albumin and gelatin was studied at pH 4.0 and 3.0, the region of thermodynamic stability of oligomeric vanadate anion. The binding of decavanadate anion at pH 4.0 with bovine serum albumin (BSA) and gelatin was found to be 9 and 32 gmol of decavanadate per gram mole of the proteins. The binding at pH 3.0 was found to be 12 and 38 gmol, respectively. Freshly formed BSA decavanadate precipitate was particulate in nature while that of gelatin-decavanadate made a gummy mass. This indicates a different mode of binding of decavanadate anions with globular and fibrillar proteins. Infrared spectra of the adducts endorses electrostatic binding between proteins and decavanadate. Scanning electron microscopy micrographs reveal extended crosslinked binding between decavanadate and gelatin and aggregation of the uncharged BSA-decavanadate molecules to make a granular adduct. The mode of binding was also correlated with the structure of decavanadate anions, BSA, and gelatin.

  14. Quantification of protein interaction kinetics in a micro droplet

    NASA Astrophysics Data System (ADS)

    Yin, L. L.; Wang, S. P.; Shan, X. N.; Zhang, S. T.; Tao, N. J.

    2015-11-01

    Characterization of protein interactions is essential to the discovery of disease biomarkers, the development of diagnostic assays, and the screening for therapeutic drugs. Conventional flow-through kinetic measurements need relative large amount of sample that is not feasible for precious protein samples. We report a novel method to measure protein interaction kinetics in a single droplet with sub microliter or less volume. A droplet in a humidity-controlled environmental chamber is replacing the microfluidic channels as the reactor for the protein interaction. The binding process is monitored by a surface plasmon resonance imaging (SPRi) system. Association curves are obtained from the average SPR image intensity in the center area of the droplet. The washing step required by conventional flow-through SPR method is eliminated in the droplet method. The association and dissociation rate constants and binding affinity of an antigen-antibody interaction are obtained by global fitting of association curves at different concentrations. The result obtained by this method is accurate as validated by conventional flow-through SPR system. This droplet-based method not only allows kinetic studies for proteins with limited supply but also opens the door for high-throughput protein interaction study in a droplet-based microarray format that enables measurement of many to many interactions on a single chip.

  15. Quantification of protein interaction kinetics in a micro droplet

    SciTech Connect

    Yin, L. L.; Wang, S. P. E-mail: njtao@asu.edu; Shan, X. N.; Tao, N. J. E-mail: njtao@asu.edu; Zhang, S. T.

    2015-11-15

    Characterization of protein interactions is essential to the discovery of disease biomarkers, the development of diagnostic assays, and the screening for therapeutic drugs. Conventional flow-through kinetic measurements need relative large amount of sample that is not feasible for precious protein samples. We report a novel method to measure protein interaction kinetics in a single droplet with sub microliter or less volume. A droplet in a humidity-controlled environmental chamber is replacing the microfluidic channels as the reactor for the protein interaction. The binding process is monitored by a surface plasmon resonance imaging (SPRi) system. Association curves are obtained from the average SPR image intensity in the center area of the droplet. The washing step required by conventional flow-through SPR method is eliminated in the droplet method. The association and dissociation rate constants and binding affinity of an antigen-antibody interaction are obtained by global fitting of association curves at different concentrations. The result obtained by this method is accurate as validated by conventional flow-through SPR system. This droplet-based method not only allows kinetic studies for proteins with limited supply but also opens the door for high-throughput protein interaction study in a droplet-based microarray format that enables measurement of many to many interactions on a single chip.

  16. Identification of Protein Interactions Involved in Cellular Signaling

    PubMed Central

    Westermarck, Jukka; Ivaska, Johanna; Corthals, Garry L.

    2013-01-01

    Protein-protein interactions drive biological processes. They are critical for all intra- and extracellular functions, and the technologies to analyze them are widely applied throughout the various fields of biological sciences. This study takes an in-depth view of some common principles of cellular regulation and provides a detailed account of approaches required to comprehensively map signaling protein-protein interactions in any particular cellular system or condition. We provide a critical review of the benefits and disadvantages of the yeast two-hybrid method and affinity purification coupled with mass spectrometric procedures for identification of signaling protein-protein interactions. In particular, we emphasize the quantitative and qualitative differences between tandem affinity and one-step purification (such as FLAG and Strep tag) methods. Although applicable to all types of interaction studies, a special section is devoted in this review to aspects that should be considered when attempting to identify signaling protein interactions that often are transient and weak by nature. Finally, we discuss shotgun and quantitative information that can be gleaned by MS-coupled methods for analysis of multiprotein complexes. PMID:23481661

  17. 2D depiction of nonbonding interactions for protein complexes.

    PubMed

    Zhou, Peng; Tian, Feifei; Shang, Zhicai

    2009-04-30

    A program called the 2D-GraLab is described for automatically generating schematic representation of nonbonding interactions across the protein binding interfaces. The input file of this program takes the standard PDB format, and the outputs are two-dimensional PostScript diagrams giving intuitive and informative description of the protein-protein interactions and their energetics properties, including hydrogen bond, salt bridge, van der Waals interaction, hydrophobic contact, pi-pi stacking, disulfide bond, desolvation effect, and loss of conformational entropy. To ensure these interaction information are determined accurately and reliably, methods and standalone programs employed in the 2D-GraLab are all widely used in the chemistry and biology community. The generated diagrams allow intuitive visualization of the interaction mode and binding specificity between two subunits in protein complexes, and by providing information on nonbonding energetics and geometric characteristics, the program offers the possibility of comparing different protein binding profiles in a detailed, objective, and quantitative manner. We expect that this 2D molecular graphics tool could be useful for the experimentalists and theoreticians interested in protein structure and protein engineering.

  18. Identification of Redox and Glucose-Dependent Txnip Protein Interactions

    PubMed Central

    Neuharth, Skyla; Kim, Dae In; Motamedchaboki, Khatereh; Roux, Kyle J.

    2016-01-01

    Thioredoxin-interacting protein (Txnip) acts as a negative regulator of thioredoxin function and is a critical modulator of several diseases including, but not limited to, diabetes, ischemia-reperfusion cardiac injury, and carcinogenesis. Therefore, Txnip has become an attractive therapeutic target to alleviate disease pathologies. Although Txnip has been implicated with numerous cellular processes such as proliferation, fatty acid and glucose metabolism, inflammation, and apoptosis, the molecular mechanisms underlying these processes are largely unknown. The objective of these studies was to identify Txnip interacting proteins using the proximity-based labeling method, BioID, to understand differential regulation of pleiotropic Txnip cellular functions. The BioID transgene fused to Txnip expressed in HEK293 identified 31 interacting proteins. Many protein interactions were redox-dependent and were disrupted through mutation of a previously described reactive cysteine (C247S). Furthermore, we demonstrate that this model can be used to identify dynamic Txnip interactions due to known physiological regulators such as hyperglycemia. These data identify novel Txnip protein interactions and demonstrate dynamic interactions dependent on redox and glucose perturbations, providing clarification to the pleiotropic cellular functions of Txnip. PMID:27437069

  19. Imaging mRNA and protein interactions within neurons

    PubMed Central

    Eliscovich, Carolina; Shenoy, Shailesh M.

    2017-01-01

    RNA–protein interactions are essential for proper gene expression regulation, particularly in neurons with unique spatial constraints. Currently, these interactions are defined biochemically, but a method is needed to evaluate them quantitatively within morphological context. Colocalization of two-color labels using wide-field microscopy is a method to infer these interactions. However, because of chromatic aberrations in the objective lens, this approach lacks the resolution to determine whether two molecules are physically in contact or simply nearby by chance. Here, we developed a robust super registration methodology that corrected the chromatic aberration across the entire image field to within 10 nm, which is capable of determining whether two molecules are physically interacting or simply in proximity by random chance. We applied this approach to image single-molecule FISH in combination with immunofluorescence (smFISH-IF) and determined whether the association between an mRNA and binding protein(s) within a neuron was significant or accidental. We evaluated several mRNA-binding proteins identified from RNA pulldown assays to determine which of these exhibit bona fide interactions. Surprisingly, many known mRNA-binding proteins did not bind the mRNA in situ, indicating that adventitious interactions are significant using existing technology. This method provides an ability to evaluate two-color registration compatible with the scale of molecular interactions. PMID:28223507

  20. Evolution of a protein domain interaction network

    NASA Astrophysics Data System (ADS)

    Gao, Li-Feng; Shi, Jian-Jun; Guan, Shan

    2010-01-01

    In this paper, we attempt to understand complex network evolution from the underlying evolutionary relationship between biological organisms. Firstly, we construct a Pfam domain interaction network for each of the 470 completely sequenced organisms, and therefore each organism is correlated with a specific Pfam domain interaction network; secondly, we infer the evolutionary relationship of these organisms with the nearest neighbour joining method; thirdly, we use the evolutionary relationship between organisms constructed in the second step as the evolutionary course of the Pfam domain interaction network constructed in the first step. This analysis of the evolutionary course shows: (i) there is a conserved sub-network structure in network evolution; in this sub-network, nodes with lower degree prefer to maintain their connectivity invariant, and hubs tend to maintain their role as a hub is attached preferentially to new added nodes; (ii) few nodes are conserved as hubs; most of the other nodes are conserved as one with very low degree; (iii) in the course of network evolution, new nodes are added to the network either individually in most cases or as clusters with relative high clustering coefficients in a very few cases.

  1. Detecting overlapping protein complexes by rough-fuzzy clustering in protein-protein interaction networks.

    PubMed

    Wu, Hao; Gao, Lin; Dong, Jihua; Yang, Xiaofei

    2014-01-01

    In this paper, we present a novel rough-fuzzy clustering (RFC) method to detect overlapping protein complexes in protein-protein interaction (PPI) networks. RFC focuses on fuzzy relation model rather than graph model by integrating fuzzy sets and rough sets, employs the upper and lower approximations of rough sets to deal with overlapping complexes, and calculates the number of complexes automatically. Fuzzy relation between proteins is established and then transformed into fuzzy equivalence relation. Non-overlapping complexes correspond to equivalence classes satisfying certain equivalence relation. To obtain overlapping complexes, we calculate the similarity between one protein and each complex, and then determine whether the protein belongs to one or multiple complexes by computing the ratio of each similarity to maximum similarity. To validate RFC quantitatively, we test it in Gavin, Collins, Krogan and BioGRID datasets. Experiment results show that there is a good correspondence to reference complexes in MIPS and SGD databases. Then we compare RFC with several previous methods, including ClusterONE, CMC, MCL, GCE, OSLOM and CFinder. Results show the precision, sensitivity and separation are 32.4%, 42.9% and 81.9% higher than mean of the five methods in four weighted networks, and are 0.5%, 11.2% and 66.1% higher than mean of the six methods in five unweighted networks. Our method RFC works well for protein complexes detection and provides a new insight of network division, and it can also be applied to identify overlapping community structure in social networks and LFR benchmark networks.

  2. Mutant analysis, protein-protein interactions and subcellular localization of the Arabidopsis B sister (ABS) protein.

    PubMed

    Kaufmann, Kerstin; Anfang, Nicole; Saedler, Heinz; Theissen, Günter

    2005-09-01

    Recently, close relatives of class B floral homeotic genes, termed B(sister) genes, have been identified in both angiosperms and gymnosperms. In contrast to the B genes themselves, B(sister) genes are exclusively expressed in female reproductive organs, especially in the envelopes or integuments surrounding the ovules. This suggests an important ancient function in ovule or seed development for B(sister) genes, which has been conserved for about 300 million years. However, investigation of the first loss-of-function mutant for a B(sister) gene (ABS/TT16 from Arabidopsis) revealed only a weak phenotype affecting endothelium formation. Here, we present an analysis of two additional mutant alleles, which corroborates this weak phenotype. Transgenic plants that ectopically express ABS show changes in the growth and identity of floral organs, suggesting that ABS can interact with floral homeotic proteins. Yeast-two-hybrid and three-hybrid analyses indicated that ABS can form dimers with SEPALLATA (SEP) floral homeotic proteins and multimeric complexes that also include the AGAMOUS-like proteins SEEDSTICK (STK) or SHATTERPROOF1/2 (SHP1, SHP2). These data suggest that the formation of multimeric transcription factor complexes might be a general phenomenon among MIKC-type MADS-domain proteins in angiosperms. Heterodimerization of ABS with SEP3 was confirmed by gel retardation assays. Fusion proteins tagged with CFP (Cyan Fluorescent Protein) and YFP (Yellow Fluorescent Protein) in Arabidopsis protoplasts showed that ABS is localized in the nucleus. Phylogenetic analysis revealed the presence of a structurally deviant, but closely related, paralogue of ABS in the Arabidopsis genome. Thus the evolutionary developmental genetics of B(sister) genes can probably only be understood as part of a complex and redundant gene network that may govern ovule formation in a conserved manner, which has yet to be fully explored.

  3. Detection of protein-protein interactions in plants using bimolecular fluorescence complementation.

    PubMed

    Bracha-Drori, Keren; Shichrur, Keren; Katz, Aviva; Oliva, Moran; Angelovici, Ruthie; Yalovsky, Shaul; Ohad, Nir

    2004-11-01

    Protein function is often mediated via formation of stable or transient complexes. Here we report the determination of protein-protein interactions in plants using bimolecular fluorescence complementation (BiFC). The yellow fluorescent protein (YFP) was split into two non-overlapping N-terminal (YN) and C-terminal (YC) fragments. Each fragment was cloned in-frame to a gene of interest, enabling expression of fusion proteins. To demonstrate the feasibility of BiFC in plants, two pairs of interacting proteins were utilized: (i) the alpha and beta subunits of the Arabidopsis protein farnesyltransferase (PFT), and (ii) the polycomb proteins, FERTILIZATION-INDEPENDENT ENDOSPERM (FIE) and MEDEA (MEA). Members of each protein pair were transiently co-expressed in leaf epidermal cells of Nicotiana benthamiana or Arabidopsis. Reconstitution of a fluorescing YFP chromophore occurred only when the inquest proteins interacted. No fluorescence was detected following co-expression of free non-fused YN and YC or non-interacting protein pairs. Yellow fluorescence was detected in the cytoplasm of cells that expressed PFT alpha and beta subunits, or in nuclei and cytoplasm of cells that expressed FIE and MEA. In vivo measurements of fluorescence spectra emitted from reconstituted YFPs were identical to that of a non-split YFP, confirming reconstitution of the chromophore. Expression of the inquest proteins was verified by immunoblot analysis using monoclonal antibodies directed against tags within the hybrid proteins. In addition, protein interactions were confirmed by immunoprecipitations. These results demonstrate that plant BiFC is a simple, reliable and relatively fast method for determining protein-protein interactions in plants.

  4. Protein-Protein Interactions: Gene Acronym Redundancies and Current Limitations Precluding Automated Data Integration

    PubMed Central

    Casado-Vela, Juan; Matthiesen, Rune; Sellés, Susana; Naranjo, José Ramón

    2013-01-01

    Understanding protein interaction networks and their dynamic changes is a major challenge in modern biology. Currently, several experimental and in silico approaches allow the screening of protein interactors in a large-scale manner. Therefore, the bulk of information on protein interactions deposited in databases and peer-reviewed published literature is constantly growing. Multiple databases interfaced from user-friendly web tools recently emerged to facilitate the task of protein interaction data retrieval and data integration. Nevertheless, as we evidence in this report, despite the current efforts towards data integration, the quality of the information on protein interactions retrieved by in silico approaches is frequently incomplete and may even list false interactions. Here we point to some obstacles precluding confident data integration, with special emphasis on protein interactions, which include gene acronym redundancies and protein synonyms. Three human proteins (choline kinase, PPIase and uromodulin) and three different web-based data search engines focused on protein interaction data retrieval (PSICQUIC, DASMI and BIPS) were used to explain the potential occurrence of undesired errors that should be considered by researchers in the field. We demonstrate that, despite the recent initiatives towards data standardization, manual curation of protein interaction networks based on literature searches are still required to remove potential false positives. A three-step workflow consisting of: (i) data retrieval from multiple databases, (ii) peer-reviewed literature searches, and (iii) data curation and integration, is proposed as the best strategy to gather updated information on protein interactions. Finally, this strategy was applied to compile bona fide information on human DREAM protein interactome, which constitutes liable training datasets that can be used to improve computational predictions. PMID:28250396

  5. Protein-Protein Interactions: Gene Acronym Redundancies and Current Limitations Precluding Automated Data Integration.

    PubMed

    Casado-Vela, Juan; Matthiesen, Rune; Sellés, Susana; Naranjo, José Ramón

    2013-05-31

    Understanding protein interaction networks and their dynamic changes is a major challenge in modern biology. Currently, several experimental and in silico approaches allow the screening of protein interactors in a large-scale manner. Therefore, the bulk of information on protein interactions deposited in databases and peer-reviewed published literature is constantly growing. Multiple databases interfaced from user-friendly web tools recently emerged to facilitate the task of protein interaction data retrieval and data integration. Nevertheless, as we evidence in this report, despite the current efforts towards data integration, the quality of the information on protein interactions retrieved by in silico approaches is frequently incomplete and may even list false interactions. Here we point to some obstacles precluding confident data integration, with special emphasis on protein interactions, which include gene acronym redundancies and protein synonyms. Three human proteins (choline kinase, PPIase and uromodulin) and three different web-based data search engines focused on protein interaction data retrieval (PSICQUIC, DASMI and BIPS) were used to explain the potential occurrence of undesired errors that should be considered by researchers in the field. We demonstrate that, despite the recent initiatives towards data standardization, manual curation of protein interaction networks based on literature searches are still required to remove potential false positives. A three-step workflow consisting of: (i) data retrieval from multiple databases, (ii) peer-reviewed literature searches, and (iii) data curation and integration, is proposed as the best strategy to gather updated information on protein interactions. Finally, this strategy was applied to compile bona fide information on human DREAM protein interactome, which constitutes liable training datasets that can be used to improve computational predictions.

  6. Understanding Protein Synthesis: An Interactive Card Game Discussion

    ERIC Educational Resources Information Center

    Lewis, Alison; Peat, Mary; Franklin, Sue

    2005-01-01

    Protein synthesis is a complex process and students find it difficult to understand. This article describes an interactive discussion "game" used by first year biology students at the University of Sydney. The students, in small groups, use the game in which the processes of protein synthesis are actioned by the students during a…

  7. NMR-based analysis of protein-ligand interactions.

    PubMed

    Cala, Olivier; Guillière, Florence; Krimm, Isabelle

    2014-02-01

    Physiological processes are mainly controlled by intermolecular recognition mechanisms involving protein-protein and protein-ligand (low molecular weight molecules) interactions. One of the most important tools for probing these interactions is high-field solution nuclear magnetic resonance (NMR) through protein-observed and ligand-observed experiments, where the protein receptor or the organic compounds are selectively detected. NMR binding experiments rely on comparison of NMR parameters of the free and bound states of the molecules. Ligand-observed methods are not limited by the protein molecular size and therefore have great applicability for analysing protein-ligand interactions. The use of these NMR techniques has considerably expanded in recent years, both in chemical biology and in drug discovery. We review here three major ligand-observed NMR methods that depend on the nuclear Overhauser effect-transferred nuclear Overhauser effect spectroscopy, saturation transfer difference spectroscopy and water-ligand interactions observed via gradient spectroscopy experiments-with the aim of reporting recent developments and applications for the characterization of protein-ligand complexes, including affinity measurements and structural determination.

  8. Use and application of hydrophobic interaction chromatography for protein purification.

    PubMed

    McCue, Justin T

    2014-01-01

    The objective of this section is to provide the reader with guidelines and background on the use and experimental application of Hydrophobic Interaction chromatography (HIC) for the purification of proteins. The section will give step by step instructions on how to use HIC in the laboratory to purify proteins. General guidelines and relevant background information is also provided.

  9. A conserved patch of hydrophobic amino acids modulates Myb activity by mediating protein-protein interactions.

    PubMed

    Dukare, Sandeep; Klempnauer, Karl-Heinz

    2016-07-01

    The transcription factor c-Myb plays a key role in the control of proliferation and differentiation in hematopoietic progenitor cells and has been implicated in the development of leukemia and certain non-hematopoietic tumors. c-Myb activity is highly dependent on the interaction with the coactivator p300 which is mediated by the transactivation domain of c-Myb and the KIX domain of p300. We have previously observed that conservative valine-to-isoleucine amino acid substitutions in a conserved stretch of hydrophobic amino acids have a profound effect on Myb activity. Here, we have explored the function of the hydrophobic region as a mediator of protein-protein interactions. We show that the hydrophobic region facilitates Myb self-interaction and binding of the histone acetyl transferase Tip60, a previously identified Myb interacting protein. We show that these interactions are affected by the valine-to-isoleucine amino acid substitutions and suppress Myb activity by interfering with the interaction of Myb and the KIX domain of p300. Taken together, our work identifies the hydrophobic region in the Myb transactivation domain as a binding site for homo- and heteromeric protein interactions and leads to a picture of the c-Myb transactivation domain as a composite protein binding region that facilitates interdependent protein-protein interactions of Myb with regulatory proteins.

  10. Predicting protein-protein interactions from multimodal biological data sources via nonnegative matrix tri-factorization.

    PubMed

    Wang, Hua; Huang, Heng; Ding, Chris; Nie, Feiping

    2013-04-01

    Protein interactions are central to all the biological processes and structural scaffolds in living organisms, because they orchestrate a number of cellular processes such as metabolic pathways and immunological recognition. Several high-throughput methods, for example, yeast two-hybrid system and mass spectrometry method, can help determine protein interactions, which, however, suffer from high false-positive rates. Moreover, many protein interactions predicted by one method are not supported by another. Therefore, computational methods are necessary and crucial to complete the interactome expeditiously. In this work, we formulate the problem of predicting protein interactions from a new mathematical perspective--sparse matrix completion, and propose a novel nonnegative matrix factorization (NMF)-based matrix completion approach to predict new protein interactions from existing protein interaction networks. Through using manifold regularization, we further develop our method to integrate different biological data sources, such as protein sequences, gene expressions, protein structure information, etc. Extensive experimental results on four species, Saccharomyces cerevisiae, Drosophila melanogaster, Homo sapiens, and Caenorhabditis elegans, have shown that our new methods outperform related state-of-the-art protein interaction prediction methods.

  11. Interacting protein partners of Arabidopsis RNA-binding protein AtRBP45b.

    PubMed

    Muthuramalingam, M; Wang, Y; Li, Y; Mahalingam, R

    2017-05-01

    RNA binding proteins, important players in post-transcriptional gene regulation, usually exist in ribonuclear complexes. However, even in model systems like Arabidopsis characterisation of RBP associated proteins is limited. In this study, we investigated the interacting proteins of the Arabidopsis AtRBP45b, which is involved in stress signalling. In vivo localisation of AtRBP45b was conducted using 35S-GFP. FLAG-tagged AtRBP45b under control of the 35S promoter in the Atrbp45b-1 mutant background was used to pull down AtRBP45b interacting proteins. Yeast two-hybrid analysis, fluorescence energy resonance transfer assays were used to confirm the veracity of the AtRBP45b interacting proteins. In planta GFP-tagging indicated AtRBP45b is localised to the nucleus and the cytosol. AtRBP45b protein has a N-terminal proline-rich region and a C-terminal glutamine-rich domain that are usually involved in protein-protein interactions. Co-immunoprecipitation followed by mass spectrometry-based protein sequencing led to identification of 30 proteins that interacted with AtRBP45b. Using information from interactome databases (BIOGRID, INTACT and STRING), pull-down assays and localisation data, 12 putative interacting proteins were selected for yeast two-hybrid analysis. Cap-binding protein (CBP20, At5g44200) and polyA-binding protein (PAB8, At1g49760) were shown to interact with AtRBP45b. Based on its interacting partners we speculate that AtRBP45b may play an important role in RNA metabolism, especially in aspects related to mRNA stability and translation initiation during stress conditions in plants.

  12. Identification of Essential Proteins Based on a New Combination of Local Interaction Density and Protein Complexes

    PubMed Central

    Luo, Jiawei; Qi, Yi

    2015-01-01

    Background Computational approaches aided by computer science have been used to predict essential proteins and are faster than expensive, time-consuming, laborious experimental approaches. However, the performance of such approaches is still poor, making practical applications of computational approaches difficult in some fields. Hence, the development of more suitable and efficient computing methods is necessary for identification of essential proteins. Method In this paper, we propose a new method for predicting essential proteins in a protein interaction network, local interaction density combined with protein complexes (LIDC), based on statistical analyses of essential proteins and protein complexes. First, we introduce a new local topological centrality, local interaction density (LID), of the yeast PPI network; second, we discuss a new integration strategy for multiple bioinformatics. The LIDC method was then developed through a combination of LID and protein complex information based on our new integration strategy. The purpose of LIDC is discovery of important features of essential proteins with their neighbors in real protein complexes, thereby improving the efficiency of identification. Results Experimental results based on three different PPI(protein-protein interaction) networks of Saccharomyces cerevisiae and Escherichia coli showed that LIDC outperformed classical topological centrality measures and some recent combinational methods. Moreover, when predicting MIPS datasets, the better improvement of performance obtained by LIDC is over all nine reference methods (i.e., DC, BC, NC, LID, PeC, CoEWC, WDC, ION, and UC). Conclusions LIDC is more effective for the prediction of essential proteins than other recently developed methods. PMID:26125187

  13. The RNA-binding protein SERBP1 interacts selectively with the signaling protein RACK1.

    PubMed

    Bolger, Graeme B

    2017-03-04

    The RACK1 protein interacts with numerous proteins involved in signal transduction, the cytoskeleton, and mRNA splicing and translation. We used the 2-hybrid system to identify additional proteins interacting with RACK1 and isolated the RNA-binding protein SERBP1. SERPB1 shares amino acid sequence homology with HABP4 (also known as Ki-1/57), a component of the RNA spicing machinery that has been shown previously to interact with RACK1. Several different isoforms of SERBP1, generated by alternative mRNA splicing, interacted with RACK1 with indistinguishable interaction strength, as determined by a 2-hybrid beta-galactosidase assay. Analysis of deletion constructs of SERBP1 showed that the C-terminal third of the SERBP1 protein, which contains one of its two substrate sites for protein arginine N-methyltransferase 1 (PRMT1), is necessary and sufficient for it to interact with RACK1. Analysis of single amino acid substitutions in RACK1, identified in a reverse 2-hybrid screen, showed very substantial overlap with those implicated in the interaction of RACK1 with the cAMP-selective phosphodiesterase PDE4D5. These data are consistent with SERBP1 interacting selectively with RACK1, mediated by an extensive interaction surface on both proteins.

  14. The Role of Protein-Protein and Protein-Membrane Interactions on P450 Function

    PubMed Central

    Scott, Emily E.; Wolf, C. Roland; Otyepka, Michal; Humphreys, Sara C.; Reed, James R.; Henderson, Colin J.; McLaughlin, Lesley A.; Paloncýová, Markéta; Navrátilová, Veronika; Berka, Karel; Anzenbacher, Pavel; Dahal, Upendra P.; Barnaba, Carlo; Brozik, James A.; Jones, Jeffrey P.; Estrada, D. Fernando; Laurence, Jennifer S.; Park, Ji Won

    2016-01-01

    This symposium summary, sponsored by the ASPET, was held at Experimental Biology 2015 on March 29, 2015, in Boston, Massachusetts. The symposium focused on: 1) the interactions of cytochrome P450s (P450s) with their redox partners; and 2) the role of the lipid membrane in their orientation and stabilization. Two presentations discussed the interactions of P450s with NADPH-P450 reductase (CPR) and cytochrome b5. First, solution nuclear magnetic resonance was used to compare the protein interactions that facilitated either the hydroxylase or lyase activities of CYP17A1. The lyase interaction was stimulated by the presence of b5 and 17α-hydroxypregnenolone, whereas the hydroxylase reaction was predominant in the absence of b5. The role of b5 was also shown in vivo by selective hepatic knockout of b5 from mice expressing CYP3A4 and CYP2D6; the lack of b5 caused a decrease in the clearance of several substrates. The role of the membrane on P450 orientation was examined using computational methods, showing that the proximal region of the P450 molecule faced the aqueous phase. The distal region, containing the substrate-access channel, was associated with the membrane. The interaction of NADPH-P450 reductase (CPR) with the membrane was also described, showing the ability of CPR to “helicopter” above the membrane. Finally, the endoplasmic reticulum (ER) was shown to be heterogeneous, having ordered membrane regions containing cholesterol and more disordered regions. Interestingly, two closely related P450s, CYP1A1 and CYP1A2, resided in different regions of the ER. The structural characteristics of their localization were examined. These studies emphasize the importance of P450 protein organization to their function. PMID:26851242

  15. Screening for in planta protein-protein interactions combining bimolecular fluorescence complementation with flow cytometry

    PubMed Central

    2012-01-01

    Understanding protein and gene function requires identifying interaction partners using biochemical, molecular or genetic tools. In plants, searching for novel protein-protein interactions is limited to protein purification assays, heterologous in vivo systems such as the yeast-two-hybrid or mutant screens. Ideally one would be able to search for novel protein partners in living plant cells. We demonstrate that it is possible to screen for novel protein-protein interactions from a random library in protoplasted Arabidopsis plant cells and recover some of the interacting partners. Our screen is based on capturing the bi-molecular complementation of mYFP between an YN-bait fusion partner and a completely random prey YC-cDNA library with FACS. The candidate interactions were confirmed using in planta BiFC assays and in planta FRET-FLIM assays. From this work, we show that the well characterized protein Calcium Dependent Protein Kinase 3 (CPK3) interacts with APX3, HMGB5, ORP2A and a ricin B-related lectin domain containing protein At2g39050. This is one of the first randomin planta screens to be successfully employed. PMID:22789293

  16. Examination of Interactions of Oppositely Charged Proteins in Gels

    SciTech Connect

    Ramasamy,P.; El-Maghrabi, M.; Halada, G.; Miller, L.; Rafailovich, M.

    2007-01-01

    Understanding the interactions of proteins with one another serves as an important step for developing faster protein separation methods. To examine protein-protein interactions of oppositely charged proteins, fluorescently labeled albumin and poly-L-lysine were subjected to electrophoresis in agarose gels, in which the cationic albumin and the anionic poly-L-lysine were allowed to migrate toward each other and interact. Fluorescence microscopy was used to image fluorescently tagged proteins in the gel. The secondary structure of the proteins in solution was studied using conventional FTIR spectroscopy. Results showed that sharp interfaces were formed where FITC tagged albumin met poly-L-lysine and that the interfaces did not migrate after they had been formed. The position of the interface in the gel was found to be linearly dependent upon the relative concentration of the proteins. The formation of the interface also depended upon the fluorescent tag attached to the protein. The size of the aggregates at the interface, the fluorescence intensity modifications, and the mobility of the interface for different pore sizes of the gel were investigated. It was observed that the interface was made up of aggregates of about 1 {mu}m in size. Using dynamic light scattering, it was observed that the size of the aggregates that formed due to interactions of oppositely charged proteins depended upon the fluorescent tags attached to the proteins. The addition of small amounts of poly-L-lysine to solutions containing FITC albumin decreased the zeta potential drastically. For this, we propose a model suggesting that adding small amounts of poly-L-lysine to solutions containing FITC -albumin favors the formation of macromolecular complexes having FITC albumin molecules on its surface. Although oppositely charged FITC tagged poly-L-lysine and FITC tagged albumin influence each other's migration velocities by forming aggregates, there were no observable secondary structural

  17. A Protein Interaction Map of the Kalimantacin Biosynthesis Assembly Line

    PubMed Central

    Uytterhoeven, Birgit; Lathouwers, Thomas; Voet, Marleen; Michiels, Chris W.; Lavigne, Rob

    2016-01-01

    The antimicrobial secondary metabolite kalimantacin (also called batumin) is produced by a hybrid polyketide/non-ribosomal peptide system in Pseudomonas fluorescens BCCM_ID9359. In this study, the kalimantacin biosynthesis gene cluster is analyzed by yeast two-hybrid analysis, creating a protein–protein interaction map of the entire assembly line. In total, 28 potential interactions were identified, of which 13 could be confirmed further. These interactions include the dimerization of ketosynthase domains, a link between assembly line modules 9 and 10, and a specific interaction between the trans-acting enoyl reductase BatK and the carrier proteins of modules 8 and 10. These interactions reveal fundamental insight into the biosynthesis of secondary metabolites. This study is the first to reveal interactions in a complete biosynthetic pathway. Similar future studies could build a strong basis for engineering strategies in such clusters. PMID:27853452

  18. Functional interactions between polypyrimidine tract binding protein and PRI peptide ligand containing proteins.

    PubMed

    Coelho, Miguel B; Ascher, David B; Gooding, Clare; Lang, Emma; Maude, Hannah; Turner, David; Llorian, Miriam; Pires, Douglas E V; Attig, Jan; Smith, Christopher W J

    2016-08-15

    Polypyrimidine tract binding protein (PTBP1) is a heterogeneous nuclear ribonucleoprotein (hnRNP) that plays roles in most stages of the life-cycle of pre-mRNA and mRNAs in the nucleus and cytoplasm. PTBP1 has four RNA binding domains of the RNA recognition motif (RRM) family, each of which can bind to pyrimidine motifs. In addition, RRM2 can interact via its dorsal surface with proteins containing short peptide ligands known as PTB RRM2 interacting (PRI) motifs, originally found in the protein Raver1. Here we review our recent progress in understanding the interactions of PTB with RNA and with various proteins containing PRI ligands.

  19. Targeting protein–protein interactions by rational design: mimicry of protein surfaces

    PubMed Central

    Fletcher, Steven; Hamilton, Andrew D

    2006-01-01

    Protein–protein interactions play key roles in a range of biological processes, and are therefore important targets for the design of novel therapeutics. Unlike in the design of enzyme active site inhibitors, the disruption of protein–protein interactions is far more challenging, due to such factors as the large interfacial areas involved and the relatively flat and featureless topologies of these surfaces. Nevertheless, in spite of such challenges, there has been considerable progress in recent years. In this review, we discuss this progress in the context of mimicry of protein surfaces: targeting protein–protein interactions by rational design. PMID:16849232

  20. IQGAP1 Interaction with RHO Family Proteins Revisited

    PubMed Central

    Nouri, Kazem; Fansa, Eyad K.; Amin, Ehsan; Dvorsky, Radovan; Gremer, Lothar; Willbold, Dieter; Schmitt, Lutz; Timson, David J.; Ahmadian, Mohammad R.

    2016-01-01

    IQ motif-containing GTPase activating protein 1 (IQGAP1) plays a central role in the physical assembly of relevant signaling networks that are responsible for various cellular processes, including cell adhesion, polarity, and transmigration. The RHO family proteins CDC42 and RAC1 have been shown to mainly interact with the GAP-related domain (GRD) of IQGAP1. However, the role of its RASGAP C-terminal (RGCT) and C-terminal domains in the interactions with RHO proteins has remained obscure. Here, we demonstrate that IQGAP1 interactions with RHO proteins underlie a multiple-step binding mechanism: (i) a high affinity, GTP-dependent binding of RGCT to the switch regions of CDC42 or RAC1 and (ii) a very low affinity binding of GRD and a C terminus adjacent to the switch regions. These data were confirmed by phosphomimetic mutation of serine 1443 to glutamate within RGCT, which led to a significant reduction of IQGAP1 affinity for CDC42 and RAC1, clearly disclosing the critical role of RGCT for these interactions. Unlike CDC42, an extremely low affinity was determined for the RAC1-GRD interaction, suggesting that the molecular nature of IQGAP1 interaction with CDC42 partially differs from that of RAC1. Our study provides new insights into the interaction characteristics of IQGAP1 with RHO family proteins and highlights the complementary importance of kinetic and equilibrium analyses. We propose that the ability of IQGAP1 to interact with RHO proteins is based on a multiple-step binding process, which is a prerequisite for the dynamic functions of IQGAP1 as a scaffolding protein and a critical mechanism in temporal regulation and integration of IQGAP1-mediated cellular responses. PMID:27815503

  1. A novel microfluidics-based method for probing weak protein-protein interactions.

    PubMed

    Tan, Darren Cherng-wen; Wijaya, I Putu Mahendra; Andreasson-Ochsner, Mirjam; Vasina, Elena Nikolaevna; Nallani, Madhavan; Hunziker, Walter; Sinner, Eva-Kathrin

    2012-08-07

    We report the use of a novel microfluidics-based method to detect weak protein-protein interactions between membrane proteins. The tight junction protein, claudin-2, synthesised in vitro using a cell-free expression system in the presence of polymer vesicles as membrane scaffolds, was used as a model membrane protein. Individual claudin-2 molecules interact weakly, although the cumulative effect of these interactions is significant. This effect results in a transient decrease of average vesicle dispersivity and reduction in transport speed of claudin-2-functionalised vesicles. Polymer vesicles functionalised with claudin-2 were perfused through a microfluidic channel and the time taken to traverse a defined distance within the channel was measured. Functionalised vesicles took 1.19 to 1.69 times longer to traverse this distance than unfunctionalised ones. Coating the channel walls with protein A and incubating the vesicles with anti-claudin-2 antibodies prior to perfusion resulted in the functionalised vesicles taking 1.75 to 2.5 times longer to traverse this distance compared to the controls. The data show that our system is able to detect weak as well as strong protein-protein interactions. This system offers researchers a portable, easily operated and customizable platform for the study of weak protein-protein interactions, particularly between membrane proteins.

  2. Monitoring Protein–Protein Interactions Using Split Synthetic Renilla Luciferase Protein-Fragment-Assisted Complementation

    PubMed Central

    Paulmurugan, R.; Gambhir, S. S.

    2014-01-01

    In this study we developed an inducible synthetic renilla luciferase protein-fragment-assisted complementation-based bioluminescence assay to quantitatively measure real time protein–protein interactions in mammalian cells. We identified suitable sites to generate fragments of N and C portions of the protein that yield significant recovered activity through complementation. We validate complementation-based activation of split synthetic renilla luciferase protein driven by the interaction of two strongly interacting proteins, MyoD and Id, in five different cell lines utilizing transient transfection studies. The expression level of the system was also modulated by tumor necrosis factor α through NFκB-promoter/enhancer elements used to drive expression of the N portion of synthetic renilla luciferase reporter gene. This new system should help in studying protein–protein interactions and when used with other split reporters (e.g., split firefly luciferase) should help to monitor different components of an intracellular network. PMID:12705589

  3. Quantitative analysis of protein-ligand interactions by NMR.

    PubMed

    Furukawa, Ayako; Konuma, Tsuyoshi; Yanaka, Saeko; Sugase, Kenji

    2016-08-01

    Protein-ligand interactions have been commonly studied through static structures of the protein-ligand complex. Recently, however, there has been increasing interest in investigating the dynamics of protein-ligand interactions both for fundamental understanding of the underlying mechanisms and for drug development. NMR is a versatile and powerful tool, especially because it provides site-specific quantitative information. NMR has widely been used to determine the dissociation constant (KD), in particular, for relatively weak interactions. The simplest NMR method is a chemical-shift titration experiment, in which the chemical-shift changes of a protein in response to ligand titration are measured. There are other quantitative NMR methods, but they mostly apply only to interactions in the fast-exchange regime. These methods derive the dissociation constant from population-averaged NMR quantities of the free and bound states of a protein or ligand. In contrast, the recent advent of new relaxation-based experiments, including R2 relaxation dispersion and ZZ-exchange, has enabled us to obtain kinetic information on protein-ligand interactions in the intermediate- and slow-exchange regimes. Based on R2 dispersion or ZZ-exchange, methods that can determine the association rate, kon, dissociation rate, koff, and KD have been developed. In these approaches, R2 dispersion or ZZ-exchange curves are measured for multiple samples with different protein and/or ligand concentration ratios, and the relaxation data are fitted to theoretical kinetic models. It is critical to choose an appropriate kinetic model, such as the two- or three-state exchange model, to derive the correct kinetic information. The R2 dispersion and ZZ-exchange methods are suitable for the analysis of protein-ligand interactions with a micromolar or sub-micromolar dissociation constant but not for very weak interactions, which are typical in very fast exchange. This contrasts with the NMR methods that are used

  4. Characterization of protein-protein interaction interfaces from a single species.

    PubMed

    Talavera, David; Robertson, David L; Lovell, Simon C

    2011-01-01

    Most proteins attain their biological functions through specific interactions with other proteins. Thus, the study of protein-protein interactions and the interfaces that mediate these interactions is of prime importance for the understanding of biological function. In particular the precise determinants of binding specificity and their contributions to binding energy within protein interfaces are not well understood. In order to better understand these determinants an appropriate description of the interaction surface is needed. Available data from the yeast Saccharomyces cerevisiae allow us to focus on a single species and to use all the available structures, correcting for redundancy, instead of using structural representatives. This allows us to control for potentially confounding factors that may affect sequence propensities. We find a significant contribution of main-chain atoms to protein-protein interactions. These include interactions both with other main-chain and side-chain atoms on the interacting chain. We find that the type of interaction depends on both amino acid and secondary structure type involved in the contact. For example, residues in α-helices and large amino acids are the most likely to be involved in interactions through their side-chain atoms. We find an intriguing homogeneity when calculating the average solvation energy of different areas of the protein surface. Unexpectedly, homo- and hetero-complexes have quite similar results for all analyses. Our findings demonstrate that the manner in which protein-protein interactions are formed is determined by the residue type and the secondary structure found in the interface. However the homogeneity of the desolvation energy despite heterogeneity of interface properties suggests a complex relationship between interface composition and binding energy.

  5. Mucin-interacting proteins: from function to therapeutics

    PubMed Central

    Senapati, Shantibhusan; Das, Srustidhar; Batra, Surinder K.

    2010-01-01

    Mucins are high molecular weight glycoproteins that are involved in regulating diverse cellular activities both in normal and pathological conditions. Mucin activity and localization is mediated by several molecular mechanisms, including discrete interactions with other proteins. An understanding of the biochemistry behind the known interactions between mucins and other proteins, coupled with an appreciation of their pathophysiological significance, can lend insight into the development of novel therapeutic agents. Indeed, a recent study demonstrated that a cell permeable inhibitor, PMIP, which disrupts the MUC1–EGFR interaction, is effective in killing breast cancer cells in vitro and in tumor models. PMID:19913432

  6. Optimization of rhodanine scaffold for the development of protein-protein interaction inhibitors.

    PubMed

    Ferro, Stefania; De Luca, Laura; Agharbaoui, Fatima Ezzahra; Christ, Frauke; Debyser, Zeger; Gitto, Rosaria

    2015-07-01

    Searching for novel protein-protein interactions inhibitors (PPIs) herein we describe the identification of a new series of rhodanine derivatives. The selection was performed by means virtual-screening, docking studies, Molecular Dynamic (MD) simulations and synthetic approaches. All the new obtained compounds were tested in order to evaluate their ability to inhibit the interaction between the HIV-1 integrase (IN) enzyme and the nuclear protein lens epithelium growth factor LEDGF/p75.

  7. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module.

    PubMed

    Yim, Nambin; Ryu, Seung-Wook; Choi, Kyungsun; Lee, Kwang Ryeol; Lee, Seunghee; Choi, Hojun; Kim, Jeongjin; Shaker, Mohammed R; Sun, Woong; Park, Ji-Ho; Kim, Daesoo; Heo, Won Do; Choi, Chulhee

    2016-07-22

    Nanoparticle-mediated delivery of functional macromolecules is a promising method for treating a variety of human diseases. Among nanoparticles, cell-derived exosomes have recently been highlighted as a new therapeutic strategy for the in vivo delivery of nucleotides and chemical drugs. Here we describe a new tool for intracellular delivery of target proteins, named 'exosomes for protein loading via optically reversible protein-protein interactions' (EXPLORs). By integrating a reversible protein-protein interaction module controlled by blue light with the endogenous process of exosome biogenesis, we are able to successfully load cargo proteins into newly generated exosomes. Treatment with protein-loaded EXPLORs is shown to significantly increase intracellular levels of cargo proteins and their function in recipient cells in vitro and in vivo. These results clearly indicate the potential of EXPLORs as a mechanism for the efficient intracellular transfer of protein-based therapeutics into recipient cells and tissues.

  8. Plasmonics for the study of metal ion-protein interactions.

    PubMed

    Grasso, Giuseppe; Spoto, Giuseppe

    2013-02-01

    The study of metal-protein interactions is an expanding field of research investigated by bioinorganic chemists as it has wide applications in biological systems. Very recently, it has been reported that it is possible to study metal-protein interactions by immobilizing biomolecules on metal surfaces and applying experimental approaches based on plasmonics which have usually been used to investigate protein-protein interactions. This is possible because the electronic structure of metals generates plasmons whose properties can be exploited to obtain information from biomolecules that interact not only with other molecules but also with ions in solution. One major challenge of such approaches is to immobilize the protein to be studied on a metal surface with preserved native structure. This review reports and discusses all the works that deal with such an expanding new field of application of plasmonics with specific attention to surface plasmon resonance, highlighting the advantages and drawbacks of such approaches in comparison with other experimental techniques traditionally used to study metal-protein interactions.

  9. Targeting Protein-Protein Interactions with Trimeric Ligands: High Affinity Inhibitors of the MAGUK Protein Family

    PubMed Central

    Nissen, Klaus B.; Haugaard-Kedström, Linda M.; Wilbek, Theis S.; Nielsen, Line S.; Åberg, Emma; Kristensen, Anders S.; Bach, Anders; Jemth, Per; Strømgaard, Kristian

    2015-01-01

    PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic experiments using stopped-flow spectrometry showed that the increase in affinity is caused by a decrease in the dissociation rate of the trimeric ligand as compared to the dimeric ligands, likely reflecting the lower probability of simultaneous dissociation of all three PDZ ligands. Thus, we have provided novel inhibitors of the MAGUK proteins with exceptionally high affinity, which can be used to further elucidate the therapeutic potential of these proteins. PMID:25658767

  10. Targeting protein-protein interactions with trimeric ligands: high affinity inhibitors of the MAGUK protein family.

    PubMed

    Nissen, Klaus B; Haugaard-Kedström, Linda M; Wilbek, Theis S; Nielsen, Line S; Åberg, Emma; Kristensen, Anders S; Bach, Anders; Jemth, Per; Strømgaard, Kristian

    2015-01-01

    PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic experiments using stopped-flow spectrometry showed that the increase in affinity is caused by a decrease in the dissociation rate of the trimeric ligand as compared to the dimeric ligands, likely reflecting the lower probability of simultaneous dissociation of all three PDZ ligands. Thus, we have provided novel inhibitors of the MAGUK proteins with exceptionally high affinity, which can be used to further elucidate the therapeutic potential of these proteins.

  11. (S)Pinning down protein interactions by NMR

    PubMed Central

    Kunze, Micha Ben Achim; Erlendsson, Simon

    2017-01-01

    Abstract Protein molecules are highly diverse communication platforms and their interaction repertoire stretches from atoms over small molecules such as sugars and lipids to macromolecules. An important route to understanding molecular communication is to quantitatively describe their interactions. These types of analyses determine the amounts and proportions of individual constituents that participate in a reaction as well as their rates of reactions and their thermodynamics. Although many different methods are available, there is currently no single method able to quantitatively capture and describe all types of protein reactions, which can span orders of magnitudes in affinities, reaction rates, and lifetimes of states. As the more versatile technique, solution NMR spectroscopy offers a remarkable catalogue of methods that can be successfully applied to the quantitative as well as qualitative descriptions of protein interactions. In this review we provide an easy‐access approach to NMR for the non‐NMR specialist and describe how and when solution state NMR spectroscopy is the method of choice for addressing protein ligand interaction. We describe very briefly the theoretical background and illustrate simple protein–ligand interactions as well as typical strategies for measuring binding constants using NMR spectroscopy. Finally, this review provides examples of caveats of the method as well as the options to improve the outcome of an NMR analysis of a protein interaction reaction. PMID:28019676

  12. The Rift Valley Fever virus protein NSm and putative cellular protein interactions.

    PubMed

    Engdahl, Cecilia; Näslund, Jonas; Lindgren, Lena; Ahlm, Clas; Bucht, Göran

    2012-07-28

    Rift Valley Fever is an infectious viral disease and an emerging problem in many countries of Africa and on the Arabian Peninsula. The causative virus is predominantly transmitted by mosquitoes and high mortality and abortion rates characterize outbreaks in animals while symptoms ranging from mild to life-threatening encephalitis and hemorrhagic fever are noticed among infected humans. For a better prevention and treatment of the infection, an increased knowledge of the infectious process of the virus is required. The focus of this work was to identify protein-protein interactions between the non-structural protein (NSm), encoded by the M-segment of the virus, and host cell proteins. This study was initiated by screening approximately 26 million cDNA clones of a mouse embryonic cDNA library for interactions with the NSm protein using a yeast two-hybrid system. We have identified nine murine proteins that interact with NSm protein of Rift Valley Fever virus, and the putative protein-protein interactions were confirmed by growth selection procedures and β-gal activity measurements. Our results suggest that the cleavage and polyadenylation specificity factor subunit 2 (Cpsf2), the peptidyl-prolyl cis-trans isomerase (cyclophilin)-like 2 protein (Ppil2), and the synaptosome-associated protein of 25 kDa (SNAP-25) are the most promising targets for the NSm protein of the virus during an infection.

  13. Categorizing Biases in High-Confidence High-Throughput Protein-Protein Interaction Data Sets

    DTIC Science & Technology

    2011-01-01

    interaction data sets derived from affinity purification/mass spec- trometry, protein-fragment complementation assay, and yeast two-hybrid experiments . The...characteristics. These differences were primarily a func- tion of the deployed experimental technologies used to recover these interactions. This affected the total...the protein interaction data within their experimental or cellular con- text provided the best avenue for overcoming biases and inferring biological

  14. Fluorescence Anisotropy as a Tool to Study Protein-protein Interactions.

    PubMed

    Gijsbers, Abril; Nishigaki, Takuya; Sánchez-Puig, Nuria

    2016-10-21

    Protein-protein interactions play an essential role in the function of a living organism. Once an interaction has been identified and validated it is necessary to characterize it at the structural and mechanistic level. Several biochemical and biophysical methods exist for such purpose. Among them, fluorescence anisotropy is a powerful technique particularly used when the fluorescence intensity of a fluorophore-labeled protein remains constant upon protein-protein interaction. In this technique, a fluorophore-labeled protein is excited with vertically polarized light of an appropriate wavelength that selectively excites a subset of the fluorophores according to their relative orientation with the incoming beam. The resulting emission also has a directionality whose relationship in the vertical and horizontal planes defines anisotropy (r) as follows: r=(IVV-IVH)/(IVV+2IVH), where IVV and IVH are the fluorescence intensities of the vertical and horizontal components, respectively. Fluorescence anisotropy is sensitive to the rotational diffusion of a fluorophore, namely the apparent molecular size of a fluorophore attached to a protein, which is altered upon protein-protein interaction. In the present text, the use of fluorescence anisotropy as a tool to study protein-protein interactions was exemplified to address the binding between the protein mutated in the Shwachman-Diamond Syndrome (SBDS) and the Elongation factor like-1 GTPase (EFL1). Conventionally, labeling of a protein with a fluorophore is carried out on the thiol groups (cysteine) or in the amino groups (the N-terminal amine or lysine) of the protein. However, SBDS possesses several cysteines and lysines that did not allow site directed labeling of it. As an alternative technique, the dye 4',5'-bis(1,3,2 dithioarsolan-2-yl) fluorescein was used to specifically label a tetracysteine motif, Cys-Cys-Pro-Gly-Cys-Cys, genetically engineered in the C-terminus of the recombinant SBDS protein. Fitting of the

  15. Evidence for the interaction of the regulatory protein Ki-1/57 with p53 and its interacting proteins

    SciTech Connect

    Nery, Flavia C.; Rui, Edmilson; Kuniyoshi, Tais M.; Kobarg, Joerg . E-mail: jkobarg@lnls.br

    2006-03-17

    Ki-1/57 is a cytoplasmic and nuclear phospho-protein of 57 kDa and interacts with the adaptor protein RACK1, the transcription factor MEF2C, and the chromatin remodeling factor CHD3, suggesting that it might be involved in the regulation of transcription. Here, we describe yeast two-hybrid studies that identified a total of 11 proteins interacting with Ki-1/57, all of which interact or are functionally associated with p53 or other members of the p53 family of proteins. We further found that Ki-1/57 is able to interact with p53 itself in the yeast two-hybrid system when the interaction was tested directly. This interaction could be confirmed by pull down assays with purified proteins in vitro and by reciprocal co-immunoprecipitation assays from the human Hodgkin analogous lymphoma cell line L540. Furthermore, we found that the phosphorylation of p53 by PKC abolishes its interaction with Ki-1/57 in vitro.

  16. Protein fragment bimolecular fluorescence complementation analyses for the in vivo study of protein-protein interactions and cellular protein complex localizations

    PubMed Central

    Waadt, Rainer; Schlücking, Kathrin; Schroeder, Julian I.; Kudla, Jörg

    2014-01-01

    Summary The analyses of protein-protein interactions is crucial for understanding cellular processes including signal transduction, protein trafficking and movement. Protein fragment complementation assays are based on the reconstitution of protein function when non-active protein fragments are brought together by interacting proteins that were genetically fused to these protein fragments. Bimolecular fluorescence complementation (BiFC) relies on the reconstitution of fluorescent proteins and enables both the analysis of protein-protein interactions and the visualization of protein complex formations in vivo. Transient expression of proteins is a convenient approach to study protein functions in planta or in other organisms, and minimizes the need for time-consuming generation of stably expressing transgenic organisms. Here we describe protocols for BiFC analyses in Nicotiana benthamiana and Arabidopsis thaliana leaves transiently transformed by Agrobacterium infiltration. Further we discuss different BiFC applications and provide examples for proper BiFC analyses in planta. PMID:24057390

  17. Interrogating noise in protein sequences from the perspective of protein-protein interactions prediction.

    PubMed

    Wang, Yongcui; Ren, Xianwen; Zhang, Chunhua; Deng, Naiyang; Zhang, Xiangsun

    2012-12-21

    The past decades witnessed extensive efforts to study the relationship among proteins. Particularly, sequence-based protein-protein interactions (PPIs) prediction is fundamentally important in speeding up the process of mapping interactomes of organisms. High-throughput experimental methodologies make many model organism's PPIs known, which allows us to apply machine learning methods to learn understandable rules from the available PPIs. Under the machine learning framework, the composition vectors are usually applied to encode proteins as real-value vectors. However, the composition vector value might be highly correlated to the distribution of amino acids, i.e., amino acids which are frequently observed in nature tend to have a large value of composition vectors. Thus formulation to estimate the noise induced by the background distribution of amino acids may be needed during representations. Here, we introduce two kinds of denoising composition vectors, which were successfully used in construction of phylogenetic trees, to eliminate the noise. When validating these two denoising composition vectors on Escherichia coli (E. coli), Saccharomyces cerevisiae (S. cerevisiae) and human PPIs datasets, surprisingly, the predictive performance is not improved, and even worse than non-denoised prediction. These results suggest that the noise in phylogenetic tree construction may be valuable information in PPIs prediction.

  18. Protein-surface interactions on stimuli-responsive polymeric biomaterials.

    PubMed

    Cross, Michael C; Toomey, Ryan G; Gallant, Nathan D

    2016-03-04

    Responsive surfaces: a review of the dependence of protein adsorption on the reversible volume phase transition in stimuli-responsive polymers. Specifically addressed are a widely studied subset: thermoresponsive polymers. Findings are also generalizable to other materials which undergo a similarly reversible volume phase transition. As of 2015, over 100,000 articles have been published on stimuli-responsive polymers and many more on protein-biomaterial interactions. Significantly, fewer than 100 of these have focused specifically on protein interactions with stimuli-responsive polymers. These report a clear trend of increased protein adsorption in the collapsed state compared to the swollen state. This control over protein interactions makes stimuli-responsive polymers highly useful in biomedical applications such as wound repair scaffolds, on-demand drug delivery, and antifouling surfaces. Outstanding questions are whether the protein adsorption is reversible with the volume phase transition and whether there is a time-dependence. A clear understanding of protein interactions with stimuli-responsive polymers will advance theoretical models, experimental results, and biomedical applications.

  19. Prediction of Protein–Protein Interactions by Evidence Combining Methods

    PubMed Central

    Chang, Ji-Wei; Zhou, Yan-Qing; Ul Qamar, Muhammad Tahir; Chen, Ling-Ling; Ding, Yu-Duan

    2016-01-01

    Most cellular functions involve proteins’ features based on their physical interactions with other partner proteins. Sketching a map of protein–protein interactions (PPIs) is therefore an important inception step towards understanding the basics of cell functions. Several experimental techniques operating in vivo or in vitro have made significant contributions to screening a large number of protein interaction partners, especially high-throughput experimental methods. However, computational approaches for PPI predication supported by rapid accumulation of data generated from experimental techniques, 3D structure definitions, and genome sequencing have boosted the map sketching of PPIs. In this review, we shed light on in silico PPI prediction methods that integrate evidence from multiple sources, including evolutionary relationship, function annotation, sequence/structure features, network topology and text mining. These methods are developed for integration of multi-dimensional evidence, for designing the strategies to predict novel interactions, and for making the results consistent with the increase of prediction coverage and accuracy. PMID:27879651

  20. Interaction of influenza virus proteins with nucleosomes

    SciTech Connect

    Garcia-Robles, Inmaculada; Akarsu, Hatice; Mueller, Christoph W.; Ruigrok, Rob W.H.; Baudin, Florence . E-mail: baudin@embl-grenoble.fr

    2005-02-05

    During influenza virus infection, transcription and replication of the viral RNA take place in the cell nucleus. Directly after entry in the nucleus the viral ribonucleoproteins (RNPs, the viral subunits containing vRNA, nucleoprotein and the viral polymerase) are tightly associated with the nuclear matrix. Here, we have analysed the binding of RNPs, M1 and NS2/NEP proteins to purified nucleosomes, reconstituted histone octamers and purified single histones. RNPs and M1 both bind to the chromatin components but at two different sites, RNP to the histone tails and M1 to the globular domain of the histone octamer. NS2/NEP did not bind to nucleosomes at all. The possible consequences of these findings for nuclear release of newly made RNPs and for other processes during the infection cycle are discussed.

  1. Electrostatic selectivity in protein-nanoparticle interactions.

    PubMed

    Chen, Kaimin; Xu, Yisheng; Rana, Subinoy; Miranda, Oscar R; Dubin, Paul L; Rotello, Vincent M; Sun, Lianhong; Guo, Xuhong

    2011-07-11

    The binding of bovine serum albumin (BSA) and β-lactoglobulin (BLG) to TTMA (a cationic gold nanoparticle coupled to 3,6,9,12-tetraoxatricosan-1-aminium, 23-mercapto-N,N,N-trimethyl) was studied by high-resolution turbidimetry (to observe a critical pH for binding), dynamic light scattering (to monitor particle growth), and isothermal titration calorimetry (to measure binding energetics), all as a function of pH and ionic strength. Distinctively higher affinities observed for BLG versus BSA, despite the lower pI of the latter, were explained in terms of their different charge anisotropies, namely, the negative charge patch of BLG. To confirm this effect, we studied two isoforms of BLG that differ in only two amino acids. Significantly stronger binding to BLGA could be attributed to the presence of the additional aspartates in the negative charge domain for the BLG dimer, best portrayed in DelPhi. This selectivity decreases at low ionic strength, at which both isoforms bind well below pI. Selectivity increases with ionic strength for BLG versus BSA, which binds above pI. This result points to the diminished role of long-range repulsions for binding above pI. Dynamic light scattering reveals a tendency for higher-order aggregation for TTMA-BSA at pH above the pI of BSA, due to its ability to bridge nanoparticles. In contrast, soluble BLG-TTMA complexes were stable over a range of pH because the charge anisotropy of this protein at makes it unable to bridge nanoparticles. Finally, isothermal titration calorimetry shows endoenthalpic binding for all proteins: the higher affinity of TTMA for BLGA versus BLGB comes from a difference in the dominant entropy term.

  2. [Molecular interactions of membrane proteins and erythrocyte deformability].

    PubMed

    Boivin, P

    1984-06-01

    The structural and functional properties of the erythrocytic membrane constitute one of the essential elements of the red cell deformability. They intervene not only in the flexibility of the membrane, but also in the surface/volume relation and, through transmembrane exchanges, in the internal viscosity of the red cells. These properties depend essentially on the molecular composition of the elements which constitute the membrane, and on their interactions. The shape of the red cell and the flexibility of its membrane depend, to a great extent, on the membrane skeleton, whose main components are spectrin, actin, and protein 4.1. The spectrin basic molecule is a heterodimer, but there occur interactions between dimers in vitro as well as in vivo, which lead to the formation of tetrameric and oligomeric structures of higher complexity. Disturbances of these interactions, such as have been observed in pathological cases, lead to an instability of the membrane, a loss of membrane fragments, and a decrease in the surface/volume relation, with, as a consequence, a reduced deformability. The stability of the membrane skeleton also depends on the interactions between spectrin and protein 4.1. These interactions occur through a binding site on the beta chain of spectrin apparently close to actin and calmodulin binding sites. Other interactions occur between the hydrophobic segment of spectrin and membrane lipids. The cytoskeleton is bound to the transmembrane proteins: by ankyrin to the internal segment of protein band 3, and by protein 4.1 to a glycoprotein named glycoconnectin. There seems to exist other, more direct, lower affinity bindings between the cytoskeleton on the one hand, and band 3 and glycophorin transmembrane proteins on the other hand, whose lateral mobilities are modified when the structure of the skeleton is perturbed. The membrane proteins, which are in contact with the cytosol, interact with the cytosolic proteins, in particular with certain enzymes

  3. Identification of Topological Network Modules in Perturbed Protein Interaction Networks

    PubMed Central

    Sardiu, Mihaela E.; Gilmore, Joshua M.; Groppe, Brad; Florens, Laurence; Washburn, Michael P.

    2017-01-01

    Biological networks consist of functional modules, however detecting and characterizing such modules in networks remains challenging. Perturbing networks is one strategy for identifying modules. Here we used an advanced mathematical approach named topological data analysis (TDA) to interrogate two perturbed networks. In one, we disrupted the S. cerevisiae INO80 protein interaction network by isolating complexes after protein complex components were deleted from the genome. In the second, we reanalyzed previously published data demonstrating the disruption of the human Sin3 network with a histone deacetylase inhibitor. Here we show that disrupted networks contained topological network modules (TNMs) with shared properties that mapped onto distinct locations in networks. We define TMNs as proteins that occupy close network positions depending on their coordinates in a topological space. TNMs provide new insight into networks by capturing proteins from different categories including proteins within a complex, proteins with shared biological functions, and proteins disrupted across networks. PMID:28272416

  4. Fractionation and recovery of whey proteins by hydrophobic interaction chromatography.

    PubMed

    Santos, Maria João; Teixeira, José A; Rodrigues, Lígia R

    2011-03-01

    A method for the recovery and fractionation of whey proteins from a whey protein concentrate (80%, w/w) by hydrophobic interaction chromatography is proposed. Standard proteins and WPC 80 dissolved in phosphate buffer with ammonium sulfate 1 M were loaded in a HiPrep Octyl Sepharose FF column coupled to a fast protein liquid chromatography (FPLC) system and eluted by decreasing the ionic strength of the buffer using a salt gradient. The results showed that the most hydrophobic protein from whey is α-lactalbumin and the less hydrophobic is lactoferrin. It was possible to recover 45.2% of β-lactoglobulin using the HiPrep Octyl Sepharose FF column from the whey protein concentrate mixture with 99.6% purity on total protein basis.

  5. Identification of Topological Network Modules in Perturbed Protein Interaction Networks.

    PubMed

    Sardiu, Mihaela E; Gilmore, Joshua M; Groppe, Brad; Florens, Laurence; Washburn, Michael P

    2017-03-08

    Biological networks consist of functional modules, however detecting and characterizing such modules in networks remains challenging. Perturbing networks is one strategy for identifying modules. Here we used an advanced mathematical approach named topological data analysis (TDA) to interrogate two perturbed networks. In one, we disrupted the S. cerevisiae INO80 protein interaction network by isolating complexes after protein complex components were deleted from the genome. In the second, we reanalyzed previously published data demonstrating the disruption of the human Sin3 network with a histone deacetylase inhibitor. Here we show that disrupted networks contained topological network modules (TNMs) with shared properties that mapped onto distinct locations in networks. We define TMNs as proteins that occupy close network positions depending on their coordinates in a topological space. TNMs provide new insight into networks by capturing proteins from different categories including proteins within a complex, proteins with shared biological functions, and proteins disrupted across networks.

  6. Protein-protein interaction inference based on semantic similarity of Gene Ontology terms.

    PubMed

    Zhang, Shu-Bo; Tang, Qiang-Rong

    2016-07-21

    Identifying protein-protein interactions is important in molecular biology. Experimental methods to this issue have their limitations, and computational approaches have attracted more and more attentions from the biological community. The semantic similarity derived from the Gene Ontology (GO) annotation has been regarded as one of the most powerful indicators for protein interaction. However, conventional methods based on GO similarity fail to take advantage of the specificity of GO terms in the ontology graph. We proposed a GO-based method to predict protein-protein interaction by integrating different kinds of similarity measures derived from the intrinsic structure of GO graph. We extended five existing methods to derive the semantic similarity measures from the descending part of two GO terms in the GO graph, then adopted a feature integration strategy to combines both the ascending and the descending similarity scores derived from the three sub-ontologies to construct various kinds of features to characterize each protein pair. Support vector machines (SVM) were employed as discriminate classifiers, and five-fold cross validation experiments were conducted on both human and yeast protein-protein interaction datasets to evaluate the performance of different kinds of integrated features, the experimental results suggest the best performance of the feature that combines information from both the ascending and the descending parts of the three ontologies. Our method is appealing for effective prediction of protein-protein interaction.

  7. Designing specific protein-protein interactions using computation, experimental library screening, or integrated methods.

    PubMed

    Chen, T Scott; Keating, Amy E

    2012-07-01

    Given the importance of protein-protein interactions for nearly all biological processes, the design of protein affinity reagents for use in research, diagnosis or therapy is an important endeavor. Engineered proteins would ideally have high specificities for their intended targets, but achieving interaction specificity by design can be challenging. There are two major approaches to protein design or redesign. Most commonly, proteins and peptides are engineered using experimental library screening and/or in vitro evolution. An alternative approach involves using protein structure and computational modeling to rationally choose sequences predicted to have desirable properties. Computational design has successfully produced novel proteins with enhanced stability, desired interactions and enzymatic function. Here we review the strengths and limitations of experimental library screening and computational structure-based design, giving examples where these methods have been applied to designing protein interaction specificity. We highlight recent studies that demonstrate strategies for combining computational modeling with library screening. The computational methods provide focused libraries predicted to be enriched in sequences with the properties of interest. Such integrated approaches represent a promising way to increase the efficiency of protein design and to engineer complex functionality such as interaction specificity.

  8. Uncovering New Pathogen–Host Protein–Protein Interactions by Pairwise Structure Similarity

    PubMed Central

    Cui, Tao; Li, Weihui; Liu, Lei; Huang, Qiaoyun; He, Zheng-Guo

    2016-01-01

    Pathogens usually evade and manipulate host-immune pathways through pathogen–host protein–protein interactions (PPIs) to avoid being killed by the host immune system. Therefore, uncovering pathogen–host PPIs is critical for determining the mechanisms underlying pathogen infection and survival. In this study, we developed a computational method, which we named pairwise structure similarity (PSS)-PPI, to predict pathogen–host PPIs. First, a high-quality and non-redundant structure–structure interaction (SSI) template library was constructed by exhaustively exploring heteromeric protein complex structures in the PDB database. New interactions were then predicted by searching for PSS with complex structures in the SSI template library. A quantitative score named the PSS score, which integrated structure similarity and residue–residue contact-coverage information, was used to describe the overall similarity of each predicted interaction with the corresponding SSI template. Notably, PSS-PPI yielded experimentally confirmed pathogen–host PPIs of human immunodeficiency virus type 1 (HIV-1) with performance close to that of in vitro high-throughput screening approaches. Finally, a pathogen–host PPI network of human pathogen Mycobacterium tuberculosis, the causative agent of tuberculosis, was constructed using PSS-PPI and refined using filtration steps based on cellular localization information. Analysis of the resulting network indicated that secreted proteins of the STPK, ESX-1, and PE/PPE family in M. tuberculosis targeted human proteins involved in immune response and phagocytosis. M. tuberculosis also targeted host factors known to regulate HIV replication. Taken together, our findings provide insights into the survival mechanisms of M. tuberculosis in human hosts, as well as co-infection of tuberculosis and HIV. With the rapid pace of three-dimensional protein structure discovery, the SSI template library we constructed and the PSS-PPI method we devised

  9. Twenty years of protein interaction studies for biological function deciphering.

    PubMed

    Legrain, Pierre; Rain, Jean-Christophe

    2014-07-31

    Intensive methodological developments and technology innovation have been devoted to protein-protein interaction studies over 20years. Genetic indirect assays and sophisticated large scale biochemical analyses have jointly contributed to the elucidation of protein-protein interactions, still with a lot of drawbacks despite heavy investment in human resources and technologies. With the most recent developments in mass spectrometry and computational tools for studying protein content of complex samples, the initial goal of deciphering molecular bases of biological functions is now within reach. Here, we described the various steps of this process and gave examples of key milestones in this scientific story line. This article is part of a Special Issue entitled: 20years of Proteomics in memory of Viatliano Pallini. Guest Editors: Luca Bini, Juan J. Calvete, Natacha Turck, Denis Hochstrasser and Jean-Charles Sanchez.

  10. HIGH AFFINITY, DSRNA BINDING BY DISCONNECTED INTERACTING PROTEIN 1†

    PubMed Central

    Catanese, Daniel J.; Matthews, Kathleen S.

    2010-01-01

    Disconnected Interacting Protein 1 (DIP1) appears from sequence analysis and preliminary binding studies to be a member of the dsRNA-binding protein family. Of interest, DIP1 was shown previously to interact with and influence multiple proteins involved in transcription regulation in Drosophila melanogaster. We show here that the longest isoform of this protein, DIP1-c, exhibits a 500-fold preference for dsRNA over dsDNA of similar nucleotide sequence. Further, DIP1-c demonstrated very high affinity for a subset of dsRNA ligands, with binding in the picomolar range for VA1 RNA and miR-iab-4 precursor stem-loop, a potential physiological RNA target involved in regulating expression of its protein partner, Ultrabithorax. PMID:20643095

  11. Screening for Host Factors Directly Interacting with RSV Protein: Microfluidics.

    PubMed

    Kipper, Sarit; Avrahami, Dorit; Bajorek, Monika; Gerber, Doron

    2016-01-01

    We present a high-throughput microfluidics platform to identify novel host cell binding partners of respiratory syncytial virus (RSV) matrix (M) protein. The device consists of thousands of reaction chambers controlled by micro-mechanical valves. The microfluidic device is mated to a microarray-printed custom-made gene library. These genes are then transcribed and translated on-chip, resulting in a protein array ready for binding to RSV M protein.Even small viral proteome, such as that of RSV, presents a challenge due to the fact that viral proteins are usually multifunctional and thus their interaction with the host is complex. Protein microarrays technology allows the interrogation of protein-protein interactions, which could possibly overcome obstacles by using conventional high throughput methods. Using microfluidics platform we have identified new host interactors of M involved in various cellular pathways. A number of microfluidics based assays have already provided novel insights into the virus-host interactome, and the results have important implications for future antiviral strategies aimed at targets of viral protein interactions with the host.

  12. Identification of novel CBP interacting proteins in embryonic orofacial tissue

    SciTech Connect

    Yin Xiaolong; Warner, Dennis R.; Roberts, Emily A.; Pisano, M. Michele; Greene, Robert M. . E-mail: greene@louisville.edu

    2005-04-15

    cAMP response element-binding protein (CREB)-binding protein (CBP) plays an important role as a general co-integrator of multiple signaling pathways and interacts with a large number of transcription factors and co-factors, through its numerous protein-binding domains. To identify nuclear factors associated with CBP in developing orofacial tissue, a yeast two-hybrid screen of a cDNA library derived from orofacial tissue from gestational day 11 to 13 mouse embryos was conducted. Using the carboxy terminus (amino acid residues 1676-2441) of CBP as bait, several novel proteins that bind CBP were identified, including an Msx-interacting-zinc finger protein, CDC42 interaction protein 4/thyroid hormone receptor interactor 10, SH3-domain GRB2-like 1, CCR4-NOT transcription complex subunit 3, adaptor protein complex AP-1 {beta}1 subunit, eukaryotic translation initiation factor 2B subunit 1 ({alpha}), and cyclin G-associated kinase. Results of the yeast two-hybrid screen were confirmed by glutathione S-transferase pull-down assays. The identification of these proteins as novel CBP-binding partners allows exploration of new mechanisms by which CBP regulates and integrates diverse cell signaling pathways.

  13. CARMIL is a bona fide capping protein interactant.

    PubMed

    Remmert, Kirsten; Olszewski, Thomas E; Bowers, M Blair; Dimitrova, Mariana; Ginsburg, Ann; Hammer, John A

    2004-01-23

    CARMIL, also known as Acan 125, is a multidomain protein that was originally identified on the basis of its interaction with the Src homology 3 (SH3) domain of type I myosins from Acanthamoeba. In a subsequent study of CARMIL from Dictyostelium, pull-down assays indicated that the protein also bound capping protein and the Arp2/3 complex. Here we present biochemical evidence that Acanthamoeba CARMIL interacts tightly with capping protein. In biochemical preparations, CARMIL copurified extensively with two polypeptides that were shown by microsequencing to be the alpha- and beta-subunits of Acanthamoeba capping protein. The complex between CARMIL and capping protein, which is readily demonstratable by chemical cross-linking, can be completely dissociated by size exclusion chromatography at pH 5.4. Analytical ultracentrifugation, surface plasmon resonance and SH3 domain pull-down assays indicate that the dissociation constant of capping protein for CARMIL is approximately 0.4 microm or lower. Using CARMIL fusion proteins, the binding site for capping protein was shown to reside within the carboxyl-terminal, approximately 200 residue, proline-rich domain of CARMIL. Finally, chemical cross-linking, analytical ultracentrifugation, and rotary shadowed electron microscopy revealed that CARMIL is asymmetric and that it exists in a monomer <--> dimer equilibrium with an association constant of 1.0 x 10(6) m(-1). Together, these results indicate that CARMIL self-associates and interacts with capping protein with affinities that, given the cellular concentrations of the proteins ( approximately 1 and 2 microm for capping protein and CARMIL, respectively), indicate that both activities should be physiologically relevant.

  14. Protein-protein Interaction Networks of E. coli and S. cerevisiae are similar

    PubMed Central

    Wuchty, S.; Uetz, Peter

    2014-01-01

    Only recently novel high-throughput binary interaction data in E. coli became available that allowed us to compare experimentally obtained protein-protein interaction networks of prokaryotes and eukaryotes (i.e. E. coli and S. cerevisiae). Utilizing binary-Y2H, co-complex and binary literature curated interaction sets in both organisms we found that characteristics of interaction sets that were determined with the same experimental methods were strikingly similar. While essentiality is frequently considered a question of a protein's increasing number of interactions, we found that binary-Y2H interactions failed to show such a trend in both organisms. Furthermore, essential genes are enriched in protein complexes in both organisms. In turn, binary-Y2H interactions hold more bottleneck interactions than co-complex interactions while both binary-Y2H and co-complex interactions are strongly enriched among co-regulated proteins and transcription factors. We discuss if such similarities are a consequence of the underlying methodology or rather reflect truly different biological patterns. PMID:25431098

  15. Co-evolutionary Analysis of Domains in Interacting Proteins Reveals Insights into Domain–Domain Interactions Mediating Protein–Protein Interactions

    PubMed Central

    Jothi, Raja; Cherukuri, Praveen F.; Tasneem, Asba; Przytycka, Teresa M.

    2006-01-01

    Recent advances in functional genomics have helped generate large-scale high-throughput protein interaction data. Such networks, though extremely valuable towards molecular level understanding of cells, do not provide any direct information about the regions (domains) in the proteins that mediate the interaction. Here, we performed co-evolutionary analysis of domains in interacting proteins in order to understand the degree of co-evolution of interacting and non-interacting domains. Using a combination of sequence and structural analysis, we analyzed protein–protein interactions in F1-ATPase, Sec23p/Sec24p, DNA-directed RNA polymerase and nuclear pore complexes, and found that interacting domain pair(s) for a given interaction exhibits higher level of co-evolution than the noninteracting domain pairs. Motivated by this finding, we developed a computational method to test the generality of the observed trend, and to predict large-scale domain–domain interactions. Given a protein–protein interaction, the proposed method predicts the domain pair(s) that is most likely to mediate the protein interaction. We applied this method on the yeast interactome to predict domain–domain interactions, and used known domain–domain interactions found in PDB crystal structures to validate our predictions. Our results show that the prediction accuracy of the proposed method is statistically significant. Comparison of our prediction results with those from two other methods reveals that only a fraction of predictions are shared by all the three methods, indicating that the proposed method can detect known interactions missed by other methods. We believe that the proposed method can be used with other methods to help identify previously unrecognized domain–domain interactions on a genome scale, and could potentially help reduce the search space for identifying interaction sites. PMID:16949097

  16. Protein interaction network of the mammalian Hippo pathway reveals mechanisms of kinase-phosphatase interactions.

    PubMed

    Couzens, Amber L; Knight, James D R; Kean, Michelle J; Teo, Guoci; Weiss, Alexander; Dunham, Wade H; Lin, Zhen-Yuan; Bagshaw, Richard D; Sicheri, Frank; Pawson, Tony; Wrana, Jeffrey L; Choi, Hyungwon; Gingras, Anne-Claude

    2013-11-19

    The Hippo pathway regulates organ size and tissue homeostasis in response to multiple stimuli, including cell density and mechanotransduction. Pharmacological inhibition of phosphatases can also stimulate Hippo signaling in cell culture. We defined the Hippo protein-protein interaction network with and without inhibition of serine and threonine phosphatases by okadaic acid. We identified 749 protein interactions, including 599 previously unrecognized interactions, and demonstrated that several interactions with serine and threonine phosphatases were phosphorylation-dependent. Mutation of the T-loop of MST2 (mammalian STE20-like protein kinase 2), which prevented autophosphorylation, disrupted its association with STRIPAK (striatin-interacting phosphatase and kinase complex). Deletion of the amino-terminal forkhead-associated domain of SLMAP (sarcolemmal membrane-associated protein), a component of the STRIPAK complex, prevented its association with MST1 and MST2. Phosphatase inhibition produced temporally distinct changes in proteins that interacted with MOB1A and MOB1B (Mps one binder kinase activator-like 1A and 1B) and promoted interactions with upstream Hippo pathway proteins, such as MST1 and MST2, and with the trimeric protein phosphatase 6 complex (PP6). Mutation of three basic amino acids that are part of a phospho-serine- and phospho-threonine-binding domain in human MOB1B prevented its interaction with MST1 and PP6 in cells treated with okadaic acid. Collectively, our results indicated that changes in phosphorylation orchestrate interactions between kinases and phosphatases in Hippo signaling, providing a putative mechanism for pathway regulation.

  17. Cellulose synthase interacting protein: a new factor in cellulose synthesis.

    PubMed

    Gu, Ying; Somerville, Chris

    2010-12-01

    Cellulose is the most abundant biopolymer on earth. The great abundance of cellulose places it at the forefront as a primary source of biomass for renewable biofuels. However, the knowledge of how plant cells make cellulose remains very rudimentary. Cellulose microfibrils are synthesized at the plasma membrane by hexameric protein complexes, also known as cellulose synthase complexes. The only known components of cellulose synthase complexes are cellulose synthase (CESA) proteins until the recent identification of a novel component. CSI1, which encodes CESA interacting protein 1 (CSI1) in Arabidopsis. CSI1, as the first non-CESA proteins associated with cellulose synthase complexes, opens up many opportunities.

  18. Studying host cell protein interactions with monoclonal antibodies using high throughput protein A chromatography.

    PubMed

    Sisodiya, Vikram N; Lequieu, Joshua; Rodriguez, Maricel; McDonald, Paul; Lazzareschi, Kathlyn P

    2012-10-01

    Protein A chromatography is typically used as the initial capture step in the purification of monoclonal antibodies produced in Chinese hamster ovary (CHO) cells. Although exploiting an affinity interaction for purification, the level of host cell proteins in the protein A eluent varies significantly with different feedstocks. Using a batch binding chromatography method, we performed a controlled study to assess host cell protein clearance across both MabSelect Sure and Prosep vA resins. We individually spiked 21 purified antibodies into null cell culture fluid generated with a non-producing cell line, creating mock cell culture fluids for each antibody with an identical composition of host cell proteins and antibody concentration. We demonstrated that antibody-host cell protein interactions are primarily responsible for the variable levels of host cell proteins in the protein A eluent for both resins when antibody is present. Using the additives guanidine HCl and sodium chloride, we demonstrated that antibody-host cell protein interactions may be disrupted, reducing the level of host cell proteins present after purification on both resins. The reduction in the level of host cell proteins differed between antibodies suggesting that the interaction likely varies between individual antibodies but encompasses both an electrostatic and hydrophobic component.

  19. Inhibition of protein-protein interactions with low molecular weight compounds

    PubMed Central

    Matthews, Marilyn M.; Weber, David J.; Shapiro, Paul S.; Coop, Andrew; MacKerell, Alexander D.

    2010-01-01

    An overview of issues associated with the design and development of low molecular weight inhibitors of protein-protein interactions is presented. Areas discussed include information on the nature of protein-protein interfaces, methods to characterize those interfaces and methods by which that information is applied towards ligand identification and design. Specific examples of the strategy for the identification of inhibitors of protein-protein interactions involving the proteins p56lck kinase, ERK2 and the calcium-binding protein S100B are presented. Physical characterization of the inhibitors identified in those studies shows them to have drug-like and lead-like properties, indicating their potential to be developed into therapeutic agents. PMID:21927717

  20. Uncovering the structural basis of protein interactions with efficient clustering of 3-D interaction interfaces.

    PubMed

    Aung, Z; Tan, S-H; Ng, S-K; Tan, K-L

    2007-01-01

    The biological mechanisms with which proteins interact with one another are best revealed by studying the structural interfaces between interacting proteins. Protein-protein interfaces can be extracted from 3-D structural data of protein complexes and then clustered to derive biological insights. However, conventional protein interface clustering methods lack computational scalability and statistical support. In this work, we present a new method named "PPiClust" to systematically encode, cluster and analyze similar 3-D interface patterns in protein complexes efficiently. Experimental results showed that our method is effective in discovering visually consistent and statistically significant clusters of interfaces, and at the same time sufficiently time-efficient to be performed on a single computer. The interface clusters are also useful for uncovering the structural basis of protein interactions. Analysis of the resulting interface clusters revealed groups of structurally diverse proteins having similar interface patterns. We also found, in some of the interface clusters, the presence of well-known linear binding motifs which were non-contiguous in the primary sequences. These results suggest that PPiClust can discover not only statistically significant but also biologically significant protein interface clusters from protein complex structural data.

  1. Links between critical proteins drive the controllability of protein interaction networks.

    PubMed

    Wuchty, Stefan; Boltz, Toni; Küçük-McGinty, Hande

    2017-04-10

    Focusing on the interactomes of H. sapiens, S. cerevisiae, and E. coli, we investigated interactions between controlling proteins. In particular, we determined critical, intermittent, and redundant proteins based on their tendency to participate in minimum dominating sets (MDSets). Independently of the organisms considered, we found that interactions that involved critical nodes had the most prominent effects on the topology of their corresponding networks. Furthermore, we observed that phosphorylation and regulatory events were considerably enriched when the corresponding transcription factors and kinases were critical proteins, while such interactions were depleted when they were redundant proteins. Moreover, interactions involving critical proteins were enriched with essential genes, disease genes and drug targets, suggesting that such characteristics may be key for the detection of novel drug targets as well as assess their efficacy. This article is protected by copyright. All rights reserved.

  2. Predicting protein functions from redundancies in large-scale protein interaction networks

    NASA Technical Reports Server (NTRS)

    Samanta, Manoj Pratim; Liang, Shoudan

    2003-01-01

    Interpreting data from large-scale protein interaction experiments has been a challenging task because of the widespread presence of random false positives. Here, we present a network-based statistical algorithm that overcomes this difficulty and allows us to derive functions of unannotated proteins from large-scale interaction data. Our algorithm uses the insight that if two proteins share significantly larger number of common interaction partners than random, they have close functional associations. Analysis of publicly available data from Saccharomyces cerevisiae reveals >2,800 reliable functional associations, 29% of which involve at least one unannotated protein. By further analyzing these associations, we derive tentative functions for 81 unannotated proteins with high certainty. Our method is not overly sensitive to the false positives present in the data. Even after adding 50% randomly generated interactions to the measured data set, we are able to recover almost all (approximately 89%) of the original associations.

  3. Protein-protein interactions prediction based on iterative clique extension with gene ontology filtering.

    PubMed

    Yang, Lei; Tang, Xianglong

    2014-01-01

    Cliques (maximal complete subnets) in protein-protein interaction (PPI) network are an important resource used to analyze protein complexes and functional modules. Clique-based methods of predicting PPI complement the data defection from biological experiments. However, clique-based predicting methods only depend on the topology of network. The false-positive and false-negative interactions in a network usually interfere with prediction. Therefore, we propose a method combining clique-based method of prediction and gene ontology (GO) annotations to overcome the shortcoming and improve the accuracy of predictions. According to different GO correcting rules, we generate two predicted interaction sets which guarantee the quality and quantity of predicted protein interactions. The proposed method is applied to the PPI network from the Database of Interacting Proteins (DIP) and most of the predicted interactions are verified by another biological database, BioGRID. The predicted protein interactions are appended to the original protein network, which leads to clique extension and shows the significance of biological meaning.

  4. An analysis pipeline for the inferenceof protein-protein interaction networks

    SciTech Connect

    Taylor, Ronald C.; Singhal, Mudita; Daly, Don S.; Gilmore, Jason; Cannon, Bill; Domico, Kelly; White, Amanda M.; Auberry, Deanna L; Auberry, Kenneth J; Hooker, Brian; Hurst, Gregory {Greg} B; McDermott, Jason; McDonald, W Hayes; Pelletier, Dale A; Schmoyer, Denise D; Wiley, Steven

    2009-09-01

    We present an integrated platform that is used for the reconstruction and analysis of protein-protein interaction networks inferred from Mass Spectrometry (MS) bait-prey experiment data. At the heart of this pipeline is the Software Environment for Biological Network Inference (SEBINI), an interactive environment for the deployment and testing of network inference algorithms that use high-throughput data. Among the many algorithms available in SEBINI is the Bayesian Estimator of Probabilities of Protein-Protein Associations (BEPro3) algorithm, which is used to infer interaction networks from such MS affinity isolation data. For integration, comparison and analysis of the inferred protein-protein interactions with interaction evidence obtained from multiple public sources, the pipeline connects to the Collective Analysis of Biological Interaction Networks (CABIN) software. Incorporating BEPro3 into SEBINI and automatically feeding the resulting inferred network into CABIN, we have created a structured workflow for protein-protein network inference and supplemental analysis from sets of MS bait-prey experiments.

  5. Energetics of the protein-DNA-water interaction

    PubMed Central

    Spyrakis, Francesca; Cozzini, Pietro; Bertoli, Chiara; Marabotti, Anna; Kellogg, Glen E; Mozzarelli, Andrea

    2007-01-01

    Background To understand the energetics of the interaction between protein and DNA we analyzed 39 crystallographically characterized complexes with the HINT (Hydropathic INTeractions) computational model. HINT is an empirical free energy force field based on solvent partitioning of small molecules between water and 1-octanol. Our previous studies on protein-ligand complexes demonstrated that free energy predictions were significantly improved by taking into account the energetic contribution of water molecules that form at least one hydrogen bond with each interacting species. Results An initial correlation between the calculated HINT scores and the experimentally determined binding free energies in the protein-DNA system exhibited a relatively poor r2 of 0.21 and standard error of ± 1.71 kcal mol-1. However, the inclusion of 261 waters that bridge protein and DNA improved the HINT score-free energy correlation to an r2 of 0.56 and standard error of ± 1.28 kcal mol-1. Analysis of the water role and energy contributions indicate that 46% of the bridging waters act as linkers between amino acids and nucleotide bases at the protein-DNA interface, while the remaining 54% are largely involved in screening unfavorable electrostatic contacts. Conclusion This study quantifies the key energetic role of bridging waters in protein-DNA associations. In addition, the relevant role of hydrophobic interactions and entropy in driving protein-DNA association is indicated by analyses of interaction character showing that, together, the favorable polar and unfavorable polar/hydrophobic-polar interactions (i.e., desolvation) mostly cancel. PMID:17214883

  6. Phospho-tyrosine dependent protein–protein interaction network

    PubMed Central

    Grossmann, Arndt; Benlasfer, Nouhad; Birth, Petra; Hegele, Anna; Wachsmuth, Franziska; Apelt, Luise; Stelzl, Ulrich

    2015-01-01

    Post-translational protein modifications, such as tyrosine phosphorylation, regulate protein–protein interactions (PPIs) critical for signal processing and cellular phenotypes. We extended an established yeast two-hybrid system employing human protein kinases for the analyses of phospho-tyrosine (pY)-dependent PPIs in a direct experimental, large-scale approach. We identified 292 mostly novel pY-dependent PPIs which showed high specificity with respect to kinases and interacting proteins and validated a large fraction in co-immunoprecipitation experiments from mammalian cells. About one-sixth of the interactions are mediated by known linear sequence binding motifs while the majority of pY-PPIs are mediated by other linear epitopes or governed by alternative recognition modes. Network analysis revealed that pY-mediated recognition events are tied to a highly connected protein module dedicated to signaling and cell growth pathways related to cancer. Using binding assays, protein complementation and phenotypic readouts to characterize the pY-dependent interactions of TSPAN2 (tetraspanin 2) and GRB2 or PIK3R3 (p55γ), we exemplarily provide evidence that the two pY-dependent PPIs dictate cellular cancer phenotypes. PMID:25814554

  7. Towards a map of the Populus biomass protein-protein interaction network

    SciTech Connect

    Beers, Eric; Brunner, Amy; Helm, Richard; Dickerman, Allan

    2015-07-31

    Biofuels can be produced from a variety of plant feedstocks. The value of a particular feedstock for biofuels production depends in part on the degree of difficulty associated with the extraction of fermentable sugars from the plant biomass. The wood of trees is potentially a rich source fermentable sugars. However, the sugars in wood exist in a tightly cross-linked matrix of cellulose, hemicellulose, and lignin, making them largely recalcitrant to release and fermentation for biofuels production. Before breeders and genetic engineers can effectively develop plants with reduced recalcitrance to fermentation, it is necessary to gain a better understanding of the fundamental biology of the mechanisms responsible for wood formation. Regulatory, structural, and enzymatic proteins are required for the complicated process of wood formation. To function properly, proteins must interact with other proteins. Yet, very few of the protein-protein interactions necessary for wood formation are known. The main objectives of this project were to 1) identify new protein-protein interactions relevant to wood formation, and 2) perform in-depth characterizations of selected protein-protein interactions. To identify relevant protein-protein interactions, we cloned a set of approximately 400 genes that were highly expressed in the wood-forming tissue (known as secondary xylem) of poplar (Populus trichocarpa). We tested whether the proteins encoded by these biomass genes interacted with each other in a binary matrix design using the yeast two-hybrid (Y2H) method for protein-protein interaction discovery. We also tested a subset of the 400 biomass proteins for interactions with all proteins present in wood-forming tissue of poplar in a biomass library screen design using Y2H. Together, these two Y2H screens yielded over 270 interactions involving over 75 biomass proteins. For the second main objective we selected several interacting pairs or groups of interacting proteins for in

  8. Template-Based Modeling of Protein-RNA Interactions

    PubMed Central

    Zheng, Jinfang; Kundrotas, Petras J.; Vakser, Ilya A.

    2016-01-01

    Protein-RNA complexes formed by specific recognition between RNA and RNA-binding proteins play an important role in biological processes. More than a thousand of such proteins in human are curated and many novel RNA-binding proteins are to be discovered. Due to limitations of experimental approaches, computational techniques are needed for characterization of protein-RNA interactions. Although much progress has been made, adequate methodologies reliably providing atomic resolution structural details are still lacking. Although protein-RNA free docking approaches proved to be useful, in general, the template-based approaches provide higher quality of predictions. Templates are key to building a high quality model. Sequence/structure relationships were studied based on a representative set of binary protein-RNA complexes from PDB. Several approaches were tested for pairwise target/template alignment. The analysis revealed a transition point between random and correct binding modes. The results showed that structural alignment is better than sequence alignment in identifying good templates, suitable for generating protein-RNA complexes close to the native structure, and outperforms free docking, successfully predicting complexes where the free docking fails, including cases of significant conformational change upon binding. A template-based protein-RNA interaction modeling protocol PRIME was developed and benchmarked on a representative set of complexes. PMID:27662342

  9. Template-Based Modeling of Protein-RNA Interactions.

    PubMed

    Zheng, Jinfang; Kundrotas, Petras J; Vakser, Ilya A; Liu, Shiyong

    2016-09-01

    Protein-RNA complexes formed by specific recognition between RNA and RNA-binding proteins play an important role in biological processes. More than a thousand of such proteins in human are curated and many novel RNA-binding proteins are to be discovered. Due to limitations of experimental approaches, computational techniques are needed for characterization of protein-RNA interactions. Although much progress has been made, adequate methodologies reliably providing atomic resolution structural details are still lacking. Although protein-RNA free docking approaches proved to be useful, in general, the template-based approaches provide higher quality of predictions. Templates are key to building a high quality model. Sequence/structure relationships were studied based on a representative set of binary protein-RNA complexes from PDB. Several approaches were tested for pairwise target/template alignment. The analysis revealed a transition point between random and correct binding modes. The results showed that structural alignment is better than sequence alignment in identifying good templates, suitable for generating protein-RNA complexes close to the native structure, and outperforms free docking, successfully predicting complexes where the free docking fails, including cases of significant conformational change upon binding. A template-based protein-RNA interaction modeling protocol PRIME was developed and benchmarked on a representative set of complexes.

  10. Noncovalent protein interaction with poly(ADP-ribose).

    PubMed

    Malanga, Maria; Althaus, Felix R

    2011-01-01

    Compared to most common posttranslational modifications of proteins, a peculiarity of poly(ADP-ribosyl)ation is the molecular heterogeneity and complexity of the reaction product, poly(ADP-ribose) (PAR). In fact, protein-bound PAR consists of variously sized (2-200 ADP-ribose residues) linear or branched molecules, negatively charged at physiological pH. It is now clear that PAR not only affects the function of the polypeptide to which it is covalently bound, but it can also influence the activity of other proteins by engaging specific noncovalent interactions. In the last 10 years, the family of PAR-binding proteins has been rapidly growing and functional studies have expanded the regulatory potential of noncovalent -protein targeting by PAR far beyond initial assumptions.In this chapter, methods are described for: (1) PAR synthesis and analysis; (2) detecting PAR-binding proteins in protein mixtures; (3) defining affinity and specificity of PAR binding to individual proteins or protein fragments; and (4) identifying PAR molecules selectively involved in the interaction.

  11. Response of the mosquito protein interaction network to dengue infection

    PubMed Central

    2010-01-01

    Background Two fifths of the world's population is at risk from dengue. The absence of effective drugs and vaccines leaves vector control as the primary intervention tool. Understanding dengue virus (DENV) host interactions is essential for the development of novel control strategies. The availability of genome sequences for both human and mosquito host greatly facilitates genome-wide studies of DENV-host interactions. Results We developed the first draft of the mosquito protein interaction network using a computational approach. The weighted network includes 4,214 Aedes aegypti proteins with 10,209 interactions, among which 3,500 proteins are connected into an interconnected scale-free network. We demonstrated the application of this network for the further annotation of mosquito proteins and dissection of pathway crosstalk. Using three datasets based on physical interaction assays, genome-wide RNA interference (RNAi) screens and microarray assays, we identified 714 putative DENV-associated mosquito proteins. An integrated analysis of these proteins in the network highlighted four regions consisting of highly interconnected proteins with closely related functions in each of replication/transcription/translation (RTT), immunity, transport and metabolism. Putative DENV-associated proteins were further selected for validation by RNAi-mediated gene silencing, and dengue viral titer in mosquito midguts was significantly reduced for five out of ten (50.0%) randomly selected genes. Conclusions Our results indicate the presence of common host requirements for DENV in mosquitoes and humans. We discuss the significance of our findings for pharmacological intervention and genetic modification of mosquitoes for blocking dengue transmission. PMID:20553610

  12. Prediction of Protein-Protein Interactions by NanoLuc-Based Protein-Fragment Complementation Assay | Office of Cancer Genomics

    Cancer.gov

    The CTD2 Center at Emory has developed a new NanoLuc®-based protein-fragment complementation assay (NanoPCA) which allows the detection of novel protein-protein interactions (PPI). NanoPCA allows the study of PPI dynamics with reversible interactions.  Read the abstract. Experimental Approaches Read the detailed Experimetnal Approaches. 

  13. Nonspecific DNA-Protein Interaction: Why Proteins Can Diffuse along DNA

    NASA Astrophysics Data System (ADS)

    Dahirel, Vincent; Paillusson, Fabien; Jardat, Marie; Barbi, Maria; Victor, Jean-Marc

    2009-06-01

    Recent single molecule experiments have reported that DNA binding proteins (DNA-BPs) can diffuse along DNA. This suggests that interactions between proteins and DNA play a role during the target search even far from their specific site on DNA. Here we show by means of Monte Carlo simulations and analytical calculations that there is a counterintuitive repulsion between the two oppositely charged macromolecules at a nanometer range. For the concave shape of DNA-BPs, and for realistic protein charge densities, we find that the DNA-protein interaction free energy has a minimum at a finite surface-to-surface separation, in which proteins can easily slide. When a protein encounters its target, the free energy barrier is completely counterbalanced by the H-bond interaction, thus enabling the sequence recognition.

  14. In silico modeling of the yeast protein and protein family interaction network

    NASA Astrophysics Data System (ADS)

    Goh, K.-I.; Kahng, B.; Kim, D.

    2004-03-01

    Understanding of how protein interaction networks of living organisms have evolved or are organized can be the first stepping stone in unveiling how life works on a fundamental ground. Here we introduce an in silico ``coevolutionary'' model for the protein interaction network and the protein family network. The essential ingredient of the model includes the protein family identity and its robustness under evolution, as well as the three previously proposed: gene duplication, divergence, and mutation. This model produces a prototypical feature of complex networks in a wide range of parameter space, following the generalized Pareto distribution in connectivity. Moreover, we investigate other structural properties of our model in detail with some specific values of parameters relevant to the yeast Saccharomyces cerevisiae, showing excellent agreement with the empirical data. Our model indicates that the physical constraints encoded via the domain structure of proteins play a crucial role in protein interactions.

  15. Inhibition of Protein-Protein Interactions and Signaling by Small Molecules

    NASA Astrophysics Data System (ADS)

    Freire, Ernesto

    2010-03-01

    Protein-protein interactions are at the core of cell signaling pathways as well as many bacterial and viral infection processes. As such, they define critical targets for drug development against diseases such as cancer, arthritis, obesity, AIDS and many others. Until now, the clinical inhibition of protein-protein interactions and signaling has been accomplished with the use of antibodies or soluble versions of receptor molecules. Small molecule replacements of these therapeutic agents have been extremely difficult to develop; either the necessary potency has been hard to achieve or the expected biological effect has not been obtained. In this presentation, we show that a rigorous thermodynamic approach that combines differential scanning calorimetry (DSC) and isothermal titration calorimetry (ITC) provides a unique platform for the identification and optimization of small molecular weight inhibitors of protein-protein interactions. Recent advances in the development of cell entry inhibitors of HIV-1 using this approach will be discussed.

  16. Small Molecules Engage Hot Spots through Cooperative Binding To Inhibit a Tight Protein-Protein Interaction.

    PubMed

    Liu, Degang; Xu, David; Liu, Min; Knabe, William Eric; Yuan, Cai; Zhou, Donghui; Huang, Mingdong; Meroueh, Samy O

    2017-03-28

    Protein-protein interactions drive every aspect of cell signaling, yet only a few small-molecule inhibitors of these interactions exist. Despite our ability to identify critical residues known as hot spots, little is known about how to effectively engage them to disrupt protein-protein interactions. Here, we take advantage of the ease of preparation and stability of pyrrolinone 1, a small-molecule inhibitor of the tight interaction between the urokinase receptor (uPAR) and its binding partner, the urokinase-type plasminogen activator uPA, to synthesize more than 40 derivatives and explore their effect on the protein-protein interaction. We report the crystal structure of uPAR bound to previously discovered pyrazole 3 and to pyrrolinone 12. While both 3 and 12 bind to uPAR and compete with a fluorescently labeled peptide probe, only 12 and its derivatives inhibit the full uPAR·uPA interaction. Compounds 3 and 12 mimic and engage different hot-spot residues on uPA and uPAR, respectively. Interestingly, 12 is involved in a π-cation interaction with Arg-53, which is not considered a hot spot. Explicit-solvent molecular dynamics simulations reveal that 3 and 12 exhibit dramatically different correlations of motion with residues on uPAR. Free energy calculations for the wild-type and mutant uPAR bound to uPA or 12 show that Arg-53 interacts with uPA or with 12 in a highly cooperative manner, thereby altering the contributions of hot spots to uPAR binding. The direct engagement of peripheral residues not considered hot spots through π-cation or salt-bridge interactions could provide new opportunities for enhanced small-molecule engagement of hot spots to disrupt challenging protein-protein interactions.

  17. Probing protein-protein interaction in biomembranes using Fourier transform infrared spectroscopy.

    PubMed

    Haris, Parvez I

    2013-10-01

    The position, intensity and width of bands in infrared spectra that arise from vibrational modes within a protein can be used to probe protein secondary structure, amino acid side chain structure as well as protein dynamics and stability. FTIR spectroscopic studies on protein-protein interaction have been severely limited due to extensive overlap of peaks, from the interacting proteins. This problem is being addressed by combining data processing and acquisition techniques (difference spectroscopy and two-dimensional spectroscopy) with judicious modifications in the protein primary structure through molecular biological and chemical methods. These include the ability to modify amino acids (site-directed mutagenesis; chemical synthesis) and produce isotopically labelled proteins and peptides. Whilst great progress is being made towards overcoming the congestion of overlapping peaks, the slow progress in the assignment of bands continues to be a major hindrance in the use of infrared spectroscopy for obtaining highly accurate and precise information on protein structure. This review discusses some of these problems and presents examples of infrared studies on protein-protein interaction in biomembrane systems. This article is part of a Special Issue entitled: FTIR in membrane proteins and peptide studies.

  18. Protein interaction network for Alzheimer's disease using computational approach.

    PubMed

    Srinivasa Rao, V; Srinivas, K; Kumar, G N Sunand; Sujin, G N

    2013-01-01

    Alzheimer's disease (AD) is the most common form of dementia. It is the sixth leading cause of death in old age people. Despite recent advances in the field of drug design, the medical treatment for the disease is purely symptomatic and hardly effective. Thus there is a need to understand the molecular mechanism behind the disease in order to improve the drug aspects of the disease. We provided two contributions in the field of proteomics in drug design. First, we have constructed a protein-protein interaction network for Alzheimer's disease reviewed proteins with 1412 interactions predicted among 969 proteins. Second, the disease proteins were given confidence scores to prioritize and then analyzed for their homology nature with respect to paralogs and homologs. The homology persisted with the mouse giving a basis for drug design phase. The method will create a new drug design technique in the field of bioinformatics by linking drug design process with protein-protein interactions via signal pathways. This method can be improvised for other diseases in future.

  19. Machine Learning of Protein Interactions in Fungal Secretory Pathways.

    PubMed

    Kludas, Jana; Arvas, Mikko; Castillo, Sandra; Pakula, Tiina; Oja, Merja; Brouard, Céline; Jäntti, Jussi; Penttilä, Merja; Rousu, Juho

    2016-01-01

    In this paper we apply machine learning methods for predicting protein interactions in fungal secretion pathways. We assume an inter-species transfer setting, where training data is obtained from a single species and the objective is to predict protein interactions in other, related species. In our methodology, we combine several state of the art machine learning approaches, namely, multiple kernel learning (MKL), pairwise kernels and kernelized structured output prediction in the supervised graph inference framework. For MKL, we apply recently proposed centered kernel alignment and p-norm path following approaches to integrate several feature sets describing the proteins, demonstrating improved performance. For graph inference, we apply input-output kernel regression (IOKR) in supervised and semi-supervised modes as well as output kernel trees (OK3). In our experiments simulating increasing genetic distance, Input-Output Kernel Regression proved to be the most robust prediction approach. We also show that the MKL approaches improve the predictions compared to uniform combination of the kernels. We evaluate the methods on the task of predicting protein-protein-interactions in the secretion pathways in fungi, S.cerevisiae, baker's yeast, being the source, T. reesei being the target of the inter-species transfer learning. We identify completely novel candidate secretion proteins conserved in filamentous fungi. These proteins could contribute to their unique secretion capabilities.

  20. Interactions between phage-shock proteins in Escherichia coli.

    PubMed

    Adams, Hendrik; Teertstra, Wieke; Demmers, Jeroen; Boesten, Rolf; Tommassen, Jan

    2003-02-01

    Expression of the pspABCDE operon of Escherichia coli is induced upon infection by filamentous phage and by many other stress conditions, including defects in protein export. Expression of the operon requires the alternative sigma factor sigma54 and the transcriptional activator PspF. In addition, PspA plays a negative regulatory role, and the integral-membrane proteins PspB and PspC play a positive one. In this study, we investigated whether the suggested protein-protein interactions implicated in this complex regulatory network can indeed be demonstrated. Antisera were raised against PspB, PspC, and PspD, which revealed, in Western blotting experiments, that PspC forms stable sodium dodecyl sulfate-resistant dimers and that the hypothetical pspD gene is indeed expressed in vivo. Fractionation experiments showed that PspD localizes as a peripherally bound inner membrane protein. Cross-linking studies with intact cells revealed specific interactions of PspA with PspB and PspC, but not with PspD. Furthermore, affinity-chromatography suggested that PspB could bind PspA only in the presence of PspC. These data indicate that regulation of the psp operon is mediated via protein-protein interactions.

  1. Machine Learning of Protein Interactions in Fungal Secretory Pathways

    PubMed Central

    Kludas, Jana; Arvas, Mikko; Castillo, Sandra; Pakula, Tiina; Oja, Merja; Brouard, Céline; Jäntti, Jussi; Penttilä, Merja

    2016-01-01

    In this paper we apply machine learning methods for predicting protein interactions in fungal secretion pathways. We assume an inter-species transfer setting, where training data is obtained from a single species and the objective is to predict protein interactions in other, related species. In our methodology, we combine several state of the art machine learning approaches, namely, multiple kernel learning (MKL), pairwise kernels and kernelized structured output prediction in the supervised graph inference framework. For MKL, we apply recently proposed centered kernel alignment and p-norm path following approaches to integrate several feature sets describing the proteins, demonstrating improved performance. For graph inference, we apply input-output kernel regression (IOKR) in supervised and semi-supervised modes as well as output kernel trees (OK3). In our experiments simulating increasing genetic distance, Input-Output Kernel Regression proved to be the most robust prediction approach. We also show that the MKL approaches improve the predictions compared to uniform combination of the kernels. We evaluate the methods on the task of predicting protein-protein-interactions in the secretion pathways in fungi, S.cerevisiae, baker’s yeast, being the source, T. reesei being the target of the inter-species transfer learning. We identify completely novel candidate secretion proteins conserved in filamentous fungi. These proteins could contribute to their unique secretion capabilities. PMID:27441920

  2. MPact: the MIPS protein interaction resource on yeast.

    PubMed

    Güldener, Ulrich; Münsterkötter, Martin; Oesterheld, Matthias; Pagel, Philipp; Ruepp, Andreas; Mewes, Hans-Werner; Stümpflen, Volker

    2006-01-01

    In recent years, the Munich Information Center for Protein Sequences (MIPS) yeast protein-protein interaction (PPI) dataset has been used in numerous analyses of protein networks and has been called a gold standard because of its quality and comprehensiveness [H. Yu, N. M. Luscombe, H. X. Lu, X. Zhu, Y. Xia, J. D. Han, N. Bertin, S. Chung, M. Vidal and M. Gerstein (2004) Genome Res., 14, 1107-1118]. MPact and the yeast protein localization catalog provide information related to the proximity of proteins in yeast. Beside the integration of high-throughput data, information about experimental evidence for PPIs in the literature was compiled by experts adding up to 4300 distinct PPIs connecting 1500 proteins in yeast. As the interaction data is a complementary part of CYGD, interactive mapping of data on other integrated data types such as the functional classification catalog [A. Ruepp, A. Zollner, D. Maier, K. Albermann, J. Hani, M. Mokrejs, I. Tetko, U. Güldener, G. Mannhaupt, M. Münsterkötter and H. W. Mewes (2004) Nucleic Acids Res., 32, 5539-5545] is possible. A survey of signaling proteins and comparison with pathway data from KEGG demonstrates that based on these manually annotated data only an extensive overview of the complexity of this functional network can be obtained in yeast. The implementation of a web-based PPI-analysis tool allows analysis and visualization of protein interaction networks and facilitates integration of our curated data with high-throughput datasets. The complete dataset as well as user-defined sub-networks can be retrieved easily in the standardized PSI-MI format. The resource can be accessed through http://mips.gsf.de/genre/proj/mpact.

  3. Lipid-protein interactions of integral membrane proteins: a comparative simulation study.

    PubMed

    Deol, Sundeep S; Bond, Peter J; Domene, Carmen; Sansom, Mark S P

    2004-12-01

    The interactions between membrane proteins and their lipid bilayer environment play important roles in the stability and function of such proteins. Extended (15-20 ns) molecular dynamics simulations have been used to explore the interactions of two membrane proteins with phosphatidylcholine bilayers. One protein (KcsA) is an alpha-helix bundle and embedded in a palmitoyl oleoyl phosphatidylcholine bilayer; the other (OmpA) is a beta-barrel outer-membrane protein and is in a dimyristoyl phosphatidylcholine bilayer. The simulations enable analysis in detail of a number of aspects of lipid-protein interactions. In particular, the interactions of aromatic amphipathic side chains (i.e., Trp, Tyr) with lipid headgroups, and "snorkeling" interactions of basic side chains (i.e., Lys, Arg) with phosphate groups are explored. Analysis of the number of contacts and of H-bonds reveal fluctuations on an approximately 1- to 5-ns timescale. There are two clear bands of interacting residues on the surface of KcsA, whereas there are three such bands on OmpA. A large number of Arg-phosphate interactions are seen for KcsA; for OmpA, the number of basic-phosphate interactions is smaller and shows more marked fluctuations with respect to time. Both classes of interaction occur in clearly defined interfacial regions of width approximately 1 nm. Analysis of lateral diffusion of lipid molecules reveals that "boundary" lipid molecules diffuse at about half the rate of bulk lipid. Overall, these simulations present a dynamic picture of lipid-protein interactions: there are a number of more specific interactions but even these fluctuate on an approximately 1- to 5-ns timescale.

  4. The visible touch: in planta visualization of protein-protein interactions by fluorophore-based methods

    PubMed Central

    Bhat, Riyaz A; Lahaye, Thomas; Panstruga, Ralph

    2006-01-01

    Non-invasive fluorophore-based protein interaction assays like fluorescence resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC, also referred to as "split YFP") have been proven invaluable tools to study protein-protein interactions in living cells. Both methods are now frequently used in the plant sciences and are likely to develop into standard techniques for the identification, verification and in-depth analysis of polypeptide interactions. In this review, we address the individual strengths and weaknesses of both approaches and provide an outlook about new directions and possible future developments for both techniques. PMID:16800872

  5. Predicting protein function by frequent functional association pattern mining in protein interaction networks.

    PubMed

    Cho, Young-Rae; Zhang, Aidong

    2010-01-01

    Predicting protein function from protein interaction networks has been challenging because of the complexity of functional relationships among proteins. Most previous function prediction methods depend on the neighborhood of or the connected paths to known proteins. However, their accuracy has been limited due to the functional inconsistency of interacting proteins. In this paper, we propose a novel approach for function prediction by identifying frequent patterns of functional associations in a protein interaction network. A set of functions that a protein performs is assigned into the corresponding node as a label. A functional association pattern is then represented as a labeled subgraph. Our frequent labeled subgraph mining algorithm efficiently searches the functional association patterns that occur frequently in the network. It iteratively increases the size of frequent patterns by one node at a time by selective joining, and simplifies the network by a priori pruning. Using the yeast protein interaction network, our algorithm found more than 1400 frequent functional association patterns. The function prediction is performed by matching the subgraph, including the unknown protein, with the frequent patterns analogous to it. By leave-one-out cross validation, we show that our approach has better performance than previous link-based methods in terms of prediction accuracy. The frequent functional association patterns generated in this study might become the foundations of advanced analysis for functional behaviors of proteins in a system level.

  6. Unconventional interactions between water and heterocyclic nitrogens in protein structures.

    PubMed

    Stollar, Elliott J; Gelpí, Jose Luis; Velankar, Sameer; Golovin, Adel; Orozco, Modesto; Luisi, Ben F

    2004-10-01

    We report an unusual interaction in which a water molecule approaches the heterocyclic nitrogen of tryptophan and histidine along an axis that is roughly perpendicular to the aromatic plane of the side chain. The interaction is distinct from the well-known conventional aromatic hydrogen-bond, and it occurs at roughly the same frequency in protein structures. Calculations indicate that the water-indole interaction is favorable energetically, and we find several cases in which such contacts are conserved among structural orthologs. The indole-water interaction links side chains and peptide backbone in turn regions, connects the side chains in beta-sheets, and bridges secondary elements from different domains. We suggest that the water-indole interaction can be indirectly responsible for the quenching of tryptophan fluorescence that is observed in the folding of homeodomains and, possibly, many other proteins. We also observe a similar interaction between water and the imidazole nitrogens of the histidine side chain. Taken together, these observations suggest that the unconventional water-indole and water-imidazole interactions provide a small but favorable contribution to protein structures.

  7. Direct coevolutionary couplings reflect biophysical residue interactions in proteins

    NASA Astrophysics Data System (ADS)

    Coucke, Alice; Uguzzoni, Guido; Oteri, Francesco; Cocco, Simona; Monasson, Remi; Weigt, Martin

    2016-11-01

    Coevolution of residues in contact imposes strong statistical constraints on the sequence variability between homologous proteins. Direct-Coupling Analysis (DCA), a global statistical inference method, successfully models this variability across homologous protein families to infer structural information about proteins. For each residue pair, DCA infers 21 × 21 matrices describing the coevolutionary coupling for each pair of amino acids (or gaps). To achieve the residue-residue contact prediction, these matrices are mapped onto simple scalar parameters; the full information they contain gets lost. Here, we perform a detailed spectral analysis of the coupling matrices resulting from 70 protein families, to show that they contain quantitative information about the physico-chemical properties of amino-acid interactions. Results for protein families are corroborated by the analysis of synthetic data from lattice-protein models, which emphasizes the critical effect of sampling quality and regularization on the biochemical features of the statistical coupling matrices.

  8. Direct coevolutionary couplings reflect biophysical residue interactions in proteins.

    PubMed

    Coucke, Alice; Uguzzoni, Guido; Oteri, Francesco; Cocco, Simona; Monasson, Remi; Weigt, Martin

    2016-11-07

    Coevolution of residues in contact imposes strong statistical constraints on the sequence variability between homologous proteins. Direct-Coupling Analysis (DCA), a global statistical inference method, successfully models this variability across homologous protein families to infer structural information about proteins. For each residue pair, DCA infers 21 × 21 matrices describing the coevolutionary coupling for each pair of amino acids (or gaps). To achieve the residue-residue contact prediction, these matrices are mapped onto simple scalar parameters; the full information they contain gets lost. Here, we perform a detailed spectral analysis of the coupling matrices resulting from 70 protein families, to show that they contain quantitative information about the physico-chemical properties of amino-acid interactions. Results for protein families are corroborated by the analysis of synthetic data from lattice-protein models, which emphasizes the critical effect of sampling quality and regularization on the biochemical features of the statistical coupling matrices.

  9. IFT-Cargo Interactions and Protein Transport in Cilia.

    PubMed

    Lechtreck, Karl F

    2015-12-01

    The motile and sensory functions of cilia and flagella are indispensable for human health. Cilia assembly requires a dedicated protein shuttle, intraflagellar transport (IFT), a bidirectional motility of multi-megadalton protein arrays along ciliary microtubules. IFT functions as a protein carrier delivering hundreds of distinct proteins into growing cilia. IFT-based protein import and export continue in fully grown cilia and are required for ciliary maintenance and sensing. Large ciliary building blocks might depend on IFT to move through the transition zone, which functions as a ciliary gate. Smaller, freely diffusing proteins, such as tubulin, depend on IFT to be concentrated or removed from cilia. As I discuss here, recent work provides insights into how IFT interacts with its cargoes and how the transport is regulated.

  10. Dynamics and mechanism of ultrafast water–protein interactions

    PubMed Central

    Qin, Yangzhong; Wang, Lijuan; Zhong, Dongping

    2016-01-01

    Protein hydration is essential to its structure, dynamics, and function, but water–protein interactions have not been directly observed in real time at physiological temperature to our awareness. By using a tryptophan scan with femtosecond spectroscopy, we simultaneously measured the hydration water dynamics and protein side-chain motions with temperature dependence. We observed the heterogeneous hydration dynamics around the global protein surface with two types of coupled motions, collective water/side-chain reorientation in a few picoseconds and cooperative water/side-chain restructuring in tens of picoseconds. The ultrafast dynamics in hundreds of femtoseconds is from the outer-layer, bulk-type mobile water molecules in the hydration shell. We also found that the hydration water dynamics are always faster than protein side-chain relaxations but with the same energy barriers, indicating hydration shell fluctuations driving protein side-chain motions on the picosecond time scales and thus elucidating their ultimate relationship. PMID:27339138

  11. TOWARDS A PROBABILISTIC RECOGNITION CODE FOR PROTEIN-DNA INTERACTIONS

    SciTech Connect

    P. BENOS; ET AL

    2000-09-01

    We are investigating the rules that govern protein-DNA interactions, using a statistical mechanics based formalism that is related to the Boltzmann Machine of the neural net literature. Our approach is data-driven, in which probabilistic algorithms are used to model protein-DNA interactions, given SELEX and phage data as input. Under the ''one-to-one'' model for interactions (i.e. one amino acid contacts one base), we can successfully identify the wild-type binding sites of EGR and MIG protein families. The predictions using our method are the same or better than that of methods existing in the literature, however our methodology offers the potential to capitalize in quantitative detail on more data as it becomes available.

  12. Interaction of milk whey protein with common phenolic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Yu, Dandan; Sun, Jing; Guo, Huiyuan; Ding, Qingbo; Liu, Ruihai; Ren, Fazheng

    2014-01-01

    Phenolics-rich foods such as fruit juices and coffee are often consumed with milk. In this study, the interactions of α-lactalbumin and β-lactoglobulin with the phenolic acids (chlorogenic acid, caffeic acid, ferulic acid, and coumalic acid) were examined. Fluorescence, CD, and FTIR spectroscopies were used to analyze the binding modes, binding constants, and the effects of complexation on the conformation of whey protein. The results showed that binding constants of each whey protein-phenolic acid interaction ranged from 4 × 105 to 7 × 106 M-n and the number of binding sites n ranged from 1.28 ± 0.13 to 1.54 ± 0.34. Because of these interactions, the conformation of whey protein was altered, with a significant reduction in the amount of α-helix and an increase in the amounts of β-sheet and turn structures.

  13. Specific ion and buffer effects on protein-protein interactions of a monoclonal antibody.

    PubMed

    Roberts, D; Keeling, R; Tracka, M; van der Walle, C F; Uddin, S; Warwicker, J; Curtis, R

    2015-01-05

    Better predictive ability of salt and buffer effects on protein-protein interactions requires separating out contributions due to ionic screening, protein charge neutralization by ion binding, and salting-in(out) behavior. We have carried out a systematic study by measuring protein-protein interactions for a monoclonal antibody over an ionic strength range of 25 to 525 mM at 4 pH values (5, 6.5, 8, and 9) in solutions containing sodium chloride, calcium chloride, sodium sulfate, or sodium thiocyante. The salt ions are chosen so as to represent a range of affinities for protein charged and noncharged groups. The results are compared to effects of various buffers including acetate, citrate, phosphate, histidine, succinate, or tris. In low ionic strength solutions, anion binding affinity is reflected by the ability to reduce protein-protein repulsion, which follows the order thiocyanate > sulfate > chloride. The sulfate specific effect is screened at the same ionic strength required to screen the pH dependence of protein-protein interactions indicating sulfate binding only neutralizes protein charged groups. Thiocyanate specific effects occur over a larger ionic strength range reflecting adsorption to charged and noncharged regions of the protein. The latter leads to salting-in behavior and, at low pH, a nonmonotonic interaction profile with respect to sodium thiocyanate concentration. The effects of thiocyanate can not be rationalized in terms of only neutralizing double layer forces indicating the presence of an additional short-ranged protein-protein attraction at moderate ionic strength. Conversely, buffer specific effects can be explained through a charge neutralization mechanism, where buffers with greater valency are more effective at reducing double layer forces at low pH. Citrate binding at pH 6.5 leads to protein charge inversion and the formation of attractive electrostatic interactions. Throughout the report, we highlight similarities in the measured

  14. Identification of Cellular Proteins that Interact with Human Cytomegalovirus Immediate-Early Protein 1 by Protein Array Assay

    PubMed Central

    Puerta Martínez, Francisco; Tang, Qiyi

    2013-01-01

    Human cytomegalovirus (HCMV) gene expression during infection is characterized as a sequential process including immediate-early (IE), early (E), and late (L)-stage gene expression. The most abundantly expressed gene at the IE stage of infection is the major IE (MIE) gene that produces IE1 and IE2. IE1 has been the focus of study because it is an important protein, not only for viral gene expression but also for viral replication. It is believed that IE1 plays important roles in viral gene regulation by interacting with cellular proteins. In the current study, we performed protein array assays and identified 83 cellular proteins that interact with IE1. Among them, seven are RNA-binding proteins that are important in RNA processing; more than half are nuclear proteins that are involved in gene regulations. Tumorigenesis-related proteins are also found to interact with IE1, implying that the role of IE1 in tumorigenesis might need to be reevaluated. Unexpectedly, cytoplasmic proteins, such as Golgi autoantigen and GGA1 (both related to the Golgi trafficking protein), are also found to be associated with IE1. We also employed a coimmunoprecipitation assay to test the interactions of IE1 and some of the proteins identified in the protein array assays and confirmed that the results from the protein array assays are reliable. Many of the proteins identified by the protein array assay have not been previously reported. Therefore, the functions of the IE1-protein interactions need to be further explored in the future. PMID:24385082

  15. Structural Instability Tuning as a Regulatory Mechanism in Protein-Protein Interactions

    PubMed Central

    Chen, Li; Balabanidou, Vassilia; Remeta, David P.; Minetti, Conceição A.S.A.; Portaliou, Athina G.; Economou, Anastassios; Kalodimos, Charalampos G.

    2011-01-01

    SUMMARY Protein-protein interactions mediate a vast number of cellular processes. Here we present a regulatory mechanism in protein-protein interactions mediated by finely-tuned structural instability coupled with molecular mimicry. We show that a set of type III secretion (TTS) autoinhibited homodimeric chaperones adopt a molten-globule-like state that transiently exposes the substrate binding site as a means to become rapidly poised for binding to their cognate protein substrates. Packing defects at the homodimeric interface stimulate binding whereas correction of these defects results in less labile chaperones that give rise to non-functional biological systems. The protein substrates use structural mimicry to offset the “weak spots” in the chaperones and to counteract their autoinhibitory conformation. This regulatory mechanism of protein activity is evolutionary conserved among several TSS systems and presents a lucid example of functional advantage conferred upon a biological system by finely-tuned structural instability. PMID:22152477

  16. Nanoparticle corona for proteins: mechanisms of interaction between dendrimers and proteins.

    PubMed

    Shcharbin, Dzmitry; Ionov, Maksim; Abashkin, Viktar; Loznikova, Svetlana; Dzmitruk, Volha; Shcharbina, Natallia; Matusevich, Ludmila; Milowska, Katarzyna; Gałęcki, Krystian; Wysocki, Stanisław; Bryszewska, Maria

    2015-10-01

    Protein absorption at the surface of big nanoparticles and formation of 'protein corona' can completely change their biological properties. In contrast, we have studied the binding of small nanoparticles - dendrimers - to proteins and the formation of their 'nanoparticle corona'. Three different types of interactions were observed. (1) If proteins have rigid structure and active site buried deeply inside, the 'nanoparticle corona' is unaffected. (2) If proteins have a flexible structure and their active site is also buried deeply inside, the 'nanoparticle corona' affects protein structure, but not enzymatic activity. (3) The 'nanoparticle corona' changes both the structure and enzymatic activity of flexible proteins that have surface-based active centers. These differences are important in understanding interactions taking place at a bio-nanointerface.

  17. Proteins that interact with GTP during sporulation of Bacillus subtilis

    SciTech Connect

    Mitchell, C.; Vary, J.C. )

    1989-06-01

    During sporulation of Bacillus subtilis, several proteins were shown to interact with GTP in specific ways. UV light was used to cross-link ({alpha}-{sup 32}P)GTP to proteins in cell extracts at different stages of growth. After electrophoresis, 11 bands of radioactivity were found in vegetative cells, 4 more appeared during sporulation, and only 9 remained in mature spores. Based on the labeling pattern with or without UV light to cross-link either ({alpha}-{sup 32}P)GTP or ({gamma}-{sup 32}P)GTP, 11 bands of radioactivity were apparent guanine nucleotide-binding proteins, and 5 bands appeared to be phosphorylated and/or guanylated. Similar results were found with Bacillus megaterium. Assuming the GTP might be a type of signal for sporulation, it could interact with and regulate proteins by at least three mechanisms.

  18. Interaction and conformational dynamics of membrane-spanning protein helices

    PubMed Central

    Langosch, Dieter; Arkin, Isaiah T

    2009-01-01

    Within 1 or 2 decades, the reputation of membrane-spanning α-helices has changed dramatically. Once mostly regarded as dull membrane anchors, transmembrane domains are now recognized as major instigators of protein–protein interaction. These interactions may be of exquisite specificity in mediating assembly of stable membrane protein complexes from cognate subunits. Further, they can be reversible and regulatable by external factors to allow for dynamic changes of protein conformation in biological function. Finally, these helices are increasingly regarded as dynamic domains. These domains can move relative to each other in different functional protein conformations. In addition, small-scale backbone fluctuations may affect their function and their impact on surrounding lipid shells. Elucidating the ways by which these intricate structural features are encoded by the amino acid sequences will be a fascinating subject of research for years to come. PMID:19530249

  19. [Interaction of two tumor suppressors: Phosphatase CTDSPL and Rb protein].

    PubMed

    Beniaminov, A D; Krasnov, G S; Dmitriev, A A; Puzanov, G A; Snopok, B A; Senchenko, V N; Kashuba, V I

    2016-01-01

    Earlier we established that CTDSPL gene encoding small carboxy-terminal domain serine phosphatase can be considered a classical tumor suppressor gene. Besides, transfection of tumor cell line MCF-7 with CTDSPL led to the content decrease of inactive phosphorylated form of another tumor suppressor, retinoblastoma protein (Rb), and subsequently to cell cycle arrest at the G1/S boundary. This result implied that small phosphatase CTDSPL is able to specifically dephosphorylate and activate Rb protein. In order to add some fuel to this hypothesis, in the present work we studied the interaction of two tumor suppressors CTDSPL and Rb in vitro. GST pool-down assay revealed that CTDSPL is able to precipitate Rb protein from MCF-7 cell extracts, while surface plasmon resonance technique showed that interaction of the two proteins is direct. Results of this study reassert that phosphatase CTDSPL and Rb could be involved in the common mechanism of cell cycle regulation.

  20. RNA-protein interaction methods to study viral IRES elements.

    PubMed

    Francisco-Velilla, Rosario; Fernandez-Chamorro, Javier; Lozano, Gloria; Diaz-Toledano, Rosa; Martínez-Salas, Encarnación

    2015-12-01

    Translation control often takes place through the mRNA untranslated regions, involving direct interactions with RNA-binding proteins (RBPs). Internal ribosome entry site elements (IRESs) are cis-acting RNA regions that promote translation initiation using a cap-independent mechanism. A subset of positive-strand RNA viruses harbor IRESs as a strategy to ensure efficient viral protein synthesis. IRESs are organized in modular structural domains with a division of functions. However, viral IRESs vary in nucleotide sequence, secondary RNA structure, and transacting factor requirements. Therefore, in-depth studies are needed to understand how distinct types of viral IRESs perform their function. In this review we describe methods to isolate and identify RNA-binding proteins important for IRES activity, and to study the impact of RNA structure and RNA-protein interactions on IRES activity.

  1. Reconstruction and Application of Protein–Protein Interaction Network

    PubMed Central

    Hao, Tong; Peng, Wei; Wang, Qian; Wang, Bin; Sun, Jinsheng

    2016-01-01

    The protein-protein interaction network (PIN) is a useful tool for systematic investigation of the complex biological activities in the cell. With the increasing interests on the proteome-wide interaction networks, PINs have been reconstructed for many species, including virus, bacteria, plants, animals, and humans. With the development of biological techniques, the reconstruction methods of PIN are further improved. PIN has gradually penetrated many fields in biological research. In this work we systematically reviewed the development of PIN in the past fifteen years, with respect to its reconstruction and application of function annotation, subsystem investigation, evolution analysis, hub protein analysis, and regulation mechanism analysis. Due to the significant role of PIN in the in-depth exploration of biological process mechanisms, PIN will be preferred by more and more researchers for the systematic study of the protein systems in various kinds of organisms. PMID:27338356

  2. Spectroscopy reveals that ethyl esters interact with proteins in wine.

    PubMed

    Di Gaspero, Mattia; Ruzza, Paolo; Hussain, Rohanah; Vincenzi, Simone; Biondi, Barbara; Gazzola, Diana; Siligardi, Giuliano; Curioni, Andrea

    2017-02-15

    Impairment of wine aroma after vinification is frequently associated to bentonite treatments and this can be the result of protein removal, as recently demonstrated for ethyl esters. To evaluate the existence of an interaction between wine proteins and ethyl esters, the effects induced by these fermentative aroma compounds on the secondary structure and stability of VVTL1, a Thaumatin-like protein purified from wine, was analyzed by Synchrotron Radiation Circular Dichroism (SRCD) spectroscopy. The secondary structure of wine VVTL1 was not strongly affected by the presence of selected ethyl esters. In contrast, VVTL1 stability was slightly increased by the addition of ethyl-octanoate, -decanoate and -dodecanoate, but decreased by ethyl-hexanoate. This indicates the existence of an interaction between VVTL1 and at least some aroma compounds produced during fermentation. The data suggest that proteins removal from wine by bentonite can result in indirect removal of at least some aroma compounds associated with them.

  3. Electrostatic interactions as governing the fouling in protein microfiltration

    NASA Astrophysics Data System (ADS)

    Ouammou, M.; Tijani, N.; Calvo, J. I.; Palacio, L.; Prádanos, P.; Hernández, A.

    2005-03-01

    The influence of pH and electrostatic interactions on the fouling mechanism during protein dead-end microfiltration (MF) has been investigated for two charged membranes. Polyethersulfone acidic membranes (ICE-450), being negatively charged, and basic ones (SB-6407), these positively charged, both from Pall Co., have been used in the investigations. BSA and Lysozyme solutions at different pH values (3.0, 5.0, 7.0, 8.5 and 10.0) were microfiltered through the membranes at a constant applied transmembrane pressure. Results have been analysed in terms of usual blocking filtration laws and a substantial change in the fouling behaviour has been observed when solution pH and/or membrane charge as the pressure was changed, this change being clearly related with the specific membrane-protein and protein-protein interactions.

  4. Structure-based prediction of host-pathogen protein interactions.

    PubMed

    Mariano, Rachelle; Wuchty, Stefan

    2017-03-16

    The discovery, validation, and characterization of protein-based interactions from different species are crucial for translational research regarding a variety of pathogens, ranging from the malaria parasite Plasmodium falciparum to HIV-1. Here, we review recent advances in the prediction of host-pathogen protein interfaces using structural information. In particular, we observe that current methods chiefly perform machine learning on sequence and domain information to produce large sets of candidate interactions that are further assessed and pruned to generate final, highly probable sets. Structure-based studies have also emphasized the electrostatic properties and evolutionary transformations of pathogenic interfaces, supplying crucial insight into antigenic determinants and the ways pathogens compete for host protein binding. Advancements in spectroscopic and crystallographic methods complement the aforementioned techniques, permitting the rigorous study of true positives at a molecular level. Together, these approaches illustrate how protein structure on a variety of levels functions coordinately and dynamically to achieve host takeover.

  5. Analytical Techniques for the Study of Polyphenol-protein Interactions.

    PubMed

    Ulrih, Nataša Poklar

    2015-11-13

    This mini review focuses on advances in biophysical techniques to study polyphenol interactions with proteins. Polyphenols have many beneficial pharmacological properties, as a result of which they have been the subject of intensive studies. The most conventional techniques described here can be divided into three groups: (i) methods used for screening (in-situ methods); (ii) methods used to gain insight into the mechanisms of polyphenol-protein interactions; and (iii) methods used to study protein aggregation and precipitation. All of these methods used to study polyphenol-protein interactions are based on modifications to the physicochemical properties of the polyphenols or proteins after binding/ complex formation in solution. To date, numerous review articles have been published in the field of polyphenols. This review will give a brif insight in computational metods and biosensors and cell-based methods, spectroscopic methods including fluorescence emission, UV-vis adsorption, circular dichroism, Fourier transform infrared and mass spectrometry, nuclear magnetic resonance, X-ray diffraction, and light scattering techniqes including small-angle X-ray scattering and small-angle neutron scattering), and calorimetric techniques (isothermal titration calorimetry and differentiall scanning calorimetry), microscopy, the techniques which have been successfully used for polyphenol-protein interactions. At the end the new methods based on single molecule detection with high potential to study polyphenol-protein interactions will be presented. The advantages and disadvantages of each technique will be discussed as well as the thermodynamic, kinetic or structural parameters, which can be obtained. The other relevant biophysical experimental techniques that have proven to be valuable, such electrochemical methods, hydrodynamic techniques and chromatographic techniques will not be described here.

  6. Structures of multidomain proteins adsorbed on hydrophobic interaction chromatography surfaces.

    PubMed

    Gospodarek, Adrian M; Sun, Weitong; O'Connell, John P; Fernandez, Erik J

    2014-12-05

    In hydrophobic interaction chromatography (HIC), interactions between buried hydrophobic residues and HIC surfaces can cause conformational changes that interfere with separations and cause yield losses. This paper extends our previous investigations of protein unfolding in HIC chromatography by identifying protein structures on HIC surfaces under denaturing conditions and relating them to solution behavior. The thermal unfolding of three model multidomain proteins on three HIC surfaces of differing hydrophobicities was investigated with hydrogen exchange mass spectrometry (HXMS). The data were analyzed to obtain unfolding rates and Gibbs free energies for unfolding of adsorbed proteins. The melting temperatures of the proteins were lowered, but by different amounts, on the different surfaces. In addition, the structures of the proteins on the chromatographic surfaces were similar to the partially unfolded structures produced in the absence of a surface by temperature as well as by chemical denaturants. Finally, it was found that patterns of residue exposure to solvent on different surfaces at different temperatures can be largely superimposed. These findings suggest that protein unfolding on various HIC surfaces might be quantitatively related to protein unfolding in solution and that details of surface unfolding behavior might be generalized.

  7. Structure and expression of a novel compact myelin protein – Small VCP-interacting protein (SVIP)

    SciTech Connect

    Wu, Jiawen; Peng, Dungeng; Voehler, Markus; Sanders, Charles R.; Li, Jun

    2013-10-11

    Highlights: •SVIP (small p97/VCP-interacting protein) co-localizes with myelin basic protein (MBP) in compact myelin. •We determined that SVIP is an intrinsically disordered protein (IDP). •The helical content of SVIP increases dramatically during its interaction with negatively charged lipid membrane. •This study provides structural insight into interactions between SVIP and myelin membranes. -- Abstract: SVIP (small p97/VCP-interacting protein) was initially identified as one of many cofactors regulating the valosin containing protein (VCP), an AAA+ ATPase involved in endoplasmic-reticulum-associated protein degradation (ERAD). Our previous study showed that SVIP is expressed exclusively in the nervous system. In the present study, SVIP and VCP were seen to be co-localized in neuronal cell bodies. Interestingly, we also observed that SVIP co-localizes with myelin basic protein (MBP) in compact myelin, where VCP was absent. Furthermore, using nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopic measurements, we determined that SVIP is an intrinsically disordered protein (IDP). However, upon binding to the surface of membranes containing a net negative charge, the helical content of SVIP increases dramatically. These findings provide structural insight into interactions between SVIP and myelin membranes.

  8. An analysis pipeline for the inference of protein-protein interaction networks

    SciTech Connect

    Taylor, Ronald C.; Singhal, Mudita; Daly, Don S.; Gilmore, Jason M.; Cannon, William R.; Domico, Kelly O.; White, Amanda M.; Auberry, Deanna L.; Auberry, Kenneth J.; Hooker, Brian S.; Hurst, G. B.; McDermott, Jason E.; McDonald, W. H.; Pelletier, Dale A.; Schmoyer, Denise A.; Wiley, H. S.

    2009-12-01

    An analysis pipeline has been created for deployment of a novel algorithm, the Bayesian Estimator of Protein-Protein Association Probabilities (BEPro), for use in the reconstruction of protein-protein interaction networks. We have combined the Software Environment for BIological Network Inference (SEBINI), an interactive environment for the deployment and testing of network inference algorithms that use high-throughput data, and the Collective Analysis of Biological Interaction Networks (CABIN), software that allows integration and analysis of protein-protein interaction and gene-to-gene regulatory evidence obtained from multiple sources, to allow interactions computed by BEPro to be stored, visualized, and further analyzed. Incorporating BEPro into SEBINI and automatically feeding the resulting inferred network into CABIN, we have created a structured workflow for protein-protein network inference and supplemental analysis from sets of mass spectrometry bait-prey experiment data. SEBINI demo site: https://www.emsl.pnl.gov /SEBINI/ Contact: ronald.taylor@pnl.gov. BEPro is available at http://www.pnl.gov/statistics/BEPro3/index.htm. Contact: ds.daly@pnl.gov. CABIN is available at http://www.sysbio.org/dataresources/cabin.stm. Contact: mudita.singhal@pnl.gov.

  9. Interaction of plasma proteins with commercial protein repellent polyvinyl chloride (PVC): a word of caution.

    PubMed

    De Somer, F; Van Landschoot, A; Van Nooten, G; Delanghe, J

    2008-07-01

    Protein adsorption onto polymers remains a problem. In recent years, several protein-repellent PVC tubings have been developed. Although several studies report the interaction between plasma coagulation proteins and PVC, few address the interaction with other plasma proteins. Two commercial brands of untreated medical grade PVC tubing, phosphorylcholine-coated PVC tubing, triblock-copolymer (polycaprolactone-polydimethylsiloxane-polycaprolactone)-treated PVC tubing and poly-2-methoxyethylacrylate (PMEA)-coated tubing were exposed for 60 minutes to human plasma. A broad spectrum of plasma proteins was found on all tubing. The adsorbed albumin to total protein ratio is lower than the similar ratio in plasma while alpha1 and alpha2 globulins are over-represented in the protein spectrum. On PMEA tubing, not only alpha globulins, but also beta and gamma globulins, are found in high concentrations in the adsorbed protein. PMEA tubing and uncoated PVC tubing of brand B had a higher amount of protein adsorbed compared against all other tubing (p < 0.05). There were no statistical differences in protein adsorption between the triblock-copolymer-treated tubing, the phosphorylcholine-coated tubing and the uncoated PVC tubing of brand A. The average thickness of the protein layer was 23 nm. Plasma protein adsorption still exists on uncoated and protein-repellent tubing and can initiate a systemic inflammatory reaction.

  10. Visualization of host-polerovirus interaction topologies using Protein Interaction Reporter technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Demonstrating direct interactions between host and virus proteins during infection is a major goal and challenge for the field of virology. The majority of interactions are not binary or easily amenable to structural determination. Using infectious preparations of a polerovirus (Potato leafroll viru...

  11. Interaction of p53 with the human Rad51 protein.

    PubMed Central

    Buchhop, S; Gibson, M K; Wang, X W; Wagner, P; Stürzbecher, H W; Harris, C C

    1997-01-01

    p53 is thought to function in the maintenance of genomic stability by modulating transcription and interacting with cellular proteins to influence the cell cycle, DNA repair and apoptosis. p53 mutations occur in >50% of human cancers, and cells which lack wild type p53 accumulate karyotypic abnormalities such as amplifications, deletions, inversions and translocations. We propose that p53 hinders these promiscuous recombinational events by interacting with cellular recombination and repair machinery. We recently reported that p53 can directly bind in vivo to human Rad51 (hRad51) protein and in vitro to its bacterial homologue RecA. We used GST-fusion and his-tagged protein systems to further investigate the physical interaction between p53 and hRad51, homologue of the yeast Rad51 protein that is involved in recombination and DNA double strand repair. The hRad51 binds to wild-type p53 and to a lesser extent, point mutants 135Y, 249S and 273H. This binding is not mediated by a DNA or RNA intermediate. Mapping studies using a panel of p53 deletion mutants indicate that hRad51 could bind to two regions of p53; one between amino acids 94 and 160 and a second between 264 and 315. Addition of anti-p53 antibody PAb421 (epitope 372-381 amino acids) inhibited the interaction with hRad51. In contrast, p53 interacts with the region between aa 125 and 220 of hRad51, which is highly conserved among Rad51 related proteins from bacteria to human. In Escherichia coli ecA protein, this region is required for homo-oligomerization, suggesting that p53 might disrupt the interaction between RecA and Rad51 subunits, thus inhibiting biochemical functions of Rad51 like proteins. These data are consistent with the hypothesis that p53 interaction with hRAD51 may influence DNA recombination and repair and that additional modifications of p53 by mutation and protein binding may affect this interaction. PMID:9380510

  12. Interactions of polyphenols with carbohydrates, lipids and proteins.

    PubMed

    Jakobek, Lidija

    2015-05-15

    Polyphenols are secondary metabolites in plants, investigated intensively because of their potential positive effects on human health. Their bioavailability and mechanism of positive effects have been studied, in vitro and in vivo. Lately, a high number of studies takes into account the interactions of polyphenols with compounds present in foods, like carbohydrates, proteins or lipids, because these food constituents can have significant effects on the activity of phenolic compounds. This paper reviews the interactions between phenolic compounds and lipids, carbohydrates and proteins and their impact on polyphenol activity.

  13. Interaction of silver nanoparticles with proteins: a characteristic protein concentration dependent profile of SPR signal.

    PubMed

    Banerjee, Victor; Das, K P

    2013-11-01

    Silver nanoparticles are finding increasing applications in biological systems, for example as antimicrobial agents and potential candidates for control drug release systems. In all such applications, silver nanoparticles interact with proteins and other biomolecules. Hence, the study of such interactions is of considerable importance. While BSA has been extensively used as a model protein for the study of interaction with the silver nanoparticles, studies using other proteins are rather limited. The interaction of silver nanoparticles with light leads to collective oscillation of the conducting electrons giving rise to surface plasmon resonance (SPR). Here, we have studied the protein concentration dependence of the SPR band profiles for a number of proteins. We found that for all the proteins, with increase in concentration, the SPR band intensity initially decreased, reaching minima and then increased again leading to a characteristic "dip and rise" pattern. Minimum point of the pattern appeared to be related to the isoelectric point of the proteins. Detailed dynamic light scattering and transmission electron microscopy studies revealed that the consistency of SPR profile was dependent on the average particle size and state of association of the silver nanoparticles with the change in the protein concentration. Fluorescence spectroscopic studies showed the binding constants of the proteins with the silver nanoparticles were in the nano molar range with more than one nanoparticle binding to protein molecule. Structural studies demonstrate that protein retains its native-like structure on the nanoparticle surface unless the molar ratio of silver nanoparticles to protein exceeds 10. Our study reveals that nature of the protein concentration dependent profile of SPR signal is a general phenomena and mostly independent of the size and structure of the proteins.

  14. Evidence of Probabilistic Behaviour in Protein Interaction Networks

    DTIC Science & Technology

    2008-01-31

    Evidence of degree-weighted connectivity in nine PPI networks. a, Homo sapiens (human); b, Drosophila melanogaster (fruit fly); c-e, Saccharomyces...illustrates maps for the networks of Homo sapiens and Dro- sophila melanogaster, while maps for the remaining net- works are provided in Additional file 2. As...protein-protein interaction networks. a, Homo sapiens ; b, Drosophila melanogaster. Distances shown as average shortest path lengths L(k1, k2) between

  15. Analyzing protein-ligand interactions by dynamic NMR spectroscopy.

    PubMed

    Mittermaier, Anthony; Meneses, Erick

    2013-01-01

    Nuclear magnetic resonance (NMR) spectroscopy can provide detailed information on protein-ligand interactions that is inaccessible using other biophysical techniques. This chapter focuses on NMR-based approaches for extracting affinity and rate constants for weakly binding transient protein complexes with lifetimes of less than about a second. Several pulse sequences and analytical techniques are discussed, including line-shape simulations, spin-echo relaxation dispersion methods (CPMG), and magnetization exchange (EXSY) experiments.

  16. MPact: the MIPS protein interaction resource on yeast

    PubMed Central

    Güldener, Ulrich; Münsterkötter, Martin; Oesterheld, Matthias; Pagel, Philipp; Ruepp, Andreas; Mewes, Hans-Werner; Stümpflen, Volker

    2006-01-01

    In recent years, the Munich Information Center for Protein Sequences (MIPS) yeast protein–protein interaction (PPI) dataset has been used in numerous analyses of protein networks and has been called a gold standard because of its quality and comprehensiveness [H. Yu, N. M. Luscombe, H. X. Lu, X. Zhu, Y. Xia, J. D. Han, N. Bertin, S. Chung, M. Vidal and M. Gerstein (2004) Genome Res., 14, 1107–1118]. MPact and the yeast protein localization catalog provide information related to the proximity of proteins in yeast. Beside the integration of high-throughput data, information about experimental evidence for PPIs in the literature was compiled by experts adding up to 4300 distinct PPIs connecting 1500 proteins in yeast. As the interaction data is a complementary part of CYGD, interactive mapping of data on other integrated data types such as the functional classification catalog [A. Ruepp, A. Zollner, D. Maier, K. Albermann, J. Hani, M. Mokrejs, I. Tetko, U. Güldener, G. Mannhaupt, M. Münsterkötter and H. W. Mewes (2004) Nucleic Acids Res., 32, 5539–5545] is possible. A survey of signaling proteins and comparison with pathway data from KEGG demonstrates that based on these manually annotated data only an extensive overview of the complexity of this functional network can be obtained in yeast. The implementation of a web-based PPI-analysis tool allows analysis and visualization of protein interaction networks and facilitates integration of our curated data with high-throughput datasets. The complete dataset as well as user-defined sub-networks can be retrieved easily in the standardized PSI-MI format. The resource can be accessed through . PMID:16381906

  17. Optical Methods to Study Protein-DNA Interactions in Vitro and in Living Cells at the Single-Molecule Level

    PubMed Central

    Monico, Carina; Capitanio, Marco; Belcastro, Gionata; Vanzi, Francesco; Pavone, Francesco S.

    2013-01-01

    The maintenance of intact genetic information, as well as the deployment of transcription for specific sets of genes, critically rely on a family of proteins interacting with DNA and recognizing specific sequences or features. The mechanisms by which these proteins search for target DNA are the subject of intense investigations employing a variety of methods in biology. A large interest in these processes stems from the faster-than-diffusion association rates, explained in current models by a combination of 3D and 1D diffusion. Here, we present a review of the single-molecule approaches at the forefront of the study of protein-DNA interaction dynamics and target search in vitro and in vivo. Flow stretch, optical and magnetic manipulation, single fluorophore detection and localization as well as combinations of different methods are described and the results obtained with these techniques are discussed in the framework of the current facilitated diffusion model. PMID:23429188

  18. Cholesterol and the interaction of proteins with membrane domains.

    PubMed

    Epand, Richard M

    2006-07-01

    Cholesterol is not uniformly distributed in biological membranes. One of the factors influencing the formation of cholesterol-rich domains in membranes is the unequal lateral distribution of proteins in membranes. Certain proteins are found in cholesterol-rich domains. In some of these cases, it is as a consequence of the proteins interacting directly with cholesterol. There are several structural features of a protein that result in the protein preferentially associating with cholesterol-rich domains. One of the best documented of these is certain types of lipidations. In addition, however, there are segments of a protein that can preferentially sequester cholesterol. We discuss two examples of these cholesterol-recognition elements: the cholesterol recognition/interaction amino acid consensus (CRAC) domain and the sterol-sensing domain (SSD). The requirements for a CRAC motif are quite flexible and predict that a large number of sequences could recognize cholesterol. There are, however, certain proteins that are known to interact with cholesterol-rich domains of cell membranes that have CRAC motifs, and synthetic peptides corresponding to these segments also promote the formation of cholesterol-rich domains. Modeling studies have provided a rationale for certain requirements of the CRAC motif. The SSD is a larger protein segment comprising five transmembrane domains. The amino acid sequence YIYF is found in several SSD and in certain other proteins for which there is evidence that they interact with cholesterol-rich domains. The CRAC sequences as well as YIYF are generally found adjacent to a transme